
J
H
E
P
1
0
(
2
0
2
3
)
0
2
5

Published for SISSA by Springer

Received: August 29, 2023
Accepted: September 21, 2023

Published: October 4, 2023

2-index chiral gauge theories

Mohamed M. Anber and Samson Y.L. Chan
Centre for Particle Theory, Department of Mathematical Sciences, Durham University,
South Road, Durham DH1 3LE, U.K.

E-mail: mohamed.anber@durham.ac.uk, samson.y.chan@durham.ac.uk

Abstract: We undertake a systematic study of the 4-dimensional SU(N) 2-index chiral
gauge theories and investigate their faithful global symmetries and dynamics. These
are a finite set of theories with fermions in the 2-index symmetric and anti-symmetric
representations, with no fundamentals, and they do not admit a large-N limit. We employ
a combination of perturbative and nonperturbative methods, enabling us to constrain
their infrared (IR) phases. Specifically, we leverage the ’t Hooft anomalies associated with
continuous and discrete groups to eliminate a few scenarios. In some cases, the anomalies
rule out the possibility of fermion composites. In other cases, the interplay between
the continuous and discrete anomalies leads to multiple higher-order condensates, which
inevitably form to match the anomalies. Further, we pinpoint the most probable symmetry-
breaking patterns by searching for condensates that match the full set of anomalies resulting
in the smallest number of IR degrees of freedom. Higher-loop β-function analysis suggests
that a few theories may flow to a conformal fixed point.

Keywords: Anomalies in Field and String Theories, Discrete Symmetries, Global Symme-
tries, Confinement

ArXiv ePrint: 2308.08052

Open Access, c⃝ The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2023)025

mailto:mohamed.anber@durham.ac.uk
mailto:samson.y.chan@durham.ac.uk
https://arxiv.org/abs/2308.08052
https://doi.org/10.1007/JHEP10(2023)025


J
H
E
P
1
0
(
2
0
2
3
)
0
2
5

Contents

1 Introduction 1

2 Theory: symmetry structure and anomalies 3
2.1 Symmetries 4
2.2 Anomalies 8

3 Anomaly matching and the IR phase 12
3.1 IR anomaly matching 12
3.2 Minimizing the IR degrees of freedom 16

4 Fermionic theories 17
4.1 SU(5), k = 1 18
4.2 SU(6), k = 2 22
4.3 SU(6), k = 1 25
4.4 SU(10), k = 2 25

5 Bosonic theories 26
5.1 Conformal theories 26
5.2 Confining theories 26

5.2.1 SU(8), k = 4 26
5.2.2 SU(8), k = 2 28
5.2.3 SU(12), k = 4 29
5.2.4 SU(12), k = 8 31
5.2.5 SU(20), k = 8 32

6 Summary 33

A Obtaining the discrete chiral symmetry 34

B The 3-loop β-function and the IR fixed points 35

1 Introduction

Chiral gauge theories form the fundamental framework of the Standard Model (SM) of
particle physics. Within the SM, the electroweak sector undergoes Higgsing at weak coupling,
allowing us to apply perturbative techniques. However, without a Higgs field, gauge theories
generally flow towards a strongly-coupled regime, rendering their study considerably more
challenging. A non-comprehensive list of some of the recent papers that studied chiral
gauge theories is [1–10].
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This paper focuses on a class of SU(N) chiral gauge theories that accommodate fermions
in the 2-index symmetric and anti-symmetric representations. These theories, referred
to as 2-index chiral gauge theories, can be characterized by the pair (N, k), where N

represents the color and k serves as a common divisor of N + 4 and N − 4. Moreover, k is
directly associated with the number of flavors in the 2-index symmetric and anti-symmetric
representations. What makes these theories particularly intriguing is the absence of a
requirement to introduce fundamental fermions to cancel the gauge anomaly. Additionally,
they exhibit non-asymptotic freedom for N > 44. This class encompasses a collection of 14
distinct theories, occupying a distinct region within asymptotically-free chiral gauge theories.
Consequently, a systematic approach to studying this class is justified. It is divided into
two subclasses: bosonic and fermion theories. The latter can accommodate gauge-invariant
massless fermions. In comparison, the gauge-invariant operators in bosonic theories cannot
have a spinor index, as the fermion number is gauged.

We initiated this study in [8], utilizing ’t Hooft anomalies to constrain the infrared
dynamics of two theories. Namely, these are (N = 8, k = 4) and (N = 8, k = 2) theories.
One important development was the identification of the faithful global symmetry acting on
fermions. This enabled us to turn on the most general discrete fluxes, the color-flavor-U(1)
(CFU) fluxes compatible with the theory and, thus, utilize the full power of ’t Hooft anomaly
matching conditions. These anomalies are dubbed CFU anomalies. A theory with ’t Hooft
anomalies cannot be trivially gapped; the infrared (IR) spectrum must contain massless
particles or multi-vacua. In the case (N = 8, k = 4), we found that the condensation of two
operators can saturate the anomalies.

Continuing our explorations within this comprehensive framework, our current investi-
gation exhausts all the 14 theories and introduces a few novel aspects.

1. We incorporate anomalies stemming from discrete symmetries, thereby imposing
additional constraints on the infrared spectra. In the context of the 2-index chiral gauge
theories we are examining, in addition to continuous non-abelian flavor symmetries,
an axial U(1)A symmetry comes into play. When a bosonic operator condenses, it
generally breaks the U(1)A symmetry down to a discrete subgroup, which typically is
anomalous. Consequently, we face the challenge of identifying a set of condensates
that not only matches the anomalies associated with non-abelian symmetries but also
avoids the presence of any anomalous unbroken discrete subgroups. For example, the
two candidate condensates we previously considered in the case (N = 8, k = 4), [8],
fail to match the anomaly of an unbroken discrete group. We revise the situation in
light of the new understanding and propose that the set of anomalies can be matched
by other condensates.
Interestingly, in a few cases, matching the full set of anomalies, particularly anomalies
of discrete symmetries, can be achieved only via the condensation of multiple higher-
order operators. Given the strong dynamics, such formation is not a surprise. However,
anomalies explain the kinematical reasons why such condensates have to form.

2. Another significant aspect of our work lies in our pursuit of the minimal scenario that
satisfies the entire set of anomalies and yields the smallest number of massless particles
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in the infrared spectrum. Such a scenario holds particular appeal as it minimizes the
free energy associated with the theory.

3. We adhered to a systematic algorithm during our quest to identify composite massless
fermions capable of satisfying the anomalies within the fermionic class. Regrettably,
we were unable to find such composites. Notably, in the case of (N = 6, k =
2), we demonstrate that these composites cannot solely match the CFU anomaly.
Consequently, we are left with two plausible explanations: either these composites
do not exist altogether, or the formation of condensates alongside the composites is
necessary to match the anomaly. However, the latter scenario is rather contrived in
that it requires the formation of special condensates (that do not alter the anomalies
matched by the composites) in addition to the composite fermions, prompting us to
lean toward the likelihood that composites cannot form in this case.

4. To complete our study, we also examined the possibility that a theory flows to a
conformal fixed point in the IR. Generally speaking, a theory can form a strongly-
coupled IR fixed point, which is beyond the scope of any perturbative analysis. Such
a fixed point automatically satisfies the full set of anomalies, albeit it remains an
open question how this can be seen. Nevertheless, by scrutinizing the higher-order
β-function, we successfully identified several instances where the analysis of the β-
function offers indications suggestive of a perturbative nature inherent to a fixed
point.

This paper is organized as follows. In section 2, we review the global symmetries
and anomalies of the 2-index chiral theories. This includes the anomalies of continuous
symmetries, the CFU anomalies, as well as anomalies of discrete symmetries. In section 3, we
revise the matching of the CFU anomalies in the IR and introduce the novelty of matching
the discrete subgroups of the axial U(1)A that can be left unbroken by a condensate.
Sections 4 and 5 are devoted to applying these ideas to both the fermionic and bosonic
field theories, respectively. We summarize our findings in section 6, and in particular, the
reader is referred to table 10, which, for all theories, it gives the global symmetries, the
proposed IR condensates that yield the smallest number of Goldstones, and the fate of the
symmetries in the IR.

2 Theory: symmetry structure and anomalies

We consider SU(N) gauge theory with nψ flavors of left-handed Weyl fermions ψ trans-
forming in the 2-index representation along with nχ flavors of left-handed Weyl fermions χ
transforming in the complex conjugate 2-index anti-symmetric representation:

L = − 1
2g2 tr[f c ∧ ⋆f c]− iψ̄σ̄µDµψ − iχ̄σ̄µDµχ , (2.1)

where Dµ ≡ ∂µ − iacµ is the covariant derivative, ac is the color gauge field, and f c is its
field strength. In this work, we use the lower-case letters, ac and f c = dac, to denote the
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N 5 6 8 10 12 16 20 28 36 44
k 1 1, 2 2, 4 2 4, 8 4 4, 8 8 8 8

.

Table 1. A list of the 2-index chiral gauge theories.

dynamical (color) 1-form gauge field and its field strength, while we use upper-case letters,
A and F = dA, for background fields. To keep track of the color indices, we choose ψ(a1a2)
to carry two down indices, while χ[a1a2...aN−2] carries N − 2 down indices. A round (square)
bracket indicates symmetrizing (anti-symmetrizing) over the indices. The cubic anomaly
coefficients of the 2-index symmetric and the conjugate of the 2-index anti-symmetric
representations are Aψ = N + 4, Aχ = −(N − 4), respectively. Cancellation of the gauge
anomaly demands that nψ and nχ are fixed as

nψ = N − 4
k

, nχ = N + 4
k

, (2.2)

where k is a common divisor of N −4 and N +4. The theory is asymptotically free provided
that 11N − 2(N2−8)

k > 0. This leaves us with the finite set of theories in table 1. These
theories do not possess a large-N limit, as they become infrared-free for N > 44. Also,
except for N = 5, 6, 10, the other allowed colors are multiples of 4. These are bosonic
theories because all their gauge invariant operators cannot carry a spinor index. In other
words, the (−1)F fermion number in bosonic theories is gauged, and thus, they cannot have
gauge-singlet fermionic operators.

One important aspect of this work is to systematically analyze these theories, paying
particular attention to the faithful global symmetries, and exhausting the class of generalized
’t Hooft anomalies that enable us to constrain the infrared phases.

2.1 Symmetries

The theory enjoys two global flavor groups SU(nψ) = SU((N − 4)/k) and SU(nχ) =
SU((N + 4)/k) acting on ψ and χ, respectively. In addition, the theory is endowed with
two U(1) global classical symmetries, U(1)1 ×U(1)2. Their action on ψ and χ is chosen as

U(1)1 : ψ −→ eiα1ψ , χ −→ eiβ1χ ,

U(1)2 : ψ −→ eiα2ψ , χ −→ eiβ2χ . (2.3)

The two transformations U(1)1 and U(1)2 come naturally with two parameters. Here,
however, we introduce the 4 parameters α1,2 and β1,2 to account for the fermions charges,
in addition to the transformation parameters. The gauge sector instantons break most of
the classical U(1) symmetries. The effective action in the instanton background acquires
the terms

∆S = i (nψα1Tψ + nχβ1Tχ)
∫
M4
λu1

0
tr [f c ∧ f c]

8π2 + i (nψα2Tψ + nχβ2Tχ)
∫
M4
λu2

0
tr [f c ∧ f c]

8π2

(2.4)
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upon performing simultaneous transformations of U(1)1 ×U(1)2, where

Tψ = N + 2 , Tχ = N − 2 (2.5)

are the Dynkin indices of the representations. Here, f c is the 2-form field strength of the
color group, while λu1 and λu2 are the gauge parameters of U(1)1 and U(2)2, respectively,
i.e., Au1,2 −→ Au1,2 + dλu1,2 . We can find a combination of the parameters α1 and β1 that
kills the first term in ∆S, leaving behind a genuine symmetry. We call this symmetry the
axial U(1)A. It acts on ψ and χ with transformation parameter α:

U(1)A : ψ −→ ei2παqψψ , χ −→ ei2παqχχ , (2.6)

and we have defined the U(1)A charges of ψ and χ as

qψ ≡ −Nχ

r
, qχ ≡ Nψ

r
, (2.7)

where r = gcd(nχTχ, nψTψ), and

Nχ ≡ nχTχ , Nψ ≡ nψTψ . (2.8)

Yet, we can find values of α2 and β2 that leave the discrete subgroup ZpψNψ+pχNχ ⊂
U(1)2 invariant in the color background, where pψ and pχ are arbitrary integers. In
appendix A, we show that most of the ZpψNψ+pχNχ elements belong to U(1)A and that only
a subgroup Zr ⊂ ZpψNψ+pχNχ , which is pχ and pψ-independent, can potentially act as a
genuine symmetry on the fermions. Also, we can always choose Zr to act solely on χ:

Zr : (ψ, χ) −→
(
ψ, ei

2πℓ
r χ

)
, ℓ = 0, 1, 2, . . . , r − 1 . (2.9)

Yet, one must check that Zr or a subgroup of it cannot be absorbed in the centers of the color
or flavor groups, which leaves a proper subgroup of Zr as the genuine discrete symmetry.
This will be checked on a case-by-case basis. In the following, we will use Zdχp ⊆ Zr to
denote the genuine discrete chiral symmetry. For completeness, we remind the reader that
the fermion number symmetry ZF2 = (−1)F operates on ψ and χ as (ψ, χ) −→ −(ψ, χ).

