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accidental Z4 charges making them stable. By adding one more complex scalar as a medi-
ator between the SIMP DM, the relic density of DM is determined by 3→ 2 and two-loop
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kinetic equilibrium with the thermal bath until the DM freeze-out temperature via the new
gauge interaction. Interestingly, this model can have a bouncing effect on DM, whereby the
DM number density rises after the chemical freeze-out of DM. With this effect, the predic-
tion of the DM self-interacting cross section in this model can be consistent with astrophysi-
cal observations, and the ratio of the DM energy density to the baryonic matter energy den-
sity can be explained by primordial asymmetries. We also predict the DM-electron elastic
scattering cross section that can be used to test this model in future projected experiments.
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1 Introduction

The existences of dark matter (DM) and residual ordinary matter (baryon asymmetry) in
the present universe are two fascinating problems in modern cosmology since they cannot
be accommodated well with the standard model (SM) of particle physics. The former
contributes about 25% to the energy density of the present universe, and the latter only
constitutes 5% or so. Without the anthropic principle, it may be simply a cosmological
accidence that these two distinct matter densities are comparable. Nonetheless, it is hard
for physicists not to speculate that they come from a similar origin as the densities of DM
and baryons are just different by a factor of about five, which provides another hint for
physics beyond the SM.

To this end, a lot of attempts have been proposed to address these problems. For
instance, weakly interacting massive particles (WIMP) [1] is one of the promising DM
candidates people have drawn attention to over the last decade. In the WIMP scenario,
the chemical potentials of DM and anti-DM, µDM and µDM , are assumed to be zero,1 then
the relic density of DM is set by the annihilation rate of a DM-anti-DM pair into SM
particles. Since the typical mass range of WIMP DM is from ∼ 1GeV to ∼ 100TeV, hence
we can detect WIMP DM directly through WIMP-nucleon interactions. On the other
hand, various feasible scenarios can account for the baryon asymmetry such as Affleck-
Dine baryogenesis [2], baryogenesis via leptogenesis [3], and electroweak baryogenesis [4].
However, the above scenarios consider different underlying origins to deal with the DM

1If DM particles are in chemical equilibrium with the thermal bath, for the annihilation process DM +
DM ↔ e++e−, we have µDM +µDM = µe+ +µe− . On the other hand, the inelastic scattering e−e− ↔ e−e−γ

and pair annihilation e+e− ↔ 2γ have reaction rates much bigger than the expansion rate of the universe.
Thus, we can obtain the solution µe+ + µe− = µγ = 0, from which µDM + µDM = 0.
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and the baryon asymmetry independently, which still leaves the observed DM-to-baryon
density ratio, ΩDM/ΩB ' 5, as a cosmological coincidence problem.

Asymmetric DM (ADM) is an alternative scenario of DM which can explain the coin-
cidence of the present DM-to-baryon density ratio [5–8]. In comparison with the WIMP
paradigm, the chemical potentials of DM and anti-DM in the ADM scenario are not
zero, but µDM = −µDM 6= 0. As a result, the DM relic abundance is determined by a
conserved DM asymmetry quantity rather than the annihilation cross section of DM if
the DM is fully asymmetric. In other words, the DM asymmetry ηD̄M is produced by
the same physical mechanism as the baryon asymmetry ηB̄ . Therefore, we can obtain
ΩDM/ΩB ' (mDM/mp)/(ηD̄M/ηB̄) ' 5 if mDM ' 5mp ' 5GeV and ηD̄M ' ηB̄ with
mDM (mp) being the mass of DM(proton). However, the current direct detection experi-
ments have narrowed the testable region for the DM-nucleon cross sections with the DM
masses above ∼ 5GeV [9–11]. Thus, it may be challenging to examine the ADM scenario
by the direct detection searches if we receive no DM-nucleon scattering events in the future
unless the ADM mass (DM asymmetry) is much lighter than 5GeV (higher than ηB̄).

Strongly interacting massive particles (SIMP) is an appealing DM scenario which has
gained attention since it predicts strong couplings and low masses of DM that can resolve
some small-scale issues in astrophysics such as the core-vs-cusp problem and too-big-to-fail
problem [12]. In the SIMP scenario, the DM relic density is set by the 3→ 2 self-interaction
of the DM, which leads to the DM with an order of unity coupling and tens of MeV to
sub-GeV mass. In addition, the SIMP DM must have interactions with the SM particles
to put a stop to the heat up of the DM due to the 3 → 2 processes, which means that
we can also detect the SIMP DM by direct searches like the WIMP DM. Now, with these
enticing features mentioned above, the question we may ask is can we make the SIMP
DM asymmetric? To answer this question, let us take a five-point interaction of the DM,
OX = X5, as an example, where X is a complex scalar DM particle with a discrete
symmetry. Given this interaction, the 3↔ 2 processes we can have are XXX ↔ X̄X̄ and
X̄X̄X̄ ↔ XX. Thus, the equations for the chemical potentials of DM and anti-DM during
the chemical equilibrium epoch are 3µX̄ = 2µX̄ and 3µX̄ = 2µX̄ which have a unique
solution µX̄ = µX̄ = 0 making the SIMP DM symmetric.

In order to have an asymmetric SIMP (aSIMP) scenario, we observe that at least two
SIMP DM particles are needed. To demonstrate this point, we consider another five-point
interaction of the DM, OXZ = X3Z2, where Z can be a complex scalar or a fermion. With
this interaction, all the possible 3 ↔ 2 processes are XXX ↔ Z̄Z̄ , XXZ ↔ X̄Z̄ , and
XZZ ↔ X̄X̄ (as well as the conjugate processes). Hence, during the chemical equilibrium
period, we have 3µX̄ = 2µZ̄ , 2µX̄ + µZ̄ = µX̄ + µZ̄ , µX̄ + 2µZ̄ = 2µX̄ , and their conjugate
equations. These equations can be reduced to µX̄ = −µX̄ , µZ̄ = −µZ̄ , 3µX̄ = 2µZ̄ , and
3µX̄ = 2µZ̄ which allow the DM particles to have nonzero chemical potentials such that
the SIMP DM can be asymmetric. For the case where the SIMP DM particles have zero
chemical potentials, µX,X̄,Z,Z̄ = 0, see refs. [13, 14].2

2For the multi-component SIMP DM scenario, one can also refer to [15].
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H N X S φ

SU(2) 2 1 1 1 1

U(1)Y −1/2 0 0 0 0
U(1)D 0 −1/8 +1/12 +1/4 −1/2
Z4 +1 ±i −1 −1 +1

Table 1. Charge assignments of the fermion and scalars in the aSIMP model, where H is the SM
Higgs doublet and i =

√
−1.

