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1 Introduction

With the start of the run III stage of the Large Hadron Collider (LHC), demands for the
high-order perturbative computations of the precision physics get higher. For the high-
order perturbation computations in quantum field theory, multiloop Feynman integrals are
the key objects which are difficult to reduce or evaluate.

Frequently multiloop Feynman integrals with multiple scales (Mandelstam variables or
mass parameters) appear in high-order perturbative computations. These integrals, even
if they can be expressed in term of polylogarithm functions, their symbol structure [1]
would be very complicated: the alphabet (the list of symbol letters) may be very long and
contains complicated square roots of the kinematics variables; the adjacency condition of
letters in the symbols can be intricate. On the other hand, the information on the alphabet
and symbol of multi-loop Feynman integrals are invaluable. It enables the simplification
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algorithm of polylogarithm functions [1–3], the bootstrap of supersymmetric Yang-Mills
amplitudes [4–8], the bootstrap of Feynman integrals [9], the finite-field interpolation of
the canonical differential equation [10] and a lot of other important applications. Therefore,
it is of great interests to study the alphabet and symbol structures of multi-loop Feynman
integrals.

In the literature there are many interesting studies of the theoretical properties of
alphabet and symbol structures, for example, the so-called first entry-condition [11], the
relation between symbols and Landau Singularity [12, 13], the relation between the second
entry condition and the Steinmann relation [7, 14], and the final entry condition [15].
The cluster algebra structure was applied for the computation of the symbol structure
in N = 4 SYM theory [16, 17]. Recently, the refs. [18–20] studied multi-loop Feynman
integrals’ alphabet from the cluster algebra structure. Besides these exciting developments,
the multi-scale multi-loop Feynman integrals’ alphabet and symbol structures still have a
lot of mysteries. In this paper, we try to illustrate the alphabet and symbol structures for
Feynman integrals with uniform transcendental (UT) weight [21, 22], from the viewpoint
of dual conformal symmetry [23–26].

The method [21, 22] of applying UT Feynman integrals and the corresponding differ-
ential equation is currently a standard way of evaluating Feynman integrals analytically. In
this paper, we derive a cutting-edge example of the UT Feynman integral basis for the two-
loop double box diagrams with four different massive external legs, and then show that its
alphabet and symbol structure can be well understood from the dual conformal properties.
This family is particularly interesting because it is a sub-family of the two-loop eight-point
massless diagrams, and also a sub-family of the two-loop five-point diagrams with three
massive external legs. So, this family is important both for formal theories like N = 4
SYM and also the phenomenology. It contains two Mandelstam variables as well as four
mass parameters, thus the kinematics is very complicated. It is not an easy task to find the
corresponding UT basis, so we turn to the latest UT basis determination methods [27, 28]
with the leading singularity analysis in the Baikov representation. The complete UT basis
for this family is found, and the canonical differential equation is calculated analytically
via the finite-field method [10]. From the canonical differential equation, we obtained the
full alphabet. Furthermore, the symbols of these UT integrals are calculated. As expected
for other UT integrals with multiple scales, the alphabet is long and contains many square
roots in the kinematic variables. The symbol structure for this family is also complicated.

Therefore, in this paper, we propose to analyze the symbology of these Feynman
integrals, namely the alphabet and properties of the symbols, from certain dual conformal
invariant (DCI) Feynman integrals [29] with a dual point at infinity. Similar considerations
have appeared in [18] for one-mass five-point process, whose symbology is closely related
to that of eight-point DCI integrals. The symbology of DCI integrals, strictly in D = 4, is
much better understood by explicit computations [30–35] as well as by Landau analysis [12,
13, 36, 37], considerations based on cluster algebras [18–20, 38] etc. Moreover, properties of
the symbols such as conditions on first two entries and (extended) Steinmann relations have
also been studied more extensively for DCI integrals (see [39] and references therein). By
sending a generic dual point, which are not null separated from adjacent points, to infinity,
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we obtain non-DCI integrals if the latter are finite. There is strong evidence [18] that such
non-DCI limits are still relevant for IR divergent integrals in dimensional regularization,
and we find it very rewarding to further study the implications of DCI results in D = 4
for more general Feynman integrals in D = 4 − 2ε. The method of symbology in this
paper, which was proposed very recently in [40, 41], is based on analysis of geometric
configurations of DCI integrals in (momentum-)twistor space, known as Schubert problems.
It has been successfully applied for predicting alphabets of DCI integrals and amplitudes up
to n = 9 [40], as well as those of multi-loop Feynman integrals in dimensional regularization.

For our integrals with four external masses, it is necessary to consider fully massive
DCI pentagon kinematics, which depends on five cross-ratios and reduces to four-mass
(non-DCI) kinematics by sending any dual point to infinity. In such limits, the five cross-
ratios reduce to ratios of kinematic invariants, s, t,m2

1, · · · ,m2
4. It is highly non-trivial that

all the 68 letters can be explained from Schubert problems of such DCI integrals in D = 4.
Out of all 12 non-trivial rational letters, 11 of them turn out to be (the square of) leading
singularities associated with one- and two-loop DCI integrals, including four-mass boxes
and double-boxes (the last one is a Gram determinant which can be obtained from following
odd letters). The remaining 50 letters are parity odd with respect to the 11 square roots,
which fall into two classes. There are 16 of them that has only one square root, which can
all be identified with algebraic letters of four-mass boxes and two-loop generalizations; for
the 34 “mixed” odd letters that depends on two square roots, we find their origin from
twistor geometries of corresponding one- and two-loop DCI integrals. The appearance of
these letters in the matrix of canonical DE also exhibit nice patterns. Moreover, we also
find that, to all orders in ε, the first two entries of the symbols of such integrals can always
be written as linear combinations of 5 four-mass box functions (and log log terms), which
provides an explanation of the first-two entry conditions. Relatedly, we have also checked
that extended Steinmann relations are satisfied by all the integrals, which follows from
properties of canonical DE.

This paper is organized as: in section 2 we review the UT integrals, canonical differen-
tial equation and symbol. In section 3, we introduce the main example of two-loop double
box diagram with four different external mass, derive the UT basis, canonical differential
equation and the symbols. In section 4, we will first review basics of DCI integrals, focusing
on one- and two-loop integrals which depend on fully-massive pentagon kinematics; we then
explain that by taking any dual point to infinity, letters of DCI integrals nicely become
those of double-box etc., including all square roots and odd letters; finally, we will comment
on how certain properties of the symbols can be explained from DCI considerations. In
section 5, we summarize this paper and provide an outlook for the future application of
the DCI properties on the multi-loop UT integrals. More technical details are given in the
appendices of this paper.

2 A review of differential equations, UT integrals and symbol

2.1 The canonical differential equation

Differential equation method is one of the most popular method of evaluating Feynman in-
tegrals [42–44]. The differential equation of a Feynman integral basis I, via the integration-
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f(x) T (f(x)) f(x) T (f(x))
rational number 0 rational function 0

π 1 Log(x) 1
ζn n Lin(x) n

H(a1, · · · , an;x) n G(a1, · · · , an;x) n

Table 1. Transcendental weight of some functions.

by-parts reduction, reads
∂

∂xi
I = Ai(ε, x)I, (2.1)

where xi’s are kinematic variables and Ai’s are matrices for the differential equations.
Usually, solving the differential equation in (2.1) is difficult. A better choice of the

integral basis will make it dramatically easier. One of the best choices of integral basis
consists of integrals with uniformal transcendental (UT) weights [21]. These UT integrals
have the following form in terms of ε expansion as,

I = εk
∞∑
i=0

I(n)εn, (2.2)

where I(n) is a pure weight-n transcendental function, i.e. T (I(n)) = n and T ( ∂
∂xI

(n)) =
n − 1, where T stands for the transcendental weight of a function. The transcendental
weight of some common functions are shown in table 1, where Lin(x), H({a1, . . . an}, x)
and G({a1, . . . an}, x) are, respectively, the weight n classical, harmonic and Goncharov
polylogarithm functions.

The differential equations for a basis formed by UT integrals (2.2) are called canonical
differential equations. For the matrices of canonical differential equations, the ε parameter
factorizes out as [21],

∂

∂xi
I = εAi(x)I. (2.3)

This is called the canonical differential equation. Consequently, we can solve the differential
equations order by order in ε expansion as,

∂

∂xi
I(k) = AiI

(k−1) . (2.4)

From the integrability condition, the canonical differential equation matrices for UT basis
satisfies,

[Ai, Aj ] = 0, ∂

∂xi
Aj −

∂

∂xj
Ai = 0. (2.5)

From the second property, we know that,

Ai = ∂

∂xi
Ã , (2.6)

– 4 –



J
H
E
P
1
0
(
2
0
2
2
)
1
6
5

where the matrix Ã takes the form as

Ã =
N∑
i=1

ai log(Wi) , (2.7)

where ai’s are matrices of rational numbers, and Wi’s are algebraic functions of xi’s, called
symbol letters. With the form of (2.7), the canonical equation (2.3) can be solved analyt-
ically with the information of the boundary condition. On the other hand, one can easily
derive the symbol [1] of the solutions of the differential equation.

The symbol S of a function is defined as,

S(logR) ≡ S[R], (2.8)

and
S(F ) ≡

∑
i

ciS(Fi)⊗ S[Ri], (2.9)

if
dF =

∑
i

ciFid logRi, (2.10)

where R and Ri are rational functions and S[R1, · · · , Rn] ⊗ S[R] def= S[R1, · · · , Rn, R].
With these, one can immediately derive the symbols of the solutions from the canonical
differential equations as

S(I(n)) =
N∑

i1,··· ,in=1
ain · · · ai1I(0)S[Wi1 , . . . ,Win ] , (2.11)

2.2 UT integral determination

For applying the method of canonical differential equation, finding a corresponding UT
basis is not a trivial task. There are many methods and algorithms designed for determining
a UT basis, including the leading singularity analysis [21, 22, 27], the Magnus and Dyson
Series [45], the dlog integrand construction [46–49], the intersection theory [50–53], the
initial algorithm [54], the Lee’s algorithm [55–57] and so on. Based on these methods or
algorithms, some public available packages were designed including Canonica [58, 59],
Fuchsia [60], epsilon [61], initial [54] and libra [57]. In this paper, we are using the
leading singularity analysis method in Baikov representation [27, 28, 48, 62] as well as other
methods to determine a UT basis.

Here we briefly introduce the leading singularity method in Baikov representation [63–
65]. For a Feynman integral defined as

Gα1,··· ,αn ≡
∫ L∏

i=1

dDli
iπD/2

1
Dα1

1 · · ·D
αn
n
, (2.12)

in the Baikov representation, it is

Gα1,··· ,αn = CLEU
E−D+1

2

∫
Ω

dz1 · · · dznP (z)
D−L−E−1

2
1

z1α1 · · · znαn
. (2.13)
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In this representation, E and L are the number of independent external momenta and loop
momenta respectively, CLE is a constant irrelevant to kinematic variables, and U and P are
Gram diterminants as

U = detG

 p1, . . . pE

p1, . . . pE

 , (2.14)

P = detG

l1, . . . lL, p1, . . . pE

l1, . . . lL, p1, . . . pE

 . (2.15)

The idea of using Baikov leading singularity method to determine UT integrals is based
on an conjecture [51] that an integral with constant leading singularity should be a UT
integral. In the Baikov representation, the leading singularity of an integral can be derived
using the cut [66–68], which is to replace the integration by taking residues at zi → 0,
schematically as

LS =
∮
zi→0

dz1 · · · dznP (z)
D−L−E−1

2
1

z1α1 · · · znαn
. (2.16)

For multi-loop integrals, a more practical way to derive the leading singularities is the
loop-by-loop Baikov representations [68, 69]. Take the double box with 4 external masses
diagram (to be introduced in section 3.2 in detail) as an example. The propagator and
kinematic information are given in (3.1) and (3.9). Consider the scalar integral in the top
sector in (3.10), which is

J1 =
∫ dDl1
iπD/2

dDl2
iπD/2

1
D1 · · ·D7

, (2.17)

one can compute the leading singularity from full Baikov representation introduced
in (2.13). In comparison, a more computationally economical way is to derive the Baikov
representation loop by loop: first we treat l1 as loop momentum and l2, p1, p2, and p4 as
external momenta, so that

J1 =
∫ dDl2
iπD/2

1
D4D5D6

∫ dDl1
iπD/2

1
D1D2D3D7

= C

∫ dDl2
iπD/2

1
D4D5D6

U
E−D+1

2
1

∫
Ω

dz1dz2dz3dz7P1(z)
D−L−E−1

2
1

z1z2z3z7
.