Finally, we also note that when N is even, the theory is endowed with a Z(1)
2 1-form

center symmetry acting on the fundamental Wilson loops. In summary, the good global
symmetry of the theory is

Gg ∼ SU(nψ)× SU(nχ)×U(1)A × Zdχp × Z(1)
gcd(N,2) , (2.10)

where the tilde indicates that this is the correct group modulo a discrete group needed to
fix the faithful global symmetry. Thus, the faithful global symmetry is a quotient group.

To determine the correct quotient group, we follow [8, 11]. Here, we keep our treatment
short as the details can be found in [8]. We put the theory on a general compact 4-D
spin manifold M4, define a principal bundle of the continuous part of the global symmetry
Gg on M4, and take the transition functions of Gg to act on fibers by left multiplication.
Spinors are sections of the bundle, and we use the notations ψi and χi for their values on a
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local patch Ui ⊂ M4. We denote the transition functions of the color SU(N), (non-abelian)
flavor, and U(1)A group as g, f , and u, respectively, along with the proper superscript to
distinguish those of ψ and χ. On the overlap Ui ∩ Uj we have

ψi = (gψ, fψ, uψ)ij ψj , χi = (gχ, fχ, uχ)ij χj . (2.11)

The fermions are well defined on M4 provided they satisfy the cocycle condition (a necessary
consistency condition) on the triple overlap Ui ∩ Uj ∩ Uk. Now, we turn on background
gauge fields for centers of the gauge, flavor, and U(1)A groups and determine the most
general combination compatible with the cocycle condition,1 which reads

(
gψ,fψ,uψ

)
ij
◦
(
gψ,fψ,uψ

)
jk
◦
(
gψ,fψ,uψ

)
ki
=(zc,zf ,zu) with zczfzu=1 , (2.12)

where z’s refer to the center elements: zc ∈ ZN/gcd(N,2), zf ∈ Znψ , and zu ∈ U(1)A. The
condition zczfzu = 1 is required for the equivalence relation

(zc, zf , zu) ∼ (1, 1, 1) , (2.13)

which is needed to obtain the correct compatibility condition. Similar expressions hold for
the cocycle condition of χ. The following two equations give the consistency (compatibil-
ity) conditions

ψ : ei2π
2m
N︸ ︷︷ ︸

zc

ei2π
pk
N−4︸ ︷︷ ︸
zψ

e−i2πs
(N+4)(N−2)

kr︸ ︷︷ ︸
zu

= 1 ,

χ : e−i2π
2m
N︸ ︷︷ ︸

zc

e−i2π
p′k
N+4︸ ︷︷ ︸

zχ

ei2πs
(N−4)(N+2)

kr︸ ︷︷ ︸
zu

= 1 . (2.14)

Here, m ∈ ZN/gcd(N,2), p ∈ Znψ , p′ ∈ Znχ and s is a U(1)A parameter. The factor of 2
that appears in zc accounts for the N -ality of ψ and χ, and the negative sign that appears
in the zc factor in the second line accounts for the fact that χ transforms in the complex
conjugate of the 2-index anti-symmetric representation. We also take ψ to transform in
the fundamental representation of SU(nψ) and χ to transform in the anti-fundamental
representation of SU(nχ). Following [8], we shall dub the discrete color-flavor-U(1)A fluxes
as the CFU fluxes. The full set of solutions of (2.14) determines the quotient group in (2.10).
These solutions will be found on a case-by-case basis. In general, we divide (2.10) by
ZN/gcd(N,2) × Z(N−4)/k × Z(N+4)/k or a subgroup of it.

Once a non-trivial solution of (2.14) is found, we can calculate the topological charges
associated with the center fluxes, which are fractional charges in general. Let M4 admit
two independent 2-cycles and let two integers, e.g., m1 and m2, account for the number of
quanta piercing through them. For example, we can take M4 = T4, a 4-torus with a period

1See [12–15] for applications of the anomalies resulting from turning on these fluxes.
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length L, and turn on the gauge fields that are compatible with the cocycle condition:

ac1 = 2πm1
L2 Hc · νc , ac2 = 0 , ac3 = 2πm2

L2 Hc · νc , ac4 = 0 ,

Aψ1 = 2πp1
L2 Hψ · νψ , Aψ2 = 0 , Aψ3 = 2πp2

L2 Hψ · νψ , Aψ4 = 0 ,

Aχ1 = 2πp′1
L2 Hχ · νχ , Aχ2 = 0 , Aχ3 = 2πp′2

L2 Hχ · νχ , Aχ4 = 0 ,

Au1 = 2πs1
L2 , Au2 = 0 , Au3 = 2πs2

L2 , Au4 = 0 . (2.15)

acµ, Aψµ , Aχµ, and Auµ are the background gauge fields of the center of the color, SU(nψ)
flavor, SU(nχ), flavor, and U(1)A, respectively. The bold-face letters H ≡ (H1, . . . ,HN−1)
are the Cartan generators of SU(N) group, while ν ≡ (ν1, . . . , νN−1) is a weight in the
defining representation of the group. Notice that the integers m1,2, p1,2, p

′
1,2, s1,2 are the

same integers that solve the consistency conditions (2.14). Given the set of the background
fields (2.15), one immediately obtains the topological charges defined as

Qc=
∫
T4

tr [f c∧f c]
8π2 , Qψ =

∫
T4

tr
[
Fψ∧Fψ

]
8π2 , Qχ=

∫
T4

tr [Fχ∧Fχ]
8π2 , Qu=

∫
T4

F u∧F u

8π2 ,

(2.16)
and f c, Fψ,χ,u are the field strengths of the corresponding background. Substituting (2.15)
into (2.16), we obtain

Qc = kc −
m1m2
N

, Qψ = kψ − p1p2k

N − 4 ,

Qχ = kχ −
p′1p

′
2k

N + 4 , Qu = (s1 − k1)(s2 − k2) , (2.17)

and kc, kψ, kχ, k1, k2 ∈ Z are arbitrary integers that are always allowed. These fluxes will
support fermion zero modes, and the Dirac indices give their number:

Iψ = nψTψQc + dimψQψ + dimψnψq
2
ψQu ,

Iχ = nχTχQc + dimχQχ + dimχnχq
2
χQu , (2.18)

and dimψ = N(N+1)
2 , dimχ = N(N−1)

2 are the dimensions of the representations. Dirac
indices count the number of the Weyl zero modes in the background of center fluxes. The
integrality of the indices can work as a check on the consistency of the fluxes on M4.

One may also turn on the CFU fluxes on nonspin M4. A nonspin manifold does not
admit fermions in the sense that there is an obstruction in lifting the SO(4) rotation group
bundle to a Spin(4) bundle on M4. A diagnosis of a non-spin manifold is that the Dirac index
of a Weyl fermion, I = 1

196π2
∫
M4 trR ∧R, where R is the curvature 2-form, is non-integer.

An example of a nonspin manifold is CP2, which has 1
196π2

∫
CP2 trR ∧ R = −1

8 . To put a
Weyl fermion on CP2, we need to excite a U(1) flux F through its 2-cycle CP1 ⊂ CP2 and
demand that

∫
CP1 F ∈ π(2Z+ 1), which implies 1

8π2
∫
CP2 F ∧ F ∈ Z

8 . Now, one can easily
check the integrality of the Dirac index 1

196π2
∫
CP2 trR ∧R+ 1

8π2
∫
CP2 F ∧ F ∈ Z, and thus,

the fermions are well-defined on CP2 in the presence of such U(1) fluxes. Here, although
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one cannot define a Spin(4) bundle on pure CP2, in the sense that the corresponding
cocycle condition fails on a triple overlap, nonetheless, we can define the Spinc(4) structure
Spin(4)×U(1)/Z2 in the presence of the U(1) background.

This idea can be generalized in the presence of the CFU fluxes; see [16] for details. One
just needs to replace the consistency conditions (2.14) with

ψ : ei2π
2m
N︸ ︷︷ ︸

zc

ei2π
pk
N−4︸ ︷︷ ︸
zψ

e−i2πs
(N+4)(N−2)

kr︸ ︷︷ ︸
zu

= −1 ,

χ : e−i2π
2m
N︸ ︷︷ ︸

zc

e−i2π
p′k
N+4︸ ︷︷ ︸

zχ

ei2πs
(N−4)(N+2)

kr︸ ︷︷ ︸
zu

= −1 . (2.19)

The minus sign on the right-hand side compensates for the minus sign arising from parallel
transporting the spinor fields around appropriate closed paths in CP2; see the detailed
discussion in [16]. Given that a solution, m ∈ ZN/gcd(N,2), p ∈ Znψ , p′ ∈ Znχ and s, to (2.19)
can be found, the topological charges corresponding to the CFU fluxes and gravity are
given by (see [16])

Qc =
m2

2

(
1− 1

N

)
, Qψ = p2

2

(
1− k

N − 4

)
,

Qχ = p′2

2

(
1− k

N + 4

)
, Qu = 1

2s
2 , Qg = −1

8 . (2.20)

The Dirac-indices of ψ and χ are

ICP2
ψ = nψTψQc + dimψQψ + dimψnψ

(
q2
ψQu +Qg

)
,

ICP2
χ = nχTχQc + dimχQχ + dimχnχ

(
q2
χQu +Qg

)
, (2.21)

which are always integers. Except for (N = 6, k = 2) and (N = 10, k = 2) in table 1, we
can always find solutions to (2.19), and thus, we can put these theories on CP2.

2.2 Anomalies

The theory has a set of ’t Hooft anomalies that can help constrain the possible IR phases.
In the following, we list the ’t Hooft anomalies we shall encounter in our study.

(I) [SU(nψ)]3 and [SU(nχ)]3 anomalies. These are perturbative (triangle) anomalies
and their inflow from 5-D to 4-D is captured via 5-D Chern-Simons theories:

[SU(nψ)]3 : exp
[
i dimψ

∫
M5
ω5(Aψ)

]
,

[SU(nχ)]3 : exp
[
i dimχ

∫
M5
ω5(Aχ)

]
, (2.22)

where Aψ and Aχ are the SU(nψ) and SU(nχ) 1-form background gauge fields, extended
from 4-D to 5-D, and ω5(A) is the 5-D Chern-Simons form defined via the descent equation:

dω5(A) =
1

3!(2π)2 tr□F 3 , (2.23)

and F is the 2-form field strength of A.
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(II) U(1)A- and Zdχp -gravitational anomalies. These anomalies are captured via the
5-D anomaly inflow actions:

U(1)A[grav] : exp
[
i (qψnψdimψ + qχnχdimχ)

∫
M5
Au ∧ p1(M5)

24

]
,

Zdχp [grav] : exp
[
i (nχdimχ)

∫
M5
Adχ ∧ p1(M5)

24

]
. (2.24)

The 1-form gauge fields Au and Adχ are the backgrounds of U(1)A and Zdχp , respectively.
p1(M5) = − 1

8π2R ∧ R is the first Pontryagin number and R is the curvature 2-form. On
a spin manifold, we have

∫
M4 p1(M4) ∈ 48Z, and thus, there are 2 zero modes per Weyl

fermion in a gravitational background. Under U(1)A and Zdχp transformations we have
Au −→ Au + dλu with

∮
dλu = 2πZ and Adχ −→ Adχ + dλdχ, with

∮
dλdχ = 2πZ

p , and the
anomaly inflow actions produce the 4-D anomalies.

The result (2.24) is “perturbative” as it can be seen from a triangle diagram with two
vertices that couple the fermions to a gravitational background via the energy-momentum
tensor, while the third vertex couples the fermions to an external U(1)A or Zdχp sources.

(III) CFU anomalies. These anomalies were identified in [11]; however, see [17, 18] for
earlier encounters. They are anomalies of U(1)A and Zdχp symmetries in the background
of the CFU fluxes that are supported on a general spin manifold. As was shown in [8],
5-D anomaly inflow actions can also capture them. However, we find it more convenient
to express such anomalies in terms of the non-trivial phases that are acquired by the
partition function Z under the action of U(1)A and Zdχp symmetries in the background of
the CFU fluxes:

U(1)A[CFU] : Z −→ ei2πα(qψIψ+qχIχ)Z ,

Zdχp [CFU] : Z −→ e
i 2π
p
IχZ , (2.25)

and the Dirac indices Iψ and Iχ are given in (2.18). The contribution from the color
topological charge Qc drops out in the computation of the U(1)A[CFU] anomaly, as can be
easily checked, since U(1)A is a good symmetry in the background of the color flux. This is
not the case with Zdχp [CFU] anomaly, where Qc contributes to the anomaly. As we shall
discuss, this observation has important consequences for anomaly matching in the IR.

