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1 Introduction

Supersymmetry is a powerful organizing principle for understanding the landscape of con-
sistent models of quantum field theory and gravity. Phenomena of interest that can usually
only be understood qualitatively, can — for supersymmetric models — often be brought
under quantitative control. Even if the ultimate goal is to analyze the physics of a non-
supersymmetric model, it is therefore often useful to first construct and study a closely
related supersymmetric version.
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This strategy has been extremely profitable for understanding the dynamics of gauge
theories [1, 2] and gravity [3–5]. A general lesson is that models with maximal supersym-
metry,1 such as N = 4 super Yang-Mills and N = 8 supergravity, are the most solvable, but
also the most rigid. Even though the field content of these models is often vast (4d N = 8
supergravity has 256 propagating degrees of freedom compared to 2 for non-supersymmetric
Einstein gravity), the symmetry is so constraining that the particle spectrum is completely
determined on general grounds and the number of free parameters in the Lagrangian re-
mains small. Given the many remarkable properties of these models, some of which are
apparent only in on-shell observables like the S-matrix, a strong case has been made that
these are in some sense the simplest quantum field theories [6].

Inspired by this success, it is natural to suppose that supersymmetry may be an equally
powerful tool for analyzing models of massive higher-spin states. As a concrete example, in
this paper we initiate a systematic study of the possible supersymmetrizations of models of
an isolated, self-interacting massive spin-2 particle in 4d Minkowski spacetime, a massive
graviton. Previous studies of supersymmetric massive gravity include [7–14]. The study
of massive spin-2 field theories has a very long history, beginning with the discovery of
physical wave equations and an associated action principle by Fierz and Pauli [15]. The
proposed interpretation of these models as a long-distance modification of general relativity
is briefly reviewed in section 1.1.

In spite of the impressive scope of the literature on massive gravitons, many things
remain unknown. Models of isolated massive higher-spin states are usually constructed as
low-energy effective field theories (EFT) valid below some finite strong-coupling scale. The
general problem of constructing UV completions of these EFTs satisfying the usual prop-
erties of locality, causality and unitarity remains unsolved. For the converse problem of
demarcating the boundaries of the swampland (the space of otherwise healthy EFTs with no
UV completion), various model-independent, bottom-up approaches have been pursued in-
cluding: constraints from S-matrix positivity [16], the absence of asymptotic superluminal-
ity [17] and bounds on raising the strong coupling scale by tuning self-interactions [18, 19].
From the top-down, the open problem of constructing explicit, asymptotically Minkowski
string vacua with a gap in the spin-2 spectrum (or proving a no-go theorem that such a
construction is impossible2) may be more tractable in the context of maximal supersymme-
try. By contrast, for asymptotically AdS spacetimes, in which a weak-coupling spin-2 Higgs
mechanism is possible [21–35], explicit string vacua with a spin-2 gap are known [21, 22, 35].

We are also motivated by the prospect of discovering hidden structures or symmetries
in non-supersymmetric models of massive gravity. Even though a supersymmetric model
necessarily requires an equal number of bosonic and fermionic degrees of freedom, when
constructing solutions to the classical equations of motion (or calculating tree-level scat-
tering amplitudes) it is always a consistent truncation to set the fermions to zero. There
may be further possible truncations depending on the global symmetries of the model.
As a consequence, supersymmetric arguments can play an important role in the classical

1In this paper, all models are in d = 4 (unless otherwise specified) with the associated counting of
supersymmetries, e.g. 16 supercharges corresponds to N = 4.

2For example, see [20] for recently proposed swampland criteria for massive spin-2 states.
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dynamics of non-supersymmetric models.3 These hidden structures may only remain in
bosonic models with special particle content and tunings of interactions. By constructing
the most general supersymmetrizations of the self-interactions of a massive graviton we
may hope to discover such special tunings.

The problem of constraining the dynamics of any model with arbitrarily extended su-
persymmetry is highly non-trivial; the additional difficulty of constructing models of inter-
acting massive higher-spin states makes this problem essentially intractable with presently
available tools. There is no known formalism that allows for the construction of generic
models with the following properties simultaneously: (i) manifest N ≥ 4 supersymme-
try, (ii) manifest Lorentz invariance and (iii) a realization of the supersymmetry algebra
that closes off-shell. We note that for N = 1 supersymmetry, the off-shell superfields corre-
sponding to a massive graviton multiplet have been constructed [36–39]. One could imagine
constructing the models presented in this paper using a version of harmonic superspace [40],
with some of the supersymmetry non-manifest; we will not pursue this direction. Instead,
we take inspiration from the success of the on-shell scattering amplitudes program [41],
and by-pass the construction of an off-shell effective action in favor of the on-shell (tree-
level) S-matrix elements. Here we have many powerful tools at our disposal, especially a
massive version of the spinor-helicity formalism [42], and a recently developed, manifestly
Lorentz-covariant on-shell superspace [43]. Unlike its off-shell cousin, not only can on-shell
superspace be (trivially) extended to arbitrary numbers of supercharges, but the resulting
superamplitudes are much simpler than the non-supersymmetric amplitudes! At the end
of the calculation we can match the supersymmetric amplitudes to off-shell local operators
and recover the constraints of supersymmetry.

We would like emphasize that the techniques used in this paper are very general.
We have focused on models of an isolated massive spin-2 particle as the simplest non-
trivial example of a higher-spin state. We expect that on-shell superspace methods are a
powerful approach to understanding the dynamics of supersymmetric massive higher-spin
interactions in a wider variety of contexts.

1.1 Ghost-free massive gravity

Much of the contemporary interest in models of massive gravity has followed from the
discovery of the ghost-free model of de Rham, Gabadadze and Tolley (dRGT) [44]. For a
more comprehensive review of these developments see [45, 46]. On a Minkowski background,
dRGT massive gravity is described by an effective action obtained as a deformation of the
Einstein-Hilbert action by a specially tuned potential of zero-derivative interactions,

SdRGT[h] = M2
P

2

∫
d4x
√
−g

(
R[g] +m2 [S2(K) + α3S3(K) + α4S4(K)]

)
, (1.1)

3We remind the reader of two classic examples. (i) The extremal Reissner-Nordström solution of the
Einstein-Maxwell model admits Killing spinors, a remnant of its allowed embedding as a BPS solution
of pure N = 2 supergravity. (ii) The tree-level (color-ordered) gluon amplitudes of pure Yang-Mills the-
ory satisfy An[+,+, . . . ,+,+] = An[+,+, . . . ,+,−] = 0 since these helicity sectors necessarily vanish in
supersymmetric Yang-Mills as a consequence of the on-shell supersymmetry Ward identities.
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where

gµν = ηµν + 2
MP

hµν ,

Sn(K) = n!K[µ1
µ1Kµ2

µ2 · · · Kµn]
µn ,

Kµν = δµν −
√
δµν − hµν = −

∞∑
n=1

(2n)!
(1− 2n)(n!)24n (hn)µν . (1.2)

This model describes a self-interacting massive spin-2 field hµν in terms of 3 independent
dimensionless parameters (α3, α4,m/MP).4 As shown in [44], any deviation from this
particular structure reintroduces an additional ghostly degree of freedom in the non-linear
regime, known as the Boulware-Deser ghost [48].

In this paper we will not assume a priori that the massive graviton self-interactions
are those of the dRGT model. In section 3.2, this generality will allow us to observe that
for cubic interactions, N ≥ 3 supersymmetry requires the ghost-free tuning. Nonetheless,
the problem of constructing supersymmetrizations of the dRGT model is an important
motivation for this work and so we will briefly review some of the relevant features.

The action (1.1) is suggestive of the interpretation of this model as a long-distance mod-
ification of Einstein gravity by an explicit breaking of diffeomorphism invariance. When the
massive graviton is coupled to a heavy compact source of mass M , the effect of this break-
ing modifies the effective gravitational force on a test body. At distances large compared
to the Compton wavelength of the massive graviton

r & rC , rC = 1
m
, (1.3)

the inclusion of a mass term leads to an expected exponential Yukawa suppression of the
gravitational force. At intermediate distances

rC & r & rV , rV =
(

M

M2
Pm

2

)1/3

, (1.4)

where rV is the so-called Vainshtein radius [49], linear classical effects dominate. In this
regime we find the famous vDVZ discontinuity [50, 51], the helicity-0 longitudinal mode of
the massive graviton does not decouple and the dynamics of a test body do not agree with
Einstein gravity, even for vanishingly small mass. At shorter distances

rV & r & rQ, rQ =
( 1
MPm2

)1/3
, (1.5)

non-linear classical effects dominate. In this regime the helicity-0 mode is effectively
screened due to strong self-interactions, and the dynamics of the test body agrees with
Einstein gravity [49, 52]. Finally, at distances

rQ & r, (1.6)
4Another commonly used set of parameters for the potential are (c3, d5) [47], which are related by

α3 = −2c3 and α4 = −4d5.
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quantum effects become important. In [53] it was shown that while massive graviton loop
effects will in general de-tune the ghost-free potential (1.1), the associated ghostly mode
has a mass mghost ∼ MP and the phenomenology at longer distances is not substantially
modified.

The existence of a healthy EFT of a massive spin-2 particle that reproduces the phe-
nomenology of general relativity in an appropriate regime is surprising, and there is a clear
motivation to try and construct a UV completion. In contrast to the model-independent
constraints described above, there have been additional bottom-up studies on the con-
straints imposed on the dRGT model by requiring standard causality and unitarity prop-
erties in the UV. Time advances in pp-wave solutions and associated closed time-like curves
were analyzed in [54]; the existence of an asymptotic Shapiro time-advance or time-delay,
related to the sign of the eikonal phase, was studied in [17, 55]. In both cases, avoiding
apparently pathological behavior requires a specific tuning of the cubic dRGT parameter

α3 = −1
2 . (1.7)

As first studied in [47], with proposed refinements and clarifications [16, 56–58], S-matrix
positivity bounds related to analyticity, causality and unitarity in the UV, constrains the
parameters (α3, α4) to a small island.5 It remains an open question how the notion of
causality used in the derivation of the S-matrix positivity bounds is related to that used
in arriving at (1.7).

1.2 Outline of this paper

In section 2.1, we introduce the particle content of graviton supermultiplets with N =
1, 2, 3, 4 supersymmetry. In section 2.2, we discuss the action of the supercharges on these
multiplets and their Ward identities. Using the massive on-shell superspace formalism
first introduced in [43], we construct graviton superfields in section 2.3 and find the most
generic formula for a superamplitude that satisfies the supersymmetry Ward identities in
section 2.4.

In section 3.1, we introduce a basis of operators (and their corresponding amplitudes).
In section 3.2, we place R-symmetry and exchange symmetry constraints on this basis to
determine which interactions are compatible with varying amounts of supersymmetry.

In section 4, we study the high energy limit of supersymmetric massive gravity- first
via massless limits of the multiplets in section 4.1, followed by a discussion of the high
energy limit of massive spin-2 interaction terms and their (in)compatibility with massless
supersymmetry Ward identites in section 4.2 .

In section 5, we first construct supersymmetric massive gluon multiplets and cubic
interactions in section 5.1. We show how these double copy to massive graviton superfields
and 3-point amplitudes in section 5.2. We end with a Discussion section, which pays special
attention to supersymmetric Galileon no-go theorems.

5As discussed in [54] there is a non-zero region of overlap between the causality and positivity bounds.
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2 Supersymmetry ward identities and on-shell superspace

In this section, we first introduce the graviton supermultiplets studied in this paper in
section 2.1. Sections 2.2, 2.3 and 2.4 introduce on-shell superspace, construct explicit
on-shell superfields and derive a simple expression for massive amplitudes in a generic
supersymmetric model respectively.

