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1 Introduction

1.1 Background

Loop-tree duality expresses the momentum space integral of a Feynman diagram G as a linear
combination of (simpler) integrals indexed by the set of spanning trees of the underlying
graph. This simplification is achieved by iterated applications of Cauchy’s residue theorem.
We sketch the idea, in order to motivate the alternative approach presented down below.
For the general story see the review article [1] as well as the references therein. We follow
the arguments of [24].

Consider the Feynman integral of a one-loop graph on n edges in a scalar, massive
theory,

IG =
∫
dDk

n∏
i=1

1
L2
i (k, p)−m2

i + iε
, (1.1)
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where each mi > 0 and each Li is Z-linear in the loop momentum k ∈ R1,D−1 and the
external momenta p1, . . . , pn ∈ R1,D−1. The precise form of the Li depends on a choice of
momentum flow, but the integral is independent of this by momentum conservation.

Let us abbreviate the integrand by

f(k, p) =
n∏
i=1

1
L2
i (k, p)−m2

i + iε
.

We can do the integration over the energy component k0 in eq. (1.1) by using the residue
theorem, ∫

dk0f(k, p) =
∮

Γ
dk0f(k, p) = 2πiRes(f,Γ),

where Γ is a curve that runs first along the real axis from −∞ to ∞, then closes along
a semi-circle in the upper/lower half-plane through the point ±i∞ (either choose one or
average over both choices). For generic values of p this will collect n different residues, one
for each pole ρi = ρi(~k, p) : k0 = ±

√
L2
i (k, p) +m2

i − iε of the propagators L2
i (k, p)−m2

i +iε,
i = 1, . . . , n. See also the derivation in [5, §7] using divided differences to systematically
extract the poles of each propagator.

This transforms IG into a linear combination of integrals

IG =
∫
dDk

n∏
i=1

1
L2
i (k, p)−m2

i + iε =
n∑
i=1
±2πi

∫
d~k Res(f,Γ, ρi) (1.2)

indexed by the spanning trees of G (each pole belongs to a propagator/edge, its complement
is a spanning tree of G).

It seems natural to generalize this to the multi-loop case,

IG =
∫ ∏̀

i=1
dDki

n∏
j=1

1
L2
j (k, p)−m2

j + iε
, (1.3)

using induction on the number of loops ` = h1(G). However, the location of each pole
depends not only on k and p, but also on ε. It is therefore not immediately clear how to
compute iterated residues of this form. We refer to [1] for a thorough discussion and general
solution of this problem.

1.2 Parametric space and sector decompositions

One may wonder whether a version of this loop-tree duality exists for Feynman integrals in
Schwinger variables.

In this case there seems to be no straightforward analytical method to relate a parametric
Feynman integral to a linear combination of integrals indexed by the spanning trees of
G. Of course one could use the Schwinger trick to transform an integral of the form (1.2)
into a parametric version. However, if one wishes to work exclusively in parametric space,
then a more combinatorial approach can be based on Hepp’s sector decomposition [18, 26].
For a detailed account we refer to [17]; see also [20, §4.3] as well as [25] which discusses
general sector decompositions from the viewpoint of toric geometry. This approach leads to
formulae of the sought-after form, but there seems to be no general account of loop-tree
duality for parametric Feynman integrals in the literature, at least not under this name.
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1.3 An alternative approach

We propose here a different, more geometric solution. The idea was sketched in [5]. It is
based on a study of the combinatorial geometry of the integration domain. Recall that
a parametric Feynman integral arises from integrating a differential form ωG (defined in
section 4.1) over a simplex in projective space,

IG =
∫

∆G

ωG where ∆G = {[x1 : . . . : xn] | xi > 0}. (1.4)

We will see below that (up to a subset of measure zero) the integration domain ∆G

decomposes into a disjoint union of cells DT , indexed by the set of spanning trees of G,
such that each cell is the total space of a fiber bundle πT over a cube CT = (0, 1)|ET |.

The construction of the map πT can be sketched as follows. The set of all subgraphs
of G is partially ordered by inclusion. The order complex of this poset1 is isomorphic to
the first barycentric subdivision of ∆G = {[x1 : . . . : xn] | xi ≥ 0}. We call the subcomplex
formed by the vertices wγ , where γ = G/F for F ⊂ G a forest, the spine of ∆G. The other
vertices represent the faces of ∆G where the set {e ∈ EG | xe = 0} determines a subgraph γ
with hγ = dimH1(γ,Q) > 0. In the context of moduli spaces of graphs these faces are called
faces at infinity (see section 2.3). Each spanning tree T ⊂ G represents a maximal cell CT
in the spine of ∆G. It is a t = |ET | dimensional cube, the union of all simplices on vertex
sets {wG, wG/T1 , . . . , wG/Tt−1 , wG/T } where Ti ( Ti+1 is an ascending filtration of the edge
set of T . Now define the sector DT as the union of all open rays between CT and “nearby
faces at infinity” (this notion is the delicate part of the construction; see section 2.4 for the
details, figure 1 for a first example). The map πT is then simply the projection onto CT .

This defines a smooth fiber bundle that extends to a piecewise smooth fiber bundle on
a certain closure of DT (which includes CT ). In fact, it can be extended even further to
obtain a fibration πG of ∆G over its spine. Furthermore, these maps fit together to form a
fibration π of the moduli space of graphs over its spine; see remark 2.7.

With this at hand we are able to rewrite IG as

IG =
∑
T⊂G

∫
DT

ωG =
∑
T⊂G

∫
CT

(πT )∗ωG,

where (πT )∗ denotes the push-forward along πT , that is, integration along the fibers of
this bundle.

Here it is important to note that both steps are only well-defined if IG converges
absolutely. Thus, to be precise, we should either start with a renormalized integrand or
work with some regularization of ωG and later worry about the analytic continuation to the
points of physical interest. We discuss this in detail in section 4.1.

In summary, we can express a parametric Feynman integral as a linear combination of
(simpler) integrals of the push-forwards of ωG over the cubes CT . This turns eq. (1.4) into

IG =
∑
T⊂G

∫
CT

ωG,T with ωG,T = (πT )∗ωG,

the sum running over all spanning trees of G.
1The order complex of P is the simplicial complex whose vertices are the elements of P and p0, . . . , pn ∈ P

form an n-simplex iff p0 ≤ . . . ≤ pn.
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[1 : 0 : 0] [0 : 1 : 0]

[0 : 0 : 1]

Figure 1. The sunrise graph G and the simplex ∆G ⊂ PG = P(C3). The red part is the spine of
∆G, the simplicial/cubical complex on the central vertex wG and the three vertices wG/ei

. The blue
lines indicate the fibers over the cube CT for T = e2, the black vertices, corresponding to graphs
G/{ei, ej}, are the faces at infinity.

