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1 Introduction

The T T̄ deformation [1, 2] is a deformation of local relativistic quantum field theories in two
dimensions induced by a specific irrelevant local operator, quadratic in the stress-energy
tensor. This operator is unambiguously defined in the presence of translational invariance
since its point-splitted version has a regular pinching limit, up to total derivatives [3]. The
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deformation generates a one-parameter family of quantum field theories with strongly-
coupled dynamics at high energies, and despite being in general expected to destroy short-
distance locality, it exhibits remarkable properties. It preserves many of the symmetries
of the original theory, and it is amenable to exact computations. For instance, the finite-
volume spectrum of the deformed theory is described by a differential equation of Burgers
type [1, 2]. The surprising amount of control that the deformation allows seems to provide a
consistent way to move against the renormalization-group flow and explore unconventional
fixed points in the ultraviolet.

Being triggered by the stress-energy tensor, the deformation appears to be rooted in
geometry. In fact, it can equivalently be formulated as a coupling to topological grav-
ity [4–6] or random background metrics [7]. Much of the literature on the T T̄ deformation
deals with its application to conformal field theories, where the geometric dependence of
the undeformed spectrum is fixed by conformal invariance. In this context, the action of
the deformation has been observed leading to radically different regimes according to the
sign of the irrelevant coupling µ. For a positive sign, the density of states of a deformed
conformal field theory interpolates between the typical Cardy growth and a Hagedorn-like
growth [8] signaling nonlocal features of the deformed field theory in the UV, reminiscent of
a stringy behavior. For a negative sign, the spectrum seemingly undergoes a partial com-
plexification [9], putting into question the consistency of the theory at finite volume. The
presence of nonperturbative effects in the deformation parameter has been advocated [9]
to cure this pathological behavior. T T̄ -deformed conformal field theories with negative µ
have also been suggested leading to an extension of the holographic dictionary [8, 10–12],
potentially describing quantum gravity confined in a portion of the AdS3 bulk of radius
rc ∝ 1/

√
−µ.

The present paper deals with the deformation of gauge theories. Pure Yang-Mills
theory in two dimensions is quite different from its higher-dimensional counterparts in that
it does not allow for propagating degrees of freedom. The theory is invariant under a
large group of spacetime symmetries that make the dependence on the geometry almost
trivial and render the theory solvable [13, 14] (see [15] for a review on the subject). In the
context of the T T̄ deformation, Yang-Mills theory was studied in [16–19] and its large-N
limit was explored in [20, 21]. In the present work, we continue the study of T T̄ -deformed
two-dimensional Yang-Mills theory that we initiated in [22] with the analysis of the abelian
case. Specifically, we focus on the U(N) gauge theory at genus zero, although much of our
results can be generalized to arbitrary groups and topologies.

There are two main features of the deformed theory that we set out to address. These
are associated with the two different sign choices for the deformation parameter µ. For
µ > 0, only a finite number of states in the deformed spectrum can be accessed by solving
the relevant flow equation, the rest of the spectrum lying behind a divergence. If one insists
on preserving the hierarchy of states of the undeformed theory, one should postulate that
an infinite number of energy levels should decouple from the theory. For µ < 0, to obtain
a well-defined partition function, one should incorporate instanton-like corrections in µ

whose precise form is determined by imposing appropriate physical requirements.
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Summary of results. In order to find a dynamical explanation for both features, we
construct the deformed partition function for each flux sector zm. These are sectors of the
theory associated with stationary points of the classical action, labeled by the quantized
magnetic flux vectorm ∈ ZN . To determine the correct solutions of the differential equation
describing the T T̄ flow,

∂zm

∂µ
+ 2a ∂

2zm

∂a2 = 0 , (1.1)

(a denotes the total area) we must impose suitable boundary conditions. These correspond
to the two important physical regimes we have access to. The first is the undeformed theory
in its fully-quantum regime. The second is the deformed theory in its semiclassical limit.

This approach is essential for two reasons. For µ > 0, the truncation of the spectrum
is associated with nonanalyticities of the partition function. In the abelian theory [22],
these were interpreted in terms of an infinite number of infinite-order quantum phase
transitions. This peculiar behavior only emerges when taking the sum over m: each zm is,
in fact, analytic when µ > 0. On the other hand, for µ < 0, we need to fix nonperturbative
terms to which the undeformed limit µ → 0 is insensitive. Crucially, these are relevant
for the semiclassical regime of the theory that can be probed by taking a specific double
scaling limit. Only by having the result for the deformed zm can we match its semiclassical
limit against the deformed action evaluated on the associated classical saddle.

In analogy with the undeformed case, the partition function can be expressed through
a sum over inequivalent irreducible representations of the gauge group. Schematically, we
find that the full deformed partition function, written in terms of the deformed Hamiltonian

H = g2
YMC2(R)/2

1− µg2
YMC2(R)

, (1.2)

reads

Z =
∑

R|H>0
(dimR)2 e−aH for µ > 0, (1.3)

Z =
∑
R

(dimR)2
(
e−aH −

kmax∑
k=0

λk

)
+R for µ < 0. (1.4)

For µ > 0, the sum extends over the finite number of representations R for which H > 0.
For µ < 0, the sum is unrestricted, though in order for it to converge a finite number of
terms λk is subtracted. These are the first few terms in the µ-expansion of e−aH , and the
upper bound kmax is the minimum value for which the sum over R converges. Each of the
λk carries a factor of ea/(2µ), making each term nonperturbative in µ. The same factor
appears in the residual term R, which is itself a solution of the flow equation (1.1).

Outlook. There is ample reason to believe that (1.3) should directly generalize to arbi-
trary gauge groups and manifolds, with and without boundaries, in analogy with the case
of µ = 0. This is necessary in order to preserve the topological composition properties of
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the undeformed theory. In fact, these rely solely on the orthogonality of characters and are
unaffected by the deformation of the Hamiltonian or by the finite range of the sum.

The situation is quite different for the partition function (1.4). Specifically, it is less
obvious how R should be modified to account for different groups and topologies. Fur-
thermore, the nonperturbative terms appear to be incompatible with the gluing rules of
undeformed Yang-Mills theory, at least in their simplest form. This inconsistency could be
interpreted by invoking a breakdown of locality in the µ < 0 regime. It would be interesting
to investigate these points further, e.g. on the torus.1

Furthermore, it is natural to employ our analysis of the flow equation to extend previous
results at large N [20, 21]. In [26], we obtain the full 1/N expansion of the deformed theory
by studying the differential equation governing the deformation of the free energy in the
large-N limit. This, in turn, allows us to study the full phase diagram of the deformed
theory.

Finally, an obvious line of inquiry concerns applying the ideas presented here outside
the realm of gauge theories, for instance in the context of TT -deformed conformal field
theories. These also exhibit pathologies involving the upper portion of their spectrum.
However, contrary to the Yang-Mills case, these happen for µ < 0 and in the form of a
complexification of eigenvalues. While in our case the offending states naturally decouple
as their contribution to the partition function vanishes through the associated Boltzmann
weight, it is less clear for deformed conformal theories what the fate of the complex energies
should be. In [27], it was advocated that these states should be removed from the spectrum,
thus leading to a theory with a finite number of degrees of freedom, but a loss of unitarity
has also been proposed as a possible interpretation of the phenomenon. Another point of
analogy with our results is the presence of instanton-like corrections in µ for µ < 0 [9].
This seems to be a general feature of the T T̄ deformation, with the flow equation admitting
a nonperturbative branch of solutions for negative deformation parameters. Outside the
present work and [22], though, we are not aware of any precise computation in this direction.
While we are able to address both points by studying each flux sector, there is no direct
analogue of this for a general conformal field theory. Perhaps resorting to a semiclassical
analysis as described earlier could provide a way forward.

Outline of the paper. The paper is organized as follows. In section 2, we briefly review
relevant aspects of undeformed Yang-Mills theory in two dimensions. In section 3, we
introduce its T T̄ deformation both at the level of the deformed Lagrangian and in terms
of a flow equation for the partition function. We then discuss the subtleties that arise for
both sign choices of the deformation parameter. In section 4, we construct the deformed
zero-flux sector by Borel resumming the associated power expansion in the deformation
parameter. The analytic properties of the associated Borel transform signal the presence
of nonperturbative contributions at µ < 0. We determine the form of such terms with
resurgence theory. In section 5, we compute the partition function for arbitrary flux sectors
by solving the relevant flow equation. To reproduce the correct undeformed limit, we
project the initial condition on a complete set of solutions using the Ramanujan master

1For the undeformed torus partition function in a generic flux sector, see [23–25].
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theorem. In section 6, we sum over all flux sectors to obtain the explicit form of the full
deformed partition function. It involves the use of the multidimensional Poisson summation
formula and certain generalizations thereof. In section 7, we show how the deformed flux
sectors obtained in section 5 reproduce the correct semiclassical limit, thus confirming our
choice of nonperturbative corrections. We argue that the truncation of the spectrum is
due to destructive interference between deformed flux sectors. Three technical appendices
complete the manuscript.

