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1 Introduction

Neutrino interaction [1] is one of the most important ingredients of the neutrino observation,
among which the elastic neutrino electron scattering process has been widely used in the
detection of solar neutrinos [2–4], reactor neutrinos [5–7] and accelerator neutrinos [8, 9],
and played important roles in studying fundamental properties of neutrino oscillations and
new physics beyond the Standard Model (SM). For the state-of-the-art semiconductor dark
matter (DM) detectors, such as SENSEI [10], EDELWEISS [11] and SuperCDMS [12], the
sensitivity has reached sub-keV and the collective behaviors of electrons can make important
contributions to the relative electron excitations, which are neglected in most of the present
applications.

As a fundamental property of massive neutrinos, the magnetic moment is estimated to
be vanishingly small in simple extensions of SM [13, 14]. However, the neutrino magnetic
moment can be significantly enhanced in many models beyond the simplest SM exten-
sion [15, 16], and even can reach the testable level of the current limits from laboratory
measurements [5–7, 14] and astrophysical considerations [17–20]. Note that the recent re-
sults from XENONnT have pushed the laboratory limit down to 6.4 × 10−12µB at the
90% confidence level [21]. Since the contribution of the neutrino magnetic moment to
the neutrino electron excitation rate is enhanced by the inverse of the recoil energy, semi-
conductor detectors take significant advantages compared to other popular detectors for a
lower energy threshold.

The thresholds of present semiconductor detectors are already capable of going even
below 0.1 keV, where the conventional scattering theory with non-interacting particle states
cannot precisely describe the related physics. The collective behaviors of electrons at
such low energies in semiconductor detectors, which have attracted various attentions in
the fields of DM direct detection [22–27], play an important role in such scenarios. The
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related underlying physics including the screening effect can be well described with the
dielectric function of the material and the in-medium effects of the DM-electron excitation
are thoroughly investigated in refs. [28, 29].

The theory to describe the in-medium screening effect for DM-electron scattering in
crystal have already been developed in ref. [30]. The energy loss function (ELF), which is
defined as the imaginary part of the inverse dielectric function in the homogeneous electron
gas (HEG), describes the rate for particles to loss the momentum and energy when passing
through the material and it is the key to describe the DM-electron excitation. To generalize
the results of HEG to the isotropic crystal target, an effective form of the inverse dielectric
function is taken as the average of the diagonal elements of the general matrix of the
inverse dielectric function. Moreover, the linear response theory is employed to describe
the screened DM-electron scattering as a perturbation exerted onto the electron system.

The purpose of this work is to develop for the first time the general theory of the
neutrino-electron excitation in isotropic semiconductors including the screening effect, since
previous calculations from the conventional scattering theory have underestimated some
important features of the electron response under low energies. We generalize the non-
relativistic effective filed theory framework (NR EFT) in ref. [31] to the neutrino-electron
couplings in order to study the effective Lagrangian applied in the non-relativistic neutrino-
electron excitation. In order to illustrate the enhanced response in the contribution of the
neutrino magnetic moment, we calculate the constraints from semiconductor detectors
using the solar neutrinos, whose sensitivity approaches the level of 10−13 µB, much better
than the current best limit from laboratory and astrophysical probes.

2 Neutrino couplings to non-relativistic electrons

The elastic neutrino electron scattering (EνES) can be described with the following stan-
dard Lagrangian

LEνES = −iGF√
2

[
ν̄αγ

ρ(1− γ5)να
] [
φ̄eγρ(gα;V − gα;Aγ

5)φe
]
, (2.1)

where ge;V = 1/2 + 2 sin2 θW , ge;A = 1/2 for the electron neutrino and gµ,τ ;V = −1/2 +
2 sin2 θW , gµ,τ ;A = −1/2 for muon and tau neutrinos. Lρ = ν̄αγ

ρ(1 − γ5)να denotes the
neutrino current and this structure will be kept unchanged in the following calculation
until we deal with the square of the scattering amplitude. Since the scattering process
we have focused in this work occurs at very low energies, it is reasonable to employ the
approximation that the momentum of electrons can be neglected compared to the electron
mass and so is the momentum transfer compared to the neutrino energy. Meanwhile,
we make the assumption that the semiconductor crystal is isotropic as in most popular
detectors with these mediums. Under the above assumption, the neutrino current Lρ can
be written as the respective temporal and spatial components

urα(k1)γ0(1− γ5)urα(p1) ≈ 2Eν − 2rEν ,

urα(k1)γi(1− γ5)urα(p1) ≈ −2Eν
1
r
.