This parametric loop-tree duality is arguably much “cleaner” than its momentum space
counterpart. Note, however, that the technical details and intricacies have not simply
disappeared; they are hidden in the geometry of the decomposition of ∆G and the structure
of the fiber bundles πT . We demonstrate this by a couple of examples throughout the paper,
in particular we use the sunrise diagram (figure 1) as a running example.

When comparing the two variants, it is also important to note that in momentum
space we really reduce the number of integration steps; the residue theorem takes care
of all k0-integrations. On the other hand, in the parametric version the fiber integration
is a non-trivial task, as exemplified by our discussion of the ‘wheel with three spokes’ in
section 4.3.

Potential applications of this construction depend thus on a better understanding of the
forms ωG,T , that is, how the combinatorics of the decomposition of ∆G and the structure of
the graph polynomials ψG, φG interact. For instance, in the case of Feynman periods, where
ωG depends only on the Kirchhoff/second Symanzik polynomial ψG, contraction-deletion or
Dodgson identities [7] may lead to further simplifications. This line of thought also applies
to the canonical forms on Kontsevich’s graph complex defined by Francis Brown in [8, 9].
More comments and a discussion of further applications can be found in section 5.

1.4 Organization of the paper

We start section 2 by introducing some notation and conventions. Then we discuss de-
compositions of the graph simplex ∆G and how this gives rise to the fibrations πT . An
important aspect is understanding the structure of the fibers which takes up most of this
section. After this is established, we discuss an example in detail. The section finishes with
some comments on the naturality of the construction and other possible fibrations.

In section 3 we quickly recall the definition of and elementary facts about fiber integra-
tion.

Section 4 applies the content of the previous two sections to Feynman integrals in the
parametric representation. First, we review Feynman integrals in Schwinger parameters,
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then we derive the parametric variant of loop-tree duality. In the end we discuss a couple
of examples.

The paper finishes with an outlook in section 5.
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2 Simplex fibrations

2.1 Notation and basic definitions

The following conventions will be used throughout the paper.

• We write x = (x1, . . . , xd) for a vector x ∈ kd with k ∈ {R,C} and [x] = [x1 : . . . : xd]
for the corresponding point in P(kd) — we sometimes omit the brackets [·] if the
meaning is clear from the context. We set R+ = (0,∞).

• For a graph G we let EG and VG denote its set of (internal) edges and vertices,
respectively. We set eG = |EG|, vG = |VG|, and we write hG = dimH1(G;Q) for the
rank or loop number of G.

• All graphs we consider here will be finite and connected.

• A graph is core or 1-particle irreducible (1PI) if removing any edge reduces its first
Betti number by one.

• A graph may have external edges (legs).2 These are defined in the usual way using half-
edges: internal edges are formed by pairs of half-edges, external edges correspond to
single non-paired half-edges. A tadpole (self-loop) is an edge formed by two half-edges
that are connected to the same vertex.

• A tree is a graph T such that hT = 0. A forest is a disjoint union of trees.

• A subgraph γ ⊂ G (without legs) is a graph γ such that Vγ ⊂ VG and Eγ ⊂ EG. If
γ ⊂ G is a subgraph, we write G − γ for the subgraph of G defined by VG−γ = VG
and EG−γ = EG \ Eγ . We write G/γ for the graph obtained from G by collapsing
each connected component of γ to a vertex.

2They play no role for the geometric arguments of the present section, but become important in the
definition of Feynman integrals in section 4.
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• A spanning tree of G is a subgraph T ⊂ G such that T is a tree and VT = VG. A
spanning forest of G is a subgraph F ⊂ G such that F is a forest and VF = VG.

• We sometimes abuse notation by identifying edge sets and subgraphs in the obvi-
ous way.

• If no confusion is possible, we write x for a singleton {x}.

2.2 The graph simplex and its spine

Let G be a graph without tadpoles (the case with tadpoles is discussed in remark 2.9). Set
PG = P(CeG) with coordinates xe for e ∈ EG. Define the (open) graph simplex ∆G as

∆G = {[x] | xe ∈ R+} ⊂ PG.

For every spanning forest F ⊂ G we define a subset CF of ∆G by

CF = {(xe)e∈EG | 0 < xi < xj for all i ∈ EF , j ∈ EG−F ∧ xi = xj for all i, j ∈ EG−F }.
(2.1)

It can be parametrized by an open cube of dimension eF : to ease notation, suppose that
the edges of G are ordered such that the edges of F are labeled by 1, . . . , f . Then CF is
parametrized by the map

ιF : (0, 1)f −→ ∆G, (x1, . . . , xf ) 7−→ [x1 : . . . : xf : 1 : . . . : 1]. (2.2)

See figures 1 to 3, 5 and 6 for examples.
The family of sets {CF | F spanning forest of G} is (the geometric realization of) a

cubical complex called the spine of ∆G. More precisely, it is the spine of the corresponding
cell in the moduli space of graphs that have rank equal to hG [14, 16].

2.3 An excursion into the moduli space of graphs and its spine

We sketch the geometric background that motivated the construction of the fibration
presented in this paper. This section is not essential and may be skipped on a first read.

We follow the exposition in [12, 13] which studies the moduli space of tropical curves
which are certain weighted, marked metric graphs. A slight adjustment produces the moduli
spaces of graphs (as a subset of the latter) which is classically defined as the quotient of
Outer space by the action of Out(Fn) [14].3 We discuss here the case without legs/external
edges, but it easily generalizes to the case where such special (half-)edges are allowed.

Let 2 ≤ g ∈ N. Define a category Γg by

• ob(Γg) is the set of all graphs of rank g that have no bridges/separating edges (1PI)
and all vertices at least three-valent.

