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1 Introduction

The ABJM duality [1] between the supersymmetric Chern-Simons-matter theory and 11d M-
theory on AdS4 ˆ S7{Zk, combined with exact localization results [2], provides a possibility
to shed light on the structure of M-theory as a theory of quantum supermembranes.

A recent remarkable example was provided in [3], which considered the 1
2 -BPS circular

Wilson loop expectation value xW 1
2
y in the UpNqk ˆ UpNq´k ABJM theory at large N

and fixed level k. This has a dual description in terms of an M2 brane wrapped on
AdS2 ˆ S1 [4] in the M-theory background AdS4 ˆ S7{Zk. The localization result [5]

xW 1
2
y “ 1

2 sinp 2π
k
q
e

π
b

2N
k ` . . . has the exponential factor that comes from the classical value

of the M2 brane action, while the k-dependent prefactor was exactly reproduced [3] by the
one-loop term in the partition function of the quantum M2 brane. This consistent quantum
M2 brane computation naturally suggests extensions to M-theory calculations for other
observables that may be similarly compared to localization results.

Indeed, here we present an analogous quantum M2 brane computation of the instanton
prefactor in the localization result for the leading large N non-perturbative contribution
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to the ABJM free energy F on the 3-sphere, which has the form [6, 7] F instpN, kq “

´ 1
sin2p 2π

k
q
e
´2π

b

2N
k ` . . .. Here the exponent comes from the action of an M2 brane instanton

with S3{Zk world-volume geometry. Such M2 instanton wraps the 11d circle S1 and a
CP1 in CP3, and it represents the M-theory uplift of the CP1 instanton in type IIA string
theory on AdS4 ˆ CP3 [8]. The IIA superstring computation of the leading large k term
in this instanton prefactor 1

sin2p 2π
k
q
Ñ k2

p4πq2 “ 2T
πg2

s
(T is the string tension and gs is the

string coupling) was recently presented in a remarkable paper [9]. Here we show that the
exact prefactor 1

sin2p 2π
k
q

is reproduced by the 1-loop term in the M2 brane partition function
expanded near the S3{Zk instanton configuration. As in the Wilson loop example [3], the
quantum M2 brane computation is well defined and produces a finite result which is in
exact agreement with the localization prediction.

We shall start in section 2 with a review of the relevant localization results for the large
N non-perturbative contributions to the ABJM free energy F on 3-sphere. We shall note a
surprising similarity between the instanton prefactor in the non-perturbative part of F and
in the leading perturbative term in the expectation value of the Wilson loop.

In section 3 we shall argue that the gauge theory free energy should be matched to
the “first-quantized” M2 brane partition function. The leading large N perturbative terms
should be captured by the 11d supergravity action plus higher derivative corrections (see [10]
and refs. there), while non-perturbative contributions should come from M2 brane instanton
contributions.

Section 4 will be devoted to the classical solution for the M2 brane wrapped on
S3{Zk Ă S7{Zk and the Lagrangian for the bosonic and fermionic quadratic fluctuations
around it. We will use a static gauge, where the 11d circle is identified with one periodic
M2 coordinate. Expanding in Fourier modes on this circle, we may represent the M2
brane 3d fluctuation action as an action for an infinite Kaluza-Klein tower (labeled by
n “ 0,˘1,˘2, . . .) of 2d fields on CP1, in the presence of a background Up1q gauge field of
a magnetic monopole (originating from the Hopf fibration representation of S3{Zk). The
lowest n “ 0 level corresponds to the type IIA string fluctuations near the CP1 instanton
already discussed in [8, 9].

The determinants of the resulting bosonic and fermionic operators on S2 for charged
massive 2d fields in the magnetic monopole background are computed in section 5.

In section 6 we perform the sum over the level n of all the 2d fluctuation contributions.
We observe that the final result for the M2 brane 1-loop correction is UV finite provided
one uses the standard analytic (Riemann ζ-function) regularization, in agreement with
expectation of no 1-loop log UV divergences in a 3d theory. We also discover that almost
all finite bosonic and fermionic terms mutually cancel and the 1-loop M2 brane partition
function Z1 appears to effectively “localize” to the contribution of just two bosonic 1d
degrees of freedom on S1, i.e. log Z1 Ñ ´ log det1

`

´k2

4
d2

ds2 ´ 1
˘

“ ´2
ř8

n“1 log
`

k2

4 n
2 ´ 1

˘

.
Regularizing this 1d determinant in the standard way we get the 1

sin2p 2π
k
q

prefactor matching
the localization result (up to an integer factor that requires consideration of string-level
0-modes as in [9]).
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We conclude in section 7 by making some remarks on several open problems. In
particular, we comment on the role of the RP3 Ă CP3 M2 brane instanton (or the D2
brane instanton [6] in the type IIA string limit) with some details about this second type of
instanton contributions to the free energy provided in appendix A, where we also comment
on the cases of k “ 1, 2 which need special consideration.

2 Free energy from localization

Let us start with a review of the localization result for the partition function ZpN, kq of the
UpNqk ˆ UpNq´k ABJM theory on S3. We shall assume that k ą 2 (and in general finite).
As a function of N the partition function can be represented as a sum of a perturbative
part (given by a series in 1?

N
) and a non-perturbative part involving factors like e´hpkq

?
N

that are exponentially suppressed at large N , i.e.

Z “ ZppN, kq ` ZnppN, kq . (2.1)

In the Fermi gas approach [11] the localization expression for ZpN, kq is expressed1 in terms
of the grand potential Jpµ, kq of a non-trivial fermionic system as2

ZpN, kq ” e´F pN,kq “

ż i8

´i8

dµ

2πi e
Jpµ,kq´Nµ . (2.2)

The grand potential Jpµ, kq may be split into the sum of the perturbative (polynomial in
µ) and non-perturbative (suppressed at large µ) parts

Jpµ, kq “ Jppµ, kq ` Jnppµ, kq (2.3)

where

Jppµ, kq “
1
3Cpkqµ

3 `Bpkqµ`Apkq, Cpkq “
2
π2k

, Bpkq “
k

24 `
1
3k . (2.4)

Here Apkq is the so-called constant map contribution first identified in [17] and admitting
the following integral representation [17, 18]

Apkq “ ´
ζp3q
8π2

ˆ

k2 ´
16
k

˙

`
k2

π2

ż 8

0
dx

x

ekx ´ 1 logp1´ e´2xq. (2.5)

If (2.2) is evaluated keeping only the perturbative part Jppµ, kq in (2.3) one finds the
perturbative part of Z which is expressed in terms of the Airy function

ZppN, kq “ Cpkq´
1
3 eApkq Ai

”

Cpkq´
1
3
`

N ´Bpkq
˘

ı

. (2.6)

1The localization matrix model representation for the partition function of the ABJM theory on S3 was
first derived in [12] and later mapped to a lens space matrix model solvable in planar limit [13]. Higher order
1{N corrections were computed in [6, 14] and resummed in [15] neglecting non-perturbative corrections.

2To be precise, the integration contour in (2.2) corresponds to the use of the so-called modified grand
potential, see [16] for details.
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As for the non-perturbative contributions to Z, the structure of Jnppµ, kq implies that there
are two basic types of exponential corrections.3 Written as the exponentially suppressed
contributions F np to the free energy

F ” ´ logZ “ F p ` F np , (2.7)

where the large N expansion of the perturbative part follows from (2.6) (see [10] for details)

F p “ ´ logZp “ 1
3
?
2πk1{2N3{2 ´ π

24
?
2

`

k2 ` 8
˘

k´1{2N1{2 ` 1
4 log

32N
k ´Apkq `OpN´1{2q ,

(2.8)
they are given by the double sum [6, 7]

F np “

8
ÿ

nI ,nII“0
fnI ,nII

pN, kq exp
«

´2π
?
N

˜

nI

c

2
k
` nII

c

k

2

¸ff

. (2.9)

In the type IIA string theory regime (i.e. in the limit of large N and k with λ “ N
k =fixed)

these may be interpreted as the contributions of the string world-sheet instantons (wrapping
CP1 in CP3 [8]) and of the D2-brane instantons (wrapping a 3-cycle RP3 “ S3{Z2 in CP3)
respectively [6]. In the M-theory regime (i.e. for large N with fixed k), the world-sheet
instantons correspond to the M2 brane instantons wrapping the 11d circle and a CP1 in CP3,
i.e. S3{Zk Ă S7{Zk, while the D2 instantons correspond to the M2 instantons wrapping the
analog of RP3 Ă CP3 3-cycle in S7{Zk.

We denote the numbers of the two kinds of instanton respectively as nI and nII . The
factors in the exponents in (2.9) correspond to the classical volumes of the two types of
the membrane instantons. The terms with both nI and nII nonzero can be thought of as
“bound state” contributions [7].

For k ą 2 the dominant non-perturbative contribution to (2.9) comes from the S3{Zk

instanton, i.e. from the nI “ 1, nII “ 0 term in the sum. Below we shall focus on this
leading term and simply refer to it as the “instanton” contribution.