With this finding, the aim of this paper is concrete and straightforward. We want to
build a UV complete model to realize the aSIMP scenario and to see its phenomenology.
In particular, this DM scenario can have a bouncing effect on DM due to the 3 → 2
annihilations of different species of SIMP DM. With this effect, the number density of
one of the SIMP particles can rise after the DM freeze-out temperature and becomes the
dominant DM component. Then, if this SIMP particle has a large DM asymmetry, we can
interpret the DM-to-baryon ratio. Moreover, we notice that the 3→ 2 annihilations in the
aSIMP scenario can always generate the 2→ 2 annihilations at the two-loop level, affecting
the thermal history of the SIMP DM. The details of these effects will be discussed in the
later sections.

The outline of this paper is as follows. In the next section, we consider a pre-built model
to realize the aSIMP scenario and briefly write down the relevant interactions and masses
for the new particles. In section 3, we show the formulas for the annihilation cross sections
of the 3 → 2 and 2 → 2 processes in this model. In section 4, we take into account all
possible theoretical and observational constraints on this model. In section 5, we compute
the DM relic density and discuss the bouncing effect of DM. In section 6, we show our
predictions of the DM self-interacting cross section and the DM-electron elastic scattering
cross section in this model. The last section is devoted to discussion and conclusions.

2 aSIMP model

To achieve the aSIMP scenario, we consider the two-component SIMP DMmodel (hereafter
we dub it aSIMP model) studied in ref. [13], where the SM model is extended with a vector-
like fermion, N , and three complex singlet scalars, X,S, and φ. These exotic particles pos-
sess dark charges under a gauged U(1)D symmetry, and all SM particles are dark neutral un-
der this new symmetry. We summarize the particle contents with their charge assignments
in table 1. In our setup, theN andX are selected as SIMP DM candidates, and the unstable
particle S bridges them. In particular, the φ particle develops a vacuum expectation value
(VEV), which breaks the U(1)D symmetry. After the U(1)D symmetry breaking, these new
particles can accidentally have a Z4 symmetry, stabilizing the DM particles in this model.

Since the particle contents and the Lagrangian density in the aSIMP model are exactly
as same as the ones in ref. [13], for our purpose, here we only write down the relevant
interactions and the mass spectra of the new particles in this model.
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First, the Lagrangian density for the complex scalar fields in the aSIMP model is given
by

Lscalar = |DρH|2 + |DρX|2 + |DρS|2 + |Dρφ|2 − V(H,X, S, φ) , (2.1)
where Dρ = ∂ρ + (i/2)gWτaW a

ρ + igYQYBρ + igDQDCρ is the covariant derivative with
gW (W a

ρ ), gY (Bρ), and gD (Cρ) being the SU(2), U(1)Y , and U(1)D gauge couplings (fields),
respectively ; τa

(
a = 1, 2, 3) the Pauli matrices, and QY (QD) the hypercharge (dark

charge) operator. The scalar potential V = V(H,X, S, φ) is given by

V = µ2
h |H|2 + µ2

X |X|2 + µ2
S |S|2 + µ2

φ |φ|2 + λh|H|4 + λX |X|4 + λS |S|4 + λφ|φ|4

+λhX |H|2|X|2 + λhS |H|2|S|2 + λhφ|H|2|φ|2 + λXφ|X|2|φ|2 + λSφ|S|2|φ|2

+λXS |X|2|S|2 +
(
λ3X

3S∗ + 1√
2
κυφS

2φ+ h.c.
)
, (2.2)

where υφ is the VEV of φ. The hermiticity of the scalar potential requires that the quadratic
and quartic couplings except the λ3 and κ must be real. However, we will take λ3 > 0
because one can redefine the X field to absorb the phase of λ3. On the other hand, the
role of the κ coupling is to trigger the U(1)D symmetry breaking, and it is nothing to do
with our numerical study. Thus, we assume that the κ is nonzero but negligible. Also, we
turn off the mass mixing between H and φ for simplicity. Under these assumptions, the
new scalar masses are given by

m2
X = µ2

X+ 1
2
(
λhXυ

2
h+λXφυ2

φ

)
, m2

S = µ2
S+ 1

2
(
λhSυ

2
h+λSφυ2

φ

)
, m2

φ = 2λφυ2
φ , (2.3)

where υh is the VEV of H.
Next, the Lagrangian density associated with the vector-like fermion is given by

LN = N
(
iγρDρ −mN

)
N − 1

2
(
yNN

cNS + h.c.
)
, (2.4)

where mN is the Dirac mass of N , yN is the Yukawa coupling, and N c denotes the charge
conjugation of N . Similar to the λ3 , we will take yN > 0 by absorbing its phase into the
N field or S field. Note that the S particle can decay into a pair of N̄ if mS > 2mN or
three X particles if mS > 3mX . Thus, although S has a Z4 charge, it cannot serve as a
DM candidate if mS > 2mN or 3mX .