2 Yang-Mills theory in two dimensions

2.1 General properties

Let us consider a Euclidean gauge theory on a compact orientable Riemann surface Σ of
genus g. We denote the gauge group and its Lie algebra with G and g, respectively. In our
conventions, the gauge fields are hermitian, and we define the curvature in terms of the
gauge connection A as F = dA− iA ∧A.

The action of pure Yang-Mills theory

SYM = 1
2g2

YM

∫
Σ

trF ∧ ?F (2.1)

can be rewritten in terms of a single g-valued scalar f = ?F as

SYM = 1
2g2

YM

∫
Σ
η tr f2 , (2.2)

where η is the volume form on Σ. An alternative action for the theory can be obtained by
introducing an auxiliary g-valued scalar φ,

Stop = i
∫

Σ
tr(φF ) + g2

YM
2

∫
Σ
η trφ2 . (2.3)

This last expression shows that the theory is invariant under a large group of local sym-
metries, known as area-preserving diffeomorphisms [15]. As a consequence, the partition
function is sensitive to the underlying geometry only through the total area a = vol Σ. In
fact, since the action is invariant under an appropriate simultaneous rescaling of a and of
the Yang-Mills coupling gYM, the dependence on such couplings comes only through the
combination g2

YMa.
The full quantum theory is solvable [13, 14]. Its partition function can be written as

a sum over inequivalent irreducible representations of the gauge group,

Z =
∑
R

(dimR)2−2g e−g
2
YMaC2(R)/2 , (2.4)

where C2(R) is the eigenvalue of the quadratic Casimir of the representation R.
A localization argument [28] leads to an alternative representation for the partition

function as a sum over solutions of the Yang-Mills equation (i.e. solutions of Df = 0).
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For g = 0, these unstable instantons are labeled by their associated GNO-quantized mag-
netic flux

m = 1
2π

∫
Σ
F (2.5)

which belongs to ΛG, the cocharacter lattice of G. In other words, m is an element of the
Lie algebra of the maximal torus H of G such that e2πim = 1G. The classical solution
associated with a given m takes the simple form f = 2πm/a. We will denote with

Scl(m) = 2π2

g2
YM a

|m|2 (2.6)

the classical action (2.2) evaluated on such a configuration. For generic g, the moduli
space of classical solutions has an additional factor of H2g due to the presence of flat
connections wrapping the nontrivial cycles of Σ. We will come back to this form of the
partition function later in this section.

The physical Hilbert space of quantum states associated with some circle C ⊂ Σ
consists of class functions Ψ(A) of the holonomy2

U = Pexp
∮
C,x

(−iA) . (2.7)

A convenient orthonormal basis for class functions is given by characters of inequivalent
irreducible representations of G. Therefore, we can always decompose a wavefunction as

Ψ(A) =
∑
R

cR χR(U) . (2.8)

In fact, we can extend (2.4) to the case where Σ has b boundaries [14, 28]. The partition
function now carries a dependence on the boundary holonomies U1, . . ., Ub:

Z(α;U1, . . . , Ub) =
∑
R

(dimR)2−2g−b e−g
2
YMaC2(R)/2 χR(U1) . . . χR(Ub) . (2.9)

Surfaces can be glued together similarly to what happens in the context of conventional
topological field theories. The associated partition functions are glued together by integrat-
ing the holonomy of the common boundary against the Haar measure of G and rely on the
orthogonality properties of characters. A flip in the orientation of a boundary corresponds
to taking the inverse holonomy U−1.

2.2 The U(N) theory on the sphere

In later sections, we will mainly consider the case where G ' U(N), and we will regard
the partition function as a function of the rank N and of the effective ’t Hooft coupling
α = g2

YMNa.
2While the holonomy depends on the choice of a basepoint x ∈ C, notice that a class function of U does

not depend on x.
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An irreducible representation R of U(N) is labeled by its highest weight vector λ ∈ ZN

of ordered integers

λ1 ≥ λ2 ≥ . . . ≥ λN . (2.10)

The dimension of R and the eigenvalue of its quadratic Casimir are given by

dimR =
∏
i<j

(
1− λi − λj

i− j

)
, (2.11)

C2(R) =
N∑
i=1

λi(λi − 2i+N + 1) . (2.12)

For the purpose of applying this to (2.4), it is useful to rewrite the above in terms of new
variables `i = −λi − i + N . The constraint (2.10) restricting to the fundamental Weyl
chamber now reads

`1 < `2 < . . . < `N . (2.13)

With the new variables, the dimension

dimR = ∆(`1, . . . , `N )
G(N + 1) , (2.14)

is expressed in terms of the Vandermonde determinant, defined as

∆(`1, . . . , `N ) = det


`01 `11 · · · `N−1

1
`02 `12 · · · `N−1

2
...

... . . . ...
`0N `1N · · · `

N−1
N

 =
∏
i<j

(`j − `i) . (2.15)

Here, G is the Barnes function. The eigenvalue of the quadratic Casimir reads

C2(R) = N(1−N2)
12 + 〈`〉 , (2.16)

where we have introduced the shorthand

〈`〉 =
N∑
i=1

(
`i −

N − 1
2

)2
. (2.17)

Focusing on the sphere topology (i.e. on g = 0), since both dimR and C2(R) are
invariant under permutations of the `i’s, and since dimR vanishes whenever two of these
coincide, we can simply lift the constraint (2.13) and normalize appropriately. This gives

Z(α) =
∑
`∈ZN

ẑ `(α)

=
∑
`∈ZN

eα(N2−1)/24

N !G2(N + 1) ∆2(`1, . . . , `N ) e−
α

2N 〈`〉 . (2.18)
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Through the Poisson summation formula, the partition function (2.18) can be recast
in terms of a dual representation

Z(α) =
∑

m∈ZN
zm(α) , (2.19)

where

zm(α) =
∫
RN

d`1 . . . d`N e−2πim·` ẑ `(α) . (2.20)

This is nothing but the instanton representation mentioned earlier, where now we regard
m as a set of N integers through the natural isomorphism ΛG ' ZrkG. The physical
interpretation as a sum over classical configurations becomes manifest upon performing
the Fourier transform above. In fact, one finds that each term in (2.19) has the form

zm(α) = wm(α) e−Scl(m) , (2.21)

where the function [29]

wm(α) = (−1)m eα(N2−1)/24

N !G2(N + 1)

(2πN
α

)N2

×
∫

dx1 . . . dxN e−Scl(x) ∏
i<j

[
(xi − xj)2 − (mi −mj)2

]
(2.22)

captures the quantum fluctuations about the classical configuration. In the above, we used
the notation

m = (N − 1)
∑
i

mi . (2.23)

In particular, the partition function associated with the zero-flux sector reads [30]

z0(α) = CN e
α(N2−1)/24 α−N

2/2 , (2.24)

where

CN = (2π)N/2NN2/2

G(N + 1) . (2.25)

3 T T̄ deformation of Yang-Mills theory

3.1 The deformed abelian action

The T T̄ deformation of a Lagrangian two-dimensional quantum field theory with action S
is described by the flow equation

∂µS =
∫

Σ
η OT T̄ . (3.1)

The irrelevant operator triggering the deformation reads

OT T̄ = TκλTρσε
κρελσ . (3.2)

– 8 –
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We can apply the above to the case at hand by starting from the action in (2.2). We
first consider the abelian case. Since f is the only local gauge-invariant scalar degree of
freedom of the theory, one can assume that the deformed Lagrangian density will be some
function of f . In fact, we can equivalently define it as L (u, µ), i.e. as a function of the
deformation parameter µ and of

u = f2

2g2
YM

, (3.3)

which is the undeformed Lagrangian density itself. With this choice, we have L (u, 0) = u.
We can compute the stress-tensor of the deformed theory by varying the action with respect
to the metric. Since f is defined as the Hodge dual of the field strength, it carries a
dependence on the metric and contributes to the variation

δSYM = δ

∫
Σ
η L (u, µ)

=
∫

Σ
η

(1
2L (u, µ)− u ∂uL (u, µ)

)
gκλ δgκλ . (3.4)

From the above, we can easily read off the expression of T κλ that, in turn, can be plugged
into the flow equation (3.1). This produces an equation for the Lagrangian density,

∂µL = OT T̄
= 2(L − 2u ∂uL )2 , (3.5)

that we solve using the ansatz

L (u, µ) =
∞∑
n=0

µnLn(u) , (3.6)

with L0(u) = u, as mentioned above. We find

Ln(u) = 3 (4n+ 1)!
n! (3n+ 3)! (2u)n+1 , (3.7)

which, upon summation, gives3

L = 3
8µ

(
3F2

(
−1

2 ,−
1
4 ,

1
4; 1

3 ,
2
3; 512

27 µL0

)
− 1

)
. (3.8)

We can repeat the analysis for the nonabelian theory. In principle, one is now faced
with the choice of which trace structure to include in the deformed action. However, since
the undeformed theory, and therefore its stress-tensor, only contain tr f2, one can safely
assume that no other term could appear in the deformed Lagrangian density. With this in
mind, we simply redefine

u = tr f2

2g2
YM

, (3.9)

and repeat the steps above to find that (3.8) holds for the nonabelian theory as well.
3The deformed Lagrangian density (3.8) was obtained for the first time in [16].
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Notice that (3.8) has a branch cut for µL0 > 27/512. This feature is not entirely
unexpected, as it appears in other instances of T T̄ -deformed Lagrangians [31, 32], but
poses a problem if one tries to quantize the deformed theory by starting from (3.8). Since
we will take a different route to the quantum theory, we will defer this discussion to
section 7, which is devoted to the semiclassical limit.

