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1 Introduction

Our understanding of the dynamics of quantum field theories in many aspects relies on the
ability to carry out perturbative analysis to a desired precision. The complexity of this
analysis not only comes from the theory-specific interaction types and combinatorics of
Feynman diagrams (or other equivalent expansion methods), but also is universally rooted in
the integral of loop momenta. Along with the development of the modern on-shell methods
in recent years it is gradually realized how the S-matrix at each perturbative order can be
appropriately characterized as a robust physical and mathematical entity. For tree-level
amplitudes and loop integrands of loop-level amplitudes, which are meromorphic functions of
the external kinematic data and the loop momenta, there has been abundant understanding
about the implication of physical principles on their mathematical structures (e.g., see [1, 2]
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and references therein). In special theories such as the maximal supersymmetric Yang-Mills
in 4d (SYM) these quantities are even tied to generalizations of polytopes when expressed
in a proper kinematic configuration space, where the theory’s dynamical information is
sharply encoded in the geometric and combinatoric properties of these entities [3–5].

When it comes to loop-level amplitudes, unitarity implies the prevailing occurrence of
branch point singularities in the kinematic variables, hence these functions have much richer
contents [6]. While they are expected to belong to some very special class of functions, it
is not yet understood in general how such functions can be directly characterized and be
distinguished from those that are not physical. In order to analyze their analytic properties
one usually have to decompose them into a set of well-studied elementary functions, such
as multiple polylogarithms (MPLs) in the simplest cases (see, e.g., [7]). However, such
practice inevitably introduces large amount of singularities in the kinematics which are not
physical. Although these fake singularities ultimately get canceled in the whole amplitude,
the detailed mechanism for the cancellation has to rely on delicate relations among these
elementary functions. This often causes obstacles to the analysis of genuine physical
properties. Fortunately, at least for amplitudes that can be expanded on MPLs the analysis
can be greatly simplified by a mathematical object named symbols [7–9]. Roughly speaking
the symbols originate from representations of MPLs in terms of iterated integrals and capture
information about their singularities. In some sense they are intermediate objects between
rational integrands and the corresponding integrated functions. Complicated relations
among MPLs can reduce to algebraic identities among symbols, which is the main source
for the power of this technique. Its has helped people gain much better understanding on
the structure of loop-level amplitudes, especially in SYM (e.g., [10, 11]), and they also serve
as one of the essential ingredients in bootstrapping amplitudes at higher loops and higher
points, where direct computation is extremely hard (e.g., [12], and [13] for a state-of-the-art
computation). Very recently there have also been many efforts in extending this tool to
amplitudes beyond MPLs [14–17].

It is then very natural to seek for a direct determination of the symbols (or more broadly
speaking the structure of singularities) from the Feynman integrals for loop amplitudes,
since the latter is the usual starting point for a perturbative computation and its integrand
is usually much better understood. In SYM such problem has been investigated with the
help of Landau diagrams/equations1 together with modern knowledge about the structure
of the loop integrand (see [19, 20], and [21–24] for some recent developments). The symbols
of Feynman integrals with uniform transcendentality have also been studied recently from
the view points such as cluster algebras, dual conformal symmetries, etc [25–28].

In order to study similar problems but for a generic scattering process, a convenient
starting point is the Feynman parameter integral. For instance, for a given scalar Feynman
diagram it takes the form [29]∫ ∞

0
dx1 · · ·

∫ ∞
0

dxn δ
(

n∑
i=1

xi − 1
)
Ua−(L+1)d/2∏n

i=1 x
ai−1
i(

−V + U∑n
i=1m

2
ixi
)a−Ld/2 . (1.1)

1The Landau equations method originates in the early days of quantum field theories [6]. For some more
recent developments, see e.g., [18].
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For simplicity we have omitted a constant factor in front. d refers to the spacetime
dimensions, L the number of loops and n the number of loop propagators. For each
propagator labeled by the integer i there is a corresponding Feynman parameter xi, and
the number ai denotes the multiplicity of the propagator (which for ordinary Feynman
diagram is just 1), and a = ∑n

i=1 ai. The two polynomials U and V can be determined by
graphical methods

U =
∑
T∈T 1

∏
i/∈T

xi, V =
∑
T∈T 2

(
kT
)2 ∏

i/∈T
xi. (1.2)

Here T 1 is the set of all possible trees obtained by cutting propagators in the original loop
diagram, and T 2 the set of all possible pair of disjoint trees obtained by cutting the same
diagrams, so the xi’s showing up in the expression correspond to those propagators that
are cut. kT denotes the total momentum flowing from one side to the other side of the
disjoint diagram. It is easy to see these polynomials have homogeneous degree L and L+ 1
in x respectively, and they are usually called Symanzik polynomials. The presence of the δ
functions indicates that the integral contour is in fact a finite region, which has the shape
of an (n− 1)-simplex in Rn−1.

The Feynman parameter integral (1.1) remains the same if one replaces the δ there by
δ(∑′ xi − 1) where ∑′ only sums over any non-empty subset of the propagators, by the
so-called Cheng-Wu theorem [30]. This indicates that such integral can be better presented
in a projective space. To make this manifest, for example we can replace the δ function
by the extreme case δ(x1 − 1), so that x1 is localized to 1 while the other variables are
integrated over [0,∞). Then the resulting integral can be made projective by replacing the
volume element

dx2dx3 · · · dxn 7−→ 〈XdXn−1〉 ≡ 1
(n− 1)!εI1I2···InX

I1dXI2 ∧ dXI3 ∧ · · · ∧ dXIn ,

(1.3)

(ε being the Levi-Civita symbol) and turning on x1 again in the integrand such that both
its numerator and denominator are homogeneous in X = [x1 : x2 : · · · : xn] and the degree
of X is balanced. Consequently the integral (1.1) is now expressed as

∫
∆
〈XdXn−1〉 x

−(L−1)d/2
1 Ua−(L+1)d/2∏n

i=1 x
ai−1
i(

−V + U∑n
i=1m

2
ixi
)a−Ld/2 , (1.4)

with some contour ∆ to be described below. This integral is understood as an integral in
CPn−1, where the extension into complex field is for the sake of studying analytic properties
of the integral later on. X = [x1 : x2 : · · · : xn] denotes the homogeneous coordinates in
CPn−1, which enjoy the equivalence

[x1 : x2 : · · · : xn] ∼ [λx1 : λx2 : · · · : λxn], ∀λ 6= 0, (1.5)

i.e., they represent the same point in CPn−1. In this way the domain of the integral becomes
compact, so that there is no worry about any peculiarity caused by points at “infinity” when
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studying the emergence of singularities in the integral. The integral contour ∆ in (1.4) is a
special (n− 1)-simplex whose n vertices are located at

Vi = [0 : 0 : · · · : 0︸ ︷︷ ︸
i−1

: 1 : 0 : 0 : · · · : 0︸ ︷︷ ︸
n−i−1

], ∀i = 1, 2, . . . , n. (1.6)

In this paper we will always call a simplex with this special configuration a canonical
simplex. As directly derived from the Feynman integrals this contour entirely lives inside
the real slice of CPn−1, but it is helpful to consider its deformation off the real slice without
changing the integral, as will be described in more detail soon.

As is obviously seen the integrand in (1.4) is always a rational function. For a most
generic scattering process, regardless of particle contents and interaction types, following
the above treatment its Feynman parameter representation always takes the generic form

∫
∆

〈XdXn−1〉N
[
Xk
]

D [Xn+k] . (1.7)

N [Xk] and D[Xn+k] are homogeneous polynomials of degree k and n+k respectively, which
can be reducible. The contour can be relaxed to an arbitrary (n− 1)-simplex, although by
the PGL(n) automorphism of CPn−1 it can always be brought back to the canonical simplex
described above. From the geometric point of view, singularities of the function that arises
from such integral originate from configurations when singularities of the integrand hits
the integral contour such that the contour allows no deformations to avoid it (in which
case we say the contour is pinched). Therefore in general the presence of a singularity and
the behavior of the function in its neighborhood are closely tied to details of the contour
simplex as well as the curve defined by

D
[
Xn+k

]
= 0. (1.8)

In higher dimensions the classification of such singular configurations can be very rich. An
even more interesting question is how these different singularities are related to each other.
These are the crucial data governing the structure of singularities of the integral (1.7) that
we are interested in gaining a better understanding in general. For integrals that receive
decomposition into MPLs these data are encoded in term of their symbols. In this paper
we will analyze explicit examples of (1.7) that are known to be of the MPL type, and show
how their symbols can be directly constructed from the integral, without essentially doing
the integration. Of course, the most general (1.7) definitely goes beyond MPLs, and to
our knowledge there has not been a clear criteria judging the type of functions that this
integral leads to. But as we will see later in the discussion, a plausible necessary condition
seems to be that every irreducible component of the singularity curve (1.8) is rational.

There are two simplest situations of (1.7) that are known to decompose into MPLs.
The first one is when D[Xn+k] fully reduces to a product of linear factors. The prototype
of such integrals is the Aomoto polylogarithms, which is simply a generalization of the
usual definition for MPLs [31, 32]. The second one is when D[Xn+k] is some multiple of a
single degree-2 polynomial, which includes all one-loop Feynman integrals. Both classes
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of integrals were previously studied in [32] (and also [33] for a related treatment of the
one-loop integrals), where efficient methods were proposed to learn about their symbols. In
particular, for the one-loop integrals it introduced a so-called “spherical projection” that
extracts certain discontinuities from the integral, from which the symbol of (1.7) can be
directly read off (see also [34, 35] for related discussions). Unfortunately, the validity of this
method heavily relies on the fact that (1.8) here defines a single quadric, and so it cannot
be directly applicable to integrals with other types of D[Xn+k] (although the Aomoto
polylog integrals can be rewritten into a form of the one-loop type, so as to fit into this
method indirectly).

In this paper we revisit the above mentioned two types of integrals. The purpose is
to introduce a new strategy (differing from the previous ones) that provides a uniform
framework to the analysis of the singularity structure in both cases, which may further
receive a direct generalization to (1.7) integrals with higher-degree irreducible singularity
curves (so as to be applicable to higher-loop integrals). This strategy involves two main
ingredients. The first one is the identification of a stratum of carefully selected discontinuities
obtained by modifications of the contour in the original integral (1.7), according to specific
“fibrations” of the contour. The second one is a method to work out the singularity points
of each discontinuity that are seen on the principal sheet, or in other words, the first symbol
entries. As will be explicitly seen in later discussions, this analysis does not require detailed
results of the discontinuities in terms of known functions, but only their definition in terms
of integrals. These discontinuities are labeled by geometric elements tied to the original
integral contour as well as the singularity curve (1.8). The combinatoric relations among
these discontinuities, which are induced from these underlying geometries, turn out to
provide sufficient characterization for the singularity structure of the integral (1.7). As we
will explicitly show later, the symbol of (1.7) can be systematically constructed from these
data for the two classes of integrals mentioned above. Along with this analysis, by a simple
application of global residue theorem in one dimension, the above combinatoric data also
reveal a large set of rules that the symbol of (1.7) has to obey in general.

The plan of the paper is as follows. In section 2 we will carefully illustrate various
aspects of the new strategy of analysis using the Aomoto polylog integrals. Possible issues
and solutions when generalizing to integrals with more complicated D[Xn+k] are then briefly
discussed in section 3. In section 4 with an explicit example we will show how this analysis
applies to integrals of the one-loop type, whose singularity curve is a single quadric. In
section 5 we will analyze another example of integral with a quadric, for the purpose of
explaining how to properly deal with more general contours that one inevitably encounter
during the analysis in higher dimensions. Various directions of future explorations are
commented at the end.

1.1 About simplexes

In the remaining of this introduction let us clarify some terminology regarding simplexes
that will be frequently used in the paper. By its original definition an (n− 1)-simplex is a
natural generalization of a triangle in R2 to Euclidean space Rn−1 with arbitrary n. It is a
compact region uniquely determined by its n 0-faces Vi ∈ Rn−1, as any point in it can be
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represented by
n∑
i=1

xiVi,
n∑
i=1

xi = 1 and (∀i) xi ≥ 0, (1.9)

where the xi’s are called barycentric coordinates of the point [36]. One can already observe
that these coordinates behave exactly like what the Feynman parameters do. Boundary
of the simplex can be reached by setting some subset of the barycentric parameters to
zero. It is clear that each boundary itself receives an analogous barycentric coordinates
representation, but with some subset of the 0-faces {Vi1 , Vi2 , . . . , Vik} (1 ≤ k < n), and so it
is a (k− 1)-simplex, which we call a (k− 1)-face of the original simplex, and we denote this
face by Vi1Vi2 · · ·Vik (following this notation we should also have denoted the 0-faces as Vi,
but we ignore the overline for brevity). Each (k − 1)-face obviously lives inside a plane of
dimension k − 1 in Rn−1, which is specified by the corresponding 0-faces. In this sense we
say the boundaries/faces of a simplex are flat.

In the integral (1.7) we put an (n− 1)-simplex in a complex projective space CPn−1

instead and use it as the contour. This leads to some essential differences that are worth to
be pointed out.

First of all, such simplex still has real dimension n− 1, even though it is put inside a
space of complex dimension n− 1 (and so of real dimension 2n− 2). One can still define
such a simplex by starting with a set of n points Vi (which are now points in CPn−1) and
representing points in it using real barycentric coordinates

n∑
i=1

xiVi, (∀i) xi ≥ 0, (1.10)

(and the xi’s are not simultaneously zero). The distinction from the case in Rn−1 is
that these coordinates are no longer subject to the condition ∑i xi = 1. This is a direct
consequence of the fact that the above summation represents a point in CPn−1. Starting
with this setup we can further extend the domain of xi’s to complex field, so that the
above barycentric coordinates [x1 : x2 : . . . : xn] become some homogeneous coordinates for
CPn−1, subject to the equivalence relation (1.5). In actual computation we have to choose
a “gauge-fixing” condition to slice across these equivalence classes, which is the source for
the Cheng-Wu theorem mentioned previously. In practice a convenient choice is just to set
one particular xi to 1.

Despite the above definition, as an integral contour an (n − 1)-simplex in CPn−1 is
not literally fixed as that in Rn−1. This is not surprising, since already in the familiar
one-dimensional integration in complex analysis we all know that a contour can be freely
deformed without changing the integral, as long as its two end points are fixed and that
the deformation does not encounter any singularity of the integrand. For integrals in higher
dimensions, the contour can in general be concisely characterized as any element in the
relative homology group Hn−1(CPn−1,∪ni=1Hi), where Hi denotes the complex hyperplane
specified by the n− 1 0-faces except Vi. It is helpful to describe in picture the extent to
which such contour can deform as indicated by the relative homology group. While any
open subset of the contour behaves largely in similar manner as the one-dimensional case,
we have to be a bit careful with the boundaries.
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V1

V2

V3

Figure 1. Example of a 2-simplex. The thick line segments and points refers to its 1- and 0-faces.
When viewed in R2 the thin lines are real lines and the 1-faces are their segments, which are fixed.
When viewed in CP2 instead, the thin lines represent CP1 subspaces that are determined by the
0-faces, and each 1-face is some real contour that can be deformed within the corresponding CP1.

To precisely describe the allowed deformations let us temporarily switch to a different
view point. In fact, drawing analogy to the picture in Rn−1, in CPn−1 we can define a
different notion of “simplex”. Note that for any selected subset {Vi1 , Vi2 , . . . , Vik} of the
original n points, they uniquely define a plane of complex dimension k − 1. Points on such
plane are represented by ∑k

a=1 xiaVia (xi ∈ C). So with a slight abuse of notation we denote
such plane also as Vi1Vi2 · · ·Vik . It is obvious that the intersection relations among planes
of this type are structurally the same as the incidence relations among various faces of
an (n− 1)-simplex in Rn−1. Therefore we can treat such plane as some (k − 1)-face, and
name the collection of all such faces (with various k’s) the (n − 1)-“simplex” defined by
the n points {V1, V2, . . . , Vn}. As is obvious from the definition, this “simplex” in CPn−1 is
completely fixed and there is no room for any sort of deformations.

Now back to the actual simplex for the integral contour, with real dimension n− 1, in
general it can be deformed in CPn−1 under the following condition: each of its (k − 1)-face
(for any 1 ≤ k ≤ n), say Vi1Vi2 · · ·Vik , which has real dimension k− 1, can only be deformed
within the corresponding (k − 1)-face Vi1Vi2 · · ·Vik of the (n − 1)-“simplex”, which has
complex dimension k − 1. By this we see that for a simplex contour in CPn−1, only its
0-faces are completely fixed, while all other faces are allowed to deform under the above
constraints. An example is illustrated in figure 1. It is also in this sense that we say the
faces of the simplex is flat, even though they may look curvy when counting real dimensions.
This is to be distinguished from a more general situation to be discussed in section 4 and 5.

In this paper we will frequently talk about faces of the actual simplex contour as well
as the planes that they are restricted in (the corresponding faces of the “simplex” above).
The distinction between these two kinds of objects will be helpful in understanding several
points that might appear to be confusing at first sight later on. Because they are closely
related, when there is no confusion we will slightly abuse terminology and simply call both
of them faces of a simplex, and use the same notation Vi1Vi2 · · ·Vik as what have already
been done above.

2 Fibrations, discontinuities and symbol construction

In this section we analyze generic Aomoto polylogarithms, which form a class of integrals
whose geometries associate to a pair of simplexes and they always belong to MPLs. In
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order to work out their symbols, we will identify a set of their discontinuities and describe
a way to learn about the first entry expressions in their own symbols. Geometrically each
discontinuity can be treated as the projection of the original integral from a 0-face of its
contour. This analysis can be recursively applied for this class of integrals, and so ultimately
we obtain a stratum of discontinuities together with the first entries of each one’s symbol.
By the end we will show how these data are utilized to construct the complete symbol of a
given integral.

2.1 Singularity and discontinuity of integrals in CP1

To motivate the geometric nature of discontinuities in a generic higher-dimensional integral,
let us begin by considering the familiar integral of a single variable that generates a log

I =
∫ 0

∞

(r1 − r2)dx1
(x1 − r1)(x1 − r2) = log r1

r2
. (2.1)

Its symbol is simply the argument inside the log function2

S[I] = ⊗r1
r2
. (2.2)

The meaning of this symbol has two aspects. Firstly, the loci of singularities of I can be
learned by imposing

r1
r2

= 0 or r1
r2

=∞. (2.3)

Secondly, the discontinuity of I is obtained by analytically continuing the argument r1
r2

around either of the above two branch points, resulting in ±2πi where the sign depends on
the direction of continuation. When viewed as an operation acting on S[I] at the level of
symbols, the discontinuity corresponds to deleting r1

r2
in the ⊗ product, with the remaining

expression multiplied by ±2πi

S[Disc0I] = 2πi⊗, S[Disc∞I] = −2πi ⊗ . (2.4)

This case is too special as it yields empty ⊗ product.
To describe these facts in a more geometric setup, we rewrite (2.1) into an integral in

CP1, with homogeneous coordinates X = [x1 : x2]

I =
∫ [0:1]

[1:0]

(r2 − r1)(x1dx2 − x2dx1)
(x1 − r1x2)(x1 − r2x2) . (2.5)

For any pair of points P,Q ∈ CP1 we can form a bracket 〈PQ〉 ≡ εIJP IQJ ≡ p1q2 − p2q1,
and 〈PQ〉 = 0 is the condition for them to be coincident. If we identify two points

P1 = [r1 : 1], P2 = [r2 : 1], (2.6)
2Here we slightly abuse the usual notation by adding a ⊗ in front, to remind the reader that this term is

to be understood in the context of a “product” ⊗ (as will be explicit in the general situation later), which is
distinguished from an ordinary algebraic expression.
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V1V2

P1 P2

Figure 2. Any 1-simplex contour and a pair of singularity points in CP1 yields a log.

the above integral and its symbol are just

I =
∫

∆

〈P1P2〉〈XdX〉
〈XP1〉〈XP2〉

= log 〈P1V1〉〈P2V2〉
〈P2V1〉〈P1V2〉

, SI = 〈P1V1〉〈P2V2〉
〈P2V1〉〈P1V2〉

. (2.7)

This expression is intrinsically geometric because the ratio of brackets above is invariant
under any PGL(2) transformation, the group of automorphism of CP1, and so it is indepen-
dent of the choice of homogeneous coordinates for CP1. What (2.7) tells is that any integral
in CP1 whose contour is a 1-simplex and whose integrand is a rational form determined by
two simple poles is a pure log, given a proper normalization (see figure 2).