Finally, there is a new gauge interaction for the DM particles and SM fermions f (with
electric charge Qf ) mediated by a new massive gauge boson Z ′. In the mass eigenbasis of
the SM and new gauge bosons with ε� 1 and mZ � mZ′ , one can derive that

LZ′ = −
(
gDQNNγρN + igDQXX∗

←→
∂ρX + geQf cw εf γρf

)
Z ′ρ , (2.5)

where QN and QX are dark charges of the N and X particles assigned in table 1, respec-
tively, ge = (4πα)1/2 with α the fine structure constant, cw = cos θw with θw the weak
angle, and ε is the kinetic mixing strength of the U(1)Y and U(1)D gauge bosons. This
new gauge interaction provides a vector portal coupling between the SM and dark sectors,
which can thermalize the SIMP DM with the SM particles before the DM freeze-out (see
section 4). Most importantly, we are able to probe the SIMP DM by future direct search
experiments using electron target (see section 6). For more detailed discussions of the
Lagrangian in the aSIMP model, see ref. [13].
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3 Annihilation cross sections in dark sector

In this section, we will present the 3 → 2 and 2 → 2 annihilation cross sections in the
dark sector. The calculations for these annihilation cross sections can be found in ref. [13].
However, in ref. [13], we only consider the contributions of the two-loop diagrams to the 2→
2 processes for certain reasons. In this work, we will incorporate the tree-level and one-loop
contributions for the 2→ 2 processes to have a generic situation and more accurate results.

Given the quartic interaction X3S∗ in eq. (2.2) and the Yukawa interaction N cNS in
eq. (2.4), all the possible 3→ 2 annihilation processes are drawn in figure 1. For these 3→ 2
processes to be kinematically allowed, we will assume that the DM masses satisfy 3mX >

2mN >mX .With this mass relation, the 2→ 3 and 2→ 4 processes such as N̄N̄ → XXX

and XX̄ → NN̄NN̄ are highly suppressed due to the Boltzmann tail at low temperatures.
The thermally-averaged 3→ 2 annihilation cross sections first computed in ref. [13] are

〈σv2〉XXX→N̄N̄ = 〈σv2〉X̄X̄X̄→NN = x3

2

∫ ∞
0

dβ (σv2)BW
XXX→N̄N̄ β

2e−xβ , (3.1)

〈σv2〉XXN→X̄N̄ = 〈σv2〉X̄X̄N̄→XN

= 9
√

3λ2
3y

2
N

32πm5
X

(
1+rN

)[(
1+rN

)2 +r2
N

][(
1+2rN

)(
3+2rN

)]1/2(
2+rN

)2[r2
S

(
1+rN

)
+2rN

]2 , (3.2)

where x = mX/T is the dimensionless cosmic time variable with T being the thermal
plasma temperature, and rN,S ≡ mN,S/mX with 3/2 > rN > 1/2 and rS > 2rN based on
the above assumption. Since the 〈σv2〉XNN→X̄X̄ = 〈σv2〉X̄N̄N̄→XX = O(x−1) are p-wave
suppressed, thereby we do not include them in our numerical calculation. In order for the
sizes of λ3 and yN away from the perturbative bounds, we use the following Breit-Wigner
cross section [13, 16] in eq. (3.1)

(σv2)BW
XXX→N̄N̄ =

2πλ2
3 r

2
S

(
9− 4r2

N

)3/2
y2
Nm

5
X

(
r2
S − 4r2

N

)3 γ2
S(

εS − 2β/3
)2 + γ2

S

, (3.3)

and consider the resonant mass region, where mS ' 3mX for our study. In this expression,
εS indicates the level of the resonant effect, and the γS is the normalized dimensionless
width of the resonance, respectively of the forms as [13, 16]

εS = r2
S

9 − 1 , γS = r2
S y

2
N

144π

(
1− 4r2

N

r2
S

)3/2
. (3.4)

Next, with the dark gauge coupling gD , the quartic couplings λXS and λ3 , and the
Yukawa coupling yN , the 2 → 2 processes NN̄ → XX̄ and XX̄ → NN̄ are generated via
the tree-level, one-loop, and two-loop graphs as shown in figure 2. The thermally-averaged
2→ 2 annihilation cross sections up to p -wave contribution are computed as

〈σv〉
NN̄→XX̄ =

(
r2
N − 1

)1/2
πm2

X rN

[(
r2
N − 1

)
Z1 + 3

2x

( 11− 2r2
N

6 Z1 + Z2

)]
, (3.5)

〈σv〉
XX̄→NN̄ =

(
1− r2

N

)1/2
πm2

X

[(
1− r2

N

)
Z2 + 3

2x

( 2 + r2
N

3 Z1 + 5r2
N − 2
2 Z2

)]
, (3.6)
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Figure 1. Feynman diagrams of the 3→ 2 annihilation processes in the aSIMP model, where the
arrows denote the direction of dark charge flow. The charge conjugation processes can be obtained
by flipping the arrows of these diagrams.

Figure 2. Tree-level, one-loop, and two-loop Feynman diagrams for the 2 → 2 annihilation
processes in the aSIMP model, where the Feynman diagrams for the inverse processes XX̄ → NN̄

can be obtained by reversing the above diagrams.

where Z1 and Z2 are defined as

Z1 =
[

g2
DQNQX

2
(
r2
Z′ − 4r2

N

) + 9λ2
3y

2
N J1

r2
S (4π)4

]2
, Z2 = r2

N y
4
N

r4
S (4π)4

[
λXS I
4r2
N

+ 9λ2
3J2

(4π)2

]2
(3.7)

with rZ′ = mZ′/mX . In these definitions, I = I (rN , rS) is a one-loop function, which is
first derived in this work, in the form of a double integral as

I =
∫ 1

0
dw1

∫ 1−w1

0
dw2


r2
N r

2
S (1− w1 − w2)

r2
N

[
(1− w1 − w2)2 − 4w1w2

]
+ r2

S (w1 + w2)
for rN > 1

r2
N r

2
S (1− w1 − w2)

r2
N (1− w1 − w2)2 + r2

S (w1 + w2)− 4w1w2
for rN < 1

, (3.8)

and J1,2 = J1,2(rN , rS) are two-loop functions of the form in quintuple integrals as [13]

J1,2 =
∫ 1

0
dz1

∫ 1

0
dz2

∫ 1−z2

0
dz3

∫ z1(1−z1)

0
dz4

∫ 1

0
dz5 K1,2 (3.9)

– 6 –
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Figure 3. One-loop function I as a function of rN with different choices of rS . As indicated, the
I ∼ O(0.1− 1) in the DM mass range of interest.