(2.2)
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The spatial part of the neutrino current are approximately cancelled due to the spin summa-
tion in the amplitude calculation and only the temporal part contributes to the scattering
process at the leading order. Then the Lagrangian of EνES can be written as the vector
and axial-vector parts

LEνES = −iGF√
2
gα;VL

0φ̄eγ0φe + i
GF√

2
gα;AL

0φ̄eγ0γ
5φe + [L] , (2.3)

where the terms of spatial components are included in [L] and will not be considered at the
leading order calculation. In the energy range we are concerned in this work, NR EFT is a
reasonable approximation [32, 33] to describe the neutrino-electron interaction. To match
the relativistic theory of EνES onto the framework of the NR EFT with effective opera-
tors, we employ the techniques from ref. [31] and obtain the leading order non-relativistic
Lagrangian of EνES as

LEνES = −i
√

2GFgα;Vν̄α,Lγ
0να,Lφ

†
+φ+ , (2.4)

where VEνES = −i
√

2GF gα;V, is defined as the effective non-relativistic potential of EνES,
φ+ is the non-relativistic effective operator of the electron field, and its definition can
be found in eq. (A.2) of appendix A. Note that this non-relativistic Lagrangian is vector
dominant. A detailed calculation of the non-relativistic Lagrangian in eq. (2.4) is provided
in appendix A.

The scattering process between a electron and a neutrino in the presence of the neutrino
magnetic moment can be described with the Lagrangian

Lmag = −iµν
mν

me

4πα
q2

[
ν̄α(1− γ5)iσ

µνqν
2mν

να

] [
φ̄eγµφe

]
, (2.5)

with mν and me being masses of the neutrino and electron respectively and µν being
the neutrino magnetic moment. With the Gordon Identity, the above Lagrangian can be
separated into two terms

Lmag = −iµν
mν

me

4πα
q2

[
ν̄αγ

µ(1− γ5)να
] [
φ̄eγµφe

]
+ iµν

1
2me

4πα
q2

[
ν̄α(1− γ5)(p1 + k1)µνα

] [
φ̄eγµφe

]
,

(2.6)

where p1 and k1 are the four momenta of the initial and final neutrinos respectively. In
this work the neutrino mass is less than 1 eV and the first term will not be considered in
the following leading order calculation. Thus the Lagrangian can be written as

Lmag = iµν
1

2me

4πα
q2

[
ν̄α(1− γ5)2pµ1να

] [
φ̄eγµφe

]
− iµν

1
2me

4πα
q2

[
ν̄α(1− γ5)qµνα

] [
φ̄eγµφe

]
+O

[
mν

me

]
= iµν

1
2me

4πα
q2

[
ν̄α(1− γ5)2pµ1να

] [
φ̄eγµφe

]
+ Lcor(q) +O

[
mν

me

]
,

(2.7)

where q is the transferred momentum and we refer the term with transferred momentum q

as Lcor(q). Since the transferred momentum q is much less than the neutrino momentum
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in the process we are interested about, the initial and final state of the neutrino can be
approximately treated as unchanged at the leading order. Therefore, the term Lcor(q) is
the only term left that encode the kinematic correlation between the neutrino and electron.
However, this term will not take effect at the leading order since it is proportional to the
transferred momentum q. Then we can write the first term of eq. (2.7) in two terms of
temporal and spatial components of the initial neutrino momentum respectively

Lmag = iµν
1

2me

8πα
q2

[
ν̄α(1− γ5)p0

1να
] [
φ̄eγ0φe

]
+ iµν

1
2me

8πα
q2

[
ν̄α(1− γ5)pi1να

] [
φ̄eγiφe

]
− Lcor(q) +O

[
mν

me

]
, (2.8)

Because of the lack of the kinematic correlation between the spatial term of the neutrino
current ν̄α(1− γ5)pi1να and the corresponding electron current φ̄eγiφe, they can be treated
separately in the summation of crystal cells in next section. Due to the isotropic structure
of the crystal, a directional neutrino flux can be considered as isotropic for the whole
target that contains cells of O(1023) after all the cells are turned to the same direction.
As a result, the spatial term of the neutrino current will be integrated out as zero for the
isotropic crystal after the summation of crystal cells. Therefore, the whole spatial term
will not affect the final results in the isotropic crystal. Then the effective Lagrangian to
describe the contribution of the neutrino magnetic moment at leading order in the isotropic
crystal can be written with only the temporal component of the first term in eq. (2.8)

Lmag = iµν
Eν
me

8πα
q2 [ν̄α,Lνα,L]

[
φ̄eγ0φe

]
. (2.9)

The structure of the leading order Lagrangian is the same as the vector part of the standard
EνES Lagrangian and it can be written in a similar way as in appendix A with the non-
relativistic effective Lagrangian

Lmag = iµν
Eν
me

8πα
q2 ν̄α,Lνα,Lφ

†
+φ+ = Vν,mag(q)ν̄α,Lνα,Lφ†+φ+ , (2.10)

where Vν,mag(q) is similarly defined as the effective potential of the contribution of the
neutrino magnetic moment.