2.1 Massive graviton supermultiplets

Particle states in a supersymmetric model may be organized into supermultiplets, irre-
ducible representations of the supersymmetry algebra (A.4). The way in which supersym-
metry constrains interactions among states depends on the multiplets present in the model.
In this section we classify the multiplets which may contain a massive graviton.

We need to impose some physical conditions to distinguish a massive graviton multiplet
from a generic multiplet containing massive spin-2 states. In this paper we make the
following assumptions:

(i) A massive graviton should be a singlet under all internal symmetries, i.e. it must have
the same quantum numbers as a massless graviton.

(ii) A massive graviton multiplet contains no states with spin > 2. Higher-spin states
may be necessary to UV complete the model but they are assumed to be heavier than
the massive graviton.

(iii) The lightest spin-2 state of a model of massive gravity should be non-degenerate, i.e.
there should be a unique lightest spin-2 state identified as the massive graviton.

Note that assumption (iii) already implies that the graviton cannot carry any additive
charges, since this would require a distinct CPT conjugate state with opposite charge. As-
sumption (i) is not completely redundant however, since it also forbids discrete charges, for
example it rules out the possibility that the massive graviton is a parity-odd pseudo-tensor.
The requirement that the massive graviton is a singlet is necessary for the existence of cu-
bic self-interactions. Assumption (ii) has an interesting status; the analogue for massless
supergravity is a theorem rather than an assumption, since massless spin > 2 states cannot
consistently interact with a massless graviton [59]. For a massive graviton we make this
assumption by analogy without a formal justification. Assumption (iii) almost implies (ii),
in most cases the only way to construct a multiplet with a non-degenerate spin-2 is for the
graviton to be the highest spin state.

Note that assumptions (i) and (iii) exclude the possibility of obtaining a massive gravi-
ton (in the sense defined above) as a Kaluza-Klein (KK) mode from an S1 compactification
of a massless graviton in 5d. Such models contain massless spin-2 KK zero-modes corre-
sponding to 4d massless gravitons. Ignoring this, even the non-zero KK modes violate
assumption (iii) since they always appear in pairs of left-moving and right-moving states.
Furthermore, these massive KK modes are charged under the emergent U(1) gauge field,
the graviphoton, violating assumption (i) and making cubic self-interactions impossible.

– 6 –
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On-shell supermultiplets are constructed by choosing a Clifford vacuum, defined as a
spin-s (sometimes called superspin) multiplet of one-particle states satisfying

Q†aα̇|ΩI1...I2s〉 = 0 , (2.1)

where a = 1, 2, . . . ,N is an R-symmetry index and Ii = 1, 2 is an index of the massive little
group SU(2)LG. Following [42] we denote a spin-s multiplet as a totally symmetric rank-2s
tensor of SU(2)LG. Acting on |ΩI1...I2s〉 with the other supercharges Qaα in all possible
ways generates the remaining states in the supermultiplet. Note that unlike in the case of
massless supersymmetry, the Clifford vacuum is not necessarily the state in the multiplet
with the lowest spin.

The massive supermultiplets satisfying conditions (i)-(iii) were constructed some time
ago [60, 61]. The results are summarized in table 1 together with a decomposition of
the component states into irreducible representations of the maximal R-symmetry group
SU(N )R ×U(1)R. We will not review the details of this construction but will instead only
make a few physically relevant comments.

For N > 1 supersymmetry, massive supermultiplets can be classified as either short or
long. Short multiplets can arise if the supersymmetry algebra admits a central extension,

{Qaα, Qbβ} = εαβZ
ab

{Q†aα̇, Q
†
bβ̇
} = εα̇β̇Zab. (2.2)

Since Zab is a central charge, it commutes with all other operators in the super-Poincaré
algebra (A.4), including the supercharges. This implies the existence of additional, additive
quantum numbers Zi, i = 1, . . . ,N/2 carried by every component state of a supermultiplet.
Such an algebra has a representation on physical states only if the mass m and central
charges Zi satisfy the BPS bounds,

m ≥ |Zi| . (2.3)

At the special values m = |Zi|, for some subset of i, there are fewer states in the multiplet
than the generic (long multiplet) case, since some of the supercharges annihilate all of the
states. The existence of an additive quantum number violates assumptions (i) and (iii); for
a BPS multiplet with central charge Z we would require a distinct multiplet with central
charge −Z to be consistent with the CPT theorem. We therefore conclude:

A massive graviton in a model with N > 1 supersymmetry, must be a compo-
nent of a long supermultiplet.

For N -extended supersymmetry, a long supermultiplet with superspin s contains a unique
highest-spin state with smax = s+N/2. Since s ≥ 0, assumption (ii) therefore leads to an
upper bound on the number of supersymmetries:

Assuming all of the states in the multiplet have spin ≤ 2, the maximal number
of supersymmetries consistent with a massive graviton is N = 4.

– 7 –
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Finally, it is worth noting that in the context of these models N = 3 supersymmetry does
not automatically imply N = 4 supersymmetry. The multiplets given in table 1 are already
consistent with CPT and the N = 3 and N = 4 multiplets are clearly distinct. Further-
more, in section 3 we will see that the constraints on cubic massive graviton interactions
are different in the two cases.

2.2 On-shell supersymmetry ward identities

To derive the constraints of supersymmetry on the S-matrix, we first need an explicit
description of the action of the supercharges on the asymptotic one-particle states. Our
goal in this section is to motivate the introduction of on-shell superspace, and so we will
present the details only of the simplest non-trivial case: the N = 1 massive graviton
summarized in table 1a.

Qα|ψIJK(~p)〉 = 1
2
√

6
|p(I ]α|γJK)(~p)〉+

√
2|pL]α|hIJKL(~p)〉

Qα|γIJ(~p)〉 =
√

3
2 |pK ]α|ψ̃IJK(~p)〉

Qα|hIJKL(~p)〉 = 1
12
√

2
|p(I ]α|ψ̃JKL)(~p)〉

Qα|ψ̃IJK(~p)〉 = 0

Q†α̇|ψ
IJK(~p)〉 = 0

Q†α̇|γ
IJ(~p)〉 =

√
3
2〈pK |α̇|ψ

IJK(~p)〉

Q†α̇|h
IJKL(~p)〉 = − 1

12
√

2
〈p(I |α̇|ψJKL)(~p)〉

Q†α̇|ψ̃
IJK(~p)〉 = − 1

2
√

6
〈p(I |α̇|γJK)(~p)〉 −

√
2〈pL|α̇|hIJKL(~p)〉. (2.4)

This explicit representation of the N = 1 supersymmetry algebra can be deduced from its
off-shell realization on a linearized (free) theory with the field content of an N = 1 massive
graviton multiplet [10, 36, 38]. In this form we can see the power and utility of the mas-
sive spinor formalism [42]. The massive spinors give a uniform (and manifestly covariant)
language in which we can relate bosons and fermions in different SU(2)LG representations.
Similar one-particle representations exist for the N > 1 supersymmetric graviton multi-
plets, these can be most efficiently expressed in the language of on-shell superfields and
will be described in detail in the following subsection.

When interactions are introduced, the off-shell supersymmetry transformations of the
field operators will be modified (after integrating out possible auxiliary fields), but the
action of the supercharges on on-shell asymptotic states (2.4) will not. In a given su-
persymmetric model, the S-matrix operator commutes with the supercharges ([Qα, S] =
[Q†α̇, S] = 0), and if furthermore the supersymmetry is not spontaneously broken (Qα|0〉 =
Qα̇|0〉 = 0), then the associated S-matrix elements must satisfy a set of linear relations
called on-shell supersymmetry Ward identities (SWI) [64, 65].

As an explicit example, using (2.4) we can deduce the SWI satisfied by three-particle
amplitudes in N = 1 supersymmetric massive gravity. Beginning with the vanishing matrix
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Field Spin U(1)R Dim.

ψIJK 3
2 1 1

γIJ 1 0 1
hIJKL 2 0 1
ψ̃IJK 3

2 -1 1

(a) N = 1 massive graviton multiplet

Field Spin U(1)R SU(2)R Dim.

γIJ 1 2 • 1
λaI 1

2 1 2
ψaIJK 3

2 1 2
hIJKL 2 0 • 1
γabIJ 1 0 3
V IJ 1 0 • 1
φ 0 0 • 1
λ̃aI 1

2 -1 2
ψ̃aIJK 3

2 -1 2
γ̃IJ 1 -2 • 1

(b) N = 2 massive graviton multiplet

Field Spin U(1)R SU(3)R Dim.

λI 1
2 3 • 1

φa 0 2 3
γaIJ 1 2 3
λabI 1

2 1 6
λIa

1
2 1 3

ψIJKa
3
2 1 3

φabc 0 0 8

γIJ 1 0 • 1
γabcIJ 1 0 8

hIJKL 2 0 • 1
λIab

1
2 -1 6

λaI 1
2 -1 3

ψaIJK 3
2 -1 3

γIJa 1 -2 3

φa 0 -2 3

λ̃I 1
2 -3 • 1

(c) N = 3 massive graviton multiplet

Field Spin U(1)R SU(4)R Dim.

φ 0 4 • 1
λaI 1

2 3 4
φab 0 2 10
γIJab 1 2 6

λabcI 1
2 1 20

ψIJKa
3
2 1 4

φabcd 0 0 20′

γabcdIJ 1 0 15

hIJKL 2 0 • 1
ψaIJK 3

2 -1 4
λabcdeI 1

2 -1 20

φab 0 -2 10

γabIJ 1 -2 6

λIa
1
2 -3 4

φ̃ 0 -4 • 1

(d) N = 4 massive graviton multiplet

Table 1. On-shell content of massive graviton multiplets with N ≤ 4 supersymmetry. States are
labelled with capital Latin indices I, J, . . . corresponding to SU(2)LG and lowercase Latin indices
a, b, . . . corresponding to SU(N )R. The last and second-to-last columns give the dimension and
Young tableaux respectively of the SU(N )R representations in the conventions of [62, 63].
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element
〈0|[Qα, S]|hI1J1K1L1

1 (~p1), hI2J2K2L2
2 (~p2), ψI1I2I3

3 (~p3)〉 = 0, (2.5)

we extend the representation (2.4) to multi-particle states by distributing over (possibly
symmetric or anti-symmetric) tensor products in the standard way. In the all-ingoing
momentum convention, (2.5) is equivalent to the following linear relation among three-
particle scattering amplitudes

1
12
√

2
|1(I1 ]αA3

(
ψ̃
J1K1L1)
1 , hI2J2K2L2

2 , ψI3J3K3
3

)
+ 1

12
√

2
|2(I2 ]αA3

(
hI1J1K1L1

1 , ψ̃
J2K2L2)
2 , ψI3J3K3

3

)
+ 1

2
√

6
|3(I3 ]αA3

(
hI1J1K1L1

1 , hI2J2K2L2
2 , γ

J3K3)
3

)
+
√

2|3L3 ]αA3
(
hI1J1K1L1

1 , hI2J2K2L2
2 , hI3J3K3L3

3

)
= 0. (2.6)

Other choices of incoming three-particle states lead to different relations, for example

〈0|[Qα, S]|hI1J1K1L1
1 (~p1), hI2J2K2L2

2 (~p2), ψ̃I1I2I3
3 (~p3)〉 = 0, (2.7)

leads to the SWI

1
12
√

2
|1(I1 ]αA3

(
ψ̃
J1K1L1)
1 , hI2J2K2L2

2 , ψ̃I3J3K3
3

)
+ 1

12
√

2
|2(I2 ]αA3

(
hI1J1K1L1

1 , ψ̃
J2K2L2)
2 , ψ̃I3J3K3

3

)
= 0. (2.8)

Continuing in this way, from relations of the form (2.5) with all possible choices of incoming
n-particle states, we can generate the complete set of supersymmetry constraints on n-
particle scattering amplitudes in the form of a large system of linear equations.