with

K1 =
r2
S z

2
5
[
2P 2z3

5 −
(
P 2 + 3Q2)z2

5 +
(
2Q2 + 3

)
z5 − 2

]
2
(
P 2z2

5 −Q2z5 + 1
)2 , (3.10)

K2 =
r2
S z

3
5
(
1− z2 − z3

)(
2P 2z2

5 − 3Q2z5 + 3
)

2
(
P 2z2

5 −Q2z5 + 1
)2 , (3.11)

P 2 =

 z4
[
r2
N

(
z2 − z3 + 1

)(
z2 − z3 − 1

)
+ 1
]

for rN > 1
z4
[
r2
N

(
z2 + z3 − 1

)2 − (2z2 − 1
)(

2z3 − 1
)]

for rN < 1
, (3.12)

Q2 =

 1 + z4
[
2r2
N

(
z2 + z3 − 1

)
− r2

S

(
z2 + z3

)
+ 1
]

for rN > 1
1 + z4

[(
2− r2

S

)(
z2 + z3

)
− 1
]

for rN < 1
. (3.13)

We present the typical values of I and J1,2 for 3/2 > rN > 1/2 in figure 3 and figure 4,
respectively.3 Unlike the 3→ 2 cross sections, we include the p -wave contribution for the
2 → 2 cross sections since it may be more dominant than the s-wave contribution when
rN ' 1. One can also notice that the one-loop (tree-level) contribution is p -wave sup-
pressed for the NN̄ → XX̄ (XX̄ → NN̄) process. We will discuss their effects in section 5.

4 Theoretical & observational constraints

In this section, we briefly summarize the constraints for the couplings and masses of the
new particles in the aSIMP model as its particle contents and Lagrangian are as same as
the ones in ref. [13]. Besides, the CMB constraint which is missed in [13] will be discussed
in this section.

From a theoretical perspective, the quartic, Yukawa, and dark gauge couplings should
fulfill the perturbative conditions. We require that [15, 17, 18]

λX,S,XS,3 < 4π , yN <
√

8π , gD < 4π , (4.1)
3In figure 3 of ref. [13], the solid (dashed) lines are only valid for rN > 1 (rN < 1) based on eqs. (3.12)

and (3.13) in this paper. We have made the corrections in these new figures.
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Figure 4. Two-loop functions J1 and J2 as functions of rN with different values of rS . As pointed
out, the J1,2 ∼ O(0.1) in the DM mass range of interest.

as well as for the other quartic couplings. Besides, the unitarity of S-matrix sets a conser-
vative bound for the scattering amplitude of self-interaction, where |Mself | < 16π [19, 20],
by which the quartic couplings λX,S < 4π. On the other hand, the thermally-averaged an-
nihilation cross sections are bounded from above by partial wave unitarity [20]. However,
it places no stringent restrictions on the couplings and masses in this model. Moreover,
the scalar potential at large values of the scalar fields should be bounded from below to
stabilize the vacuum, for which the quartic couplings in the dark sector have to satisfy
some relations. We find that [13, 21]

λX,S > 0 , λXS + 2
√
λXλS > 0 , |λ3| <

√√√√(12λXλS + λ2
XS

)3/2 + 36λXλSλXS − λ3
XS

54λS
,

(4.2)
here we have assumed that the other quartic couplings associated with the new particles
are positive but sufficiently small. For λXS = 0, the above conditions are reduced to
λX,S > 0 and |λ3| <

(
16λ3

XλS/27
)1/4. Note that these conditions also guarantee that

〈0|X|0〉 = 〈0|S|0〉 = 0.
To avoid the temperature increase of SIMP DM due to the 3 → 2 annihilations, the

SIMP DM should keep thermal equilibrium with the SM particles at least before the DM
freeze-out temperature, known as the SIMP condition [22, 23]. As mentioned in section 1,
the SIMP particles in this model naturally couple to the SM fermions via the new gauge
interaction, which sets a lower bound on the product of the dark gauge coupling and
kinetic mixing parameter. Referring to the detailed calculation in ref. [13], in the case of
the nondegenerate DM masses, we demand that

gDε &
2× 10−4√
Q2
N/rN +Q2

X

( g?,f
10.75

)1/4(xf
20

)3( mZ′

250MeV

)2( mX

20MeV

)−3/2
, (4.3)

where g?,f is the effective energy degrees of freedom of the SM thermal bath at the freeze-
out temparature of DM, xf . In our numerical calculation, we will adopt the marginal values

– 8 –
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of gDε in eq. (4.3). With such gDε values, the WIMP annihilation processes XX̄ → e+e−

and NN̄ → e+e− are suppressed,4 thus we can achieve the aSIMP scenario.
In cosmological observations, the low mass DM would contribute to the effective num-

ber of neutrino species, Nν
eff . The latest measurement from the Planck satellite gives

Nν
eff = 2.99+0.34

−0.33 (95% C.L.) [24], which suggests that the DM mass should be larger than
10MeV [13, 25]. To be conservative, we will assume that the DM masses mN,X & 15MeV
in our model. On the other hand, the Planck collaboration also accurately measures the
current abundance of DM, which shows that ΩDMh

2 = 0.12±0.0012 with h the normalized
Hubble constant [24]. On top of that, the annihilation cross section of a DM pair into the
SM fermions may affect the CMB temperature and polarizations, which imposes a lower
bound on the mass of DM. Quoting the analysis in ref. [26], for a single symmetric DM
species, we have

mDM & (10− 100)GeV
(〈σv〉DM+DM→SM+SM

2× 10−26 cm3 s−1

)
. (4.4)

Accordingly, the light DM may suffer from the CMB constraint if the DM annihilation
cross section does not get suppression at the CMB temperature. However, as we shall see
soon, this strict constraint can be escaped if the DM is extremely asymmetric. This is easy
to understand since in this case, the DM is hard to find its anti-partner to annihilate into
the SM particles.