• hom(Γg) are given by forest collapses or isomorphisms of graphs.
3It is actually much easier to define the moduli space of graphs via the detour through either tropical

curves or Outer space. Interested readers are therefore encouraged to consult the given references.
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For each G ∈ Γg let

σ(G) = REG≥0 = {` : E(G)→ R≥0 | `−1(0) is a forest in G}

denote the space of metrics on G that are allowed to vanish on forests in G. Given a
morphism f ∈ hom(Γg), define a map σ(f) : σ (f(G))→ σ(G) by

`′ 7−→ ` where `(e) =

`′(e′) if e = f(e′),
0 if f collapses e.

This defines a functor from Γg to the category of topological spaces. The moduli space of
rank g graphs MGg is defined as the colimit of this functor.

If there were no graph isomorphisms in hom(Γg), the space MGg would be a union
of cones, with some of their faces deleted, identified along their common boundaries.
Isomorphisms act however non-trivially on this space, so that MGg is an orbifold. For
instance, if G is the sunrise graph (figure 1), then the corresponding cone inMG2 is the
quotient of R3

≥0 by the action of S3 permuting the coordinates x1, x2, x3.
It is often convenient to normalize the metrics on graphs. For this define a function

λ : MGg → R≥0 by measuring the volume of a metric, λ(`) = ∑
e∈EG `(e). Consider the

subset MGg ⊂MGg defined by MGg = λ−1(1). Note that this turns the cones σ(G) into
simplices. In the following we will work exclusively with this space and henceforth refer to
MGg as the moduli space of (rank g) graphs.

If we ignore isomorphisms for a moment, we can think of MGg as a semi-simplicial
complex (aka ∆-complex [15]) with some of its faces deleted. If σG is a cell in MGg,
parametrizing the space of metrics of unit volume on G, then

` ∈ ∂σG ⇐⇒ `−1(0) is a non-empty forest in G.

If on the other hand a metric ` vanishes on a subgraph γ with hγ > 0, then this face is not
in MGg; it is called a face at infinity.

One may compactify MGg by various methods of which two are important for us.
Firstly, we can add all faces at infinity to form a (semi)simplicial completion MGg of
MGg [12]. Secondly, we can truncate small “neigborhoods of infinity” in each cell σG
to obtain polytopes JG that assemble to a compact space M̃Gg, homotopy equivalent to
MGg. This is equivalent (homeomorphic) to the iterated blow-up of MGg along the faces
at infinity. For the details we refer to [11]; see also [4, 8].

In the context of Outer space it is well-known [14] that MGg deformation retracts onto
its spine Sg, a subset which has the structure of a cubical complex [16]. As an abstract
complex it is defined as the order complex of the poset (ob(Γg),≤) where G ≤ G′ if there
is a forest F ⊂ G′ with G = G′/F .4 The geometric realization of this complex can be
embedded as a subcomplex Sg of the barycentric subdivision β(MGg) of the semi-simplicial
completion of MGg. The deformation retract r : MGg → Sg is then described by collapsing
all the cells that have vertices at infinity, that is, in MGg \MGg.

4Here we are tacitly working with isomorphism classes of graphs.

– 7 –
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Above (section 2.2) we have seen how to embed Sg into MGg. In remark 2.7 we sketch
how the maps πT can be assembled to define a fibration π : MGg → Sg, producing another
proof that both spaces are homotopy equivalent.

2.4 A fibration over the spine

Let T be a spanning tree of G, that is, a maximal forest T ⊂ G. We want to define a
subset DT of ∆G (or σG, as defined in section 2.3) such that there is a surjective map
πT : DT → CT . Moreover, we want the union of the sets DT where T ranges over all
spanning trees of G to form a partition of ∆G (up to a set of measure zero).

Putting the cart before the horse, we start by describing the fibers of this sought-after
map. In fact, the fibers are the very thing we are interested in because our eventual goal is
to integrate forms along the fibers of this map. In any case, we need to establish that there
is a map with the asserted properties.

As mentioned in the introduction, the idea is to define πT by bundling together all
fibers that connect CT to certain subsets of the faces at infinity in ∆G, that is, to the faces
where {e ∈ EG | xe = 0} defines a subgraph γ with hγ > 0. These subsets of faces will be
indexed by certain core subgraphs of G. To make this precise consider

C(T ) = {γ ( G | γ is core, Eγ ∩ ET 6= ∅, Eγ ∪ ET 6= EG},

the set of all proper core subgraphs of G that share at least one edge with T and whose
union with T does not cover the whole graph. This set is partially ordered by the inclusion
relation. We let Cmax(T ) denote its maximal elements.

Lemma 2.1. Let G be a connected graph. The cardinality of Cmax(T ) is equal to hG, the
rank of G. In particular, |Cmax(T )| is independent of the choice of spanning tree T of G.

Proof. A core subgraph γ of G is maximal if and only if hγ = hG − 1. A simple model for
Cmax(T ) is obtained by collapsing all edges in T . Then G/T is a rose on hG petals (hG
tadpoles/self-loops connected to a single vertex). There is a bijection

Cmax(T ) ∼= {I ⊂ EG/T : |I| = hG − 1}.

The injection ←↩ is given by expanding T again and chopping off edges from the subgraph
I ∪ T to make it core. For the other direction ↪→ recall that every γ in Cmax(T ) shares at
least one edge with T and its union with T is not the full graph G. Thus, after collapsing
T the subgraph γ becomes a rose with at most hG − 1 petals. If the number of petals is
less than hG − 1, then γ was not maximal.

We now describe the fibers of the map πT . Given a point x ∈ CT we let the fiber of πT
over x be the set

πT
−1(x) =

⋃
γ1,...,γhG−1∈Cmax(T )

Conex
(
vγ1(x), . . . , vγhG−1(x)

)
(2.3)

– 8 –
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e2

e1

e3 e4

1
2

4

3

Figure 2. Cube CT (red) and sector DT (blue) for T = {e2, e4} in the icecream-cone graph. The
orange vertex marks the center of ∆G. Here Cmax(T ) consists of the two subgraphs with edge sets
{e1, e2, e4} and {e3, e4}.

where vγ is the map that sends all xe with e ∈ Eγ to zero,

vγ : CT −→ ∆G/γ ⊂ ∆G, xe 7−→

xe if e /∈ Eγ ,
0 else,

and Conex (y1, . . . , yn) denotes the open convex cone in ∆G that is based at x and spanned
by the yi,

Conex (y1, . . . , yn) =
{
[x+ µ1y1 + . . .+ µnyn] | µi ∈ R+

}
.