To solve these equations directly, meaning to identify a maximal set of linearly inde-
pendent amplitudes in terms of which all others are uniquely fixed, is a difficult task. For
massless supersymmetric models, with up to N = 8 supersymmetry, the resulting system
of constraints can be solved [41, 66].

One simplification that is common to both massless and massive supersymmetric mod-
els is that the SWI are block diagonal in irreducible representations of both the maximal
R-symmetry group SU(N )R × U(1)R as well as any possible global symmetry realizable
on the assumed particle spectrum. This remains true even if these would-be symmetries
are explicitly broken by interactions. Intuitively, the SWI only impose the constraints of
supersymmetry, and so should be compatible with any choice of additional optional sym-
metry. This means that in the SWI, amplitudes with external states in distinct symmetry
sectors do not talk to one another and the identities can be solved independently.

As a well known example, for massless multiplets we can always define U(1)R such
that the R-charge coincides with the helicity. In both supersymmetric Yang-Mills and
supergravity, helicity is not a dynamically conserved quantity; nonetheless the SWI in these
models are diagonal in NK-MHV sectors, corresponding to eigenstates of the broken U(1)R
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symmetry. For massive supersymmetry the notion of an NK-MHV sector no longer makes
sense since helicity is not a Lorentz invariant quantum number for massive states, but the
would-be U(1)R symmetry is still well-defined and plays the same role. This can be seen
in the above examples, the component states of the N = 1 massive graviton multiplet can
be assigned the U(1)R charges given in table 1a. The SWI (2.6) relates amplitudes which
conserve U(1)R-charge, while (2.8) relates amplitudes which each violate conservation of
U(1)R-charge by −1 units.

For general N , the unique highest spin state in the multiplet is the massive graviton
and is therefore necessarily an R-singlet. The supersymmetry constraints on the cubic
graviton interactions then arise only from R-singlet SWI. Without loss of generality, the
problem of understanding the constraints of supersymmetry on scattering amplitudes at
lowest multiplicity (cubic interactions) is therefore reduced to solving the SWIs in the R-
singlet sector. As we will explain in the following subsections this problem can be essentially
trivialized, even for arbitrarily extended supersymmetry, by rephrasing it in the language
of on-shell superspace.

2.3 Massive graviton on-shell superfields

The idea of an on-shell superspace as a framework for making manifest arbitrarily ex-
tended supersymmetry for scattering amplitudes was introduced in [67], see also [68]. The
extension of these methods to massive supermultiplets was made in a non-covariant form
in [69] and most recently in a fully Lorentz-covariant form in 4d [43, 70] based on the
massive spinor formalism [42]. Below we review the essential elements of massive on-shell
superspace based on [43, 70].

We define massive on-shell superspace by extending the field over which we form linear
combinations in the asymptotic one-particle Hilbert space by an SU(2)LG doublet of anti-
commuting c-number (Grassmann) valued parameters ηI . In this extended Hilbert space,
we can form special linear combinations of the one-particle states comprising complete
supersymmetry multiplets called on-shell superfields. For example, for the N = 1 massive
gravity multiplet we construct the massive graviton superfield

|ΨIJK(~p, η)〉 ≡ |ψIJK(~p)〉+ 1
4
√

3
η(I |γJK)(~p)〉+ ηL|hIJKL(~p)〉+ 1

2ηLη
L|ψ̃IJK(~p)〉. (2.9)

The one-particle states or component fields can be extracted from the superfield by acting
with appropriate Grassmann differential projection operators, for example to project out
the graviton

|hIJKL(~p)〉 ≡ 1
4

∂

∂η(L
|ΨIJK)(~p, η)〉

∣∣∣∣
η=0

. (2.10)

To avoid clutter, it is conventional to use the simplified notation for states |XI1...Is(~p, η)〉 ∼
XI1...Is , which we will follow for the rest of the paper. The key idea of on-shell superspace is
that the action of supersymmetry can be represented in two different but equivalent ways.
The first is to define the supercharges in the usual way as q-number operators, which act
on the component states as in (2.4) but commute with the Grassmann-valued coefficients
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in (2.9). The second is to define the supercharges as anti-commuting c-number operators
which act on the Grassmann-valued coefficients but commute with the component states.
Explicitly, when acting on an n-particle state, the c-number supercharges are given by

Qaα ≡
√

2
n∑
i=1
|iIi ]α

∂

∂ηaiIi
, Q†aα̇ ≡ −

√
2

n∑
i=1
〈iIi |α̇ηaiIi . (2.11)

where a = 1, . . . ,N for N -extended supersymmetry. It is a straightforward exercise to
verify that (2.11) reproduces the explicit representation (2.4).

For the N ≥ 2 massive graviton multiplets, the strategy will not be to begin with a
representation derived from an off-shell Lagrangian describing the linearized model as we
did for N = 1. Rather, we can construct the on-shell superfield directly by decomposing a
generic Grassmann polynomial into the available SU(2)LG and SU(N )R-covariant objects.
From table 1, we know which states must appear in each multiplet and, from the associated
Young tableaux, their symmetry properties as SU(N )R tensors. The Grassmann monomial
prefactors on each term must contract the R-indices to form a singlet, and also contract
the SU(2)LG indices to reproduce the superspin of the multiplet. We find that there is a
unique way to construct each term. The results are given below.

N = 1 massive graviton:

ΨIJK = ψIJK + 1
4
√

3
η(IγJK) + ηLh

IJKL + 1
2ηLη

Lψ̃IJK . (2.12)

N = 2 massive graviton:

ΓIJ = γIJ + 1√
6
η(I
a λ

aJ) + ηaKψ
aIJK + 1

2ε
abηaKηbLh

IJKL + 1
2ηaKη

K
b γ

abIJ

+ 1
8ε

abη(I
a ηbKV

J)K + 1
2
√

3
εabηIaη

J
b φ+ 1

4ηbKη
bKη(I

a λ̃
aJ) + 1√

2
ηbKη

bKηaLψ̃
aIJL

+ 1
8ηbKη

bKηcLη
cLγ̃IJ . (2.13)

N = 3 massive graviton:

ΛI = λI + ηIaφ
a + ηaJγ

aIJ + 1
2ηaJη

J
b λ

abI + 1
2ε

abcηIaηbJλ
J
c + 1

2ε
abcηaKηbJψ

IJK
c

+ 1
6ηaJη

(J
b η

I)
c φ

abc + 1
2
√

6
εabcηIaηbJηcKγ

JK + 1
6
√

2
ηaJη

(J
b ηcKγ

abcK)I

+ 1
6ε

abcηaJηbKηcLh
IJKL + 1

2
√

2
εabcηIaη

J
b η

K
c ηdJλ

d
K + 1

12ε
abcεdefηaJηbKη

J
d η

K
e λ

I
cf

+ 1
8ε

abcηaJηbKηcLη
L
d ψ

dIJK + 1
16ε

abcηaJηbKηcLε
defηIdη

J
e γ

KL
f

+ 1
24
√

2
εabcηIaη

J
b η

K
c ε

defηdJηeKφf + 1
144ε

abcηJa η
K
b η

L
c ε

defηdJηeKηfLλ̃
I . (2.14)

– 12 –



J
H
E
P
1
0
(
2
0
2
2
)
1
3
0

N = 4 massive graviton:

Φ = φ+ ηaIλ
aI + 1

2ηaIη
I
bφ

ab + 1
2
√

2
εabcdηaIηbJγ

IJ
cd + 1

3
√

2
ηaIη

(I
b ηcJλ

abcJ)

+ 1
6ε

abcdηaIηbJηcKψ
IJK
d + 1

12ηaIη
(I
b ηcJη

J)
d φ

abcd + 1
8
√

6
ηaIη

(I
b ηcJηdKγ

abcdJK)

+ 1
24ε

abcdηaIηbJηcKηdLh
IJKL + 1

30ε
abcdηaIηbJηcKηdLη

L
e ψ

eIJK

+ 1
24
√

3
ηaIη

(I
b ηcJη

J
d ηeKλ

K)abcde + 1
144ε

abcdεefghηaIηbJηcKη
I
eη
J
f η

K
g φdh

+ 1
80ε

abcdηaIηbJηcKηdLη
I
eη
J
f γ

efKL + 1
360ε

abcdεefghηaIηbJηcKηdLη
I
eη
J
f η

K
g λ

L
h

+ 1
2880ε

abcdεefghηaIηbJηcKηdLη
I
eη
J
f η

K
g η

L
h φ̃. (2.15)

The numerical pre-factors on the component states are fixed by requiring that the
superfield completeness relation agrees with the sum of the completeness relations for each
component state. A more detailed discussion of this, as well as the relative phases between
the terms is given in appendix C.

From these superfields, we can work backwards to deduce the explicit form of the
representation, as in (2.4). Clearly the superfield is a much more compact way of encod-
ing this information. Likewise there is a more compact superspace representation of the
SWI constraints given by superamplitudes. These are defined the same way as ordinary
scattering amplitudes, but with ordinary n-particle states replaced with n-particle on-shell
superfields. For example a cubic N = 1 massive graviton superamplitude is extracted from
the superspace S-matrix element

〈0|S|ΨI1J1K1
1 (~p1, η1),ΨI2J2K2

2 (~p2, η2),ΨI3J3K3
3 (~p3, η3)〉

≡ i(2π)4δ(4) (p1 + p2 + p3)A3
(
ΨI1J1K1

1 (~p1, η1),ΨI2J2K2
2 (~p2, η2),ΨI3J3K3

3 (~p3, η3)
)
. (2.16)

In this paper we will use A to denote superamplitudes and A to denote component or
ordinary amplitudes. As before, the component amplitudes are extracted from the super-
amplitudes by acting with projection operators (2.10).

2.4 General form of a massive superamplitude

A major advantage of using the on-shell superspace formalism is that it is very simple to
directly construct a completely general (and non-redundant) expression for the superam-
plitude. Such an expression represents a solution to the complicated system of SWIs in the
sense that by acting with projection operators (2.10) each of the component amplitudes
can be expressed in terms a minimal set of independent functions. The approach in this
section is similar in spirit to [41, 66] for massless supersymmetry.

A general superamplitude An ({η}) is an order 2nN polynomial in the Grassmann
parameters ηIiai, where i = 1, . . . , n and a = 1, . . . ,N . As discussed above, in this formal-
ism the Q-supercharges are represented by differential operators and the Q†-supercharges
are represented multiplicatively (2.11), we will call this the η-representation. The SWIs
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are encoded in the statement that the superamplitude is annihilated by both kinds of
supercharges,

Qaα · An ({η}) = 0, Q†aα̇ · An ({η}) = 0. (2.17)

The main result of this section is summarized below:

The most general form of a superamplitude with only massive external states is

An ({ηi}) = δ(2N )
(
Q†
)
G ({ηin}) , (2.18)

whereG ({ηin}) is an arbitrary polynomial in the 2(n−2)N Grassmann variables

ηIia,in ≡ η
Ii
a,i −

1
mn

[iIinIn ]ηIna,n, i = 1, . . . , n− 2, (2.19)

and the supersymmetric delta function is

δ(2N )
(
Q†
)

=
N∏
a=1

∑
i<j

〈iIijIj 〉η
Ii
a,iη

Ij
a,j + 1

2

n∑
i=1

miηa,iIiη
Ii
a,i

 . (2.20)

The statement that such an expression satisfies (2.17) can be straightforwardly verified.
The action of the Q†-supercharges is trivialized by the identity Q†δ(2N )

(
Q†
)

= 0. Less

obviously, the Q-supercharge also separately annihilates both δ(2N )
(
Q†
)
and G ({ηin}).