Now applying the condition for singularities (2.3) there are four solution

〈P1V1〉 = 0 or 〈P1V2〉 = 0 or 〈P2V1〉 = 0 or 〈P2V2〉 = 0, (2.8)

each corresponding to a situation when one end of the contour Vi hits one of the integrand
poles Pj . This is clear because when such situation occurs the integral looks like

∫ dx
x in

the neighborhood of Vi (where x is the local integration variable) and so there arises a log
divergence. By a more careful inspection one may also question about the possibility of P1
and P2 coming close together and pinching the contour in the middle. However, when this
happens the normalization factor 〈P1P2〉 also vanishes and so effectively this singularity
is absent. Hence all the singularities have to do with the relation between the counter
boundaries and the integrand singularities.

The discontinuities are computed by picking up any pair (Vi, Pj) and analytically
continue their bracket 〈PjVi〉 around zero (say counter-clockwisely). Geometrically this
is the same as letting Vi to deform around Pj . The resulting new contour differs from
the original contour by a circle around Pj . So for instance for the pair (V1, P2), taking
discontinuity is the same as replacing the original contour by an S1 residue contour in the
original integral

DiscV1,P2I =
∫
|〈XP2〉|=ε

〈P1P2〉〈XdX〉
〈XP1〉〈XP2〉

= 2πi. (2.9)

There are four coincidence situations in (2.8), and at first glance there are four types of
discontinuities. However, it is easy to observe that deforming V1 around P2 is equivalent to
deforming V2 around P2 in the opposite direction (and similar relation hold for P1); see
figure 3. So the number of different residue contours reduces by half, and it is more intuitive
to write this function as

I = log 〈P1V1〉
〈P1V2〉

− log 〈P2V1〉
〈P2V2〉

, S[I] = ⊗〈P1V1〉
〈P1V2〉

− ⊗〈P2V1〉
〈P2V2〉

. (2.10)
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V1V2

Pi

(b)

⇐⇒ ⇐⇒

V1V2

Pi

(a)

V1V2

Pi

(c)

Figure 3. The residue contour (b) can be obtained either (a) by deforming the 0-face V2 around
the singularity point Pi or (c) by deforming the other 0-face V1 around Pi in the opposite direction.

Note the symbol is defined to satisfy the same algebraic relations as the log. In (2.10) each
term associates to one irreducible component of the integrand singularity and the 1-simplex
contour. This pattern is going to be important in later discussions.

In the above special case where only two poles are present in CP1, the same residue
contour can be viewed as either encircling P1 or encircling P2 in the opposite direction, so
in effect there is only one type of residue contour. But we do not emphasize this further
identification because it is subject to change when more singularities are present. For
example, consider three simple poles in CP1. One such integral is∫

∆

〈P2P3〉(LX)〈XdX〉
〈XP1〉〈XP2〉〈XP3〉

=

〈P1L〉〈P2P3〉
〈P1P2〉〈P1P3〉

log 〈P1V1〉
〈P1V2〉

− 〈P2L〉
〈P1P2〉

log 〈P2V1〉
〈P2V2〉

+ 〈P3L〉
〈P1P3〉

log 〈P3V1〉
〈P3V2〉

,

(2.11)

where (LX) is some linear numerator factor. Here the above mentioned ratio structure
inside log still holds. While the three types of residue contours (encircling each Pi) are not
identical, they satisfy a three term linear relation instead, which is just the global residue
theorem. In this case we see the pinching singularities do have a chance to appear, but
they only lead to poles of the form 〈PiPj〉 = 0. However, these are algebraic singularities
(as can be easily verified using similar contour deformation argument). In principle these
can be discovered in the coefficients after a discontinuity computation and are not of our
principal concern.

Some interesting aspects about generic integrals in CP1 is already revealed in the
example (2.11), which is worth to emphasize here. Firstly, by definition the integral has to
be invariant under any PGL(2) transformation of CP1, which is easily seen by the balance
of angle brackets between the numerators and the denominators on both l.h.s. and r.h.s.
of (2.11). This property clearly descends to the discontinuities of the resulting function,
since the definition of discontinuities differs from the original function just by a modification
of the integral contour, and this operation is purely geometric.

Secondly, the integral should not depend on the scale of homogeneous coordinates used
for X, which is manifest on l.h.s. This means the result cannot depend on the scale of
coordinates for either V1 or V2. Although this does not hold for each individual log term on
r.h.s. of (2.11), it is satisfied by the whole result. For example, if we rescale the coordinates
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V1 → λV1, the differences caused by this operation sum up to( 〈P1L〉〈P2P3〉
〈P1P2〉〈P1P3〉

− 〈P2L〉
〈P1P2〉

+ 〈P3L〉
〈P1P3〉

)
log λ = 0. (2.12)

Recalling that each coefficient above is identical to the result from a residue contour encircling
one of Pi’s, this cancellation is exactly the consequence of the above mentioned global
residue theorem. This indicates that in an actual computation the resulting arguments
inside the logs may scale by a common factor depending on the coordinates we input
for the contour end points, which is nevertheless irrelevant. This fact will be useful for
understanding the integrals in higher dimensions later on.

2.2 Aomoto polylogarithms revisited

The log integral (2.7) in CP1 receives a direct generalization to integrals in CPn−1, which
are called Aomoto polylogarithms. Aomoto polylogs are defined by a pair of (n − 1)-
simplexes {∆,∆}, ∆ for the integral contour, and ∆ for the integrand. In the following
we will denote the 0-faces that specifies ∆ as {V1, V2, . . . , Vn}, while those specifying ∆ as
{W1,W2, . . . .Wn}. On the one hand, the contour simplex ∆ allows for certain deformations
as described in section 1.1. On the other hand, precisely speaking the integrand simplex ∆
is in the sense of the “simplex” formed by planes of various complex dimensions determined
by W ’s, which were described in section 1.1 as well. Alternatively, ∆ can also be specified
by its (n− 2)-faces, which satisfy equations of the form 〈XWi1 · · ·Win−1〉 = 0 and define
simple poles of the integrand. For simplicity of notation we can define

(Hi)I = εIJ1J2...Jn−1W
J1
1 · · ·W

Ji−1
i−1 W Ji

i+1 · · ·W
Jn−1
n , i = 1, 2, . . . , n, (2.13)

and correspondingly 〈H1H2 · · ·Hn〉 = 〈W1W2 · · ·Wn〉n−1. Then the Aomoto polylog of this
pair of simplexes can be defined in terms of two equivalent integrals

Λ(∆,∆) =
∫

∆

〈W1W2 · · ·Wn〉n−1〈XdXn−1〉
〈XW1W2 · · ·Wn−1〉〈XW2W3 · · ·Wn〉 · · · 〈XWnW1 · · ·Wn−2〉

,

=
∫

∆

〈H1H2 · · ·Hn〉〈XdXn−1〉
(H1X)(H2X) · · · (HnX) ,

(2.14)

where HiX ≡ (Hi)IXI . The function of this type always belongs to the multiple polyloga-
rithms. Therefore similar to a pure log it has well-defined symbol, which was previously
worked out in [32]

S[Λ] =
∑

ρ,σ∈Sn

sign(ρ)sign(σ) 〈Vρ(1)Wσ(2)Wσ(3) · · ·Wσ(n)〉⊗

⊗ 〈Vρ(1)Vρ(2)Wσ(3) · · ·Wσ(n)〉 ⊗ · · · ⊗ 〈Vρ(1)Vρ(2) · · ·Vρ(n−1)Wσ(n)〉,
(2.15)

where Sn denotes permutations of the n labels. The symbol in (2.7) serves as a special case
when n = 2.

For later convenience let us very briefly review some properties of the symbols. Here
we see that it in general is a summation of ⊗ products, where each product contain n
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entries. n is called the length of the symbol, which indicates the transcendental weight of
its corresponding function. Each individual entry of the symbol enjoys the same algebraic
relations as a log

A⊗ α⊗B +A⊗ β ⊗B = A⊗ (αβ)⊗B, (2.16)
c(A⊗ α⊗B) = A⊗ (αc)⊗B, (2.17)

where A and B can be any ⊗ product, and c denotes any number. If any entry is purely a
numeric value, then its corresponding ⊗ product is set to zero. While (2.15) takes care of
the most generic situation of two arbitrary simplexes, in specific examples where some faces
of the simplexes are fixed some terms in (2.15) may vanish.

When we study logarithmic singularities of a function, at the level of the symbols this
amounts to collect the first entries in all the ⊗ products. The zero locus of each first entry
indicates the presence of such a singularity. In this particular case we have

(Vρ(1)Hσ(1)) ≡ 〈Vρ(1)Wσ(2)Wσ(3) · · ·Wσ(n)〉 = 0, ∀ρ(1), σ(1) ∈ {1, 2, . . . , n}. (2.18)

Geometrically this is just the incidence relation for the point Vρ(1) to be on the hyperplane
Hσ(1)X = 0, one of the irreducible components of the singular loci of the integrand in
Λ(∆,∆). Comparing to the CP1 case in the previous subsection, we see the interpretation
for the first symbol entries receives a direct generalization, where the singularity point in
CP1 is replaced by a singularity hyperplane in CPn−1.

For each specific logarithmic singularity, say V1H1 = 0 the computation of its corre-
sponding discontinuity at the symbol level is also quite similar. One basically selects all the
terms whose first entry matches this singularity and then delete the first entries, yielding

S[DiscV1,H1Λ] = 2πi
∑

ρ,σ∈Sn−1

sign(1ρ)sign(1σ)〈V1Vρ(1)Wσ(2) · · ·Wσ(n−1)〉⊗

⊗〈V1Vρ(1)Vρ(2)Wσ(3) · · ·Wρ(n−1)〉⊗· · ·⊗〈V1Vρ(1) · · ·Vρ(n−2)Wσ(n−1)〉,
(2.19)

where both ρ and σ now are valued in permutations of the label set {2, 3, . . . , n}, and the
symbol length is reduced by 1. Note that if we formally ignore V1 in every bracket, the
above structure is identical to the symbol of an Aomoto polylog defined in CPn−2.

In the following subsections we will investigate the geometric origin of the above
mentioned structures. The resulting picture will be further extended to more general
integrals in later sections. But before that let us draw one additional observation from
the symbol (2.15). Once we fix a choice of a ⊗ product except for its first entry, there are
altogether four choices of 〈VWW · · ·W 〉 brackets that can enter the first entry (depending
on the sequence of Vρ(1)Vρ(2) and of Wσ(1)Wσ(2)). In particular, with some algebraic
manipulations we can carefully combine first entries with different Vρ(1)’s as follows

S[Λ] =
∑

ρ∈Sn/Z2,σ∈Sn

sign(ρ)sign(σ)
〈Vρ(1)Wσ(2)Wσ(3) · · ·Wσ(n)〉
〈Vρ(2)Wσ(2)Wσ(3) · · ·Wσ(n)〉

⊗

⊗ 〈Vρ(1)Vρ(2)Wσ(3) · · ·Wσ(n)〉 ⊗ · · · ⊗ 〈Vρ(1)Vρ(2) · · ·Vρ(n−1)Wσ(n)〉,

(2.20)
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Here the Z2 in Sn/Z2 means to ignore the ordering between Vρ(1) and Vρ(2) in the summation
(although sign(ρ) still cares). This pattern should be compared with (2.10), which hints at
a possible CP1 interpretation for the expressions in the first entries.

2.3 Fibration of simplex contour and first entries

For integrals in CP1 we have observed a close connection between its symbol and geometries
of its contour and its integrand. The generalization of this geometric interpretation to
arbitrary Aomoto polylogs is not straightforwardly obvious. In higher dimensions both
∆ and ∆ have faces of various dimensions, so the incidence relations between contour
boundaries and integrand singularities becomes quite rich. It is not at all clear in the first
place which should be responsible for the singularities of the integral on the principal sheet
(the first entries in the symbol) and which can be seen only after analytic continuation (the
subsequent entries).

In order to understand the structure in the symbol S[Λ], a convenient strategy is to
decompose the problem such that ingredients that are responsible for the emergence of
singularities each time are restricted to a CP1 subspace. For the simplex contour under
study we can do the following. Let us choose a specific 0-face of ∆, for example V1, and
consider all (CP1) lines passing through V1. The set of all these lines, when deleting the
point V1 in each of them, provides a fibration of CPn−1\{V1} over CPn−2, where each fibre
has the structure of a one-punctured CP1. This fibration further induces a fibration of
∆\{V1} over an (n− 2)-simplex in CPn−2 by intersection. This is very natural because each
fibre of CPn−1\{V1} is exactly the space in which the corresponding fibre of ∆\{V1} can be
deformed, according to section 1.1. Moreover, in this way faces of ∆ that are adjacent to V1
are simultaneously fibrated in analogous manner (after removing V1). An explicit example
with n = 3 is shown in figure 4.

Now imagine we parameterize CPn−1 accordingly: introduce a variable t1 to represent
points within each line, and introduce homogeneous coordinates [t2 : t3 : · · · : tn] to
parameterize configuration of the lines. In this way, the contour for the integral of the
latter coordinates in CPn−2 does not depend on t1 at all. Then it is safe to focus on each
individual line and check what may happen for the t1 integral within this CP1.

In the above we see that when precisely doing the fibration we need to chop off
the reference point V1. On the other hand, when looking at the integration within each
resulting fibre we would better put this point back to make up a genuine CP1, since the
one-dimensional contour always has one of its ends anchored at the puncture. For this
reason and for the sake of saving words, in the rest the of this paper we will not explicitly
talk about the operation of removing and recovering this reference point, but instead loosely
say fibrating CPn−1 (with respect to the reference point) into CP1 fibres over CPn−2, by a
slight abuse of terminology.

In practical computation this fibration is very easy to perform. Note that in any
projective space CPn−1, once a choice of n points {U1, U2, . . . , Un} is made such that
〈U1U2 · · ·Un〉 6= 0, then any point P ∈ CPn−1 receives a linear expansion on this set of
points, where the collection of expansion coefficients can be treated as the homogeneous
coordinates of P . Now we let U1 = V1, and Ui be collinear with V1 and Vi for each
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V1

V2

V3

U2

U3 K

Figure 4. Fibration of CP2 and a 2-simplex, with respect to the 0-face V1. We represent the
reference point V1 by a circle, meaning that this point needs to be removed when doing the fibration,
but later added back for the discussion of integrals. The red lines are the fibres that have non-trivial
overlaps with the 2-simplex. In this fibration the original integral divides into integral along each
red line (where the contour is the intersection of the 2-simplex and the line) and integral over the
set of red lines. This fibration is special in that the 1-faces adjacent to V1, i.e., V1V2 and V1V3, are
also analogously fibrated (although the induced fibration is trivial in this case of CP2).

i ∈ {2, 3, . . . , n}. Because any n− 1 points in CPn live on a common hyperplane, we can
explicitly specify these points by choosing a hyperplane KX = 0 (as long as KV1 6= 0,
which is illustrated in figure 4), then Ui is just the unique intersection point of the line V1Vi
and hyperplane K, i.e.,

Ui = Vi −
KVi
KV1

V1, i = 2, 3, . . . , n, (2.21)

and thus a generic point X ∈ CPn−1 is represented by

X = t1V1 +
n∑
i=2

tiUi. (2.22)

For simplicity we can of course even set Ui = Vi, but we intentionally make the above
general choice in order to justify a statement later on. For each set of values {t2, t3, . . . , tn}
the combination ∑n

i=2 tiUi determines a point on the hyperplane K, and so t1 parameterizes
points on the line V1(∑n

i=2 tiUi). In our setup it is clear that the lines that have non-trivial
overlap with the original contour ∆ have their parameters [t2 : t3 : . . . : tn] valued in the
canonical (n−1)-simplex in CPn−2 (whose 0-faces as described in (1.6)). This is the contour
for these variables in an actual integral, regardless of the value of t1. Therefore the t1
integral can be performed within each line separately.

Let us inspect the integral within a specific line. The 1-simplex contour here always
has one of its 0-face anchored at V1, while the other 0-face (call it V ) is located at the
intersection of this line and the hyperplane 〈XV2V3 · · ·Vn〉 = 0. By solving t1 from the
intersection condition 〈(

t1V1 +
n∑
i=2

tiUi

)
V2V3 · · ·Vn

〉
= 0, (2.23)
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V1

V

P1

P2

P3H1

H2

H3

Figure 5. Configuration for the integral on a specific CP1 fibre. The contour is induced by
intersecting the fibre with the original contour. The singularity points are induced by intersecting
the fibre with the original singularity hyperplanes.

and plugging back into (2.21), this other vertex explicitly is

V =
n∑
i=2

tiVi. (2.24)

On the other hand, singularities on this line descend from the intersection of the line and
the original singularity hypersurface in CPn−1. For Aomoto polylog the original singularity
hypersurface consists of n irreducible components, each of which is a hyperplane dictated
by some HiX = 0. These configurations are illustrated in figure 5.

Borrowing the result in (2.11) and its generalization, such a CP1 system yields a log
singularity of the form

log V1Hi

(∑n
j=2 tjVj)Hi

≡ log 〈V1W1W2 · · ·Wi−1Wi+1 · · ·Wn〉
〈
(∑n

j=2 tjVj
)
W1W2 · · ·Wi−1Wi+1 · · ·Wn〉

(2.25)

for each of the n hyperplanes. Therefore each ratio in the above expression serves as a first
entry of the symbol resulting from the t1 integral.

These of course cannot directly appear in the symbol of the entire CPn−1 integral, as it
still depends on the remaining integration variables. So what is the fate of these “entries”?
An intuitive argument is that later integrals do not modify them but simply add more
symbol entries to their tail. To illustrate this it suffices to recall that the classical polylogs
can be recursively defined as

Li2(z) = −
∫ z

0

dx
x

log(1− x), Lin>2(z) =
∫ z

0

dx
x

Lin−1(x), (2.26)

and that their symbols are

S[log(1− z)] = ⊗(1− z), S[Lin(z)] = − (1− z)⊗ z ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
n−1

. (2.27)

When we go from log(1 − x) to Li2(z), at the level of symbols we can treat the integral
transform as appending the original symbol by an entry x and then evaluating at the two
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ends of the contour

S[Li2(z)] = −S[log(1− x)]⊗ x
∣∣x=z
x=0 = −(1− x)⊗ x

∣∣x=z
x=0 = − (1− z)⊗ z. (2.28)

Similarly, for Lin(z) with higher weights we simply add more entries at the end according
to the integrand and then evaluate at the boundaries

S[Lin(z)] = −(1− x)⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
S[Lin−1(x)]

⊗x
∣∣x=z
x=0. (2.29)

In short, each integral effectively evaluates the existing symbol of its integrand at the
boundaries of the contour. For a multi-variate integral with a simplex contour as we
encounter here, the ultimate effect is merely to evaluate the entries discovered in (2.25) at
the n− 1 0-faces of the contour (which is a canonical simplex) for the remaining integrals
respectively, where only one of the ti’s is set to 1 while the others to zero. The resulting
expressions should serve as the genuine first entries in S[Λ].