The nII “ 0 part of (2.9) originates from the following contribution to Jnppµ, kq [16]

Jnppµ, kq “
8
ÿ

nI“1
dnI

pkq e´
4nI

k
µ ` . . . , (2.10)

where the function dnI
pkq may be determined using that the ABJM matrix integral is dual

to the partition function of a topological string theory on P1 ˆ P1. In particular, the nI “ 1
instanton term has the coefficient [16]

d1pkq “
1

sin2p2π
k q

. (2.11)

From (2.2) we find that the contribution of the 1-instanton term to the non-perturbative
part of the partition function ZnppN, kq can be expressed in terms of the perturbative part

3Note that in the saddle point evaluation of (2.2), the large µ and the large N limits are correlated due
to the form of the perturbative grand potential.
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Zp in (2.6) as

Z instpN, kq “

ż i8

´i8

dµ

2πi e
Jppµ,kq´Nµ d1pkq e

´ 4
k

µ “ d1pkqZ
ppN ` 4

k , kq . (2.12)

The corresponding 1-instanton term in the non-perturbative part of free energy (2.7) is then
(cf. (2.6), (2.9))

F nppN, kq “ F instpN, kq ` ¨ ¨ ¨ , (2.13)

F instpN, kq “ ´d1pkq
Ai

”

Cpkq´
1
3 pN ´Bpkq ` 4

k q

ı

Ai
”

Cpkq´
1
3 pN ´Bpkqq

ı

“ F inst
1 pN, kq

”

1` π?
2k

k2´40
12k

1?
N

` . . .
ı

, (2.14)

F inst
1 pN, kq “ ´d1pkq e

´2π
?

N
b

2
k “ ´

1
sin2p2π

k q
e
´2π

b

2N
k . (2.15)

Here F inst
1 is the leading large N term in the 1-instanton contribution.

It is interesting to notice a close resemblance of the expression for F instpN, kq in (2.14)
and the one for the perturbative part of the expectation value of the 1

2 -BPS circular Wilson
loop in the ABJM theory derived using localization in [5] (see also [11, 14, 15, 19])4

xW 1
2
y “

1
2 sinp2π

k q

Ai
”

Cpkq´
1
3 pN ´Bpkq ´ 2

k q

ı

Ai
”

Cpkq´
1
3 pN ´Bpkqq

ı

“
1

2 sinp2π
k q
e

π
b

2N
k

”

1´ π?
2k

k2`32
24k

1?
N

` . . .
ı

. (2.16)

Compared to (2.14) here the prefactor is 1
2 sinp 2π

k
q

instead of ´ 1
sin2p 2π

k
q

in (2.15) and the

argument of the Airy function in the numerator is N ´ Bpkq ´ 2
k “ N ´ k

24 ´ 7
3k instead

of N ´Bpkq ` 4
k “ N ´ k

24 ` 11
3k . These different shifts explain why the coefficients in the

exponentials in (2.15) and (2.16) differ by factor of ´2.5

This factor of ´2 has a string theory (or wrapped M2 brane) interpretation: the
regularized area of the AdS2 minimal surface in the case of the Wilson loop is ´2π (minus
area of a disk), while the area of CP1 is `4π.6 Also, the fact that the prefactor in the
instanton contribution to the free energy in (2.15) is proportional to the square of the
prefactor in the Wilson loop in (2.16) may be attributed to the a heuristic expectation that
the partition function on a 2-sphere is related to a square of the partition function on a
disk.

4We use the same normalization of xW 1
2
y as in [3, 20].

5Indeed, the large x asymptotics of Aipxq „ x´1{4e´2{3x3{2
implies that for the ratio with the arguments

N ´ Bpkq ` a
k

and N ´ Bpkq the asymptotics is e´aπ
b

N
2k .

6In more detail, for the WL we have an AdS2 inside AdS4 of radius R{2 so the area is ´ 1
2 πR2. For the

M2 brane instanton, the CP3 factor in the metric has radius R but the CP1 we wrap around is a sphere of
radius R{2, so the resulting area is πR2. Thus the relative factor is still ´2 as above.

– 5 –



J
H
E
P
1
0
(
2
0
2
3
)
0
2
9

Our aim below will be to reproduce (2.15) on the dual M-theory side by a quantum
M2 brane computation, in full analogy to how that was done in [3] for the leading term in
the Wilson loop expression in (2.16).

3 Free energy from M2 brane partition function

Motivated by the expected duality between the ABJM theory and M-theory on AdS4ˆS
7{Zk

it is natural to expect that the perturbative part of the free energy (2.8) should be
reproduced by some higher derivative extension of the 11d supergravity action evaluated
on the AdS4 ˆ S7{Zk background (for a recent discussion and references to related work
see [10, 21]). Indeed, it was found in [14] that the leading N3{2 term in (2.8) is matched by
the on-shell value of the Euclidean 11d supergravity action.7

More generally, we shall conjecture that the gauge theory free energy should be
reproduced by some properly defined supermembrane partition function,

F „ ZM2 , ZM2 “

ż

rdx dθs e´SM2rx,θs , (3.1)

where SM2 is the M2 brane action on AdS4 ˆ S7{Zk with the dimensionless coefficient of
the effective tension (R is the radius of S7 or twice the radius of AdS4, see (4.1) below)

T2 ” R3T2 “
1

p2πq2
R3

ℓ3P
“

?
2k
π

?
N ,

R

ℓP
“ p32π2Nkq1{6 . (3.2)

Then for fixed k (or fixed radius of the 11d circle) the semiclassical large T2 expansion of
ZM2 should be equivalent to the large N expansion on the gauge theory side.

One may further conjecture that the perturbative part of ZM2 in the large T2 „
?
N

limit may be captured by an expansion near “point-like” M2 branes or, more precisely,
degenerate 3-surfaces with a topology of S1 times a point which have zero 3-volume. At the
same time, the non-perturbative e´aT2 “ e´a

?
2k
π

?
N contributions may come from saddle

points with non-vanishing 3-volumes, e.g. from M2 branes wrapping the M-theory circle and
a CP1 Ă CP3, or a 3-cycle in CP3 (and their superpositions). Symbolically, we may write

ZM2 “ Z
p0q
M2 ` Z inst

M2 ` . . . . (3.3)

Here the first term (coming from contributions of “degenerate” M2 brane surfaces) when
expanded at large k should represent the sum of all perturbative tree level plus higher loop
type IIA string corrections to the on-shell value of the partition function.

7More precisely, if one directly evaluates the 11d action on the AdS4 ˆS7
{Zk solution one gets the leading

term in (2.8) with an extra factor of ´ 1
2 (see discussion in appendix B of [10]). There is a subtlety here: as

AdS4 ˆS7
{Zk is an “electric” 11d solution, one may use a prescription that the sign of the flux F 2

mnkl term is
to be reversed when evaluating the on-shell value of the 11d action (this prescription is equivalent to adding
a particular boundary term; a related observation is that adding a total derivative 4d term

ş

d4x ϵmnklFmnkl

changes the value of the 4d cosmological constant [22]). This then gives the same value as found from the
effective 4d action reconstructed to have the same AdS4 space as its solution (see [23, 24] and refs. there for
related discussions). It is the latter 4d action that was used as a starting point in [14] following [25].
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A motivation for this suggestion comes from considering the perturbative type IIA
string limit (k „ N " 1) in which the radius of the 11d circle is small and thus the
membrane partition function should effectively reduce to the type IIA string partition
function (cf. [26–30]). The latter, expanded in the inverse string tension, should be closely
related to the low-energy string effective action [31–35] and thus also to the on-shell value
of the latter.8 The contribution of the type IIA string instanton saddle point [8, 9] will then
naturally supplement the perturbative part of the string partition function.

One should add of course a reservation that, as the M2 brane action is highly non-linear
(even its bosonic part does not become quadratic in any gauge), it is not clear how to define its
expansion near a degenerate “point-like” membrane configuration; this apparently requires
a non-perturbative approach to the corresponding quantum 3d world-volume theory.9

In contrast, the semiclassical expansion of the M2 brane path integral near a classical
solution with a non-zero 3d volume is well defined [36–40] as in this case one is able to fix a
static gauge and thus develop the standard gaussian perturbation theory. A remarkable
recent example is the computation [3] of the Wilson loop prefactor in (2.16) from the
quantum M2 fluctuation determinants near the corresponding AdS2 ˆ S1 minimal 3-surface.

Below we will perform a similar semiclassical computation in the case of the M2 brane
instanton wrapping S3{Zk, reproducing the 1

sin2 2π
k

prefactor in (2.15) from the corresponding
1-loop fluctuation determinants.

To be able to make a precise comparison to the localization result for the free energy
one is to decide about the proportionality coefficient in (3.1). We will assume (as was also
done in the string-theory limit in [9]) that

F “ ´Z
p0q
M2 ´ Z inst

M2 ` . . . “ pSsugra ` . . .q ´ Z inst
M2 ` . . . . (3.4)

This assumption is based on the expectation that in the string theory limit the (on-shell
value of) string effective action should be given by minus string partition function as was
originally suggested in [32].10

This may be motivated [32] by analogy with the first-quantized point-particle rep-
resentation of the standard quantum field theory effective action. For example, the ex-
pression for the torus part of the string partition function should effectively reduce, in

8To see directly how a non-zero on-shell value of the string effective action is reproduced in the case of
AdS space factors and RR backgrounds requires understanding how boundary terms are captured by the
string path integral, which is currently an open problem.

9In particular, going off shell, it is not even clear how one would compute the leading terms of the 11d
supergravity action by starting with the M2 brane path integral.