(2.18)

Here, E = 3, L = 1, D = 4, C is some constant irrelevant to kinematics and

P1 = detG

l1, p1, p2, l2

l1, p1, p2, l2

 . (2.19)

Then the leading singularity for the “left” loop integral is∮
dz1dz2dz3dz7P1(z)

D−L−E−1
2

1
z1z2z3z7

= 4
∆ , (2.20)

where
∆2 = 1

16
(
m4

1D
2
4 +

(
m2

2D6 − sD9
)

2 − 2m2
1D4

(
m2

2D6 + sD9
))
. (2.21)
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With the definition D9 = (l2 − p1)2, we can similarly derive the leading singularity for the
“right” loop as

LS(J1) = LS
(∫ dDl2

iπD/2
4

D4D5D6∆

)
=
∮

0
dz4dz5dz6dz9P2(z)

D−L−E−1
2

1
z4z5z6∆(z) = 16

sr1
,

(2.22)

where

r2
1 = s2t2 − 2stm2

1m
2
3 +m4

1m
4
3 − 2stm2

2m
2
4 − 2m2

1m
2
2m

2
3m

2
4 +m4

2m
4
4. (2.23)

Requiring the leading singularity of this integral to be constant, we guess that sr1J1 is a
UT integral candidate. Later, from the differential equations, we verify that it indeed has
the uniform transcendental weights.

3 Feynman integrals with four different external masses

In this paper, we study the one and two-loop Feynman integrals with four different external
masses. These integrals are interesting because they appear in the eight-point massless
scattering processes which is the focus of the amplitude study of formal theories, and also
in the five-point scattering processes with three external masses. These integrals have rich
structures related to dual conformal invariance.

The kinematic condition for these integrals is

p2
1 = m2

1, p2
2 = m2

2, p2
3 = m2

3, p2
4 = m2

4, (p1 + p2)2 = s, (p2 + p3)2 = t, (3.1)

with p1 + p2 + p3 + p4 = 0.

3.1 One loop UT integral basis

The propagators of one-loop Feynman integral family with four different external masses
are:

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p1 − p2)2, D4 = (l1 + p4)2. (3.2)

There are 11 master integrals after the IBP reduction.

G1,1,1,1, G1,1,1,0, G1,1,0,1, G1,0,1,1, G0,1,1,1,

G1,2,0,0, G1,0,2,0, G1,0,0,2, G0,1,2,0, G0,1,0,2, G0,0,1,2. (3.3)

These master integrals are almost UT integrals up to some rational function factors in
kinematic variables. It is not difficult to determine these factor by looking at the differential
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Figure 1. 1-loop diagram with 4 external massive legs.

equation, then the UT integral basis of this four masses box diagram family is:

I1 = r1G1,1,1,1, I2 = r2G1,1,1,0, I3 = r3G1,1,0,1, (3.4)

I4 = r4G1,0,1,1, I5 = r5G0,1,1,1, I6 = m2
1G1,2,0,0
ε

, (3.5)

I7 = sG1,0,2,0
ε

, I8 = m2
4G1,0,0,2
ε

, I9 = m2
2G0,1,2,0
ε

, (3.6)

I10 = tG0,1,0,2
ε

, I11 = m2
3G0,0,1,2
ε

. (3.7)

Where we used the following roots, r1 ∼ r5,

r2
1 = s2t2 − 2stm2

1m
2
3 +m4

1m
4
3 − 2stm2

2m
2
4 − 2m2

1m
2
2m

2
3m

2
4 +m4

2m
4
4,

r2
2 = s2 − 2sm2

1 +m4
1 − 2sm2

2 − 2m2
1m

2
2 +m4

2,

r2
3 = t2 − 2tm2

1 +m4
1 − 2tm2

4 − 2m2
1m

2
4 +m4

4,

r2
4 = s2 − 2sm2

3 +m4
3 − 2sm2

4 − 2m2
3m

2
4 +m4

4,

r2
5 = t2 − 2tm2

2 +m4
2 − 2tm2

3 − 2m2
2m

2
3 +m4

3.

(3.8)

3.2 Two loop UT integral basis

The propagators of two-loop Feynman integral family with four different external masses
are:

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p1 − p2)2,

D4 = (l2 + p1 + p2)2, D5 = (l2 + p1 + p2 + p3)2, D6 = l22,

D7 = (l1 + l2)2, D8 = (l1 − p1 − p2 − p3)2, D9 = (l2 + p1)2. (3.9)

The top sector, (1, 1, 1, 1, 1, 1, 1, 0, 0) for this family, is a double box diagram shown
in figure 2. Here D8 and D9 are irreducible scalar products (ISPs). From the stand IBP
reduction procedure, we see that the number of master integrals for this family is 74. The
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Figure 2. 2-loop diagram with 4 external massive legs.

diagrams for all master integrals are given in the appendix A. Some of the master integrals
in the family were calculated in [70].

Using the Baikov leading singularity analysis techniques described in the previous
section, as well as other methods that will be explained later, we have derived the UT
basis for this diagram, as follows:

I1 =sr1G1,1,1,1,1,1,1,0,0, (3.10)

I2 =r4
(
−m2

1G1,1,1,0,1,1,1,0,0−m2
2G1,1,1,1,1,0,1,0,0+sG1,1,1,1,1,1,1,0,−1

)
, (3.11)

I3 =r2
(
−m2

3G0,1,1,1,1,1,1,0,0−m2
4G1,1,0,1,1,1,1,0,0+sG1,1,1,1,1,1,1,−1,0

)
, (3.12)

I4 =sG1,1,1,1,1,1,1,−1,−1+ 1
2s
(
s−m2

1−m2
2

)
G1,1,1,1,1,1,1,−1,0

+ 1
2s
(
s−m2

3−m2
4

)
G1,1,1,1,1,1,1,0,−1+... (3.13)

I5 =r9G0,1,1,1,1,1,1,0,0, I6 =r8G1,1,0,1,1,1,1,0,0, I7 =r11G1,1,1,0,1,1,1,0,0, (3.14)

I8 =r10G1,1,1,1,1,0,1,0,0, I9 =r2r4G1,1,1,1,1,1,0,0,0, I10 = r1G0,1,0,1,1,1,2,0,0
ε

, (3.15)

I11 = r4G0,2,0,1,1,1,1,0,−1
ε

,I12 =m2
2r4G0,1,2,0,1,1,1,0,0

ε
,I13 =m2

2r3G0,2,1,0,1,1,1,0,0
ε

, (3.16)

I14 =m2
4r2G0,1,1,0,1,2,1,0,0

ε
,I15 =m2

4r5G0,1,1,0,2,1,1,0,0
ε

,I16 = r1G0,1,1,0,1,1,2,0,0
ε

, (3.17)

I17 =r6G0,1,1,0,1,1,1,0,0, (3.18)

I18 =−
(
st−m2

1m
2
3+m2

2m
2
4
)
G0,1,1,0,1,1,2,0,0

2ε −
(
s−m2

1+m2
2
)
m2

4G0,1,1,0,1,2,1,0,0
ε

−m
2
2
(
s−m2

3+m2
4
)
G0,1,2,0,1,1,1,0,0

ε
+ sm2

2m
2
4G0,1,2,0,1,2,1,0,0

ε2
, (3.19)

I19 =r2G0,1,1,1,0,1,1,0,0, I20 =r5G0,1,1,1,1,0,1,0,0, I21 =m2
2r4G0,1,2,1,1,1,0,0,0

ε
, (3.20)

I22 =r4G1,0,1,0,1,1,1,0,0, I23 =r4G1,0,1,1,1,0,1,0,0, I24 =sr4G1,0,1,1,1,1,1,0,0, (3.21)
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I25 =r3G1,1,0,0,1,1,1,0,0, I26 =r2G1,1,0,1,0,1,1,0,0, I27 =m2
1r4G2,1,0,1,1,0,1,0,0

ε
, (3.22)

I28 =m2
1r5G1,2,0,1,1,0,1,0,0

ε
,I29 =m2

3r2G1,1,0,2,1,0,1,0,0
ε

,I30 =m2
3r3G1,1,0,1,2,0,1,0,0

ε
, (3.23)

I31 = r1G1,1,0,1,1,0,2,0,0
ε

,I32 =r7G1,1,0,1,1,0,1,0,0, (3.24)

I33 =−
(
st+m2

1m
2
3−m2

2m
2
4
)
G1,1,0,1,1,0,2,0,0

2ε −
(
s+m2

1−m2
2
)
m2

3G1,1,0,2,1,0,1,0,0
ε

−m
2
1
(
s+m2

3−m2
4
)
G2,1,0,1,1,0,1,0,0

ε
+ sm2

1m
2
3G2,1,0,2,1,0,1,0,0

ε2
, (3.25)

I34 =m2
1r4G1,2,0,1,1,1,0,0,0

ε
,I35 = r1G1,1,1,0,1,0,2,0,0

ε
,I36 = r2G1,1,1,0,2,0,1,−1,0

ε
, (3.26)

I37 =m2
4r2G1,1,1,0,2,1,0,0,0

ε
,I38 =sr2G1,1,1,1,0,1,1,0,0, I39 =m2

3r2G1,1,1,2,1,0,0,0,0
ε

, (3.27)

I40 = r4G0,0,1,0,1,1,2,0,0
ε

,I41 = sm2
3G0,0,2,0,1,1,2,0,0

ε2
− 3

(
s+m2

3−m2
4
)
G0,0,1,0,1,1,2,0,0
ε

, (3.28)

I42 = r3G0,1,0,0,1,1,2,0,0
ε

,I43 = tm2
1G0,2,0,0,1,1,2,0,0

ε2
− 3

(
t+m2

1−m2
4
)
G0,1,0,0,1,1,2,0,0
ε

, (3.29)

I44 = r2G0,1,0,1,0,1,2,0,0
ε

,I45 =m2
1m

2
2G0,2,0,1,0,1,2,0,0

ε2
− 3

(
−s+m2

1+m2
2
)
G0,1,0,1,0,1,2,0,0

ε
, (3.30)

I46 = r5G0,1,0,1,1,0,2,0,0
ε

,I47 = tm2
2G0,2,0,1,1,0,2,0,0

ε2
− 3

(
t+m2

2−m2
3
)
G0,1,0,1,1,0,2,0,0
ε

, (3.31)