It is also important to notice that the perturbative anomalies U(1)A[SU(nψ)]2,
U(1)A[SU(nχ)]2, Zdχp [SU(nχ)]2, and [U(1)A]3 are a subset of the CFU anomalies, obtained
by turning off the center fluxes and keeping only the integer topological charges in (2.17).
Again, one can express them using anomaly inflow actions as

U(1)A[SU(nψ)]2 : exp

iqψnψdimψ

∫
M5
Au ∧

tr
[
Fψ ∧ Fψ

]
8π2

 ,

U(1)A[SU(nχ)]2 : exp
[
iqχnχdimχ

∫
M5
Au ∧ tr [Fχ ∧ Fχ]

8π2

]
,

Zdχp [SU(nχ)]2 : exp
[
inχdimχ

∫
M5
Adχ ∧ tr [Fχ ∧ Fχ]

8π2

]
,

[U(1)A]3 : exp
[
i
(
q3
ψnψdimψ + q3

χnχdimχ

) ∫
M5
Au ∧ F u ∧ F u

24π2

]
. (2.26)
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In addition, for N even, the CFU anomalies encompass the U(1)A 0-form/ Z[1]
2 1-form as

well as the Zdχr 0-form/ Z[1]
2 1-form mixed anomalies. These can be easily found by turning

off the flavor and the U(1)A fluxes. In practice, one uses (2.25), (2.17), and (2.18), after
setting p1,2 = p′1,2 = s1,2 = 0 and m1 = m2 = N/2. This choice enforces the consistency
conditions (2.14) and gives Qψ = Qχ = Qu = 0 and Qc = N

4 .
One may also use the CFU fluxes on CP2 to calculate the U(1)A [CFU] and Zp [CFU]

anomalies, which sometimes are more restrictive than the corresponding anomalies on a
spin manifold. We use the Dirac indices on CP2, as given by (2.21), to find

U(1)A [CFU]CP2 : Z −→ e
i2πα

[
qψICP2

ψ +qχICP2
χ

]
Z ,

Zdχp [CFU]CP2 : Z −→ e
i 2π
p
ICP2
χ Z . (2.27)

From here on, we shall write all anomalies in terms of their phases to reduce clutter.
For example, instead of (2.25), we write:

U(1)A[CFU] : qψIψ + qχIχ , Zdχp [CFU] : Iχ . (2.28)

(IV) Anomalies of discrete groups. Here, we consider anomalies of a discrete symmetry
Zn, where n is a general positive integer. An example of the discrete symmetry is the Zdχp
chiral symmetry or a discrete subgroup of U(1)A left unbroken in the IR. The proper way
to detect anomalies of discrete symmetries is to use the Dai-Freed prescription [19, 20]. The
idea stems from the fact that a chiral massless fermion defined on M4 can be realized as
the chiral zero mode residing on the boundary M4 of a 5-dimensional manifold M5 that is
endowed with massive fermions, with Zn turned on in the 5-dimensional manifold. One can
also consider a different 5-dimensional manifold M′5 with the same boundary M4. If the
partition functions defined on M5 and M′5 have the same phase, then the theory on M4

is uniquely defined and anomaly-free; otherwise, it is anomalous. Applying the Dai-Freed
prescription to study the IR phases of strongly-coupled theories is innovative. However,
see [13, 21] for previous applications.2

If M4 is a spin manifold, the geometrical obstruction of uniquely extending a 4-D
theory to a 5-D bulk can be inferred by computing the bordism group ΩSpin

5 (BZn), where
BZn is the classifying space of Zn.3 If ΩSpin

5 (BZn) is non-trivial, the theory might have a
nonperturbative anomaly. To find the anomaly, one computes the η-invariant, a resolvent
of the spectral asymmetry of the Dirac operator, on specific closed 5-dimensional spin
manifolds that can detect the anomaly. For example, one puts the theory on Lens spaces
to gauge Zn and discover whether the theory exhibits a nonperturbative anomaly. For n
even, n = 2m, one can take M4 to be nonspin by employing the twisted symmetry group
SpinZ2m(4) = (Spin(4) × Z2m)/Z2 instead of Spin(4). Here, one needs to compute the
η-invariant that detects the bordism group ΩSpinZ2m

5 .
2Also, see [22, 23] for applications of Dai-Freed anomalies in particle physics.
3A classifying space of symmetry G is an infinite dimensional space with the property that any principal

G-bundle on a manifold M is the pullback via some map f : M −→ BG. Then, the set of topologically
distinct principal G-bundles over M is equivalent to the set of the homotopy classes of maps from M to BG.
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The computations of the relevant η-invariants were carried out in [24] (see also [25] for
an alternative perspective). For a theory of a left-handed Weyl fermion with a charge s
under Zn defined on a spin manifold, the anomaly is given by the pair of phases:{

(n2 + 3n+ 2)s3 mod 6n , 2smodn
}
. (2.29)

This pair can be thought of as contributions from [Zn]3 and mixed Zn [grav] anomalies.
Indeed, the second entry in (2.29) is precisely the anomaly we computed in the second line
of (2.24). The first entry can be obtained from pure [U(1)]3 anomaly by restricting U(1)
to a Zn discrete group; this is the Ibanez-Ross anomaly we comment on below. Also, a
Weyl fermion defined on a twisted background and carrying a charge s under Z2m has an
anomaly given by the pair4

{(
(2m2 +m+ 1)s3 − (m+ 3)s

)
mod 48m,

(
ms3 + s

)
mod 2m

}
. (2.30)

The charge s is assumed to be odd such that the fermion transforms under the Z2 subgroup
of Z2m. Generally, the anomaly (2.30) is more restrictive than (2.29). We shall use
both (2.30) and (2.29) to constrain our theories. It is important to note that Z2 symmetry
is anomaly-free, as can be easily seen from (2.29) and (2.30). This observation will play
an essential role in the IR anomaly matching by condensates, as many of them break the
global symmetries to Z2, as we discuss below.

We also comment on the Ibanez-Ross anomaly-matching conditions [26]. These are
obtained from [U(1)]3 and U(1)[grav] anomalies by restricting U(1) to a Zn subgroup. The
Ibanez-Ross anomaly-cancellation conditions read:

s3 = p′n+ r′n3

8 , s = p′′n+ r′′n , (2.31)

where p′, r′, p′′, r′′ ∈ Z, p′ ∈ 3Z if n ∈ 3Z, and r′, r′′ = 0 if n is odd. It can be shown
that (2.31) and (2.29) are equivalent [24]. Hence, in what follows, we use either (2.29)
or (2.30) to calculate discrete anomalies.

Finally, we also may have a discrete anomaly of the form Zm[Zn]2. Such an anomaly
can descend from U(1)A[CFU] anomaly after a given condensate breaks U(1)A down to a
discrete subgroup. Let s and s′ be the charges of a left-handed Weyl fermion under Zn
and Zm, respectively. Then, the anomaly cancelation condition, which follows from the
Ibanez-Ross conditions, is given by [27]

s2s′ = p′ gcd(m,n) + p′′

8 mn
2 , (2.32)

where p′, p′′ ∈ Z and p′′ can be non-vanishing only if n and m are even. Notice that this
anomaly is trivial when Zm = Z2.

4More generally, the bordism group ΩSpinZ2m

5
∼= Za × Zb, where a, b, and the associated anomalies are

given by eqs. (2.11)–(2.13) in [13]. In the present work, eq. (2.30) suffices to tackle the theories at hand.
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3 Anomaly matching and the IR phase

3.1 IR anomaly matching

’t Hooft anomalies preclude a trivially gapped IR phase: a theory with ’t Hooft anomaly must
have gapless excitations, degenerate vacua, or symmetry-preserving topological quantum
field theory (TQFT). In this work, we use the safe assumption that the gauge group does
not break spontaneously under its strong dynamics. The breaking of a gauge group is under
control in the presence of scalars at weak coupling, an ingredient absent from our theory
from the get-go.5 This leaves us with three possible IR scenarios.

(I) Conformal fixed point. In the first scenario, the theory flows to a conformal field
theory (CFT). When the CFT is weakly coupled, the renormalization group flow from
the UV to the IR is very slow. The UV matter content (fermions) can be considered the
IR gapless excitations, and the anomalies are automatically matched. Anomaly matching
by strongly interacting CFT is still an open problem; we have nothing to say here. The
existence of a well-controlled Banks-Zaks fixed point implies a strictly weakly coupled CFT.
However, such a reliable fixed point can only be obtained in the large-N limit. The 3-loop
β-function reads

β(g) = −β0
g3

(4π)2 − β1
g5

(4π)4 − β2
g7

(4π)6 . (3.1)

If β0 > 0 and β1 < 0, the theory flows to an IR fixed point, g2
∗ = − (4π)2β0

β1
, up to corrections

from β2. In the large-N limit and close to the boundary of the asymptotic-freedom region,
the contribution from the third term is suppressed compared to the second term, and thus,
this term and higher-order terms can be safely neglected. Our theories, however, do not
admit large-N analysis. Yet, as we shall discuss, in a few cases, the numerical value of
the third term is extremely small compared to the first two terms, so one can conclude
that such a weakly-coupled CFT exists. In appendix B, we work out the fixed points using
the 2 and 3-loop β-functions. We consider values of g2

∗
4π < 0.1, using both the 2-loop and

3-loop calculations, small enough to conclude that the theory has an IR fixed point. Also,
the perturbative nature of the β-function calculations will be trusted when the third term
in (3.1) is small compared to the first two terms. More stringent coupling constant values
at the fixed point could also be assumed. This, however, will only mean doing more work
to find out the fate of the IR phases of such theories.

(II) Composite massless fermions. In the second scenario, the theory becomes strongly
coupled; it confines (for N even), preserves the global symmetries, and flows to a phase of
composite massless fermions. This can happen in the non-bosonic theories N = 5, 6, 10. We
sketch how one can systematically search for such composites. Let Fi be a gauge-invariant
fermionic operator (a composite that transforms as a left-handed Weyl fermion under the
Lorentz group) built of ψ and χ:

Fi = ψκiχρi , (3.2)
5Tumbling, [28], is a mechanism by which the breakdown of a gauge group occurs without the aid of

fundamental scalar fields. We do not discuss tumbling in this work.
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where κi, ρi ∈ {0}∪Z+, and we suppressed the color and spinor indices to reduce notational
clutter. Insertion of gluon fields can be used whenever fermi statistics cause Fi to vanish.
Using the convention that ψ and χ carry 2 and N − 2 indices, respectively, and demanding
that Fi be a gauge invariant fermion yields the two conditions:

2κi + (N − 2)ρi ∈ NZ+ , κi + ρi ∈ (2Z+ − 1) . (3.3)

The U(1)A charge of Fi is

qFi =
−κiNχ + ρiNψ

r
. (3.4)

Generally, the composites Fi transform in higher representations of SU(nψ) and SU(nχ),
making the process of matching anomalies containing flavor groups a daunting task. Thus,
it is more convenient to start with matching [U(1)A]3, U(1)A[grav], and nonperturbative
Zdχp anomalies. For generality, we assume there are Ni copies of composites Fi. Then,
matching these anomalies gives the conditions∑

i

Niq
3
Fi = q3

ψnψdimψ + q3
χnχdimχ ,∑

i

NiqFi = qψnψdimψ + qχnχdimχ ,

2
∑
i

Ni = 2nχdimχ (mod p) , (p2 + 3p+ 2)
∑
i

Ni = (p2 + 3p+ 2)nχdimχ (mod 6p) .

(3.5)

The number of the IR fermionic species N =
∑
iNi is bounded from above by the a-theorem:

2(N2 − 1)︸ ︷︷ ︸
gluons

+7
4 (nψdimψ + nχdimχ)

︸ ︷︷ ︸
UV degrees of freedom

≥ 7N
4︸︷︷︸

IR degrees of freedom

. (3.6)

In principle, one could systematically search for copies of composites {N1,N2, . . .} that
satisfy (3.5). However, this would require finding the partitions of N (all integers that
their sums give N ), a number that grows exponentially with

√
N . The composites that

satisfy (3.5) must also match the rest of the anomalies that involve the flavor groups. In all
non-bosonic theories, N = 5, 6, 10, we could not find a set of composites that matched the
full set of anomalies using the systematic approach sketched above. Simply, the algorithm
takes an extremely long time, which makes such a systematic search impractical.