We can repeat the above analysis for fibrations with respect to other 0-faces of ∆ as well.
Note that due to the algebraic relation (2.17) we have 〈ViWW ···W 〉

〈VjWW ···W 〉⊗· · · = −( 〈VjWW ···W 〉
〈ViWW ···W 〉⊗· · · ),

and so these entries from different fibrations are treated as the same. These analyses
altogether dictate that the symbol of Aomoto polylog takes the form

S[Λ] =
∑

1≤i1<i2≤n
1≤j≤n

# 〈Vi1W1 · · ·Wj−1Wj+1 · · ·Wn〉
〈Vi2W1 · · ·Wj−1Wj+1 · · ·Wn〉

⊗ · · · , (2.30)

where the subsequent entries · · · and the coefficients # are not yet determined. Comparing
with the structure observed in (2.20) we see this fibration analysis manages to recover all
the first entries together with the pattern that they obey.

In fact, the above result suggests that when searching for the first entries it suffices
to directly inspect the CP1 subspace of each 1-face Vi1Vi2 . Generically the n singularity
hyperplanes of the integrand always intersect this CP1 at n distinct locations, inducing
n singularity points in this subspace. The corresponding 1-face of ∆ induces a 1-simplex
contour, which further yields a linear combination of n log terms. This directly recovers
the first entries of the form 〈Vi1WW ···W 〉

〈Vi2WW ···W 〉 in (2.30). Enumerating all the n(n−1)
2 1-faces of ∆

then recovers all the first entry expressions.

2.4 Discontinuities as point projection

In the previous subsection we showed that in a given fibration of ∆ the integration along
each fibre can be done independently. Following this perspective we now move on to discuss
the discontinuities associated to the singularities that emerge from this integral, i.e., the
singularities indicated by the first entries of S[Λ].

For concreteness let us return to the fibration with respect to the 0-face V1. From
section 2.1 we learned that a discontinuity is obtained by wrapping the t1 integral contour
around one of the singular points, by either deforming the end point V1 or V (which
are equivalent apart from a sign). Hence like the pure CP1 case, this is again a residue
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Figure 6. The contour for the remaining variables in an actual discontinuity depends on the specific
geometries of the original contour and of the original singularity hyperplane. Two examples are in
(a) and (b). In (a) the remaining variables are integrated in the same way as the original contour,
while in (b) the remaining contour changes. However, in our definition for the discontinuities in this
paper, the remaining variables (that parameterize the space of fibres) are always integrated along
the same contour as that in the original simplex. Therefore, (b) should be replaced by (c) in our
analysis, while (a) is directly accepted.

computation in one variable (t1) on each fibre. For instance, if the singularity point under
study is the intersection of the line and the hyperplane HnX = 0, this computation yields
some discontinuity

DiscV1,HnΛ =
∫

Res
t1=−

∑n

i=2 ti
HnUi
HnV1

〈H1H2 · · ·Hn〉〈V1V2 · · ·Vn〉〈TdTn−2〉∏n
j=1(t1(HjV1) +∑n

i=2 ti(HjUi))

=
∫ 〈H1H2 · · ·Hn〉〈V1V2 · · ·Vn〉(HnV1)n−2〈TdTn−2〉∏n−1

j=1
∑n
i=2 ti ((HnV1)(HjUi)− (HnUi)(HjV1))

=
∫ 〈H1H2 · · ·Hn〉〈V1V2 · · ·Vn〉(HnV1)n−2〈TdTn−2〉∏n−1

j=1
∑n
i=2 ti ((HnV1)(HjVi)− (HnVi)(HjV1))

,

(2.31)

where T = [t2 : t3 : . . . : tn], and the contour for the remaining integrals is going to be
specified soon. The last identity holds by plugging in the decomposition of Ui in (2.21).
Because discontinuities around logarithmic singularities always contain 2πi, here and later
in this paper we will always omit writing power of 2πi.

A special class of discontinuities. Let us pause for a moment to clarify what the
object “Disc” above really means. In a specific Aomoto polylog integral where the faces
of simplexes are not completely generic, the discontinuities one may actually encounter
can be complicated. This is because the integral contour for the remaining variables in
expressions like (2.31) heavily depends on the geometry of the intersection between ∆ and
the singularity hyperplane that we may get as we deform the parameters. For example, this
can be easily seen by comparing picture (a) and (b) in figure 6. Nevertheless, a complete
understanding of them is not necessary for the analysis in this paper, regarding the purpose
of understanding the structure of symbol.

The data relevant for our study are the following. For the integral at hand we can
always think about turning on parameters such that any elements in the geometry of two
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simplexes {∆,∆} can be freely deformed. In this situation, there always exist a class of
discontinuities, labeled by the reference point (some 0-face Vi) for the fibration of ∆ and
a selected irreducible component of the integrand singularity Hj , which are obtained by
deforming Vi in the neighborhood of their incidence configuration ViHj = 0. We denote
such a discontinuity by DiscVi,Hj Λ, as in (2.31). As a result of this setup the contour for
the remaining integrals in (2.31) is exactly the same as what it was in the Vi fibration of
∆. In other words, the only difference between DiscVi,Hj Λ and Λ is that the original t1
contour on each fibre of ∆ is replaced by an S1 residue contour around Hj in the same fibre.
Alternatively, we can always treat this modification of the contour as a given definition of
the “discontinuity” DiscVi,Hj , even when it may not arise as an actual discontinuity for a
specific integral under study (see picture (c) in figure 6). Very soon we will observe the
collection of such discontinuities are sufficient to construct the symbol of Λ.

Returning to (2.31), very amusingly this result is independent of the choice of the
reference hyperplane K, i.e., independent of the detailed choice of Ui on each line V1Vi.
Therefore a better interpretation of the remaining coordinates [t2 : t3 : . . . : tn] is that they
parameterize the CPn−2 obtained by projecting the original CPn−1 from V1. Because each
line through V1 is now identified as a point in the new space where the above discontinuity
integral is defined, the discontinuity is geometrically identical to a point projection.

As mentioned before DiscV1,HnΛ describes the local property of Λ in the neighborhood of
the incidence configuration V1Hn = 0. Therefore its own symbol S[DiscV1,HnΛ] is expected
to be embedded inside the original symbol S[Λ] as the entire part subsequent to the first
entry (V1Hn) ≡ 〈V1W1W2 · · ·Wn−1〉

S[Λ] = 〈V1W1W2 · · ·Wn−1〉 ⊗ S[DiscV1,HnΛ] + · · · . (2.32)

It is important to note the remaining terms represented by “· · · ” here do not contain
〈V1W1W2 · · ·Wn−1〉 in their first entries at all. Similar structure holds for other fibrations and
other singularity hyperplanes as well. When comparing with the structure of symbol (2.30)
resulted from studying first entries, we see this discontinuity does not come from an
individual term in (2.30), but is rather a combination of contribution from different terms
that commonly contain 〈V1W1W2 · · ·Wn−1〉 in their first entries. This observation is useful
for the construction of S[Λ] later on.

Validity of the residue contour and singularities of the emergent integrand.
Careful readers might be slightly worried at this point, because even with DiscVi,Hj defined
as a modification of the integral contour, this operation cannot always be well-defined. The
S1 contour for the residue computation is well-defined only when the fibre line transversally
intersects the original singularity hyperplane Hj . Viewed in the original space, as we
continuously scan over different fibres the residue contour smoothly deforms. However,
this may fail as the fibre hit a point on Hj where Hj itself intersects other singularity
hyperplanes. When viewed within the fibre, this corresponds to the situation when some
other singularity point deforms towards the singularity under study, and finally hits it and
pinches the residue contour around it (see figure 7). In fact, this information is already
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Figure 7. The S1 residue contour is well-defined when the fibre transversally intersects the
hyperplane under study (H3 above). As the fibre deforms towards W1, the singularity point induced
by H2 on the fibre moves towards that by H3. In the fire throughW1 this contour becomes ill-defined.
Similar phenomenon occurs for W2 as well, but not W3, which resides off H3.

automatically encoded in the integral for the discontinuity on the last line of (2.31), by the
singularity of the new integrand!

To understand this, we only need to answer the geometric meaning for the emergent
factors in the denominator

n∑
i=2

ti ((HnV1)(HjVi)− (HnVi)(HjV1)) , j = 1, 2, . . . , n− 1. (2.33)

From the residue computation in (2.31) it is already clear that for each specific j this
polynomial is just the resultant of polynomials HnX and HjX (as polynomials of t1). In
other words the solution of this polynomial is the condition for HnX and HjX to have
common roots. Because the latter two polynomials define (n− 2)-faces of ∆, the zero loci
of the polynomials in (2.33) are nothing but the (n − 3)-faces of ∆ that belong to the
(n− 2)-face Hn. These are indeed the singularity points one may encounter when deforming
the fibre. Since these singularities only show up after a discontinuity is taken (or equivalently
after a residue of the integrand is computed), they are not of our concern when dealing with
the first entries of the symbol S[Λ] as well as their corresponding discontinuities. However,
they do affect the subsequent entries and discontinuities.

Note that the original singularity curve also have singularity points other than those
inside the Hn hyperplane (e.g., W3 in figure 7), but they are irrelevant for the discontinuity
DiscV1,HnΛ. This is because the residue contour leading to this discontinuity is only wrapping
around one irreducible component of the original singularity curve, the hyperplane Hn,
but not the others. This in turn teaches us that the resulting CPn−2 integral at the end
of (2.31) can alternatively be treated as defined inside the hyperplane Hn. This will be
very crucial for generalization to higher-degree curves later on.
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2.5 Subsequent discontinuities and projections

Now we are ready to discuss the subsequent entries in S[Λ]. By the relation (2.32) we see
the second entries of S[Λ] are related to the first entries of S[DiscΛ]. Moreover, we also
observe the integral for DiscΛ in (2.31) is by itself identical to an Aomoto polylog defined
in CPn−2. Therefore the discussion in the previous subsections should straightforwardly
apply to S[DiscΛ], and further recursively to its own discontinuities, etc, until there is
no integration left over (of course the last integral is always a CP1 integral discussed at
the beginning).

To be explicit, let us return to DiscV1,HnΛ in (2.31). The contour here is the canonical
(n− 2)-simplex, thus the coordinates [t2 : t3 : . . . : tn] already provide our desired fibration
with respect to any of its 0-faces, and we do not have to reparameterize as before. By
the identity

〈V1W1 · · ·Wn−1〉〈ViW1 · · ·Wj−1Wj+1 · · ·Wn〉−〈ViW1 · · ·Wn−1〉〈V1W1 · · ·Wj−1Wj+1 · · ·Wn〉
= 〈V1ViW1 · · ·Wj−1Wj+1 · · ·Wn〉〈W1W2 · · ·Wn−1〉,

(2.34)

we can rewrite the integrand in (2.31) so that

DiscV1,HnΛ =
∫ 〈V1V2 · · ·Vn〉〈V1W1 · · ·Wn−1〉n−2〈TdTn−2〉∏n−1

j=1
∑n
i=2 ti〈V1ViW1 · · ·Wj−1Wj+1 · · ·Wn−1〉

. (2.35)

To learn the first entries of the symbol, we pick out a pair of the contour’s 0-faces, say

[0 : . . . : 0︸ ︷︷ ︸
i1−2

: 1 : 0 : . . . : 0], [0 : . . . : 0︸ ︷︷ ︸
i2−2

: 1 : 0 : . . . : 0], (2.36)

and check the line that they span. On this line there are n− 1 singularity points induced
by intersecting n− 1 singularity hyperplanes of the integrand, which now read∑

i∈{i1,i2}
ti〈V1ViW1 · · ·Wj−1Wj+1 · · ·Wn−1〉 = 0, j = 1, 2, . . . , n− 1. (2.37)

This makes the first entries of S[DiscV1,HnΛ] manifest. Following (2.30) this symbol has
the structure

S[DiscV1,HnΛ] =
∑

2≤i1<i2≤n
1≤j≤n−1

# 〈V1Vi1W1 · · ·Wj−1Wj+1 · · ·Wn−1〉
〈V1Vi2W1 · · ·Wj−1Wj+1 · · ·Wn−1〉

⊗ · · · . (2.38)

Again the expansion coefficients and the subsequent entries are not yet determined. Ge-
ometrically each factor 〈V1ViW1 · · ·Wj−1Wj+1 · · ·Wn−1〉 is the co-plannar condition in
CPn−1 of the n points listed in the bracket. Equivalently this is also the condition for the
line V1Vi to intersect the CPn−3 of the (n − 3)-face of ∆ spanned by the n − 2 vertices
{W1, . . . ,Wj−1,Wj+1, . . . ,Wn−1}, i.e., the intersection of hyperplanes Hj ∩ Hn. When
viewing the integral as defined in the CPn−2 space from projecting CPn−1 through V1, if
we name the image of points {V2,W1, . . . ,Wj−1,Wj+1, . . . ,Wn−1} via this projection as
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{V ′2 ,W ′1, . . . ,W ′j−1,W
′
j+1, . . . ,W

′
n−1}, then the above bracket is also the condition that V ′2 is

incident to the hyperplane spanned by these W ′s. These geometric pictures are equivalent.
Now an immediate question is how the first entries of S[DiscV1,HnΛ] found in (2.38) fit

into the second entries of S[Λ] in (2.30). In general it is not possible to directly plug the
ratios in (2.38) into the second entries in (2.30) for every symbol term. The reason is, as we
mentioned before, S[DiscV1,HnΛ] receives contributions from various terms in (2.30), and
in order to organize the symbol into the pattern of (2.38) one usually need to recombine
different terms using algebraic relations (2.16)(2.17). This will be discussed in more detail
in the next subsection.

Let us move on to compute the subsequent discontinuities. Without loss of generality,
in CPn−2 suppose we check the discontinuity associated to the incidence of V ′2 to the
singularity hyperplane spanned by {W ′1,W ′2, . . . ,W ′n−2}. This corresponds to fibrating
the standard simplex with respect to V ′2 and wrap the t2 contour around t2 = t2∗ ≡
−
∑n
i=3 ti

〈V1ViW1···Wn−2〉
〈V1V2W1···Wn−2〉 . Because the integral (2.35) is structurally the same as the integral

for Λ (2.14), except that every bracket contains V1, it is straightforward to see

DiscV1V2,Hn−1∩Hn
DiscV1,HnΛ

=
∫

Res
t2=t2∗

〈V1V2 · · ·Vn〉〈V1W1 · · ·Wn−1〉n−2〈TdTn−2〉∏n−1
j=1

∑n
i=2 ti〈V1ViW1 · · ·Wj−1Wj+1 · · ·Wn−1〉

=
∫ 〈V1V2 · · ·Vn〉〈V1V2W1 · · ·Wn−2〉n−3〈T ′dT ′n−2〉∏n−2

j=1
∑n
i=3 ti〈V1V2ViW1 · · ·Wj−1Wj+1 · · ·Wn−2〉

,

(2.39)

where T ′ = [t3 : t4 : . . . : tn], and the contour for the remaining integral is the canonical
(n − 3)-simplex in CPn−3. Again this is of the same structure as (2.14), but with V1V2
contained in every bracket. Similar to DiscV1,HnΛ, the CPn−3 space for this new integral
can be viewed as further projecting the previous CPn−2 from V ′2 . It is interesting to note the
final expression we get in the last line is symmetric (up to a possible sign) under exchange of
V1 and V2, and under exchange of Hn−1 and Hn. One can check that this same subsequent
discontinuity can be computed through different sequence of discontinuities

DiscV1V2,Hn−1∩Hn
DiscV1,HnΛ = DiscV1V2,Hn−1∩Hn

DiscV2,HnΛ

= DiscV1V2,Hn−1∩Hn
DiscV1,Hn−1Λ = DiscV1V2,Hn−1∩Hn

DiscV2,Hn−1Λ.
(2.40)

Geometrically they corresponds to different sequence of point projections. In fact, this result
can be better viewed directly in the original CPn−1, where it is equivalent to projection from
V1V2. For this reason we can just abbreviate the notation for such subsequent discontinuity
to DiscV12,Hn−1,n

, with Vij ≡ ViVj and Hij ≡ Hi ∩Hj .
Similar pattern continues to hold for other discontinuities and subsequent discontinuities.

Each discontinuity can always be interpreted as certain projections in the original space,
and the nearby discontinuities in a given sequence are related by point projections. In this
way, for any Aomoto polylog we ultimately obtain a web of discontinuity connected via
projections, as illustrated in figure 8. Note that in this computation there is completely no
need to determine the final expression of any discontinuities in terms of known elementary
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Λ

〈Vk1Ŵl〉
〈Vk2Ŵl〉

DiscV1,H1Λ

DiscV2,H1Λ

DiscV3,H1Λ

· · ·

DiscV1,H2Λ

DiscV2,H2Λ

DiscV3,H2Λ

· · ·

· · ·

DiscVi1
,Hj1

Λ

〈Vi1k1Ŵj1l〉
〈Vi1k2Ŵj1l〉

DiscV12,H12
Λ

DiscV13,H12
Λ

DiscV23,H12
Λ

· · ·

· · ·
DiscVi1i2

,Hj1j2
Λ

〈Vi1i2k1Ŵj1j2l〉
〈Vi1i2k2Ŵj1j2l〉

DiscV123,H123
Λ

· · ·

· · ·

· · ·
DiscVi1i2i3

,Hj1j2j3
Λ

〈Vi1i2i3k1Ŵj1j2j3l〉
〈Vi1i2i3k2Ŵj1j2j3l〉

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 8. The web of discontinuities computed recursively from Λ. The green blobs show the
generic labeling for the discontinuities obtained at each level. From each discontinuity we determine
the set of all its first entries, and it is important to keep track of the projection connections among the
discontinuities. In the first entry ratios shown at the bottom we abbreviate Vi1i2···ik

≡ Vi1Vi2 · · ·Vik

and Ŵj1j2···jk
≡W1W2 · · ·��Wj1 · · ·��Wj2 · · ·Wn (i.e., W with the indicated labels are deleted).

functions. Instead it suffices to just have their integral representations like (2.35) and (2.39),
which are related to their parent discontinuities (or the original function Λ) by contour
modifications. On the other hand, with each individual discontinuity we also extract the
first entry expressions in its own symbol using the method described in section 2.3, which
are in the form of a ratio (see the bottom of figure 8). In short, the data that we actually
need from this web are the projection relations among the discontinuities together with the
first entries of each discontinuity.

2.6 Constructing the symbol of Aomoto polylog

Now let us show that the data collected above are sufficient to construct the entire symbol
S[Λ]. Because every step of taking discontinuity involves a recombination of symbol terms
in general, as mentioned before it is not justified to naïvely paste together the first entry
ratios found in every sequence of discontinuities. Nevertheless, the transcendental weights
of the discontinuities reduce one by one in whatever sequence we take. The correct strategy
is to start with discontinuities with lowest weights and work step by step to those with
higher weight, until we get back to the original function. Details are as follows:
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1. First of all, all discontinuities with weight 1 can be directly worked out since they are
merely CP1 integrals. So we automatically know all their symbols.

2. For each discontinuity with weight 2, we make an ansatz for its symbol based on the
known first entries, so that the pieces that need to be assumed are just the second
entry following each first entry. With this ansatz we take all possible discontinuities
and compare their symbols with those of the weight-1 discontinuities known from the
previous step. This comparison yields a set of equations that solve the ansatz. By
this we may construct the symbol of every weight-2 discontinuity.

3. By the previous step we basically know all possible expressions that can show up in
the last symbol entries. So for each discontinuity with weight 3 we set up an ansatz
based on the known first entries and these last entries, in other words the pieces
assumed in the ansatz are again only the second entries. Again we take all possible
discontinuities of this ansatz and compare with those already worked out at weight 2.
This allows us to construct the symbol of every weight-3 discontinuity.

4. Each time when we increase the weight by one, the procedure is very much like that
at weight 3. At some weight w, because we know all the pattern of symbol entries up
to weight w− 2 from previous steps, the unknown part of each new ansatz is only the
second entries, which can be solved by matching discontinuities of the ansatz with
those at lower weights.