I48 = r2G0,1,1,0,0,1,2,0,0
ε

,I49 = sm2
1G0,1,1,0,0,2,2,0,0

ε2
− 3

(
s+m2

1−m2
2
)
G0,1,1,0,0,1,2,0,0
ε

, (3.32)

I50 = r5G0,1,1,0,1,0,2,0,0
ε

,I51 = tm2
3G0,1,1,0,2,0,2,0,0

ε2
− 3

(
t−m2

2+m2
3
)
G0,1,1,0,1,0,2,0,0
ε

, (3.33)

I52 =m2
2m

2
4G0,2,1,0,2,1,0,0,0

ε2
, I53 = sm2

2G0,1,2,1,0,2,0,0,0
ε2

, I54 =m2
2m

2
3G0,2,1,1,2,0,0,0,0

ε2
, (3.34)

I55 = r4G1,0,0,1,1,0,2,0,0
ε

,I56 = sm2
4G2,0,0,1,1,0,2,0,0

ε2
− 3

(
s−m2

3+m2
4
)
G1,0,,1,1,0,2,0,0
ε

, (3.35)

I57 = r4G1,0,1,0,1,0,2,0,0
ε

,I58 =m2
3m

2
4G1,0,1,0,2,0,2,0,0

ε2
− 3

(
−s+m2

3+m2
4
)
G1,0,1,0,1,0,2,0,0

ε
, (3.36)

I59 = sm2
4G2,0,1,0,2,1,0,0,0

ε2
, I60 = s2G1,0,2,1,0,2,0,0,0

ε2
, I61 = sm2

3G2,0,1,1,2,0,0,0,0
ε2

, (3.37)

I62 = r3G1,1,0,0,1,0,2,0,0
ε

,I63 = tm2
4G1,1,0,0,2,0,2,0,0

ε2
− 3

(
t−m2

1+m2
4
)
G1,1,0,0,1,0,2,0,0
ε

, (3.38)

I64 =m2
1m

2
4G1,2,0,0,2,1,0,0,0

ε2
, I65 = r2G1,1,0,1,0,0,2,0,0

ε
, (3.39)

I66 = sm2
2G1,1,0,2,0,0,2,0,0

ε2
− 3

(
s−m2

1+m2
2
)
G1,1,0,1,0,0,2,0,0
ε

, (3.40)

I67 = sm2
1G2,1,0,2,0,1,0,0,0

ε2
, I68 =m2

1m
2
3G1,2,0,1,2,0,0,0,0

ε2
, I69 =m2

3G0,0,2,0,2,0,1,0,0
ε2

, (3.41)

I70 = tG0,2,0,0,2,0,1,0,0
ε2

, I71 =m2
2G0,2,0,2,0,0,1,0,0

ε2
, I72 =m2

4G2,0,0,0,2,0,1,0,0
ε2

, (3.42)

I73 = sG0,0,2,0,0,2,1,0,0
ε2

, I74 =m2
1G0,2,0,0,0,2,1,0,0

ε2
. (3.43)
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In order to define the UT basis, besides the roots appearing in the one-loop integrals,
we need other 6 roots, r6 ∼ r11,

r2
6 = s2 +2st+ t2−2sm2

1−2tm2
1 +m4

1−2sm2
3−2tm2

3 +2m2
1m

2
3 +m4

3−4m2
2m

2
4, (3.44)

r2
7 = s2 +2st+ t2−2sm2

2−2tm2
2 +m4

2−4m2
1m

2
3−2sm2

4−2tm2
4 +2m2

2m
2
4 +m4

4, (3.45)
r2

8 = s2t2−2s2tm2
1 +s2m4

1 +2stm2
1m

2
4−2sm4

1m
2
4−2stm2

2m
2
4 +2sm2

1m
2
2m

2
4

−4sm2
1m

2
3m

2
4 +m4

1m
4
4−2m2

1m
2
2m

4
4 +m4

2m
4
4, (3.46)

r2
9 = s2t2−2s2tm2

2 +s2m4
2−2stm2

1m
2
3 +2stm2

2m
2
3 +2sm2

1m
2
2m

2
3−2sm4

2m
2
3

+m4
1m

4
3−2m2

1m
2
2m

4
3 +m4

2m
4
3−4sm2

2m
2
3m

2
4, (3.47)

r2
10 = s2t2−2s2tm2

3 +2stm2
2m

2
3−4sm2

1m
2
2m

2
3 +s2m4

3−2sm2
2m

4
3 +m4

2m
4
3

−2stm2
2m

2
4 +2sm2

2m
2
3m

2
4−2m4

2m
2
3m

2
4 +m4

2m
4
4, (3.48)

r2
11 = s2t2−2stm2

1m
2
3 +m4

1m
4
3−2s2tm2

4 +2stm2
1m

2
4−4sm2

1m
2
2m

2
4 +2sm2

1m
2
3m

2
4

−2m4
1m

2
3m

2
4 +s2m4

4−2sm2
1m

4
4 +m4

1m
4
4. (3.49)

Here we remark on how we find this UT integral bases:

1. Use the standard IBP programs [71, 72], we derived the analytic differential equation
for the master integrals. For instance, with FIRE6 [72], the computation took about
two days with a node of 50 cores. The resulting differential equation is saved for the
latter computation to determine some sub-sector the UT integral candidates.

2. Apply the Baikov leading singularity method to determine the UT integrals in the
sectors with 7, 6 and 5 propagators.

• (Top sector) The top sector is (1, 1, 1, 1, 1, 1, 1, 0, 0) and there are 4 master in-
tegrals in this sector. From the experience between UT integrals and the UV
finiteness condition, we tend to use

G1,1,1,1,1,1,1,0,0, G1,1,1,1,1,1,1,−1,0, G1,1,1,1,1,1,1,0,−1, G1,1,1,1,1,1,1,−1,−1 (3.50)

as UT integral candidates. If necessary, some subsector integrals would also be
used.
From the Baikov leading singularity example (2.22) in the previous section, we
estimate that sr1G1,1,1,1,1,1,1,0,0 is a UT integral. To make a UT integral candi-
date from G1,1,1,1,1,1,1,−1,0, based on the experience from [27], we can consider
the Baikov integral with the sub-maximal cut. Given G1,1,1,1,1,1,1,−1,0, the ansatz
for a UT integral can be set as,

f1G1,1,1,1,1,1,1,−1,0 + f2G0,1,1,1,1,1,1,0,0 + f3G1,0,1,1,1,1,1,0,0 + f4G1,1,0,1,1,1,1,0,0

+ f5G1,1,1,0,1,1,1,0,0 + f6G1,1,1,1,0,1,1,0,0 + f7G1,1,1,1,1,0,1,0,0 + f8G1,1,1,1,1,1,0,0,0 .

We use right-to-left Baikov representation on this ansatz to simplify the calcu-
lation of leading singularities. Require the leading singularities to be rational
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numbers, and then the coefficients f1 ∼ f8 are fixed up to some constants:

f1 = c1r2s, f2 = −c1r2m
2
3, f3 = c2r4s, f4 = −c1r2m

2
4

f5 = c3r11, f6 = c4r2s, f7 = c5r10, f8 = c6r2r4 .

c1 ∼ c6 are rational numbers, and c1 6= 0 since this ansatz is from
G1,1,1,1,1,1,1,−1,0. We can set c2 ∼ c6 to 0, and c1 = 1 for the simplicity. Fi-
nally, we get a UT integral candidate:

I3 = r2
(
−m2

3G0,1,1,1,1,1,1,0,0 −m2
4G1,1,0,1,1,1,1,0,0 + sG1,1,1,1,1,1,1,−1,0

)
. (3.51)

With the leading singularity analysis in the Baikov representation, it is also easy
to see that

Ĩ4 ≡ sG1,1,1,1,1,1,1,−1,−1 + 1
2s
(
s−m2

1 −m2
2

)
G1,1,1,1,1,1,1,−1,0

+ 1
2s
(
s−m2

3 −m2
4

)
G1,1,1,1,1,1,1,0,−1 (3.52)

has constant leading singularities, from the maximal cut of the Baikov represen-
tation. However, later on, from the differential equation computation, we see Ĩ4
itself is not a UT integral. To upgrade Ĩ4 to a UT integral, subsector integrals
should be added. It is a nontrivial computation to determine those subsector
integrals, so we keep Ĩ4 at this stage and later describe how to get subsector
integrals.
We remark that the D = 4 leading singularity analysis of integrals in this sector
was calculated in the ref. [73].

• (6-propagator sector) It is straightforward to find the UT candidates for 6-
propagator sectors by the Baikov leading singularity analysis. For example, the
sector (0, 1, 1, 1, 1, 1, 1, 0, 0) contains one master integral G0,1,1,1,1,1,1,0,0. By a
maximal cut of the loop by loop Baikov representation of G0,1,1,1,1,1,1,0,0, it’s
easy to get a UT integral candidate,

I5 = r9G0,1,1,1,1,1,1,0,0. (3.53)

• (5-propagator sector) We take the sector (1, 1, 0, 1, 1, 0, 1, 0, 0) as an example.
This sector contains 7 master integrals, which is the sector with the largest
number of master integrals in this family. To find all the corresponding 7 UT
integrals would be challenging. From the loop-by-loop Baikov leading singularity
analysis, it is easy to see that

I32 = r7G1,1,0,1,1,0,1,0,0
ε

(3.54)

is a UT integral candidate. Furthermore, based on the algorithm in [27], we can
look for reducible integrals in the super sectors of the sector (1, 1, 0, 1, 1, 0, 1, 0, 0).
In this way, we obtained 6 UT integrals candidates, namely Ij , j =
27, . . . , 32. To get the last UT candidate for this sector, we start with Ĩ33 =
sm2

1m
2
3G2,1,0,2,1,0,1,0,0/ε

2, an integral with two double propagators. Later on,
from the differential equation, we upgrade Ĩ33 to a UT integral.
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3. For sectors with 3 or 4 propagators, it is relatively easy to find the UT integral
candidates. We apply the strategy from [21, 22] to add double propagators and an
extra factor ε−1 for each bubble sub-diagram, in order to get UT candidates.

4. Then we transfer the original DE to a DE for the 74 UT integral candidates. The
computation for this transformation is difficult, due to the complicated kinematics.
Here our strategy in the transformation, is to set s, t,m1,m2,m3 andm4 as some ran-
dom integer values while keep ε analytically. Then we can identify the entries of the
differential equation matrix which are not proportional to ε. Explicitly, such entries
are located in the row and columns of the new differential equation corresponding to
Ĩ4 and Ĩ33. This indicates that Ĩ4 and Ĩ33 should be upgraded to UT real integrals.

We observe that entries in the DE matrix’s 33-rd row, which correspond to Ĩ33,
are either proportional to ε or has the form a + bε. For the latter form, a simple
transformation like that in [58],

I33 ≡ Ĩ33 +
74∑

j=27,j 6=33
Ij

∫ (
A

(n)
33,j
∣∣
ε→0

)
dxn (3.55)

can remove all the ε0 terms in the 33rd row. Here x1, . . . , x6 stand for the variables
s, t, m1, m2, m3 and m4. A

(n)
i,j is the differential equation matrix element for

the derivative in xn. To apply this transformation, we need to first evaluate A(n)
i,j

analytically for i = 33. The resulting integral,

I33 = −
(
st+m2

1m
2
3 −m2

2m
2
4
)
G1,1,0,1,1,0,2,0,0

2ε −
(
s+m2

1 −m2
2
)
m2

3G1,1,0,2,1,0,1,0,0
ε

− m2
1
(
s+m2

3 −m2
4
)
G2,1,0,1,1,0,1,0,0

ε
+ sm2

1m
2
3G2,1,0,2,1,0,1,0,0

ε2
(3.56)

is indeed a UT integral.