3.2 The deformed partition function

We now allow for a general gauge group G and start with an ansatz for a deformed action
which is a generalization of (2.3),

Stop = i
∫

Σ
tr(φF ) + g2

YM
2

∫
Σ
ηU (v, µ) , (3.10)

where v = trφ2. The undeformed Yang-Mills action is recovered with U (v, 0) = v. Again,
note that the one defined above is not the most general potential that can be considered,
since one could in principle involve other invariant polynomials in g. However, because of
the initial condition, no other term can enter the deformed action. From the variation

δStop = g2
YM
4

∫
Σ
η U (v, µ) gκλ δgκλ (3.11)

one can read off the expression for the stress-energy tensor and plug it in (3.1) to obtain
an equation for U ,

∂µU (v, µ) = 2OT T̄ /g
2
YM

= g2
YM U 2(v, µ) . (3.12)

Let us now proceed in analogy with [28] and consider an initial-value circle C ⊂ Σ. In
a neighborhood of C, we write the volume form in terms of local coordinates as η = ds∧dt,
where C corresponds to t = 0 and s is a coordinate along C such that

∮
ds = 1. Since the

action (3.10) is linear in F , the Hamiltonian reads

H = g2
YM
2

∮
C

ds U (v, µ) , (3.13)

and generates translations along t. When acting on the representation basis, as in (2.9),
the Hamiltonian is diagonal and takes the simple form H = g2

YM/2 U (C2(R), µ).
If we now consider a finite cylinder spanned by the range t ∈ [0, a], the associated

partition function will depend on the relevant couplings as e−aH(µ), where a is the area of
the cylinder. As a consequence, one concludes that the deformed partition function obeys
the flow equation [2, 17, 18]

∂Z

∂µ
+ 2a ∂

2Z

∂a2 = 0 . (3.14)

We remark that the differential equation above is fully general, since there is nothing special
about the chosen topology. In fact, it still applies if we consider, for instance, a disk or a
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sphere partition function. We simply need to shrink the boundary circles to points, and in
doing so, impose trivial holonomies on them. Arbitrary topologies can be further obtained
through gluing, thus exploiting the quasi-topological character of the theory.

Before moving on, let us also mention that, while one can safely employ (3.2) for the
deformation of the classical action, at the quantum level things are more subtle as one
needs to deal with potential ambiguities associated with the UV behavior of composite
operators. More precisely, the deformation operator OT T̄ is typically only defined on flat
backgrounds where one employs point-split regularization and shows that the pinching
limit is actually regular, up to derivative terms. However, in quantum theories described
by the action (3.10), correlators of gauge-invariant local operators are topological, i.e. do
not depend on the position of the operator insertions. As a consequence, the regularity of
the pinching limit of such operators is trivially guaranteed.

We can now specialize to G ' U(N) and use the effective coupling α introduced
in section 2.2. Moreover, for later convenience we introduce the rescaled deformation
parameter τ = µN3g2

YM. In terms of these variables, the flow equation for the partition
function reads

Fα,τ Z(α, τ) = 0 , (3.15)

where we have introduced the differential operator

Fα,τ = ∂

∂τ
+ 2α
N2

∂2

∂α2 . (3.16)

It is easy to obtain a closed expression for the deformed Hamiltonian by solving the
differential equation (3.12) for U :

H = g2
YMC2(R)/2

1− τC2(R)/N3 . (3.17)

However, for any τ 6= 0 there is always an infinite number of representations whose energy
is arbitrary close to the limit value −1/(2µ). Consequently, the partition function defined
through such a deformed Hamiltonian would necessarily diverge for g < 2.

For τ > 0, the Hamiltonian, intended as a function of C2, is pathological at C2 = N3/τ .
Namely, H → ∓∞ as C2 → (N3/τ)±. One would suspect that (3.17) should really only
hold for representations for which C2 < N3/τ . Extending (3.17) beyond said range appears
devoid of any physical meaning. However, if one hopes to determine the partition function
as a sum over representations, one must necessarily understand how the deformation acts
on the entire spectrum, not just a portion of it. From a physical standpoint, one is led
to postulate that whenever a given representation falls out of the allowed range for the
solution (3.17), it should be removed from the physical spectrum. Yet, this requirement
leads to nontrivial analytic properties for the deformed partition function Z(α, τ) and
makes the study of such a quantity as a solution of the flow equation (3.15) less obvious.

For τ < 0, the situation is more subtle. The partition function is still naively diver-
gent, but the deformed spectrum (3.17) appears well-defined in any range of values. To
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obtain a well-defined partition function, one is led to study solutions of (3.15) that in-
volve instanton-like corrections in the deformation parameter.4 However, the question of
how to unambiguously determine such nonperturbative corrections is nontrivial and will
be addressed in detail in later sections.

For both signs of τ , our approach will be to construct solutions of the flow equa-
tion (3.15) for each flux sector of the theory. In fact, since Fα,τ is linear, one can construct
the full deformed partition function as a sum over individual deformed flux sectors zm(α, τ)
obeying Fα,τ zm(α, τ) = 0.

4 The zero-flux sector

We start by studying the deformed zero-flux sector, describing quantum fluctuations about
the “trivial” vacuum. In the present section, our approach is to regard z0 as a power series
in the deformation parameter τ . To this end, it is convenient to introduce the differential
operator

Dα,τ =
∞∑
n=0

τn

n!

(
− 2α
N2

∂2

∂α2

)n
. (4.1)

Since Fα,τ ◦Dα,τ = 0, Dα,τ effectively generates power-series solutions of the flow equation
when acting on the corresponding “undeformed” function encoding the initial condition at
τ = 0. However, the sum in (4.1) should be regarded as a formal power series in τ , since
in general, it could have vanishing radius of convergence.

Before applying the above to z0, it is convenient to write the undeformed zero-flux
partition function (2.24) as a power series in α,5

z0(α, 0) = CN

∞∑
j=0

αj−N
2/2

j!

(
N2 − 1

24

)j
. (4.2)

Then,

z0(α, τ) = Dα,τ z0(α, 0)

= CN

∞∑
j=0

αj−N
2/2

j!

(
N2 − 1

24

)j ∞∑
n=0

(
2τ
N2α

)n
ωn , (4.3)

where

ωn = (−1)n Γ(j −N2/2) Γ(1 + j −N2/2)
n! Γ(j − n−N2/2) Γ(1 + j − n−N2/2) . (4.4)

Let us now consider the sum over n: as anticipated, the series

Φ(t) =
∞∑
n=0

ωn t
−n (4.5)

4The presence of nonperturbative ambiguities in the context of T T̄ -deformed theories has been studied
in [9, 33, 34].

5To enforce convergence for small α, one can regard N as a complex number and choose an appropriate
region in the complex N -plane.
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is asymptotic, having ωn ∼ n! for large n. In order to apply the standard machinery of
Borel resummation, we first consider its Borel transform,

BΦ(ζ) =
∞∑
n=0

ζn
ωn
n!

= 2F1(N2/2− j,N2/2− j + 1; 1;−ζ) . (4.6)

We observe two different behaviors depending on sign of τ .

4.1 τ > 0

For positive values of τ , and hence of

t = N2α

2τ
, (4.7)

we can simply Borel-resum the above by taking a Laplace transform along the positive real
axis in the complex ζ-plane

S0Φ(t) = t

∫ ∞
0

dζ Φ(ζ) e−tζ

= tN
2/2−j U(N2/2− j, 0, t) . (4.8)

Here, U denotes the Tricomi confluent hypergeometric function; we refer the reader to
appendix A for a brief survey on its properties. Plugging the resummed series back
into (4.3) gives

z0(α, τ) = CN

(
N2

2τ

)N2/2 ∞∑
j=0

1
j!