The latter follows from repeatedly applying the product rule and

Qaα · η
Ii
b,in = 0. (2.21)

Expressions of the form (2.18) therefore give a solution of the contraints (2.17), the more
non-trivial claim that we establish in this section is that all solutions can be written in
this form.

As a first step we will review the argument that annihilation of the superamplitude by
Q† requires the amplitude to be proportional to δ(2N )

(
Q†
)
and explain how the explicit

expression (2.20) is obtained. For simplicity we will present the argument for N = 1 super-
symmetry, the extension to N ≥ 1 is straightforwardly obtained by iterating in the R-index.
We begin by defining a second, physically equivalent, representation of the superamplitude
by taking a Grassmann Fourier transform

Ãn
(
{η†}

)
≡

n∏
i=1

∫
d2ηie

ηiη
†
iAn ({η}) , (2.22)

where d2η ≡ 1
2ε
IJdηIdηJ . In this η†-representation, the supercharges act on the superam-

plitude as

Qα ≡ −
√

2
n∑
i=1
|iIi ]αη†iIi , Q†α̇ ≡

√
2

n∑
i=1
〈iIi |α̇

∂

∂η†iIi

. (2.23)

In these variables the identity of the multiplicative and differential supercharges are in-
verted. Again, in this notation the SWIs are encoded in the conditions Qα · Ãn

(
{η†}

)
=
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Q†α̇ ·Ãn
(
{η†}

)
= 0. That the superamplitude is annihilated by a linear differential operator

is equivalent to the existence of a superspace translation invariance of the form

Ãn
(
η†1, . . . , η

†
n

)
= Ãn

(
η†1 + 〈ε1〉, . . . , η†n + 〈εn〉

)
, (2.24)

for an arbitrary Grassmann valued spinor |ε〉α̇. We can use this freedom to eliminate η†n
by choosing

〈ε|α̇ = 1
mn

η†Inn 〈nIn |α̇. (2.25)

To make use of this, we express the original η-representation superamplitude as the inverse
Fourier transform

An ({η}) ≡
n∏
i=1

∫
d2η†i e

−ηiη†i Ãn
(
{η†}

)
. (2.26)

By making a change of variables in the Grassmann integral

η̂†Iii ≡ η
†Ii
i −

1
mn

η†Inn 〈nIniIi〉, (2.27)

it follows that the integrand factor Ãn
(
{η̂†}

)
is independent of η̂†n. The integration over η̂†n

reduces to a (universal) integral of an exponential, which can be straightforwardly evaluated∫
d2η̂†ne

−
(
ηnIn−

∑n−1
i=1

1
mi
〈iIinIn 〉ηiIi

)
η̂†Inn ∝ δ(2)

(
Q†
)
. (2.28)

The most general solution to the condition Q† · An ({η}) = 0 is then of the form

An ({η}) = δ(2)
(
Q†
)
G ({η}) , (2.29)

for some polynomial in ηi, i = 1, . . . , n. Due to the delta function, for a given An ({η}),
the function G ({η}) is non-unique, this allows us to make a slightly stronger statement.
Since Q† is a linear function of the ηi in this representation, we can always choose to fix
the ambiguity by removing one of the ηi from G ({η}) by adding terms proportional to Q†.

In the second step we use a similar argument. By explicit calculation, Q·δ(2)
(
Q†
)

= 0,
and so the remaining supersymmetry constraint is Q · G ({η}) ∝ Q†. Since Q† contains
all of the ηi, the right-hand-side of this equation is actually zero if we define G ({η}) to
be independent of one of them as described above. Without loss of generality we will
choose this to be ηn−1. In this case the remaining supersymmetry constraint becomes a
homogeneous, linear differential equation

Q ·G ({η}) = 0. (2.30)

As described above, this implies a superspace translation invariance

G (η1, . . . , ηn−2, ηn) = G (η1 + [ε1], . . . , ηn−2 + [ε, n− 2], ηn + [εn]) , (2.31)

for arbitrary [ε|α̇. Using this freedom we can choose

[ε|α̇ = − 1
mn

[nI |α̇ηIn, (2.32)
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which gives
G (η1, . . . , ηn−2, ηn) = G (η1,n, . . . , ηn−2,n, 0) . (2.33)

As promised, the function G ({η}) is a function of the n − 2 supersymmetry invariant
combinations (2.19).

3 Cubic interactions

In this section, we discuss cubic amplitudes in models of supersymmetric massive gravity. In
section 3.1, we introduce a convenient basis of kinematic objects and use this to enumerate a
basis of cubic interactions for a massive graviton. In section 3.2, we present our main result,
the use of on-shell superspace to derive a complete classification of supersymmetrizable
cubic massive graviton interactions.

3.1 Massive graviton self-interactions

We construct the most general set of cubic interactions among massive particles. Rather
than proceeding from an off-shell effective action and calculating 3-particle amplitudes with
Feynman rules, we will instead construct the on-shell objects directly. By a corollary of the
S-matrix equivalence theorem [71], kinematically independent scattering amplitude contact
terms are in one-to-one correspondence with local operators modulo field redefinition and
integration-by-parts.

We find that a convenient way to construct a complete and non-redundant basis of
such cubic on-shell objects, is to construct them as polynomials in the following building
blocks

{iIjJ} ≡ [iI |/p1/p2|j
J ], (3.1)

which we will call spinor braces. A justification of this choice is given in appendix B.
For a SU(2)LG tensor of given rank associated to each particle, there are finitely many
polynomials that can be constructed from the objects (3.1). However, these are not all
independent, there is a redundancy in this construction corresponding to the following
identity6

{iIjJ}{kK lL}+ {iIkK}{lLjJ} − {iIkK}{jJ lL}
−{kKiI}{lLjJ}+ {kKiI}{jJ lL} − {iI lL}{kKjJ} = 0. (3.2)

In a physical scattering amplitude, a massive external state is an irreducible repre-
sentation of SU(2)LG, which in this notation corresponds to a totally symmetric tensor.
Following [42], it is convenient in this case to suppress the little-group indices and write
the associated particle label in bold. Finally, we sometimes also need to further impose

6This identity can be derived straightforwardly by using εαβεγδ + εαγεδβ + εαδεβγ = 0 and εα̇β̇εγ̇δ̇ +
εα̇γ̇εδ̇β̇ + εα̇δ̇εβ̇γ̇ = 0 in all possible ways on a product of two braces (3.1). Interestingly, even though there
are multiple ways of applying these, there is only one inequivalent brace relation. This redundancy is related
the usual ambiguity associated with Schouten identities.
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that the particles we are describing are identical bosons/fermions. In a scattering ampli-
tude, (Fermi) Bose symmetry is the same as relabelling (anti-)symmetry. For example, if
particles 1 and 2 are identical bosons then

A3 (1, 2, 3) = A3 (2, 1, 3) = A3 (1, 2, 3)
∣∣∣∣
1↔2

. (3.3)

To implement this on the expressions built out of spinor braces we need to know how they
transform under an exchange of labels. These transformations are given in appendix B.

While the spinor-braces are particularly useful for constructing 3-point superampli-
tudes, it is often useful to write bosonic amplitudes in terms of more familiar components;
polarization tensors and momentum vectors. Here, we express them in the formalism
outlined in [55]. Since the graviton polarization tensors are symmetric, transverse, and
traceless, it is convenient to express them using auxiliary polarization vectors, zµa , which
are null, z2

a = 0, and transverse, pa ·za = 0. We can then make the identification εµνa = zµa z
ν
a .

Even-parity cubic spin-2 amplitudes can then be built out of a set of 6 building blocks
{(z1 ·z2), (z2 ·z3), (z1 ·z3), (p2 ·z1), (p3 ·z2), (p1 ·z3)} and odd-parity amplitudes can be con-
structed by including the additional building blocks {ε(p1p2z1z2), ε(p1p2z1z3), ε(p1p2z2z3)},
where contractions with an antisymmetric Levi-Civita tensor are denoted ε(v1v2v3v4) ≡
εµναβv

µ
1 v

ν
2v

α
3 v

β
4 . Other structures such as (p3 · z1) or ε(p1z1z2z3) can be related to these

through Schouten identities and momentum conservation. Amplitudes in this notation can
be translated into massive spinor variables by making the replacement

zµi →
1

2
√

2m
〈i|σµ|i], (3.4)

It will also be useful to translate the above building blocks directly into spinor brace
notation. The explicit expressions are given in appendix B.

Using the spinor braces, we can construct a basis of linearly independent cubic massive
graviton amplitudes. Resolving the redundancy (3.2) and imposing total Bose symmetry,
we find that there are 6 independent interactions. This result is well-known [55], and can
be straightforwardly shown to be a reorganization of the following cubic amplitudes

B1 = m2

MP
(z1 · z2)(z1 · z3)(z2 · z3) ,

B2 = 1
MP

[(z2 · z3)(p2 · z1) + (z1 · z3)(p3 · z2) + (z1 · z2)(p1 · z3)]2 ,

B3 = 1
MP

[
(z2 · z3)2(p2 · z1)2 + (z1 · z3)2(p3 · z2)2 + (z1 · z2)2(p1 · z3)2

]
,

B4 = 1
m4MP

(p2 · z1)2(p3 · z2)2(p1 · z3)2 ,

B5 = 1
MP

[(z1 · z3)(z2 · z3)ε(p1p2z1z2)− (z1 · z2)(z2 · z3)ε(p1p2z1z3)

+(z1 · z2)(z1 · z3)ε(p1p2z2z3)] ,

B6 = 1
m4MP

(p2 · z1)(p3 · z2)(p1 · z3) [(p1 · z3)ε(p1p2z1z2)− (p3 · z2)ε(p1p2z1z3)

+(p2 · z1)ε(p1p2z2z3)] , (3.5)
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where B1,2,3,4 are parity-even and B5,6 are parity-odd. A particular combination of these
interactions give the massive spin-2 interactions in superstring theory and bosonic string
theory [72].

The advantage of the basis (3.5) over the spinor brace expressions is that they can be
more simply related to a basis of local operators:

L1 = m2

3MP
hµ

νhν
λhλ

µ → 2B1 ,

L2 = M2
P

2
√
−gR|(3) → − 6B1 + 2B2 ,

L3 = 1
MP

εµνλρεαβγδ∂µ∂αhνβhλγhρδ → 12B1 − 2B2 − 2B3 ,

L4 = M2
P

m4
√
−gRµναβRαβλρRλρµν |(3) → 24B1 − 12B3 + 48B4 ,

L5 = 1
MP

εµνλρ∂µhνα∂λhρβh
αβ → 2B5 ,

L6 = M2
P

m4
√
−gR̃µν αβRαβλρRλρµν |(3) → − 8B5 − 32B6 , (3.6)

where the amplitudes are computed by expanding around a flat background metric, gµν =
ηµν + 2

MP
hµν and |(3) denotes taking the O

(
h3) part of the operator.

3.2 Cubic superamplitudes

In this section, we bring together everything we have discussed so far to build cubic super-
amplitudes of graviton supermultiplets and to subsequently determine which linear combi-
nations of the operators (3.6) are consistent with varying amounts of supersymmetry.