Example 2.2. Consider the icecream-cone graph, depicted in figure 2, with spanning
tree T = {e2, e4}. Then Cmax(T ) = {γ124, γ34} where γI = {ei | i ∈ I}. The cube CT is
parametrized as in eq. (2.2),

CT = {[1 : x2 : 1 : x4] | x2, x4 ∈ (0, 1)},

and the maps vγ124 and vγ34 are given by

vγ124 : [1 : x2 : 1 : x4] 7−→ [0 : 0 : 1 : 0], vγ34 : [1 : x2 : 1 : x4] 7−→ [1 : x2 : 0 : 0].

We see that vγ124 maps the whole cube into the vertex at infinity, while vγ34 is non-constant;
its image covers half of the line {x3 = x4 = 0} at infinity.

See figures 1, 3, 5 and 6 for further examples.

In order to define the map πT we need the following

Lemma 2.3. For x 6= x′ ∈ CT we have πT−1(x) ∩ πT−1(x′) = ∅.

Proof. First of all note that Conex
(
vγ1(x), . . . , vγhG−1(x)

)
is an open cone, it does not

include its boundary faces, spanned by the rays from x to some of the vγ(x). It also
does not meet any face at infinity. Hence, it suffices to consider a fixed cone Cx =
Conex

(
vγ1(x), . . . , vγhG−1(x)

)
and vary x.

– 9 –
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So let x 6= x′ ∈ CT and suppose first that hG = 2. This means Cx = Conex (vγ(x))
for some γ in Cmax(T ). If vγ(x) = vγ(x′), then Cx ∩ Cx′ = ∅. If not, then using the
parametrization by eq. (2.2) we can find a non-empty subset I ⊂ ET \ Eγ such that

xi 6= x′i ⇐⇒ i ∈ I.

Points in the intersection of Cx and Cx′ satisfy

x+ µvγ(x) = λ(x′ + µ′vγ(x′)) (λ > 0).

Explicitly we get

1. xe = λx′e for e ∈ Eγ ∩ ET ,

2. 1 = λ1 for e ∈ Eγ \ ET ,

3. xe + µxe = λ(x′e + µ′x′e) for e ∈ ET \ Eγ , and

4. 1 + µ1 = λ(1 + µ′1) for e ∈ EG \ (Eγ ∪ ET ).

Since I is disjoint from Eγ , the first item reads xe = λxe. Thus, λ = 1. With (4) we find
then µ = µ′. Finally, from (2) and (3) we infer xe = x′e for all e ∈ EG, a contradiction.

The general case hG > 2 follows by the same reasoning as above, using the following
claim: for any subset A ⊂ Cmax(T ) with |A| = hG − 1

1. there is an edge e that does not belong to T , but to every element of A.

2. for any γ ∈ A there is an e(γ) in the complement of T and γ which belongs to any
other γ′ ∈ A.

This is a corollary of lemma 2.1. We can think of an element γ ∈ Cmax(T ) as a subset
I ⊂ {1, . . . , hG} of cardinality hG − 1, or equivalently, as a one-element subset of the latter.
That is, we can specify an element γ ∈ Cmax(T ) uniquely by an edge in the complement of
T that does not belong to γ, but to any other γ′ ∈ Cmax(T ). By the same argument, A is
determined by choosing hG − 1 “forbidden edges” out of {1, . . . , hG}. Thus, there is always
one left which has to belong to every γ ∈ A.

With this we can solve the system of equations for Cx ∩ Cx′ . (1) leads to λ = λ′ and
(2) leads to µi = µ′i for every i = 1, . . . , hG−1. Hence, x = x′, a contradiction.

The previous lemma allows to finally define the map πT . We set DT = ⋃
x∈CT πT

−1(x)
and define πT by

πT (y) = x ⇔ y ∈ Conex
(
vγ1(x), . . . , vγhG−1(x)

)
for γ1, . . . , γhG−1 ∈ Cmax(T ). (2.4)

This is well-defined by lemma 2.3.

– 10 –



J
H
E
P
1
0
(
2
0
2
2
)
1
7
8

e1

e2

e3

e4

1
2

4

3

1
2

4

3

Figure 3. Cubes CT (red) and sectors DT (blue) for T = {e2, e3} and {e2, e4}. The orange vertex
marks the center of ∆G. The two blue points are the vertices of β(∆G) that are represented by the
two core subgraphs on edges e3, e4 and e1, e2, respectively.

The closure of DT in ∆G has a convenient description in terms of β(∆G), the first
barycentric subdivision of ∆G.5 The vertices of the latter complex are in one-to-one
correspondence with proper subgraphs γ ( G. We can parametrize them by

wγ = [xe] with xe =

0 if e ∈ Eγ
1 else.

Then DT is the interior of the subcomplex of β(∆G) spanned by the vertex set

{wγ | Eγ ∩ ET 6= ∅, Eγ ∪ ET 6= EG} ∪ {wF | F ⊂ T}.

By definition DT contains all rays from points in CT (including the vertices of type wF ) to
the vertices of type wγ with γ ∈ Cmax(T ). Furthermore, if γ1 ∩ γ2 6= ∅, then the closure of
Conex(vγ1(x), vγ2(x)) contains the vertex wγ1∩γ2 :

wγ1∩γ2 = lim
µ→∞

[x+ µvγ1(x) + µvγ2(x)] for any x with xe = 1 if e ∈ Eγ1∩γ2 . (2.5)

Additionally, DT contains all the vertices wγ∪F for F ⊂ T and γ ∈ Cmax(T ):

wγ∪F = vγ(x) for xe =

0 if e ∈ EF
1 else.

(2.6)

Both eqs. (2.5) and (2.6) have solutions x in (the closure of) CT .

Proposition 2.4. Up to a set of measure zero (codimension greater than one) the sets DT

partition the simplex ∆G,

∆G ⊂
⋃

T∈T (G)
DT and

⋂
T∈T (G)

DT = ∅.

5This point of view is very much inspired by [3] which discusses the passage from simplices to cubes in a
much more general setting.
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Proof. The first assertion is true because every point x in ∆G lies in a maximal simplex
σ = (w∅, we1 , w{e1,e2}, . . .) of β(∆G). Let F be the forest in G, defined by

EF = max{I ⊂ EG | wI ∈ σ} ∩ {I ⊂ EG | I is a forest in G}.