(
τ(N2 − 1)

12N2

)j
U

(
N2

2 − j, 0,
N2α

2τ

)
. (4.9)

The sum is easily performed through the multiplication theorem for the Tricomi con-
fluent hypergeometric function. This leads to the final expression

z0(α, τ) = CN e
X Y N2/2 U(N2/2, 0,W ) , (4.10)

where we defined

X = N2(N2 − 1)α
2(N2(12 + τ)− τ) , (4.11)

Y = N2(12 + τ)− τ
24τ , (4.12)

W = 6N4α

τ(N2(12 + τ)− τ) . (4.13)

It is immediate to check that, indeed, (4.10) is a solution of the flow equation (3.15) and
reproduces the correct undeformed limit (2.24) for τ → 0+.
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Re ζ

Im ζ

−1
S−π

S+π
S0

Figure 1. The contours where the directional Laplace transformations are taken. For τ > 0, S0
gives the full result of the Borel summation, free from nonperturbative ambiguities. The Stokes line
on the negative ζ axis induces two different lateral Laplace transformations, S+π and S−π, that are
relevant for the τ < 0 regime.

4.2 τ < 0

When τ < 0, which means t < 0, the series should be resummed by taking a directional
Laplace transform along the negative real ζ axis. However, as shown in figure 1, the Borel
transform (4.6) has a Stokes line at arg ζ = π due to a cut that extends over ζ ∈ (−∞,−1).
By approaching the cut from above and below with lateral Laplace transforms one finds

S±πΦ(t) = t

∫ e±iπ∞

0
dζ e−tζ 2F1(N2/2− j,N2/2− j + 1; 1;−ζ)

= −t
∫ ∞

0
dx etx 2F1(N2/2− j,N2/2− j + 1; 1;−e±iπx)

= (t∓ i0)N2/2−j U(N2/2− j, 0, t∓ i0) . (4.14)

We can use the analytic properties of the Tricomi confluent hypergeometric function to
rewrite the above as

S+πΦ(t) = (t− i0)N2/2−j
[
U(N2/2− j, 0, t)− 2iπt

Γ(N2/2− j) 1F1(N2/2− j + 1; 2; t)
]
,

S−πΦ(t) = (t+ i0)N2/2−j U(N2/2− j, 0, t) . (4.15)

Since we are interested in a real partition function for real values of the deformation
parameter τ and the effective ’t Hooft coupling α, we can remove the nonperturbative
ambiguities associated with the presence of the Stokes line by employing a prescription
known as median resummation,

SmedΦ(t) = 1
2(S+πΦ(t) + S−πΦ(t)) . (4.16)

For odd N , this prescription leads to

z0(α, τ) = πCN
Γ(N2/2) α

(
−N

2

2τ

)N2/2+1

×
∞∑
j=0

(1−N2/2)j
j!

(
−N

2 − 1
N2

τ

12

)j
1F1

(
N2

2 − j + 1; 2; N
2α

2τ

)

= − πCN
Γ(N2/2) WeX(−Y )N2/2

1F1(N2/2 + 1; 2;W ) . (4.17)
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For N even, we find instead

z0(α, τ) = CN

(
−N

2

2τ

)N2/2 ∞∑
j=0

1
j!

(
N2 − 1
N2

τ

12

)j

×
[
U

(
N2

2 − j, 0,
N2α

2τ

)
− iπ

Γ(N2/2− j)
N2α

2τ 1F1

(
N2

2 − j + 1; 2; N
2α

2τ

)]

= CN e
X Y N2/2

[
U(N2/2, 0,W )− iπW

Γ(N2/2) 1F1(N2/2 + 1; 2;W )
]
. (4.18)

Because the second term is purely imaginary, it necessarily cancels the imaginary part of
the first one. In fact, we can rewrite the two expressions as a single formula that holds for
any N as

z0(α, τ) = Re
(
CN e

X Y N2/2 U(N2/2, 0,W )
)
. (4.19)

In both cases, we made use of multiplication theorems (A.12) and (A.13) for confluent
hypergeometric functions. For the theorems to hold, we need τ > τmin, where

τmin = − 12N2

N2 − 1 . (4.20)

In fact, when approaching τmin from the left, W → +∞. Consequently, the partition
function diverges in this limit since the instanton-like terms blow up. We are therefore
forced to regard τ > τmin as a constraint on the validity of (4.17) and (4.18). When this
condition is obeyed, the two expressions above are real, satisfy the flow equation, and
reproduce the undeformed limit for τ → 0. One could, in principle, extend the range of
validity by studying the relevant nonperturbative contributions for τ < τmin. However,
upon summing over m, we will find an expression for the total partition function that does
not exhibit any pathological behavior at τ = τmin and that can be taken to hold for any
value of the deformation parameter.

5 Any flux sector

The results of the previous section suggest an ansatz for the structure of the full solution
of the flow equation (3.15) when written in terms of the variables Y and W ,6

zm(α, τ) = CN e
X Y N2/2 f(Y,W ) . (5.1)

On the above, the flow equation becomes

W∂W f(Y,W )−W∂2
W f(Y,W ) + Y ∂Y f(Y,W ) + N2

2 f(Y,W ) = 0 . (5.2)

6Here, X should be regarded as the shorthand

X = (N2 − 1)W
1 + 24Y −N2 .
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This equation can be easily solved by separation of variables. Specifically, if we choose
f(Y,W ) = Υ(Y ) Ω(W ), we obtain two ordinary equations

YΥ′(Y ) = sΥ(Y ) , (5.3)
WΩ′′(W )−WΩ′(W )− (N2/2 + s) Ω(W ) = 0 , (5.4)

with solutions

Υ(Y ) = c Y s , (5.5)
Ω(W ) = u U(N2/2 + s, 0,W ) + vW 1F1(N2/2 + s+ 1; 2;W ) . (5.6)

Here, s is just an integration constant labeling different solutions.
We rewrite the ansatz as a generic linear combination of the above, where the coeffi-

cients are chosen in order to reproduce the boundary value at τ = 0, which is fixed by the
undeformed theory. From (2.21) and (2.22), it is easy to see that a generic undeformed
flux sector can be expressed as a convergent expansion in 1/α with structure

zm(α, 0) =
∞∑
k=0

am,k
αk+N2/2 . (5.7)

The behavior of zm(α, τ) for small τ is sensitive to the sign of the deformation. We
separately study the two choices.

5.1 τ > 0

When τ → 0+, W → +∞ and 1F1
(
N2/2 + s+ 1, 2,W

)
becomes exponentially divergent.

This is not surprising as one expects the Kummer confluent hypergeometric function to
bring nonperturbative contributions in τ , which should be absent for positive values of the
deformation parameter. Therefore, when τ > 0, we consider a general solution of the flow
equation written as the linear combination

zm(α, τ) = CN e
X Y N2/2

∞∑
s=0

pm,s
s! (−Y )s U(N2/2 + s, 0,W ) . (5.8)

The undeformed limit is given by

lim
τ→0+

zm(α, τ) = z0(α, 0)
∞∑
s=0

pm,s
s! (−α)−s . (5.9)

For the zero-flux sector, one can trivially determine the coefficients in the sum by
comparing with (2.24). This gives p0,s = δs,0, which reproduces the result (4.10) derived
in the previous section. For a generic flux sector, we can determine the coefficients pm,s by
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exploiting the so-called Ramanujan’s Master Theorem.7 We find

pm,s = 1
Γ(−s)

∫ ∞
0

dα αs−1 zm(α, 0)
z0(α, 0) . (5.10)

The formula is understood for some region in the complex s-plane where the above is
well-defined. The result is then analytically continued to positive integer values of s.

To determine the coefficient pm,s for a generic fluxm we start with the definition (2.19).
Performing the integral is nontrivial due to the presence of the square of the Vandermonde
determinant in (2.18). However, within the Fourier integral, we can trade it for the differ-
ential operator

V = ∆2(∂m1 , . . . , ∂mN )
(−4π2)N(N−1)/2 , (5.11)

leading to

zm(α, 0) = z0(α, 0)
∫
RN

d`1 . . . d`N e−2πim·` ∆2(`1, . . . , `N ) e−
α

2N 〈`〉

(2π)N/2N !G(N + 1) (N/α)N2/2

= z0(α, 0) (α/N)ν

N !G(N + 1) (−1)m V e−2π2N |m|2/α . (5.12)

We have used the fact that V(e−πimf(m)) = e−πim Vf(m). Now we can plug the above
in (5.10). The integration can be performed by assuming Re s < 0. This gives the coefficient

pm,s = (−1)m+νN s

N !G(N + 1)
Γ(s+ 1)

Γ(s+ ν + 1) V
(
2π2|m|2

)s+ν
, (5.13)

written in terms of the operator in (5.11) and the shorthand ν = N(N − 1)/2.

5.2 τ < 0

Let us now consider the case where τ < 0. From the results of the previous section and the
abelian case [22], we know that the deformed flux sector should receive nonperturbative
corrections in τ . Indeed, the presence of the Kummer confluent hypergeometric function,
necessary to construct real solutions of the flow equation (3.15) at τ < 0, brings instanton-
like contributions for τ → 0− (see eq. (A.9)). As noticed in the previous section, the results
will differ according to the parity of N . To avoid repeating the analysis for both choices,
the rest of the present work will only focus on the case where N is odd, whenever τ < 0.
Upon taking the sum over all flux sectors, we will find an expression for the full deformed
partition function that applies to any N .