We begin by noting that as per the discussion in section 2.4, at cubic order the non-
universal part of the superamplitude is a function of a single, Q-invariant Grassmann
variable that we choose to be

ηI12,a = ηI1,a −
1
m

[1I2J ]ηJ2,a. (3.7)

Our goal is to construct the most general superamplitude that contributes to the cubic
massive graviton component amplitude. Without loss of generality we can restrict our
analysis to the SU(N )R×U(1)R singlet sector. As discussed at the end of section 2.2, this
does not mean we are assuming that the interactions of the model preserve R-symmetry,
rather we use the fact that at cubic order the supersymmetry constraints do not mix
amplitudes in different R-sectors.7 From the quantum numbers of the Clifford vacuum
states in table 1, we find that the massive graviton superfields carry N units of U(1)R
charge. Since the supersymmetric delta function (2.20) carries 2N units of U(1)R charge,
the R-singlet sector contribution to the function G({η}) appearing in (2.18) for cubic
superamplitudes must be a polynomial of degreeN in η12. Furthermore the Clifford vacuum

7At multiplicity n > 3 this is no longer true. Even if an operator contributes local on-shell matrix
elements in the R-singlet sector, such as h4, these may mix with non-local tree diagrams containing vertices
from non-singlet sectors. The special property of n = 3 is that there are no such non-local contributions.
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state is an SU(N )R singlet, and so in the contribution to G({η}) from the R-singlet sector,
the R-indices on η12,a must be contracted with an invariant tensor. This uniquely fixes the
form of the R-singlet contribution to the cubic superamplitude to have the form

A3
(
Φ{I1}Φ{I2}Φ{I3}

)∣∣∣∣
R-singlet

= δ(2N )
(
Q†
)
F {I1}{I2}{I3}

J1...JN ε
a1...aN ηJ1

12,a1 . . . η
JN
12,aN .

(3.8)
Note that this means that F is fully symmetric in J1, · · · JN . Here {Ii} collectively denotes
the external indices of the on-shell superfield Φ. Because of our choice of supersymmetry
invariant (3.7), the internal indices always correspond to particle 1. The problem of con-
structing the general form of the R-singlet sector superamplitude is reduced to constructing
a single, commuting c-number F-function. The procedure for constructing this function is
as follows:

1. Write down the most general expression for F using spinor-braces (3.1). External
indices {Ii} are supressed (bolded), while internal indices J1, . . . , JN are explicit.

2. Resolve the redundancy associated with the identities (3.2). The result is the most
general F -function for distinguishable superfields.

3. Impose super-statistics constraints to enforce Bose/Fermi symmetry for indistinguish-
able superfields.

What we call super-statistics constraints are the requirement that the superamplitude is
totally symmetric for a bosonic Clifford vacuum (N = 2 and 4) and totally anti-symmetric
for a fermionic Clifford vacuum (N = 1 and 3). This condition is equivalent to requiring
Bose/Fermi symmetry for each component amplitude containing pairs of identical states.
Explicitly for the F -functions, the super-statistics constraints for 1↔ 2 exchange are

F
{I1}{I2}{I3}L1
N=1 = − (FN=1|1↔2){I2}{I1}{I3}L2 1

m
[2L21L1 ] ,

F
{I1}{I2}{I3}K1L1
N=2 = (FN=2|1↔2){I2}{I1}{I3}K2L2 1

m2 [2K21K1 ][2L21L1 ] ,

F I1I2I3J1K1L1
N=3 = − (FN=3|1↔2)I2I1I3J2K2L2 1

m3 [2J21J1 ][2K21K1 ][2L21L1 ] ,

F I1J1K1L1
N=4 = (FN=4|1↔2)I2J2K2L2 1

m4 [2I21I1 ][2J21J1 ][2K21K1 ][2L21L1 ] . (3.9)

Similarly, the super-statistics constraints for 1↔ 3 exchange

F
{I1}{I2}{I3}L1
N=1 = (FN=1|1↔3){I3}{I2}{I1}L3 1

m
〈3L31L1〉 ,

F
{I1}{I2}{I3}K1L1
N=2 = (FN=2|1↔3){I3}{I2}{I1}K3L3 1

m2 〈3K31K1〉〈3L31L1〉 ,

F I1I2I3J1K1L1
N=3 = (FN=3|1↔3)I3I2I1J3K3L3 1

m3 〈3J31J1〉〈3K31K1〉〈3L31L1〉 ,

F I1J1K1L1
N=4 = (FN=4|1↔3)I3J3K3L3 1

m4 〈3I31I1〉〈3J31J1〉〈3K31K1〉〈3L31L1〉 . (3.10)
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N = 1 N = 2 N = 3 N = 4
Parameters in ansatz 24 19 8 1

Parameters after super-statistics 4 5 2 1
Parameters in A3(h, h, h) 4 4 2 1

Supersymmetrizable amplitudes B1,B2,B3,B5 B1,B2,B3,B5 B1,B2 B2

Supersymmetrizable operators L1,L2,L3,L5 L1,L2,L3,L5 L1,L2 3L1 + L2

Table 2. Summary of supersymmetry constraints on cubic massive spin-2 interactions. The explicit
form of the amplitudes Bi are given in (3.5), and the correspondence with local operators Li in (3.6).
In general, arbitrary linear combinations of the listed amplitudes (operators) are consistent with
supersymmetry, except for N = 4 where only a specific linear combination of operators L1 and L2
is supersymmetrizable.

By composing these pairs of conditions, the resulting superamplitude is automatically
(anti-)symmetric under 2↔ 3.

After constructing the most general F -function, we can project out the physical com-
ponent amplitudes. We are specifically interested in the constraints on the cubic massive
graviton amplitudes which take the general form

A3 (h, h, h) = b1B1 + b2B2 + b3B3 + b4B4 + b5B5 + b6B6 , (3.11)

where Bi are defined in (3.5). To extract this from the superamplitude we use the massive
graviton projectors

hIJKLN=1 ∝
∂

∂η(I
ΨJKL)

∣∣∣∣
η=0

hIJKLN=2 ∝ εab
∂2

∂η(I,a∂ηJ,b
ΓKL)

∣∣∣∣
η=0

hIJKLN=3 ∝ εabc
∂3

∂η(I,a∂ηJ,b∂ηK,c
ΛL)

∣∣∣∣
η=0

hIJKLN=4 ∝ εabcd
∂4

∂η(I,a∂ηJ,b∂ηK,c∂ηL),d
Φ
∣∣∣∣
η=0

, (3.12)

where the proportionality factors are not important for this calculation. Finally, by match-
ing the projection to the general form (3.11) and using (3.6) we derive the constraints of
supersymmetry on cubic massive graviton interactions. The results of this calculation are
summarized in table 2. Below we give the explicit form of the F -function in each case and
comment on the physical implications of the results.
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N = 1 massive gravity:

FLN=1

= β1

(
{33}({1L3} − 2{31L}){12}3 + 3{13}2{23}{1L2}{12}+ {11}({12}((3{31L}

− {1L3}){23}2 − 2({21L}{33}+ {32}{31L}){23}+ {22}{33}(2{31L} − {1L3}))

+ {13}{23}({23}(2{21L} − {1L2})− {22}({31L}+ {1L3})))
)

+ β2

(
{33}(2{31L} − {1L3}){12}3 + 3{13}{23}({1L3} − 2{31L}){12}2

+ (3{23}{21L}{13}2 + {11}((6{31L} − 5{1L3}){23}2 − ({21L}{33}
+ {32}{31L}){23}+ {22}{33}({1L3} − 2{31L}))){12}

+ {11}{13}{23}({23}({1L2} − 2{21L}) + {22}({31L}+ {1L3}))
)

+ β3

((
{13}(−{21L}{33}+ 2{32}{31L} − 2{23}({31L} − {1L3})) + {33}{21}{31L}

− {12}{1L3}
)
{12}2 + {11}{23}

(
− {11L}{22}{33}+ {12}({21L}{33}

− 2{32}{31L}+ 2{23}({31L} − {1L3})) + {13}{22}{1L3}
))

+ β4

(
{11}{22}(−2{11L}{23}{33}+ {21}{31L}+ {12}({31L} − {1L3})){33}

+ {13}({32}{31L}+ {23}({1L3} − {31L})))
)
. (3.13)

Projecting onto the cubic graviton amplitude and matching to (3.11),

b1 = −192m14MP (β1 + 2β2 − β3 − 2β4) ,
b2 = −64m14MP (β1 + 2β2 + 2β3 + 2β4) ,
b3 = 64m14MP (β1 + 2β2 − 2β4) ,
b5 = 96 im14MPβ1 ,

b4 = b6 = 0 . (3.14)

Translating this into a statement about the local operator basis (3.6):

For N = 1 supersymmetry, arbitrary linear combinations of the operators L1,
L2, L3 and L5 are supersymmetrizable.

Conversely, this result shows that for any amount of supersymmetry the operators L4
and L6 must vanish. These operators correspond to the two inequivalent contractions of
(Riemann)3. An identical statement is true for massless supergravity where these operators
lead to forbidden all-plus helicity amplitudes. This suggests that the two results might be
connected in an appropriate massless limit; we confirm this intuition in section 4.2.
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N = 2 massive gravity:

FKLN=2

= β1

(
{11}({23}({21L}{31K}+ {21K}{31L} − {32}{1K1L}) + {22}(−{31K}{31L}

+ {33}{1K1L})) + {13}2{21K}(−{21L}+ {1L2}) + 1
2{12}{23}(−{11L}{31K}

+ {11K}({31L} − 2{1L3})) + {12}2{31K}{1L3}+ 1
2{12}{13}(−2{21K}{1L3}

+ {23}({1K1L}+ {1L1K}))
)

+ β2

(
{13}2{21K}({21L} − {1L2}) + 1

2{12}{23}({11L}{31K} − {11K}{31L})

− {12}2{31K}{1L3} − 1
2{12}{13}(−2{21K}{1L3}+ {23}({1K1L}+ {1L1K}))

+ {11}(−{23}({21L}{31K}+ {21K}{31L} − {32}{1K1L}) + {22}({31K}{31L}

+ {33}{1L1K})) + {12}{23}{11K}{1L3}
)

+ β3

(
− {12}2{31K}({31L} − 2{1L3}) + {11}{23}({21L}{31K}+ {23}{1K1L}

+ {21K}{1L3}) + {12}(−2{11L}{23}{31K}+ {13}{21K}{31L}
− 2{13}{23}{1K1L}+ 2{21}{33}{1K1L}+ {11K}{23}({31L} − {1L3})

− 2{13}{21K}{1L3}+ 2{13}{23}{1L1K}+ {13}{32}{1K1L})
)

+ β4

(
{11}{23}({23}{1L1K}−{21L}{31K}−{21K}{1L3})+ 1

2{12}({13}{23}{1
K1L}

+ 3{11L}{23}{31K} − 2{13}{21K}{31L} − 2{21}{33}{1K1L}
+ 4{13}{21K}{1L3} − 5{13}{23}{1L1K} − {11K}{23}({31L} − 2{1L3}))

+ {12}2({31K}({31L} − 2{1L3}) + {33}{1L1K})
)

+ β5

(1
2{12}({11L}{23}{31K}+ 2{12}{33}{1K1L} − 2{13}{32}{1K1L}

+ {13}{23}{1K1L} − {11K}{23}{31L} − 2{21}{33}{1K1L}

− {13}{23}{1L1K})
)
. (3.15)

Projecting onto the cubic graviton amplitude and matching to (3.11),

b1 = −96m12MP(β1 + 3β2 + 2β3 + β4 − β5) ,
b2 = −32m12MP(β1 − 5β2 − 5β4 − β5) ,
b3 = 32m12MP(β1 + 3β2 + 4β3 − β4 − β5) ,
b5 = 16 im12MP(β1 − β2 + 4β3 − β4 − β5) ,
b4 = b6 = 0 . (3.16)
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Translating this into a statement about the local operator basis (3.6):

For N = 2 supersymmetry, arbitrary linear combinations of the operators L1,
L2, L3 and L5 are supersymmetrizable.

The same operators consistent with N = 1 supersymmetry are also consistent with N = 2.
Note that there are 5 parameters in the F -function, but only 4 parameters in the cubic
graviton amplitude, unlike N = 1 where there are 4 in each. This is not a contradiction,
the extra parameter contributes to other component amplitudes such as A3 (h, γ, γ̃).