Experimentally, there are several constraints for the kinetic mixing parameter, de-
pending on the mass of the new gauge boson. In this model, the Z ′ mainly decays into
invisible particles, Z ′ → XX̄,NN̄ , and SS̄ since g2

DQ2
j � g2

e ε
2. Also, we will focus on the

Z ′ with a few hundred MeV mass, where the measurements from the BaBar collaboration
cap ε . 10−3 [27, 28].

5 Relic abundance and bouncing effect of DM

In contrast to the WIMP and ADM, there is no approximate analytical solution for the
relic density of asymmetric SIMP DM. To evaluate the relic density of DM in the aSIMP
model, we have to numerically solve the coupled Boltzmann equations of the comoving
number yields Y

N,N̄
and Y

X,X̄
. Using the formula in ref. [14], the Boltzmann equations are

written as follows

dY
N̄

dx = − s(x)2

xH(x)

×

{
2〈σv2〉

XXN→X̄N̄

[
Y 2
X̄
Y
N̄
−Y

X̄
Y
N̄

(Y 0
X̄

)2Y 0
N̄

Y 0
X̄
Y 0
N̄

]
+2〈σv2〉

XNN→X̄X̄

[
Y
X̄
Y 2
N̄
−Y 2

X̄

Y 0
X̄

(Y 0
N̄

)2

(Y 0
X̄

)2

]
−8〈σv2〉

X̄X̄X̄→NN

[
Y 3
X̄
−Y 2

N̄

(Y 0
X̄

)3

(Y 0
N̄

)2

]
−2〈σv2〉

X̄X̄N̄→XN

[
Y 2
X̄
Y
N̄
−Y

X̄
Y
N̄

(Y 0
X̄

)2Y 0
N̄

Y 0
X̄
Y 0
N̄

]}
4We have numerically checked that even with slightly larger gDε values, the WIMP annihilation processes

only affect the predicted DM abundance by less than 1%.
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− s(x)
xH(x)

×

{
〈σv〉

NN̄→XX̄

[
Y
N̄
Y
N̄
−Y

X̄
Y
X̄

Y 0
N̄
Y 0
N̄

Y 0
X̄
Y 0
X̄

]
−4〈σv〉

XX̄→NN̄

[
Y
X̄
Y
X̄
−Y

N̄
Y
N̄

Y 0
X̄
Y 0
X̄

Y 0
N̄
Y 0
N̄

]}
, (5.1)

dY
X̄

dx = − s(x)2

xH(x)

×

{
12〈σv2〉

XXX→N̄N̄

[
Y 3
X̄
−Y 2

N̄

(Y 0
X̄

)3

(Y 0
N̄

)2

]
+4〈σv2〉

XXN→X̄N̄

[
Y 2
X̄
Y
N̄
−Y

X̄
Y
N̄

(Y 0
X̄

)2Y 0
N̄

Y 0
X̄
Y 0
N̄

]
+〈σv2〉

XNN→X̄X̄

[
Y
X̄
Y 2
N̄
−Y 2

X̄

Y 0
X̄

(Y 0
N̄

)2

(Y 0
X̄

)2

]
−2〈σv2〉

X̄X̄N̄→XN

[
Y 2
X̄
Y
N̄
−Y

X̄
Y
N̄

(Y 0
X̄

)2Y 0
N̄

Y 0
X̄
Y 0
N̄

]
−2〈σv2〉

X̄N̄N̄→XX

[
Y
X̄
Y 2
N̄
−Y 2

X̄

Y 0
X̄

(Y 0
N̄

)2

(Y 0
X̄

)2

]}
− s(x)
xH(x)

×

{
4〈σv〉

XX̄→NN̄

[
Y
X̄
Y
X̄
−Y

N̄
Y
N̄

Y 0
X̄
Y 0
X̄

Y 0
N̄
Y 0
N̄

]
−〈σv〉

NN̄→XX̄

[
Y
N̄
Y
N̄
−Y

X̄
Y
X̄

Y 0
N̄
Y 0
N̄

Y 0
X̄
Y 0
X̄

]}
, (5.2)

and dY
N̄
/dx and dY

X̄
/dx can be obtained by changing the right-hand sides of (5.1)

and (5.2) with X ↔ X̄ and N ↔ N̄ , respectively, where Y 0
j is the (zero chemical po-

tential) equilibrium comoving number yield of the DM species j (with the number of spin
states gj), of the form [29]

Y 0
j = 45

4π4
gj

g?s(x)
(
rjx

)2
K2
(
rjx

)
(5.3)

with K2(x) being the modified Bessel function of the second kind. The s(x) and H(x) are
the comoving entropy density and the Hubble parameter, respectively, which are expressed
as

s(x) = 2π2g?s(x)
45

m3
X

x3 , H(x) =

√
π2g?(x)

90
m2
X

x2mPl
(5.4)

with g?s(x) being the effective entropic degrees of freedom of the SM thermal plasma [30],
and mPl = 2.4 × 1018 GeV the reduced Planck mass. Note that the DM comoving num-
ber density Y eq

j during the chemical equilibrium is not equal to Y 0
j but Y eq

j = Y 0
j e

µj/T

due to the nonzero chemical potential for asymmetric DM. However, we still use Y 0
j in

the Boltzmann equations because the chemical potentials are cancelled in the ratios, e.g.
(Y eq
X̄

)3/(Y eq
N̄

)2 = (Y 0
X̄

)3/(Y 0
N̄

)2 as well as for the others. Now, doing proper addition,
subtraction, and multiplication for the Boltzmann equations, one can find that

3
(dY

N̄

dx −
dY

N̄

dx

)
+ 2

(dY
X̄

dx −
dY

X̄

dx

)
= 0 . (5.5)

This implies that we can define a conserved quantity, dark asymmetry

ηD̄M = 3η
N̄

+ 2η
X̄

with η
N̄

= Y
N̄
− Y

N̄
, η

X̄
= Y

X̄
− Y

X̄
, (5.6)
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Figure 5. Cosmological evolution of the comoving number densities of DM for rN > 1 in the
aSIMP model, where the color solid (dashed) curves are actual (equilibrium) number densities of
DM, and we have fixed the ε = 10−3,mZ′ = 250MeV, and λXS = 2.5 in each plot.