5. Ultimately we continue this analysis to the function Λ itself, hence S[Λ] is constructed.

Aomoto polylog in CP2. Let us illustrate the above strategy in two examples. The
simplest non-trivial example is the Aomoto polylog defined in CP2, which expects to
have transcendental weight 2. Singularities of the integrand consist of three irreducible
components. Because these components can be studied individually, let us just focus on
one of them, e.g., the hyperplane spanned by W1 and W2. There are three 1-faces of the
contour. Each ViVj gives rise to a first entry of the form 〈ViW1W2〉

〈VjW1W2〉 . Therefore we can set
up an ansatz for the part of the symbol contributed by H3 ≡W1W2, by assuming a set of
variables for the second entries, which is3

〈V1W1W2〉
〈V2W1W2〉

⊗ s12 + 〈V1W1W2〉
〈V3W1W2〉

⊗ s13 + 〈V2W1W2〉
〈V3W1W2〉

⊗ s23 (2.41)

When studying discontinuity of the integral with respect to V1, according to (2.35) we have

DiscV1,H3Λ =
∫ 〈V1V2V3〉〈V1W1W2〉(t1dt2 − t2dt1)

(t1〈V1V2W1〉+ t2〈V1V3W1〉)(t1〈V1V2W2〉+ t2〈V1V3W2〉)

= log 〈V1V2W2〉〈V1V3W1〉
〈V1V2W1〉〈V1V3W2〉

.

(2.42)

3Here we refer the notation sij to the second entries with subscripts in correspondence to the first entries
in front. These are the unknown variables in our ansatz, and are not to be distinguished from the usual
notation for Mandelstam variables.
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On the other hand, at the level of the symbol this discontinuity is computed by selecting terms
whose first entry is 〈V1W1W2〉 and chopping off this first entry, hence S[DiscV1,H3Λ] = s12s13.
Therefore from this discontinuity we obtain a relation

s12s13 = 〈V1V2W2〉〈V1V3W1〉
〈V1V2W1〉〈V1V3W2〉

. (2.43)

By similarly studying discontinuities associated to the other two contour vertices we also have

s23
s12

= 〈V1V2W1〉〈V2V3W2〉
〈V1V2W2〉〈V2V3W1〉

,
1

s13s23
= 〈V1V3W2〉〈V2V3W1〉
〈V1V3W1〉〈V2V3W2〉

. (2.44)

As easily seen, these three equations are not all independent, and they determine s12 and
s23 in term of s13 as

s12 = 〈V1V2W2〉〈V1V3W1〉
〈V1V2W1〉〈V1V3W2〉s13

, s23 = 〈V1V3W1〉〈V2V3W2〉
〈V1V3W2〉〈V2V3W1〉s13

. (2.45)

There is one d.o.f. left over. However, when we plug this back into the ansatz, terms
containing this remaining variable collect to be

〈V2W1W2〉
〈V1W1W2〉

⊗ s13 + 〈V1W1W2〉
〈V3W1W2〉

⊗ s13 + 〈V3W1W2〉
〈V2W1W2〉

⊗ s13 (2.46)

which completely cancel away, and so the symbol is actually fully determined. To make the
resulting expression symmetric, we can set s13 = 〈V1V3W1〉

〈V1V3W2〉 , and so the contribution from
W1W2 reads

〈V1W1W2〉
〈V2W1W2〉

⊗ 〈V1V2W2〉
〈V1V2W1〉

+ 〈V1W1W2〉
〈V3W1W2〉

⊗ 〈V1V3W1〉
〈V1V3W2〉

+ 〈V2W1W2〉
〈V3W1W2〉

⊗ 〈V2V3W2〉
〈V2V3W1〉

. (2.47)

This nicely fits into the known expression (2.15). By studying the other two singularity
hyperplanes the entire symbol can be recovered.

Aomoto polylog in CP3. Let us continue to check the Aomoto polylog in CP3, which is
slightly more non-trivial. Both the contour and the integrand singularities are 3-simplexes.
Again, let us just focus on contributions from the singularity hyperplane H4 ≡W1W2W3.
By the previous discussions we know each of the four discontinuities (one for each contour
vertex) is by itself an Aomoto polylog in CP2. Hence using the previous example their
symbol can already be determined by their own subsequent discontinuities, and we assume
the four symbols

S[DiscV1,H4Λ], S[DiscV2,H4Λ], S[DiscV3,H4Λ], S[DiscV4,H4Λ] (2.48)

are known. For example, by organizing according to the last entries we have (Since we have
fixed the singularity hyperplane to look at, we omit its label when denoting the discontinuity.

– 24 –



J
H
E
P
1
0
(
2
0
2
2
)
1
4
5

And to save space we abbreviate Vi1i2···ik ≡ Vi1Vi2 · · ·Vik and similarly for sequence of W ’s.)

S[DiscV1Λ] = 〈V12W12〉〈V13W13〉
〈V12W13〉〈V13W12〉

⊗〈V123W1〉+
〈V12W23〉〈V13W12〉
〈V12W12〉〈V13W23〉

⊗〈V123W2〉

+ 〈V12W13〉〈V13W23〉
〈V12W23〉〈V13W13〉

⊗〈V123W3〉+
〈V12W13〉〈V14W12〉
〈V12W12〉〈V14W13〉

⊗〈V124W1〉

+ 〈V12W12〉〈V14W23〉
〈V12W23〉〈V14W12〉

⊗〈V124W2〉+
〈V12W23〉〈V14W13〉
〈V12W13〉〈V14W23〉

⊗〈V124W3〉

+ 〈V13W12〉〈V14W13〉
〈V13W13〉〈V14W12〉

⊗〈V134W1〉+
〈V13W23〉〈V14W12〉
〈V13W12〉〈V14W23〉

⊗〈V134W2〉

+ 〈V13W13〉〈V14W23〉
〈V13W23〉〈V14W13〉

⊗〈V134W3〉.

(2.49)

Similar expressions hold for other three discontinuities. Note that the expression contains
nine different last entries. The ansatz for (the H4 part of) S[Λ] is constructed in terms of a
summation over different 1-faces. For the 1-face V1V2 the relevant first entry is

〈V1W123〉
〈V2W123〉

(2.50)

On the other hand, the last entries that show up in both S[DiscV1I] and S[DiscV2I] are

〈V123W1〉, 〈V123W2〉, 〈V123W3〉, 〈V124W1〉, 〈V124W2〉, 〈V124W3〉. (2.51)

Based on these the terms related to V1V2 in S[Λ] are set up as

S[Λ] ⊃
∑
i=3,4

3∑
j=1

〈V1W123〉
〈V2W123〉

⊗ s(i,j)
12 ⊗ 〈V12iWj〉, (2.52)

which involves six unknown variables. By similar reasoning the terms related to V1V3 are
set as

S[Λ] ⊃
∑
i=2,4

3∑
j=1

〈V1W123〉
〈V3W123〉

⊗ s(i,j)
13 ⊗ 〈V13iWj〉. (2.53)

For terms related to V1V4 there are

S[Λ] ⊃
∑
i=2,3

3∑
j=1

〈V1W123〉
〈V4W123〉

⊗ s(i,j)
14 ⊗ 〈V14iWj〉. (2.54)

And there are three other groups of terms related to the remaining 1-faces, which have very
similar structure. The ansatz altogether contains 36 variables from the second entries. The
reason that we explicitly list out the above parts of S[Λ] is that S[DiscV1Λ] in (2.49) is only
contributed by them when taking discontinuities. By matching terms with the same last
entry we obtain nine equations for the second entries. For example, by matching 〈V123W1〉
in the last entry we obtain

s
(3,1)
12 s

(2,1)
13 = 〈V12W12〉〈V13W13〉

〈V12W13〉〈V13W12〉
, (2.55)
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and so on. There are further constraints from other discontinuities as well, and which
are obtained in analogous way. To explicitly list out all the computation in the paper a
bit tedious, but the computation itself is not at all complicated when implemented in a
computer, and we leave it for interested readers. These constraints again fully determines
S[I] that matches the expected result (2.20). (Like the previous example, not all the above
variables are solved by the constraints, but one can verify that the remaining variables all
get cancelled away in the entire symbol.)

2.7 Global residue theorem and the structure of symbols

Before ending this section let us return to the integral on individual fibres in a given fibration
of the simplex contour. In section 2.4 we computed the discontinuities by an S1 residue
contour around each singularity point on the fibre, which are induced from the singularity
hyperplanes in CPn−1. As mentioned at the end of section 2.1 they satisfy a global residue
theorem on the fibre, i.e., the summation of these contours turns into a trivial contour.
This has an interesting consequence on the structure of S[Λ].

First of all, note that according to our definition for the discontinuities under study in
section 2.4, for a fixed choice of fibration (e.g., with respect to V1) the integral contour for
the remaining variables is always the same canonical (n− 2)-simplex in the discontinuity
associated to any irreducible component of the integrand singularities (i.e., any Hj), as
illustrated in figure 6. Therefore, summing up all the discontinuities in a given fibration is
effectively just to sum up the residue contours on each fibre

n∑
j=1

DiscV1,Hj Λ =
∫ n∑

j=1
Res

t1=−
∑n

i=2 ti
Hj Ui
Hj V1

〈H1H2 · · ·Hn〉〈V1V2 · · ·Vn〉〈TdTn−2〉∏n
j=1(t1(HjV1) +∑n

i=2 ti(HjUi))
= 0, (2.56)

which vanishes due to the global residue theorem on each fibre.
In the previous subsection we have shown that the set of S[DiscVi,Hj Λ] for all i, j

fully determine S[λ]. In particular, this computation can be performed for each fixed Hj

separated, which yields the part of S[Λ] that is associated to the singularity Hj , i.e., terms
whose first entries are of the form (Vi1Hj)

(Vi2Hj) . Not surprisingly, the above relations among the
discontinuities leads to relations among symbol terms whose first entries are tied to the
same 1-face of the contour ∆. To be concrete, let us focus on V1V2 for example, and so
pick out symbol terms in (2.20) whose first entries are of the form 〈V1··· 〉

〈V2··· 〉 . Their summation
should vanish when the first entries are dropped∑

ρ∈Sn−2,σ∈Sn

sign(12ρ)sign(σ)
�����������〈V1Wσ(2) · · ·Wσ(n)〉
〈V2Wσ(2) · · ·Wσ(n)〉

⊗〈V1V2Wσ(3)Wσ(4) · · ·Wσ(n)〉⊗

⊗ 〈V1V2Vρ(3)Wσ(4) · · ·Wσ(n)〉 ⊗ · · · ⊗ 〈V1V2Vρ(3) · · ·Vρ(n−1)Wσ(n)〉 = 0,
(2.57)

where ρ is valued in the permutations of {3, 4, . . . , n}. The above expression vanishes
because for whichever σ the summation includes another term where the ordering between
σ(1) and σ(2) is switched, but for any fixed ρ these two terms have the same ⊗ product (after
chopping off the first entries) and the only difference is a relative sign due to sign(σ). Similar
relations hold for other choices of 1-faces ViVj , and since the discontinuities themselves are
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Aomoto polylogs, similar relations also hold for symbols of discontinuities and subsequent
discontinuities and so on.

From an alternative point of view, recall that by definition the integral Λ is independent
of what specific homogeneous coordinates for the 0-faces Vi to be put into the expression.
This means in particular that its symbol S[Λ] should remains the same for arbitrary rescaling
of any 0-faces Vi 7→ λiVi. This of course does not hold individual first entries, and so as
already pointed out at the end of section 2.1 in the case of CP1 this invariance should come
in terms of cancellation between discontinuities of different logarithmic singularities. This
leads to the condition (2.57) as well.

While we present the above condition on the structure of symbols in the context of
Aomoto polylog here, the above reasoning from the independence of choice of homogeneous
coordinates did not rely on whether the original singularity curve of the integrand consists of
only linear irreducible components or not. Therefore in principle the same type of condition
should hold for more general integrals, as we will clearly observe later on.

3 From Aomoto to integrals with generic rational singularities

In the previous section we discussed in detail discontinuities of Aomoto polylogs and their
relation to the projections from 0-faces of the simplex integral contour. We showed that
recursive application of this operation leads to a method for the construction of the symbol of
Aomoto polylog, without actually doing the integrals. For the Aomoto polylogs themselves
the symbols can be studied in a simpler way, as was described in [32]. However, the analysis
in the previous section serves to provide a unified framework that can directly generalize to
more complicated integrals (1.7)

I =
∫

∆

〈XdXn−1〉N
[
Xk
]

D [Xn+k] . (3.1)

In this generic setup the integral contour remains to be an (n−1)-simplex, but the condition
for singularities of the integrand, D : D[Xn+k] = 0, is relaxed. D can still be reducible like
the case in Aomoto polylog

D =
⋃
i

Di, (3.2)

but its irreducible components Di can be of higher degree and so are no longer linear. On
the other hand, we require that each irreducible component is rational, i.e., there exists some
birational map between each Di and CPn−2. The simplest non-trivial examples of this type
is the quadrics (i.e., the degree-2 curves), which are always rational and will be discussed in
the following two sections. The reason for rationality is that we want to keep the integral
contour (in the discontinuities) living in a simply connected domain, otherwise the integral
will go beyond the multiple polylogs in general, thus beyond the scope of our discussion.

A lot of features of the previous analysis can straightforwardly carry over to this
more general situation, yet several new phenomena almost always occur, which we briefly
comment as follows:

• Because Di can be of higher degree, unlike the hyperplanes it can intersect a line at
several points. Locally we should treat them as distinct singularities. However, as we
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D1

D2

A

B
C

D1 (1st sheet) B C

D1 (2nd sheet) A B C

D2 (single sheet) A

Figure 9. An example of folding curves during a fibration/projection. The curve under consideration
here consists of two irreducible components D1 and D2. This figure shows three points that are at
singular configuration with respect to the fibration: intersection between two components (A), self-
interaction of a single component (B), and a smooth point which appears singular under projection
(C). In the region illustrated in the figure, D1 is folded into two sheets by the projection, while D2
remains unfolded. In the space for D1 after projection, C turns into a branch point connecting the
two sheets, B turns into a pole on each sheet (hence effectively this creates two poles in the entire
D1), while A turns into a pole that is present only on one sheet. In the space for D2 after projection,
we only observe a pole from A.

scan over different fibres in a fibration these singularities can meet at a point on Di
which is actually smooth (point C in figure 9). This situation is to be distinguished
from the situation where two different irreducible components Di and Dj intersect
(point A in figure 9, as we already encounter in Aomoto polylogs), or the situation
when Di intersects itself at some singular point (point B in figure 9). In the latter two
situations, when we introduce local variables in the neighborhood of the A or B, the
equation governing the singularity curves is reducible. For example in the simplest
case it locally looks like

(t1 + a1t2)(t1 + a2t2) = 0, (3.3)

where t1 parameterizes points on the fibre and t2 parameterizes the space of fibres.
Since the discontinuity computation effectively put the integral on an irreducible
component of the singularity curve, as we deform the remaining contour (or equivalently
deform the fibre) the point under study is always kept on the same irreducible
component. So A or B is a pole when viewed on the curve. In comparison, for the
point C which is smooth, locally it looks like

t21 + a0t2 = 0. (3.4)

As we scan over fibres by deforming t2 in the neighborhood of C, the solution to t1
can smoothly deform from one to another, indicating that there are actually different
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Riemann sheets for the naïve space obtained from point projection. Geometrically
one can think about this phenomenon as folding the original (irreducible component
of) singularity curve into several sheets during the point projection, which will be
explained in further detail in the next section. As a consequence, the discontinuities
as directly computed frequently contains branch points in the denominator of its
integrand, which makes the subsequent analysis of emergence of singularities not so
straightforward as that in Aomoto polylogs. No matter how the irreducible curve is
folded, in order to fully understand the analytic properties of the resulting discontinuity
one has to treat the corresponding integral as defined on the entire curve.

• In Aomoto polylog integrals, when the discontinuity computation puts the integral
onto any of the singularity hyperplanes, the resulting integral contour for the remaining
variables is always a uniquely defined canonical simplex. In contrast, because any
higher-degree Di gets folded in a projection, the definition for the discontinuity
undergoes certain ambiguity, as in principle one can choose which Riemann sheet a
point of the contour resides on. It turns out that in this case we have to extend the
original analysis to a finite set of discontinuities, for each fibration and each Di. This
will be discussed in detail in the next section.

• For any discontinuity in the above mentioned set there is a well-defined integral
contour which is induced from geometries in the original CPn−1. Because such contour
is intrinsically defined on Di, one can already expect that generically it is not a simplex
in the ordinary sense. Even when Di is rational as we assume in this paper, so that
the domain can be mapped to some ordinary CPn−2, the image of the contour will in
general have curvy “faces” (i.e., defined by some higher-degree equations). As we have
seen so far, it is important to figure out a proper fibration of the integral in order to
perform the analysis on its singularities and collect analogous data as summarized in
figure 8. While this is straightforward to do for ordinary simplexes as in the Aomoto
polylog integrals, to apply it to the above mentioned generalized contours calls for
more detailed understanding about some general characteristic of their geometries.
Nevertheless, at least for Di which is a quadric there is a very natural type of fibration
to use, which will be described in detail in section 5. We expect this treatment may
extend to Di with even higher degrees.

In the remaining of this paper we will examine the simplest non-trivial cases of the
integral (1.7) with rational Di, where D is a multiple of a single quadric. We will use
explicit examples to illustrate the above mentioned phenomena, and describe the way to
deal with them properly. In each example we will show that the extended analysis serves
to completely construct the symbol of the integral, like what we already have done in the
Aomoto polylogs.

4 Discontinuities from quadric singularities

In this and next section we discuss integrals with quadric singularities to introduce the idea
for solving the difficulties pointed out in the previous section. We do not seek for a most
general discussion, but use explicit examples to illustrate the necessary ingredients.
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Figure 10. A five-point box diagram in 4d.

For simplicity let us focus on the following integral in CP3

I =
∫

∆

4
√

detQ〈XdX3〉
(XQX)2 , (4.1)

where ∆ is the canonical 3-simplex and

Q =


1 p1 0 0
p1 1 p2 0
0 p2 1 p3
0 0 p3 1

 . (4.2)

This integral can arise from, e.g., a five-point box diagram in 4d, where all the loop
propagators have the same mass m, and all the external points have the same mass
M =

√
2m and are all on-shell, see figure 10.

The integral dictated by Feynman rules is∫ d4`

(2π)4
1

(`2 −m2)((`+ k1)2 −m2)((`+ k1 + k5)2 −m2)((`− k2 − k3)2 −m2) . (4.3)

Because k2
i = 2m2 (∀i), by the Feynman parameter integral formula (1.4) it is easy to see

that if we identify the parameters as

p1 = 1− (k4 + k5)2

2m2 , p2 = 1− (k2 + k3)2

2m2 , p3 = 1− (k1 + k5)2

2m2 , (4.4)

this Feynman loop integral is proportional to (4.1).
This integral is known to be a weight-2 pure function. Its symbol can by worked out,

e.g., by the spherical projection method in [32] or the mixed Tate motive method in [33, 37],
which is

S[I] =1
2

(
p1 + i

√
1− p2

1

p1 − i
√

1− p2
1

⊗
p3
√

1− p2
1 + q

p3
√

1− p2
1 − q

+
p2 + i

√
1− p2

2

p2 − i
√

1− p2
2

⊗
p1p2p3 + q

√
1− p2

2

p1p2p3 − q
√

1− p2
2

+
p3 + i

√
1− p2

3

p3 − i
√

1− p2
3

⊗
p1
√

1− p2
3 + q

p1
√

1− p2
3 − q

)
,

(4.5)

where q =
√
− detQ =

√
−1 + p2

1 + p2
2 + p2

3 − p2
1p

2
3.
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4.1 First entries and discontinuities

As in the Aotomo polylog, we start by analyzing the first entries. For this we still inspect
configuration on the lines spanned by every pair of 0-faces. For example, in V1V2 we use
V1 and V2 to set up homogeneous coordinates [u1 : u2] such that any point X ∈ V1V2 is
spanned by X = u1V1 + u2V2. In terms of the u coordinates these points are

V1 : [1 : 0] and V2 : [0 : 1]. (4.6)

The induced integral contour is just the 1-simplex whose 0-faces are V1 and V2. The
singularities seen in this CP1 is induced by intersecting the quadric XQX = 0. By Bezout’s
theorem there are always two solutions, and let us name these points as P+

12 and P−12. In
terms of the u coordinates they locate at

P+
12 :

[
−p1 + i

√
1− p2

1 : 1
]

and P−12 :
[
−p1 − i

√
1− p2

1 : 1
]
. (4.7)

Then the corresponding first entries in S[I] are

f±12 ≡
〈P±12V1〉
〈P±12V2〉

= p1 ± i
√

1− p2
1. (4.8)

For later convenience we identify the notations f±ij ≡ f±ji . Applying this analysis to V2V3
and V3V4 we similarly obtain

f±23 ≡
〈P±23V2〉
〈P±23V3〉

= p2 ± i
√

1− p2
2, f±34 ≡

〈P±34V3〉
〈P±34V4〉

= p3 ± i
√

1− p2
3. (4.9)

On the other hand, when further applying to the remaining three 1-faces V1V3, V1V4 and
V2V4 we can find the corresponding f±13, f±14 and f±24 are some numeric values. This means
that the intersection points of the singularity curve and these lines are totally fixed, and so
although they potentially lead to branch points in principle, these are never detected by the
integral as a function of only {p1, p2, p3}. Correspondingly, by definition terms with these
numerical first entries are deleted in the symbol. However, because the discontinuities that
we defined using contour modifications geometrically arise from an enlarged parameter space
(so that the geometries allow for arbitrary deformations, see discussions around figure 6),
later in the symbol construction such symbol terms will still play a role, but only discarded
at the end.