Then we can use eqs. (2.5) and (2.6) to infer that x ∈ DT for any tree T ⊂ G such
that F ⊂ T .

The second assertion follows from the fact that DT and DT ′ intersect in the closure of
DF = ⋃

x∈CF πT
−1(x) for F = T ∩ T ′. But DF is contained in the boundary of both DT

and DT ′ , hence DT ∩DT ′ = ∅.

Remark 2.5. The examples in figures 1 to 3 show that this partition of ∆G is different
from the “classical” one using Hepp sectors [18].

Proposition 2.6. The map πT : DT → CT , defined in eq. (2.4), is a smooth fiber bundle
whose fibers are diffeomorphic to hG copies of ReG−eT−1 = RhG−1.

Proof. Recall that DT is a disjoint union of hG open cones over the points in CT . The map
πT simply maps all points in a cone to its basepoint which is well-defined by lemma 2.3,
and globally trivial (by construction, and also because the base is contractible). Moreover,
it is obviously smooth.

Note that πT is well-defined on DT minus the points at infinity in ∆G. We could
thus extend the family {πT : DT → CT }T∈T (G) to a single continuous — in fact, piecewise
smooth — map πG on ∆G (but not on ∆G). In other words, it extends to ∆̃G, the closure
of ∆G in the compactification M̃Gg (figure 4 indicates the map πG on the compactified
cell ∆̃G).

In both cases the resulting map is no longer a fiber bundle, but only a fibration.6
The fibers over cubes CF for F a spanning k-forest with k > 1 are unions of faces of the
(closure of the) cones (2.3), hence also contractible, but not necessarily homeomorphic to
the other fibers.

For an example see figure 1 (or figure 4): none of the three maps πT is defined at the three
corners of ∆G. Each map can be extended to the lines {xi = xj , xk > xi : |{i, j, k}| = 3},
but the fiber over the center w∅ = [1 : 1 : 1] is not homeomorphic to R.

At this point one might wonder why we do not work with ∆̃G instead of ∆G. This has
certain advantages, for instance making the fibers of each πT compact. This in turn would
streamline the application of fiber integration in section 4.2. The price to pay is that the
map πT , in particular its fibers, are more difficult to describe in this setting.

Remark 2.7. The fact that there is a fibration πG from ∆G minus its faces at infinity to⋃
F⊂GCF , where the union is over all spanning forests of G, implies that the two spaces are

homotopy equivalent. Moreover, the construction of πG is functorial with respect to forest
collapses and isomorphisms:

1. If G and G′ are isomorphic as graphs, then πG and πG′ are isomorphic as bundles.
6Fibers are not necessarily homeomorphic, but have the same homotopy type ([15, §4]).
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Figure 4. The compactified cell ∆̃G for the sunrise graph. The blue lines indicate the fibers of
πG : ∆̃G → SG over the cube Ce2 , the cyan tripod is the fiber over the central 0-cube C∅ = [1 : 1 : 1].

2. Each πT extends to the faces {xi = 0 | i ∈ I, I ⊂ ET } by πT/I = (πT )|{xi=0|i∈I}. If
there is I ⊂ T, T ′ for two trees T ⊂ G and T ′ ⊂ G′, such that G/I = G′/I, then by
(1) the respective bundles πT and πT ′ agree when restricted to the corresponding
common face of ∆G and ∆G′ .

Thus, we can combine the above observations to deduce the existence of a homotopy
equivalence π between the moduli space of graphs and its spine, a well-known fact [14]. See
also [3] for another proof in a similar setting but without providing an explicit map.

We finish this section with an example.

Example 2.8. Consider the sunrise diagram depicted in figure 1. If we let T = e1, then
CT = {[x : y : y] | 0 < x < y}. The set Cmax(T ) consists of the two subgraphs on edges
e1, e2 and e1, e3, and the respective vγ maps CT into [0 : 0 : y] and [0 : y : 0]. We find thus

DT = {[x : y1 : y2] | 0 < x < yi, i = 1, 2}

and
πT ([x : y1 : y2]) = [x : min(y1, y2) : min(y1, y2)].

If we let ϕ denote the affine chart (x1 : x2 : x3) 7→ (x1
x3
, x2
x3

) we have in these coordinates

ϕ(CT ) = {(z, 1) | 0 < z < 1}, ϕ(DT ) = {(z, w) ∈ (0, 1)× R+ | 0 < z < min(w, 1)}

so that πT : DT → CT is locally given by the map πloc
T = ϕ−1 ◦ πT ◦ ϕ,

πloc
T : ϕ(DT ) −→ ϕ(CT ), (z, w) 7−→

(
z

min(w, 1) , 1
)

=

(z, 1) if w > 1,
( zw , 1) if w < 1.

Note that z < w, so it really maps into the unit cube. The fiber over a point (u, 1) is

πT
−1(u, 1) = ({u} × [1,∞]) ∪ {(uv, v) | v ∈ (0, 1)} ⊂ DT .

By the obvious symmetry of G we have an analogous description for the other two
spanning trees of G.
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Figure 5. Cube CT and sector DT for T = e4 in the 4-edge-banana graph B4. Note how the fiber
over [1 : 1 : 1 : 0] ∈ CT , consisting of three open cones, equals the union of the three sectors for
B3 = B4/e4 in figure 1.

e1

e3

e2

[x1 : x2 : 0]

[0 : 0 : 1]

Figure 6. A graph G with a tadpole. Here the spine has two 1-cubes CT for T ∈ T (G) = {e1, e2}.
The blue lines indicate the fibers over the cube Ce1 , connecting its points to the faces at infinity, the
point {x1 = x2 = 0} and the line {x3 = 0}.

Note that this example generalizes in a straightforward way to the “n-edge banana”
graphs, consisting of two vertices connected by n edges. For each n the spine is a one-
dimensional “star”, formed by n rays connecting the center of ∆G ⊂ P(Cn) to the barycenter
of its n codimension one facets. The fiber over each point in a 1-cube CT is the union of
hG = n− 1 cones, each homeomorphic to Rn−2 (the closure PL homeomorphic to a simplex
of dimension n− 2). See figure 5.

Remark 2.9. If the graph G has tadpoles the construction has to be adjusted. Consider,
for instance, a graph G on three edges formed by a 2-edge banana with a tadpole (figure 6).
Then it is easy to see that the definitions in eqs. (2.3) and (2.4) are not sufficient; the union
of the fibers πT−1(x) does not cover ∆G. This case can be repaired by adding the tadpole
e3 to Cmax(T ), but it is unclear how to do this in general.