which is a constant all the cosmic time. On the other hand, when the DM particles are in
the chemical equilibrium, their chemical potentials satisfy the following relations

µ(x) ≡ µX̄ = −µX̄ , µN̄ = −µN̄ , 3µX̄ = 2µN̄ , 3µX̄ = 2µN̄ , (5.7)

for the x before the time of DM chemical freeze-out. Using eq. (5.7) and the dark asymmetry
in the chemical equilibrium period, ηD̄M = 3

(
Y eq
N̄
− Y eq

N̄

)
+ 2

(
Y eq
X̄
− Y eq

X̄

)
, one can show

that

ηD̄M = 6Y 0
N (x) sinh

[
3µ(x)
2mX

x

]
+ 4Y 0

X(x) sinh
[
µ(x)
mX

x

]
, (5.8)

by which the µ(x) can be solved numerically for given ηD̄M and DM masses. Then, by
setting appropriate initial conditions Yj(xini.) = Y eq

j (xini.) with 10 < xini. < 20, we can
numerically solve the Boltzmann equations to obtain the Yj(x), and estimate the DM relic
density as [31]

ΩDMh
2 =

∑
j=N̄,N̄ ,X̄,X̄

Ωjh
2 ' 2.745× 105

(
mX

MeV

)[
Y∞
X̄

+ Y∞
X̄

+ rN
(
Y∞
N̄

+ Y∞
N̄

)]
, (5.9)

where Y∞j = Yj(x→∞) is the present comoving number density of DM.
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We show in figure 5 some typical time evolutions of the comoving number yields of
DM in the case of mN > mX , where the color solid curves satisfy the observed DM relic
abundance. As is evident, there are three cases of the present comoving number densities
of DM, (i) YN̄ > YX̄ > YX̄ > YN̄ (ii) YX̄ > YN̄ > YX̄ > YN̄ (iii) YX̄ > YX̄ > YN̄ > YN̄ ,
depending on the couplings and masses of DM, and dark asymmetry. It is known that the
annihilation of a fermionic DM pair via the vector portal is s-wave dominant and in our
model 〈σv〉NN̄→e+e− ' 10−27 cm3 s−1 with gDε ' 10−3 andmZ′ = 250MeV. It follows from
eq. (4.4) that the DMmass must be larger than a few hundred MeV.5 However, as we can see
in these plots, the vector-like fermions N and N̄ are highly asymmetric, η

N̄
' Y

N̄
� Y

N̄
, as

in the strong regime of the ADM scenario [7]. Thus, the severe CMB constraint on the DM
mass can be alleviated.6 On the other hand, the scalar DM pair annihilation cross section
through the vector portal is p-wave which is suppressed at low temperatures. Hence, the
constraint from the CMB can be evaded even if the complex scalars X and X̄ belong to
the intermediate regime of the ADM scenario [7], where η

X̄
' Y

X̄
' Y

X̄
.

In these figures, one can also observe that the number density of the vector-like fermion
N̄ increases right after the chemical freeze-out of DM. This behavior of the DM number
density is called the bouncing effect of DM and has been discussed in ref. [13].7 Here we
succinctly explain this phenomenon in the following. At high temperatures (T > mDM),
the DM number changing processes such as XXX↔ N̄N̄ and XXN ↔ X̄N̄ maintain the
chemical equilibrium of DM. As a result, the actual DM number densities track the equilib-
rium DM number densities. Around the freeze-out temperature of DM (T ' mDM/20), the
backward 2→ 3 process, N̄N̄→XXX becomes inactive due to the Boltzmann suppression.
Then, the forward 3→ 2 process XXX→ N̄N̄ starts to produce (annihilate) the vector-like
fermion N̄ (complex scalar X), the number of N̄ is increased (decreased) and freezes in
at low temperatures (T < mDM). Notice that since we consider the resonant mass region,
where rS ' 3, then XXX → N̄N̄ is the dominant 3 → 2 annihilation process. Therefore,
the strength of the bouncing effect increases as the level of the resonant effect increases and
can be seen by comparing figure 5(a) and figure 5(c).8 This bouncing effect has another
advantage for this model. Typically, a complex scalar SIMP DM may have a sizable self-
interacting cross section which is inconsistent with the astrophysical observations from the
Bullet and Abell 3827 clusters [33–36]. However, as shown in figure 5(a), the abundance of
the complex scalar DM can be subdominant to that of the total DM thanks to the bouncing
mechanism. In this case, the astrophysical constraints on the aSIMP model can be relaxed.

5Note that since the 〈σv〉NN̄→e+e− ∝ g2
Dε

2, according to the SIMP condition in eq. (4.3) and the per-
turbative bound of gD in eq. (4.1), we cannot make ε very small to evade the CMB constraint. On the
other hand, the constraint of ε from the Belle II experiment is insensitive to gD if Z′ mainly decays into the
invisible particles.

6In ref. [13], the vector-like fermions are symmetric. Although there is no detailed analysis of the CMB
constraint for multi-component DM scenarios. However, the benchmark points for rN < 1 in ref. [13] may
still be subject to the CMB constraint.

7A more detailed discussion of the bouncing effect of DM can be found in recent paper [32].
8The conjugate 3→ 2 process X̄X̄X̄ → NN with the same reaction rate asXXX → N̄N̄ can also produce

the N after the chemical freeze-out of DM. However, the behavior of the increasing number density of N is
not evident as it decreases fastly after the freeze-out temperature due to the asymmetry between N and N̄ .
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Figure 6. Time evolution of the comoving number yields of DM for rN < 1 in the aSIMP model,
where we have chosen the same inputs of ε,mZ′ , and λXS as in figure 5.

We will discuss more details in the next section. Finally, since in figure 5(a) the vector-like
fermions are the dominant DM component and are extremely asymmetric, one can estimate
the ratio of the DM energy density to the baryonic matter energy density for this case, where

ΩDM
ΩB

∣∣∣∣
Fig. 5(a)

' mN ηN +mX ηX
mpηB

' 4 (5.10)

with mp ' 0.938GeV, and ηB̄ ' 8.8× 10−11 the baryon number asymmetry [7]. Therefore,
in the aSIMP scenario with a much stronger bouncing effect of DM, we can say that the
value of ΩDM/ΩB originates from the matter asymmetries produced in the early universe.