Next let us compute the discontinuities of this integral. Again this is done via fibration,
and there are four fibrations to be considered, with respect to each of the 0-faces of ∆. Let
us first study V1. Since the contour is canonical, the coordinates X = [x1 : x2 : x3 : x4]
already provides a desired fibration by distinguishing x1 from the other variables. Note
again the contour for [x2 : x3 : x4] is independent of x1. Each choice of [x2 : x3 : x4] specifies
a CP1 fibre V1(x2V2 + x3V3 + x4V4), on which the points are parameterized by x1. On this
fibre in general one observes two separate singularity points, their locations are learned by
solving the equation XQX = 0, which yields

x±1 = −p1x2 ±
√(

p2
1 − 1

)
x2

2 − 2p2x2x3 − x2
3 − 2p3x3x4 − x2

4. (4.10)

We name the two corresponding points P+ and P− respectively.

– 31 –



J
H
E
P
1
0
(
2
0
2
2
)
1
4
5

To compute the discontinuity, on each fibre we wrap the x1 contour around one
of the singularities. Without loss of generality we pick P+. Then the corresponding
discontinuity reads∫

Res
x1=x+

1

4q〈XdX3〉
(XQX)2 =

∫
q(x2dx3 ∧ dx4 − x3dx2 ∧ dx4 + x4dx2 ∧ dx3)(
(p2

1 − 1)x2
2 − 2p2x2x3 − x2

3 − 2p3x3x4 − x2
4
)3/2 (4.11)

We do not yet give this discontinuity a name because there is a subtlety. At first sight this
integral is defined on CP2, with coordinates [x2 : x3 : x4]. However, due to the square root
branch point shown in the denominator of the integrand, rigorously speaking the domain
of definition is really a double cover of CP2 that branches at the plane conic defined by
this denominator. While we say the contour is a 2-simplex specified by its three 0-faces,
there is an ambiguity regarding which Riemann sheet each 0-face actually locates at, and in
principle the contour can travel across the branch cut to another sheet along its way.

It is helpful to clarify the nature of this ambiguity. In order to keep track of the
behavior of the square root and the corresponding Riemann sheet, a common practice is to
introduce an extra variable x0 so that the following homogeneous equation always holds((

p2
1 − 1

)
x2

2 − 2p2x2x3 − x2
3 − 2p3x3x4 − x2

4

)
− x2

0 = 0. (4.12)

This again defines a quadric in CP3. In fact this curve is exactly the original XQX = 0, as
can be seen by reparameterizing the original space using

X = x0V1 + x2 (V2 − p1V1)︸ ︷︷ ︸
V ′2

+x3V3 + x4V4. (4.13)

In fact, one can first perform this change of integration variables before taking residue on
the fibre, which will yield exactly the same result (4.11). This is coherent with the view
that the discontinuity integral (4.11) is defined in a space from projecting the original CP3

through V1 (but now double-covered). Therefore the appearance of two Riemann sheets is
caused by folding the original quadric during the projection through V1, and the branch
points occur at exactly the places where it folds, or in other words, when x0 develops double
roots in (4.12).

From the above discussion we see the entire domain of definition for the discontinuity
integral is just the original quadric Q. Now comes the question of characterizing the contour
in (4.11). Such contour has real dimension 2, and because it is induced from the V1 fibration
in CP3, it roughly has a shape that resembles a 2-simplex. Viewed in the original CP3,
each 0-face of this contour is one of the intersection points between Q and one V1Vi, i.e.,
one of the P±1i points discussed a moment ago. Although there is an ambiguity here, the
0-faces are completely fixed once a choice is made for each, so globally there are 8 different
configurations for them. As for the 1-faces, each of them should lie in the intersection of Q
and one hyperplane V1ViVj . In figure 11 we show the case of V1V3V4. At first sight there
may appear to be 2 possible choices of each 1-face, as seen in figure 11-(a). This is however
not correct. We need to keep in mind that Q ∩ V1ViVj is a curve of complex dimension 1,
while the corresponding 1-face is just some path of real dimension 1 in it. In this particular
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V1

V2
V3

V4

P+
12

P−
12

P+
13

P−
13

P+
14

P−
14

P+
13

P−
13

P+
14

P−
14

Q ∩ V1V3V4

(a) (b)

Figure 11. The generalized simplex contour on the quadric. It is fixed up to invariant deformations
once each of its 0-face is chosen. There are in total eight different contours for the discontinuity.

example Q∩ V1ViVj is also a quadric, which is birational to CP1 and so is simply connected.
Therefore, as illustrated in figure 11-(b), for any fixed pair of 0-faces in this intersection
there always exists a unique 1-simplex (up to deformation equivalence) that may serve as a
1-face of the entire contour.

In consequence the contour for the discontinuity integral (4.11) is completely fixed
by the choice of its 0-faces, whose detailed geometric structure is determined by the line
fibration and the ordinary simplex contour in the original higher dimensional space as
described above. In later discussion we will call the shape of such contour a generalized
simplex. So in total we get a set of 8 different discontinuities from the V1 fibration, in
correspondence to the 8 choices of generalized simplexes.

One thing to be further pointed out is that the choice of P+ or P− in the discontinuity
computation (4.11) does not affect the choice of contour. Any point of the contour that lies
on a generic fibre is determined by continuous deformation to the 0-faces along the contour,
and it can in principle be identified as either P+ or P−. What they really affect is merely
whether to identify the square root in (4.11) as +x0 or −x0 in subsequent analysis. As long
as we make a consistent choice of the sign, the final result should remain the same.

4.2 Rationalization of discontinuity integrals

We now move on to investigate the 8 different discontinuities. For simplicity of discussion
(mainly to avoid the appearance of many square roots) let us temporarily switch the
parameter p1 to p1 = 2t1

1+t21
, such that

√
1− p2

1 = 1−t21
1+t21

. Then the integral (4.11) is written into

∫
q
(
1 + t21

)3 (x2dx3 ∧ dx4 − x3dx2 ∧ dx4 + x4dx2 ∧ dx3)(
−
(
1− t21

)2
x2

2 −
(
1 + t21

)2 (2p2x2x3 + x2
3 + 2p3x3x4 + x2

4
))3/2 . (4.14)
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So to keep track of the square root the new variable x0 is introduced with the equation(
−
(
1− t21

)2
x2

2 −
(
1 + t21

)2 (
2p2x2x3 + x2

3 + 2p3x3x4 + x2
4

))
− x2

0 = 0. (4.15)

As mentioned before the remaining contour lives on the quadric. Its 0-faces are P±12, P±13
and P±14, where P±ij denotes the two intersection points between the 1-face ViVj and the
quadric Q (as previously defined around (4.7) and also illustrated in figure 11). In terms of
the coordinates [x0 : x2 : x3 : x4] they read

P±12 :
[
i
(
1− t21

)
: ±1 : 0 : 0

]
, (4.16)

P±13 :
[
i
(
1 + t21

)
: 0 : ±1 : 0

]
, (4.17)

P±14 :
[
i
(
1 + t21

)
: 0 : 0 : ±1

]
. (4.18)

So it is convenient to label these discontinuities as Disc±±±V1
I by the superscripts of the

three 0-faces.4
Let us focus on Disc+++

V1
I first, whose 0-faces are P+

12, P+
13 and P+

14. Because a quadric
is always rational, there is a well-define way to resolve the square root branch points and
turn the integrand (4.14) into a rational expression. The idea is to project CP3 through
a different point R, which now resides on the quadric. Each projection line intersects the
quadric always at two points, one being fixed at R, the other scanning over the rest of
the quadric. So such projection provides a one-to-one map from the quadric to CP2 (the
projection of CP3 through R). So the goal is to map the integral on the quadric (4.14) to
an integral on this CP2.

To define homogeneous coordinates on this quotient space we need to choose three points
U2, U3, U4 ∈ CP3 and study linear combinations of lines RU2, RU3 and RU4. Specifically, a
point X ∈ CP3 can be decomposed as

X ≡ [x0 : x2 : x3 : x4] = tR+ y2U2 + y3U3 + y4U4, (4.19)

for some {t, y2, y3, y4}. Now requiring that X resides on the quadric (4.15) uniquely solves
t (we get a linear equation of t because R already satisfies the same equation). Plugging
this value of t back into (4.19) gives a homogeneous relation between [x0 : x2 : x3 : x4] and
{y2, y3, y4} for points on the quadric. The latter then makes up the desired homogeneous
coordinates Y = [y2 : y3 : y4] for the above mentioned quotient space CP2. Transforming the
integral (4.14) into these new coordinates helps remove the branch points. This procedure
is also usually called rationalization.

There is a canonical choice for the points {U2, U3, U4}, by identifying them as the
contour’s 0-faces, Ui = P+

1i . In this way the image of these 0-faces will again be placed
at the canonical locations [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1] in the Y space. As shown
in figure 12, with a generic projection reference R the image of any 1-face (say P+

12P
+
13)

lives on a higher-degree curve in CP2 (degree 2 in this case). To understand this, note that
4Following the notations in Aomoto polylogs we should have named these quantities Disc±±±V1,Q I. Because

the integrand singularity is already irreducible in this example, we omit the subscript “Q” for brevity.
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R

R′

P+
12

P+
13

P−12

P−13

Figure 12. Images of a 1-face (P+
12P

+
13) of the generalized simplex for different rationalizations.

With (4.19) and Ui = P+
1i we use points on P+

12P
+
13P

+
14 to parameterize the CP2 space of projection

lines. The red path refers to the 1-face, and the corresponding dashed circle denotes the curve where
this path is restricted to, which is the intersection Q ∩ V1V2V3. The orange path denotes the image
of this 1-face in the rationalization with a generic reference R ∈ Q. The magenta path denotes the
image when the reference is chosen as R′ ∈ Q ∩ V1V2V3.

this original 1-face is a path in the intersection of Q and the hyperplane of a 2-face of ∆
through V1 (V1V2V3 in figure 12). When viewed inside the hyperplane this intersection is a
degree-2 curve, and because generically R stays off the hyperplane, the projection of this
curve has its degree higher than 1 as well. Therefore one can expect that the image of the
contour after rationalization usually looks complicated. This is inevitable since the contour
for the discontinuity is geometrically a generalized simplex, and the its image in CP2 is just
a manifestation of this fact.

Fortunately, the above picture for the source of curvy faces simultaneously suggests a
way of simplification. Because the original 1-face P+

12P
+
13 entirely lives inside the hyperplane

V1V2V3, as long as R resides on the same hyperplane (R′ in figure 12) every projection line
relevant for this 1-face will also be entirely restricted within this hyperplane. Consequently
the image of P+

12P
+
13 turns into a path inside a line (a degree-1 curve) in CP2 (with the

parameterization in (4.19) this subspace is spanned by P+
12 and P+

13). Similar simplification
holds for the other 1-faces as well, as long as R is properly chosen.

In the extreme case we can chosen R to reside on a 1-face of ∆, so that the rationalization
image of only one 1-face remains to live on higher-degree curves in CP2. Recall that the
line of a 1-face of ∆ intersects the quadric at two point, one of which already serves as a
0-face of the contour on the quadric, so we can choose the other to be R. Without loss of
generality here we identify R = P−12, and the relation (4.19) is fixed to

X ≡ [x0 : x2 : x3 : x4] = tP−12 + y2P
+
12 + y3P

+
13 + y4P

+
14. (4.20)

Following the rationalization procedure described above we thus obtain the map (note that
because [x0 : x2 : x3 : x4] are homogeneous coordinates, the map allows an overall scale, by
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which we can make r.h.s. of the map purely polynomials.)

x0 = i

(
2
(
1− t21

)3
y2

2 +
(
1 + t21

)2 (
1 + p2 − t21 + p2t

2
1

)
y2

3 +
(
1− t21

) (
1 + t21

)2
y2

4

+ 2
(
1− t41

) (
1 + p2 − t21 + p2t

2
1

)
y2y3 + 2

(
1− t21

)2 (
1 + t21

)
y2y4

+
(
1 + t21

)2 (
(1 + p3)

(
1− t21

)
+ p2

(
1 + t21

))
y3y4

)
, (4.21)

x2 = 2
(
1− t21

)2
y2

2 + (1− p3)
(
1 + t21

)2
y3y4 + 2

(
1− t41

)
y2 (y3 + y4) , (4.22)

x3 = y3

(
2
(
1− t21

)2
y2 +

(
1 + t21

) (
1 + p2 − t21 + p2t

2
1

)
y3 +

(
1− t41

)
y4

)
, (4.23)

x4 = y4

(
2
(
1− t21

)2
y2 +

(
1 + t21

)
(1 + p2 − t21 + p2t

2
1)y3 + (1− t41)y4

)
. (4.24)

Here we explicitly see the map is quadratic in Y , confirming that the new CP2 provides
a double cover for the direct projection of CP3 through V1. Note the last two lines show
that xi ∝ yi for i = 3, 4. This is an indication that the images of the contour faces xi = 0
(i = 3, 4) are also flat, defined by the equation yi = 0. These faces are adjacent to the vertex
[1 : 0 : 0]. Therefore the Y coordinates provides a natural fibration of the contour in terms
of lines through [1 : 0 : 0], and the contour for [y3 : y4] (the segment between [1 : 0] and
[0 : 1]) is independent of y2 (see figure 13). On the other hand, the remaining boundary,
x2 = 0, defines a non-trivial quadric by (4.22) in Y space. This solves y2 to be

y±2 = 1 + t21
1− t21

(
−y3 − y4 ±

√
y2

3 + 2p3y3y4 + y2
4

)
. (4.25)

Only one of the solutions corresponds to the actual boundary of the contour. To find which
one it is, we can plug them back into the above rationalization transform and work out the
coordinates X ≡ [x0 : x2 : x3 : x4] as a function of [y3 : y4], and require that this expression
reduces to the correct vertices in the limits

lim
[y3:y4]→[1:0]

X(y3, y4) = P+
13, lim

[y3:y4]→[0:1]
X(y3, y4) = P+

14. (4.26)

(These identities should be understood with a freedom in the overall scale.) This determines
that y+

2 is the correct boundary. Therefore on each fibre specified by the pair [y3 : y4] the
contour for y2 is from y2 = y+

2 (y3, y4) to y2 =∞.
Now we use this rationalization transformation to rewrite the discontinuity inte-

gral (4.14). The new contour is already described in the above. Note that under this
transform the volume elements are related by

(x2dx3 ∧ dx4 + · · · ) = −2i
(
1− t21

)
x0 (LY ) 〈Y dY 2〉, (4.27)

L =
[
2
(
1− t21

)2
:
(
1 + t21

) (
1 + p2 − t21 + p2t

2
1

)
:
(
1− t41

)]
. (4.28)

So (4.14) becomes

Disc+++
V1

I = −2iq
(
1− t21

) (
1 + t21

)3 ∫ (LY ) 〈Y dY 2〉
x2

0
, (4.29)
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P+
12

P+
13

P+
14

P−
13

P−
14

Figure 13. Contour on CP2 after rationalization with respect to P−12. All the 1-faces live on lines
through P+

12, except for P+
13P

+
14 (which is dual to P+

12). This unique 1-face is restricted to a quadric
(represented by the dashed curve), which is in fact the image of Q ∩ V1V3V4. Detailed geometry of
this 1-face is encoded in the solution y+

2 in (4.25). The other solution y−2 corresponds to a path
linking P−13 and P−14, and is not the actual 1-face.

where x0 is to be replaced by r.h.s. of (4.21), which is a quadric in Y . It is known that
integrands of the above form are exact forms in general, and so can be localized onto
codim-1 boundaries of the contour via Stokes’ theorem [32]. In fact, the situation here is
much more special: it turns out to be a total derivative of y2, the variable on each fibre in
the above natural fibration of the contour! From the geometric point of view this means,
when localizing this exact form onto the boundaries, only the unique curvy boundary yields
non-zero contribution. Due to this phenomenon we can directly integrate y2 away (recall
its integration domain is [y+

2 ,∞]), and obtain

Disc+++
V1

I =
∫ −iq

(
1 + t21

)
(y3dy4 − y4dy3)(

1− t21
) (
y2

3 + y2
4
)

+ y3

(
2p3

(
1− t21

)
y4 + p2

(
1 + t21

)√
y2

3 + 2p3y3y4 + y2
4

) ,
(4.30)

where the contour is the canonical 1-simplex (in the space from projecting CP2 through
P+

12). The appearance of a new square root is not surprising, since this integration is local
to the degree-2 curve in figure 13. In order to perform the remaining integral correctly we
again need to figure out on which Riemann sheet the two 0-faces reside. First we resolve
the square root by introducing a variable y0 such that(

y2
3 + 2p3y3y4 + y2

4

)
− y2

0 = 0. (4.31)

This represents the same quadric in figure 13, but using a different parameterization
[y0 : y3 : y4] which is related to the original one by

Y ≡ [y2 : y3 : y4] =
(
1 + t21

)
2
(
1− t21

)y0 [1 : 0 : 0]+y3

[
−
(
1 + t21

)
2
(
1− t21

) : 1 : 0
]
+y4

[
−
(
1 + t21

)
2
(
1− t21

) : 0 : 1
]
.