In fact, we can utilize the Zdχp [CFU] anomaly to show that in some cases, such candidates,
if they exist, cannot solely match this anomaly. This approach was used in [11] in the
case of vector-like theories, and we repeat it here for chiral theories. To this end, we
assume that there exists a set of gauge-invariant composite fermions that match [SU(nψ)]3,
[SU(nχ)]3, [U(1)A]3, Zdχp [U(1)A]2, Zdχp [SU(nψ)]2, Zdχp [SU(nχ)]2, U(1)A[grav], and Zdχp [grav]
anomalies. Then, we turn the CFU fluxes on M4 and perform a Zdχp rotation. We denote
the UV coefficients that multiply Qc, Qχ, and Qu in (2.25), (2.18) by DUV

c ≡ nχTχ,
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DUV
χ ≡ dimχ, and DUV

u ≡ q2
χnχdimχ. Under a discrete chiral rotation, the UV partition

function transforms as

ZUV −→ e
i 2π
p

(
DUV
c Qc+DUV

χ Qχ+DUV
u Qu

)
ZUV , (3.7)

while the IR partition function transforms as6

ZIR −→ e
i 2π
p

(
DIR
χ Qχ+DIR

u Qu
)
ZIR , (3.8)

where DIR
χ , D

IR
u ∈ Z are group-theoretical coefficients that are chosen to match Zdχp [U(1)A]2

and Zdχp [SU(nχ)]2 anomalies. Since the UV-IR anomaly matching is mod p, we must have7

DUV
c = pℓc , DUV

χ −DIR
χ = pℓχ , DUV

u −DIR
u = pℓu , (3.9)

for some ℓc,χ,u ∈ Z. Thus, the ratio between the UV and IR partition functions reads

ZUV
ZIR

= ei2π(ℓcQc+ℓχQχ+ℓuQu) , (3.10)

and the matching of the Zdχp [CFU] anomaly requires

ℓcQc + ℓψQχ + ℓuQu ∈ Z , (3.11)

for all allowed topological charges. Suppose no integers ℓc,χ,u exist that satisfy this condition
for a given allowed fractional topological charges. In that case, the composites cannot solely
match the Zdχp [CFU] anomaly.

A minimal way out would be breaking Zdχp −→ Zq<p via condensate formation provided
that the anomaly Zq[CFU] vanishes. Usually, a condensate would ordinarily break SU(nψ),
SU(nχ), and U(1)A. Thus, one must postulate that all gauge-invariant condensates charged
under these symmetries have zero vacuum expectation values. Otherwise, the condensation
of such operators would oversaturate these anomalies, which are assumed to be matched
by composites. In addition, one needs to build a neutral operator under the continuous
symmetries, charged under Zdχp , and has a non-zero vacuum expectation value. If it exists,
such an operator would have a scaling dimension larger than the vanishing lower-order
condensates. Although this scenario cannot be ruled out, we find it contrived in the examples
of the 2-index chiral theories we discuss here.

This leaves us with the possibility that if condition (3.11) is violated, the Zdχp [CFU]
anomaly can be matched by a symmetry-preserving topological quantum field theory
(TQFT). In [29, 30], it was shown that the matching of Zdχp -gravitational anomalies by a
unitary and symmetry-preserving TQFT is obstructed on a spin manifold. This obstruction
can also be shown to hold in the case of Zdχp [CFU] anomaly [8].

We conclude that if condition (3.11) is violated, the theory probably cannot flow to a
phase with massless composites.

6Qc does not contribute to the IR phase since the composites are color singlets.
7Zdχp is a good symmetry in the color background, and thus we must have DUV

c = pℓc.
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(III) Spontaneous symmetry-breaking. In this scenario, the theory becomes strongly
coupled; it confines (for N even) and breaks its global symmetries spontaneously. We say that
the theory flows to a spontaneous symmetry-breaking (SSB) phase. An important aspect of
this work involves identifying the minimal set of condensates that break global symmetries
while matching the anomalies. These condensates break Gg down to H ⊂ Gg, with the
requirement that H remains anomaly-free. Without satisfying this condition, the symmetry
breaking alone would not sufficiently match the UV anomaly. It is possible for composite
fermions to match a non-vanishing anomaly in H , but it is crucial that these fermions do not
undermine the matching of the Gg anomalies achieved by the condensates. Our focus did
not involve searching for composites that could match the anomalous unbroken subgroups.

Generally, H can be expressed asH = Hc×Zq1×Zq2 , whereHc represents the continuous
part of H , Zq1 “collectively” denotes the unbroken discrete subgroups of SU(nψ)×SU(nχ)×
U(1)A, and Zq2 represents the unbroken subgroup of Zdχp . If the condensates leave a discrete
subgroup unbroken, we must examine its anomalies. In addition, if the theory possesses a 1-
form/0-form mixed anomaly, there can be fractionalization classes, and hence, an ambiguity
in calculating the cubic discrete anomalies [31]. One must ensure the condensates do not
leave any discrete anomaly in any fractionalization class.8 In a few examples, we observe that
lower-order condensates (such as the 2-fermion condensates) lead to anomalous unbroken
discrete subgroups. Consequently, the formation of other (higher-order) condensates becomes
necessary to break the symmetries into non-anomalous subgroups.

In strongly-coupled theories, it is generally believed that higher-order bosonic operators
undergo condensation. In this work, through anomaly matching conditions, we provide
kinematical reasons behind this condensation.

Now we turn our attention to the matching of CFU anomalies. Given the better
understanding of the nature of the unbroken discrete subgroups of U(1)A and their anomalies,
here, we provide a more in-depth discussion of the CFU anomalies than the earlier work [8].
As mentioned above, we encounter two types of such anomalies: U(1)A[CFU] and Zdχp [CFU]
anomalies. In all the examples we have examined, we consistently observe the trivialization
of Zdχp [CFU] by the condensates, which break the U(1)A symmetry. On the other hand, the
matching of the U(1)A[CFU] anomaly through condensates is a more intricate process that
required closer examination.

As emphasized earlier, the color topological charge does not play a role in this particular
anomaly. Consequently, we can view it as an anomaly of U(1)A in the presence of the
flavor center and U(1)A fluxes. In the examples we have studied, the condensates break
the flavor center, rendering this anomaly irrelevant. In simpler terms, the full breaking of
the flavor center automatically matches the U(1)A[CFU] anomaly. This can be understood
through the following principle: if a triangle (anomaly) diagram involves three abelian
symmetries, namely G1, G2, and G3 (in this case, G1 through G3 are the abelian discrete
groups corresponding to turning on the CFU fluxes), the complete breaking of at least one
of these symmetry groups will resolve the anomaly.

To extract more valuable insights from this anomaly, we can focus our attention solely
on the color-U(1)A fluxes by deactivating the flavor background. In doing so, the U(1)A[CU]

8We would like to thank Erich Poppitz for illuminating discussions about this point.
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anomaly becomes a mixed anomaly of U(1)A in the presence of fractional U(1)A flux
(keeping in mind that the U(1)A flux still needs to combine with the color flux to satisfy the
cocycle conditions. Yet, the color topological charge remains uninvolved in the anomaly).
Superficially, one might consider this to be equivalent to the [U(1)A]3 anomaly. However,
this is not the case since the latter anomaly only encompasses integer fluxes of U(1)A,
whereas the U(1)A[CU] anomaly incorporates the minimal flux of U(1)A. Consequently, the
latter is more restrictive in nature compared to the [U(1)A]3 anomaly. Let the discrete flux
of U(1)A be a Zn flux, and let a particular condensate break U(1)A to Zm ⊇ Zn. Then the
U(1)[CU] anomaly can be thought of as a Zm[Zn]2 anomaly, which can be checked via (2.32).
If Zm ⊂ Zn and the anomaly [Zm]3 vanishes, the breaking of U(1)A to Zm automatically
matches the U(1)[CU] anomaly as the symmetry corresponding to the discrete flux of U(1)A
is broken.

Next, we discuss the condensates that cause the symmetries to break. A gauge-invariant
condensate is a bosonic operator

C = ψαψχαχ , (3.12)

and αψ and αχ satisfy the conditions

2αψ + (N − 2)αχ ∈ NZ+ , αψ + αχ ∈ 2Z+ . (3.13)

One needs as many condensates as necessary to break Gg to an anomaly-free subgroup.
Distinct condensates will break Gg down to H1 ⊂ Gg, H2 ⊂ Gg, etc. If the subgroups
{H1, H2, . . .} do not share common generators, Gg will break to unity. Finding the breaking
patterns of a group Gg because of the condensation of single or many operators transforming
in the defining or higher-dimensional representations of Gg is, in general, a complicated
problem. Only a few cases have been discussed in the literature; see, e.g., [32–36] and
references therein. The question then is, how many condensates does the theory develop in
the IR? There is no known answer to this question. However, there must be at least as
many condensates as needed to match all anomalies.

3.2 Minimizing the IR degrees of freedom

Beyond ’t Hooft anomalies, are there additional sources of information that can be harnessed
to make conjectures about the infrared (IR) phase of a strongly coupled theory? In [37–39],
a constraint on the structure of strongly coupled asymptotically-free field theories was
proposed. The constraint is an inequality favoring an IR phase with fewer degrees of freedom
(DOF). It was also proposed to use the free energy to characterize DOF. The effective
degrees of freedom A of free nB massless real scalars and free nf massless Weyl fermions
are given in terms of the free energy density F as (T is an infinitesmal temperature)

A ≡ 90F
π2T 4 = nB + 7

4nf . (3.14)

First, we may use (3.14) to favor between a phase of composite fermions or a phase
with spontaneous symmetry breaking (SSB). As we pointed out above, we could not find
composite fermions that matched the anomalies. Yet, one may be tempted to use (3.14) to
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predict whether the theory flows to an IR CFT. In a weakly-coupled CFT, the IR DOF
are the same UV DOF. On the other hand, the DOF in a spontaneously broken phase,
assuming the global symmetry SU(Nf ) entirely breaks, are N2

f − 1 Goldstones.9 Let us
define ∆A as the difference between the DOF in the two scenarios. Then, we have

∆A = n2
ψ + n2

χ − 2︸ ︷︷ ︸
Goldstones

−

 2(N2 − 1)︸ ︷︷ ︸
gluons DOF

+7
4 (nψdimψ + nχdimχ)

 . (3.15)

According to the conjecture, a theory with ∆A > 0 disfavors an SSB phase. It can be
easily checked that all the theories in table 1 yield ∆A < 0, favoring a phase with broken
symmetries. This is to be expected since nψ, nχ ∼ N and dimψ, dimχ ∼ N2. Thus, while
the SSB phase has ∼ N2 DOF, a phase with CFT has ∼ N3 DOF. Then, one may naively
conclude that all theories in table 1 will break their symmetries and flow to a Goldstone
phase. This conclusion, however, totally ignores the dynamics of the theory on the way
from UV to IR. A theory must enter a strongly-coupled regime to form condensates and
break its continuous symmetries, i.e., breaking the symmetries has to happen dynamically
since no elementary scalars exist. As we argued above, some of our theories have robust IR
fixed points at weak coupling, indicating that it is most unlikely they can form condensates.
Consequently, in the subsequent analysis, we avoid employing the aforementioned hypothesis
to favor between an SSB or CFT phase. Instead, we use the β-function analysis to check
whether a theory flows to an IR CFT.10

However, assuming the existence of multiple sets of condensates, each capable of
accounting for all observed anomalies via SSB, we can employ the aforementioned line of
reasoning to make a prediction. Presumably, the set of condensates that causes the flavor
group to break into the largest subgroup will be preferred due to its associated reduction in
the number of infrared degrees of freedom.

The following sections are devoted to systematically applying the above ideas to the
concrete theories in table 1. We start our discussion by working out all the details. As
we progress through the list of theories, we build on the previous experience and shorten
our discussion.

4 Fermionic theories

This section systematically studies theories that admit fermionic operators in their spectrum.
These are (N = 5, k = 1), (N = 6, k = 2), (N = 6, k = 1), and (N = 10, k = 2). Our
analysis indicates that the first two theories form condensates and break their global
symmetries, while the last two flow to a CFT.

9Notice that a theory that fully breaks its global symmetries will match its ’t Hooft anomalies in the IR.
We assume that enough condensates form to obey the matching conditions.

10This method was used in [13] to predict the IR phase of a theory with a single adjoint and Nf

fundamental flavors of Weyl fermions. It was found that the ∆A calculations are consistent with the
prediction of perturbative β-function. The fact that this analysis does not hold for the 2-index chiral theories
is attributed to the large number of degrees of freedom of a CFT, which always exceeds the number of
degrees of freedom of an SSB phase.
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Anomaly Equation Value
[U(1)A]3 κ3

u = nψq
3
ψ dimψ + nχq

3
χ dimχ −264375

U(1)A[SU(9)χ]2 qχ dimχ 70
[SU(9)χ]3 dimχ 10
U(1)A[grav] 2(nψqψ dimψ + nχqχ dimχ) 450
U(1)A[CFU] qχ dimχQχ + κu3Qu

560
9 p′2 − 264375s2

Table 2. Anomalies of SU(5), k = 1.

4.1 SU(5), k = 1

This theory admits a single Weyl fermion ψ and nχ = 9 flavors of χ Weyl fermions. In
addition, we have r = gcd(nψTψ, nχTχ) = gcd(7, 27) = 1, indicating that the theory does
not possess a discrete chiral symmetry. The solutions to the cocycle conditions (2.14) give
Z5 × Z9 as the discrete division group. Thus, the faithful global symmetry is

Gg = SU(9)χ ×U(1)A
Z5 × Z9

, (4.1)

and the U(1)A charges of ψ and χ are

qψ = −27 , qχ = 7 . (4.2)

Since both qψ and qχ are odd, (−1)F ≡ ZF2 fermion-number symmetry, which acts on (ψ, χ)
as (ψ, χ) −→ −(ψ, χ), is a subgroup of U(1)A.