10This is true, e.g., in the open string theory where the string partition function on the disk in conformal
gauge is negative-definite as the regularized value of the SLp2,Rq Möbius volume is negative, volpSLp2,Rqq “
volpAdS2q volpS1

q “ ´4π2 (cf. [41–46]). In the closed bosonic string sigma model on S2 near a conformal
point one has Zstr “ 1

Ω Z, where Z “
ş

dDx
?

G e´2ϕexppC χ log Λ ` . . .q, C “ 1
6 D ` . . ., χpS2

q “ 2 and
Ω is the regularized volume of the SLp2,Cq Möbius group, Ω “ volpSLp2,Cqq “ volpSOp1,3q

SOp3q q volpSOp3qq “
´4π3 log Λ, where volpSOp1,3q

SOp3q q “ volpAdS3q “ ´2π log Λ. Then Sstr “ ´Zstr “ 1
2π3

ş

dDx
?

G e´2ϕ C. In
general, one is to replace 1

log Λ by d
d log Λ (and renomalize the fields) [33, 34, 47] getting the effective action

Sstr “
1

2π3

ş

dDx
?

G e´2ϕ β̃ϕ, β̃ϕ
“ C ` . . . “ 1

6 pD ´ 26q ´ 1
4 α1RpDq

` . . ., which thus has the right sign for
a Euclidean action.
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the point-like limit, to the familiar relation between the 1-loop quantum effective action
and minus the particle path integral on a circle, Γ1 “

1
2 log detp´B2 ` . . .q “ ´Zpart., with

Zpart. “
ş8

0
dt
2t

ş

rdxpτqs e´
şt
0 dτp 1

2 9x2`...q.11

Before proceeding, let us comment on the interpretation of (2.15) expanded at large k
from the point of view of type IIA string theory. Let us recall the relations for the type IIA
string theory coupling and tension [1]

gs “
?
π
`2
k

˘5{4
N1{4 “

?
π p2λq5{4

N
, λ “

N

k
, (3.5)

T “
1
8π

R2
10
α1

“ g2{3s
R2

8πα1
“

?
λ

?
2
,

g2s
8π T “

λ2

N2 “
1
k2
, (3.6)

where R{2 and R10{2 are the AdS curvature radii in the 11d and 10d metrics. Just like the
1

2 sin 2π
k

prefactor in the Wilson loop expectation value (2.16) sums up all the leading large

T terms in the higher genus string corrections to the prefactor 1?
2π

?
T

gs
“ k

4π from the disk
diagram [20], similarly the prefactor in F inst

1 in (2.15) may be written as

1
sin2p2π

k q
“

1
sin2

´

a

π
2

gs?
T

¯ “
2
π

T

g2s
`

1
3 `

π

30
g2s
T

`
π2

378
g4s
T 2 ` . . . , (3.7)

where the leading term is the contribution of the string tree level 2-sphere diagram, and
corrections are coming from higher genus contributions. To leading order in large tension
T at each order in g2s we expect that the exponential with the classical instanton action
in (2.15) will remain the same (the area of handles attached to 2-sphere will be effectively
negligible) but the prefactor will get corrected order by order in gs as in (3.7). This picture
is corroborated by the M2-brane derivation of (2.15), (3.7) below.

The leading 2-sphere term in (3.7) was recently discussed in [9], where its overall factor
was fixed using relative normalization to other available data. Like in the WL computation
in [3], here we will not have to rely on indirect arguments to fix the tension dependence of
the prefactor (all UV divergences will cancel automatically) but will still need to address
the issue of the 0-modes (appearing only from the string-level fluctuations) arguing for the
related overall factor of 2 following [9].

4 M2 brane wrapped on S3{Zk

4.1 Classical M2 brane action in AdS4 ˆ S7{Zk background

Let us start with a review of some basic relations for the AdS4 ˆ S7{Zk background and
the classical M2 brane action (see, e.g., [3, 4]).

11The integral over the Schwinger parameter t can be understood as arising from the path integral over
the einbein upon gauge fixing the worldline diffeomorphism invariance (see for instance [48]).
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The 11d metric is (n,m “ 1, 2, 3; y ” y ` 2π)

ds2 “
R2

4 ds2AdS4 `R2ds2S7{Zk
, ds2S7{Zk

“ ds2CP3 `
1
k2

pdy ` kAq2, (4.1)

ds2CP3 “
p1` |w|2q dwn dw̄n ´ wnw̄mdwmdw̄n

p1` |w|2q2
, (4.2)

A “
i

2pB̄ ´ Bq logp1` |w|2q “
i

2
1

1` |w|2
pwndw̄n ´ w̄ndwnq. (4.3)

We shall assume that AdS4 has Euclidean signature with boundary S3. This 11d background
is then supported by F4 “ dC3 “ ´i38R

3volpAdS4q.
The action for a (Euclidean) M2 brane in this background is given by [37, 49–52]

S “ T2

ˆ
ż

d3ξ
?
detG` i

ż

C3 ` fermionic terms
˙

, T2 “
1

p2πq2
1
ℓ3P
. (4.4)

Here we are interested in the M2 brane configuration with S3{Zk world-volume, that is
wrapped on the 11d circle y of radius R{k and on CP1 Ă CP3. This is the M2 uplift of the
IIA string CP1 instanton of [8]. The CP1 will be chosen as the w2 “ w3 “ 0 surface in
CP3.12 We fix the world-volume reparametrization invariance using the static gauge: we
identify pw1, w̄1, yq with the 3 real world-volume coordinates ξi “ pu, v, sq according to

w1 ” z “ u` iv , w̄1 “ z̄ “ u´ iv , y “ s, s P p0, 2πs . (4.5)

As the C3 potential has only the AdS4 components the bosonic part of the corresponding
Euclidean M2 brane action is given by

Scl “ T2

ż

d3ξ
?
g , (4.6)

where gij is the induced world-volume metric

ds23 “ gijdξ
idξj “ R2 dz dz̄

p1` |z|2q2
`
R2

k2
“

ds` kApz, z̄q
‰2
. (4.7)

This is the metric of S3{Zk (for k “ 1 this is the standard Hopf metric of S3 with radius R).
The explicit form of the metric and the 1-form A “ Audu`Avdv in the real basis pu, v, sq is

gij “ R2

¨

˚

˝

κ2p1` v2q ´κ2uv 1
kAu

´κ2uv κ2p1` u2q 1
kAv

1
kAu

1
kAv

1
k2

˛

‹

‚

, A “ κp´vdu` udvq, κ ” p1` u2 ` v2q´1 ,

(4.8)

gij “
1

κ2R2

¨

˚

˝

1 0 ´kAu

0 1 ´kAv

´kAu ´kAv k2κ

˛

‹

‚

,
?
g “

R3

k
κ2 . (4.9)

12This corresponds to a particular 1
2 -BPS M2 brane solution discussed in [53].
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The resulting classical value of the action (4.6) is

Scl “ T2R
3 volpS3{Zkq “

1
k
T2R

3 volpS3q “
2π2

k
T2 . (4.10)

Here the effective dimensionless tension is

T2 ” R3T2 “
1

p2πq2
R3

ℓ3P
“

1
π

?
2Nk , (4.11)

so that

Scl “ 2π
c

2N
k
. (4.12)

This is also the same as the value of the classical action of the string world sheet wrapped
on CP1 in AdS4 ˆ CP3 [8], i.e. Scl “ 2π

?
2λ (cf. (3.6)).

4.2 Quadratic fluctuation Lagrangian

Our aim will be to compute the 1-loop prefactor Z1 in the corresponding 1-instanton
contribution to the M2 brane partition function in (3.3)

Z inst
M2 “ Z1 e

´Scl ` . . . . (4.13)

The factor Z1 will be expressed in terms of the determinants of operators of the bosonic and
fermionic fluctuations which will be functions of the 3d coordinates pu, v, sq in the static
gauge defined in (4.5).

In this static gauge we will have 8 real bosonic fluctuations: 4 in the AdS4 directions
and 4 in the 2 complex transverse CP3 directions w2, w3. Fixing a κ-symmetry gauge (like
in [37]), we will also have 8 fermionic fluctuations.

Expanding the action (4.4), one finds that the fluctuations of w2 and w3 decouple and
their contributions are the same. Considering, e.g., w2 and setting (cf. (4.8))13

w2pu, v, sq “ κ´1{2 ϕpu, v, sq , (4.14)

we get for the corresponding quadratic fluctuation Lagrangian

L2pϕq “
R2

2

3
ÿ

i,j“1
gijDiϕ̄Djϕ´ ϕ̄ϕ´

i

2kpϕ̄Bsϕ´ Bsϕ̄ ϕq , (4.15)

Diϕ “ pBi ´ i Aiqϕ, Diϕ̄ “ pBi ` i Aiq ϕ̄ . (4.16)

Here Bi “ pBu, Bv, Bsq and Ai “ pAu, Av, 0q is the 3d gauge potential with Au, Av defined
in (4.8).