(4.32)
This can be checked by the fact that plugging it into (4.22)= 0 yields the equation (4.31).
In the original Y coordinates the vertices locate at [0 : 1 : 0] and [0 : 0 : 1]. Substituting
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these values into l.h.s. of (4.32), we can then confirm that in terms of the new coordinates
[y0 : y3 : y4] these 0-faces are at [1 : 1 : 0] and [1 : 0 : 1] respectively, which then uniquely
defines the integral (4.30). When actually performing the integral (4.30) we apply a further
rationalization to the dim-1 quadric (4.31), similar to what we did before. This gives rise
to an ordinary CP1 integral and translating t1 back into the parameter p1 we finally obtain

Disc+++
V1

I = log
(p3 + 1)

√
1− p2

1 + p2 + q

(p3 + 1)
√

1− p2
1 + p2 − q

. (4.33)

Therefore its symbol is just the ratio inside the log

S
[
Disc+++

V1
I
]

= ⊗
(p3 + 1)

√
1− p2

1 + p2 + q

(p3 + 1)
√

1− p2
1 + p2 − q

≡ ⊗r+++
1 . (4.34)

4.3 Symbol construction

The analysis presented in the previous subsection can straightforwardly apply to the
computation of other discontinuities. Especially, for the remaining 7 types of discontinuities
associated to vertex V1 they are worked out to be

S
[
Disc+−+

V1
I
]

= ⊗
(p3 − 1)

√
1− p2

1 + p2 + q

(p3 − 1)
√

1− p2
1 + p2 − q

≡ ⊗r+−+
1 , (4.35)

S
[
Disc++−

V1
I
]

= ⊗
(p3 − 1)

√
1− p2

1 − p2 + q

(p3 − 1)
√

1− p2
1 − p2 − q

≡ ⊗r++−
1 , (4.36)

S[Disc+−−
V1

I] = ⊗
(p3 + 1)

√
1− p2

1 − p2 + q

(p3 + 1)
√

1− p2
1 − p2 − q

≡ ⊗r+−−
1 , (4.37)

and

S
[
Disc−,m3,m4

V1
I
]

= −S
[
Disc+,−m3,−m4

V1
I
]

= ⊗ 1
r+,−m3,−m4

≡ ⊗r−,m3,m4
1 , (4.38)

where m3,m4 are individually either + or −.
Discontinuities associated to other vertices can be computed analogously. We use

similar notations to represent them, where the sequence of three signs is to be understood
in lexicographic order, e.g., in Discm1,m3,m4

V2
the sign mi specifies the singularity point on

V2Vi. With this convention, the result from the V2 projection is

S
[
Disc+++

V2

]
= ⊗

(
p3 +

√
1− p2

2

)√
1− p2

1 + p1p2 − q(
p3 +

√
1− p2

2

)√
1− p2

1 + p1p2 + q
≡ ⊗r+++

2 , (4.39)

S
[
Disc+−+

V2

]
= ⊗

(
p3 −

√
1− p2

2

)√
1− p2

1 + p1p2 − q(
p3 −

√
1− p2

2

)√
1− p2

1 + p1p2 + q
≡ ⊗r+−+

2 , (4.40)
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S
[
Disc++−

V2

]
= ⊗

(
p3 −

√
1− p2

2

)√
1− p2

1 − p1p2 − q(
p3 −

√
1− p2

2

)√
1− p2

1 − p1p2 + q
≡ ⊗r++−

2 , (4.41)

S
[
Disc+−−

V2

]
= ⊗

(
p3 +

√
1− p2

2

)√
1− p2

1 − p1p2 − q(
p3 +

√
1− p2

2

)√
1− p2

1 − p1p2 + q
≡ ⊗r+−−

2 , (4.42)

S
[
Disc−,m3,m4

V2

]
= ⊗ 1

r+,−m3,−m4
2

≡ ⊗r−,m3,m4
2 , ∀m3,m4. (4.43)

For the V3 projection we have

S
[
Disc+++

V3

]
= ⊗

(
p1 +

√
1− p2

2

)√
1− p2

3 + p2p3 + q(
p1 +

√
1− p2

2

)√
1− p2

3 + p2p3 − q
≡ ⊗r+++

3 , (4.44)

S
[
Disc+−+

V3

]
= ⊗

(
p1 −

√
1− p2

2

)√
1− p2

3 + p2p3 + q(
p1 −

√
1− p2

2

)√
1− p2

3 + p2p3 − q
≡ ⊗r+−+

3 , (4.45)

S
[
Disc++−

V3

]
= ⊗

(
p1 +

√
1− p2

2

)√
1− p2

3 − p2p3 − q(
p1 +

√
1− p2

2

)√
1− p2

3 − p2p3 + q
≡ ⊗r++−

3 , (4.46)

S
[
Disc+−−

V3

]
= ⊗

(
p1 −

√
1− p2

2

)√
1− p2

3 − p2p3 − q(
p1 −

√
1− p2

2

)√
1− p2

3 − p2p3 + q
≡ ⊗r+−−

3 , (4.47)

S
[
Disc−,m2,m4

V3

]
= ⊗ 1

r+,−m2,−m4
3

≡ ⊗r−,m2,m4
3 , ∀m2,m4. (4.48)

And finally the V4 projection yields

S
[
Disc+++

V4

]
= ⊗

(p1 + 1)
√

1− p2
3 + p2 − q

(p1 + 1)
√

1− p2
3 + p2 + q

≡ ⊗r+++
4 , (4.49)

S
[
Disc+−+

V4

]
= ⊗

(p1 − 1)
√

1− p2
3 + p2 − q

(p1 − 1)
√

1− p2
3 + p2 + q

≡ ⊗r+−+
4 , (4.50)

S
[
Disc++−

V4

]
= ⊗

(p1 + 1)
√

1− p2
3 − p2 + q

(p1 + 1)
√

1− p2
3 − p2 − q

≡ ⊗r++−
4 , (4.51)

S
[
Disc+−−

V4

]
= ⊗

(p1 − 1)
√

1− p2
3 − p2 + q

(p1 − 1)
√

1− p2
3 − p2 − q

≡ ⊗r+−−
4 , (4.52)

S
[
Disc−,m2,m3

V4

]
= ⊗ 1

r+,−m2,−m3
4

≡ ⊗r−,m2,m3
4 , ∀m2,m3. (4.53)
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According to the discussion of Aomoto polylogarithms in section 2, once we know all
the first entries of all the discontinuities at every level there is a chance to construct the
symbol completely. Now we have collected all the necessary data according to this criteria,
let us inspect whether they are sufficient to fully construct the symbol S[I] (4.5) of the
correct example.

From the above results we can first observe the integral I expects to be a pure function
of weight 2. Using the first entries worked out at the beginning we can setup an ansatz for
its symbol in the same way as that in Aomoto polylogarithms

S[I] =
∑

1≤i<j≤4

(
f+
ij ⊗ s

+
ij + f−ij ⊗ s

−
ij

)
, (4.54)

where {f±12, f
±
23, f

±
34} are given in (4.8)(4.9). As mentioned before {f±13, f

±
14, f

±
24} are just

numeric values and the corresponding terms can be omitted in the end, but for the time
being these terms have to be included in order to take care of discontinuities in the most
general possibility, as is required by the discontinuity integrals in our definition.

When studying the symbol of a specific discontinuity, S[Discmj ,mk,ml

Vi
I], only the terms

with first entries {fmj

ij , f
mk
ik , fml

il } contribute. According to our convention for the first
entries set at the beginning, fmj

ij = 0 corresponds to the situation when Vmin(i,j) hits Pmj

ij ,
while fmj

ij =∞ when Vmax(i,j) hits Pmj

ij (same holds for k, l as well). Therefore we have the
following equations for the second entries

rm2,m3,m4
1 = sm2

12 s
m3
13 s

m4
14 , ∀m2,m3,m4, (4.55)

rm1,m3,m4
2 = sm3

23 s
m4
24

sm1
12

, ∀m1,m3,m4, (4.56)

rm1,m2,m4
3 = sm4

34
sm1

13 s
m2
23
, ∀m1,m2,m4, (4.57)

rm1,m2,m3
4 = 1

sm1
14 s

m2
24 s

m3
34
, ∀m1,m2,m3. (4.58)

As easily seen from these equations, in order that they simultaneously hold the second
entries rmj ,mk,ml

i have to satisfy various relations. They fall into two types:

• For each vertex Vi we have
rm,+,+i rm,−,−i

rm,+,−i rm,−,+i

= 1, r+,m,+
i r−,m,−i

r+,m,−
i r−,m,+i

= 1, r+,+,m
i r−,−,mi

r+,−,m
i r−,+,mi

= 1, ∀m.

(4.59)
Given that in this case we always have rmj ,mk,ml

i = 1/r−mj ,−mk,−ml , there is only one
independent relation among the above for each vertex Vi.

• For each pair of vertices we have

r+,j,k
1

r−,j,k1

r+,m,n
2
r−,m,n2

= 1, rj,+,k1

rj,−,k1

r+,m,n
3
r−,m,n3

= 1, rj,k,+1

rj,k,−1

r+,m,n
4
r−,m,n4

= 1,

rj,+,k2

rj,−,k2

rm,+,n3
rm,−,n3

= 1, rj,k,+2

rj,k,−2

rm,+,n4
rm,−,n4

= 1, rj,k,+3

rj,k,−3

rm,n,+4
rm,n,−4

= 1, (4.60)

for any choice of signs in j, k,m, n.
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These relations may serve as a consistency check for the discontinuity computations, and
indeed they hold with the results listed from (4.34) to (4.53)! This is a non-trivial check, as
the rmj ,mk,ml

i ’s were computed using very differrent contours. Solving these equations yields

s+
12 = r+++

1
r−++

1
s−12, s+

13 = r+++
1
r+−+

1
s−13, s+

14 = 1
r++−

1

1
s−12s

−
13
,

s−14 = 1
r+++

1

1
s−12s

−
13
, s+

23 = r+++
2
r+−+

2
s−23, s+

24 = 1
r++−

2

s−12
s−23

,

s−24 = 1
r+++

2

s−12
s−23

, s+
34 = 1

r++−
3

s−13
s−23

s−34 = 1
r+++

3

s−13
s−23

.

(4.61)

Three variables from the ansatz are left free. This is quite similar to the situation we already
observed in Aomoto polylogarithms. Because in this example the first entries satisfy

f+
ij f
−
ij = 1, ∀i 6= j, (4.62)

the dependence on these variables completely cancel within each pair of symbol terms
f+
ij ⊗ s

+
ij + f−ij ⊗ s

−
ij . Therefore the symbol S[I] is fully determined.

In fact, (4.62) also implies that f+
ij /f

−
ij = (f+

ij )2 = (f−ij )−2, by which we can rewrite the
symbol into

S[Λ] = 1
2

∑
1≤i<j≤4

f+
ij

f−ij
⊗
s+
ij

s−ij

= 1
2

(
f+

12
f−12
⊗ r+++

1
r−++

1
+ f+

23
f−23
⊗ r+++

2
r+−+

2
+ f+

34
f−34
⊗ r+++

3
r++−

3

)
.

(4.63)

The second line above is obtained by plugging in the solution (4.61), and we have omitted
terms whose first entries are purely numeric. We see the undetermined variables auto-
matically drop away. By a slight computation using our results for the discontinuities
we find

r+++
1
r−++

1
=
p3
√

1− p2
1 + q

p3
√

1− p2
1 − q

,
r+++

2
r+−+

2
=
p1p2p3 + q

√
1− p2

2

p1p2p3 − q
√

1− p2
2

,
r+++

3
r++−

3
=
p1
√

1− p2
3 + q

p1
√

1− p2
3 − q

.

(4.64)

Therefore the result (4.63) recovers the expected S[I] in (4.5). As observed in section 2.7,
terms whose first entries associate to a particular 1-face should sum to zero after the first
entries are chopped, due to the global residue theorem on individual fibres. In (4.63) this is
obvious, as the first entries f+

ij and f−ij from ViVj already form a ratio f+
ij /f

−
ij .

5 Generalized simplexes in higher dimensions

In the analysis of the previous example in CP3, (4.1)(4.2), we already observed that the
residue contour for the discontinuity computation effectively puts the remaining integrals
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on an irreducible singularity curve (in that case a 2-dimensional quadric). The resulting
contour is not a simplex in the usual sense, and to distinguish we named it a generalized
simplex. The detailed geometries of such contour heavily depends on the projection and the
singularity curve under study. In that example because the dimension is sufficiently low it
is easy to perform the direct integration as we did, which leads to log functions. However,
for integrals in higher dimensions similar generalized simplex contours expect to generate
functions of higher transcendental weights. According to our strategy illustrated so far we
need to understand how to extract first entries as well as discontinuities from such integrals.

In this section we illustrate the proper treatment to this problem using an explicit
example in CP4

I =
∫

∆

3q〈XdX4〉
(XQX)5/2 , q =

√
detQ, (5.1)

where the quadric is defined by

Q =


1 c1 c2 c3 c4
c1 1 0 0 0
c2 0 1 0 0
c3 0 0 1 0
c4 0 0 0 1

 . (5.2)

The integral contour has the shape of the canonical 4-simplex in the X space. Note the
integrand now already contains square root branch points. So the integration domain is in
fact a double cover of CP4, which can be represented by the quadric

XQX − x2
0 = 0, (5.3)

embedded in CP5 and we have to specify which Riemann sheet the simplex’ 0-faces reside
on. In this example we choose them to be

Vi = [ 1︸︷︷︸
x0

: 0 : · · · : 0︸ ︷︷ ︸
i−1

: 1 : 0 : · · · : 0], i = 1, 2, . . . , 5. (5.4)

In analogy to (4.14) this integral can be viewed as a discontinuity of an integral with
quadric singularities (5.3) in CP5 (where we denote the extra 0-face as V0 = [1 : 0 : 0 : 0 :
0 : 0]). Therefore the integrand in (5.1) expects to be an exact form. To see this explicitly
we first perform a rationalization. Inspired by the previous discussions we can choose
the reference point of rationalization to be the corresponding point of V1 on the opposite
Riemann sheet

R = [−1, 1, 0, 0, 0, 0]. (5.5)

We then introduce new coordinates Y = [y1 : y2 : . . . : y5] by letting an arbitrary point to
be spanned as

tR+
5∑
i=1

yiVi. (5.6)

Requiring this point to be on the quadric (5.3) uniquely solves t, which in turn yields a
map from Y space to the quadric. It turns out that again the new integrand is a total
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derivative in y1. Furthermore, the new integral contour again receives a natural fibration by
the Y coordinates, in terms of lines through (image of) V1 where each line is parameterized
by y1. In particular, its 3-faces that are adjacent to V1 are restricted to hyperplanes and
are automatically fibrated in analogous ways. The only curvy 3-face is the one dual to V1,
which is restricted to

y1 = 1
2 (−y2 − y3 − y4 − y5 + y0) , y0 ≡

√
y2

2 + y2
3 + y2

4 + y2
5. (5.7)

After integrating y1 we then have an integral in CP3

I = −q
∫ (2y0 + c1y2 + c2y3 + c3y4 + c4y5) 〈Y ′dY ′3〉

y3
0(y0 + c1y2 + c2y3 + c3y4 + c4y5)2 , (5.8)

where Y ′ = [y2 : y3 : y4 : y5]. In terms of the Y ′ coordinates the remaining integral contour
is the ordinary canonical 3-simplex. But because of the presence of branch points, this
integral is defined on a double cover of CP3 and so one has to figure out the correct Riemann
sheet where the contour’s 0-faces reside. As discussed before this can be resolved by thinking
about (5.8) as really being defined on the quadric

C0 ≡ y2
2 + y2

3 + y2
4 + y2

5 − y2
0 = 0 (5.9)

in CP4. One can easily find the corresponding contour has its four 0-faces anchored at (the
coordinates refer to [y0 : y2 : y3 : y4 : y5])

V2 : [1 : 1 : 0 : 0 : 0], V3 : [1 : 0 : 1 : 0 : 0], V4 : [1 : 0 : 0 : 1 : 0], V5 : [1 : 0 : 0 : 0 : 1].
(5.10)

Now this contour is a generalized simplex with curvy 1- and 2-faces, since it entirely lives
inside a quadric. However, projections of these faces onto Y ′ space have to be straight,
since they emerge from the quadric intersecting 3-faces of the original 4-simplex that are
adjacent to V0 = [1 : 0 : 0 : 0 : 0].

5.1 Fibration of generalized simplex

At this stage there arise the main problem to be addressed in this section. The integrand
in (5.8) is not an exact form and so the remaining integrals expect to create further
logarithmic singularities. Following our general strategy the immediate task is to work
out the first entries in S[I] and identify a proper set of discontinuities DiscI. According
to the analyses in previous examples the computation starts by choosing fibration with
respect to a 0-face of the contour, Vi. However, in the current integral the contour has curvy
faces. If we set up fibration in the usual projective way using lines through Vi, the resulting
integration will in general be quite complicated to perform. In the previous example, in
particular in figure 13 we already obtained some hint on a possible solution. There we saw
that a properly chosen rationalization map leads to an image of the generalized simplex
contour that is properly fibrated by lines. In the following we provide a more geometric
explanation for this phenomenon and the corresponding general guidance on fibration of
generalized simplexes.
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V0

V2

V c
2

Figure 14. Induced fibration of the quadric and of the generalized simplex. Each fibre of the
quadric is induced from a CP2 fibre in CP4 intersecting the quadric. The original CP4 is fibrated
into dim-2 planes through the line V0V2. For better illustration the picture above is drawn with one
dimension less.

In order to carry out analogous analysis as before, the fibration in need should meet
the requirement that the contour induced in each fibre has one end joining at the common
point Vi. Moreover, such fibration should also simultaneously induce analogous fibrations
on each faces (with various dimensions) of the generalized simplex that are adjacent to Vi.
In the extreme situation, this means that all the 1-faces of the generalized simplex adjacent
to Vi should each live on a fibre in such fibration. Recall that in this example these faces
are the intersections of some dim-2 hyperplanes through V0 in CP4 and the quadric (5.9),
so naturally we expect this fibration to be a class of degree-2 curves through Vi.

In fact, the geometric origin of the generalized simplex’ faces as intersections straight-
forwardly provides such a fibration. To be explicit, without loss of generality let us fix the
0-face under study to be V2. We begin by fibrating CP4 using dim-2 planes through the
line V0V2 (so each fibre here is a CP2). The set of all such planes forms a CP2, which is
manifested by a set of homogeneous coordinates [z3 : z4 : z5] and the map

[z3 : z4 : z5] 7−→ V0V2(z3V3 + z4V4 + z5V5). (5.11)

The advantage of this choice of map is that the dim-2 planes that have non-trivial overlap
(more than the 1-face on V0V2) with the original simplex in CP4 form exactly the canonical 2-
simplex in the z space. Then our desired fibration of the quadric is induced from intersecting
this fibration in one higher dimensions and the quadric. In other words, each fibre in the
fibration of quadric is the intersection of such dim-2 plane and the quadric, which is a dim-1
degree-2 curve, see figure 14. Unlike the fibration in the case of ordinary simplexes, these
curves meet at two common points, which are the intersection of the line V0V2 and the
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quadric. One of these points is just V2, and let us name the other one V c
2 , whose explicit

coordinates are V c
2 = [−1 : 1 : 0 : 0 : 0]. This can be easily visualized by any rational map

from the quadric to some CP3.5
The induced contour along each fibre has one of its ends fixed exactly at V2, as what

we have required. In our specific example, the singularities of the integrand in (5.8) have
two irreducible components, and generically each of them intersects the fibre at two points.
On the one hand, we need to pick out the fibre that are 1-faces of the generalized simplex,
and the above mentioned one-dimensional integrals on them are supposed to generate
information about first entries of S[I]. On the other hand, we can obtain a class of
discontinuities DiscI by computing the residue at the singular points on each fibre, which
should correspond to the branch points emerged from the situation when V2 hits one of the
irreducible singularities in (5.8).

During an actual computation, no matter for the original function I or for its disconti-
nuity DiscI, the integral along each fibre is done by selecting a proper parameterization of
the fibre. Since each fibre is a quadric restricted in a plane, this can again be done by a
rationalization map to CP1. The choice of such map on each fibre is highly non-unique, and
in principle the choices made on different fibres do not have to be related. However, different
choices only lead to a difference by some PGL(2) automorphism on CP1. Therefore by the
discussion at the end of section 2.1 the result of the integral along each fibre is independent
of detailed rationalization and so intrinsically remains to be a geometric quantity. This
guarantees that the DiscI from the remaining integrals is well-defined.

Note that when calculating the integral on a specific fibre, the square root in the original
integrand in (5.8) can be treated as folding that fibre into two CP1 Riemann sheets (glued
at the branch points). This means the square root will be automatically resolved after the
above rationalization map to CP1. And so one can analyze the residue at each singularity
with no further worry.