The topological charges of the CFU fluxes are given by:

Qc =
4m2

5 ,m ∈ Z5 , Qχ = 8p′2

9 , p′ ∈ Z9 , Qu = s2 , s ∈ Z45 , (4.3)

and (m, p′, s) are chosen to satisfy (2.14). The theory admits a set of anomalies listed in
table 2 (from here on, we give the phase of the corresponding anomaly).

Notice that, as pointed out above, the U(1)A[CFU] anomaly does not depend on
the color topological charge. We can also put the theory on CP2 by employing fluxes in
the centers of SU(5) and SU(9)χ accompanied by a U(1)A flux, as can be easily checked
from (2.19).

The 2-loop and 3-loop β-function analysis show that the theory has an IR fixed point at
somewhat large coupling-constant: g2

∗
4π ≈ 0.64 and g2

∗
4π ≈ 0.34, respectively. Therefore, such a

fixed point is not robust. We conclude that either the theory forms composite fermions or
flows to an SSB phase.

Matching by composites. We used the systematic approach discussed in section 3 to
search for a set of composite fermions. We found a pair of operators

F1 = ψχ6 , F2 = ψ7χ22 , (4.4)
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with N1 = 36 and N2 = 9 copies that matched the [U(1)A]3 and U(1)A[grav] anomalies. Yet,
this pair failed to match the U(1)A [SU(9)ψ]2 anomaly. The upper bound on the number of
the IR fermion species is N ∼ 132. The large number of partitions of N is O(107), which
hindered the abilities of our search algorithm. We failed to find a set of composites that
matches the full set of anomalies.

Matching by condensates. We now turn to the formation of condensates. The lowest-
order condensate is

Ci1 = ϵa1a2a3a4a5ϵα1α2ψ
α1
(a1a2)χ

α2, i
[a3a4a5] , (4.5)

where a1, . . . , a5 are color, α1, α2 are spinor, and i is a SU(9)χ flavor indices. This condensate
vanishes identically owing to the symmetrizing over a1, a2. Yet, one can evade this problem
by inserting gauge-covariant gluonic fields (f cµν)

aj
aiσ

µν :

Ci1 −→ C̃i1 = ϵa1a2a3a4a5ϵα1α2(f cµν)a6
a2σ

µνψα1
(a1a6)χ

α2, i
[a3a4a5] . (4.6)

This trick will always be followed whenever the statistics of indices cause some operator
to vanish. Ci1 transforms in the defining representation of SU(9)χ, and thus, it breaks it
down to SU(8). However, the condensation of Ci1 leaves a U(1) generator of SU(9)× U(1)A
unbroken. To see that, we go to a basis where Ci1 ∝ δi,9. In this basis, the unbroken SU(8)
group acts on the 8× 8 upper block matrices of the original 9× 9 unitary matrices of SU(9).
Now, it is easy to see that the SU(9) Cartan generator H8 = diag (1, 1, . . . ,−8) combines
with the U(1)A generator to leave the vacuum δi,9 invariant:

ei2π(−20β)

 e
i2πα 0 . . . 0
, . . . . . . . . .

0 . . . ei2π(−8α)


 0
. . .

1

 =

 0
. . .

1

 , (4.7)

where α and β are the Cartan and U(1)A phases, respectively. The direction 2α = −5β
is the unbroken U(1) direction. The unbroken SU(8) has a non-vanishing cubic anomaly.
In addition, the unbroken U(1) symmetry inherits the U(1)A[grav] anomaly, signaling that
such breaking is incomplete or inconsistent with the anomaly-matching conditions.

Another condensate is (we suppress color and spinor indices to reduce clutter)

C(ij)
2 = ψ2χ(iχj) , (4.8)

which transforms in the 2-index symmetric representation of the flavor group.11 The general
form of the “Higgs” potential of the condensate is

V (C2) = −1
2µ

2C(ij)
2 C2(ij) +

1
4λ1(C(ij)

2 C2(ij))2 + 1
4λ2(C2(ij)C

(jk)
2 C2(kl)C

(li)
2 ) , (4.9)

for some real parameters µ2 > 0, λ1, and λ2. In the case λ2 > 0, the condensate has
a non-zero vacuum expectation value and we can pick the form of the condensate to be
C2 ∝ I9 [32]. This breaks SU(9) to the anomaly-free subgroup SO(9).

11We also insert gluons if the statistics cause the condensate to vanish.
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Is there a combination of SU(9)χ × U(1)A that breaks to a remaining U(1) symmetry?
As U(1)A is abelian, we need to consider the subgroup generated by the Cartan subalgebra
of SU(9). The “unnormalized” generators of the Cartan subalgebra of SU(9) are:

[Hm]ij =
m∑
k=1

δikδjk −mδi,m+1δj,m+1 , m = 1, 2, . . . , 8 . (4.10)

A general SU(9) element generated by the Cartan subalgebra has the form exp(2πiαmHm),
m = 1, 2, . . . , 8 and αm ∈ [0, 1). A combined SU(9)× U(1)A transformation acts on Cij via:

C′(ij)
2 = e2πi(−40β)

(
e2πiαmHm

)ik (
e2πiαmHm

)jl
C2(kl) , (4.11)

and should leave the vacuum expectation value invariant. Thus, we need

e2πi(−40β)
(
e2πiαmHm

)ik (
e2πiαmHm

)jl
I9 = I9 . (4.12)

It can be easily checked that there are no nontrivial solutions to the above equation,
indicating that no U(1) direction is left unbroken.

Under the action of U(1)A, the condensate transforms as C(ij)
2 = ψ2χ(iχj) −→ C′(ij)

2 =
ei2π(−40β)ψ2χ(iχj) , where β ∈ [0, 1) is the U(1)A parameter. So it appears that the
condensate is invariant under a discrete Z40 subgroup of U(1)A. But recall that the global
symmetry group includes a division by the Z5 center of the color group. Z5 is not a
subgroup of SU(9), therefore it can only quotient U(1)A, so the parameter β is in fact a
U(1)A/Z5 parameter and β ∈ [0, 1/5). Therefore the condensate only exhibits an unbroken
Z8 symmetry.

The discrete symmetry Z8 has non-perturbative anomalies, as can easily be checked
using (2.29) and (2.30), meaning that the condensation of C(ij)

2 is insufficient to match
the full set of anomalies. Notice that since both ψ and χ have odd charges under U(1)A,
any unbroken discrete subgroup of U(1)A necessarily contains (−1)F , and thus, we can
use the twisted group SpinZ2m to detect the nonperturbative anomaly as given from (2.30).
Moreover, since the theory does not possess a 1-form symmetry, there is no ambiguity in
calculating the discrete-symmetry anomaly [31].

In searching for a condensate that does not leave behind a non-anomalous U(1) or
discrete subgroup, we consider the most general bosonic operator:

C = ψαψχαχ , 2αψ + 3αχ ∈ 5Z+ , αψ + αχ ∈ 2Z+ . (4.13)

This condensate carries a charge of −27αψ + 7αχ under U(1)A, and thus, breaks U(1)A
down to Z(−27αψ+7αχ)/5. We used both (2.29) and (2.30) to check the nonperturbative
anomalies of Z(−27αψ+7αχ)/5 and found that both untwisted and twisted backgrounds yield
the same results. The lowest-dimensional condensate that breaks U(1)A to a non-anomalous
subgroup has αψ = 1 and αχ = 11. In this case, Z10 is the anomaly-free subgroup.

The condensate
C3 = ψχ11 (4.14)
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transforms in a higher representation of SU(9)χ. One can contract 9 out of the 11 flavor
indices of C3 with the Levi-Civita tensor, leaving 2 free indices. Then, we can rearrange the
free indices (possibly with insertions of gluons in case the statistics cause the condensate to
vanish) such that C3 transforms in the 2-index symmetric representation of SU(9):

C(ij)
3 = ψχ9χ(iχj) . (4.15)

The condensing of C(ij)
3 breaks SU(9)χ×U(1)A

Z5×Z9
down to the anomaly-free subgroup SO(9)×Z10.

Alternatively, one can search for a companion condensate to C(ij)
2 that breaks U(1)A

to a discrete subgroup Zq, such that gcd(q, 8) = 2. This ensures that the formation of
these two condensates breaks U(1)A down to the anomaly-free subgroup ZF2 , which is the
fermion number. The companion condensate with the lowest dimension is C4 = χ10, which,
superficially, breaks U(1)A down to Zq = Z14. This, however, is an immature conclusion.
One can contract 9 flavor indices of C4 with a Levi-Civita tensor leaving one free index.
Then, C4 transforms in the fundamental representation of SU(9), and according to the
discussion preceding (4.7), it breaks it down to SU(8)×U(1). Because of the unbroken U(1)
generator, the condensation of C2 along with C4 break SU(9)χ×U(1)A

Z5×Z9
down to a subgroup that

contains the anomalous Z8. More than this is needed to match the full set of anomalies.
We might continue searching for suitable condensates that break Gg to an anomaly-

free subgroup. However, the lesson from the above discussion is that it is generically a
complex exercise.

Since SO(9) is the largest anomaly-free subgroup of SU(9), the condensation of C(ij)
3

leads to the smallest number of the IR Goldstones, and hence, we predict that the theory
will flow to a phase with the global symmetry broken down to the anomaly-free SO(9)×Z10.
This is the minimal scenario. However, because of strong dynamics, nothing forbids the
theory from forming all kinds of condensates, breaking Gg down to the anomaly-free ZF2
fermion number symmetry.

In an equally alternative scenario, SU(9) could be broken down to the anomaly-free
Sp(8) by a condensate transforming in the 2-index anti-symmetric representation. However,
since the dimensions of Sp(8) and SO(9) are identical, anomalies and the argument of
the number of Godstones cannot distinguish between the two possible symmetry-breaking
scenarios. In general, a condensate transforming in the 2-index symmetric representation
of SU(2N + 1) breaks this group down to SO(2N + 1), while a condensate in the 2-index
anti-symmetric representation breaks it down to Sp(2N). Both SO(2N + 1) and Sp(2N)
have dimension N(2N + 1).

Interestingly, the operator C(ij)
3 has a scaling dimension of at least 15 (it could have a

higher dimension if gluon fields are needed to avoid the vanishing of the condensate because
of fermi-statistics). That such condensate with a large-scaling dimension must condense
in the IR to match the complete set of anomalies is remarkable. Generally, it is natural
to expect that a strongly coupled theory forms higher-order condensates. In this example,
however, this formation is not a question about the dynamics; rather, it is a necessary
condition for the theory to obey the kinematical constraints imposed by anomalies.

Does our proposed condensate C(ij)
3 match the U(1)A[CFU] anomaly? The answer is

affirmative. C(ij)
3 breaks SU(9)χ flavor group down to SO(9). The latter does not have

a center symmetry, while the former group has a Z9 center. Thus, we conclude that the
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condensate breaks Z9 maximally, matching the U(1)A[CFU] anomaly. Next, we may turn
off the flavor background, restricting ourselves to the color center and U(1)A (CU) fluxes. In
this case, we have (m, p′, s) = (1, 0, 1

5), and keeping in mind that the CU anomaly does not
depend on the color topological charge, we find that this is an anomaly of the axial current
in the background of a Z5 flux. The condensation of C3 breaks U(1)A to Z10. Thus, the
U(1)A[CU] anomaly becomes the Z10[Z5]2 anomaly discussed around eq. (2.32). However,
from the last line in table 2, the anomaly coefficient becomes, −264375

52 = −10575, which
is 0 modulo 5. Therefore, in this case, the anomaly becomes trivial, and the U(1)A[CU]
anomaly is automatically matched.

4.2 SU(6), k = 2

This theory has a single ψ Weyl fermion along with 5 flavors of χ fermions. Thus, the
continuous global symmetry is SU(5)χ ×U(1)A. The charges of ψ and χ under U(1)A are

qψ = −5 , qχ = 2 . (4.16)

Owing to the fact r = gcd(nψTψ, nχTχ) = gcd(8, 20) = 4, the theory is also endowed with
a Zdχ4 chiral symmetry, which is taken to act on χ with a unit charge. It can be checked
that this is a genuine symmetry since neither Z4 nor a subgroup of it can be absorbed in
rotations in the centers of SU(6)× SU(5)χ. To show that, we try to absorb the elements
ei

2πℓ
4 , ℓ = 1, 2, 3, in the centers of SU(6)× SU(5)χ:

Z4 : ψ −→ e2πi 2m
6 ψ = ψ , χ −→ e−2πi 2m

6 e−2πi p
′

5 χ = e2πi l4χ . (4.17)

No values of m and p′ satisfy these equations for ℓ = 1, 2, 3, and therefore, Zdχ4 is a genuine
symmetry. An identical procedure is employed in the rest of the theories to ascertain the
genuineness of discrete chiral symmetries.