2.5 Other fibrations

The construction laid out here is of course by no means unique. Firstly, the spine SG
can obviously be embedded in ∆G in many ways. However, our choice is in some sense
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canonical. Consider for instance the sunrise graph (figure 1). The space of edge lengths
without normalization is a 3-dimensional cube R3

+. Working on the closure we can replace
it by the unit cube [0, 1]3. The graph simplex ∆G is the link of the origin. If we embed
it as the intersection of [0, 1]3 with the unit sphere (e.g. with respect to the 1-norm || · ||1
to obtain an euclidean simplex), then the spine CG emerges naturally as the projection
of the codimension one “back faces” that connect to the point (1, 1, 1), see figure 8. This
construction generalizes in a straightforward way to every graph simplex and also to the
full moduli space of graphs (or tropical curves); see [3].

There are also many ways of expressing ∆G as the total space of a fibration over its
spine. Consider again the sunrise graph in figure 1. In this case it is easy to imagine
different bundles that cover ∆G up to a set of measure zero. It is however not clear how
to make these ideas work in general, except using the geometric approach presented here,
projecting the spine into the faces at infinity.

3 A reminder on fiber integration

We recall the notion of push-forward or integration along the fibers of a bundle, following [21].
See also [6].

Fiber integration is typically defined for bundles with compact fibers or as a map on
compactly supported differential forms (or differential forms with compact support in the
fiber direction). In contrast, the bundles that we consider have non-compact fibers. In
addition, the Feynman forms ωG that we want to integrate are not compactly supported,
neither in the total space nor in the fiber. We are saved, though, by Fubini’s theorem and
the fact that the total integral

∫
σG
ωG is absolutely convergent (when suitably regularized

or renormalized). Alternatively, we could work on the compactified cell ∆̃G in order to have
the fibers of πT compact.

In any case we use the following proposition as a definition for fiber integration.
Let Ωcpt(X) denote the space of compactly supported forms on a smooth manifold X.

We cite proposition 3.4.47 from [21]:

Proposition 3.1. Let p : E → B be an orientable fiber bundle with fiber F , k = dimF .
Then there exists a linear operator

p∗ : Ω•cpt(E)→ Ω•−kcpt (B).

It is uniquely defined by its action on forms supported on local trivializations where
p : Rk × Rn → Rn. If ω = fdxI ∧ dyJ with f ∈ C∞0 (Rk × Rn), then

p∗ω =

0 if |I| 6= k,(∫
Rk fdx

I
)
dyJ if |I| = k.

The operator p∗ is called push-forward along p or integration along the fibers of p.
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4 Feynman integrals

We apply the results of the previous two sections to parametric Feynman integrals. We
start with a quick review on parametric Feynman integrals. A thorough discussion can be
found in [23].

4.1 Feynman integrals in Schwinger parameters

Let G be a (massive scalar) Feynman diagram, that is, a finite connected graph with n

labeled edges (masses me and powers ae of propagators) and k labeled legs (momenta pi of
in/out-going particles). The Feynman integral of G is (up to a prefactor of constants and
Γ-functions)

IG(p,m, a,D) =
∫

∆G

ωG (4.1)

where p = (p1, . . . , pk) with ∑k
i=1 pi = 0, m = (m1, . . . ,mn), a = (a1, . . . , an) and

ωG = ψ
−D2
G

(
ϕG
ψG

)sdd(G) n∏
i=1

xai−1
i · ΩG, ΩG =

n∑
i=1

(−1)ixidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn.

Here ψG and ϕG are the two graph polynomials

ψG =
∑

T∈T (G)

∏
e/∈ET

xe,

ϕG = ψG

n∑
i=1

m2
exe +

∑
F=T1tT2
Ti∈T (G)

p(T1)2 ∏
e/∈EF

xe,

p(T1) = −p(T2) denoting the sum of all momenta flowing into the T1-component of the
2-forest F . The complex number

sdd(G) = D

2 h1(G)−
n∑
i=1

ai

is the superficial degree of divergence of G. As the name suggests, it determines the region
of parameters (p,m, a,D) where IG converges absolutely.

Theorem 4.1 (Weinberg [27]). If all me are positive and sdd(γ) < 0 holds for all 1-PI/core
subgraphs γ ⊂ G, then IG converges absolutely.

We henceforth assume that the parameters (a,D) lie in the region determined by this
criterion. Otherwise we would have to renormalize the integrand [10] in order to make sense
of the integral. Since we are mainly interested in structural properties we omit a discussion
of this procedure.7 The main message is that the integral IG converges absolutely, so that
we can apply the aforementioned formalism of fiber integration to this case.

7See [4] for a discussion of Feynman amplitudes and renormalization on the moduli space of graphs and
its compactification M̃Gg.
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4.2 Loop-tree duality

To arrive at a parametric variant of loop-tree duality we decompose the integration domain
of IG as ∆G = ⋃

T∈T (G)DT , using proposition 2.4.
We can thus rewrite IG as

IG =
∑

T∈T (G)
IG,T where IG,T =

∫
DT

ωG.

The individual integrals IG,T can be further simplified,

IG,T =
∫
DT

ωG
a.e.=
∫
CT

(πT )∗ωG.

The second identity is valid only outside a set of measure zero XT ⊂ DT where the fiber
bundle πT is not smooth (see proposition 2.6). To be precise we should define D̂T = DT−XT

and
π̂T = πT

∣∣
D̂T

: D̂T −→ CT (4.2)

so that we can write ∫
DT

ωG =
∫
D̂T

ωG =
∫
CT

(π̂T )∗ωG.

It is important to note that there is no map (π̂T )∗ : Ω•(D̂T ) → Ω•−hG+1(CT ); the
pushforward is only defined on those forms for which the fiber integral is finite,8 in particular
those forms ω ∈ Ω•(D̂T ) for which

∫
D̂T

ω converges absolutely.
Putting everything together, we have proved

Theorem 4.2 (Parametric loop-tree duality). Every (convergent/renormalized) parametric
Feynman integral

IG =
∫
σG

ωG

as in eq. (4.1) can be written as a sum of integrals over unit cubes CT ∼= (0, 1)eT , indexed
by the set T (G) of spanning trees of G,

IG =
∑

T∈T (G)

∫
CT

ωG,T , (4.3)

where ωG,T = (π̂T )∗ωG ∈ ΩeT (CT ) and π̂T the smooth fiber bundle defined above in eq. (4.2).