Of course, to randomly choose different rationalization maps for different fibres is not
economic. In this case of an integral on a quadric there is a natural improvement to make.
Recall that the reference point for the rationalization of a quadric curve can be any point
on the quadric. In the fibration discussed above, apart from V2 which is a 0-face of the
contour, there is another point V c

2 that resides on all the fibres. Now we can use V c
2 as

the reference point to rationalize the entire quadric (5.9). Together with the 0-faces of the
contour we span any point in CP4 as

tV c
2 + z2V2 + z3V3 + z4V4 + z5V5. (5.12)

Restricting this point to the quadric (5.9) again uniquely solves t. By plugging it back
above we thus obtain a rationalization map from the space Z = [z2 : z3 : z4 : z5] ∈ CP3 to

5Of course, in the strict sense when we talk about fibration in one-higher dimension, the line V0V2

common to the planes needs to be removed first, so that each fibre in fact has the structure of CP2\{line}.
When it induces another fibration on the quadric by intersection, the resulting fibres will be two-punctured
dim-1 quadrics, and the two punctures locate at V2 and V c

2 . In the end we add them back for the sake of
integration. Similar to the treatment of the ordinary simplexes, we do not bother to explicitly discuss this
subtlety later on, as it is irrelevant to our analysis.
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the quadric C0

y0 = z2(2z2 + z3 + z4 + z5) +
∑

2≤i<j≤5
zizj +

5∑
i=3

z2
i , (5.13)

y2 = z2(2z2 + z3 + z4 + z5) +
∑

2≤i<j≤5
zizj , (5.14)

yi>2 = zi(2z2 + z3 + z4 + z5). (5.15)

Comparing (5.12) to (5.11) we see that for any fixed [z3 : z4 : z5] the other two variables
(t, z2) actually serves as the affine coordinates on the corresponding CP2 plane fibre in the
fibration of CP4 considered there (note the three points V0, V2 and V c

2 are collinear). So the
restriction of t means that z2 is the variable that parameterize the intersection of this plane
and the quadric, i.e., the fibre in the fibration of the quadric. This further indicates that
the above rationalization of the quadric simultaneously provides a rationalization for each
fibre of the quadric, mapping it to some CP1. This is manifest in that every [z3 : z4 : z5]
determines a line in the Z space, which is also parameterized by z2. Hence via the above
map our desired fibration of the quadric is mapped to the ordinary line fibration of CP3.

Of course, the generalized simplex contour in the quadric is not mapped to an ordinary
simplex in the Z space. However, because the faces of the generalized simplex that are
adjacent to V2 are all properly fibrated, their images, i.e., the faces of the new contour in
the Z space adjacent to the image of V2 are all flat, and by (5.15) they correspond to the
faces of the canonical simplex in [z3 : z4 : z5]. Only image of the 2-face dual to V2 (and its
own faces) are curved. So effectively this lands on a picture very similar to that in figure 13,
but in one higher dimension.

5.2 First entries and discontinuities

Based on the above fibration of the generalized simplex contour and the rationalization
choice, we move on to determine the first entries and the discontinuities associated to V2.

Descending from the integral expression (5.8) the singularities of the new integrand
consist of two irreducible components

C1 ≡ y0 = 0, (5.16)
C2 ≡ y0 + c1y2 + c2y3 + c3y4 + c4y5 = 0, (5.17)

with y’s given in (5.13) through (5.15). Both are quadratic in z’s and so correspond to some
quadrics in the Z space. The full expression for the new integrand can be straightforwardly
worked out from the map and we do not bother to explicitly write it out here. An interesting
phenomena that can be quickly observed is, on any fibre (fixed by [z3 : z4 : z5]) the S1

residue contour for z2 that wraps around either of the two roots of y0 = 0 turns out to
be zero! This means the curve C1 is in fact irrelevant for the emergence of the integral’s
singularities, and so it can be completely ignored.

First entries from V2 fibration. As a direct consequence, to work out the first entries
of S[I] we only need to consider the contribution from C2. For simplicity let us call images
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of Vi after the rationalization map by the same name Vi. In the Z ≡ [z2 : z3 : z4 : z5] space
they have the coordinates

V2 : [1 : 0 : 0 : 0], V3 : [0 : 1 : 0 : 0], V4 : [0 : 0 : 1 : 0], V5 : [0 : 0 : 0 : 1]. (5.18)

As mentioned before the 1-faces of the resulting contour adjacent to V2, i.e., V2V3, V2V4
and V2V5 each already lives in some CP1, so we can directly study the geometries on their
corresponding lines. The curve C2 intersects these three lines at

P±23 =

−1− c1 − c2 ±
√
−1 + c2

1 + c2
2

2(1 + c1) : 1 : 0 : 0

 , (5.19)

P±24 =

−1− c1 − c3 ±
√
−1 + c2

1 + c2
3

2(1 + c1) : 0 : 1 : 0

 , (5.20)

P±25 =

−1− c1 − c4 ±
√
−1 + c2

1 + c2
4

2(1 + c1) : 0 : 0 : 1

 . (5.21)

Since P±2i and V2 and Vi reside on the same line V2Vi, to obtain their CP1 coordinates on
this line we can just ignore the entries other than the 2nd and ith in the above coordinates.
Then we can obtain six first entries

f±2i ≡
〈P±2iV2〉
〈P±2iVi〉

=
1 + c1 + ci−1 ±

√
−1 + c2

1 + c2
i−1

(1 + ci−1) , (5.22)

where each pair f±2i associate to the 1-face V2Vi. In principle we should also work out
the first entries for the other three 1-faces ViVj (3 ≤ i < j ≤ 5), but because they live in
higher-degree curves in this space the computation requires further rationalization for each
of them. We choose not to do it here, because according to the general strategy we will
study fibrations with respect to other 0-faces as well later on, where the computation of
these remaining first entries is straightforward.

Discontinuities from V2 fibration. Next let us work out the discontinuity DV2,C2I. For
convenience of computation let us again change the parameters ci = 1−c2

1+t2i
2ti such that√

−1 + c2
1 + c2

i = −1+c2
1+t2i

2ti , for i = 2, 3, 4. Then the two roots of C2 = 0 as an equation in
z2 are

z2 = z±2 ≡
5∑
i=3

c2
1 − 2c1ti−1 − (1 + ti−1)2

4 (1 + c1) ti−1
zi ±

√
C3

4 (1 + c1) t2t3t4
, (5.23)

C3

(t2t3t4)2 =
5∑
i=3

(
−1 + c2

1 + t2i−1
)2

t2i−1
z2
i + 2

∑
3≤i<j≤5

(
1− c2

1 + t2i−1
) (

1− c2
1 + t2j−1

)
ti−1tj−1

zizj .

(5.24)

We now choose one of the root and compute the residue at its corresponding pole, which
results in an integral in [z3 : z4 : z5]. As one can expect, the new integrand coming out
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of this residue contains the square root
√
C3 and so should be understood as defined on a

double cover of CP2, which is equivalently described by the quadric

C3 − z2
0 = 0. (5.25)

This quadric is equivalent to C2 = 0 by a coordinates transformation. Hence again we
observe that the operation of taking residue effectively puts the remaining integral on the
original irreducible singularity curve under study. The choice of which residue to compute is
irrelevant, because (as already discussed in the previous example) this only affect whether
we should identify z0 =

√
C3 or z0 = −

√
C3 in subsequent computation.

To uniquely specify the discontinuity, however, we do have to specify the resulting
contour. In the [z3 : z4 : z5] space the contour is just the canonical 2-simplex (descending
from the original fibration of the quadric C0). Analogous to the discussion in the previous
example, we need to choose the Riemann sheet for each of the 0-faces. The corresponding
points are just the ones listed in (5.19)–(5.21). Transforming to the [z0 : z3 : z4 : z5]
coordinates and using the new parameters they become

P±23 =
[(
−1 + c2

1 + t22

)
t3t4 : ±1 : 0 : 0

]
, (5.26)

P±24 =
[(
−1 + c2

1 + t23

)
t2t4 : 0 : ±1 : 0

]
, (5.27)

P±25 =
[(
−1 + c2

1 + t24

)
t2t3 : 0 : 0 : ±1

]
. (5.28)

Therefore again there are eight discontinuities to compute, resulting from the two choices
for each 0-face respectively, and following our convention we denote them as Disc±±±V2,C2

I.
Take Disc+++

V2,C2
I as an example. We first rationalize the quadric (5.25) by spanning

points on it as
[z0 : z3 : z4 : z5] = tP−23 + u3P

+
23 + u4P

+
24 + u5P

+
25, (5.29)

and solves t using (5.25). This generates the rationalization map that transform the
[z3 : z4 : z5] coordinates into the [u3 : u4 : u5] coordinates. Because of the special choice of
the reference point P−23, the image of the contour in the new space is automatically properly
fibrated into lines through the image of P+

23, each of which parameterized by u3. Very
amusingly the resulting integrand turns out to be a total derivative in u3 again, so that
we directly integrate it out. Because the 1-face dual to the image of P+

23 is curved, the
remaining integral in [u4 : u5] contains a further square root, and so a further rationalization
is needed in order to deal with this last one-dimensional integral. Because the analysis
resembles what we have been doing, we do not write out the further detailed computation,
but just emphasize again that the result does not depend on the way how rationalization
is carried out, as long as one carefully keep track of the image of the contour from the
corresponding map. At the end of this computation the integrals nicely reduce to a log,
and its symbol is

S
[
Disc+++

V2,C2
I
]

= ⊗h12c3c4 + h13c2c4 + h14c2c4 + h12h13h14 −
(
−1 + c2

1
)
q

h12c3c4 + h13c2c4 + h14c2c4 + h12h13h14 +
(
−1 + c2

1
)
q
≡ ⊗r+++

V2,C2
,

(5.30)
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where hij =
√
−1 + c2

i + c2
j and q =

√
detQ. The other seven discontinuities can be worked

out analogously, and the results are

S
[
Disc+−+

V2,C2
I
]

= ⊗h12c3c4 − h13c2c4 + h14c2c4 − h12h13h14 −
(
−1 + c2

1
)
q

h12c3c4 − h13c2c4 + h14c2c4 − h12h13h14 +
(
−1 + c2

1
)
q
≡ ⊗r+−+

V2,C2
,

(5.31)

S
[
Disc++−

V2,C2
I
]

= ⊗h12c3c4 + h13c2c4 − h14c2c4 − h12h13h14 −
(
−1 + c2

1
)
q

h12c3c4 + h13c2c4 − h14c2c4 − h12h13h14 +
(
−1 + c2

1
)
q
≡ ⊗r++−

V2,C2
,

(5.32)

S
[
Disc+−−

V2,C2
I
]

= ⊗h12c3c4 − h13c2c4 − h14c2c4 + h12h13h14 −
(
−1 + c2

1
)
q

h12c3c4 − h13c2c4 − h14c2c4 + h12h13h14 +
(
−1 + c2

1
)
q
≡ ⊗r+−−

V2,C2
,

(5.33)

and
S
[
Disc−,m4,m5

V2,C2
I
]

= ⊗ 1
r+,−m4,−m5
V2,C2

≡ ⊗r−,m4,m5
V2,C2

, ∀m4,m5. (5.34)

Consistency in first entries and symbol construction. The same analysis applies
to fibration with respect to the remaining 0-faces of the original contour on the quadric C0.
The results for various discontinuities are summarized in the appendix.

Before constructing the symbol S[I] the only thing to be clarified is a subtlety regarding
the first entries. Recall that in the fibration with respect to V2 we only worked out the first
entries associated to the 1-faces V2Vi, with the help of a special rationalization choice. Now
we work out the remaining first entries based on other fibrations. For example let us look
at the fibration with respect to V3. Its analysis can be simplified by an analogous choice
of rationalization of the quadric C0, where the reference point now is V c

3 , the intersection
point of V0V3 and C0 other than V3. By the map

[y0 : y2 : y3 : y4 : y5] = tV c
3 + z2V2 + z3V3 + z4V4 + z5V5 (5.35)

(where t is solved by C0 = 0), the images of the 1-faces V2V3, V3V4 and V3V5 are lines
in the [z2 : z3 : z4 : z5]. Therefore the first entries associated to these three 1-faces are
straightforwardly obtained from this fibration, which are

f±23 =
1 + c1 + c2 ±

√
−1 + c2

1 + c2
2

2(1 + c2) , (5.36)

f±3i =
1 + c2 + ci−1 ±

√
−1 + c2

2 + c2
i−1

(1 + ci−1) , i = 4, 5. (5.37)

Comparing (5.36) with (5.22) we see the entries f±23 worked out here both differ from those
from the V2 fibration by a factor of 1/2. This is caused by the fact that in the two fibrations
we were doing different rationalization to the 1-face V2V3, which leads to a difference in the
specific coordinates worked out for P+

23.6 In the generic expression 〈P
±
23V2〉

〈P±23V3〉
this is equivalent

6In a generic integral such difference may even depend on free variables in the integral.
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to a rescale in the homogeneous coordinates used for the vertices V2 and V3. By now we
know this rescaling is totally irrelevant, as it ultimately gets canceled between first entries
(f+

23 and f+
23) belonging to the same 1-face of the contour. It is interesting to observe

that the global residue theorem on the fibres (discussed in section 2.7) plays an essential
role in ensuring self-consistency of the analysis when we have to deal with a generalized
simplex contour.

As a consequence, the symbol expressions subsequent to each pair of f+
ij and f−ij should

exactly differ by a sign in their coefficients. Therefore a better presentation of the first
entries is just to take the ratio fij = f+

ij /f
−
ij , and the final results are

fij =
1 + ci−1 + cj−1 +

√
−1 + c2

i−1 + c2
j−1

1 + ci−1 + cj−1 −
√
−1 + c2

i−1 + c2
j−1

, 2 ≤ i < j ≤ 5. (5.38)

Correspondingly, we can set up the ansatz for the symbol as

S[I] =
∑

2≤i<j≤5
fij ⊗ sij ≡

∑
2≤i<j≤5

f+
ij

f−ij
⊗ sij . (5.39)

From the locations of f±ij it should be clear how the assumed second entries are related to
the symbols of the discontinuities we computed

rm3,m4,m5
V2,C2

= (s23)m3(s24)m4(s25)m5 , (5.40)

rm2,m4,m5
V3,C2

= (s23)−m2(s34)m4(s35)m5 , (5.41)

rm2,m3,m5
V4,C2

= (s24)−m2(s34)−m3(s45)m5 , (5.42)

rm2,m3,m4
V5,C2

= (s25)−m2(s35)−m3(s45)−m4 . (5.43)

Again in order that these equations simultaneously hold the various r’s have to satisfy the
same set of conditions as listed in (4.59) and (4.60) for the previous example (by with the
labels shifted by one). This is because the relations between discontinuities and second
entries purely descend from the geometric incidence relations among 0- and 1-faces of the
integral contour, which are the same in both examples. Using the results summaries in
appendix A one can verify that they continue to hold in the current example. Based on
this, the above equations are solved to give

(s23)2 =
r+++
V2,C2

r−++
V2,C2

, (s24)2 =
r+++
V2,C2

r+−+
V2,C2

, (s25)2 =
r+++
V2,C2

r++−
V2,C2

,

(s34)2 =
r+++
V3,C2

r+−+
V3,C2

, (s35)2 =
r+++
V3,C2

r++−
V3,C3

, (s45)2 =
r+++
V4,C2

r++−
V4,C2

,

(5.44)

and the explicit results can be unified into a single formula

(sij)2 =
c1c2c3c4
ci−1cj−1

− q
√
−1 + c2

i−1 + c2
j−1

c1c2c3c4
ci−1cj−1

+ q
√
−1 + c2

i−1 + c2
j−1

, 2 ≤ i < j ≤ 5, (5.45)
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where q =
√

detQ =
√

1− c2
1 − c2

2 − c2
3 − c2

4. In consequence the symbol of this example is

S[I] = 1
2

∑
1≤i<j≤4

1 + ci + cj +
√
−1 + c2

i + c2
j

1 + ci + cj −
√
−1 + c2

i + c2
j

⊗
c1c2c3c4
cicj

− q
√
−1 + c2

i + c2
j

c1c2c3c4
cicj

+ q
√
−1 + c2

i + c2
j

. (5.46)

We have verified that this result exactly matches the one worked out from the spherical
projection method in [32].

6 Discussions and outlook

In this paper we proposed a strategy to study the structure of singularities of a class of
integrals which the Feynman parameter representations of loop diagrams belong to. This
strategy utilizes a collection of sequences of discontinuities defined by modifying the contour
of the original integral, together with a method to identify singularities of each discontinuity
on the principal sheet. The discontinuities are selected in a way closely tied to the geometries
of the original integral contour and integrand singularities. With explicit examples that
possess a well-defined symbol, we showed that the symbol can be directly constructed
from these data, and the required computation involves no non-trivial integrals (and so is
largely algebraic). This strategy is designed with the purpose that it may ultimately be
applicable (without an essential modification) to arbitrary integrals of the type (1.7) that
can decompose into MPLs and admit a well-defined symbol.

Of course this paper itself does not mean to be exhaustive regarding the above mentioned
goal. Instead, it serves as only a first step towards the goal, where we use concrete examples
to illustrate the basic ideas and tools that are needed in our proposed analysis. Therefore
there are many things to be explored in future, which we briefly comment below.

• Even in the case when the D[Xn+k] = 0 has a single quadric we did not seek for a
general discussion in this paper. Although in the two examples we explicitly verified
that the symbol constructed by the current method and the one worked out by the
previous spherical projection method in [32] are the same, a general proof for the
equivalence of the two method does not seem to be very straightforward. It would be
nice to gain a more systematic understanding of what this strategy does in arbitrary
CPn−1 even for this restricted class of integrals.

• Careful readers may already notice that the examples considered in this paper all
decompose into MPLs with constant coefficients. In general the number N [Xk] in (1.7)
may leads to coefficients that are algebraic functions of the free variables. While we
mentioned that in principle these coefficients can be observed at the end of every
sequence of discontinuities. It will be nice to explicitly see how they are recovered
along the strategy discussed here.

• The analysis directly discussed in this paper applies to integrals where the geometries
of the contour and those of the integrand singularities are at generic configurations,
in the sense that there is no assumed incidence condition. However, a large class of
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interesting Feynman diagrams are indeed special in this regard, because the presence
of a massless loop propagator immediately indicates that one 0-face of the contour
resides on the integrand’s singularity curve (as is obvious by the Symanzik polynomial).
In order to carry out analysis for such situation, one possible solution is to start by
giving this propagator a slight mass and return to the original configuration at the
end of the computation. However, one can easily imagine this will usually introduce
a lot of unnecessary complication to the analysis itself. In order that this strategy
be practically useful in treating actual Feynman integrals, it will be important to
understand how to directly deal with such special configurations.

• As was already mentioned in our long-term goal, it will be very interesting to see how
the strategy illustrated here can apply to integrals where the integrand’s singularity
curve has irreducible components with degree higher than 2. We leave this for further
explorations.

• It is in general a question of great interest what type of function a given Feynman
integral belongs to. To our knowledge, it is even not yet crystal clear what is the
criterion for a Feynman integral to be within the class of MPLs. From the analysis
on the geometries, as we mentioned in section 3, it is tempting to think that at least
we would want the irreducible components of D[Xn+k] = 0 all to be rational. In any
case, the precise connection calls for further investigations.

• Regardless of the above question, the rationality condition for D[Xn+k] = 0 is already
interesting on its own. As one can see from the explicit analysis, the ability to map a
singularity curve to some CPm is the minimal condition in order that the analysis on
the contour maintains to be simple at every stage. There are however some subtleties
here, as we are not sure whether every rational curve can be mapped to some CPm in
terms of certain projection (i.e., in some stereographic way). If it turns out this does
not hold for some curve that is nevertheless rational, then the method here may not
be directly applicable, and it will be interesting to see how such case can be analyzed.