To determine the faithful global symmetry, we must find the quotient group by solving
the consistency conditions (2.14). This gives Z3 ×Z5 as the group we divide by. Putting ev-
erything together and remembering that the theory possesses a Z[1]

2 1-form center symmetry,
we write the faithful global group:

Gg = SU(5)χ ×U(1)A
Z3 × Z5

× Zdχ4 × Z(1)
2 . (4.18)

The ZF2 fermion number symmetry is contained in the generators of the product group
U(1)A × Zdχ4 (notice that the U(1)A charges of ψ and χ are odd and even, respectively)

ZF2 ⊂ U(1)A : ψ −→ −ψ , χ −→ χ ,

ZF2 ⊂ Zdχ4 : ψ −→ ψ , χ −→ −χ . (4.19)

The topological charges of the CFU fluxes are given by:

Qc =
5m2

6 ,m ∈ Z3 , Qχ = 4p′2

5 , p′ ∈ Z5 , Qu = s2 , s ∈ Z15 , (4.20)
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Anomaly Equation Value
[U(1)A]3 κu3 = nψq

3
ψ dimψ + nχq

3
χ dimχ −2025

U(1)A[SU(5)χ]2 qχ dimχ 30
[SU(5)χ]3 dimχ 15
Zdχ4 [U(1)A]2 κzu2 = nχq

2
χ dimχ 300mod 4

Zdχ4 [SU(5)χ]2 dimχ 15mod 4
U(1)A[grav] 2(nψqψ dimψ + nχqχ dimχ) 90
Zdχ4 [grav] 2nχ dimχ 150mod 8
[Zdχ4 ]3 (2.29) 2250mod 24
U(1)A[CFU] qχ dimχQχ + κu3Qu 24p′2 − 2025s2

Zdχ4 [CFU] nχTχQc + dimχQχ + κzu2Qu2
50
3 m

2 + 12p′2 + 300s2

Table 3. Anomalies of SU(6), k = 2.

and (m, p′, s) are chosen to satisfy (2.14). The anomalies of the theory are listed in table 3.
It is worth noting that both Zdχ4 [grav] and Zdχ4 [CFU] anomalies give at most a Z2 phase.
Also, this theory cannot be put on CP2, as there are no solutions to the conditions (2.19).

We first comment on the possibility that the theory flows to a Banks-Zaks fixed point
in the IR. The 2-loop beta function of this theory gives g2

∗
4π ≈ 8.5 ≫ 1. This value of

the coupling constant is too large for perturbation theory to hold. At 3-loops, we obtain
g2
∗

4π ≈ 0.73 . Also, this coupling-constant value is large, so we cannot conclude that our theory
flows to a conformal fixed point in the IR. In the following, we examine the possibilities of
fermion composites and SSB.

Matching by composites. Here, we follow the argument in section 3 to show that
composite fermions cannot solely match all the UV anomalies. The UV Zdχ4 [CFU] anomaly
of this theory is (unlike the U(1)A[CFU] anomaly, it is important to notice that the color
flux contributes to the Zdχ4 [CFU] anomaly)

nχTχQc + dimχQχ + κzu2Qu2 = 50
3 m

2 + 12p′2 + 300s2 . (4.21)

In the IR, a set of gauge invariant composite fermions would generate the corresponding
Zdχ4 [CFU] anomaly:

DIR
χ Qχ +DIR

u Qu (4.22)

for integers DIR
χ and DIR

u . The integers DIR
χ and DIR

u are group-theoretical coefficients
that are assumed to be found by matching all anomalies of continuous symmetries. In the
presence of a CFU background flux, the ratio between the UV and IR partition functions
after undergoing a Zdχ4 transformation is given by:

ZUV

ZIR = e
i2π

4 ( 50
3 m

2+(12−DIR
χ )p2+(300−DIR

u )s2) = e
i2π

4 ( 50
3 m

2+dχp′2+dus2) , (4.23)
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where dχ = 12 −DIR
χ ∈ Z and du = 300 −DIR

u ∈ Z. If there exists a particular solution
(m, p′, s) of the consistency conditions (2.14) such that no integers dχ, du exists such that

50
3 m

2 + dχp
2 + dus

2 ∈ 4Z, (4.24)

then we conclude that composite fermions cannot match the Zdχ4 [CFU] anomaly.
Consider (m, p, s) = (1, 0, 2/3). This is a solution to the consistency conditions and

therefore corresponds to a CFU flux. In the presence of this CFU background, the l.h.s.
of (4.24) becomes

50
3 + du

4
9 = 150 + 4du

9 . (4.25)

However, 150 + 4du ≡ 2 mod 4 for any du ∈ Z. Therefore we can conclude that for this
theory, composite fermions cannot solely match the Zdχ4 [CFU] anomaly in the IR.

Matching by a condensate. Without composites, the anomalies are matched by spon-
taneous symmetry breaking via condensates. First, the 2-fermion condensate cannot match
the anomalies, as it breaks SU(5)χ ×U(1)A down to the anomalous subgroup SU(4)×U(1).
Next, consider the operator

C(ij) = ψ2χ(iχj) , (4.26)

where i, j are SU(5)χ flavor indices, and in particular, this condensate is in the two-index
symmetric irrep of SU(5)χ. Thus, the condensation of this operator breaks SU(5) to the
anomaly-free subgroup SO(5).

Under the action of U(1)A, the condensate transforms as Cij = ψ2χ(iχj) −→ C′ij =
e2π(6β)ψ2χ(iχj) where β ∈ [0, 1) is the U(1)A parameter. So it appears that the condensate
is invariant under a discrete Z6 subgroup of U(1)A. But recall that the global symmetry
group includes a division by the Z3 center of the color group. Z3 is not a subgroup of SU(5),
therefore it can only quotient U(1)A, so the parameter β is in fact a U(1)A/Z3 parameter
and β ∈ [0, 1/3). Therefore the condensate only exhibits an unbroken Z2 symmetry, which
has no global anomaly, and the U(1)A breaks to a non-anomalous subgroup.

The condensate also breaks Zdχ4 down to Z2, leading to 2 vacua connected via a domain
wall. Recalling that the Zdχ4 [grav] anomaly is only a Z2 phase, the unbroken subgroup
Z2 ⊂ Zdχ4 is anomaly free (remember that Z2 is also free from nonperturbative anomalies).
In addition, the Zdχ4 [CFU] anomaly is valued in Z2, meaning that the same condensate
saturates it. The breaking of Zdχ4 down to Z2 will also automatically match the [Zdχ4 ]3

anomaly, since Z2 is anomaly free.
Let us examine the fate of the U(1)A[CFU] anomaly. First, when we turn on the flavor

center flux, the breaking of SU(5) into SO(5) matches the anomaly, as the breaking causes
the center of SU(5) to break. Next, we solely turn on the color and U(1)A fluxes. In this
case, s ∈ Z3, and the breaking of U(1)A down to Z2 implies that we are after Z2[Z3]2

anomaly. The anomaly coefficient can be read from table 3, and according to (2.32), the
anomaly is automatically matched since gcd(3, 2) = 1.

We conclude that the global symmetry Gg breaks down to SO(5)× (Z2⊂U(1)A)×(Z2⊂Zdχ4 )
Z2

.
The first Z2 symmetry acts only on ψ, while the second Z2 acts only on χ. Then, from (4.19),
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we see that the combination of these symmetries acts like the fermion number, which is left
intact in the IR. The extra modding by Z2 is employed to avoid overcounting.

Since SO(5) is the largest anomaly-free subgroup of SU(5), this breaking pattern
minimizes the number of Goldstones and is the most favorable scenario.

4.3 SU(6), k = 1

This theory has 2 flavors of ψ and 10 flavors of χ, and thus, the flavor symmetry is
SU(2)ψ × SU(10)χ. The U(1)A charges are

qψ = −5 , qχ = 2 . (4.27)

Because r = gcd(nχTχ, nψTψ) = gcd(40, 16) = 8, we may be tempted to conclude the theory
has a Z8 chiral symmetry. However, one can show that a Z2 subgroup of the Z10 center of
SU(10)χ can be used to identify elements of Z8:

χ : e−2πi p
′

10 e2πi l8 = e2πi l
′

8 , (4.28)

for l, l′ = 1, 2, . . . , 7. For example, setting p′ = −5 identifies ℓ = 1 and ℓ = 5, etc. In addition,
the solutions to the consistency conditions (2.14) yield the division group Z3 × Z2 × Z5.
Thus, the faithful global symmetry is

Gg = SU(2)ψ × SU(10)χ ×U(1)A
Z3 × Z2 × Z5

× Zdχ4 × Z(1)
2 . (4.29)

The β-function indicates that the theory flows to an IR fixed point. At 2 loops, the
coupling constant at the fixed point is g2

∗
4π ≈ 0.094. At 3 loops, we obtain g2

∗
4π ≈ 0.075. Both

values are much smaller than our threshold value of 0.1, and the 2- and 3-loop analysis
is only 10% apart. Also, the 3-loop to the 2-loop ratio in (3.1) is ≈ 0.2. Thus, the fixed
point is reliable. As we pointed out above, the lowest-order bosonic operator in this theory,
Fµνσ

µνχψ, necessitates the introduction of a color field to prevent its vanishing due to
statistics. This is a dimension-5 operator, and due to the smallness of the coupling constant,
we do not expect this operator to condense. Not to mention that this operator by itself
is not enough to match the full set of anomalies, and higher-order condensates must also
form to match them. We, thus, conclude that the most probable scenario is that the theory
flows to a CFT.

4.4 SU(10), k = 2

The theory admits 3 flavors of ψ and 7 flavors of χ. The charges of the fermions under
U(1)A are

qψ = −14 , qχ = 9 . (4.30)

We also have r = gcd(Nψ, Nχ) = 4, so that the theory is endowed with a Zdχ4 chiral symmetry,
which cannot be absorbed in a combination of the centers of the color or flavor groups.
After solving the consistency equations, we obtain the faithful global symmetry group

Gg = SU(3)ψ × SU(7)χ ×U(1)A
Z5 × Z3 × Z7

× Zdχ4 × Z(1)
2 . (4.31)
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Theory nψ nχ Zdχp Γ (qψ, qχ) 2-loop 3-loop α∗β2
4πβ1

SU(16), k = 4 3 5 2 Z8 × Z3 × Z5 (−35, 27) 0.09 0.064 0.62
SU(20), k = 4 4 6 2 Z10 × Z4 × Z3 (−27, 22) 0.017 0.015 0.11
SU(28), k = 8 3 4 1 Z7 × Z3 × Z4 (−52, 45) 0.086 0.051 1.12
SU(36), k = 8 4 5 1 Z18 × Z4 × Z5 (−85, 76) 0.019 0.016 0.25
SU(44), k = 8 5 6 1 Z11 × Z5 × Z6 (−126, 115) 0.0002 0.0002 0.003

Table 4. A list of conformal bosonic theories.

The theory develops a Banks-Zaks fixed point. The 2 and 3-loop values of the coupling
constant at the fixed point are g2

∗
4π2 ≈ 0.059 and g2

∗
4π2 ≈ 0.046, respectively. Also, the 3-loop

to the 2-loop ratio in (3.1) is ≈ 0.2. Thus, like SU(6), k = 1, this theory is expected to flow
to a CFT.

5 Bosonic theories

All gauge-invariant operators in this class of theories are bosonic. In the following, we
provide a systematic study of this class.

5.1 Conformal theories

We start by listing theories that flow to a conformal fixed point. These theories are displayed
in table 4. In each case, the global symmetry is given by

G = SU(nψ)× SU(nχ)×U(1)A
Γ × Zdχp × Z(1)

2 . (5.1)

We also display the coupling constant g2
∗

4π2 at the 2- and 3-loop fixed points. The smallness
of the coupling constant and its consistency between the 2- and 3-loop calculations is
an indicator of the robustness of the fixed point. To quantify this robustness, we may
truncate the β-function to the second term in (3.1) and find the fixed point is given by
α∗ = −4πβ0

β1
. The existence of such a fixed point implies that the first and second terms

possess comparable magnitudes. Consequently, the ratio between the third and second (or
first) term α∗β2

4πβ1
represents the error incurred by neglecting the third term. A low ratio

indicates the perturbative nature of the fixed point.
The two theories (N = 20, k = 4) and (N = 44, k = 8) have the most reliable

fixed points. While the theory (N = 28, k = 8) has α∗β2
4πβ1

= 1.12, and its fixed point is
under question.