As s is a periodic coordinate we may interpret the corresponding 3d action
ş

d3ξ
?
g L2

as a 2d action for an infinite tower of the Fourier modes of ϕ by setting ϕpu, v, sq “
ř

n ϕnpu, vq e
ins. This 2d action will be defined on CP1 with the metric gab of a 2-sphere

of radius R{2 (the first term in (4.7)). The corresponding Lagrangian for a tower of 2d
13Here κpu, vq is defined in (4.8). We also rescale all fluctuation fields by T´1{2

2 .
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charged massive complex scalars ϕn on the 2-sphere coupled to the background 2d abelian
gauge field potential Aa is then (here a, b “ 1, 2 label the u, v directions)

L2pϕnq “
R2

2

”
2
ÿ

a,b“1
gabDaϕ̄nDbϕn `M2 ϕ̄nϕn

ı

, (4.17)

Daϕn “ pBa ´ i qAaqϕn , Daϕ̄n “ pBa ` i qAaqϕn , (4.18)
q “ 1` nk, R2M2 “ ´2` 2nk ` n2k2 . (4.19)

The fluctuations in the AdS4 directions may be represented by 4 real 3d massless scalars ηr

(r “ 1, 2, 3, 4) with the 3d Lagrangian

L2pηq “
R2

2

3
ÿ

i,j“1
gijBiη

r Bjη
r. (4.20)

The corresponding 2d Lagrangian for the tower of the Fourier modes of ηrpu, v, sq “
ř

n η
r
npu, vq e

ins (with ηr
´n “ η̄r

n) then has a similar form to (4.17)

L2pηnq “
R2

2

«

2
ÿ

a,b“1
gabDaη

r
´nDbη

r
n `M2 ηr

´nη
r
n

ff

, (4.21)

Daη
r
n “ pBa ´ iqAaq η

r
n, q “ nk, R2M2 “ n2k2 . (4.22)

Let us comment on the explicit form of the background metric and gauge field in the 2d
actions corresponding to (4.17), (4.21). The metric gab obtained by the restriction of the
induced metric to the u, v subspace is the metric of the 2-sphere with radius L “ R

2 :

gabdξ
adξb “ R2 du2 ` dv2

p1` u2 ` v2q2
“ L2pdθ2 ` sin2 θ dφ2q, u` iv “ tan θ2 e

iφ , L “
R

2 .

(4.23)
The gauge potential A in (4.8) written in these angular coordinates θ, φ reads

A “
1
2p1´ cos θq dφ, F “ dA “

1
2 sin θ dθ ^ dφ ,

1
2π

ż

S2
F “ 1 . (4.24)

It may be interpreted as a field of a unit-charge 3d monopole placed at the center of a
unit-radius S2.

The fluctuation operators in (4.17) (4.21) are thus the standard 2nd order operators on
S2 of radius L in the magnetic monopole background

∆ “ ´D2 `M2, Da “ Ba ´ iqAa . (4.25)

Measuring the masses in terms of the radius L “ R{2 of S2 we thus get the following
bosonic spectrum: 2 towers of complex ϕn modes and 4 towers of ηn “ η̄´n modes with

ϕn : m2 ” L2M2 “ ´
3
4`

1
4p1`nkq

2 , q “ 1`nk; ηn : m2 “
1
4pnkq

2 , q “ nk .

(4.26)
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The M2 brane action in AdS4 ˆ S7{Zk background is related to the type IIA string
in the corresponding AdS4 ˆ CP3 background by the double dimensional reduction [26].
Indeed, the n “ 0 parts of the 2d fluctuation Lagrangians (4.17), (4.21) are equivalent to
the ones in the type IIA string case in [9].

This relation is even more direct in the fermionic sector as the fermionic fields in the M2
brane and the type IIA GS string actions are in direct correspondence (their components
are essentially the same, the only difference is due to the M2 brane fields depending on the
extra coordinate s).

It is thus straightforward to reconstruct the quadratic part of the M2 brane fermionic
action from its lowest KK level n “ 0 term, i.e. by starting with the fermionic part of the
type IIA superstring action used in [9]. The detailed structure of the quadratic fermionic
Lagrangian in the string case14 shows that it is equivalent to the sum of 2d fermionic terms
ψ̄Dψ where D is the standard 2d Dirac operator on the 2-sphere of radius L “ R{2 (4.23)
in the monopole background (4.24) with a particular mass term (cf. (4.25))

D “ i {D `M1σ3 `M2, {D “ σaea
a

ˆ

Ba `
i

2ωaσ3 ´ iqAa

˙

. (4.27)

Here ea
a is the inverse zweibein on the sphere (a “ 1, 2), ωa is the 2d spin connection,

and σi “ pσa, σ3q are the Pauli matrices. The explicit values of the dimensionless mass
parameters are

m1 ” LM1 “ ´
1
4pu´ u1q, m2 ” LM2 “ ´

1
4 ´

3
4uu

1, u, u1 P t1,´1u, (4.28)

where u, u1 represent 4 independent sign factors arising from 10-d Gamma matrices in a
suitable representation. Thus one finds 8 fermionic modes organized as 2d fermionic fields
with 4 choices of mass parameters in (4.27) m1 “ p´1

2 ,
1
2 , 0, 0q, m2 “ p12 ,

1
2 ,´1,´1q. In

addition, the values of the charges are q “ p1,´1, 0, 0q [9].
To generalize this to the M2 brane case, again expanding the fermions in the Fourier

modes θpu, v, sq “
ř

n θnpu, vq e
ins in the 3rd direction s (with s identified with the 11-th

direction y in the static gauge (4.5) we use), i.e. we need to account for the contribution of
the corresponding term

θ̄pΓAEy
ABs ` . . .qθ “ θ̄pΓ11Ey

11Bs ` ΓaEy
aBs ` . . .qθ , (4.29)

in the supermembrane action [37, 49].15 As Γ11 gets expressed in terms of σ3 (times a unit
matrix) we learn that the M1 term in (4.28) gets a shift (due to Bsθ Ñ inθn) while M2 stays
the same, i.e.16 ∆m1 “ ´1

2nk, ∆m2 “ 0. In addition, the presence of the off-diagonal Ady
term in the 11d metric (4.1), and thus in the corresponding vielbein, implies also that the

14We thank the authors of [9] for kindly sharing their unpublished notes on the derivation of the fermionic
fluctuation part of the type IIA superstring action in the background of the CP1 instanton.

15The quadratic fermionic term in the M2 brane action is built using the gravitino covariant derivative in
11d supergravity and is straightforward to analyze, given that here y “ x11 is an isometric direction.

16Here n “ 0,˘1,˘2, . . . so the sign of the shift is not important.
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Bs term in (4.29) leads to a shift of the coefficient of the A-term in the covariant derivative
in (4.27), i.e. to the shift of the charge ∆q “ nk.17

Thus we find that the Lagrangian for the tower of the 2d fermionic modes originating
from the quadratic fermionic part of the M2 brane action can be represented by a collection
of 4 2d fermionic fields with the Dirac-like operators (4.27) where the parameters depend
on k as

m1 “ ´
1
4pu´ u1q ´

1
2nk, m2 “ ´

1
4 ´

3
4uu

1, q “ ´2m1 . (4.30)

5 Determinants of operators on S2 in monopole background

5.1 Spectra of operators and formal spectral sums

For a massless scalar field of charge q on S2 in the field of a monopole normalized as
in (4.24) the spectrum of the corresponding Laplace operator (4.25) was found in [54]. Its
eigenvalues (normalized to the radius L of the sphere, i.e. multiplied by L2) and degeneracies
are given by

λℓ “ ℓpℓ` 1q ´ q2

4 , ℓ´
|q|

2 “ 0, 1, 2, . . . , degλℓ “ 2ℓ` 1 . (5.1)

Inclusion of mass term in the operator can be done by the obvious shift λℓ Ñ λℓ`m
2, m ”

LM . Then the formal (unregularized) expression for the corresponding determinant may
be written as

logdet
“

L2
p´D2

`M2
q
‰

“

8
ÿ

ℓ“
|q|

2

p2ℓ`1q log
„

ℓpℓ`1q´ q
2

4 `m2
ȷ

“

8
ÿ

ℓ“
|q|`1

2

2ℓ log
„

ℓ2
´
1
4´

q2

4 `m2
ȷ

.

(5.2)
To obtain the last relation we redefined the summation index ℓ by 1

2 ; such a shift is allowed
assuming one adopts a spectral regularization like spectral zeta function (as we will do
below). Introducing the notation

sppµq ”
8
ÿ

ℓ“p, ℓ2‰µ

2ℓ logpℓ2 ´ µq , (5.3)

where p and µ are some parameters and ℓ´ p takes non-negative integer values, eq. (5.2)
may be written as

log det
“

L2p´D2 `M2q
‰

“ sppµq , p “
|q| ` 1

2 , µ “
1
4 `

q2

4 ´m2 . (5.4)

17Let us note that the reason why the mass m1 gets a shift 1
2 nk while the charge gets a shift of nk (that

seems to contradict the usual KK intuition) has to do with the fact that as follows from the structure of the
11d metric the relevant S3

{Zk subspace has the radius of the 2-sphere being L “ R{2 and that translates
into the factor 2 in the relative nk shift of charge compared to mass. The same is seen also in the bosonic
spectrum in (4.26).
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Turning to the 2d spin 1
2 charged field case, the corresponding massless Dirac operator

i {D defined in (4.27) has eigenspinors with the following eigenvalues (normalized again to
the radius L of the sphere) and degeneracies [55, 56]

λℓ “ ˘

c

ℓ2 ´
q2

4 , ℓ´
|q|

2 “ 0, 1, 2, . . . , degλℓ “ 2ℓ. (5.5)

For the minimal value ℓ “
|q|
2 (assuming |q| ě 1), we get |q| zero modes with definite

chirality (or the eigenvalue of the σ3 matrix) equal to the sign of q, consistently with the
Atiyah-Singer index theorem on the 2-sphere [57].