3 EνES in crystalline solids

As mentioned above, to describe the scattering process in the crystal in the context of the
linear response theory, it is convenient to regard the effects of the incident particle as a
perturbation on the electron system [30]. For the case of electron energy loss spectroscopy
(EELS) in the HEG, the effects of incident electron can be described with the following
effective Hamiltonian with the Coulomb potential Vcou(Q)

ĤI(t) = Vcou(Q)
∫
eiQ·xρ̂I(x, t)eiωp′pt d3x , (3.1)
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where ρ̂I(x, t) is the density operator of the electron and ωp′p = E′e − Ee is the energy
difference of the electron. As in ref. [30], the averaging and spin summing calculation can
be related to a correlation function

SĤ
†
I ĤI (−ωp′p) =

∑
i,f

pi
∣∣∣< f |ĤI |i >

∣∣∣2 (2π)δ(εf − εi + ωp′p) , (3.2)

where pi is the thermal distribution of the initial state |i >. Using the fluctuation-
dissipation theorem, the correlation function SĤ

†
I ĤI (ω) can be expressed with the zero-

temperature approximation as

SĤ
†
I ĤI (ω) = 2V |Vcou(Q)| Im

[ −1
ε(Q, ω)

]
(3.3)

with ε(Q, ω) being the dielectric function and V being the material volume. It should be
noticed that the structure of the electron part in eq. (2.4) is the same with that in the
Coulomb interaction and the neutrino part will be calculated with the averaging and spin
summing as in the relativistic theory due to the relativistic property of neutrinos. There-
fore, to calculate the cross section of EνES with this technique, we replace the Coulomb
potential with the effective potential of EνES in eq. (2.4) and the correlation function
SĤ

†
I ĤI (ω) can be expressed as

SĤ
†
I ĤI (ω) = 2V |VEνES|2

|Vcou(Q)| Im
[ −1
ε(Q, ω)

]
(3.4)

According to the above discussion, one can obtain the cross section for EνES in the HEG
by inserting the correlation function as

σ = −
ΩG2

F g
2
α;V

πα

∫ d3Q

(2π)3Q
2Im

[ −1
ε(Q, ω)

]
δ(ω + ωp′p) dω . (3.5)

This cross section describes the response of the zero-temperature electron gas induced by
an incident electron, which will lead to the collective oscillations of electron gas, and can be
treated as the quasiparticle known as the plasmon. From the viewpoint of quantum field
theory, the plasmon contributes to the renormalized interaction which takes into account all
of the graphs that includes additional loops in the form of a phonon-like propagator. This
propagator leads to a pole in the frequency-dependent Green’s function and correspond to
a quasiparticle [34]. At the higher transferred momentum of Q the plasmon energy can be
lost to free electrons, which is known as the Landau damping effect, and the plasmon have
a large decay width with this process. However, at lower transferred momenta, this is not
dynamically allowed and thus a peak is created in the ELF at the position of the pole. As
a result, the ELF has a plasmon peak at the low transferred momentum that significantly
increases the response rate at the corresponding energy and the peak is smoothed as the
transferred momentum increases.

In a crystalline solid, the correlation function is expressed in the reciprocal space
periodically and connected to the microscopic dielectric matrix due to the translational
symmetry of the crystal lattice. As a result, the transferred momentum Q can be split

– 5 –



J
H
E
P
1
0
(
2
0
2
3
)
0
2
1

10 20 30 40 50
[eV]

100

101

102

103
Ex

cit
at

io
n 

Ra
te

[k
g

1 y
ea

r
1 e

V
1 ]

Si
Total(Screened)
7Be(0.8613MeV)
pp
Total×104(Unscreened)

10 20 30 40 50
[eV]

100

101

102

103

Ex
cit

at
io

n 
Ra

te
[k

g
1 y

ea
r

1 e
V

1 ]