5.2 Confining theories

5.2.1 SU(8), k = 4

This theory was studied in [8]. Here, we revisit it in light of the discrete anomalies not
discussed in [8]. The theory admits nψ = 1 and nχ = 3 flavors of fermions. The fermion
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Anomaly Equation Value
[SU(3)χ]3 dimχ 28
U(1)A [SU(3)χ]2 qχdimχ 140
Zdχ2 [SU(3)χ]2 dimχ 28
Zdχ2 [U(1)A]2 κzu2 = q2

χdimχnχ 2100
U(1)A[grav] 2(qψdimψ + qχdimχnχ) 192
[U(1)A]3 κu3 = q3

χdimχnχ + q3
ψdimψ -15744

Zdχ2 [grav] 2dimχnχ 168 (trivial)
U(1)A[CFU] qχ dimχQχ + κu3Qu

280p′2
3 − 15744s2, p′ ∈ Z3 , s ∈ Z12

Zdχ2 [CFU] nχTχQc + dimχQχ + κzu2Qu
27m2

2 + 56p′2
3 + 2100s2 ,m ∈ Z4

Table 5. Anomalies of SU(8), k = 4.

charges under U(1)A are
qψ = −9 , qχ = 5 . (5.2)

Also, the theory admits a Zdχ2 discrete chiral symmetry. Solving the consistency condi-
tions (2.14) yield the faithful global symmetry

Gg = SU(3)χ ×U(1)A
Z4 × Z3

× Zdχ2 × Z(1)
2 . (5.3)

The theory admits many anomalies in table 5. In addition, the theory admits a Zdχ2 [CFU]
anomaly, which yields a phase of π upon turning on a flux with, e.g., (m, p′, s) = (1, 0, 1

4),
i.e., this is a Z4 ⊂ U(1)A flux. We also find that there is an anomaly of Zdχ2 on a nonspin
manifold, as the partition function acquires a phase of π by turning on a pure Z(1)

2 flux
on CP2.

In [8], it was argued that all the anomalies could be matched by condensing two
operators:

Ci1 = ψχi , Ci42 = ϵi1i2i3χ
i1χi2χi3χi4 . (5.4)

Let us review the anomaly matching using these two operators and comment on why they
cannot match the discrete anomalies.

Both operators Ci1 and Ci2 transform in the defining representation of SU(3) and break
it down to the anomaly-free SU(2) (it has no Witten anomalies because the dimensions of
the representations are even). Yet, the condensation of Ci1 or Ci2 leaves behind an unbroken
SU(3) generator. We take Ci1 ∝ δi,1 and Ci2 ∝ δi,1 and parametrize the SU(3) matrix that
corresponds to the unbroken Cartan generator of SU(3) as diag

(
ei4πα, e−i2πα, e−i2πα

)
. Then,

under SU(3)χ ×U(1)A × Zdχ2 , the operators transform as

Ci1 −→ ei4πα−i8πβ+inπCi1 , Ci2 −→ ei40πβ+i4παCi2 , (5.5)

where β corresponds to the U(1)A transformation, whereas n = 1 corresponds to the Zdχ2
transformation. Taking α = − 5

24 , β = 1
48 , and n = 1 leaves Ci1 and Ci2 invariant under the

– 27 –



J
H
E
P
1
0
(
2
0
2
3
)
0
2
5

combined transformations of SU(3)χ×U(1)A×Zdχ2 . This superficially hints at an unbroken
Z24 symmetry. However, owing to the modding by Z4 in (5.3), the genuine unbroken
subgroup is Z6. This unbroken symmetry can be written as Z6 = Z2 × Z3, where Z3 is a
genuine subgroup of U(1)A. This can be seen by setting n = 0, then we find that Ci1 and Ci2
are left invariant by taking α = − 5

12 and β = 1
24 . Remembering the modding by Z4 in (5.3),

we conclude that there is a Z3 unbroken subgroup of U(1)A.
It is straightforward to calculate the Z3 anomaly using (2.29) to find that it is non-

vanishing, meaning that the condensation of Ci1 and Ci2 is not enough to match the complete
set of anomalies. The way out is to consider the condensation of the operator

C(ij)
3 = ψ2χ(iχj) , (5.6)

which transforms in the 2-index symmetric representation of SU(3)χ and breaks it down to
SO(3). U(1)A is broken to Z2, after taking into account the modding by Z4 in (5.3). The
Zdχ2 [CFU] anomaly is automatically matched as U(1)A is broken down to Z2 (remember,
however, that this Z2 is the fermion number since both fermions carry odd charges under
U(1)A, and the fermion number is gauged). Recalling that we had to turn on a Z4 ⊂ U(1)A
flux in the first place to see this anomaly (a π phase), the breaking of U(1)A to a smaller
subgroup than Z4 (in this case Z2 ⊂ Z4) trivializes the anomaly. Thus, at this level, one
does not need to break Zdχ2 . This differs from the findings in [8], where it was argued that
the CFU anomaly is not trivial. Here, we arrive at a different IR condensate by scrutinizing
the discrete subgroups of U(1)A.

What about matching the anomaly of Zdχ2 on CP2? Since this anomaly is valued in Z2,
it can be matched by a TQFT on a nonspin manifold, as was argued in [29]. Yet, another
scenario is to form the condensate Ci1, which breaks Zdχ2 to unity (remember that the Z(1)

2
1-form symmetry is unbroken assuming confinement). Thus, the condensation of both Ci1
and C(ij)

3 match all anomalies and break the global group down to SO(3), resulting in 2
vacua (because of the breaking of Zdχ2 ) connected via domain walls.

5.2.2 SU(8), k = 2

This case was also considered briefly in [8]. The theory admits 2 flavors of ψ fermions and
6 flavors of χ fermions. The U(1)A charges of the fermions are

qψ = −9 , qχ = 5 . (5.7)

Since gcd(Nψ, Nχ) = 4, one may naively conclude that the discrete symmetry is Z4. Yet,
two elements of Z4 are identified with elements in Z2 ⊂ Z6, where Z6 is the center of SU(6)χ.
This leaves us with Zdχ2 as the genuine discrete group, which we take to act solely on χ.
The faithful global symmetry is

Gg = SU(2)ψ × SU(6)χ ×U(1)A
Z4 × Z6

× Zdχ2 × Z(1)
2 . (5.8)

The UV theory has the ‘t Hooft anomalies in table 6. The Zdχ2 [CFU] anomaly does not
provide new information. However, there is a non-trivial Zdχ2 [CFU]CP2 anomaly (a π phase)
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Anomaly Equation Value
[SU(6)χ]3 dimχ 28
U(1)A[grav] 2(qψdimψ + qχdimχnχ) 384
Zdχ2 [grav] dimχnχ 336 (trivial)
U(1)A[SU(6)χ]2 qχdimχ 140
U(1)A[SU(2)ψ]2 qψdimψ −324
[U(1)A]3 q3

ψdimψ + q3
χdimχnχ −31488

Zdχ2 [SU(6)χ]2 dimχ 28 (trivial)
Zdχ2 [U(1)A]2 q2

ψdimψnψ + q2
χdimχnχ 4200 (trivial)

Table 6. Anomalies of SU(8), k = 2.

in the background of a CFU configuration with all fluxes turned on, e.g., (m, p, p′, s) =
(1, 1, 1,−5/12).

The condensation of the operator

Ci1 j = ψjχ
i (5.9)

break SU(2)ψ × SU(6)χ down to SU(2)× SU(4). The unbroken SU(4) is anomalous.
Another operator is

C[i1i2]
2 = ψ2χ[i1χi2] , (5.10)

which is neutral under SU(2)ψ × Zdχ2 but transforms in the 2-index anti-symmetric rep-
resentation of SU(6) and breaks it down to the anomaly-free Sp(6).12 In addition, the
condensation of C[i1i2]

2 breaks U(1)A to the anomaly-free Z2, after taking into account the
modding by Z4 in (5.8). What about the Zdχ2 [CFU]CP2 anomaly? Remember that one needs
to turn on a configuration with U(1)A flux in Z12. Since U(1)A breaks down to Z2, the
anomaly trivializes. Recall that this Z2 is the fermion number since both fermions have odd
charges under U(1)A, and that the fermion number is gauged. Thus, the condensation of
C[i1i2]

2 leaves behind the unbroken SU(2)ψ×Sp(6)
Z2

×Zdχ2 subgroup and matches all anomalies.13

5.2.3 SU(12), k = 4

The number of flavors in this case is nψ = 2 and nχ = 4, and the U(1)A charges are:

qψ = −10 , qχ = 7 . (5.11)

Since gcd(nχTχ, nψTψ) = gcd(40, 28) = 4, one may conclude that the theory is endowed
with a Z4 chiral symmetry that acts on χ. However, this Z4 is the center of the SU(4)χ

12Alternatively, one could propose the formation of a condensate transforming in the 2-index symmetric
representation of SU(6). This condensate, however, would break SU(6) down to SO(6), resulting in a larger
number of Goldstones.

13The symplectic group Sp(2N) has a Z2 center symmetry, see, e.g., [40]. This is why we needed to mod
by Z2 that is common between Sp(6) and SU(2)ψ.
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Anomaly Equation Value
[U(1)A]3 q3

χdimχnχ + q3
ψnψdimψ -65448

U(1)A[SU(2)ψ]2 qψdimψ -780
U(1)A[SU(4)χ]2 qχdimχ 462
[SU(4)χ]3 dimχ 66
U(1)A[grav] κu3 = qχdimχnχ + qψnψdimψ 576
U(1)A[CFU] qψ dimψ Qψ + qχ dimχ Qχ + κu3Qu 390p2 + 693

2 p′2 − 65448s2, p, p′ ∈ Z2

Table 7. Anomalies of SU(12), k = 4.

flavor symmetry. Therefore, the theory does not possess a discrete chiral symmetry. Solving
the consistency conditions (2.14), we find that the faithful global symmetry group is:

Gg = SU(2)ψ × SU(4)χ ×U(1)A
Z3 × Z2 × Z2

× Z(1)
2 . (5.12)

This theory is endowed with the anomalies in table 7. The theory does not possess a
Witten anomaly of SU(2)ψ since dimψ = 66 is an even number.

The 2-loop and the 3-loop β-functions predict fixed points at g2
∗

4π = 0.514 and 0.202,
respectively. Both values are large for the fixed points to be robust.

In searching for candidates that break the symmetries spontaneously, let us study the
bilinear condensate:

Cij = ϵa1...a12
(
f cµν

)a13

a2
σµνϵα1α2ψ

α1
j, (a1a13)χ

α2, i
[a3...a12] , j = 1, 2 , i = 1, 2, 3, 4, (5.13)

where, as usual, a1, a2, .. are color indices, α1, α2 are spinor indices, while j and i are
respectively SU(2)ψ and SU(4)χ indices. The transformation of Cij is noteworthy as it occurs
in the fundamental representation of SU(2)ψ and the anti-fundamental representation of
SU(4)χ. Consequently, upon condensation, it has the potential to break down SU(2)ψ ×
SU(4)χ to SU(2)V ×SU(2). This symmetry-breaking pattern can be explained as follows [32].

To create an invariant potential for the 4 × 2 matrix Cij , we define the 4 × 4 matrix
Φi,i′ ≡

∑2
j=1 CijCi

′
j . By considering the effective potential as a trace over quadratic and

quartic terms of Φi,i′ , we might initially assume that we can transform to a basis where
Φi,i′ becomes a non-degenerate diagonal matrix. However, this assumption leads to a
contradiction because the 4×1 column vectors in Φi,i′ are dependent due to the construction
of Φi,i′ from a 4× 2 matrix. In other words, Φi,i′ possesses two zero eigenvalues. Hence, we
conclude that we can only transform to a basis that diagonalizes SU(2)ψ×(SU(2) ⊂ SU(4)χ).
This results in the diagonal (vector-like) matrix SU(2)V , while SU(4−2) = SU(2) ⊂ SU(4)χ
remains unbroken. Both SU(2)V and SU(2) ⊂ SU(4)χ are subgroups devoid of anomalies.
The potential anomaly, namely the Witten anomaly, does not afflict any of these subgroups.
The UV particle content ensures that the number of fermions transforming under SU(2)ψ
and SU(2) ⊂ SU(4)χ is dimψ = 78 and dimχ = 66, respectively, both of which are even
numbers. Therefore, none of these groups can exhibit Witten anomalies.
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Anomaly Equation Value
[U(1)A]3 κu3 = q3

χdimχnχ + q3
ψdimψ −32724

U(1)A[SU(2)χ]2 qχdimχ 462
U(1)A[grav] qχdimχnχ + qψdimψ 288
U(1)A[CFU] qχ dimχ Qχ + κu3Qu 231p′2 − 32724s2, p′ ∈ Z2

Table 8. Anomalies of SU(12), k = 8.

Moreover, due to the Z3 modding in (5.12), the axial symmetry U(1)A/Z3 identifies
a transformation phase α with α + 2π

3 . The charge of the condensate Cij under U(1)A is
−3, leading to the breaking of U(1)A to unity. Hence, we conclude that the 2-fermion
condensate Cij successfully saturates all the anomalies and breaks the global symmetry down
to SU(2)V ×(SU(2)⊂SU(4)χ)

Z2
, where we mod by the Z2 common center of both groups.

5.2.4 SU(12), k = 8

The number of flavors in this case is nψ = 1 and nχ = 2 and the U(1)A charges are:

qψ = −10 , qχ = 7 . (5.14)

Given that r = gcd(nψTψ, nχTχ) = gcd(14, 20) = 2, we may conclude that the theory has a
Z2 discrete chiral symmetry. Yet, one can absorb this Z2 in the center of SU(2)χ, leaving
behind no genuine discrete symmetry. After solving the consistency conditions, we find that
the faithful global symmetry group is:

Gg = SU(2)χ ×U(1)A
Z3 × Z2

× Z(1)
2 . (5.15)

The theory possesses the anomalies in table 8. The potential Witten anomaly of SU(2)χ
is absent because dimχ = 66 is an even number.