Remark 4.3 (The one loop case). If hG = 1, then the cubes CT already partition the
simplex ∆G,

∆G =
⋃
e∈EG

{xe > xe′ for all e′ 6= e}.

Thus in this case eq. (4.3) takes the form

IG =
∑

T∈T (G)

∫
CT

(ωG)|CT .

8It exists though as a map (π̃T )∗ : Ω•(D̃T −XT )→ Ω•−hG+1(CT ) for D̃T the closure of DT in ∆̃G and
XT as above.
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4.3 Examples

Recall the discussion in example 2.8. For T = e1 we have in the affine chart with x3 = 1

DT = {(z, w) ∈ (0, 1)× R+ | 0 < z < min(w, 1)}, CT = {(z, 1) | 0 < z < 1}

and

πT : DT −→ CT , (z, w) 7−→
(

z

min(w, 1) , 1
)

=

(z, 1) if w > 1,
( zw , 1) if w < 1,

so that
πT
−1(u, 1) = ({u} × (1,∞)) ∪ {(uv, v) | v ∈ (0, 1)} ⊂ DT .

This is smooth on the complement of CT in DT , so D̂T = DT − CT . In these coordinates
the integral over the sector DT is given by

IG,T =
∫
DT

ωG =
∫

(0,1)×(1,∞)∪{(uv,v)|u,v∈(0,1)}
fG(z, w) dzdw

with fG determined by the Feynman rules in section 4.1. Then the fiber integral is

ωG,T =
(∫

(1,∞)
fG(z, w) dw +

∫
(0,1)

fG(zw,w)w dw
)
dz

and eq. (4.3) takes thus the form

IG = 3 ·
∫

(0,1)

(∫
(1,∞)

fG(z, w) dw +
∫

(0,1)
fG(zw,w)w dw

)
dz.

See also [19, appendix E] which discusses the renormalized parametric sunrise integral along
similar lines.

To be more concrete let us consider a simple toy model. If

ωG = x3ΩG

(x1 + x3)2(x2 + x3)2 ,

then for Ti = {ei} we get

ωG,T1 = ωG,T2 =
(∫

(1,∞)

dw

(w + 1)2(z + 1)2 +
∫

(0,1)

w dw

(zw + 1)2(w + 1)2

)
dz,

ωG,T3 =
(∫

(1,∞)

z dw

(w + z)2(z + 1)2 +
∫

(0,1)

z dw

(zw + 1)2(z + 1)2

)
dz,

and thus

IG =
∫

∆G

ωG =
∫

(0,∞)2

dx1dx2
(x1 + 1)2(x2 + 1)2 = 2

∫ 1

0
ωG,T1 +

∫ 1

0
ωG,T3

which may be confirmed by direct integration.
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e6 e3

e4

e1 e5

e2

Figure 7. The wheel with three spokes.

As another example we consider the wheel with three spokes (figure 7). Its period is
the integral

P(G) =
∫

∆G

ΩG

ψ2
G

with

ψG = x1x2x5 + x1x2x3 + x1x2x4 + x1x3x5 + x1x5x6 + x1x3x4 + x1x3x6 + x1x4x6

+ x2x4x5 + x2x5x6 + x2x3x4 + x2x3x6 + x2x4x6 + x3x4x5 + x3x5x6 + x4x5x6.

The spanning trees of G come in two different shapes, either paths on three edges, for
instance {e1, e2, e3}, or “claws”,9 for instance {e1, e2, e6}. In both cases the set Cmax(T )
consists of the core subgraphs obtained from adding to T two out of the three edges from
its complement.

For example, if T = {e1, e2, e3}, then

Cmax(T ) =
{
γ ⊂ G : Eγ = {e1, . . . , êi, . . . , e6} | i = 4, 5, 6

}
and therefore

πT
−1(x) = {[x1 : x2 : x3 : λx4 : µx5 : x6]} ∪ {[x1 : x2 : x3 : λx4 : x5 : µx6]}

∪ {[x1 : x2 : x3 : x4 : λx5 : µx6]}, λ, µ > 1.

In the affine chart x6 = 1 where CT = {(x1, x2, x3, 1, 1) | xi ∈ (0, 1)} we find

DT = {(x1, x2, x3, u, v) | u, v > 1} ∪ {(vx1, vx2, vx3, vu, v) | u > 1, v ∈ (0, 1)}
∪ {(vx1, vx2, vx3, v, vu) | u > 1, v ∈ (0, 1)}.

With fi = ψ−2
G

∣∣
xi=1 we have then

ωG,T =
(∫ ∞

1
dv

∫ ∞
1

du f6(x1, x2, x3, u, v) +
∫ 1

0
dv

∫ ∞
1

du v4f6(vx1, vx2, vx3, vu, v)

+
∫ 1

0
dv

∫ ∞
1

du v4f6(vx1, vx2, vx3, v, vu)
)
dx1dx2dx3.

9In graph theory, a claw is a star graph on three edges; a star graph on k edges is a tree with one internal
vertex and k leaves.
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We can explicitly compute the forms ωG,T by means of the contraction-deletion identity

ψG = ψG\eixi + ψG/ei .

Write ψIJ for ψG′ where G′ is the graph G with edges ei, i ∈ I, removed and ej , j ∈ J ,
contracted. Then ψixi + ψi implies fj = (ψj + ψj)−2. Furthermore, if λi denotes the map

xk 7−→

xixk if k 6= i,

xi else,

then
fj ◦ λi = 1

x4
i

(
(ψij + ψij)xi + (ψij + ψji )

)2 .

It follows that

ωG,T =
(∫ ∞

1
dx5

∫ ∞
1

dx4
1(

(ψ5
6 + ψ56)x5 + ψ56 + ψ6

5
)2

+
∫ 1

0
dx5

∫ ∞
1

dx4
1(

(ψ5
6 + ψ56)x5 + ψ56 + ψ6

5
)2

+
∫ 1

0
dx4

∫ ∞
1

dx5
1(

(ψ4
6 + ψ46)x4 + ψ46 + ψ6

4
)2
)
dx1dx2dx3

=
(∫ ∞

1
dx4

1
ψ5

6 + ψ56 + ψ56 + ψ6
5
·
( 1
ψ5

6 + ψ56 + 1
ψ6

5 + ψ56

)

+
∫ ∞

1
dx5

1
(ψ46 + ψ6

4)(ψ4
6 + ψ46 + ψ46 + ψ6

4)

)
dx1dx2dx3

which evaluates to a rational linear combination of logarithms with rational arguments in
(x1, x2, x3) ∈ (0, 1)3.