Ge
Total(Screened)
7Be(0.8613MeV)
pp
Total×104(Unscreened)

10 20 30 40 50
[eV]

10 7

10 6

Ex
cit

at
io

n 
Ra

te
[k

g
1 y

ea
r

1 e
V

1 ]

Si
Total(Screened)
pp
Total(Unscreened)

10 20 30 40 50
[eV]

10 7

10 6

Ex
cit

at
io

n 
Ra

te
[k

g
1 y

ea
r

1 e
V

1 ]

Ge
Total(Screened)
pp
Total(Unscreened)

Figure 1. The differential excitation rate in silicon (left) and germanium (right) target induced by
solar neutrino with the neutrino magnetic moment µν = 10−11µB (Top) and in the SM (Bottom).
We show the total excitation rate with screening effect with black line and unscreened results
calculated from the independent particle EνES process without the screening effects in red line.
The main excitation rate comes from the pp neutrino (blue lines). We also show the excitation
rate from the 7Be neutrino with the peak at 0.8613MeV in the presence of the neutrino magnetic
moment, which induces the second largest contribution in this case.

into a reduced momentum q in 1 Brillouin Zone (BZ) and a reciprocal momentum G.
Therefore, with above discussion, the cross section of EνES for the HEG in eq. (3.5) can
be extended to the case in the crystalline solid as

σ =
ΩG2

F g
2
α;V

πα

∑
G

∫
1BZ

d3q

(2π)3 |G+ q|2 × Im
[

1
εG,G(q, ω)

]
δ(ω + ωp′p) dω , (3.6)

where Ω is the volume of a cell of the target crystal. In above calculation, we take the
local field effects into consideration and express the microscopic dielectric matrix element
Im[−ε−1

G,G′(q, ω)] approximately as its diagonal components Im[−ε−1
G,G(q, ω)], which is av-

eraged over q and G. For a target with Ncell crystal cells exposed to a neutrino flux Φ(Eν),
the excitation rate can be written as

R =
NcellΩG2

F g
2
α;V

πα

∫
Φ(Eν) dEν

∑
G

∫
1BZ

d3q dω
(2π)3

× |G+ q|2 Im
[

1
εG,G(q, ω)

]
δ(ω + ωp′p) d cos θp,Q

(3.7)

In this work we assume an isotropic crystal target and it is a straight forward exercise
to integrate out the δ function in terms of Heaviside function Θ as∫ 1

−1
δ(ω + ωp′p) d cos θp,Q '

1
|G+ q| [Θ(|G+ q| − ω)Θ(Eν − |G+ q|)

+ Θ(2Eν − |G+ q| − ω)Θ(|G+ q| − Eν)] .
(3.8)
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Figure 2. Constraints for the neutrino magnetic moments with screening effect under 50 eV at 90%
confidence level based on silicon (left) and germanium (right) experiment sets of different target
mass and threshold. We also show the constraints without screening effect based on 10 kg target and
10 eV threshold. We employ a flat background of 100 keV−1t−1yr−1 and an ideal efficiency of 100%
and set the experiment time to be one year. We also show the constraints from the astrophysical
observation of the globular cluster M5 [17] and the white dwarf [18].

With the above relation, the excitation rate in eq. (3.7) can be written in terms of the
transferred momentum |G+ q| and the dielectric matrix element εG,G(q, ω) with a more
clear structure

R =
NcellΩG2

F g
2
α;V

πα

∫
Φ(Eν) dEν ×

∑
G

∫
1BZ

d3q dω
(2π)3 |G+ q| Im

[
1

εG,G(q, ω)

]
× [Θ(|G+ q| − ω)Θ(Eν − |G+ q|) + Θ(2Eν − |G+ q| − ω)Θ(|G+ q| − Eν)] .

(3.9)

It should be noticed that the above expression includes the momentum transfer term
|G+ q|, which will enhance the response of the target crystal at high values of the mo-
mentum transfer.

For the contribution of the neutrino magnetic moment, we can obtain the excitation
rate in a similar way after replacing the effective potential with Vν,mag in eq. (2.10)

R = 32NcellΩµ2
ν

πα

m2
e

∫
Φ(Eν)E2

ν dEν ×
∑
G

∫
1BZ

d3q dω
(2π)3

1
|G+ q|3

Im
[

1
εG,G(q, ω)

]
× [Θ(|G+ q| − ω)Θ(Eν − |G+ q|) + Θ(2Eν − |G+ q| − ω)Θ(|G+ q| − Eν)]

(3.10)

In this case, the excitation rate includes the momentum transfer term 1/ |G+ q|3 that
will significantly enhance the response of target at lower values of the momentum transfer,
which would help us to improve the limit on the neutrino magnetic moment.