N = 3 massive gravity:

F JKLN=3

= β1

(
− 2{11L}{23}{1J1K}+ {13}{21L}{1J1K}+ {11K}{23}{1J1L}

− 3{13}{21K}{1J1L}+ 2{12}{31K}{1J1L}+ {13}{21J}{1K1L}
+ 2{21}{31J}{1K1L}+ 2{13}{1J2}{1K1L} − 2{12}{1J3}{1K1L}
− {11K}{23}{1L1J}+ {13}{21K}{1L1J} − {12}{31K}{1L1J}

+ {12}{31J}{1L1K}+ {11J}(3{21K}{31L} − {23}(4{1K1L}+ {1L1K}))
)

+ β2

(
− {11L}{23}{1J1K}+ (−{11J}{23}+ {21}{31J}+ {13}{1J2}){1K1L}

+ {12}({31L}{1J1K} − {1J3}{1K1L})
)
. (3.17)

Projecting onto the cubic graviton amplitude and matching to (3.11),

b1 = −192m10MPβ1 ,

b2 = 128m10MP(7β1 + 2β2) ,
b3 = b4 = b5 = b6 = 0 . (3.18)

Translating this into a statement about the local operator basis (3.6):

For N = 3 supersymmetry, arbitrary linear combinations of the operators L1
and L2 are supersymmetrizable.

Interestingly this two parameter family of interactions coincides with the ghost-free inter-
actions of the dRGT model. This result may indicate that the decoupling of the Boulware-
Deser ghost (at cubic order) is a consequence of N ≥ 3 supersymmetry.

N = 4 massive gravity:

F I1J1K1L1
N=4 = β1

(
{1I11K1}{1L11J1}+ {1J11I1}{1K11L1}

)
. (3.19)

Projecting onto the cubic graviton amplitude and matching to (3.11),

b2 = 256m8MPβ1 ,

b1 = b3 = b4 = b5 = b6 = 0 . (3.20)

Translating this into a statement about the local operator basis (3.6):
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For N = 4 (maximal) supersymmetry, only the linear combination 3L1 +L2 is
supersymmetrizable.

The remarkable simplicity of the above expression for the F -function clearly illustrates the
constraining power of maximal supersymmetry. In this case the supersymmetrizable cubic
graviton interaction is a one-parameter sub-family of the ghost-free interactions. In the
parametrization of the dRGT potential (1.1) this interaction corresponds to the value

α3 = −1
2 or c3 = 1

4 . (3.21)

This particular cubic interaction is very special, it was previously identified as the unique
choice consistent with the absence of closed-timelike-curves [54] and also the absence of
asymptotic superluminality [55]. It also corresponds to the special dRGT parameter value
found in the partially massless decoupling limit of dRGT in de Sitter, where the strong
coupling scale is raised [73].

4 High-energy limit

The kinematic structure of scattering amplitudes for massive states often simplifies in the
limit of large center-of-mass energy, E � m. In this limit the irreducible massive graviton
supermultiplets become reducible, break-up into various massless supermultiplets and we
regain some of the simplifications of working with massless helicity states.

By a generalization of the Goldstone boson equivalence theorem [74–76], we expect the
high-energy behavior to be described by a massless effective field theory which non-linearly
realizes an (extended) shift symmetry for the longitudinal modes. As is well-known [77],
in non-supersymmetric dRGT massive gravity this high-energy or decoupling limit theory
describes the interactions of a massless spin-2 tensor mode hµν , a spin-1 vector mode Aµ
and a massless spin-0 scalar mode φ. The scalar mode is often referred to as the Galileon
since the decoupling limit theory provides a non-linear realization of the Galileon algebra
Gal(4, 1), an İnönü-Wigner contraction of the (4+1)d Poincaré algebra [78]. Explicitly this
symmetry acts on the Galileon as

φ→ φ+ a+ bµx
µ. (4.1)

An alternative perspective on the decoupling limit is given by introducing Stückelberg fields
in the effective action [79, 80]

hµν → hµν + 1
m

(∂µAν + ∂µAν) + 1
m2 (2∂µ∂νφ− ∂µAα∂νAα)

− 1
m3 (∂µAα∂ν∂αφ+ ∂µ∂

αφ∂νAα)− 1
m4∂µ∂

αφ∂ν∂αφ+ . . . (4.2)

where hµν , Aµ and φ on the right-hand side are precisely the tensor, vector and scalar
modes introduced above. In the dRGT model (1.1), the decoupling limit is defined as a
double-scaling limit

m→ 0, MP →∞, with Λ3 ≡
(
m2MP

)1/3
fixed. (4.3)
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It is often simpler to analyze the decoupling limit theory than the full massive model. For
instance, the decoupling of the Boulware-Deser ghost was first proven in this limit [77]
and only later extended to full massive gravity [81]. We expect similar logic to apply to
the problem of analyzing the constraints of supersymmetry. If the high-energy limit of
an interaction term is inconsistent with N -extended supersymmetry, then this operator
cannot be consistent with N -supersymmetry at any scale.8

The precise form of the constraints of supersymmetry on the high-energy interactions
depends on which supermultiplets the massless states belong to. Since the resulting mass-
less limits of the massive graviton supermultiplets contain many helicity 0 and helicity
1 states across massless multiplets of varying superspin, identifying which of these are
the vector and Galileon modes is a non-trivial problem. As we explain in the following
subsection, in some cases this can be determined by careful bookkeeping of R-symmetry
representations and CPT in the massless limit.

4.1 Massless limit of massive supermultiplets

In the high-energy limit, massive supermultiplets effectively break-up into massless multi-
plets, usually with superspin degeneracies. As a consequence, the high-energy limit may
admit additional global symmetries not present at low-energies. All statements about the
high-energy limit in this section should be understood as approximate statements, valid at
leading order in a 1/m expansion. The presence of global symmetries makes the definition
of R-symmetry in the massless limit ambiguous since we are always free to form arbitrary
linear combinations of R- and global symmetry generators. These emergent global symme-
tries and their relation to the low-energy or massive R-symmetry are a useful organizing
principle for understanding the dynamics of the high-energy limit.

Our main application of these global symmetries will be to identify the massless su-
permultiplets containing the Galileon and vector modes of the original massive graviton.
To do this we make use of the fact that these modes have the same quantum numbers
as the graviton, i.e. they are in the 10 representation of the massive R-symmetry group
SU(N )R × U(1)R and are CPT even. In some cases we will see that this is enough to
uniquely identify the states.

The general approach we take is to begin with the action of the naive massless R-
symmetry group SU(N )m=0

R ×U(1)m=0
R appropriate for an isolated massless supermultiplet

(and its CPT conjugate). The U(1)m=0
R charge is chosen to be 0 for the highest helicity

state of a positive helicity multiplet, −1 for the next-to-highest and so on. The quantum
numbers of the negative helicity multiplets are fixed by CPT. For CPT self-conjugate
multiplets, such as the N = 4 vector multiplet, the U(1)m=0

R charge of the highest helicity
state is chosen to be N/2 and for the lowest helicity state −N/2. Our goal is to identify a

8This argument is purely based on a simplification due to special kinematics. It does not require
that the decoupling limit model is a consistent limit of an underlying UV completion. Indeed there are
various arguments indicating that new states and interactions must appear before the strictly massless
high-energy limit is reached [82]. The converse of this argument is also obviously invalid, consistency with
supersymmetry in the high-energy limit is not sufficient to guarantee supersymmetry at low-energies where
the masses are important.
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h± v± φ

N = 1 graviton vector + gravitino chiral
N = 2 graviton vector + gravitino hyper + vector’
N = 3 graviton vector + gravitino vector’
N = 4 graviton gravitino vector

Table 3. Massless supermultiplets containing the tensor h, vector v and scalar (Galileon) φ modes
of the massive graviton in the high-energy limit. In some cases + is used to denote a possible
admixture, when representation theory is insufficient to identify a unique multiplet. The notation
vector/vector’ is used to distinguish distinct massless vector multiplets.

global symmetry SU(N )global × U(1)global such that the massive R-symmetry group is the
diagonal subgroup

SU(N )m=0
R ×U(1)m=0

R × SU(N )global ×U(1)global
diagonal−−−−−→ SU(N )R ×U(1)R. (4.4)

There is an immediately obvious reason why such a mechanism is required, that is, why
the naive R-symmetry group SU(N )m=0

R × U(1)m=0
R cannot be preserved when the mass

is turned on. In general, the naive massless R-symmetry group defined above is chiral,
meaning there are positive helicity states which transform in a complex representation,
with the CPT conjugate negative helicity states transforming in the complex conjugate
representation. Such symmetries are only consistent for strictly massless states for which
helicity is a Lorentz-invariant quantum number. When the mass is turned on however, only
non-chiral or vector-like symmetries can be preserved. In such cases we require a non-trivial
SU(N )global × U(1)global which also acts as a chiral symmetry, with the preserved massive
R-symmetry given by the vector-like diagonal subgroup (4.4).

There are finitely many possible ways SU(N )global can act on the degenerate multiplets
(together with a general parametrization of the U(1)global charge assignments), and so by
considering each possibility in turn we can discover the correct representation corresponding
to the known, massive SU(N )R × U(1)R representations described in table 1. The results
of this section are summarized in table 3. These results are consistent with those presented
in [83].

– 26 –



J
H
E
P
1
0
(
2
0
2
2
)
1
3
0

N = 1 massive graviton: in this case there is only a question of the U(1)global charge
assignments, we will denote these below the corresponding massless multiplet.

(N = 1 massive graviton)
m=0−−−→ (N = 1 massless graviton)+︸ ︷︷ ︸

0

⊕ (N = 1 massless graviton)−︸ ︷︷ ︸
0

⊕ (N = 1 massless gravitino)+︸ ︷︷ ︸
1

⊕ (N = 1 massless gravitino)−︸ ︷︷ ︸
−1

⊕ (N = 1 massless vector)+︸ ︷︷ ︸
0

⊕ (N = 1 massless vector)−︸ ︷︷ ︸
0

⊕ (N = 1 massless chiral)+︸ ︷︷ ︸
1

⊕ (N = 1 massless chiral)−︸ ︷︷ ︸
−1

. (4.5)

Here the subscript ± denotes the positive or negative helicity massless multiplet. For
example, the + helicity N = 1 massless chiral multiplet consists of a single +1/2-helicity
state and a single 0-helicity state with U(1)m=0

R charges 0 and −1 respectively.
In total, this model contains 2 helicity-0 states. Given that the original massive

multiplet contained a single massive spin-2 particle and a single massive spin-1 particle,
these must correspond to the scalar longitudinal modes of each. Now we enumerate the
U(1)m=0

R ×U(1)global representations of the helicity-0 states, one from each of the positive
and negative helicity chiral multiplets, together with the induced representation of the
diagonal subgroup

(−1, 1)⊕ (1,−1)→ (0)⊕ (0). (4.6)

As expected both of these states are U(1)R singlets. To identify the Galileon mode we use
the additional fact that the Galileon is a CPT even state. Since CPT acts by interchang-
ing the positive and negative chiral multiplets, we can always form CPT even and odd
combinations. In this case, the even combination must be the Galileon.

We can try to apply similar logic to the helicity-1 modes, the corresponding induced
representations are

(−1, 1)⊕ (0, 0)→ (0)⊕ (0), (4.7)

where the first state on the left-hand-side corresponds to the + helicity gravitino multiplet
and the second to the + helicity vector multiplet. Here CPT does not give any additional
constraints and symmetry alone is not sufficient to identify the vector mode of the N = 1
massive graviton.