5 Outlook

5.1 Iterated fiber integrals

The fibers πT−1(x) are unions of open cones. The closure of this union in ∆G is homeomor-
phic to a simplex of the same dimension. Each such simplex can again be expressed as the
union of total spaces of fiber bundles over cubes. We may therefore iterate the process of
fiber integration.

Let us look at the 4-edge banana graph B4 in figure 5. The closure in ∆B4 of the fiber
over x ∈ Ce4 is (PL) homeomorphic to a 2-simplex which we identify with the space of
metrics on the graph G− T = G− e4, a 3-edge banana B3. Moreover, the three lines from
x to the corners at infinity on which πe4 is not smooth correspond precisely to the three
lines where πB3 fails to be a fiber bundle (see figure 4). This means we can express the
integral along the fibers of πB4 itself as a (sum of) fiber integrals of the form IB3 , up to a
set of measure zero.
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For a general banana graph we can iterate this process until we are left with one-
dimensional fibers, that is, until G− T1 − T2 − . . .− Tk is the 3-edge banana graph. Here,
no further simplification is possible.

Note that this is very reminiscent of the recursive structure used in [19] to discuss the
analytic structure of Feynman integrals of banana graphs.

It would be interesting to study if and how this generalizes to graphs with banana
subgraphs (that is, graphs with multi-edges).

5.2 Periods

The loop-tree duality formula eq. (4.3) arises solely from a decomposition of the integration
domain subject to the combinatorics of the graph G.

If the integrand is sufficiently nice, for instance in the case of periods, or generalized
periods in the sense of [7], it may be possible to further simplify the forms ωG,T by exploiting
the structure of the graph polynomial ψG (cf. [7, §2,§3]). The example of the wheel with
three spokes shows that we can always do one fiber integration using the contraction-deletion
identity for ψG.

A natural question to ask then is for which forms ωG the pushforwards ωG,T can be
computed explicitly and how does it depend on the combinatorics of G and T .

5.3 Another parametric representation

Consider the equivalent representation

IG(p,m, a,D) =
∫

(0,∞)n

e
−ϕG(p,m)

ψG

ψ
D
2
G

n∏
i=1

xai−1
i dxi

where we integrate over the full cell σ(G) inMGg, that is, without normalizing the volume of
G. The decomposition of ∆G that we constructed above can be “lifted” to a decomposition
of σ(G): the spine becomes a fan based at the origin 0 ∈ Rn, the maps πT assemble to
one-dimensional families of fiber bundles.

In this representation the problem of ultraviolet and infrared renormalization splits in
an interesting way. While the divergences at xe → 0 are still located in the fibers of πT ,
the divergences at xe →∞ (see e.g. [2]) lie now on the respective components of the spine.
This means that ultraviolet renormalization is needed to define the (lifted) push-forwards
(πT )∗ while the infrared divergences appear then at the level of the forms ωG,T .

5.4 Differential forms on graph complexes

The parametric loop-tree duality formalism applies of course also to other differential forms
on ∆G, not just those given by Feynman rules. Moreover, one may also try to apply it to
forms on the (full) moduli space of graphs or tropical curves, for instance the canonical
forms constructed in [8, 9].

Recall the definition of MGg in section 2.3. A smooth differential form of degree k on
MGg is a family

ω =
{
ωG ∈ Ωk(∆G) | G ∈ ob(Γg)

}
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Figure 8. The cell σ(G) of the sunrise graph. The gray simplex is ∆G, its spine indicated by the
red dashed lines. The three red cones form the associated fan in R3

+. To find the fiber over a point x
in one of these cones, translate ∆G, so that x ∈ τ.∆G = {

∑3
i=1 yi = τ}, then take the corresponding

fiber in τ.∆G (as in figure 1).

such that

1. if ϕ : G ∼→ G′ is an isomorphism and ∆ϕ the induced map ∆G
∼→ ∆G′ , then ∆∗ϕωG′ =

ωG,

2. if e ∈ EG is not a tadpole and ιe is the inclusion ∆G/e ↪→ ∆G, then ωG extends to
the face ιe(∆G/e) and satisfies ι∗eωG = ωG/e.

Examples can be found in [8, 9]. Note that Feynman rules do not define differential
forms on MGg; they define a form ωG on ∆G for each G, but these do not assemble to
a differential form in the above sense. Instead one may interpret the family {ωG}G as a
distribution on the cell complex MGg [4].

Given a differential form ω on MGg such that
∫

∆G
ωG converges absolutely for every

graph G, we can associate to it a differential form η on the maximal cubes of the spine Sg.
On a cube CGT ⊂ ∆G (we add a superscript label to cubes and maps in order to keep track of
the cell we are working in) where T ∈ T (G) use the push-forward along the corresponding
restriction πGT of π : MGg → Sg to set

ηGT = (πGT )∗ωG.

Now the question is if and how η can be extended to the full spine Sg. A cube CGT
has two kinds of faces; they correspond either to collapsing an edge e in T , or removing it
from T .

In the first case, if we send xe to zero, we get a cube CG/eT/e in ∆G/e. By functoriality of
both ω and π (item (2) above and remark 2.7) we have

ι∗eη
G
T = η

G/e
T/e .

In the second case the push-forward along π is not defined, since over CGT−e the map π
is not a fiber bundle. If we simply set

ηGT−e = τ∗e η
G
T
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where τe is the inclusion CGT−e ↪→ CGT defined by sending xe to 1, then it is not clear
whether this is well-defined. In fact, examples show that it is not. However, if ηGT and
ηGT ′ are closed, and for T − e = T ′ − e′ the differences τ∗e ηGT − τ∗e′ηGT ′ = dα are exact, then
(under some mild technical assumptions) the triple (α, ηGT , ηGT ′) defines a cohomology class
on CT ∪ CT ′ ∪ CT−e.10

These ideas and their application to the study of graph complexes will be pursued in
future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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