4 Constraints on the neutrino magnetic moment

In this work, we choose germanium and silicon, which are the most popular materials
for the semiconductor detectors of DM direct detection, as the target materials of this
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work and employ the corresponding dielectric function calculated with the time-dependent
density function theory in refs. [35, 36].

In figure 1, we show the differential excitation rates of the EνES induced by solar neu-
trinos with (upper panels) and without (lower panels) the neutrino magnetic moment. In
this work we employ the solar neutrino fluxes from the standard solar model BS05(OP) [37–
39]. The left and right panels are for the materials of germanium and silicon respectively.
Here solar neutrinos are used for illustration since they are the most intensive natural neu-
trino source on the Earth. In the upper panels, we show the differential excitation rates
with µν = 10−11µB, which is similar to the current limits from the LUX-ZEPLIN [40] and
XENON [21, 41] experiments. The unscreened results are calculated from the indepen-
dent particle EνES process without the screening effects and shown in red lines. They are
dominated by the term that inversely proportions to the recoil energy. With the dominant
contribution from pp and 7Be neutrinos, the screened results of the black lines show a
significant peak induced by the plasmon from the material response. As mentioned above,
the term 1/ |G+ q|3 from the contribution of the neutrino magnetic moment dramatically
enhances the response of the electron at lower values of the momentum transfer, where the
plasmon peak is much more significant since the plasmon is long-lived in this range [23].

In the bottom panels, we show the differential excitation rates in the SM. The screened
results, which are significantly lower, heavily rely on the electron response and is dominated
by pp neutrinos even more than that with the neutrino magnetic moment. Below 5 eV there
is nearly no observable response and so is the excitation rate. There is no peak in this
case since the |G+ q| term in eq. (3.9) enhances the response at high momentum transfer,
where the plasmon peak is also not significant because the plasmon has a large decay width
in this range for its dispersion matching into kinematically-accessible single electron-hole
excitations [23].

To explore the projected constraints of different targets on the neutrino magnetic
moments with and without the screening effect, we employ the standard least squares
method

χ2 =
n∑
i=1

(
N exp
i − (1 + εexp)Npred

i [(1 + εj)Φj
SSM]

σi

)2

+
(
εexp
σexp

)2

+ Σj

 εj
σΦjSSM

2

, (4.1)

where σ2
i = N exp

i , N exp
i is the pseudo event number of the signal of the considered exper-

iment in the ith energy bin, Npred
i is the predicted event number. εexp is the simplified

nuisance parameter which quantifies the total detection uncertainty of the experiment and
σexp = 5% is the corresponding standard deviation we expected. εj and σΦjSSM

are the
nuisance parameter and uncertainty of the jth solar neutrino flux from the SSM, in which
the largest one is 11.6% for the 8B neutrino flux. Since the background study at such low
energy is lacking, we employ a flat background of 100 keV−1t−1yr−1 based on the discus-
sion of SuperCDMS in ref. [42]. Nowadays semiconductor detectors have already achieved
a high efficiency for ionization signals and it is a convenient approximation to employ an
ideal efficiency of 100% for illustration.

In figure 2 we illustrate the constraints on the neutrino magnetic moment including
the screening effect for different detector setups, with µνe being the electron neutrino

– 8 –



J
H
E
P
1
0
(
2
0
2
3
)
0
2
1

magnetic moment and µeff
νµτ '

√
0.49µ2

νµ + 0.51µ2
ντ being the effective parameter for µ and

τ neutrinos [43]. We show the results based on different exposures of 10 kg·yr, 1 kg·yr
and 0.2 kg·yr at 90% confidence level with two thresholds of 10 eV and 25 eV. The first
two exposures are based on reasonable predictions of the experiments in the future decade
and the last exposure of 0.2 kg·yr is based on the EDELWEISS experiment [44]. The two
different thresholds enable the results to either include or exclude the plasmon peak. From
the figure, one can find that a 10 eV threshold capable of detecting the plasmon effects would
dramatically improve the sensitivity. We also note that increasing the exposure from 0.2
kg·yr to 1 kg·yr will improve the sensitivity by a factor of 2 and increasing the exposure from
1 kg·yr to 10 kg·yr will also improve the sensitivity by a factor of 3. Finally one would
achieve an unprecedented sensitivity of 1 × 10−13µB using a near future semiconductor
detectors with the screening effect, which is much better than the constraints from the
astrophysical observation of the globular cluster M5 [17] and the white dwarf [18]. Even
with a semiconductor detector of 0.2 kg·yr exposure and 10 eV threshold, which is similar
to present ones like EDELWEISS [44], one can still achieve a sensitivity of 8 × 10−13µB
and it is also better than the astrophysical constraints. Note that the sensitivity without
the screening effect is at the level of 4× 10−11µB even with 10 kg·yr and the 10 eV energy
threshold and it can be concluded that the screening effects make significant contributions
to the constraints of the neutrino magnetic moments.