In the decoupling limit of the N = 1 massive graviton, the Galileon mode
is uniquely identified with a CPT even linear combination of massless chiral
multiplets.
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N = 2 massive graviton: the SU(2)global × U(1)global representations in the massless
limit are found to be

(N = 2 massive graviton)
m=0−−−→ (N = 2 massless graviton)+︸ ︷︷ ︸

10

⊕ (N = 2 massless graviton)−︸ ︷︷ ︸
10

⊕ 2× (N = 2 massless gravitino)+︸ ︷︷ ︸
21

⊕ 2× (N = 2 massless graviton)−︸ ︷︷ ︸
2−1

⊕ 2× (N = 2 massless vector)+︸ ︷︷ ︸
12⊕10

⊕ 2× (N = 2 massless vector)−︸ ︷︷ ︸
1−2⊕10

⊕ 2× (N = 2 massless hyper)︸ ︷︷ ︸
20

. (4.8)

The induced diagonal representations of the helicity-0 modes are:

(1−2,12)⊕ (1−2,10)⊕ (12,1−2)⊕ (12,10)⊕ (20,20)
→ 10 ⊕ 1−2 ⊕ 10 ⊕ 12 ⊕ 10 ⊕ 30, (4.9)

where the states on the left-hand-side are labelled by their quantum numbers under the
group SU(2)m=0

R ×U(1)m=0
R × SU(2)global ×U(1)global. Here we find 3 different states with

the quantum numbers 10 of the massive graviton. One of these arises from the pair of hyper
multiplets and two more from the 12 ∈ SU(2)global×U(1)global part of the vector multiplets.
In the hyper multiplet case the state is CPT even and in the vector multiplet case we can
form a CPT even linear combination as we did for N = 1. So we have exhausted the
analysis of symmetries and failed to uniquely identify the Galileon mode of the N = 2
massive graviton; in general it could be a linear admixture of states in vector and hyper
multiplets.9

The induced diagonal representations of the helicity-1 modes are:

(1−2,10)⊕ (2−1,21)⊕ (10,12)⊕ (10,10)→ 1−2 ⊕ 10 ⊕ 30 ⊕ 12 ⊕ 10. (4.10)

We can construct CPT even combinations of states from both gravitino and vector multi-
plets and so cannot uniquely identify the vector mode of the N = 2 massive graviton.

In the decoupling limit of the N = 2 massive graviton, neither the Galileon nor
vector multiplets can be uniquely identified without further dynamical input.

9It is possible that this is a feature and not a bug. An N = 2 massive graviton could arise from a
“Higgsing” of diffeomorphism invariance in different ways in different UV models, analogous to the way
massive vector bosons can arise from the Coulomb branch or the Higgs branch of the moduli space of vacua
in N = 2 gauge theories. We may require an explicit UV completion to disambiguate which multiplet the
Galileon belongs to.
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N = 3 massive graviton: the SU(3)global × U(1)global representations in the massless
limit are found to be

(N = 3 massive graviton)
m=0−−−→ (N = 3 massless graviton)+︸ ︷︷ ︸

10

⊕ (N = 3 massless graviton)−︸ ︷︷ ︸
10

⊕ 3× (N = 3 massless gravitino)+︸ ︷︷ ︸
31

⊕ 3× (N = 3 massless gravitino)−︸ ︷︷ ︸
3−1

⊕ 4× (N = 3 massless vector)+︸ ︷︷ ︸
10⊕32

⊕ 4× (N = 3 massless vector)−︸ ︷︷ ︸
10⊕3−2

. (4.11)

The induced diagonal representations of the helicity-0 modes are:

(1−3,31)⊕ (13,3−1)⊕ (3−2,10)⊕ (3−2,32)⊕ (32,10)⊕ (32,3−2)
→ 10 ⊕ 10 ⊕ 32 ⊕ 32 ⊕ 3−2 ⊕ 3−2 ⊕ 80 ⊕ 80 , (4.12)

where the states on the left-hand-side are labelled by their quantum numbers under the
group SU(3)m=0

R ×U(1)m=0
R ×SU(3)global×U(1)global. There are two helicity-0 states with the

quantum numbers of the massive graviton 10, which arise from the positive and negative
helicity vector multiplets. These multiplets are exchanged by CPT, so we can uniquely
identify the Galileon mode as the CPT even linear combination.

The induced diagonal representations of the helicity-1 modes are:

(3−2,10)⊕ (3−1,31)⊕ (10,10)⊕ (10,32)→ 10 ⊕ 10 ⊕ 32 ⊕ 3−2 ⊕ 80. (4.13)

In this case, again, there are multiple states with helicity-1 and the quantum numbers
of the massive graviton 10, so we are unable to uniquely identify the vector mode of the
N = 3 massive graviton.

In the decoupling limit of the N = 3 massive graviton, the Galileon mode is
uniquely identified with a CPT even linear combination of states in massless
vector multiplets.

N = 4 massive graviton: The SU(4)global × U(1)global representations in the massless
limit are found to be

(N = 4 massive graviton)
m=0−−−→ (N = 4 massless graviton)+︸ ︷︷ ︸

10

⊕ (N = 4 massless graviton)−︸ ︷︷ ︸
10

⊕ 4× (N = 4 massless gravitino)+︸ ︷︷ ︸
41

⊕ 4× (N = 4 massless gravitino)−︸ ︷︷ ︸
4−1

⊕ 6× (N = 4 massless vector)︸ ︷︷ ︸
60

. (4.14)
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The induced diagonal representations of the helicity-0 modes are:

(1−4,10)⊕ (14,10)⊕ (4−3,41)⊕ (43,4−1)⊕ (60,60)
→ 1−4 ⊕ 14 ⊕ 10 ⊕ 6−2 ⊕ 62 ⊕ 102 ⊕ 10−2 ⊕ 150 ⊕ 20′0. (4.15)

There is a unique helicity-0 state with the quantum numbers of the massive graviton 10
which arises from the CPT self-conjugate vector multiplet, which therefore must be the
Galileon mode. More specifically, we denote the scalar fields in the vector multiplet as
φij,ab where i, j = 1, . . . , 4 correspond to the anti-symmetric 6 representation of SU(4)global
and a, b = 1, . . . , 4 correspond to the anti-symmetric 6 representation of SU(4)m=0

R . The
Galileon is uniquely identified as the singlet part of the diagonal representation.

The induced diagonal representations of the helicity-1 modes are:

(6−2,10)⊕ (4−1,41)⊕ (12,60)→ 10 ⊕ 6−2 ⊕ 62 ⊕ 150. (4.16)

Here there is a unique helicity-1 mode with the quantum numbers of the massive graviton
10 which arises from the positive helicity gravitino multiplet.

In the decoupling limit of the N = 4 massive graviton, the Galileon mode is
uniquely identified with a linear combination of massless vector multiplets given
by the operator

φ(N=4 Galileon) ∝ εijabφij,ab. (4.17)

The vector mode is uniquely identified with a linear combination states in mass-
less gravitino multiplets.

4.2 Cubic interactions in the massless limit

In this section, we will study the constraints of massless supersymmetry on the cubic
interactions of the tensor, vector and scalar (Galileon) modes of the massive graviton in
the massless limit. We use this to rule out possible supersymmetrizations of the massive
graviton cubic interactions presented in section 3.1. Details of the procedure for taking the
high-energy limit with massive spinors are reviewed in appendix A.

We now take the massless limit of all the massive spin-2 cubic self-interactions pre-
sented in section 3.1. These interactions only contribute non-trivially to certain massless
amplitudes. We find the high energy limit for our various amplitudes to be (plus permu-
tations of the particle labels):

B1
HE−−→

 (h−v−φ) : − 1
MPm

〈12〉3〈13〉
〈23〉

(h+v+φ) : − 1
MPm

[12]3[13]
[23]

(4.18)
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B2
HE−−→



(h−h−h+) : 1
MP

〈12〉6
〈13〉2〈23〉2

(h−v−v+) : − 2
MP

〈12〉4
〈23〉2

(h−φφ) : 3
MP

〈12〉2〈13〉2
〈23〉2

(h+φφ) : 3
MP

[12]2[13]2
[23]2

(h+v+v−) : − 2
MP

[12]4
[23]2

(h+h+h−) : 1
MP

[12]6
[13]2[23]2

(4.19)

B3
HE−−→



(h−h−φ) : 2
MPm2 〈12〉4

(h−v−v−) : − 2
MPm2 〈12〉2〈13〉2

(h+v+v+) : − 2
MPm2 [12]2[13]2

(h+h+φ) : 2
MPm2 [12]4

(4.20)

B4
HE−−→

 (h−h−h−) : 1
MPm4 〈12〉2〈13〉2〈23〉2

(h+h+h+) : 1
MPm4 [12]2[13]2[23]2

(4.21)

B5
HE−−→



(h−h−φ) : − 1
MPm2 〈12〉4

(h−v−v−) : 1
MPm2 〈12〉2〈13〉2

(h+v+v+) : − 1
MPm2 [12]2[13]2

(h+h+φ) : 1
MPm2 [12]4

(4.22)

B6
HE−−→

 (h−h−h−) : 3
MPm4 〈12〉2〈13〉2〈23〉2

(h+h+h+) : − 3
MPm4 [12]2[13]2[23]2

(4.23)

where h±, v± and φ are the tensor, vector and scalar (Galileon) components respectively
of the massive graviton. The high-energy limit of B2, in particular the non-universality
of the coupling, agrees with the results of [42]. For a detailed discussion of the physical
interpretation of this result see [57].

Amplitudes in the massless limit must preserve at least the same number of super-
charges as are preserved in the full massive amplitude. For example, for B1 to be N = 1
supersymmetrizable, A3 (h−v−φ) must be too. Conversely, if A3 (h−v−φ) isn’t N = 1
supersymmetrizable, then B1 cannot be supersymmetrized. We can use this to rule out
massive interactions via the supersymmetry incompatibility of their massless limits. To
do this, we use the results of table 3 to identify which massless multiplets the scalar φ,
vector v± and tensor h± components of the massive graviton belong to. We find that which
graviton interactions Bi are not N -supersymemtrizable can be demonstrated already in the
massless limit. Additionally, the ones that cannot be ruled out are exactly the supersym-
metric interactions listed in table 2.
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Note that by studying interactions in the massless limit, we cannot determine their
compatibility with massive supersymmetry, only their incompatibility. While the analysis
of section 3.1 is therefore strictly stronger, analyzing the high-energy limit is both a useful
sanity check and reveals novel relations between supersymmetrizable interactions and the
massless multiplets containing the vector and Galileon modes. Below, we go through
the massless interactions one-by-one and understand their incompatibility with different
amounts of supersymmetry.

Interaction B1: in the following, we demonstrate the incompatibility of a A3 (h−v−φ)
amplitude (which is generated in the massless limit of B1) with N = 4 supersymmetry.

We assume that the tensor, vector and scalar modes lie in the N = 4 graviton, gravitino
and vector multiplets respectively, as indicated in table 3. This means that the states carry
R-symmetry indices and there are actually two distinct classes of such interactions,

A3
(
h−, v−abc, φab

)
A3
(
h−, v−abc, φad

)
. (4.24)

These must vanish due to the following SWI,

Qb ·A3
(
h−, v−abc, ψ

+
a

)
= |3]A3

(
h−, v−abc, φab

)
= 0 , (4.25)

Qa ·A3
(
h−, v−abc, ψ

+
d

)
= |3]A3

(
h−, v−abc, φad

)
= 0 . (4.26)

Note that this argument is evaded in the case of N = 3 only when the vector mode of
the massive graviton has contributions from the gravitino multiplet in the massless limit.
This is because in the gravitino multiplet, a similar Ward identity reads

Qc ·A3
(
h−, v−ab, ψ

+
)

= |2]A3
(
h−, λ−abc, ψ

+
)

+ |3]A3
(
h−, v−ab, φc

)
= 0 . (4.27)

Since these amplitudes are supported on the branch of massless 3-particle kinematics with
|1] ∝ |2] ∝ |3], this equation can have a non-trivial solution. This places no constraints
on the amplitude A3

(
h−, v−ab, φc

)
. So the vector mode of a N = 3 massive graviton which

interacts via vertex B1 cannot be solely in a N = 3 vector multiplet in the massless limit.
Conversely, if the vector mode of an N = 3 massive graviton is a component of massless
vector multiplets only, the interaction B1 must vanish.