In the case of the massive operator i {D `M1σ3 `M2 in (4.27) this spectrum leads to
the following expression for the determinant (here ma “ LMa)

logdet
“

Lpi {D`M1σ3`M2q
‰

“ |q| log
ˇ

ˇsignpqqm1`m2
ˇ

ˇ`

8
ÿ

ℓ“
|q|
2 `1

2ℓ log
ˆ

ℓ2´
q2

4 `m2
1´m

2
2

˙

.

(5.6)
Here the first term represents the contribution of the 0-mode of {D which has a definite
chirality equal to signpqq, as explained above.18 That the eigenvalues of all other modes
contain the effective mass-squared parameter m2

1 ´m2
2 (cf. (5.2)) follows from the direct

evaluation of the determinant in (5.6) or can be seen from “squaring” the first-order operator
as in (5.16).

The fermionic counterpart rsppµ; wq of the function sppµq in (5.3) may be defined as

rsppµ; wq ” 2p log w` sp`1pµq , (5.7)

so that (cf. (5.3), (5.4))

log det
“

Lpi {D `M1σ3 `M2q
‰

“ rsppµ; wq , (5.8)

p “
|q|

2 , µ “
q2

4 ´m2
1 `m2

2, w “
ˇ

ˇ signpqqm1 `m2
ˇ

ˇ. (5.9)

5.2 Computing determinants using spectral ζ-function

The determinant of an elliptic 2nd order operator ∆ can be expressed in terms of the
spectral ζ-function ζ∆pzq “

ř

ℓ λ
´z
ℓ , λℓ ‰ 0, as

log det∆ “ ´ζ∆p0q logpΛ2L2q ` plog det∆qfin , plog det∆qfin “ ´ζ 1∆p0q , (5.10)

where Λ is a 2d UV cutoff. In particular, for the bosonic operator in (5.4) we get

ζ∆pzq “
8
ÿ

ℓ“p

2ℓ pℓ2 ´ µq´z . (5.11)

18More details on the explicit eigenspinors of the Dirac operator on S2 are discussed in [58]. The fermionic
spectral problem on S2 in the monopole background is treated also in [59–61].
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This can be computed by expanding in series of µ

ζ∆pzq “
8
ÿ

ℓ“p

2ℓ´2z`1 p1´ µℓ´2q´z “ 2
8
ÿ

k“0

ˆ

´z

k

˙

p´µqk
8
ÿ

ℓ“p

ℓ´2z´2k`1

“ 2
8
ÿ

k“0

ˆ

´z

k

˙

p´µqk ζp2z ` 2k ´ 1, pq , (5.12)

where ζpx, aq is the Hurwitz ζ-function. As a result,

ζ∆p0q “ ´
1
6 ` µ` pp1´ pq . (5.13)

In particular, for the values of p and µ corresponding to the bosonic operator in (5.4) we get

ζ∆p0q “
1
3 ´m2, m2 “ L2M2 . (5.14)

This matches the value of the second Seeley coefficient B2 that controls the log UV
divergent part of log det of the operator ´D2 `X on S2 in the heat kernel regularization:19

B2 “
1
4π

ş

d2ξ
?
g p16R´Xq “ 1

3 ´L2M2 where X “M2 and R “ 2
L2 is the curvature of S2

with area 4πL2.
In the case of the fermionic operator in (5.6), (5.8) we need to account for the fact that

for the lowest value of ℓ “ p there is just one and not two eigenvalues with multiplicity p

(cf. (5.7)).Then instead of (5.13) we get for the ζ-function corresponding to the operator
in (5.6)20

ζ∆p0q “ ´
1
6 ` µ` pp1´ pq ´ p “ ´

1
6 ´m2, m2 “ L2pM2

1 ´M2
2 q . (5.15)

This again is in correspondence with the value of the B2 coefficient. To see this note
that log detD “ 1

2 det∆ where ∆ is the corresponding “squared” Dirac operator (here
D̃ “ SDS´1 where S is an appropriate spinor rotation matrix; we suppress spinor indices)

∆̂ “ D̃D “ ´D2 `
1
4R`

1
2 i q ϵ

abFabσ3 `M2
1 ´M2

2 . (5.16)

As this operator is of the general form ´D2 ` X we have B2 “ 1
4π

ş

d2ξ
?
g trp16R ´ Xq

and thus B2 “ 2 1
4π

ş

d2ξ
?
g r16R ´ p14R `M2

1 ´M2
2 qs “ 2r´1

6 ´ L2pM2
1 ´M2

2 qs which is
consistent with (5.15) corresponding to the 1st order operator in (5.6).

Let us note that in general ζ∆p0q represents the regularized total number of all non-zero
modes. In the above discussion we were assuming that the values of parameters are such
that there are no zero modes. In the case when there are N0 zero modes one should find
that B2 “ ζ∆p0q `N0. For a particular system of operators discussed in the next section
we will have equal numbers of the bosonic and fermionic zero modes and thus the sum of
ř

ip´1qFiB2p∆iq and
ř

ip´1qFiζ∆i
p0q will still be equal.

19Note that B2 does not depend on 2d gauge field A and indeed the dependence on q cancels in (5.13).
20Equivalently, we are to add p to the case with p1

“ p ` 1, i.e. p1
p1 ´ p1

q ` p “ pp1 ´ pq ´ p “ ´p2.
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# real scalars m2 q µ p

AdS4 4 1
4n

2k2 nk 1
4

1`|n|k
2

CP3 2` 2 1
4p´2` 2nk ` n2k2q ˘p1` nkq 1 1`|1`nk|

2

Table 1. Bosonic spectrum. The parameters µ and p are defined in eq. (5.4).

Let us now compute the finite part plog det∆qfin in (5.10). In the bosonic case we find
from (5.12) (here ψpxq “ plog Γpxqq1)

d

dµ
plog det∆qfin “

8
ÿ

k“0

2
p2kq!ψ

p2kqppqµk “ ψpp`
?
µq ` ψpp´

?
µq. (5.17)

The integration constant is fixed by the value of ζ 1∆p0q at µ “ 0 which is also obtained
from (5.12)

ζ∆pzq
ˇ

ˇ

µ“0 “ 2ζp2z ´ 1, pq Ñ ζ 1∆p0q
ˇ

ˇ

µ“0 “ 4ζ 1p´1, pq. (5.18)

Then from (5.17) we find (see, e.g., [62] and [9])

plog det∆qfin “ ´4 ζ 1p´1, pq `
ż µ

0
dx

“

ψpp`
?
xq ` ψpp´

?
xq
‰

” sppµq, (5.19)

where in what follows we will define sppµq in (5.3), (5.4) by this regularized expression.
Similarly, in the case of the fermionic operator in (5.6) we obtain the finite part of

plog detrLpi {D `M1σ3 `M2qsqfin “ rsppµ; wq by using (5.8) and (5.7) where now rsppµ; wq is
expressed in terms of sp`1pµq in its regularized form (5.19), i.e.

rsppµ; wq “ sp`1pµq ` 2p log w “ sppµq ´ 2p logpp2 ´ µq ` 2p log w . (5.20)

Here we used that according to the definition in (5.3) one finds that sppµq “ 2p logpp2 ´
µq ` sp`1pµq (the same relation follows also from (5.19)). Thus the bosonic and fermionic
log det contributions with the same p and µ have the same non-trivial part (5.19), i.e. differ
only by the two logarithmic terms in (5.20).

6 One-loop instanton prefactor in the M2 brane partition function

6.1 Summary of the spectral data

We are now ready to combine the above results to compute the prefactor Z1 in (4.27). Let
us start with summarizing in tables 1 and 2 the data about the bosonic and fermionic
fluctuation spectra in (4.26) and (4.30) and the corresponding parameters p and µ in the
operators in (5.4) and (5.9). The type IIA string (n “ 0) part of the spectral data in tables 1
and 2 was found earlier in [9].
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u u1 m1 m2 m
2 “ m2

1 ´m2
2 q p µ wną0 wnă0 wn“0

`1 ´1 ´nk`1
2

1
2

nkpnk`2q
4 1` nk |nk`1|

2
1
4

nk
2 ´nk

2 ´ 1 0

´1 `1 ´nk´1
2

1
2

nkpnk´2q
4 ´1` nk |nk´1|

2
1
4

nk
2 ´ 1 ´nk

2 0

`1 `1 ´nk
2 ´1 k2n2

4 ´ 1 nk |n|k
2 1 nk

2 ` 1 ´nk
2 ` 1 1

´1 ´1 ´nk
2 ´1 k2n2

4 ´ 1 nk |n|k
2 1 nk

2 ` 1 ´nk
2 ` 1 1

Table 2. Fermionic spectrum. The parameters µ, p and w are defined in eq. (5.9).

The 4 rows in table 2 correspond to the parameters of the complex 2-component 2d fermions
(one complex 2d fermion represents the same number of degrees of freedom as one complex
scalar). The values of the parameter µ in (5.9) and the charge q in the fermionic spectrum
are the same as in the bosonic spectrum (were µ is defined in (5.4)). This should be an
indication of an underlying 2d supersymmetry which should be related to the fact that the
M2 brane instanton background preserves half of the target space supersymmetry.

Before proceeding, let us comment on the zero modes in the spectrum that are not
included in the determinants computed via spectral ζ-function and thus should be treated
separately.