7According to the theorem, if a complex function f has an expansion of the form

f(x) =
∞∑
k=0

ϕ(k)
k! (−x)k ,

then its Mellin transform reads ∫ ∞
0

dx xs−1 f(x) = Γ(s)ϕ(−s) .
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We choose the ansatz

zm(α, τ) = −πCN WeX(−Y )N2/2 ∑
s∈K

(−1)2s pm,s
s! Γ(s+N2/2) (−Y )s 1F1(N2/2 + s+ 1; 2;W ) .

(5.14)

Let us for the moment set K = {0, 1, 2, . . .}. The ansatz is carefully defined in such a way
to reproduce the same limit as above, but now taken from negative values of τ , i.e. with
this choice, it follows from (A.9)

lim
τ→0−

zm(α, τ) = z0(α, 0)
∞∑
s=0

pm,s
s! (−α)−s , (5.15)

and one can still use eq. (5.10) to find the coefficients of the sum. This is consistent with
the result for the zero-flux sector derived in (4.17).

However, it is possible to add to the sum in (5.14) any half-integer s with s > 1−N2/2
without modifying the undeformed limit (5.15). This is due to the fact that for such values
of s, the Kummer confluent hypergeometric function acts as a purely nonperturbative
contribution to the result. As we will see later, the inclusion of these additional terms is
crucial to ensure the convergence of the sum over m producing the full partition function
Z(α, τ) and to generate the expected semiclassical limit of each flux sector. We will address
both of these important points in the following sections.

For the moment, we simply choose K = K+ ∪K−, where

K+ =
{

0, 1
2 , 1,

3
2 , 2, . . .

}
, (5.16)

K− =
{

1− N2

2 , 2− N2

2 , . . . ,−1
2

}
. (5.17)

As observed at the end of the last section, the ansatz in (5.14) holds for τ > τmin, since
the expression diverges for τ → τ−min. As we will see in the following, this is a constraint
that applies only to the individual flux sectors since the expression for the full deformed
partition function will hold for any value of τ .

6 The full partition function

In this section, we will compute the full deformed partition function by summing over all
the deformed flux sectors. For these, we rely on the results of section 4 and section 5.

6.1 τ > 0

For positive values of the deformation parameter, we can use (5.8) to compute a generic
deformed flux sector, starting from (5.13). The sum over s is performed by first replacing
the Tricomi confluent hypergeometric function with its integral representation (A.10) and
then by using the identity

∞∑
s=0

xs

Γ(s+ a) Γ(s+ b) = 1F2(1; a, b;x)
Γ(a) Γ(b)

= 1F̃2(1; a, b;x) . (6.1)
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This readily gives

zm(α, τ) = (−1)m+ν CN e
X Y N2/2

N !G(N + 1)

∫ ∞
0

dt e−tW

t(1 + t)

(
t

1 + t

)N2/2

×V
[(

2π2|m|2
)ν

1F̃2
(
1; N2

2 , ν + 1;−2π2NY t
1+t |m|

2
)]

. (6.2)

The above expression can be simplified by changing integration variable with

t = r2

2NY − r2 (6.3)

and by taking advantage of the following property of the hypergeometric function:

1F̃2
(
1; N2

2 , ν + 1;−z2
)

= (−1)νz1+N/2−N2
JN/2−1(2z)−

ν−1∑
s=0

(−z2)s−ν

s! Γ(s+N/2) . (6.4)

We observe that, when inserted into to our integral, the finite sum appearing above com-
bines with |m|2ν to produce a polynomial of degree 2(ν − 1) in the m’s, and it vanishes
under the action of V, which is a differential operator of order 2ν. We are then left with

zm(α, τ) = (−1)m eX

N !G2(N + 1) V
[
2π
∫ √2NY

0
dr rN/2 e−

r2W
2NY−r2 |m|1−N/2 JN/2−1(2πr|m|)

]
. (6.5)

In the above, we recognize the N -dimensional Fourier transform8

zm(α, τ) = (−1)m eX

N !G2(N + 1) V
[ ∫

d`1 . . . d`N e−2πim·` e
− W |`|2

2NY−|`|2 Θ(2NY − |`|2)
]

=
∫

d`1 . . . d`N e−2πim·` ẑ `(α, τ) , (6.6)

of the spherically-symmetric smooth function with compact support,

ẑ `(α, τ) = Θ(2NY − 〈`〉)
N !G2(N + 1) ∆2(`1, . . . , `N ) eX−

W 〈`〉
2NY−〈`〉 . (6.7)

Here, Θ denotes the Heaviside step function. The full partition function comes from taking
the sum over m, which can be traded for a sum over ` through the Poisson summation
formula,

Z(α, τ) =
∑

m∈ZN
zm(α, τ)

=
∑
`∈ZN

ẑ `(α, τ) . (6.8)

8Let f(x) be a spherically-symmetric function on RN . We denote f(x) = F (|x|). Then∫
RN

dx e−2πik·x f(x) = 2π|k|1−N/2
∫ ∞

0
dr JN/2−1(2π|k|r) rN/2 F (r) .
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Analogously to the abelian case [22], the full partition function can be expressed in
terms of the deformed Hamiltonian (3.17),

Z(α, τ) =
∑

R∈RN,τ

(dimR)2 e
− α

2N
C2(R)

1−τ C2(R)/N3 . (6.9)

Crucially, the range of the sum extends over RN,τ , the set of inequivalent irreducible
representations of U(N) with τC2 < N3. As a consequence, for any τ > 0 the deformed
partition function is a sum over a finite set, which is necessarily convergent. Moreover,
the number of terms in the sum in (6.9) varies with τ . Specifically, as τ increases, a given
representation R drops out of the sum when τ reaches the critical value τR = N3/C2(R).
This prevents the partition function from being analytic in τ at τ = τR. However, as
τ → τ−R , the term in the sum associated with R vanishes together with its derivatives of
any order, thus making the partition function smooth. These critical values of τ have been
studied in [22] for the abelian theory. They were observed to be associated with quantum
phase transition of infinite order.

For τ > N2, only the trivial representation contributes to the sum and the partition
function becomes itself trivial with Z(α, τ) = 1.

6.2 τ < 0

Let us now turn to the case where the deformation parameter is negative and N is odd.
We start from (5.14) and write zm = z+

m + z−m by splitting the range of the sum over K+

and K− respectively, as defined in (5.16) and (5.17).
In appendix B we show that

z+
m(α, τ) = eX

N !G2(N + 1) V
[
2π
∫ ∞

0
dr rN/2 |m|1−N/2 JN/2−1(2πr|m|)

×
(
e
− r2W

2NY−r2 − eW −WeW
kmax∑
k=1

1
k

(2NY
r2

)k
L1
k−1(−W )

)]

=
∫

d`1 . . . d`N e−2πim·` ẑ+
` (α, τ) , (6.10)

where kmax = (N2 − 1)/2, and

ẑ+
` (α, τ) = eX ∆2(`1, . . . , `N )

N !G2(N + 1)

(
e
− W |`|2

2NY−|`|2 − eW −WeW
kmax∑
k=1

1
k

(2NY
|`|2

)k
L1
k−1(−W )

)
.

(6.11)

One would be tempted to apply the standard Poisson summation formula to the above.
However, the sum over m does not converge.9 One can check that, as a consequence,

9We prove in (B.14) that the sum of zm over all flux sectors is convergent. This can be split as∑
m∈ZN

z+
m(α, τ) +

∑
m∈ZN

z−m(α, τ) .

The second sum diverges since z−m is a polynomial in m. As a consequence, the first sum must diverge as
well, and it must do so by sharing the same behavior at large m.
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ẑ+
` (α, τ) diverges for `→ 0. It is possible to subtract the ` = 0 term (see e.g. [35]) with10

∑
m∈ZN

z+
m(α, τ)−

∫
RN

dm z+
m(α, τ) =

∑
` 6=0

ẑ+
` (α, τ) . (6.12)

We use the above to write an expression for the full deformed partition function,

Z(α, τ) =
∑
` 6=0

ẑ+
` (α, τ) +R(α, τ) , (6.13)

where the residual term reads11

R(α, τ) =
∫
RN

dm z+
m(α, τ) +

∑
m 6=0

z−m(α, τ) . (6.14)

We now have to efficiently express the residual part in terms of U(N)-representation
data. To this end, we split the residual term as

R(α, τ) = REM(α, τ) +R0(α, τ) (6.15)

where

REM(α, τ) =
∑
m 6=0

z−m(α, τ)−
∫
RN

dm z−m(α, τ) , (6.16)

R0(α, τ) =
∫
RN

dm zm(α, τ) . (6.17)

We remind the reader that convergence in the definition (6.16) should be understood as in
footnote 10.