5 Conclusion

In this work, we have developed for the first time the theoretical description of the neutrino
electron excitation at low energies in semiconductors including the screening effect based on
the fluctuation dissipation theorem, both within the SM and in the presence of the neutrino
magnetic moment. We have shown that the excitation behaviors of the EνES process in
semiconductor detectors are significantly altered because of the screening effect, and the
excitation rates from the neutrino magnetic moment can be dramatically enhanced. The
sensitivity on the neutrino magnetic moment can be significantly improved to the level of
10−13 µB, which is much better than the current limits from laboratory and astrophysical
probes, and would be important for the search for new physics beyond the SM.
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A Application of non-relativistic effect field theory

In this appendix, we provide a detailed application of the NR EFT framework from ref. [31]
on the EνES process in the SM. The case in the presence of the neutrino magnetic moment
can be calculated in a similar way.
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To begin with, apart from the coupling to incident neutrinos, the electrons in semicon-
ductors also couple to the background electromagnetic (EM) field, which can be described
with the SM Lagrangian

LEM = φ̄e[iγµ(∂µ + ieAµ)−me]φe . (A.1)

In the NR EFT framework, the electron fields can be written in the effective operators

φ±(x, t) = e−imetP±φNR(x, t) , (A.2)

where P± ≡ (1± γ0)/2 is the projection operators and φNR is the electron field in the non-
relativistic theory. With the effective operator φ±, the SM Lagrangian can be written as

LEM = φ†+(i∂t − eA0)φ+ + φ†−(i∂t − eA0 + 2me)φ−
+ φ†+iγ · (∇− ieA)φ− − φ†−iγ · (∇− ieA)φ+ .

(A.3)

In this case, the photon field consists of a electrostatic background Abg and a quantum
fluctuation Aµ

A0(x, t) = Abg(x) +A0(x, t) ,
A(x, t) = A(x, t) ,

(A.4)

After separating the electrostatic background and quantum fluctuation components, we can
integrate out the heavy field φ− with the equation of motion and expand terms including
∇2 with the non-relativistic Schrödinger equation at the leading order, which is already
illustrated in detail in ref. [31]. Then we have

Leff
EM,A = −eAφ†+φ+−

ie

2me
A(φ†+

←→
∇φ+) + e

2me
(∇×A) · (φ†+Σφ+)− e2

2me
A2φ†+φ+ . (A.5)

The Lagrangian for EνES at low energies in eq. (2.3) includes both vector and axial-vector
terms and we need to match onto the NR EFT framework in different ways due to their
different Lorentz structures. To include the vector contribution of the EνES Lagrangian
with a background electromagnetic field, we make the following replacement

eAµ → eAµ − GF√
2
gα;VL

0 . (A.6)

Then after a similar calculation we obtain the effective Lagrangian for EνES with the
contribution of the background electromagnetic field subtracted

Leff
EνES,V = −i

√
2GFgα;Vν̄α,Lγ

0να,Lφ
†
+φ+ . (A.7)

For the axial vector part, since there is no such structure in the electromagnetic part, we
need to include such structure into the equation of motion. However, it is reasonable to
substitute the equation of motion in this case with that of eq. (A.3) and integrate φ− out in
a similar way as the vector case since we only consider the terms at the leading order [31].
Therefore we can obtain the leading order Lagrangian as

Leff
EνES,A = −iGF√

2
gα;VLφ

†
+Σφ+ . (A.8)
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Since the spatial contribution L can be approximately neglected compared to the temporal
contribution L0, the terms with the spatial contribution will not be included in the leading
order Lagrangian. The axial part can also be neglected compared to the vector part at the
leading order.

As a result, the effective Lagrangian of EνES can be written with only the vector
contribution as

LEνES = −i
√

2GF gα;Vν̄α,Lγ
0να,Lφ

†
+φ+ . (A.9)
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