The upgrading of Ĩ4 is more involved. The DE matrix’s 4-th row contains several en-
tries which are not linear in ε, so a transformation like (3.55) is not enough to make the
DE canonical. Here our strategy is an induction over the number of mass parameters.
We take the limit when some or all of the mass parameter to zero, and reduce Ĩ4 to the
known UT integral basis [21, 27, 74] in this limit. The reduction coefficients are not all
rational constants, so we can by-hand add some integrals to Ĩ4 to make the coefficients
to be constants, in the partially massless or completely massless limit. After this, the
resulting integral should be “closer” to a UT integral and indeed the corresponding
DE matrix row is completely linear in ε. Then we use a similarity transformation
like (3.55) again, to make the whole differential equation matrix proportional to ε.

The computer readable UT integrals definitions, as well as the corresponding definition
of the square roots, can be found in the “output” folder of the auxiliary files, named
“dbox4m_UT.txt” and “rootdef.txt”, respectively.
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3.3 Canonical differential equations and the alphabet

With Ĩ4 and Ĩ33 upgraded, numerically, we see that the differential equation is canonical.
Then the next computation is to get the analytic canonical differential equation. Here we
apply the finite-field package FiniteFlow [10] for this computation, since it is well known
that the canonical DE usually has much simpler coefficients than the ordinary DE and the
finite field reconstruction is extremely efficient. For this family, the canonical differential
equation reconstruction with FiniteFlow only takes about 14 seconds on a workstation
with 50 cores. The analytic expressions of the differential equations can be found in the
“output” folder of the auxiliary files, named “ UTDE.txt”, which is a list of 6 differential
equations, with respect to the kinematic variables s, t, and m2

1 ∼ m2
4, respectively.

Schematically, the canonical differential equations for the UT basis can be written as

∂xiI = ε(∂xiÃ)I, (3.57)

where
Ã =

∑
i

ai log(Wi) . (3.58)

Here ai’s are matrices of rational numbers irrelevant to xi’s. Wi are the symbol letters.
After integrating the expressions of the differential equations, we derived Ã. We found that
it contains 68 symbol letters. Among the letters, W1 ∼ W18 are even letters, which are
polynomials of the 6 kinematic variables. The rest 50 letters are odd under the simultaneous
sign change of all square roots r1, . . . , r11. Letters W19 ∼ W34 contains one square root
each, and W35 ∼W68 contains 2 square roots each. Specifically, the even letters are

W1 = m2
1, W2 = m2

2, W3 = m2
3, W4 = m2

4, W5 = s, W6 = t,

W7 = r2
5, W8 = r2

3, W9 = r2
2, W10 = r2

4, W11 = r2
7, W12 = r2

6,

W13 = r2
1, W14 = r2

8, W15 = r2
9, W16 = r2

10, W17 = r2
11,

W18 = s2t+ st2 − stm2
1 − stm2

2 + sm2
1m

2
2 − stm2

3 − sm2
1m

2
3 − tm2

1m
2
3 +m4

1m
2
3

+ tm2
2m

2
3 −m2

1m
2
2m

2
3 +m2

1m
4
3 − stm2

4 + tm2
1m

2
4 − sm2

2m
2
4 − tm2

2m
2
4

−m2
1m

2
2m

2
4 +m4

2m
2
4 + sm2

3m
2
4 −m2

1m
2
3m

2
4 −m2

2m
2
3m

2
4 +m2

2m
4
4,

(3.59)

The odd letters that contain one square root are,

W19 = f19 + r6
f19 − r6

, W20 = f20 + r7
f20 − r7

, W21 = f21 + r2
f21 − r2

, W22 = f22 + r4
f22 − r4

,

W23 = f23 + r5
f23 − r5

, W24 = f24 + r3
f24 − r3

, W25 = f25 + r1
f25 − r1

,

W26 = f26 +
(
m2

1 −m2
2
)
r2

f26 −
(
m2

1 −m2
2
)
r2
, W27 = f27 +

(
m2

3 −m2
4
)
r4

f27 −
(
m2

3 −m2
4
)
r4
,

W28 = f28 +
(
m2

2 −m2
3
)
r5

f28 −
(
m2

2 −m2
3
)
r5
, W29 = f29 +

(
m2

1 −m2
4
)
r3

f29 −
(
m2

1 −m2
4
)
r3
,

W30 = f30 +
(
m2

1m
2
3 −m2

2m
2
4
)
r1

f30 −
(
m2

1m
2
3 −m2

2m
2
4
)
r1
, (3.60)
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W31 = f31 +
(
st− sm2

3 +m2
2m

2
3 −m2

2m
2
4
)
r10

f31 −
(
st− sm2

3 +m2
2m

2
3 −m2

2m
2
4
)
r10

,

W32 = f32 +
(
−st+m2

1m
2
3 + sm2

4 −m2
1m

2
4
)
r11

f32 −
(
−st+m2

1m
2
3 + sm2

4 −m2
1m

2
4
)
r11

,

W33 = f33 +
(
st− sm2

1 +m2
1m

2
4 −m2

2m
2
4
)
r8

f33 −
(
st− sm2

1 +m2
1m

2
4 −m2

2m
2
4
)
r8
,

W34 = f34 +
(
−st+ sm2

2 +m2
1m

2
3 −m2

2m
2
3
)
r9

f34 −
(
−st+ sm2

2 +m2
1m

2
3 −m2

2m
2
3
)
r9
,

where

f19 = −s− t+m2
1 +m2

3, f20 = −s− t+m2
2 +m2

4, f21 = s−m2
1 −m2

2,

f22 = s−m2
3 −m2

4, f23 = t−m2
2 −m2

3, f24 = t−m2
1 −m2

4,

f25 = st−m2
1m

2
3 −m2

2m
2
4,

f26 = −sm2
1 +m4

1 − sm2
2 − 2m2

1m
2
2 +m4

2,

f27 = −sm2
3 +m4

3 − sm2
4 − 2m2

3m
2
4 +m4

4,

f28 = −tm2
2 +m4

2 − tm2
3 − 2m2

2m
2
3 +m4

3,

f29 = −tm2
1 +m4

1 − tm2
4 − 2m2

1m
2
4 +m4

4,

f30 = −stm2
1m

2
3 +m4

1m
4
3 − stm2

2m
2
4 − 2m2

1m
2
2m

2
3m

2
4 +m4

2m
4
4,

f31 = s2t2 − 2s2tm2
3 + 2stm2

2m
2
3 − 2sm2

1m
2
2m

2
3 + s2m4

3 − 2sm2
2m

4
3 +m4

2m
4
3

− 2stm2
2m

2
4 + 2sm2

2m
2
3m

2
4 − 2m4

2m
2
3m

2
4 +m4

2m
4
4,

f32 = s2t2 − 2stm2
1m

2
3 +m4

1m
4
3 − 2s2tm2

4 + 2stm2
1m

2
4 − 2sm2

1m
2
2m

2
4

+ 2sm2
1m

2
3m

2
4 − 2m4

1m
2
3m

2
4 + s2m4

4 − 2sm2
1m

4
4 +m4

1m
4
4,

f33 = s2t2 − 2s2tm2
1 + s2m4

1 + 2stm2
1m

2
4 − 2sm4

1m
2
4 − 2stm2

2m
2
4 + 2sm2

1m
2
2m

2
4

− 2sm2
1m

2
3m

2
4 +m4

1m
4
4 − 2m2

1m
2
2m

4
4 +m4

2m
4
4,

f34 = s2t2 − 2s2tm2
2 + s2m4

2 − 2stm2
1m

2
3 + 2stm2

2m
2
3 + 2sm2

1m
2
2m

2
3 − 2sm4

2m
2
3

+m4
1m

4
3 − 2m2

1m
2
2m

4
3 +m4

2m
4
3 − 2sm2

2m
2
3m

2
4.

(3.61)

The odd letters that contain 2 square roots are

W35 = f35 +r2r4
f35−r2r4

, W36 = f36 +r2r5
f36−r2r5

, W37 = f37 +r2r6
f37−r2r6

, W38 = f38 +r2r3
f38−r2r3

, (3.62)

W39 = f39 +r2r7
f39−r2r7

, W40 = f40 +r3r4
f40−r3r4

, W41 = f41 +r4r6
f41−r4r6

, W42 = f42 +r4r5
f42−r4r5

, (3.63)

W43 = f43 +r4r7
f43−r4r7

, W44 = f44 +r2r9
f44−r2r9

, W45 = f45 +r2r8
f45−r2r8

, W46 = f46 +r1r2
f46−r1r2

, (3.64)

W47 = f47 +r2r10
f47−r2r10

, W48 = f48 +r2r11
f48−r2r11

, W49 = f49 +r4r11
f49−r4r11

, W50 = f50 +r4r10
f50−r4r10

, (3.65)

W51 = f51 +r1r4
f51−r1r4

, W52 = f52 +r4r8
f52−r4r8

, W53 = f53 +r4r9
f53−r4r9

, W54 = f54 +r3r5
f54−r3r5

, (3.66)

W55 = f55 +r5r6
f55−r5r6

, W56 = f56 +r3r6
f56−r3r6

, W57 = f57 +r5r7
f57−r5r7

, W58 = f58 +r3r7
f58−r3r7

, (3.67)
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W59 = f59 +r1r5
f59−r1r5

, W60 = f60 +r5r9
f60−r5r9

, W61 = f61 +r5r10
f61−r5r10

, W62 = f62 +r1r3
f62−r1r3

, (3.68)

W63 = f63 +r3r8
f63−r3r8

, W64 = f64 +r3r11
f64−r3r11

, W65 = f65 +r1r8
f65−r1r8

, W66 = f66 +r1r9
f66−r1r9

, (3.69)

W67 = f67 +r1r10
f67−r1r10

, W68 = f68 +r1r11
f68−r1r11

. (3.70)

The definition of the polynomials f35 ∼ f68 is in the appendix B.
The computer readable results of the symbol letters and Ã can be found in the “output”

folder of the auxiliary files, named “letterdef.txt” and “Atilde.txt”, respectively.

3.4 Symbol structures

The result of the canonical differential equations (3.58) are derived in the last subsection.
The integration to get the analytic expressions for the UT integrals is not easy due to
the boundary condition. However, deriving the corresponding symbol letters are relatively
easier, which can already help us to acquire interesting properties of the analytic expres-
sions.The integrals’ symbols can be easily derived from (3.58), using (2.11), or equivalently,
the recursion

S(I(m+1)
i ) =

∑
k

(ak)ij
(
S(I(m)

j )⊗ S[Wk]
)
, (3.71)

with the lowest order boundary condition

S(I(0)
i ) = I

(0)
i . (3.72)

Having the specific results for the constant matrices ai defined in (3.58), in order to derive
the symbols for the integrals, we also need the results for I(0)

i . These are the coefficients
at the order ε−2L, being rational constants, where L is the loop order.