In the bosonic sector, zero modes may appear when ℓ2 “ µ (cf. (5.3), (5.4)). From the
data in table 1 where µ “ 1 or µ “ 1

4 and given that ℓ starts with p we conclude (assuming
as always that k ą 2) that this is possible only for n “ 0 modes with ℓ “ 1

2 for four AdS4
fluctuations and ℓ “ 1 for four CP3 fluctuations. Taking into account the degeneracy 2ℓ of
each mode we get in total 4ˆ p1` 2q “ 12 real bosonic zero modes.

The same number of 12 real zero modes is found also in the fermionic sector: again
zero modes appear only for n “ 0 and thus their count is equivalent to the one in [8, 9]. For
the fermionic determinant in (5.6), (5.9) a zero mode is found if w “ 0 or ℓ2 “ µ “

q2

4 ´m2

for ℓ ě p “
|q|
2 . We thus get 2 ` 2 modes from the first two lines in table 2 and another

4` 4 from the last two lines.
The four bosonic AdS4 0-modes correspond to the point-like position of the instanton

in AdS4. As for the CP3 modes, their count is related to earlier discussions of the instanton
0-modes in the standard CPN sigma model on 2-sphere [63–66] as follows.

Considering a CP1 instanton in the standard CP3 sigma model one finds 2 “longitudinal”
fluctuations and 4 “transverse” fluctuations. If we were to quantize the AdS4 ˆ CP3 string
in the conformal instead of the static gauge then the contribution of the longitudinal
fluctuations would cancel against that of the conformal gauge ghost operator on 2-sphere.
The latter has 6 real SLp2, Cq Möbius zero modes (corresponding to the conformal Killing
vectors on S2). The same six 0-modes are found also for the longitudinal fluctuation operator
whose contribution cancels against the ghost determinant one. This cancellation extends
also to the 0-mode factors, leaving the static gauge result where only the contributions of
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the transverse fluctuations are present.21 Thus the total number of the 0-modes in the CP3

string sigma model in the conformal gauge is 6`8 “ 14. This agrees with the number 4N`2
of 0-modes in the CPN sigma model expanded near CP1 instanton [67]: p4N` 2q

ˇ

ˇ

N“3 “ 14.

6.2 The total contribution of the fluctuation determinants

Let us now sum up the log det contributions of all 2d fluctuation fields with the spectral
data in tables 1 and 2. The corresponding 1-loop correction is (cf. (5.10))

Γ “ ΓB ´ ΓF “
1
2

8
ÿ

n“´8

ÿ

i

p´1qFi log det1∆i “ ´ζtotp0q logpΛLq ´
1
2ζ

1
totp0q , (6.1)

where each term is counted as coming from a real 2d field. We are not including here
the contribution of the bosonic and fermionic modes that appear only for n “ 0; their
contribution produces just a constant that can be found as suggested in [9] (see also below).

Let us first compute the value of the total coefficient ζtotp0q “
ř8

n“´8 ζtot, np0q of the
logarithmic divergence in (6.1). Applying the expressions in (5.14) and (5.15) we find that
for a fixed level n the result is ζtot, np0q “ 2 ´ 2nk. Here the n “ 0 is the non-vanishing
type II GS string theory coefficient which is, in general, given by the Euler number of the
2-surface [20, 68, 69]. This is 2 for S2 in the present case while it was 1 in the Wilson
loop case in [3, 20] corresponding to disk topology. Summing over n using an analytic
regularization (Riemann ζ-function) we then find that

ζtotp0q “
8
ÿ

n“´8

p2´ 2nkq “
8
ÿ

n“´8

2 “ 2` 4ζRp0q “ 0 . (6.2)

Thus, as in the 1-loop correction in the case of the M2 brane wrapped on AdS2 ˆ S1 in [3],
the UV divergences coming from the tower of n ‰ 0 modes effectively cancel the non-zero
contribution of the n “ 0 string modes so that the full M2 brane 1-loop correction is UV
finite. As discussed in [3], this cancellation can be understood as being a consequence of
the fact that the 2d model with an infinite set of modes considered here is equivalent to the
original 3d model where there are no logarithmic UV divergences.22

The vanishing of ζtotp0q implies also that Γ in (6.1) will not depend on the radius L of
the 2-sphere so that the result will only be a function of the dimensionless parameter k in
the spectrum.

Let us first consider the part of the sum in (6.1) which comes from the n “ 0 (string-
level) modes. The contribution of the n “ 0 modes in tables 1 and 2 can be computed using
the expressions for the corresponding determinants in (5.4), (5.8), (5.7), (5.19) and is found
to vanish

Γ0 “ 2
”

s 1
2
p14q ` s1p1q

ı

´ 2
”

rs 1
2
p14 , 0q ` rs0p1; 1q

ı

“ 0 . (6.3)

21Note that in the static gauge in string theory there is no factor of the Möbius volume as it cancels
against the 0-mode factor in the determinant of the longitudinal modes (cf. also a discussion in [20]).

22To be precise, the relation between 2d and 3d UV divergences requires the use of an analytic regularization
that disposes of all power divergences and is effectively consistent with symmetries of the 3d theory that are
restored in the UV limit.
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To show the vanishing we used the relation (5.20) between sp and rsp and dropped all 0-mode
contributions (corresponding to the lowest values of ℓ in the respective sums) that should
be treated separately. That all the non-trivial finite contributions of the n “ 0 string-theory
modes mutually cancel was observed already in [9].

Let us now determine the contributions of the rest of the M2 brane fluctuation modes
with n ‰ 0. Using the data in table 1 and the expression in (5.19) we find that the bosonic
mode contribution to Γ in (6.1) is

ΓB “ 2
ÿ

n‰0

”

s 1`|1`nk|
2

p1q ` s 1`|n|k
2

p14q
ı

“ 2
8
ÿ

n“1

”

snk
2 `1p1q ` 2snk

2 ` 1
2
p14q ` snk

2
p1q

ı

. (6.4)

Similarly, in the fermionic case we are to use the expression in (5.8), (5.7) where rsppµq is
defined in terms of the finite expression for sppµq in (5.19). Separating the n ą 0 and n ă 0
contributions23 we obtain

ΓF “

8
ÿ

n“1

”

rsnk`1
2

p14 ;
nk
2 q ` rsnk´1

2
p14 ;

nk
2 ´ 1q ` 2 rsnk

2
p1; nk

2 ` 1q
ı

`

8
ÿ

n“1

”

rsnk´1
2

p14 ;
|n|k
2 ´ 1q ` rsnk`1

2
p14 ;

nk
2 q ` 2 rsnk

2
p1; nk

2 ` 1q
ı

“ 2
8
ÿ

n“1

”

rsnk`1
2

p14 ;
nk
2 q ` rsnk´1

2
p14 ;

nk
2 ´ 1q ` 2 rsnk

2
p1; nk

2 ` 1q
ı

. (6.5)

If we now use the definition of rs in (5.8), i.e. rsppµ; wq ” 2p log w` sp`1pµq, we find

ΓF “2
8
ÿ

n“1

”

pnk ` 1q log nk
2 ` snk`3

2
p14q ` pnk ´ 1q logpnk

2 ´ 1q ` snk`1
2

p14q

` 2nk logpnk
2 ` 1q ` 2 snk

2 `1p1q
ı

. (6.6)

Hence, combining (6.4) and (6.6) we get

Γ “ ΓB ´ ΓF “2
8
ÿ

n“1

”

snk
2
p1q ´ snk

2 `1p1q ` snk
2 ` 1

2
p14q ´ snk

2 ` 3
2
p14q

´ pnk ` 1q log nk
2 ´ pnk ´ 1q logpnk

2 ´ 1q ´ 2nk logpnk
2 ` 1q

ı

. (6.7)

Here the first line can be simplified by using the relation for sp`1 used in (5.20) (cf (5.3)),
i.e. sp`1pµq ´ sppµq “ ´2p logpp2 ´ µq. Then we observe a remarkable cancellation (which
should be attributed again to an underlying supersymmetry) of all the non-trivial functions
sppµq (cf. (5.19)) with only few logarithms remaining.

Thus, notwithstanding the complexity of the intermediate expressions, the final result
for Γ is very simple

Γ “ 2
8
ÿ

n“1
log

´

n2k2

4 ´ 1
¯

. (6.8)

23Note that the values of w in table 2 depend on the sign of n.
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Surprisingly, this is the same expression (up to overall factor of 2) as was found in [3] for
the 1-loop correction in the case of the AdS2 ˆ S1 M2 brane solution, despite the fact that
the two fluctuation spectra are very different. This is, however, in line with the fact that
the prefactors in the localization results in (2.15) and (2.16) happen to be closely related.

The sum in (6.8) may thus be computed in the same way as in [3] (i.e. using again the
Riemann ζ-function regularization, namely, ζRp0q “ ´1

2 , ζ
1
Rp0q “ ´1

2 logp2πq):

Γ “ 4
8
ÿ

n“1
log nk

2 ` 2
8
ÿ

n“1
log

´

1´ 4
n2k2

¯

“ 4 log k
2 ζRp0q ´ 4ζ 1Rp0q ` 2 log

ˆ

k

2π sin 2π
k

˙

“ 2 log
ˆ

2 sin 2π
k

˙

. (6.9)

It is interesting to note that (6.8) may be interpreted as twice a 1d “massive” determinant
on S1 or the contribution of a loop of a point particle in the (inverted) harmonic oscillator
potential on a circle (s ” s` 2π)24

Γ “ 2ˆ 1
2 log det1

`

´k2

4
d2

ds2 ´ 1
˘

“ 2
8
ÿ

n“1
log

´

k2

4 n
2 ´ 1

¯

, (6.10)

where prime means we project out the negative mode corresponding to n “ 0 (there is no zero
modes if k ą 2). Thus the simple form of the final result (6.8) suggests that what happens
is that out of all the fluctuation modes of the M2 brane in the instanton background only
two particular bosonic 1d modes survive after the fermion-boson cancellations, reminiscent
of some kind of localization. The same reduction to just one 1d bosonic mode happened in
the case of the AdS2 ˆ S1 membrane computation in [3].