From (5.14) and (5.13), and by using

1F1(k + 1; 2;W ) = eW

k
L1
k−1(−W ) , (6.18)

we find

z−m(α, τ) = (−1)νπ1−N/2WeX+W

N !G2(N + 1)

kmax∑
k=1

(−2π2NY )k L1
k−1(−W )

Γ(k + 1) Γ(k + 1−N/2) V |m|2k−N , (6.19)

10In (6.12) and in other instances throughout the remainder of the present section, we will deal with
finite expressions written as the difference between a divergent sum and a divergent integral. In such cases,
convergence is ensured by taking the appropriate simultaneous limit of the spherical partial sums. Namely,
the combination ∑

x

f(x)−
∫

dx g(x)

should be understood as the regulated form

lim
Λ→∞

( ∑
|x|≤Λ

f(x)−
∫
|x|≤Λ

dx g(x)

)
.

11We omit the m = 0 term in the sum, since this vanishes. The result for the zero-flux sector is in (4.17).
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while its Fourier anti-transform reads

ẑ −` (α, τ) = WeX+W

N !G2(N + 1)

kmax∑
k=1

(2NY )k

k
L1
k−1(−W ) ∆2(`1, . . . , `N )

|`|2k
. (6.20)

For the last step, we use again a generalized Poisson summation formula [35] to rewrite
the residual term (6.16) as

REM(α, τ) =
∑
` 6=0

ẑ −` (α, τ)−
∫
RN

d` ẑ −` (α, τ)

= WeX+W

N !G2(N + 1)

kmax∑
k=1

Qreg
N,k

(2NY )k

k
L1
k−1(−W ) , (6.21)

where the coefficients are given by the generalized Euler-Maclaurin expansion12

Qreg
N,k =

∑
` 6=0

∆2(`1, . . . , `N )
|`|2k

−
∫
RN

d` ∆2(`1, . . . , `N )
|`|2k

. (6.22)

We are left with the residual term (6.17) that we rewrite through (B.14) as the residue
of an essential singularity,

R0(α, τ) = eX+W

N !G2(N + 1) PN Res
u=2NY

(
e

2NYW
u−2NY uν−1

)
= W eX+W

N !G2(N + 1) PN
(2NY )ν

ν
L1
ν−1(−W ) , (6.23)

in terms of the constant of group-theoretic origin

PN = π2
∫
RN

dm V
[
|m|1−

N
2 i

N
2 H

(1)
N
2 −1(2iπ|m|)

]
= G(N + 2) Γ(N/2)

(−2)ν Γ(N2/2) . (6.24)

By taking advantage of certain cancellations, we can write the deformed partition
function in a more suggestive way as

Z(α, τ) = R0(α, τ) +
∑
`∈ZN

∆2(`1, . . . , `N )
N !G2(N + 1)

(
e
X− W |`|2

2NY−|`|2 − eX+W
)

− eX+W
∫
RN

d` ∆2(`1, . . . , `N )
N !G2(N + 1) W

kmax∑
k=1

1
k

(2NY
|`|2

)k
L1
k−1(−W ) . (6.25)

Here, the counterterms have the same form as the ones that appear in (6.13), but are
provided by an integral over `, rather than a sum. In fact, in this expression both the sum
and the integral are separately divergent. Once more, convergence should be understood
as in footnote 10.

12See [36] for an introduction to generalized Euler-Maclaurin expansions and their physical applications.
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The sum over ` is the only term that survives in the abelian theory, and correctly
reproduces the result obtained in [22], where a constant is subtracted from the e−aH term
associated with the deformed Hamiltonian (3.17). The same constant factor, namely

eX+W = e
N2α
2τ , (6.26)

appears in front of the integral and in R0, and determines the nonperturbative character
of every counterterm in (6.25).

So far, we have been able to recast the full partition function from a sum over fluxes
into an expression that is the direct deformation of the sum over U(N) representations
in (2.18). We now wish to provide a more compact way to reorganize the result, which
should shed more light on the origin of the conterterms. To this end, we observe that
in (6.11), instead of subtracting from the exponential the first kmax + 1 terms of its 1/|`|
expansion, we can equivalently use the rest of the series to write

∑
` 6=0

ẑ+
` (α, τ) = WeX+W

N !G2(N + 1)

∞∑
k=kmax+1

QN,k
(2NY )k

k
L1
k−1(−W ) , (6.27)

in a way that is similar to the residual term in (6.21), if not for the fact that the coefficients

QN,k =
∑
` 6=0

∆2(`1, . . . , `N )
|`|2k

(6.28)

are not quite the same as in (6.22). However, as explained in appendix C, Qreg
N,k is the

meromorphic continuation of QN,k in k, and both can be expressed as certain derivatives
of the regularized Epstein zeta function. Therefore, we can use the prescription in (C.9)
to write the full partition function as

Z(α, τ) = R0(α, τ) + WeX+W

N !G2(N + 1)

∞∑
k=1

(2NY )k

k
L1
k−1(−W ) V Zreg | 0

m | (2k)
∣∣∣
m=0

. (6.29)

The range of the sum can be safely extended to k = 0 since the added term vanishes iden-
tically. According to this form of the partition function, the counterterms can be seen as
originating from the regularization of the Dirichlet-like sums generated by the expansion in
inverse powers of |`|. There is only a finite number of such terms for any N , namely those
with 1 ≤ k ≤ kmax. The expansion necessarily misses the term with ` = 0, which is ac-
counted for by the presence of R0. This term vanishes in the undeformed theory due to the
presence of the Vandermonde determinant, but amounts to a finite nonperturbative contri-
bution in the deformed theory as prescribed by the analysis of the deformed flux sectors.

7 The semiclassical limit

In section 5.2, we commented on the fact that in writing (5.14), the partition function of
a generic deformed flux sector for τ < 0, we were confronted with a choice regarding the
nonperturbative part of the expression. At the end of appendix B, we noticed that our
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choice guarantees the convergence of the sum over the fluxes m. Although this property is
certainly necessary for the validity of our construction, it is not sufficient to fully remove
the ambiguity regarding the exact form of the deformed flux sectors. From the point of
view of the flow equation (3.15), this arbitrariness comes down to the fact that imposing
a boundary condition at τ = 0 is not enough to guarantee the uniqueness of the solution.
A second boundary condition can be imposed by taking α → 0+. However, one should
be careful in taking such a limit, since there are a priori various ways in which this can
be done. Specifically, keeping τ finite, or alternatively, keeping µ finite, both lead to
unphysical regimes.

In pure undeformed Yang-Mills theory, taking the gYM → 0 limit is equivalent to
taking the semiclassical limit. The reason for this is that the gauge coupling acts as an
overall constant that multiplies the action (2.1), playing a role analogous to that of ~. As
a consequence, when gYM → 0, the path integral localizes on the field configuration that
minimize the Euclidean action. However, this feature is not shared by the deformed action,
as it can be seen from (3.5) where the two sides of the equation carry different powers of L ,
and thus of gYM. One should rather define a rescaled deformation parameter σ ∼ µ/g2

YM
so that the deformed Lagrangian density (3.8) depends on the gauge coupling through an
overall power.

In terms of the variables at hand, then, the semiclassical limit amounts to taking α→ 0
and τ → 0 simultaneously in such a way that

σ = 4π2

N

τ

α2 (7.1)

is kept fixed. Concretely, throughout this section we will replace τ with its expression in
terms of α and σ, so that the semiclassical limit of zm is simply obtained by studying the
regime where α→ 0.

By performing the limit at the level of each individual flux sector we expect to find

− log zm ∼ Scl(m, σ) , (7.2)

where

Scl(m, σ) = 3π2N

2ασ

(
3F2

(
−1

2 ,−
1
4 ,

1
4; 1

3 ,
2
3; 256

27 |m|
2σ

)
− 1

)
(7.3)

is the deformed action evaluated on the classical instanton configuration, obtained by
plugging (2.6) into (3.8). Notice that, since (3.8) is a strictly monotonic function of the
undeformed Lagrangian density, the classical instanton configurations are stationary points
of the deformed action as well.

The remainder of this section is devoted to the computation of the semiclassical limit
of zm for both sign choices of τ .

7.1 τ > 0

Choosing a positive deformation parameter corresponds to imposing σ > 0. We start
with (6.5) and notice that the integrand is an even function of r. Thus we can rewrite the
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Rew

Imw

−wsing +wsing

−iω?
γ>

Figure 2. The integration contour for (7.7). The original integration contour is represented
with a dashed red line and runs along the real w-axis. In the α → 0 limit, we deform the contour
according to the steepest-descent approximation which prescribes crossing the saddle point at −iω?
horizontally. The new contour γ> is represented with a solid red line.

expression by mirroring the integration range about r = 0 and dividing by 2. We then
change integration variable with

r = 2πN |m|
α

w . (7.4)

The integral now extends over the range (−wsing, wsing), with

wsing = 1
|m|
√
σ
. (7.5)

At the endpoints of such a range, the integrand has an essential singularity.
We now consider the α → 0 regime. To this end, we use the asymptotic behavior of

the Bessel function, namely

Jν(2z) ∼ cos(2z − νπ/2− π/4)√
πz

for z →∞ , (7.6)

and find

zm ∼
(2πN/α)

N+1
2 (−1)m

N !G2(N + 1)

∫
γ>

dw (iw)
N−1

2 V
[
|m| e−

4π2N|m|2
α

η(w)
]
, (7.7)

where

η(w) = w2

2(1− |m|2σw2) + iw . (7.8)

The trigonometric function in (7.6) was turned into a complex exponential in (7.7) by
adding an appropriate odd function of w that gets cancelled under integration. The inte-
gration contour γ> is depicted in figure 2.