The coefficients I(0)
i can be derived analytically from the infrared and collinear regions

of Feynman integrals. The resulting coefficients at ε−4 order, namely I
(0)
i satisfy that

I
(0)
4 = −3

2 , I
(0)
i = 1 for

i ∈ {18, 33, 41, 43, 45, 47, 49, 51 ∼ 54, 56, 58 ∼ 61, 63, 64, 66 ∼ 74}, (3.73)

and I(0)
i = 0 for other choices of i. These coefficients are consistent with the numeric results

obtained using FIESTA [72, 75, 76].
With results of I(0)

i and ai defined in (3.58), we can use (3.71) and (3.72) to derive the
symbols of the UT integrals and higher ε orders. Using this method, we derived the symbol
letters of the UT integrals up to the weight-4 order. The result can be found in “output”
folder of the auxiliary files, named “UTSymbols.txt”, where “UTSymbol[k]” stands for I(k)

i .
From the results, we have observed the following phenomena: firstly, the complexity of the
symbol expressions goes rapidly up while the order increases. At the weight-1 order , the
symbols are quite simple. There are only 28 integrals having non-zero symbols at this order
with totally 64 terms. For example, we have S(I(1)

4 ) = 3S[W5] with 1 term. Among the
symbols at this order, the ones with most terms are

S(I(1)
18 ) = S[W1]− S[W2] + S[W3]− S[W4]− 2S[W5] (3.74)
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and
S(I(1)

33 ) = −S[W1] + S[W2]− S[W3] + S[W4]− 2S[W5], (3.75)

with 5 terms each. At the weight-2 order, there are 56 integrals of non-zero symbols with
totally 360 terms. The symbols having the most number of terms are S(I(2)

18 ) and S(I(2)
33 ),

with 31 terms each. At the weight-3 order, there are 56 integrals of non-zero symbols
with totally 2898 terms. The symbols having the most number of terms are also S(I(3)

18 )
and S(I(3)

33 ), with 213 terms each. At the weight-2 order, there are 74 integrals of non-zero
symbols with totally 35673 terms. The symbols having the most number of terms are again
S(I(4)

18 ) and S(I(4)
33 ), with 2139 terms each.

Secondly, many integrals have vanishing symbols at certain ε orders. At the weight-1
order, we have shown that only 28 integrals are with non-zero symbols. Integrals with
the zero symbol at the weight-0 order also have the zero symbol at the order the weight-1
order. The integrals with the zero symbol at weight 1 and 2, are Ii for

i ∈ {1 ∼ 3, 5 ∼ 17, 19 ∼ 32, 34 ∼ 40, 42, 44, 46, 48, 50, 55, 57, 62, 65}. (3.76)

At the weight-2 order only 18 integrals have the zero symbol. They are Ii for

i ∈ {1 ∼ 3, 5 ∼ 9, 17, 19, 20, 22 ∼ 26, 32, 38}. (3.77)

These integral also have the zero symbol at the weight-3 order. At the weight-4 order, all
integrals have nonzero symbols. Note that, (3.77) is a subset of (3.76).

Thirdly, letters cannot appear at arbitrary positions of the symbols. To state this, we
the following terminology: the symbols of UT integrals consists of terms proportional to
some S[Wi1 ,Wi2 , · · · ], of which we call Wi1 the first letter (or letter at the first entry), Wi2

the second letter (or letter at second entry) and so on. As we can see from the results,
among the 68 symbol letters, only W1 ∼ W6 can appear at the first entries, which are
exactly the 6 kinematic variables s, t, m2

1, m2
2, m2

3 and m2
4. The letters appearing at the

second entries are W1 ∼W6 and W21 ∼W30.
Moreover, some pairs of letters can never be next to each other in the symbols. We

can explain this from (3.71). For constant matrices ai and aj , if ai aj = aj ai = 0, then
according to (3.71), Wi and Wj cannot appear at adjacent entries, which means, symbols
of the UT integrals contain no term like S[· · · ,Wi,Wj , · · · ] or S[· · · ,Wj ,Wi, · · · ], at all
orders of ε. Then we call that the adjacency between letters Wi and Wj is forbidden.
Among all possible adjacencies of 68 letters, which are 68× 69/2 = 2346 in total, only 919
of them are allowed and the rest 1427 are forbidden. The explicit allowed and forbidden
letter pairs can be found in “output” folder of the auxiliary files, named “AdjLetters.txt”
and “NonAdjLetters.txt”, respectively.

3.5 Check with known dual conformal invariant integral result

Some of the symbol derived from canonical differential equations in section 3.4 can be veri-
fied with results from the dual conformal invariance (DCI) point of view. (An introduction
to DCI integrals is to be given in the next section.) We take I1 (3.10), which is the scalar
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double-box integral (proportional to G[1, 1, 1, 1, 1, 1, 1, 0, 0]) as an example. Such a ladder
integral has been derived previously (see refs. [20, 70]) as

f (L) =
2L∑
m=L

m!(−1)m(log(−zz̄))2L−m

L!(m− L)!(2L−m)! (Lim(z)− Lim(z̄)) . (3.78)

From this result we can derive the corresponding symbols.
Taking the loop number L = 2, we get the scalar double box UT integral f (2) at the

right hand side. In (3.78), the integral is in two variables z and z̄. They are related to the
kinematic variables s, t, and m1 ∼ m4 as

zz̄

(1− z)(1− z̄) = x2
13x

2
57

x2
15x

2
37
,

1
(1− z)(1− z̄) = x2

17x
2
35

x2
15x

2
37
, (3.79)

where
x2

13 = m2
1, x

2
57 = m2

3, x
2
15 = s, x2

37 = t, x2
17 = m2

4, x
2
35 = m2

2. (3.80)

Thus, we are able to derive the symbol expressions for f (2) in terms of z and z̄ and use
the relations above to rewrite it in terms of s, t, and m1 ∼ m4. Before this, we need to
mention that the DCI result (3.78) is derived at dimension d = 4 and this integral is UV
and IR finite. From the expression (3.78), we can derive S(f (2)). In the right hand side
of (3.78), the presenting transcendental functions are logarithm functions log(z) and poly
logarithm functions Lim(z). The corresponding symbols are

S(log(z)) = S[z], (3.81)

and
S(Lim(z)) = −S[1− z, z, · · · , z︸ ︷︷ ︸

(m−1)

]. (3.82)

To derive the symbol S(f (2)) from the symbols of above functions, we may need the fol-
lowing properties of symbols: for two functions f1 and f2 whose symbols are

S(fi) =
∑
j

cijSij [. . . ], (3.83)

where i = 1, 2, we have the following relations

S(f1 + f2) = S(f1) + S(f2), (3.84)

S(f1f2) =
∑
i,j

c1ic2j Shuffle(S1i[. . . ], S2j [. . . ]). (3.85)

The operation shuffle for two symbol monomials S[a1, . . . , am] and [b1, . . . , bn] results in
a summation of symbol monomials with a sequence of (m + n) letters which are some
permutations of {a1, . . . , am, b1, . . . , bn} keeping the relative orders of a’s and b’s unchanged.
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Using (3.81)∼(3.85), as well as (3.78), we can calculate the symbol of f (2) as

S(f (2)) = S[1− z, z, z, z̄] + S[1− z, z, z̄, z]− S[1− z, z, z̄, z̄] + S[1− z, z̄, z, z]
− S[1− z, z̄, z, z̄]− S[1− z, z̄, z̄, z] + S[z, 1− z, z, z]− S[z, 1− z, z, z̄]
− S[z, 1− z, z̄, z]− S[z, z, 1− z, z] + S[z, z, 1− z̄, z̄] + S[z, 1− z̄, z, z̄]
+ S[z, 1− z̄, z̄, z]− S[z, 1− z̄, z̄, z̄]− S[z, z̄, 1− z, z] + S[z, z̄, 1− z̄, z̄]
+ S[1− z̄, z, z, z̄] + S[1− z̄, z, z̄, z]− S[1− z̄, z, z̄, z̄] + S[1− z̄, z̄, z, z]
− S[1− z̄, z̄, z, z̄]− S[1− z̄, z̄, z̄, z] + S[z̄, 1− z, z, z]− S[z̄, 1− z, z, z̄]
− S[z̄, 1− z, z̄, z]− S[z̄, z, 1− z, z] + S[z̄, z, 1− z̄, z̄] + S[z̄, 1− z̄, z, z̄]
+ S[z̄, 1− z̄, z̄, z]− S[z̄, 1− z̄, z̄, z̄]− S[z̄, z̄, 1− z, z] + S[z̄, z̄, 1− z̄, z̄].

(3.86)

This result can also be found in “output” folder of the auxiliary files, named “f2Symbol.txt”.
In order to compare with the symbol from DCI with that from the canonical differ-

ential equations of the section 3.4, we consider the relations between the two languages
introduced in (3.79) and (3.80). After some simple calculations, we get the relations of the
corresponding symbols,

dlog(z) = 1
2
(
dlogW1 + dlogW3−dlogW2 − dlogW4 − dlogW25

)
,

dlog(1− z) = 1
2
(
dlogW5 + dlogW6−dlogW2 − dlogW4

)
+ 1

4
(
dlogW30−dlogW25

)
,

dlog(z̄) = 1
2
(
dlogW1 + dlogW3 + dlogW25−dlogW2 − dlogW4

)
,

dlog(1− z̄) = 1
2
(
dlogW5 + dlogW6−dlogW2 − dlogW4

)
+ 1

4
(
dlogW25−dlogW30

)
,

(3.87)

where the letters Wi are defined in section 3.3. With these relations we can rewrite S(f (2))
in terms of Wi’s, considering the symbol property that

S[a1, . . . , ai−1, ai, ai+1, . . . , am] =
∑
j

cjS[a1, . . . , ai−1, bij , ai+1, . . . , am], (3.88)

if
dlog(ai) =

∑
j

cjdlog(bij). (3.89)

After the variable replacement using (3.87) to (3.89), S(f (2)) is written in a summation
of 474 terms of symbols formed by letters W1 ∼ W6, W25 and W30. This expression is
identical to the symbol of I(4)

1 calculated in the section 3.4.

4 The symbology from twistor geometries of DCI integrals

In this section, we move to the study of the alphabet as well as certain properties of the
symbols from the so-called Schubert problem, namely by studying geometric configurations
in momentum twistor space associated with (leading singularities of) DCI integrals. This
is part of a on-going program towards understanding the symbology of DCI integrals, first
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from cluster algebras (directly related to quiver diagrams of the kinematics) [19, 20, 38]
and then from Schubert problems or twistor geometries as mentioned above [40]. Most
recently, [41] extends the twistor-geometry method to non-DCI integrals. In the following,
we will first give a quick review of DCI integrals, focusing on those relevant for our studies,
and then explain the complete alphabet from twistor geometries, as well as certain proper-
ties of the symbol. We will mainly follow the analysis in [40] for predicting the alphabet of
10-point double-box integral, which corresponds to the alphabet in section 3.3 after taking
non-DCI limits. Readers can refer to [40, 41] for a systematic discussion of the method,
for both DCI and general Feynman integrals.

4.1 Review of relevant DCI integrals

Recall that for a n-point massless planar integral, we can first introduce dual points {xi}
such that xi+1 − xi = pi with xn+1 = x1 to make the momentum conservation manifest,
and then the integral only depends on planar variables, which are also the first entries:

x2
i,j := (xi − xj)2 = (pi + · · ·+ pj−1)2.

It is convenient to further introduce momentum twistors Zi ∈ P3 such that each dual point
xi is associated with a bi-twistor Zi−1 ∧ Zi and planar variables become

(xi − xj)2 = Zi−1 ∧ Zi ∧ Zj−1 ∧ Zj
(Zi−1 ∧ Zi ∧ I∞)(Zj−1 ∧ Zj ∧ I∞) = 〈i− 1 i j − 1 j〉

〈i− 1 i∞〉〈j − 1 j∞〉 ,

where 〈ijkl〉 := det(ZiZjZkZl) and I∞ is the infinity bi-twistor. In terms of momentum
twistors, the massless conditions (xi+1 − xi)2 = p2

i = 0 are automatically solved, and
conformal transformations of dual momenta become SL(4) linear transformations of {Zi}
together with rescaling Zi → tiZi. We say that an integral is dual conformal invariant if it
only depends on cross-ratios of planar variables (or four-brackets 〈i − 1 i j − 1 j〉) and do
not depend on the infinity bitwistor I∞.