Next, we show in figure 6 two examples of the time evolutions of the comoving number
yields of DM in the case of mX > mN . As pointed out, there is only one case of the present
comoving number densities of DM, YN̄ > YN̄ > YX̄ & YX̄ . This is simple to understand
since mX > mN and gN = 2gX , the number densities of the vector-like fermions are always
bigger than that of the complex scalars during the chemical equilibrium. Plus, the number
densities of the complex scalars drop further after the DM freeze-out temperature because
of the 3 → 2 annihilations, XXX → N̄N̄ and X̄X̄X̄ → NN . In these figures, we can see
that the vector-like fermions are not that asymmetric in comparison with figure 5. Hence,
the DM masses may be subject to the CMB constraint even in figure 6(b). On the other
hand, since the complex scalars have almost no relic abundances in figure 6, the prediction
of the DM self-interacting cross section would be too small to be compatible with the
astrophysical observations. Also, our numerical results indicate that we have to choose
degenerate DM masses to satisfy the observed DM relic density. Based on these reasons,
the mX > mN case is disfavored, and we will take figure 5(a) as our benchmark example
in the aSIMP model as it can satisfy all the constraints and observations, and explain the
value of ΩDM/ΩB by the asymmetries. See the next section for benchmark points.

Now, we comment on the effect of the 2→ 2 processes in this model. Firstly, although
the 2 → 2 annihilations conserve the total DM number, however, each number of DM
components changes via the 2 → 2 processes. Thus, the 2 → 2 annihilations can also
reinforce the chemical equilibrium of DM around the freeze-out temperature. In the absence
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of the 2→ 2 processes, the relic abundance of DM is overproduced for given couplings and
masses of DM. Moreover, the 2→ 2 process NN̄ → XX̄ also causes the vector-like fermions
to be fully asymmetric since the N can still find significant N̄ to annihilate after the freeze-
out temperature of DM. Next, let us discuss the contributions of the Feynman diagrams to
the 2→ 2 processes. For the tree-level diagrams, with the minimum values of gD , we have
checked that they only affect the predicted DM density by less than 1%, which agrees with
the discussion mentioned in ref. [13]. For the one-loop diagrams, since the λXS is nothing
to do with the 3 → 2 annihilations, we can naively turn it off for simplicity. However,
a nonzero λXS can strengthen the 2 → 2 processes to reduce the values of λ3 and yN ,
while relaxing the upper bound of λ3 from vacuum stability. Lastly, because the two-loop
diagrams connect tightly to the diagrams of the 3 → 2 processes, they are irreducible in
the aSIMP model. The importance of such inevitable two-loop induced diagrams for the
2→ 2 processes has been emphasized in ref. [13].

6 Self-interacting cross section & direct detection of DM

In this model, both complex scalar and vector-like fermion can have self-interactions via the
contact diagrams and the S-mediated diagrams, respectively.9 Since the N has almost no
abundance in our benchmark example and the self-interaction of N̄ is d-wave suppressed,
the complex scalar DM would mainly contribute to the DM self-interaction. Therefore, we
fairly define the DM self-interacting cross section per DM mass for our benchmark example
as

σDM
mDM

= 1
mX

(
R2
X̄
σ
X̄X→X̄X +R

X̄
R
X̄
σ
XX̄→XX̄ +R2

X̄
σ
X̄X̄→X̄X̄

)
, (6.1)

where Rj = Ωj/ΩDM is the DM fraction, and the self-interacting cross sections of the
complex scalar DM are given by

σ
X̄X→X̄X = σ

X̄X̄→X̄X̄ = λ2
X

8πm2
X

, σ
XX̄→XX̄ = λ2

X

4πm2
X

. (6.2)

To ease some tensions between collisionless DM N-body simulations and the astro-
physical observations at small-scale structures of the universe, several analyses have placed
bounds on the self-interacting cross section of DM. At Milky Way and cluster scales, the
self-interacting cross section of DM is within 0.1 cm2/g . σDM/mDM . 1 cm2/g [37], and
the Bullet cluster provides a similar upper bound, where σDM/mDM . 1 cm2/g [33, 34]. At
the same time, the Abell 3827 cluster gives 1 cm2/g . σDM/mDM . 3 cm2/g [35, 36] which
does not overlap with the aforementioned two restriction ranges. More recent observations
on cluster collisions have led to the strongest upper bound on σDM/mDM . 0.47 cm2/g [38].

We show our predictions of the DM self-interacting cross section for a few benchmark
points with mN > mX in table 2, where we have considered an optimistic value for the

9By naive dimensional analysis, the DM self-interacting cross section via the Z′-mediated diagrams is
σZ
′

DM ∼ (gD/mDM)2(mDM/mZ′)4 which is suppressed due to the small gD value and heavy Z′ mass in this
model.
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λX λS λXS λ3 yN ηD̄M
(
mX ,mN ,mS

)
/MeV σDM/mDM (cm2/g) σe (cm2)

4.2 4.5 0.0 3.6 2.2 3.23×10−8 (25,30,77.5) 0.96 7.47×10−42

3.5 2.5 1.0 3.1 2.1 4.05×10−8 (20,25,61) 1.06 1.52×10−41

2.9 2.3 2.5 3.2 1.5 4.46×10−8 (20,24,61) 0.43 1.54×10−41

3.9 2.1 3.5 4.2 2.5 4.06×10−8 (20,24,59.5) 1.53 1.46×10−41

Table 2. Benchmark points for rN > 1 in the aSIMP model.

kinetic mixing parameter, ε = 10−3.10 As expected, we see that the values of σDM/mDM
can be compatible with the above-mentioned astrophysical bounds, especially the third
benchmark point.