We employ the steepest-descent approximation method. The solutions of the saddle
point equation, that we write as η′(−iω) = 0, are captured by the quartic

|m|4σ2ω4 + 2|m|2σω2 − ω + 1 = 0 . (7.9)

There is a saddle,

ω? = 3F2

(1
2 ,

3
4 ,

5
4; 4

3 ,
5
3; 256

27 |m|
2σ

)
, (7.10)
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which is smoothly connected to the one of the undeformed theory. Due to the presence of
a branch cut in the hypergeometric function, ω? is real for |m|2σ < 27/256, and so is

1
η′′(−iω?)

= 3F2

(3
4 ,

5
4 ,

3
2; 4

3 ,
5
3; 256

27 |m|
2σ

)
> 0 . (7.11)

For this range of parameters, we deform the contour as indicated in figure 2 and find

zm ∼
(2πN/α)

N
2 (−1)m

N !G2(N + 1) V
[
h(|m|2σ) e−Scl(m,σ)

]
. (7.12)

In the above, we have recognized

4π2N |m|2

α
η(−iω?) = Scl(m, σ) (7.13)

to be the deformed classical action (7.3), and we have denoted√
ωN−1
?

η′′(−iω?)
= h(|m|2σ) , (7.14)

where

h(z) =
[

3F2

(1
2 ,

3
4 ,

5
4; 4

3 ,
5
3; 256

27 z
)]N−1

2
[

3F2

(3
4 ,

5
4 ,

3
2; 4

3 ,
5
3; 256

27 z
)] 1

2

= 1 + (N + 2)z +O(z2) . (7.15)

We can observe that the full result for the deformed flux sector in the semiclassical
limit maintains the form in (2.21), i.e. it can be decomposed as

zm ∼ wm(α, σ) e−Scl(m,σ) . (7.16)

This is because the action of the differential operator V in (7.12) does not spoil the presence
of an overall exponential term associated with the deformed classical action. Rather, by
acting as in (7.12), V determines the deformation of the fluctuation term wm(α, σ).

Notice that for each flux sector there exists a finite neighborhood of σ = 0 for which
zm is analytic in σ. Conversely, for any σ > 0 only a finite number flux sectors will have
an associated partition function that is analytic at that point. This reflects the fact that,
as discussed in section 6.1, the total partition function has peculiar analyticity properties
in any neighborhood of τ = 0. The presence of a branch cut can also be understood
by noticing that at |m|2σ = 27/256 the saddle (7.10) collides with another real solution
of (7.9). This additional saddle, which is subdominant in the range 0 < |m|2σ < 27/256,
should combine with the contribution coming from ω? and modify the asymptotic behavior
in (7.12) when |m|2σ > 27/256.

From the point of view of the full partition function, this feature suggests a semiclas-
sical mechanism for the truncation of the spectrum that can be attributed to a collective
behavior of the flux sectors: for any fixed τ , the sum over the fluxes should include con-
tributions coming from both saddles when |m| is large enough. Accordingly, an infinite
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number of oscillatory terms appears in the full sum, since the saddle points are complex
conjugates and carry, in general, a nontrivial imaginary part. We argue that a destructive
interference occurs among these terms, resulting into the sharp cutoff on the sum over the
representations. At a first look, this observation might seem at tension with the fact that
the truncation of the spectrum is controlled by the sole τ , given that the location of the
branchpoint of the classical action depends on both τ and α. We expect nevertheless that
the interference should come from the full tower of fluxes, and as such to be dominated
by terms with large |m|. Nicely, one finds that in said regime, |Scl|2 ∼ 4π2|m|2N3/τ ,
recovering the dependence on the correct cutoff scale, including the expected power of N .

7.2 τ < 0

For negative values of the deformation parameter, i.e. for σ < 0, we start from (B.14) and
rescale the integration variable with

u = 4π2N2|m|2

α2 v . (7.17)

The essential singularity of the integrand sits now at

vsing = 1
|m|2σ

. (7.18)

In taking the α→ 0 limit, we make use of (B.12) to write

zm(α, τ) ∼ (2πN/α)
N+1

2

N !G2(N + 1)
i
2

∮
γ<

dv
v

(
√
−v)

N+1
2 V

[
|m| e−

4π2N|m|2
α

χ(v)
]
, (7.19)

where

χ(v) = v

2(1− |m|2σv) +
√
−v . (7.20)

By writing the saddle-point equation as χ′(−ω2) = 0, we find that the solutions are again
captured by the quartic in (7.9) and consider the solution in (7.10). Since now σ < 0, the
saddle is always real for any range of parameters. Moreover, we find that

vsing < −ω2
? < 0 . (7.21)

In choosing the contour for (7.19) according to the steepest-descent prescription, we notice
that χ′′(−ω2

?) < 0. Accordingly, we define γ< so that it crosses the saddle point vertically
as indicated in figure 3. The final result reads

zm ∼
(2πN/α)

N
2

N !G2(N + 1) V
[
h(|m|2σ) e−Scl(m,σ)

]
, (7.22)

where, again we find that

4π2N |m|2

α
χ(−ω2

?) = Scl(m, σ) (7.23)
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Re v
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0vsing

−ω2
?

γ<

Figure 3. The integration contour for the steepest-descent approximation of (7.19) in the α→ 0
limit. The contour crosses the saddle point −ω2

? parallel to the imaginary axis. Notice that, when
approaching vsing from the left, Reχ→ +∞.

is the deformed classical action (7.3) evaluated on the classical instanton configuration with
total magnetic flux m, while √

− ωN−3
?

4χ′′(−ω2
?)

= h(|m|2σ) (7.24)

coincide with the expression obtained in (7.15).
It is remarkable that, for each flux sector, the semiclassical limits obtained for either

signs of τ agree.13 This effectively tells us that the nonperturbative corrections included
in the partition function (5.14) are precisely those that guarantee such a match. In fact,
each term that appears in the sum generates an instanton-like contribution of the form

eX+W = e
2π2N
ασ (7.25)

that shapes the semiclassical limit.
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A Confluent hypergeometric functions

The confluent hypergeometric differential equation

z
d2w

dz2 + (b− z) dw
dz − aw = 0 (A.1)

has solution

w = c1 1F1(a; b; z) + c2 U(a, b, z) , (A.2)

13The only discrepancy between (7.12) and (7.22), namely the presence of the overall sign (−1)m, is
merely due to the fact that for τ < 0 this was dropped since it is always trivial for odd N .
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where the functions

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k! , (A.3)

U(a, b, z) = Γ(1− b)
Γ(a− b+ 1) 1F1(a; b; z) + Γ(b− 1)

Γ(a) z1−b
1F1(a− b+ 1; 2− b; z) , (A.4)

are referred to, respectively, as Kummer and Tricomi confluent hypergeometric functions.
Notice that 1F1(a; b; z) does not exist when b is a nonpositive integer, and that (A.4) holds
for b noninteger. One can extend the definition of the 1F1 by using

lim
b→−n

1F1(a; b; z)
Γ(b) = (a)n+1

(n+ 1)! z
n+1

1F1(a+ n+ 1;n+ 2; z) , (A.5)

for n nonnegative integer. The function U(a, b, z) has a branch cut in the complex z-plane
along z ∈ (−∞, 0]. For x < 0,

U(a, b, x+ i0) = U(a, b, x) ,

U(a, b, x− i0) = e2ibπ U(a, b, x)− 2iπeibπ

Γ(a− b+ 1) Γ(b) 1F1(a; b;x) . (A.6)

The Kummer confluent hypergeometric function can be recast in terms of generalized
Laguerre polynomials as

1F1(a; b; z) = Γ(1− a) Γ(b)
Γ(b− a) Lb−1

−a (z) . (A.7)

Two asymptotic behaviors are particularly relevant for the present work: for x→ +∞,

U(a, b, x) ∼ x−a , (A.8)

1F1(a; b;−x) ∼ Γ(b)
Γ(b− a) x

−a
(

1 +O

(1
x

))
+ e−x . . . . (A.9)

The confluent hypergeometric functions enjoy the two following integral representa-
tions. For Re a > 0 and Re z > 0,

U(a, b, z) = 1
Γ(a)

∫ ∞
0

dt e−zt ta−1 (t+ 1)b−a−1 . (A.10)

For Re a > 0,

1F1(a; b; z) = 1
2πi

Γ(b) Γ(a− b+ 1)
Γ(a)

∫ (1+)

0
dt ezt ta−1 (t− 1)b−a−1 . (A.11)

The last integral is taken over a contour starting and ending in 0 and encircling 1 in the
positive sense.