Note that for a general planar integral with m (possibly massive) legs, the kinematics
can be described by a subset of n ≥ m dual points as above, by identifying each massive
momentum with two (or more) massless legs [18]. For example, a one-mass triangle kine-
matics depends on 3 of 4 dual points, e.g. x2, x3, x4 (but not x1), and a four-mass box
kinematics depends on 4 of 8 dual points, e.g. x2, x4, x6, x8. Moreover, if we start with a
DCI integral which has at least one dual point which is not null separated from adjacent
ones, we can arrive at a non-DCI integral by simply sending it to infinity, or identifying this
bi-twistor with I∞. As explained in [19], a general DCI kinematics with n−2m massless
legs and m massive legs has dimension 3n−2m−15.1 By sending a point (between two
massive legs) to infinity, this is exactly the dimension of a non-DCI kinematics with m−1
massive legs and n−2m massless ones: we have 3 degree of freedoms for each massless leg,
and 4 for each massive one, minus the dimension of Poincare group −10 and an overall
scaling, 3× (n−2m) + 4× (m−1)− 10− 1.

1Except for the special case n = 8, m = 4 which has dimension 2 instead of 1.
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For our purpose, we start with a DCI kinematics that depends on five generic dual
points (fully massive pentagon) with n = 10,m = 5:

1 10

3
2

4
5 6

7

8
9

x2 x10x2 x10

x4 x8
x6

which depends on 3× 10− 2× 5− 15 = 5 cross-ratios

u1 =
x2

4,10x
2
6,8

x2
6,10x

2
4,8
, u2 =

x2
2,8x

2
4,6

x2
2,6x

2
4,8
, v1 =

x2
8,10x

2
4,6

x2
4,8x

2
6,10

, v2 =
x2

2,4x
2
6,8

x2
2,6x

2
4,8
, u3 =

x2
2,10x

2
4,6

x2
2,6x

2
4,10

. (4.1)

At one-loop level, any integral with this pentagon kinematics can be reduced to five four-
mass boxes

I4m(4, 6, 8, 10), I4m(2, 4, 6, 10), I4m(2, 4, 8, 10), I4m(2, 6, 8, 10), I4m(2, 4, 6, 8), (4.2)

where each DCI four-mass box integral gives

I4m(a,b,c,d)=
xa

xd

xc

xb = 1
∆abcd

(
Li2(1−zabcd)−Li2(1−z̄abcd)+ 1

2 log(vabcd)log
(
zabcd
z̄abcd

))
.

We have seen that I4m only depends two DCI variables

uabcd =
x2
a,bx

2
c,d

x2
a,cx

2
b,d

=: zabcdz̄abcd, vabcd =
x2
a,dx

2
b,c

x2
a,cx

2
b,d

=: (1− zabcd)(1− z̄abcd),

and it involves a square root,

∆abcd :=
√

(1− uabcd − vabcd)2 − 4uabcdvabcd.

Note that their {u, v} are related to the five cross-ratios (4.1) as

{u1, v1},
{
u3,

v2
u1

}
,

{
v1v2
u1u2

,
u3
u2

}
,

{
v1
u2
,
u1u3
u2

}
, {u2, v2}

respectively. In order to arrive at non-DCI kinematics, one can send any one of the five
dual points to infinity and identify the resulting massive corners with four massive legs of
four-mass non-DCI kinematics. As shown in the following subsection, this limit induces
a map between cross-ratios (4.1) and kinematics variables {s, t,m2

i }i=1,··· ,4, and reveals
connections between DCI and non-DCI letters for one-loop integrals. In fact, this is nothing
but the well-known example that in such limits, a DCI four-box becomes a (non-DCI)
massive triangle integral (literally the box with a point at infinity).
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Similarly, we can move to two loops, and the prototype of DCI integrals are 10-point
double-box of the form:

8
9

7
6

3
2

4
5

1 10

Note that this DCI integral has not been computed directly, though a similar 9-point double
box (with leg 10 removed) has been computed. However, alphabets of such integrals can
be predicted by considering twistor geometries associated with leading singularities (or the
Schubert problems) as first proposed by N. Arkani-Hamed and worked out for numerous
one- and two-loop examples in [40]. We will not review the details of such a method, but
just to outline the basic idea as follows.

The Schubert problem concerns geometric configurations of intersecting lines in mo-
mentum twistor space, which are associated with maximal cuts, or leading singularities of
(four-dimensional) integrals [29]. By representing each loop and external dual point as a
line in twistor space, each cut propagator corresponds to intersecting two lines, and it is a
beautiful problem for determining the intersections on internal or external lines. Whenever
there are at least four points on such a line, the only DCI quantities one can write down are
cross-ratios of such points. Remarkably, as shown in [40], such cross-ratios lead to symbol
letters of DCI integrals! The classical example include A3, E6 alphabets for n = 6, 7 [16]
and the 9 + 9 algebraic letters for n = 8 two-loop integrals [77].

It is straightforward to apply Schubert-problem-based method to 10-point double box
(similar computation has been done for 9-point case in [40]), as we will demonstrate soon.
Here we first give the result for its leading singularity, which is proportional to (inverse of)

∆2=
√

(1−u1−u2+u1u3)2−4v1v2.

As we will see, by sending certain dual point xi to infinity, this gives remaining square
roots for non-DCI integrals, in addition to those from one-loop leading singularities.

4.2 The alphabet explained by limits of DCI integrals

4.2.1 Even letters

To reduce the DCI kinematics to non-DCI four-mass kinematics, we take the non-DCI limit
x2 →∞ in the DCI fully massive pentagon, then we get a non-DCI box

x10

x8

x6

x4

x2

−→

(P2)

(P1)

(P3)

(P4)x10

x8

x6

x4 ,
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and we can represent massive legs by P1 = x10,4, P2 = x4,6, P3 = x6,8 and P4 = x8,10. In
this limit, finite planar variables become

x2
6,10 → (P1 + P2)2 = s, x2

4,8 → (P2 + P3)2 = t,

x2
4,10 → P 2

1 = m2
1, x2

4,6 → P 2
2 = m2

2, x2
6,8 → P 2

3 = m2
3, x2

8,10 → P 2
4 = m2

4,
(4.3)

and other infinite x2
2,∗ cancel as x2

2,i/x
2
2,j → 1 in cross-ratios {uabcd, vabcd}. For example,

u24810 →
x2

8,10
x2

4,10
→ m2

4
m2

1
, v24810 →

x2
4,8

x2
4,10
→ t

m2
1
, (4.4)

and we can also see that

∆24810 →
1
m2

1

√
(m2

1 − t−m2
4)2 − 4tm2

4 = r3
m2

1
, (4.5)

so ∆24810 becomes r3 up to a factor m2
1! Similarly, the square roots of five four-mass boxes

in eq. (4.2) give {r1, r2, r3, r4, r5} (defined in eq. (3.8)) in this limit respectively.
Note that we can also set another xi to ∞ with certain identification of massive legs,

then the same four-mass square root may correspond to another one-loop square root. For
example, sending x8 →∞, ∆24810 gives r5 by identifying P1 = x6,10, P2 = x10,2, P3 = x2,4
and P4 = x4,6. In addition, under any identification ∆24810 always gives r1 when sending
x6 → ∞. The same four-mass square root may also correspond to different forms of the
same square root under different non-DCI limits. For example, if we take x4 →∞ and set
P1 = x10,2, P2 = x2,6, P3 = x6,8, P4 = x8,10, then

∆24810 →
1
x2

2,8

√
(x2

2,8 − x2
2,10 − x2

8,10)2 − x2,10x8,10 →
1
t

√
(t−m2

1 −m2
4)2 − 4m2

1m
2
4 = r3

t
,

(4.6)
Two limits x2 → ∞ and x4 → ∞ coincidentally give the same square root r3 since the
four-mass box I4m(2, 4, 8, 10) becomes the same triangle

x10

x8

x4

x2 −→

(P2)

(P1)

(P3)

(P4)

.

In a word, five four-mass square roots always give the set {r1, . . . , r5}, no matter how we
take the limit xi →∞ and how we identify external massive legs.
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For two-loop cases, we again send x2 →∞, then

8
9

7
6

3
2

4
5

1 10

−→

8
9

7
6

3 10

4
5

.

Now we have different choices to label the massive corners as the non-DCI massive legs.
For example, if we still identify P1 = x10,4, P2 = x4,6, P3 = x6,8 and P4 = x8,10, then
∆2 → 1

str9. Similarly, if we identify P3 = x10,4, P4 = x4,6, P1 = x6,8 and P2 = x8,10,
∆2 → 1

str11.
Here we list all the proper limits and corresponding identifications to get the other

square roots:

r6 : sending x6 → ∞ with the identification P1 = x10,2, P2 = x2,4, P3 = x4,8 and
P4 = x8,10,

r7 : sending x6 → ∞ with the identification P4 = x10,2, P1 = x2,4, P2 = x4,8 and
P3 = x8,10;

r8 : sending x8 → ∞ with the identification P2 = x10,2, P3 = x2,4, P4 = x4,6 and
P1 = x6,10,

r10 : sending x8 → ∞ with the identification P4 = x10,2, P1 = x2,4, P2 = x4,6 and
P3 = x6,10;

Note that we can also reproduce the six two-loop roots starting from other double-box
integrals with the same topology but the external legs cyclically rotated.

A nice consequence of such identifications is that the roots always take the form r2
i :=

A2
i − 4Bi, where Ai and Bi are polynomials in kinematic variables. We we record them as

r2
1 = (st−m2

1m
2
3 −m2

2m
2
4)2 − 4m2

1m
2
2m

2
3m

2
4,

r2
2 = (s−m2

1 −m2
2)2 − 4m2

1m
2
2, r2

3 = (t−m2
1 −m2

4)2 − 4m2
1m

2
4,

r2
4 = (s−m2

3 −m2
4)2 − 4m2

3m
2
4, r2

5 = (t−m2
2 −m2

3)2 − 4m2
2m

2
3,

r2
6 = (s+ t−m2

1 −m2
3)2 − 4m2

2m
2
4, r2

7 = (s+ t−m2
2 −m2

4)2 − 4m2
1m

2
3,

r2
8 = ((m2

1 −m2
2)m2

4 + s(t−m2
1))2 − 4sm2

1m
2
3m

2
4,

r2
9 = ((m2

2 −m2
1)m2

3 + s(t−m2
2))2 − 4sm2

2m
2
3m

2
4,

r2
10 = ((m2

3 −m2
4)m2

2 + s(t−m2
3))2 − 4sm2

1m
2
2m

2
3,

r2
11 = ((m2

4 −m2
3)m2

1 + s(t−m2
4))2 − 4sm2

1m
2
2m

2
4,

(4.7)

where r2, · · · , r5 form a cyclic orbit, so do r6, r7 and r8, · · · , r11. We can write “one-loop”
square roots r2

i for i = 1, . . . , 5 as A2
i − 4Bi in different ways, e.g.

r2
3 = (t−m2

1 −m2
4)2 − 4m2

1m
2
4 = (m2

1 − t−m2
4)2 − 4tm2

4, (4.8)
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which reflect the fact that there are different choices to take limits for the one-loop case.
Note that no matter how we write it, Bi is always a monomial which is positive when all
kinematic variables are positive. Furthermore, since the DCI square root is positive for any
positive DCI kinematic point, these square roots stay positive in non-DCI limit for such
positive regions.