• At higher loops singularity curves dictated by the Symanzik polynomial make up a
very special class of curves. For instance, while the total degree of this polynomial
grows with the number of loops, the degree in each Feynman parameter can only
top up to 2. It will be both interesting and physically important to gain a better
understanding of the structure of these curves in general, because this may possibly
lead to significant improvement to the strategy introduced in this paper, when it really
comes to higher-loop diagrams. For example, a class of Feynman integrals that allow
for simultaneous rationalization of multiple roots of the Symanzik polynomial was
recently discussed in [38], and they can be systematically integrated. (It is interesting
to note that quite many Feynman integrals turn out to be directly integrable, given
that one carefully choose a proper sequence of integrations for the variables such that
the so-called linear reducibility property can be confirmed [39–42]. See e.g., [43] and
reference therein for some more recent developments.)
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• During the analysis on the example with quadric singularities we have observed that
the intermediate steps necessarily involves treatment of the generalized simplexes,
contours analogous to simplexes but living on generic rational algebraic varieties.
In general these contours have curvy faces, but we showed that there exist natural
fibrations of these contours induced by projections from higher dimensions, which
make a direct analysis of the related integrals possible. In fact we can think about
this treatment in the inverse way as well. Imagine that in an integral problem where
the contour has curvy boundaries, if we can find out that the contour originates
from higher dimensions by projecting a simplex onto certain rational hypersurface,
then such relation will straightforwardly provide a convenient fibration to study the
analytic properties of the integral. In this sense the strategy introduced here may
potentially extend beyond the integrals covered by (1.7).

• While in this paper we only deal with integrals where the contour is a simplex,
integrals where the contour is a generic complex can also be analyzed, at least via
triangulation. However, it is interesting to check how this strategy can be extended
so as to be directly applicable to complex contours.

• In this paper we observed that the global residue theorem on a fibre in the fibration at
every stage may imply certain consistency conditions on the structure of the symbol.
It would be nice to further check how strong such conditions are and whether such
conditions may help bootstrapping the symbol of an integral.

• As we mentioned before, the discontinuities that we selected in the analysis are closely
tied to the underlying geometries. Inversely, one could also ask that, given the symbol
of an integral, what kind of geometric or combinatoric data can be read out from the
structure of the symbol, and when it comes to the integral for an actual Feynman
diagram, how these data are related to the corresponding physics. Investigations of
this favor was already made for amplitudes in SYM. The analysis suggested in the
paper might provide some hint on extending such study for broader range of scattering
process.

• For the examples in the paper which have well-defined symbols we showed that the
data we computed for the selected stratum of discontinuities are sufficient to recover
the complete symbol. Here we remind the reader that these data of the discontinuities
do not at all rely on the existence of a symbol, hence in some sense they provide a
description for the analytic properties of the given integral which might potentially
be still useful when going beyond the realm of MPLs. We hope that this might find
some useful application for the study of more general scattering.
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A Discontinuities of the integral example in CP4

In this appendix we summarize the discontinuities of the integral defined in (5.1) or
equivalently (5.8). Labels for these discontinuities are in coherence with the geometries
reflected in the latter definition. For simplicity of presentation, recall that we introduced
the following notations

q =
√

detQ =
√

1− c2
1 − c2

2 − c2
3 − c2

4, (A.1)

hij =
√
−1 + c2

i + c2
j . (A.2)

Symbols of the eight discontinuities associated to the V2 fibration are already listed
in (5.30) through (5.34). The ones associate to the V3 fibration are

S
[
Disc+++

V3,C2

]
= ⊗h12c3c4 − h23c1c4 − h24c1c3 + h12h23h24 +

(
−1 + c2

2
)
q

h12c3c4 − h23c1c4 − h24c1c3 + h12h23h24 −
(
−1 + c2

2
)
q
≡ ⊗r+++

V3,C2
,

(A.3)

S
[
Disc+−+

V3,C2

]
= ⊗h12c3c4 + h23c1c4 − h24c1c3 − h12h23h24 +

(
−1 + c2

2
)
q

h12c3c4 + h23c1c4 − h24c1c3 − h12h23h24 −
(
−1 + c2

2
)
q
≡ ⊗r+−+

V3,C2
,

(A.4)

S
[
Disc++−

V3,C2

]
= ⊗h12c3c4 − h23c1c4 + h24c1c3 − h12h23h24 +

(
−1 + c2

2
)
q

h12c3c4 − h23c1c4 + h24c1c3 − h12h23h24 −
(
−1 + c2

2
)
q
≡ ⊗r++−

V3,C2
,

(A.5)

S
[
Disc+−−

V3,C2

]
= ⊗h12c3c4 + h23c1c4 + h24c1c3 + h12h23h24 +

(
−1 + c2

2
)
q

h12c3c4 + h23c1c4 + h24c1c3 + h12h23h24 −
(
−1 + c2

2
)
q
≡ ⊗r+−−

V3,C2
,

(A.6)

and
S
[
Disc−,m4,m5

V3,C2

]
= ⊗ 1

r+,−m4,−m5
V3,C2

≡ ⊗r−,m4,m5
V3,C2

. (A.7)

The symbols of discontinuities associated to the V4 fibration are

S
[
Disc+++

V4,C2

]
= ⊗h13c2c4 + h23c1c4 − h34c1c2 − h13h23h34 +

(
−1 + c2

3
)
q

h13c2c4 + h23c1c4 − h34c1c2 − h13h23h34 −
(
−1 + c2

3
)
q
≡ ⊗r+++

V4,C2
,

(A.8)

S
[
Disc+−+

V4,C2

]
= ⊗h13c2c4 − h23c1c4 − h34c1c2 + h13h23h34 +

(
−1 + c2

3
)
q

h13c2c4 − h23c1c4 − h34c1c2 + h13h23h34 −
(
−1 + c2

3
)
q
≡ ⊗r+−+

V4,C2
,

(A.9)

S
[
Disc++−

V4,C2

]
= ⊗h13c2c4 + h23c1c4 + h34c1c2 + h13h23h34 +

(
−1 + c2

3
)
q

h13c2c4 + h23c1c4 + h34c1c2 + h13h23h34 −
(
−1 + c2

3
)
q
≡ ⊗r++−

V4,C2
,

(A.10)

S
[
Disc+−−

V4,C2

]
= ⊗h13c2c4 − h23c1c4 + h34c1c2 − h13h23h34 +

(
−1 + c2

3
)
q

h13c2c4 − h23c1c4 + h34c1c2 − h13h23h34 −
(
−1 + c2

3
)
q
≡ ⊗r+−−

V4,C2
,

(A.11)
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and
S
[
Disc−,m3,m5

V4,C2

]
= ⊗ 1

r+,−m3,−m5
V4,C2

≡ ⊗r−,m3,m5
V4,C2

. (A.12)

Finally, the symbols of discontinuities associated to the V5 fibration are

S
[
Disc+++

V5,C2

]
= ⊗h14c2c3 + h24c1c3 + h34c1c2 + h14h24h34 +

(
−1 + c2

4
)
q

h14c2c3 + h24c1c3 + h34c1c2 + h14h24h34 −
(
−1 + c2

4
)
q
≡ ⊗r+++

V5,C2
,

(A.13)

S
[
Disc+−+

V5,C2

]
= ⊗h14c2c3 − h24c1c3 + h34c1c2 − h14h24h34 +

(
−1 + c2

4
)
q

h14c2c3 − h24c1c3 + h34c1c2 − h14h24h34 −
(
−1 + c2

4
)
q
≡ ⊗r+−+

V5,C2
,

(A.14)

S
[
Disc++−

V5,C2

]
= ⊗h14c2c3 + h24c1c3 − h34c1c2 − h14h24h34 +

(
−1 + c2

4
)
q

h14c2c3 + h24c1c3 − h34c1c2 − h14h24h34 −
(
−1 + c2

4
)
q
≡ ⊗r++−

V5,C2
,

(A.15)

S
[
Disc+−−

V5,C2

]
= ⊗h14c2c3 − h24c1c3 − h34c1c2 + h14h24h34 +

(
−1 + c2

4
)
q

h14c2c3 − h24c1c3 − h34c1c2 + h14h24h34 −
(
−1 + c2

4
)
q
≡ ⊗r+−−

V5,C2
,

(A.16)

and
S
[
Disc−,m3,m4

V5,C2

]
= ⊗ 1

r+,−m3,−m4
V5,C2

≡ ⊗r−,m3,m4
V5,C2

. (A.17)

On the other hand, in whichever fibration we study, the residue computation on the
fibres at singularities induced by the curve C1 (5.16) always yields zero. Hence this curve
has no contribution to any singularities of the integral.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge
University Press (2015) [DOI].

[2] S. Weinzierl, Feynman Integrals (2022) [DOI] [arXiv:2201.03593] [INSPIRE].

[3] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007]
[INSPIRE].

[4] N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182
[arXiv:1312.7878] [INSPIRE].

[5] N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the Amplituhedron in Binary, JHEP
01 (2018) 016 [arXiv:1704.05069] [INSPIRE].

[6] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix,
Cambridge University Press, Cambridge (1966) [INSPIRE].

– 55 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/cbo9781107706620
https://doi.org/10.1007/978-3-030-99558-4
https://arxiv.org/abs/2201.03593
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.03593
https://doi.org/10.1007/JHEP10(2014)030
https://arxiv.org/abs/1312.2007
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2007
https://doi.org/10.1007/JHEP12(2014)182
https://arxiv.org/abs/1312.7878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.7878
https://doi.org/10.1007/JHEP01(2018)016
https://doi.org/10.1007/JHEP01(2018)016
https://arxiv.org/abs/1704.05069
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05069
http://inspirehep.net/record/1517084


J
H
E
P
1
0
(
2
0
2
2
)
1
4
5

[7] C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135
[arXiv:1904.07279] [INSPIRE].

[8] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for
Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]
[INSPIRE].

[9] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions,
JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

[10] J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and
Cluster Coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].

[11] J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster Polylogarithms for Scattering
Amplitudes, J. Phys. A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE].

[12] L.J. Dixon, J.M. Drummond, C. Duhr, M. von Hippel and J. Pennington, Bootstrapping
six-gluon scattering in planar N = 4 super-Yang-Mills theory, PoS LL2014 (2014) 077
[arXiv:1407.4724] [INSPIRE].

[13] S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod and G. Papathanasiou,
Six-Gluon amplitudes in planar N = 4 super-Yang-Mills theory at six and seven loops, JHEP
08 (2019) 016 [arXiv:1903.10890] [INSPIRE].

[14] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic Feynman integrals and
pure functions, JHEP 01 (2019) 023 [arXiv:1809.10698] [INSPIRE].

[15] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic polylogarithms and
Feynman parameter integrals, JHEP 05 (2019) 120 [arXiv:1902.09971] [INSPIRE].

[16] S. Weinzierl, Iterated Integrals Related to Feynman Integrals Associated to Elliptic Curves, in
Antidifferentiation and the Calculation of Feynman Amplitudes, Springer Cham (2021) [DOI]
[arXiv:2012.08429] [INSPIRE].

[17] J.L. Bourjaily et al., Functions Beyond Multiple Polylogarithms for Precision Collider Physics,
in 2022 Snowmass Summer Study, Seattle U.S.A., 17–26 July 2022 [arXiv:2203.07088]
[INSPIRE].

[18] S. Mizera and S. Telen, Landau discriminants, JHEP 08 (2022) 200 [arXiv:2109.08036]
[INSPIRE].

[19] T. Dennen, M. Spradlin and A. Volovich, Landau Singularities and Symbology: One- and
Two-loop MHV Amplitudes in SYM Theory, JHEP 03 (2016) 069 [arXiv:1512.07909]
[INSPIRE].

[20] T. Dennen, I. Prlina, M. Spradlin, S. Stanojevic and A. Volovich, Landau Singularities from
the Amplituhedron, JHEP 06 (2017) 152 [arXiv:1612.02708] [INSPIRE].

[21] J. Mago, A. Schreiber, M. Spradlin and A. Volovich, Symbol alphabets from plabic graphs,
JHEP 10 (2020) 128 [arXiv:2007.00646] [INSPIRE].

[22] J. Mago, A. Schreiber, M. Spradlin, A.Y. Srikant and A. Volovich, Symbol alphabets from
plabic graphs II: rational letters, JHEP 04 (2021) 056 [arXiv:2012.15812] [INSPIRE].

[23] J. Mago, A. Schreiber, M. Spradlin, A. Yelleshpur Srikant and A. Volovich, Symbol alphabets
from plabic graphs III: N = 9, JHEP 09 (2021) 002 [arXiv:2106.01406] [INSPIRE].

[24] L. Ren, M. Spradlin and A. Volovich, Symbol alphabets from tensor diagrams, JHEP 12 (2021)
079 [arXiv:2106.01405] [INSPIRE].

– 56 –

https://doi.org/10.1007/JHEP08(2019)135
https://arxiv.org/abs/1904.07279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.07279
https://doi.org/10.1103/PhysRevLett.105.151605
https://arxiv.org/abs/1006.5703
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.5703
https://doi.org/10.1007/JHEP10(2012)075
https://arxiv.org/abs/1110.0458
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.0458
https://doi.org/10.1007/JHEP01(2014)091
https://arxiv.org/abs/1305.1617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.1617
https://doi.org/10.1088/1751-8113/47/47/474005
https://arxiv.org/abs/1401.6446
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.6446
https://doi.org/10.22323/1.211.0077
https://arxiv.org/abs/1407.4724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.4724
https://doi.org/10.1007/JHEP08(2019)016
https://doi.org/10.1007/JHEP08(2019)016
https://arxiv.org/abs/1903.10890
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.10890
https://doi.org/10.1007/JHEP01(2019)023
https://arxiv.org/abs/1809.10698
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.10698
https://doi.org/10.1007/JHEP05(2019)120
https://arxiv.org/abs/1902.09971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.09971
https://doi.org/10.1007/978-3-030-80219-6_20
https://arxiv.org/abs/2012.08429
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.08429
https://arxiv.org/abs/2203.07088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.07088
https://doi.org/10.1007/JHEP08(2022)200
https://arxiv.org/abs/2109.08036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.08036
https://doi.org/10.1007/JHEP03(2016)069
https://arxiv.org/abs/1512.07909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.07909
https://doi.org/10.1007/JHEP06(2017)152
https://arxiv.org/abs/1612.02708
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.02708
https://doi.org/10.1007/JHEP10(2020)128
https://arxiv.org/abs/2007.00646
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.00646
https://doi.org/10.1007/JHEP04(2021)056
https://arxiv.org/abs/2012.15812
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15812
https://doi.org/10.1007/JHEP09(2021)002
https://arxiv.org/abs/2106.01406
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.01406
https://doi.org/10.1007/JHEP12(2021)079
https://doi.org/10.1007/JHEP12(2021)079
https://arxiv.org/abs/2106.01405
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.01405


J
H
E
P
1
0
(
2
0
2
2
)
1
4
5

[25] D. Chicherin, J.M. Henn and G. Papathanasiou, Cluster algebras for Feynman integrals, Phys.
Rev. Lett. 126 (2021) 091603 [arXiv:2012.12285] [INSPIRE].

[26] S. He, Z. Li and Q. Yang, Notes on cluster algebras and some all-loop Feynman integrals,
JHEP 06 (2021) 119 [arXiv:2103.02796] [INSPIRE].

[27] S. He, Z. Li and Q. Yang, Kinematics, cluster algebras and Feynman integrals,
arXiv:2112.11842 [INSPIRE].

[28] S. He, Z. Li, R. Ma, Z. Wu, Q. Yang and Y. Zhang, A study of Feynman integrals with
uniform transcendental weights and the symbology from dual conformal symmetry,
arXiv:2206.04609 [INSPIRE].

[29] V.A. Smirnov, Solutions, in Feynman Integral Calculus, Springer Berlin, Heidelberg (2006),
pp. 263–275 [DOI].

[30] H. Cheng and T.T. Wu, Expanding Protons: Scattering at High Energies, The MIT Press
(1987) [ISBN: 9780262031264].

[31] K. Aomoto, Addition theorem of abel type for hyper-logarithms, Nagoya Math. J. 88 (1982) 55.

[32] N. Arkani-Hamed and E.Y. Yuan, One-Loop Integrals from Spherical Projections of Planes
and Quadrics, arXiv:1712.09991 [INSPIRE].

[33] M. Spradlin and A. Volovich, Symbols of One-Loop Integrals From Mixed Tate Motives, JHEP
11 (2011) 084 [arXiv:1105.2024] [INSPIRE].

[34] A. Yelleshpur Srikant, Spherical Contours, IR Divergences and the geometry of Feynman
parameter integrands at one loop, JHEP 07 (2020) 236 [arXiv:1907.05429] [INSPIRE].

[35] B. Feng, J. Gong and T. Li, Universal treatment of the reduction for one-loop integrals in a
projective space, Phys. Rev. D 106 (2022) 056025 [arXiv:2204.03190] [INSPIRE].

[36] M. Nakahara, Geometry, Topology and Physics, 2nd edition, CRC Press (2003) [DOI].

[37] A. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, alg-geom/9601021
[INSPIRE].

[38] M. Besier, D. Van Straten and S. Weinzierl, Rationalizing roots: an algorithmic approach,
Commun. Num. Theor. Phys. 13 (2019) 253 [arXiv:1809.10983] [INSPIRE].

[39] F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].

[40] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to
Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

[41] C. Bogner and F. Brown, Feynman integrals and iterated integrals on moduli spaces of curves
of genus zero, Commun. Num. Theor. Phys. 09 (2015) 189 [arXiv:1408.1862] [INSPIRE].

[42] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. Thesis,
Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universität (2015) [DOI]
[arXiv:1506.07243] [INSPIRE].

[43] J.L. Bourjaily et al., Direct Integration for Multi-Leg Amplitudes: Tips, Tricks, and When
They Fail, in Antidifferentiation and the Calculation of Feynman Amplitudes, Springer, Cham
(2021) [DOI] [arXiv:2103.15423] [INSPIRE].

– 57 –

https://doi.org/10.1103/PhysRevLett.126.091603
https://doi.org/10.1103/PhysRevLett.126.091603
https://arxiv.org/abs/2012.12285
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.12285
https://doi.org/10.1007/JHEP06(2021)119
https://arxiv.org/abs/2103.02796
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.02796
https://arxiv.org/abs/2112.11842
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.11842
https://arxiv.org/abs/2206.04609
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2206.04609
https://doi.org/10.1007/3-540-30611-0
https://doi.org/10.1017/S0027763000020092
https://arxiv.org/abs/1712.09991
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09991
https://doi.org/10.1007/JHEP11(2011)084
https://doi.org/10.1007/JHEP11(2011)084
https://arxiv.org/abs/1105.2024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.2024
https://doi.org/10.1007/JHEP07(2020)236
https://arxiv.org/abs/1907.05429
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05429
https://doi.org/10.1103/PhysRevD.106.056025
https://arxiv.org/abs/2204.03190
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2204.03190
https://doi.org/10.1201/9781315275826
https://arxiv.org/abs/alg-geom/9601021
https://inspirehep.net/search?p=find+EPRINT%2Balg-geom%2F9601021
https://doi.org/10.4310/CNTP.2019.v13.n2.a1
https://arxiv.org/abs/1809.10983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.10983
https://arxiv.org/abs/0910.0114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0910.0114
https://doi.org/10.1016/j.cpc.2014.10.019
https://arxiv.org/abs/1403.3385
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.3385
https://doi.org/10.4310/CNTP.2015.v9.n1.a3
https://arxiv.org/abs/1408.1862
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.1862
https://doi.org/10.18452/17157
https://arxiv.org/abs/1506.07243
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.07243
https://doi.org/10.1007/978-3-030-80219-6_5
https://arxiv.org/abs/2103.15423
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.15423

	Introduction
	About simplexes

	Fibrations, discontinuities and symbol construction
	Singularity and discontinuity of integrals in CP**(1)
	Aomoto polylogarithms revisited
	Fibration of simplex contour and first entries
	Discontinuities as point projection
	Subsequent discontinuities and projections
	Constructing the symbol of Aomoto polylog
	Global residue theorem and the structure of symbols

	From Aomoto to integrals with generic rational singularities
	Discontinuities from quadric singularities
	First entries and discontinuities
	Rationalization of discontinuity integrals
	Symbol construction

	Generalized simplexes in higher dimensions
	Fibration of generalized simplex
	First entries and discontinuities

	Discussions and outlook
	Discontinuities of the integral example in CP**(4)