The 2-loop and 3-loop β-functions do not predict fixed points, and the theory needs to
break its symmetries spontaneously by forming condensates. The operator

Ci1 = ψχi , (5.16)

where the index i is the SU(2)χ flavor, breaks the global symmetry down to U(1). To see
that, let us fix the vacuum to be [1 0]T . Then, if a U(1) generator is left unbroken by the
vacuum, one should find a nontrivial solution to

exp
[
i2πβ

[
1 0
0 −1

]]
e−i6παI2×2

[
1
0

]
=

[
1
0

]
. (5.17)

It is easy to check that the solution β = 3α satisfies the above equation, which is the
unbroken U(1) direction. The unbroken U(1) symmetry inherits the UV mixed U(1)A[grav]
anomaly, and thus, condensing Ci1 is not enough to match the anomalies.
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Anomaly Equation Value
[U(1)A]3 κu3 = q3

χdimχnχ + q3
ψdimψ −2197500

U(1)A [SU(2)ψ]2 qψnψdimψ −5670
U(1)A [SU(3)χ]2 qχnχdimχ 4180
[SU(3)χ]3 dimχ 190
U(1)A [grav] 2(qχdimχnχ + qψdimψ) 2400
U(1)A[CFU] qψ dimψ Qψ + qχ dimχ Qχ + κu3Qu −2835p2 + 8360

3 p′2 − 2197500s2

Table 9. Anomalies of SU(20), k = 8.

Another operator that can condense is

C2 = ϵijψψχ
iχj , (5.18)

with possible insertions of gluon fields. The operator C2 is singlet under SU(2), but it has a
charge −6 under U(1)A. Because of the modding by Z3 in (5.15), the condensation of C2
breaks U(1)A down to Z2, an anomaly-free subgroup. We conclude that the condensation of
C2 is enough to match the anomalies, a scenario with the minimum number of Goldstones.

5.2.5 SU(20), k = 8

The number of flavors is nψ = 2 and nχ = 3, while the U(1)A charges are:

qψ = −27 , qχ = 22 . (5.19)

Since r = gcd(nψTψ, nχTχ) = (36, 66) = 2, we might conclude that the theory possesses
a Z2 chiral symmetry. However, this symmetry can be rotated away in the following
way. First, according to our choice, the would-be chiral symmetry acts only on χ. Thus,
(ψ, χ) −→ (ψ,−χ) under this Z2. Next, we apply a transformation by (−1)F , which sends
(ψ,−χ) −→ (−ψ, χ). Finally, we apply another transformation by the center of SU(2)ψ,
which sends (−ψ, χ) −→ (ψ, χ). This shows that the theory does not possess a discrete
chiral symmetry. Finding the solutions to the consistency conditions, the faithful global
symmetry group is:

Gg = SU(2)ψ × SU(3)χ ×U(1)A
Z5 × Z2 × Z3

× Z(1)
2 . (5.20)

The anomalies of this theory are given in table 9.
Since SU(2)ψ is an anomaly-free group, it does not need to break. The scenario

that gives the lowest number of Goldstones amounts to breaking SU(3)χ × U(1)A to an
anomaly-free subgroup. This can be achieved by condensing

C(ij) = ψ2χ(iχj) , (5.21)

which is singlet under SU(2)ψ and transforms in the 2-index symmetric representation of
SU(3) breaking it to SO(3). As before, this condensate also breaks U(1)A to the anomaly-free
subgroup Z2. Thus, the IR unbroken 0-form symmetry is SU(2)ψ×(Z2⊂U(1)A)

Z2
× SO(3).
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Theory Global Symmetries Condensate(s) IR Symmetries

SU(5), k = 1 SU(9)χ×U(1)A
Z5×Z9

ψχ9χ(iχj) SO(9)× (Z10 ⊂ U(1)A)

SU(6), k = 1 SU(2)ψ×SU(10)χ×U(1)A
Z3×Z2×Z5

× Zdχ4 — CFT

SU(6), k = 2 SU(5)χ×U(1)A
Z3×Z5

× Zdχ4 ψ2χ(iχj)
SO(5)×

(Z2⊂U(1)A)×(Z2⊂Zdχ4 )
Z2

SU(10), k = 2 SU(3)ψ×SU(7)χ×U(1)A
Z5×Z3×Z7

× Zdχ4 — CFT

SU(8), k = 2 SU(2)ψ×SU(6)χ×U(1)A
Z4×Z6

× Zdχ2 ψ2χ[iχj]
SU(2)ψ×Sp(6)

Z2
× Zdχ2

SU(8), k = 4 SU(3)χ×U(1)A
Z4×Z3

× Zdχ2 ψχi, ψ2χ(iχj) SO(3)

SU(12), k = 4 SU(2)ψ×SU(4)χ×U(1)A
Z6×Z2×Z2

ψiχ
j SU(2)V ×(SU(2)⊂SU(4)χ)

Z2

SU(12), k = 8 SU(2)χ×U(1)A
Z3×Z2

ϵijψ
2χiχj SU(2)χ×(Z2⊂U(1)A)

Z2

SU(16), k = 4 SU(3)ψ×SU(5)χ×U(1)A
Z8×Z3×Z5

× Zdχ2 — CFT

SU(20), k = 8 SU(2)ψ×SU(3)χ×U(1)A
Z5×Z2×Z3

ψ2χ(iχj)
SU(2)ψ×(Z2⊂U(1)A)

Z2
× SO(3)

SU(20), k = 4 SU(4)ψ×SU(6)χ×U(1)A
Z10×Z4×Z3

× Zdχ2 — CFT

SU(28), k = 8 SU(3)ψ×SU(4)χ×U(1)A
Z7×Z3×Z4

— CFT

SU(36), k = 8 SU(4)ψ×SU(5)χ×U(1)A
Z18

— CFT

SU(44), k = 8 SU(5)ψ×SU(6)χ×U(1)A
Z11×Z5×Z6

— CFT

Table 10. A summary of the 2-index chiral theories, their global symmetries, and their IR
realizations. Theories with N even also enjoy a Z(1)

2 1-form symmetry acting on the Wilson lines.
This symmetry is assumed to be unbroken in theories that confine.

6 Summary

In this paper, we exhaustively scrutinized the 2-index chiral gauge theories. By studying
the 2-loop and 3-loop β-functions, we could pinpoint a few theories that may flow to an IR
CFT. Theories that do not admit a fixed point break its global symmetries. We considered
scenarios that give the minimal number of IR Goldstones, as this lowers the free energy of
the theory. We paid particular attention to the anomaly-matching conditions and ensured
that the condensates match any discrete subgroup of U(1)A. Our theories, their global
symmetries, the proposed IR phase condensates, and the unbroken IR symmetries are shown
in table 10. The first 4 theories are fermionic, while the rest are bosonic.

Our investigation included a closer examination of the CFU anomalies one of the authors
studied in the previous work [8], giving a better interpretation of this class of anomalies in
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the light of the discrete-anomaly matching conditions. The general finding is that matching
the full set of anomalies and, in particular, the anomalies of the discrete subgroups of the
axial U(1)A symmetry necessitates the formation of multiple higher-order condensates. One
expects such higher-order condensates to form in strongly-coupled theories. Here, their
formation is explained via the constraints of the anomaly-matching conditions. We also
employed a systematic approach to search for massless composite fermions that could match
the anomalies in the case of fermionic theories. We were not able to find such composites.
In one case, we used the CFU anomaly to show that a set of composites cannot solely match
this anomaly, hinting at a deeper reason why the composites could not be found.

Our work provides a systematic approach that can be applied to study other classes of
strongly-coupled phenomena, including different chiral gauge theories.
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A Obtaining the discrete chiral symmetry

In this appendix, we show that there is a discrete symmetry Zr, where r = gcd(Nψ, Nχ),
that acts on χ. To this end, we conisder the groups ZNψpψ+Nχpχ and U(1)A we discussed in
the text. Under U(1)A × ZNψpψ+Nχpχ , ψ transforms as

ψ −→ e2πiaqψαe
2πipψ l

Nψpψ+Nχpχ ψ , (A.1)

where l ∈ ZNψpψ+Nχpχ , a is a charge factor, and α ∈ [0, 1). This transformation leaves ψ
invariant if

aqψα+ pψ
l

Nψpψ +Nχpχ
= k1 ∈ Z =⇒ α = k1

aqψ
− pψl

aqψ(Nψpψ +Nχpχ)
. (A.2)

Note that k1 can be freely chosen. Then, χ transforms under U(1)A × ZNψpψ+Nχpχ as:

χ −→ e2πiaqχαe
2πipχ l

Nψpψ+Nχpχ χ = e
2πi

(
aqχ

(
k1
aqψ

−
pψl

aqψ(Nψpψ+Nχpχ)

)
+pχ l

Nψpψ+Nχpχ

)
χ

= e
2πi

(
qχ
qψ
k1+ l

Nψpψ+Nχpχ

(
pχ−pψ

qχ
qψ

))
χ = e

2πi
(
qχ
qψ
k1+ l

(Nψpψ+Nχpχ)qψ

(
−pχ

Nχ
r

−pψ
Nψ
r

))
χ ,

= e
2πi

(
qχ
qψ
k1− l

rqψ

)
χ , (A.3)

where r = gcd(Nψ, Nχ) and we used qψ = −Nχ
r and qχ = Nψ

r . We can rewrite l = m1 +m2r,
where m1 = 0, 1, . . . , r − 1 and m2 ∈ Z. Bezout’s theorem also tells us that since r =
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gcd(Nψ, Nχ), there are integers k1, k2 such that m2r = k1Nψ + k2Nχ. Applying this to the
transformation of χ gives us:

χ −→ e
2πi

(
qχ
qψ
k1− l

rqψ

)
χ = e

2πi
(
qχ
qψ
k1−

m1+m2r
rqψ

)
χ = e

2πi
(
m1+m2r

Nχ
−
Nψ
Nχ

k1

)
χ

= e
2πim1

Nχ e
2πi

m2r−Nψk1
Nχ χ = e

2πim1
Nχ e2πik2χ = e

2πim1
Nχ χ . (A.4)

Since m1 = 0, 1, . . . , r − 1, there are only r distinct transformations generated by U(1)A ×
ZNψpψ+Nχpχ , and the symmetry group that acts on χ is Zr. For our purposes, we will
assume that under Zr, χ transforms with charge 1 (in principle, we could fix any charge).
Finally, one needs to check whether this Zr is a genuine symmetry in the sense that it cannot
be absorbed in the center of color or flavor groups. This will be done on a case-by-case basis.

B The 3-loop β-function and the IR fixed points

The 3-loop β function is given by (see [41–43])

β(g) = −β0
g3

(4π)2 − β1
g5

(4π)4 − β2
g7

(4π)6 ,

β0 = 11
6 C2(G)−

∑
R

1
3TRnR ,

β1 = 34
12C

2
2 (G)−

∑
R

{5
6nRC2(G)TR + nR

2 C2(R)TR
}
,

β2 = 2857
432 C

3
2 (G)−

∑
R

nRTR
4

[
−C

2
2 (R)
2 + 205C2(G)C2(R)

36 + 1415C2
2 (G)

108

]

+
∑
R,R′

nRn
′
RTRTR′

16

[44C2(R)
18 + 158C2(G)

54

]
.

(B.1)

Here, G denotes the adjoint representation, and nR is the number of the Weyl flavors
in representation R. Also, C2(R) is the quadratic Casimir operator of representation R,
defined as

taRt
a
R = C2(R)1R . (B.2)

We reserve C2(G) for the quadratic Casimir of the adjoint representation. TR is the Dynkin
index of R, which is defined by

tr
[
taRt

b
R

]
= TRδ

ab . (B.3)

From eqs. (B.2) and (B.3), we easily obtain the useful relation

TRdimG = C2(R)dimR , (B.4)

where dimR is the dimension of R.
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In particular, we have C2(G) = 2N , dimG = N2 − 1, Tψ = N + 2, dimψ = N(N+1)
2 ,

C2(ψ) = 2(N+2)(N−1)
N , Tχ = N − 2, dimχ = N(N−1)

2 , C2(χ) = 2(N−2)(N+1)
N . Then, the values

of β0 to β2 are

β0 = 1
3

[
11N − 2

k
(N2 − 8)

]
,

β1 = 2
(
−48 + 76N2 + 17kN3 − 8N4)

3kN ,

β2 = 1
54k2N2

[
2857k2N5 +N(−8448 + 12448N2 − 2584N4 + 145N6)

− 2k(864 + 3948N2 − 8945N4 + 988N6)
]
.

(B.5)

Assuming that β0 > 0 and β1 < 0, the theory develops an IR fixed point to 2-loops. The
value of the coupling constant at the fixed point is

α∗ ≡
g2
∗

4π = −4πβ0
β1

= 2πN
(
16 + 11kN − 2N2)

48− 76N2 − 17kN3 + 8N4 . (B.6)

To assess the stability of this fixed point, we can examine the roots of the β-function when
the 3-loop term is taken into account.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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