We conclude that the 1-loop instanton prefactor in (4.13) is

Z1 “ γ e´Γ “ γ
1

4 sin2p2π
k q

, (6.11)

where we introduced a numerical (k-independent) factor γ to account for the contribution
ofthe 0-modes that we omitted above and also of possible degeneracy of the instanton saddle
contributions. In the large k limit this reduces to (cf. (3.7)) Z1 “ γ k2

16π2 ` . . . “ 2γ
π

T
g2

s
` . . .,

i.e. to the expression found in [9]. Here we get it directly as a limit of the UV finite M2 brane
contribution, without need to fix the form of the overall factor by some indirect considerations
as was done in [9] using an analogy with the string Wilson loop case computation in [20].

To determine the value of γ let us note first that we are to add a factor of 2 due to
the equal instanton and anti-instanton contributions (these become distinguished if there
is a constant C3 background). We also need a further factor of 2 that was argued in [9]
to represent the contribution of the 0-modes of the string fluctuations.25 It would be very
interesting to derive this result systematically by introducing the collective coordinates

24Note that the Riemann ζ-function regularization used in (6.9) is the standard prescription of how to
define similar 1d determinants appearing in various path integral representations.

25The contributions of the equal number of 12+12 bosonic and fermionic modes can be regularized and
shown to cancel after introducing a squashing parameter in the CP3 metric. Then there are two possible
string CP1 saddles contributing equally and thus giving an extra factor of 2 [9].
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for the bosonic and fermionic 0-modes and computing the volume of the corresponding
supercoset (that may turn out to be finite like the volume of the superMöbius group on
the disk [44]).26

To conclude, using that γ “ 4 and accounting for the minus sign in (3.4), we precisely
match the 1-instanton prefactor in the localization result in (2.15).

7 Concluding remarks and open problems

In this paper we presented a new remarkable test of the AdS4/CFT3 duality between
ABJM theory with large rank of the gauge group N and finite level k and M-theory on
AdS4 ˆ S7{Zk. We reproduced the leading (at large N and fixed k ą 2) instanton prefactor
in the localization result for the non-perturbative part of the ABJM free energy on S3

in (2.15) from a quantum 1-loop correction to the classical action factor of the M2 brane
S3{Zk instanton. This generalizes to finite k the analysis of the string CP1 Ă CP3 instanton
contribution in type IIA string theory [8, 9].

Like in the earlier AdS2 ˆ S1 M2 brane example in [3], the quantum 1-loop M2 brane
computation described above was fully consistent (UV finite) and gave an unambiguous
prediction for the resulting function of k in agreement with (2.15). One subtle issue
that would be interesting to clarify further is the factor 2 associated with the zero mode
contribution that originates from the string-level fluctuations; here we fixed it following [9]
but there may exist a more direct derivation.

There are several possible extensions of our work. One may consider the leading
perturbative 1?

N
correction to the prefactor in (2.15), (2.14)

F instpN, kq “ ´
1

sin2
`2π

k

˘

„

1` 1
?
N
h1pkq ` . . .

ȷ

e
´2π

b

2N
k ` . . . , h1pkq “

π?
2k

k2´40
12k ,

(7.1)
and try to reproduce the coefficient h1pkq from the 2-loop M2 brane correction, which
should come with a factor of the inverse of the effective M2 brane tension in (3.2), i.e.
T2

´1 “ π?
2k

1?
N

.27 Such a 2-loop calculation would require the use of the quartic bosonic
and fermionic terms in the corresponding supermembrane action [50–52]. It would be
important to check if the 2-loop M2 brane contribution is, in fact, UV finite, despite the
apparent non-renormalizability of the membrane action.28

As was mentioned in section 2, the subleading (at large N and k ą 2) non-perturbative
contributions to the ABJM free energy involve, in addition to the contributions of M2 brane

26Let us also recall that the equal number of the bosonic and fermionic 0-modes in the CP1 instanton
background are found also in the (2,2) supersymmetric 2d CP1 sigma model [70] where their contributions
to the instanton measure (and thus e.g. to the β-function) effectively cancel each other.

27As was suggested in [3], a similar 2-loop computation in the case of the AdS2 ˆ S1 M2 brane surface
should reproduce the coefficient of the 1?

N
correction to the prefactor of the Wilson loop expectation value

in (2.16). Note that the string theory values of the coefficients of these 1?
N

corrections in (7.1) and (2.16)
are sensitive to the precise form of the relation between the string theory parameters in (3.2) and gauge
theory parameters N, k, i.e. to the shift N Ñ N ´ 1

24 pk ´ k´1
q suggested in [71].

28Such 2-loop computation is, however, going to be hard as the background 3d metric in the static
gauge (4.7) is that of S3

{Zk, i.e. is not flat.
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instantons wrapping S3{Zk Ă S7{Zk, also the contributions of M2 brane instanton wrapping
RP3 3-cycle in CP3 Ă S7{Zk (not involving 11d circle), corresponding to the D2-brane
instanton in the type IIA string limit. One may wonder if the analog of the semiclassical M2
brane computation that we performed in this paper for the first (S3{Zk) instanton can be
also repeated for the second (RP3 “ S3{Z2) one, thus determining a k-dependent prefactor
of the corresponding exponential e´π

?
2Nk in (2.9).

As we discuss in appendix A, in this second case the M2 brane solution is not wrapping
the 11d circle in (4.1) and thus the corresponding induced 3-metric and the quantum M2
brane fluctuation determinants do not have a non-trivial dependence on k (cf. (4.8), (4.15)).
At the same time, the localization result for the prefactor of e´π

?
2Nk in (2.9) vanishes

for odd k has singular dependence on even k (see (A.5)). We point out that for even
k the contribution of the RP3 instanton in fact “mixes” with that of k

2 -instanton of the
S3{Zk type (both have the same classical action) and thus should not be considered in
isolation. In general, one is to combine together all of the contributions in (2.9) that have
the same exponential factor and then the prefactor will have a regular value for any given
integer k [72].

In particular, one may study the special cases of k “ 1, 2. While for k ě 2 the leading
non-perturbative correction to F in (2.9) is given by the single pnI , nIIq “ p1, 0q instanton
contribution, for k “ 1, 2 the two terms in the exponent in (2.9) become of the same order
suggesting that the two types of instantons should be treated on an equal footing. We
comment on this further in appendix A.

In the 1-loop quantum M2 brane computation near the S3{Zk instanton described in
this paper we assumed k ą 2 but it is straightforward to extend it to k “ 1, 2 by determining
the fluctuation spectra directly in these special cases (like that was done in the AdS2 ˆ S1

case in [3]). In particular, for k “ 1 we find that there are 4 negative modes (corresponding
to n “ ´1 for each of the 4 CP3 fluctuations in table 1) reflecting instability of the S3

instanton in S7 in line with π3pS
7q being trivial. In addition, there are extra 0-mode

contributions that appear in these cases with enhanced supersymmetry.
Another interesting open problem is to try to generalize both the computation in [3] and

in the present paper in order to determine the leading instanton correction to the expectation
value of the circular BPS Wilson loop from the quantum M2 brane theory to match the
corresponding localization result on the ABJM gauge theory side [73] (cf. [74]).29 The
corresponding minimal 3-surface should be a superposition of AdS2ˆS

1 in [3, 4] and S3{Zk

discussed above. Here a natural static gauge choice may be along the AdS2 ˆ S1 subspace
as in [3], implying a more involved structure of fluctuations in all of CP3 directions.30

29The leading instanton corrections to the 1
2 -BPS Wilson loop in the fundamental representation is given

by [73]

xW y“

ż i8

´i8

dµ

2πi
e´Nµ e

2µ

k

2 sin 2π
k

Qpµ,kq, Q“ 1`2Q`3Q2
`10Q3

`

ˆ

49´32sin2 2π

k

˙

Q4
`¨¨ ¨ , Q”´e´

4µ

k .

Here the corrections due to 1,2,3 instantons do not introduce a new k-dependence. Q has a smooth k Ñ 8

limit which is known in exact form from the instanton corrections to the disk amplitude in topological string
model [75].