We have one more comment on the W18 and its positivity. Note that there exists a
DCI letter

W̃ = u2
1u2u3 − u2

1u2 − u2
1u

2
3 − u2

1u3v2 + u2
1u3 − u1u

2
2 − u1u2u3v1 + u1u2u3 + u1u2v1

+ u1u2v2 + u1u2 + u1u3v1v2 + u1u3v1 + u1u3v2 − u1u3 + u1v1v2 − u1v1 + u2v1v2

− u2v2 − v2
1v2 − v1v

2
2 + v1v2 (4.9)

whose non-DCI limits are always proportional to W18, independent of the dual point xi we
send to infinity. For example, the DCI letter becomes

W̃ → −m
2
2m

2
3

s3t2
W18, W̃ → −

m2
3

m4
2s

2W18, (4.10)

when sending x2 →∞ or x4 →∞ respectively, and similar for the other 3 non-DCI limits.
The crucial point is that W̃ is positive definite in the positive region G+(4, 10), as can be
checked by any positive parameterization [78]. It is believed that W̃ is a letter of 10-point
double-box integral.

4.2.2 Odd letters

Next we study algebraic or odd letters, i.e. those that involve square roots, and their log flip
signs when we take flip the sign of a square root. The discussion above directly motivates
us to relate odd letters that only involve one square root, i.e. W19,W20, . . . ,W34, to similar
odd letters for DCI integrals. For one-loop case, it is well known that odd letters of four-
mass box (and higher-loop generalizations such as ladder integrals) take the form zi/z̄i and
(1 − zi)/(1 − z̄i). In the “non-DCI” limit x2 → ∞ with P1 = x10,4, P2 = x4,6, P3 = x6,8
and P4 = x8,10, the five z’s obtained from limits of one-loop case take the form

z1 = 1
2 + m2

1m
2
3 −m2

2m
2
4 − r1

2st , z2 = 1
2 + m2

2 − s+ r2
2m2

1
, z3 = 1

2 + m2
4 − t+ r3

2m2
1

,

z4 = 1
2 + −m

2
3 +m2

4 − r4
2s , z5 = 1

2 + m2
2 −m2

3 − r5
2t ,

(4.11)

and z̄i := zi(ri → −ri). Remarkably, we find that the 10 odd letters from four-mass boxes,
zi/z̄i and (1− zi)/(1− z̄i) for i = 1, · · · , 5 are nothing but (multiplicative combinations of)
W21, . . . ,W30; precisely we have

W21 = z2
z̄2
,W22 = 1−z4

1− z̄4

z̄4
z4
,W23 = 1−z5

1− z̄5

z̄5
z5
,W24 = z̄3

z3
,W25 = 1−z1

1− z̄1

z̄1
z1
,W26 =

(1−z2
1− z̄2

)2 z̄2
z2
,

W27 = 1−z4
1− z̄4

z4
z̄4
, W28 = 1− z̄5

1−z5

z̄5
z5
, W29 =

(1− z̄3
1−z3

)2 z3
z̄3
, W30 = 1− z̄1

1−z1

z̄1
z1
. (4.12)
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For the remaining 6 odd letters with single square roots obtained from two-loop diagrams,
they cannot be interpreted as odd letters of a four-mass box, but it is straightforward to
introduce analogous z’s

z6 = 1
2 + s−m2

3 + r6
2
(
t−m2

1
) , z7 = 1

2 + t−m2
4 + r7

2
(
s−m2

2
) ,

z8 = 1
2 + (m2

1 −m2
2)m2

4 + r8
2s
(
t−m2

1
) , z9 = 1

2 + (m2
2 −m2

1)m2
3 + r9

2s
(
t−m2

2
) ,

z10 = 1
2 + (m2

3 −m2
4)m2

2 + r10
2s
(
t−m2

3
) , z11 = 1

2 + (m2
4 −m2

3)m2
1 + r11

2s
(
t−m2

4
)

(4.13)

which nicely simplify them as (note there is no letters of the form (1− z)/(1− z̄)):

W19 = z̄6
z6
, W20 = z̄7

z7
, W31 =

(
z10
z̄10

)2
, W32 =

(
z̄11
z11

)2
, W33 =

(
z8
z̄8

)2
, W34 =

(
z̄9
z9

)2
.

Thus all odd letters with single square root can be explained from those for DCI integrals.
Now we turn to the other 34 odd letters W35, . . . ,W68 involving two square roots,

which take the form
a+ rirj
a− rirj

with a being generally involved polynomials in kinematic variables, and we call them mixed
algebraic letters to distinguish them from those letters with only one square root. Mixed
algebraic letters only show up as two-loop letters. We can generate them from the approach
of Schubert problems and the alphabet of 10-point double-box integral above.

To be explicit, we consider 5 lines, (12), (34), (56), (78), (9 10) in momentum twistor
space, which correspond to dual points {x2, x4, x6, x8, x10} respectively. Following the
procedure in [40], for each DCI four-mass-box I4m(i, j, k, l), two solutions (AB)±i,j,k,l from
its maximal cut produce 8 intersections on its 4 external lines, which will be denoted
as {α±i,j,k,l, β

±
i,j,k,l, γ

±
i,j,k,l, δ

±
i,j,k,l} on {(i−1i), (j−1j), (k−1k), (l−1l)} respectively. Further-

more, after cutting all propagators of the 10-point double-box integral, i.e. looking for two
lines (CD) and (EF ) such that (CD) intersects with (12), (34), (56) (EF ), and (EF ) inter-
sects with (CD), (56), (78), (9 10), we have two pairs of solutions {(CD)i, (EF )i}i=±, and
each external line contains two new intersections, which we denote them as {ε±k }k=2,4,6,8,10
on xk. Note that no matter i = + or i = −, three lines (CD)i (EF )i and (56) share a
same intersection εi6, thus (56) has only two new intersections on it as well.

(AB)+
i,j,k,l

(AB)+
i,j,k,l

i−1

i

j−1

j

k−1

k

l−1

l

α+
i,j,k,l

α−i,j,k,l

β+
i,j,k,l

β−i,j,k,l

γ+
i,j,k,l

γ−i,j,k,l

δ+
i,j,k,l

δ−i,j,k,l

2 10

1 9

3

4 8

7
5 6

(CD)+(CD)− (EF )−(EF )+

ε+6

ε+10
ε+8

ε+4

ε+2

ε−6

ε−10
ε−8

ε−4

ε−2
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Similar to the 9-point case in [40], now we can construct possible DCI letters for 10-
point two-loop double-box integral from the intersections on external lines, once a line
has four distinct points on it. The upshot is that all 34 mixed algebraic letters here are
non-DCI limits of certain DCI letters constructed in this approach!

For instance, to generate W35, which involves two one-loop square roots r2 and r4. We
consider four distinct intersections

{X1 = α+
2,4,6,10, X2 = α−2,4,6,10, X3 = α+

2,6,8,10, X4 = α−2,6,8,10} (4.14)

on the line (12). Since each Xi is an individual momentum twistor, we can construct the
following cross-ratio

(X1, X3)(X2, X4)
(X1, X4)(X2, X3) := 〈X1X3I〉〈X2X4I〉

〈X1X4I〉〈X2X3I〉

from this configuration. Here I is a reference line (bitwistor) in momentum twistor space
that does not intersect with (12). It can be directly checked that such a cross-ratio is DCI
and actually independent of I. Moreover, after taking its non-DCI limit x2 → ∞ and
identifying P1 = x10,4, P2 = x4,6, P3 = x6,8, P4 = x8,10, this cross-ratio yields the mixed
algebraic letterW35! Furthermore, W37, involving a one-loop square root r2 and a two-loop
square root r6, can also be constructed from this approach. In this case we take four points
on (56) as

{X1 = ε+6 , X2 = ε−6 , X3 = γ+
2,4,6,10, X4 = γ−2,4,6,10}, (4.15)

and consider (X1,X3)(X2,X4)
(X1,X4)(X2,X3) again. Non-DCI limit x6 → ∞ of this letter with the identifi-

cation P1 = x10,2, P2 = x2,4, P3 = x4,8 and P4 = x8,10 then gives W37 as we want.
In the rest of this subsection, we list all the configurations we use to construct 34 mixed

algebraic letters. We first classify 34 mixed algebraic letters according to different square
roots, e.g. letters with only one-loop square roots and letters with various two-loop roots.
For each group we fix a non-DCI limit and the corresponding identification of external
legs, and present one possible choice {X1, X2, X3, X4} to construct each individual letter.
We stick to the cross-ratio (X1,X3)(X2,X4)

(X1,X4)(X2,X3) from each configuration and consider its non-DCI
limit in each case. Note that the configurations we present here are not unique and these
mixed algebraic letters can be generated by many different choices.

1. letters with only one-loop square roots r1 ∼ r5: this group of letters consists of W35,
W36, W38, W40, W42 and W54 with only triangle roots, and W46, W51, W59, W62 with
r1. To generate them, we keep the non-DCI limit x2 → ∞ and the identification
P1 = x10,4, P2 = x4,6, P3 = x6,8, P4 = x8,10. As we have pointed out, five square
roots of DCI four-mass boxes in (4.1) give {r1, r2, r3, r4, r5} respectively. Then the
configurations we need are

W35 : {α+
2,4,6,10,α

−
2,4,6,10,α

+
2,6,8,10,α

−
2,6,8,10}, W36 : {α+

2,4,6,10,α
−
2,4,6,10,α

+
2,4,6,8,α

−
2,4,6,8}

W38 : {α+
2,4,6,10,α

−
2,4,6,10,α

+
2,4,8,10,α

−
2,4,8,10}, W40 : {α+

2,4,8,10,α
−
2,4,8,10,α

+
2,6,8,10,α

−
2,6,8,10}

W42 : {α+
2,6,8,10,α

−
2,6,8,10,α

+
2,4,6,8,α

−
2,4,6,8}, W54 : {α+

2,4,8,10,α
−
2,4,8,10,α

+
2,4,6,8,α

−
2,4,6,8},
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for those with only triangle square roots, and

W46 : {δ+
4,6,8,10, δ

−
4,6,8,10, δ

+
2,4,6,10, δ

−
2,4,6,10}, W51 : {δ+

4,6,8,10, δ
−
4,6,8,10, δ

+
2,6,8,10, δ

−
2,6,8,10}

W59 : {γ+
4,6,8,10, γ

−
4,6,8,10, γ

+
2,4,6,8, γ

−
2,4,6,8}, W62 : {γ+

4,6,8,10, γ
−
4,6,8,10, γ

+
2,4,8,10, γ

−
2,4,8,10}

for those with one triangle square root r2 ∼ r5 and one r1.

2. letters with r6 or r7: letters involving r6 consists ofW37,W41,W55,W56, and similarly
those with r7 are W39, W43, W57 and W58. Sending x6 → ∞ with the identification
P1 = x10,2, P2 = x2,4, P3 = x4,8 and P4 = x8,10 (note that under this limit five square
roots of DCI four-mass boxes (4.1) give {r4, r2, r1, r3, r5} respectively), we can then
recover the four letters from (56) as

W37 : {γ+
2,4,6,10, γ

−
2,4,6,10, ε

+
6 , ε
−
6 }, W41 : {β+

4,6,8,10, β
−
4,6,8,10, ε

+
6 , ε
−
6 },

W55 : {γ+
2,4,6,8, γ

−
2,4,6,8, ε

+
6 , ε
−
6 }, W56 : {β+

2,6,8,10, β
−
2,6,8,10, ε

+
6 , ε
−
6 }.