For Re y > 1/2, the two multiplication theorems hold,
∞∑
j=0

1
j!

(1
y
− 1

)j
U(a− j, b, x) = ex(1−y)yb−a U(a, b, xy) , (A.12)

∞∑
j=0

(b− a)j
j!

(
1− 1

y

)j
1F1(a− j; b;x) = ex(1−y)yb−a 1F1(a; b;xy) . (A.13)
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Figure 4. The integration contour for (B.1). The integrand has a branch cut along the positive
real u-axis if a is not integer, and an essential singularity at u = −y. The contour γ is the sum of
a circle γcirc of radius % > y and of a Hankel-like contour γcut wrapping the cut.

B Some useful identities

In this appendix, we prove various identities that are used in section 6.2. We start
from (5.14) and (5.13). The sum over s can be performed by using the integral repre-
sentation

z 1F1(a+ 1; 2; z) = 1
2πi

∮
γ

du
u
e
zu
u+y

(
−y
u

)−a
, (B.1)

which is obtained directly from (A.11) through integration by parts and with the change
of integration variable

t = u

u+ y
, (B.2)

with y > 0. The integral is performed over the contour γ depicted in figure 4.
For our purposes, it is convenient to use y = −2NY . This gives14

z+
m(α, τ) = (−1)νπ

N
2 eX

N !G2(N + 1)
i
2

∮
γ

du
u
e

uW
u−2NY (−u)

N2
2 V

[
(π2|m|2)ν

×
(

1F̃2
(
1; N2

2 , ν + 1;−π2|m|2u
)
− π|m|

√
−u 1F̃2

(
1; N2+1

2 , ν + 3
2 ;−π2|m|2u

))]
(B.3)

z−m(α, τ) = (−1)νπ
N
2 eX

N !G2(N + 1)
i
2

∮
γ

du
u
e

uW
u−2NY (−u)

N2
2

×V
[
−(π2|m|2)ν

−1/2∑
s=1−N2

2

(−π2|m|2u)s

Γ(s+ 1 + ν) Γ(s+N2/2)

]
. (B.4)

Notice that the terms obtained by summing over half-integer s’s in (5.14), namely (B.4)
and the term with the second regularized hypergeometric in (B.3), are free from branch
cuts along the positive real u-axis. These are, in fact, the terms associated with an integer
a in (B.1).

14The absence of the (−1)m factor coming from (5.13) is merely due to the fact that m is always even if
N is chosen to be odd.
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Let us focus first on z+
m(α, τ), with the goal of proving eq. (6.10). We separate the

contributions coming from γcut and γcircle and denote them as z+
m(α, τ) = Icut + Icirc. As

mentioned, the integral over the Hankel-like contour receives contributions only from the
first regularized hypergeometric. We use (6.4) and the same argument of section (6.1)
to write

Icut = πeX

N !G2(N + 1)
i
2

∫
γcut

du
u
e

uW
u−2NY

√
−u V

[
|m|1−

N
2 u

N
4 JN

2 −1(2π|m|
√
u)
]
. (B.5)

The counterterms that appear in (6.10) come from the integral over the circle. We can
split the exponential in the integrand in terms of its power expansion in 1/u as

e
uW

u−2NY = E1 + E2 , (B.6)

where

E1 = eW +WeW
kmax∑
k=1

1
k

(2NY
u

)k
L1
k−1(−W ) , (B.7)

E2 = WeW
∞∑

k=kmax+1

1
k

(2NY
u

)k
L1
k−1(−W ) , (B.8)

and kmax = (N2 − 1)/2. With an obvious notation we denote Icirc = Icirc,1 + Icirc,2. We
notice that in

Icirc,1 = πeX

N !G2(N + 1)
i
2

∫
γcirc

du
u
E1
√
−u V

[
|m|1−

N
2 u

N
4 JN

2 −1(2π|m|
√
u)
]

+ (−1)νπ2ν+N
2 +1eX

N !G2(N + 1)
i
2

∫
γcirc

du E1 u
kmax V

[
|m|2ν+1

1F̃2
(
1; N2+1

2 , ν + 3
2 ;−π2|m|2u

)]
(B.9)

the second line vanishes, as it is the integral of an analytic function over a closed contour.
Moreover, we can use the fact that now the integrand in the first line does not have an
essential singularity at u = 2NY , and it is possible to shrink the contour around the cut. In
doing so, one can combine the above with (B.5) to generate the appropriate counterterms.
In taking %→∞, we see that Icut + Icirc,1 reproduces (6.10). What is left to show now is
that, in the same limit, the remaining term Icirc,2 vanishes. To this end, we use

1F̃2
(
1; N2+1

2 , ν + 3
2 ;−z2

)
= z

N
2 −N

2
J1−N2

(2z) +
− 1

2∑
s=1−N2

2

(−z2)s−
1
2

Γ(s+ ν + 1) Γ(s+N2/2) . (B.10)

The two Bessel functions combine in a Hankel function of the first kind with

(−1)νJN
2 −1(2z) + iJ1−N2

(2z) = (−1)ν H(1)
N
2 −1(2z) . (B.11)

The asymptotic behavior of the Hankel function, namely

H(1)
ν (2z) ∼

√
1/(πz) ei(2z−νπ/2−π/4) for z →∞ , (B.12)
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is sufficient to show that

Icirc,2 = πN/2eX

N !G2(N + 1)
i
2

∫
γcirc

du
u
E2
√
−u

×V
[
(π|m|)1−N2 (i

√
−u)

N
2 H

(1)
N
2 −1(2iπ|m|

√
−u) +

− 1
2∑

s=1−N2
2

(−π2|m|2)s+ν us+kmax

Γ(s+ ν + 1) Γ(s+N2/2)

]

(B.13)

vanishes in the %→∞ limit for the Jordan’s lemma. This concludes the proof of (6.10).
We are now in the position to comment on the convergence of the sum over all flux

sectors at τ < 0. In fact, from (B.10) we see that z−m(α, τ) cancels the finite sum generated
by the second regularized hypergeometric in z+

m(α, τ) and one is left with an expression
with the sole Hankel function, namely

zm(α, τ) = π eX

N !G2(N + 1)
i
2

∮
γ

du
u
e

uW
u−2NY

√
−u V

[
|m|1−

N
2 (i
√
−u)

N
2 H

(1)
N
2 −1(2iπ|m|

√
−u)

]
.

(B.14)

By closing the contour γ around the essential singularity at u = 2NY , the Hankel function
generates, according to (B.12), an exponential term of the form e−2π|m|

√
−2NY that ensures

the convergence of the sum over m.

C Some useful tools

In this appendix, we follow the notation of [36].
Let us consider the N -dimensional integral

Iν,ε =
∫

Ω\Bε

dx f(x)
|x|ν , (C.1)

where Ω is some region of RN that contains the origin, and f is sufficiently differentiable.
The integral Iν,0 converges for Re ν < N . The Hadamard finite-part integral

=
∫

Ω
dx f(x)
|x|ν = lim

ε→0

(
Iν,ε −Hν,εf(0)

)
, (C.2)

is the analytic continuation of Iν,0 to ν ∈ C \ (N + N) defined through the subtraction
generated the differential operator

Hν,ε =
bRe ν−Nc∑
n=0

1
n!

∫
Rd\Bε

dx (x ·∇)n

|x|ν . (C.3)

For ν ∈ (N +N), we define instead

Hν,ε =
ν−N−1∑
n=0

1
n!

∫
Rd\Bε

dx (x ·∇)n

|x|ν + 1
(ν −N)!

∫
B1\Bε

dx (x ·∇)ν−N

|x|ν , (C.4)

which amounts to dropping logarithmic and power-law divergences in Iν,ε.
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The Epstein zeta function

Z | yp | (ν) =
∑
x 6=y

e−2πip·x

|x− y|ν , (C.5)

is smooth in p ∈ RN \ ZN . By subtracting the singularity in p = 0 one can define the
regularized Epstein zeta function

Zreg | yp | (ν) = e2πip·y Z | yp | (ν)− Γ(N/2− ν/2)
πN/2−ν Γ(ν/2)

|p|N−ν , (C.6)

which is analytic in p = 0.
Let us now consider a polynomial P . The sum

Sν =
∑
x 6=0

P (x)
|x|ν (C.7)

is well-defined for Re(ν) > N + degP . A meromorphic continuation of Sν outside the
region where it converges is given by [37]

Sν = lim
β→0

(∑
x 6=0

e−β|x|
2 P (x)
|x|ν −=

∫
RN

dx e−β|x|2 P (x)
|x|ν

)
. (C.8)

Alternatively, the same continuation can be obtained by taking derivatives of the regular-
ized Epstein zeta function, i.e.

Sν = P

( i∇p
2π

)
Zreg ∣∣ 0

p
∣∣ (ν)

∣∣∣
p=0

. (C.9)
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