30In particular, one would need to include explicitly the contribution of the “longitudinal” fluctuations
along the CP1

Ă CP3 directions.
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A Comments on M2 brane instantons wrapping RP3
Ă CP3 of S7{Zk

To recall, the non-perturbative corrections to the free energy in (2.9) are labeled by a pair
of integers pnI , nIIq with pnI , 0q and p0, nIIq representing the two types (S3{Zk and RP3)
of (multi)instantons. The corresponding terms in the non-perturbative part of the grand
potential (2.3) are (cf. (2.10)

Jnppµ,kq“
8
ÿ

nI ,nII“0
Jnp
pnI ,nII q

pµ,kq , (A.1)

Jnp
pnI ,0q“ dnI

pkqe´
4nI

k
µ , Jnp

p0,nII q
“
“

anII
pkqµ2`bnII

pkqµ`cIIpkq
‰

e´2nII µ . (A.2)

These translate into the coefficients appearing in the prefactor of the non-perturbative part
of the free energy (2.9). In particular, the leading pnI , nIIq “ p0, 1q contribution to F inst

in (2.13) is [16] (cf. the p1, 0q contribution in (2.14))

F inst
p0,1qpk,Nq “ ´

”

Cpkq´1`N ` 2´Bpkq
˘

a1pkq ´ c1pkq
ı AirCpkq´

1
3 pN ` 2´Bpkqqs

AirCpkq´
1
3 pN ´Bpkqqs

´ Cpkq´
1
3 b1pkq

Ai1rCpkq´
1
3 pN ` 2´Bpkqqs

AirCpkq´
1
3 pN ´Bpkqqs

. (A.3)

The coefficients dnI
pkq corresponding to multi-instantons of the first type may be computed

using the topological string representation [16] (cf. (2.11))

d1pkq “
1

sin2 2π
k

, d2pkq “ ´
1

2 sin2 4π
k

´
1

sin2 2π
k

, d3pkq “
1

3 sin2 6π
k

`
3

sin2 2π
k

, ¨ ¨ ¨ .

(A.4)
The coefficients a1, b1, c1 corresponding to the single instanton of the second kind in (A.2)
have been conjectured in [16, 72, 76] and obtained systematically from the refined topological
string representation in [77]

a1pkq “ ´
4
π2k

cos πk2 , b1pkq “
2

π tan πk
2

cos πk2 ,

c1pkq “
´

´
2
3k `

5k
12 `

k

2 sin2 πk
2

`
1

π tan πk
2

¯

cos πk2 . (A.5)

Note that these vanish for odd k and two of them are singular for even k.
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In the dual M-theory setting, the M2 brane wrapped on RP3 3-cycle in CP3 which is
part of S7{Zk with the metric (4.1) can be explicitly described as follows [6]. Using the
angular parametrization of CP3 (here α, θ1, θ2 P r0, πs; χ, φ1, φ2 P r0, 2πs)31

ds2CP3 “
1
4dα

2 `
1
4 cos2 α2 pdθ

2
1 ` sin2 θ1dφ2

1q `
1
4 sin2 α2 pdθ

2
2 ` sin2 θ2dφ2

2q

`
1
4 sin2 α2 cos2 α2 p2dχ` cos θ1dφ1 ´ cos θ2dφ2q

2, (A.6)

the relevant classical M2 brane solution is wrapped on RP3 Ă CP3 parametrised by
θ1 “ θ2, φ1 “ ´φ2, χ and α “ 0 [6, 53]. The static gauge adapted to this solution is thus
(here we label the world-volume coordinates as ξi “ ps1, s2, s3q, cf. (4.5))

θ1 “ θ2 “ s1 P r0, πs, φ1 “ ´φ2 “ s2 P r0, 2πs, χ “ s3 P r0, 2πs . (A.7)

The induced world-volume metric is that of RP3, i.e. ds2 “ R2

4 rds21 ` sin2 s1ds22 ` pds3 `

cos s1ds2q2s which is the standard metric of S3 of radius R in Hopf parametrization but
with the angle s3 having period 2π instead of 4π:

gij “
R2

4

¨

˚

˝

1 0 0
0 1 cos s1
0 cos s1 1

˛

‹

‚

,
?
g “

R3

8 sin s1 . (A.8)

The classical value of the M2 brane action is then given by (cf. (4.10), (4.12))

Scl “ T2
R3

8 p2πq2
ż π

0
ds1 sin s1 “ π

?
2kN . (A.9)

This is of course the same as the action of the corresponding D2 brane wrapped on
RP3 Ă CP3 in type IIA theory and is also the value appearing as a factor of nII in the
exponent in (2.9).

Expanding the M2 brane action (4.4) near this solution we observe that, as the 11d
angle y in (4.1) has a trivial classical value, the quadratic fluctuation Lagrangian will
depend on k only via the term 1

k2 pBỹq
2.32 Thus, in contrast to what we found for the

S3{Zk instanton, here the corresponding 1-loop M2 brane partition function will not have a
non-trivial dependence on k.33

At the same time, the localization coefficients (A.5) have a peculiar dependence on k.
They do not appear to admit a regular large k limit, vanish for odd values of k and singular
for even k. For generic even k the non-perturbative contributions in (2.9) coming from
pnI , nIIq= pk

2 , 0q and p0, 1q have the same exponential weight and thus should be treated on
31In this parametrization A in (4.1) is given by A “ 1

2

`

cos α dχ ` cos2 α
2 cos θ1dφ1 ` sin2 α

2 cos θ2dφ2
˘

.
32The classical value of the 1-form A in (4.1) is A “ 1

2 pds3 ` cos s1ds2q but there are similar off-diagonal
terms in (A.8) so the term 1

k
BỹA will also not lead to a non-trivial contribution. Note also that the leading

quadratic part of the fermionic Lagrangian can not depend on k as the bosonic coordinates have classical
values only along the RP3

Ă CP3.
33Rescaling of ỹ by k will not lead to a factor of k in the partition function as the analog of ζp0q vanishes

in 3d.
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an equal footing. Indeed, the corresponding k
2 -instanton of the S3{Zk type has the same

action as the 1-instanton of the RP3 “ S3{Z2 type. This suggests that the RP3 instanton
should not be considered in isolation, resolving the above puzzle about k-independence of
the corresponding 1-loop M2 contribution.

In the main part of this paper we have been assuming k ą 2 in which case the leading
non-perturbative correction to F in (2.9) is given by the single pnI , nIIq “ p1, 0q instanton
contribution. It is, however, necessary to include the contributions of the second type of
M2 brane instanton in order to compute non-perturbative corrections to the free energy for
the lowest values of k “ 1, 2. These values are special since the corresponding ABJM model
(and also its dual M-theory counterpart) should have the enhanced supersymmetry: from
N “ 6 to N “ 8 [1, 78–80].

Indeed, for k “ 1, 2 the two terms in the exponent in (2.9) become of the same order
and should be treated on an equal footing. The relevant combinations of the two instanton
numbers are34

k “ 1 : p1, 0q ` p0, 2q ; k “ 2 : p1, 0q ` p0, 1q . (A.10)

For k “ 1 we thus have the S3 one-instanton and the RP3 “ S3{Z2 two-instanton which
are indeed essentially the same. Similarly, for k “ 2 both the p1, 0q and p0, 1q instanton
correspond to S3{Z2.

Note that for these values of pnI , nIIq the corresponding coefficients in (A.2), (A.4), (A.5)
are singular but their sums are finite and give the following expressions for Jnp in (A.1) [76]35

Jnppµ, 1q “ 1
4π2 p16µ

2 ` 4µ` 1qe´4µ ` ¨ ¨ ¨ , Jnppµ, 2q “ 1
π2

p4µ2 ` 2µ` 1qe´2µ ` ¨ ¨ ¨ .

(A.11)
These expressions for the grand potential plugged into (2.2) give the following leading
non-perturbative contributions to F inst in (2.13) for k “ 1 and k “ 2 [16]

F inst
leading p1,Nq“´

ˆ

2N`
C p1q
8 `

29
4

˙ Ai
”

C p1q´ 1
3
`

N` 29
8
˘

ı

Ai
”

C p1q´ 1
3
`

N´ 3
8
˘

ı `
C p1q

2
3

2

Ai1
”

C p1q´ 1
3
`

N` 29
8
˘

ı

Ai
”

C p1q´ 1
3
`

N´ 3
8
˘

ı ,

F inst
leading p2,Nq“´p4N`C p2q`7q

Ai
”

C p2q´ 1
3
`

N` 7
4
˘

ı

Ai
”

C p2q´ 1
3
`

N´ 1
4
˘

ı`2C p2q
2
3

Ai1
”

C p2q´ 1
3
`

N` 7
4
˘

ı

Ai
“

Cp2q´ 1
3 pN´ 1

4q
‰ .

(A.12)

Expanded to leading order in large N , these expressions give, respectively, for k “ 1 [81]
and k “ 2

F inst
leadingp1, Nq “ ´2N e´2π

?
2N ` ¨ ¨ ¨ , F inst

leadingp2, Nq “ ´4N e´2π
?

N ` ¨ ¨ ¨ . (A.13)
34For k “ 1 the dominant contribution would naively come from the p0, 1q contribution but this term is

actually absent [81]; it is conjectured to vanish for all odd k, and that was checked for k “ 5, 7 in [76]. Note
that this is consistent with the expressions in (A.5), which vanish for odd k.

35Let us note also that for generic even k the sum of the pnI , nIIq= p k
2 , 0q and p0, 1q contributions is again

finite after cancellations between the two separately divergent terms [72].
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Here the N factor comes from the µ2 term with the coefficient aIIpkq in (A.2) (cf. the
first term in (A.3) in the k “ 2 case). It would be very interesting to reproduce these
contributions to F np in (2.9) by a quantum M2 brane computation.36 Note that the fact
that F inst

leadingp1, Nq is real does not contradict the instability of the S3 instanton in S7 as
there are 4 negative bosonic modes contributing i4 “ 1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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