On the other hand, if we keep x6 → ∞ but change the identification to P4 = x10,2,
P1 = x2,4, P2 = x4,8 and P3 = x8,10 (five square roots of DCI four-mass boxes (4.1)
give {r5, r3, r1, r4, r2} respectively), we will get the four letters with r7 from the four
configurations instead.

3. letters with r8 or r10: letters involving r8 consists of W45, W52, W63 W65. Sending
x8 →∞ with the identification P2 = x10,2, P3 = x2,4, P4 = x4,6 and P1 = x6,10 (five
square roots of DCI four-mass boxes (4.1) give {r3, r1, r5, r2, r4} respectively), we can
then recover these four letters from

W45 : {γ+
2,6,8,10, γ

−
2,6,8,10, ε

+
8 , ε
−
8 }, W52 : {δ+

2,4,6,8, δ
−
2,4,6,8, ε

+
8 , ε
−
8 },

W63 : {γ+
4,6,8,10, γ

−
4,6,8,10, ε

+
8 , ε
−
8 }, W65 : {δ+

2,4,6,10, δ
−
2,4,6,10, ε

+
10, ε

−
10}.

On the other hand, if we keep x8 → ∞ but change the identification to P4 = x10,2,
P1 = x2,4, P2 = x4,6 and P3 = x6,10 (five square roots of DCI four-mass boxes (4.1)
give {r5, r1, r3, r4, r2} respectively), we will get the four letters W47, W50, W61 and
W67 with r10 from the four configurations instead.

4. letters with r9 or r11: letters involving r9 consists ofW44,W53,W60 andW66. Sending
x2 → ∞ with the identification P1 = x10,4, P2 = x4,6, P3 = x6,8, P4 = x8,10 (same
limit and identification as that for the first group), we can then recover these four
letters from

W44 : {α+
2,4,6,10, α

−
2,4,6,10, ε

+
2 , ε
−
2 }, W53 : {α+

2,6,8,10, α
−
2,6,8,10, ε

+
2 , ε
−
2 },

W60 : {α+
2,4,6,8, α

−
2,4,6,8, ε

+
2 , ε
−
2 }, W66 : {δ+

4,6,8,10, δ
−
4,6,8,10, ε

+
10, ε

−
10}.

On the other hand, if we change the identification to P3 = x10,4, P4 = x4,6, P1 = x6,8
and P2 = x8,10 (five square roots of DCI four-mass boxes (4.1) give {r1, r4, r5, r2, r3}),
we recover letters W48, W49, W64 and W68 with r11.
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Note that the appearance of algebraic letters with two-loop square roots has cer-
tain pattern. For instance, on the 17th row of the DE (I17 = r6G0,1,1,0,1,1,1,0,0,
which is finite), there are five off-diagonal elements which are just the five odd letters
{W19,W37,W41,W55,W56} with r6. Furthermore, these are exactly the last entries of I17
at O(ε)! Similar phenomenon applies to double-triangle I32 with r7 and box-triangles I5,
I6, I7, I8 with r8, · · · , r11, respectively: at leading order, there are exactly 5 last entries,
namely those 5 odd letters containing ri, for each of these integrals.

Last but not least, we note that the product of numerator and denominator of each
mixed algebraic letter is always proportional to the last rational letter, which was shown
to be the Gram determinant, and other factors of this product are just kinematic variables
m2

1, . . . ,m
2
4, s, t. For example, the product of numerator and denominator of W36 is

(f36 + r2r5)(f36 − r2r5) = 4m2
2W18. (4.16)

Therefore, any mixed odd letters are positive in the positive region.

4.3 Properties of the symbols

In this section, we investigate some analytic structures of these integrals from their symbols,
which can be nicely understood from DCI integrals.

From canonical differential equations dIi = ε
∑
j d logAij Ij , we can construct symbols

of integrals in the basis by

I(w)
a =

∑
iw

I
(w−1)
iw

⊗Aaiw =
∑

i1,...,iw

I
(0)
i1
Ai2i1 ⊗Ai3i2 ⊗ · · · ⊗ Aiwiw−1 ⊗Aaiw , (4.17)

where I(w)
k is the series coefficient of Ik(ε) = ∑

w≥0 I
(w)
k εw−4. One can easily check the

solution (4.17) by series expansion of the canonical differential equations.
The starting point is to understand branch points, or the first entries of the symbol,

and corresponding physical discontinuities. For any planar integral, branch points must
correspond to planar variables si,...,k := (pi+pi+1 + · · ·+pk)2 = 0. In our cases, this means
that first entries of Ia should be

{s, t,m2
1,m

2
2,m

2
3,m

2
4},

which can be directly verified from ∑
aAaiI

(0)
i . The corresponding physical discontinuity

for the channel x = 0 is

Discx=0(I(w)
a ) =

∑
i1,...,iw

I
(0)
i1

Discx=0(logAi2i1)Ai3i2 ⊗ · · · ⊗ Aaiw . (4.18)

Then we consider double discontinuities. The corresponding physical constrains are
Steinmann relations, which say that the double discontinuities taken in overlapping chan-
nels of any planar integrals should vanish. In our cases, the only overlapping channels are
s = 0 and t = 0. We consider the combination

Xac =
∑
b

Abc ⊗Aab, (4.19)
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such that I(w)
i can be written as∑p,qXp,q⊗Yi,p,q where Yi,p,q are symbols of weight-(w−2),

then
Discs=0 Disct=0(I(w)

i ) =
∑
p,q

Discs=0 Disct=0(Xp,q)Yi,p,q. (4.20)

The double discontinuity of Xac is just

Discs=0 Disct=0Xac =
∑
b

Discs=0(logAab) Disct=0(logAbc), (4.21)

the product of two discontinuity matrix. We check that both Discs=0 Disct=0Xac and
Disct=0 Discs=0Xac vanish.

Steinmann relations constrain first-two entries of the symbol of I(w)
a , we could further

consider the same constrains on any adjacent entries of the symbol, which are known as
the extended Steinmann relations. For the symbol of I(w)

a , these constrains are∑
i1,...,îk...,iw

I
(0)
i1
Ai2i1⊗· · ·⊗ Âikik−1⊗ Âik+1ik⊗· · ·⊗Aaiw Discs=0 Disct=0Xik+1,ik−1 = 0 (4.22)

and ∑
i1,...,îk...,iw

I
(0)
i1
Ai2i1⊗· · ·⊗Âikik−1⊗Âik+1ik⊗· · ·⊗Aaiw Disct=0 Discs=0Xik+1,ik−1 = 0, (4.23)

for any k and the only overlapping channels s = 0 and t = 0. Therefore, Steinmann
relations for X also guarantee the extended Steinmann relations of I(w)

a .
In [39], it’s conjectured from first entry condition and Steinmann relations that the

first-two entries of DCI integrals can only be linear combination of one-loop box functions
and some trivial log log functions. For any order of ε of I(w)

a , we also find that the first-two
entries of Ii can only be linear combinations of

{log(s)2, log(t)2, log(m2
i ) log(s), log(m2

i ) log(t), log(m2
i ) log(m2

j ), F (zk, z̄k)}i,j=1,...,4,k=1,...5,

(4.24)
where F (zk, z̄k) are (normalized) four-mass box function whose symbol is

S[F (z, z̄)] := ((1− z)(1− z̄))⊗ z

z̄
− (zz̄)⊗ 1− z

1− z̄ . (4.25)

Therefore, the first two entries are also box functions (after taking one dual point to infinity)
except log log functions.

5 Summary and outlook

In this paper, we study multi-loop Feynman integrals and their symbology. The symbols of
UT integrals, in principle, can be derived from the differential equations of the UT integral
basis. As shown in this paper, the symbols of some integrals can be very complicated.
Also, the symbols are with many “mysterious” structures. We provide insights for their
symbology by considering closely-related DCI integrals in D = 4, whose symbology can be
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explained in terms of Schubert problems. Meanwhile, the corresponding symbol structures
can also be analyzed. This gives us an insight about some properties of the symbols,
before we comply the canonical differential equation computation, in future studies for
new Feynman integrals.

To explain the above specifically, in this paper, we studied a cutting-edge example, the
two-loop double box diagram with 4 different external masses. We determine its UT integral
basis mainly using loop-by-loop analysis of leading singularity in Baikov representation.
The analytic derivation of corresponding differential equations is nontrivial and we use the
package FiniteFlow based on the finite-field method for this computation.

From the differential equations, we derived the symbols of the UT integrals from order
ε−4 to ε0. The symbols consist of 68 letters. Among the letters, there are 18 even letters
being rational functions, 16 odd letters containing one square root each, and 34 odd letters
containing 2 square roots each. The symbols for the 74 integrals are derived using the
differential equations. We found their properties that: 1) The letters that can appear
at the first and the second entries of the symbols are limited. 2) A large number of the
possible letter pairs that can appear at two adjacent entries are forbidden, read from the
letter structure of differential equations.

We have shown that all symbol letters of these integrals have clear origin from those
of DCI integrals, which have been studied extensively and exhibit rich mathematical struc-
tures. Both even and odd letters are obtained by taking a dual point to infinity, of the
letters for one- and two-loop DCI integrals with generic pentagon kinematics. Not only do
the square roots correspond to one- and two-loop leading singularities, but we determine
all complicated mixed odd letters from associated twistor geometries, which are also “last
entries” for corresponding finite, two-loop integrals. We find it satisfying that one CAN
obtain all letters by considering mathematical structure of DCI integrals without actually
computing them, and we leave a more systematic study of this phenomenon to a future
work. Last but not least, we find that important properties of DCI integrals nicely carry
over to UT integrals we consider in this paper: the first two entries come from one-loop
DCI box functions, and extended Steinmann relations further constrain any two adjacent
entries to any order in ε. It would be highly desirable to understand further how structures
of their symbols follow from properties of these DCI integrals.
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A Diagram of the two-loop master integrals

In this appendix, we list the diagrams for the two-loop Feynman integrals with four external
massive legs of every sector with master integrals. They are shown in figure 3.
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B Polynomials for the definition of the symbol letters

The definition of polynomials f35 ∼ f68 that appear in the odd letters with 2 square roots,
shown in (3.62) ∼ (3.70), are as follows.

f35 = −s2 − 2st+ sm2
1 + sm2

2 + sm2
3 +m2

1m
2
3 −m2

2m
2
3 + sm2

4 −m2
1m

2
4 +m2

2m
2
4, (B.1)

f36 = −st+ tm2
1 − sm2

2 − tm2
2 −m2

1m
2
2 +m4

2 + sm2
3 −m2

1m
2
3 −m2

2m
2
3 + 2m2

2m
2
4, (B.2)

f37 = −s2 − st+ 2sm2
1 + tm2

1 −m4
1 + sm2

2 − tm2
2 +m2

1m
2
2 + sm2

3 −m2
1m

2
3

−m2
2m

2
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2m
2
4, (B.3)
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1 +m4
1 + tm2
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1m
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2 + 2m2

1m
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3 + sm2
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2m
2
4, (B.4)
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1 + 2sm2
2 + tm2

2 +m2
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1m
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4
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2
4 −m2

2m
2
4, (B.5)
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4 +m4
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Figure 3. Diagrams for the two-loop master integrals with four external massive legs.
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