As shown in figure 5 and table 2, the preferred DM mass scale in the aSIMP model
is around O(20)MeV. For these DM masses, one can use DM scattering off an electron
inside the atom to detect the DM particles in this model. Utilizing the gauge interactions
in eq. (2.5), the total DM-e− elastic scattering cross section is computed as

σe =
(
R
N̄

+R
N̄

)
σNe→Ne +

(
R
X̄

+R
X̄

)
σXe→Xe , (6.3)

where the individual DM-e− scattering cross sections are given by

σNe→Ne = c2
Ne

π

µ2
Ne

m4
Z′
, σXe→Xe = c2

Xe

π

µ2
Xe

m4
Z′

(6.4)

with cje the product of the gauge couplings, and µje the reduced mass of the DM-e− system

cje = gDge cW εQj , µje =
mjme

mj +me

, (6.5)

where me is the electron mass.
We show our predictions of the DM-e− elastic scattering cross section in the last

column of table 2 for each benchmark point, where we have fixed gDε to the maginal values
in eq. (4.3) with mZ′ = 250MeV. The current available upper bounds for the DM-e−

elastic scattering cross section come from XENON1T [9], XENON10 [39], and DarkSide-
50 [40] collaborations. These experiments provide upper limits for a heavy mediator,
where σe ∼ 10−37 cm2 to ∼ 10−36 cm2 with the DM mass from ∼ 20MeV to ∼ 30MeV.
Hence, our predictions for the DM-e− elastic scattering cross section are still far below
the last up-to-date sensitivities. Nevertheless, some projected experiments try to apply
semiconductors [41], superconductors [42], superconducting nanowires [43], etc. to probe
low mass DM. For the DM mass in tens of MeV, their sensitivities of the DM-e− scattering
cross section can potentially reach σe ∼ 10−41 cm2, which can be used to test the benchmark
points in the aSIMP model.

10One can take the slightly smaller ε value such that the gD value can be slightly larger according to
eq. (4.3). As a consequence, the tree-level 2 → 2 process NN̄ → XX̄ via the Z′-mediated diagram may
affect the predicted DM relic density by few percent. However, one cannot choose too small ε, otherwise,
the perturbative bound of gDwould be violated based on our charge assignment in table 1.
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7 Discussion & conclusions

Before going to the conclusion, let us discuss the dark asymmetry in the aSIMP model.
So far, we have treated the ηD̄M as a free input parameter when solving the Boltzmann
equations. However, it may have a physical origin akin to the baryon asymmetry. Since
the ηD̄M is a sum of two distinct DM asymmetries, thus we have to know how these two DM
asymmetries evolve with the cosmic time. We show in figure 7 the time evolution of the DM
asymmetries for figure 5(a). As illustrated, the DM asymmetries are separately conserved
at high and low temperatures and redistributed during the freeze-out temperature of DM.
At low temperatures, the values of the DM asymmetries are determined by numerical
computations. On the other hand, the values of DM asymmetries at high temperatures can
be calculated analytically. First, we can take a ratio of the equilibrium DM asymmetries.
At very high temperatures, one can show that

ηeqN (x)
ηeqX (x)

∣∣∣∣
x→0

= 3
2 . (7.1)

Next, with ηD̄M = 3ηeqN (x) + 2ηeqX (x), we then obtain ηeqN = 3ηD̄M/13 and ηeqX = 2ηD̄M/13,
which is consistent with our numerical result. These relations imply that the typical order
of the DM asymmetries in the aSIMP scenario is ηeqN,X ∼ 10−9 to 10−8 � ηB̄ . Hence, we can
generate these DM asymmetries using the same process as baryogenesis or leptogenesis. For
instance, one can introduce a dark number violating interaction as L��DM = −yψψNζ+h.c.,
where ψ is a heavy Majorana fermion, ζ is a complex scalar, and yψ is a complex Yukawa
coupling. By defining a dark number asymmetry, εN =

[
Γ(ψ → Nζ) − Γ(ψ → N̄ζ∗)

]
/Γψ

with Γψ the decay rate of ψ, we can then relate the dark number asymmetry to the dark
asymmetry as η

N̄
∼ ε

N̄
/g?.With ε

N̄
∼ y2

ψ/(8π) ∼ 10−6 and g? ∼ 102 to 103, the right order
of η

N̄
can be obtained in the aSIMP scenario. However, the construction of a UV complete

model to realize this dark asymmetry is beyond the scope of this paper, and we leave the
detailed study as our future work.

In this article, we have built for the first time an asymmetric SIMP DM model, where
the asymmetric DM are comprised of the vector-like fermion and complex scalar both with
nonzero chemical potentials. These two DM particles are stabilized by the accidental Z4
symmetry after the breaking of the U(1)D gauge symmetry. By introducing one extra
complex scalar to link the SIMP DM, this model can have the 3→ 2 and 2→ 2 processes
that determine the relic abundance of DM. In particular, the 2→ 2 processes can reinforce
the chemical equilibrium of DM around the DM freeze-out temperature in contrast with
other SIMP DM models. Also, by taking the marginal values of the dark gauge coupling,
we can suppress the reaction rate of the WIMP scenario. Meanwhile, the SIMP DM can
keep kinetic equilibrium with the thermal plasma sufficiently until the freeze-out time of
DM such that the aSIMP scenario is successful.

A striking feature of the aSIMP model is that there can be a DM bouncing effect, by
which the number density of the vector-like fermion DM can increase after the chemical
freeze-out of DM. Correspondingly, the number yield of the complex scalar DM becomes
subdominant, thus the prediction of the DM self-interaction cross section can be compatible
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Figure 7. Cosmological evolution of the dark asymmetries corresponds to benchmark figure 5(a),
where the color solid (dashed) curves are actual (equilibrium) DM asymmetries. Figures 5(b), 5(c),
and 5(d) have a similar evolution of the dark asymmetries.

with the astrophysical observations. In addition, if the vector-like fermion DM is fully
asymmetric, then the total DM relic density is mainly contributed by the asymmetric
component of DM. In this case, we can explain the DM-to-baryon energy density ratio by
primordial matter asymmetries produced in the very early universe. Finally, we have found
several benchmark points which can satisfy all the theoretical and observational constraints
and predicted the DM-e− elastic scattering cross section to examine this model in future
prospective experiments using electron target.
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