Interaction B2: since the massless limit of B2 is compatible with N = 1, 2, 3, 4, we
cannot rule out the possibility of B2 being maximally supersymmetrizable. Indeed as we
found in section 3.1, it is compatible with N = 1, 2, 3, 4.

Interaction B3: in the massless limit, B3 contributes to A3 (h−h−φ) which is incompat-
ible with N = 3, 4 as we show below.

Let us start with N = 4. Here the scalar and tensor modes lie in vector and graviton
multiplets respectively. As a result they must satisfy the following Ward identity,

Qb ·A3
(
h−, h−, ψ+

a

)
= |3]A3

(
h−, h−, φab

)
= 0 . (4.28)

Since this is true for all a and b, B3 is incompatible with N = 4.
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In an N = 3 massive graviton theory, the scalar and tensor modes in the massless
limit, once again belong to the vector and graviton multiplets respectively. There are two
types of scalars in an N = 3 vector multiplet and so two types of amplitudes we need to
consider,

A3
(
h−, h−, φa

)
A3
(
h−, h−, φab

)
. (4.29)

Both of these must vanish due to the following Ward identities,

Qb ·A3
(
h−, h−, ψ+

)
= |3]A3

(
h−, h−, φb

)
= 0 , (4.30)

Qb ·A3
(
h−, h−, ψ+

a

)
= |3]A3

(
h−, h−, φab

)
= 0 . (4.31)

In the case of N = 2, the scalar mode either lies in a hyper multiplet or a vector
multiplet. In the former case,

Qb ·A3
(
h−, h−, ψ+

)
= |3]A3

(
h−, h−, φb

)
= 0 , (4.32)

and the argument goes through. So the Galileon of an N = 2 massive graviton which
interacts via vertex B3 cannot be solely in an N = 2 hyper multiplet in the massless limit.
Again conversely, if the Galileon mode of an N = 2 massive graviton is a component of
massless hyper multiplets only, the interaction B3 must vanish.

Interaction B4: the massless limit of the interaction B4 leads to a non-zero amplitude
A3 (h±, h±, h±). Such amplitudes must vanish in any supersymmetric theory where h± lie
in the graviton multiplet. This is due to the SWI,

Q ·A3
(
h−, h−, ψ−

)
= |3]A3

(
h−, h−, h−

)
= 0 .

Therefore B4 is incompatible with N = 1, 2, 3, 4.

Interaction B5: similar to B3, B5 also gives rise to A3 (h±, h±, φ) amplitudes that are
incompatible with N = 3 and N = 4 supersymmetry. The argument is identical to the one
discussed for B3 above.

Interaction B6: we see that B6 is non-supersymmetrizable for the same reason that
B4 is: they both give rise to A3 (h±, h±, h±) amplitudes that are incompatible with any
amount of supersymmetry.

5 Double copy

The double copy is a well-established map between products of amplitudes in (super) Yang-
Mills theory and (super) gravity [84, 85]. Recent efforts have extended the double copy to
include amplitudes of massive particles [86–92]. For the case of a particular dRGT massive
gravity, cubic and quartic amplitudes were successfully recognized as the double copy of
amplitudes in a theory of massive Yang-Mills [93, 94]. Unfortunately, a KLT based massive
double copy map generates spurious poles beginning at quintic order [94]. It is currently
unknown if some alternate version of the massive double copy is possible that avoids these
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pathologies. Nonetheless, cubic and quartic dRGT massive gravity amplitudes are double
copies, and the possibility of simplifying extended supersymmetric dynamics by factoring
it into a product is very compelling. If an alternative, healthy, prescription for the double
copy could be found, it would provide a powerful tool for constructing the models we are
proposing at all multiplicity. In this section, we will discuss in detail how the double copy
works for supersymmetric massive gravity at cubic order.

5.1 Supersymmetric massive Yang-Mills

In this section, we will discuss the particle content and possible interactions in a super-
symmetric theory of massive Yang-Mills. Our goal is to parallel the discussion of massive
gravity in previous sections. We define a massive gluon as an (adjoint multiplet of) mas-
sive spin-1 particles transforming under a semi-simple Lie algebra G which plays the role
of color in the color-kinematics duality. Apart from this color group the massive gluon is
assumed to be a singlet under all symmetries.

To follow massless color-kinematics duality as closely as possible, we will assume that
the cubic amplitude is proportional to the (totally anti-symmetric) structure constant and
define a color-stripped amplitude10

A3 (ga, gb, gc) ≡ fabcA3[g, g, g]. (5.1)

For consistency with Bose symmetry the stripped amplitude defined in this way is totally
anti-symmetric. At cubic order this definition is unambiguous and coincides with the
usual definition of a color-ordered amplitude. The most general stripped cubic interaction
between massive gluons is

A3 [g, g, g] = c1 C1 + c2 C2 + c3 C3 , (5.2)

where we use the following basis

C1 = 1
m2 (z1 · p2) (z2 · p3) (z3 · p1) ,

C2 = (z2 · z3) (z1 · p2) + (z1 · z3) (z2 · p3) + (z1 · z2) (z3 · p1) ,

C3 = 1
m2 [(z1 · p2) ε (p1p3z2z3) + (z2 · p3) ε (p2p1z3z1) + (z3 · p1) ε (p3p2z1z2)] . (5.3)

These amplitudes correspond to the following basis of local operators

L̂1 = fabc
m2 F

aµρF bρ
ν
F cµν |(3) → C1

L̂2 = F aµνF
µν
a |(3) → C2

L̂3 = fabc
m2 εµναβF

aµρF bνρ F cαβ |(3) → C3. (5.4)

10We could also consider a generalized double copy with operators constructed from symmetric color
tensors dabc; for massless models these interactions generically produce spurious singularities beginning at
5-point [95].
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Field Spin U(1)R Dim.

λI 1
2 1 1

gIJ 1 0 1
H 0 0 1
λ̃I 1

2 -1 1

(a) N = 1 massive gluon multiplet

Field Spin U(1)R SU(2)R Dim.

φ 0 2 • 1
ψIa

1
2 1 2

gIJ 1 0 • 1
Hab 0 0 3
ψ̃Ia

1
2 -1 2

φ̃ 0 -2 • 1

(b) N = 2 massive gluon multiplet

Table 4. On-shell content of massive gluon multiplets with N ≤ 2 supersymmetry. States are
labelled with capital Latin indices I, J, . . . corresponding to SU(2)LG and lowercase Latin indices
a, b, . . . corresponding to SU(N )R. The last and second-to-last columns gives the dimension and
Young tableaux respectively of the SU(N )R representations in the conventions of [62, 63].

where F aµν = ∂[µA
a
ν] + ifabcA

b
µA

c
ν , and |(3) denotes the O

(
A3) part of the operator. In these

formulae we are ignoring irrelevant numerical coefficients. The consistency of these inter-
actions with supersymmetry can be analyzed using the same on-shell superspace methods
introduced in section 2. We want to use this to construct supersymmetric massive grav-
ity as a double copy, so to avoid spin > 2 states in the final result, we must restrict to
spin ≤ 1 in the massive gluon multiplets. Furthermore, to avoid a spin-2 degeneracy, the
massive gluon must be in a long multiplet. This restricts the number of supersymmetries
to be N ≤ 2; the corresponding multiplets are enumerated in table 4. To construct cubic
superamplitudes we impose a version of super-statistics to ensure total anti-symmetry of
the color-stripped component amplitudes. Finally, as before, since we are only interested
in the part of the superamplitude that contributes to the cubic massive gluon interaction
it is sufficient to restrict to the R-singlet sector.

N = 1 massive gluon:

ΠI = λI + ηIH + ηJg
IJ + 1

2ηJη
J λ̃I . (5.5)

The most general N = 1 massive Yang-Mills superamplitude

A3[Π,Π,Π] = δ(2)
(
Q†
)
η12,L1β1

[
−2{11L1}{23}+ {21}{31L1}+ {13}{1L12}

+{12}{31L1} − {12}{1L13}
]
. (5.6)

Projecting onto the cubic gluon amplitude and matching to (5.2) gives

c2 = −16
√

2m6β1 ,

c1 = c3 = 0 . (5.7)

Only the operator L̂2 is consistent with N = 1 supersymmetry.
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N = 2 massive gluon:

Θ = φ+ ηIaψ
Ia + 1

2ηIaη
I
bH

ab + 1
2ε

abηIaηJbg
IJ + 1

3ηIaη
a
Jη

I
b ψ̃

Jb + εabεcdηIaη
J
b ηcIηdJ φ̃. (5.8)

The most general (R-singlet) massive Yang-Mills superamplitude

A3[Θ,Θ,Θ] = δ(4)
(
Q†
)
εabη12,a,K1η12,b,L1β1

[
{1K11L1}+ {1L11K1}

]
. (5.9)

Projecting onto the cubic gluon amplitude and matching to (5.2) gives

c2 = 16
√

2m4β1 ,

c1 = c3 = 0 . (5.10)

Again, only the operator L̂2 is consistent with N = 2 supersymmetry. These amplitudes
and their massless limits were previously noted in [96].

Following the logic of section 4.2, the fact that interactions C1 and C3 are not super-
symmetrizable can be established in the high-energy limit:

C1
HE−−→

 (g−g−g−) : 1
m2 〈12〉〈13〉〈23〉

(g+g+g+) : 1
m2 [12][13][23]

(5.11)

C2
HE−−→



(g−g−g+) : 〈12〉3
〈13〉〈23〉

(g−ππ) : − 〈12〉〈13〉
〈23〉

(g+ππ) : − [12][13]
[23]

(g+g+g−) : [12]3
[13][23]

(5.12)

C3
HE−−→

 (g−g−g−) : − 3
m2 〈12〉〈13〉〈23〉

(g+g+g+) : 3
m2 [12][13][23].

(5.13)

Here we use g± and π to denote the h = ±1 and h = 0 (pion) massless components
respectively. Clearly the equal helicity amplitudes A3(g±, g±, g±) are incompatible with
any amount of supersymmetry. Thus C1 and C2 must also be incompatible.

5.2 Double copy in massive superspace

In this section, we discuss the double copy construction of graviton supermultiplets and
cubic superamplitudes. We begin with the double copy of free fields to understand the
on-shell particle content of the double copy theories. The double copy on wave functions
or one-particle states is given by simple multiplication followed by decomposition into
irreducible representations of the little group SU(2)LG. This wavefunction double copy
also naturally generalizes to on-shell superfields

P{K}{I,J}α
{I}
NA × β

{J}
NB = γ

{K}
NA+NB , (5.14)
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where α and β are superfields of theories A and B with NA and NB amounts of supersym-
metry respectively, while γ is the superfield of a theory A⊗B with N = NA +NB and P
is a projector onto the appropriate irreducible little group representation.

At the level of cubic amplitudes, the double copy takes a particularly simple form, the
color factor fabc is replaced with a kinematic factor, the color-stripped cubic amplitude of
a possibly distinct model

AA⊗B3 (1, 2, 3) = 1
MP

AA3 [1, 2, 3]×AB3 [1, 2, 3] . (5.15)

The dimensionful prefactor is included to ensure that the double copy amplitude has the
correct units. Note that at cubic order the KLT and BCJ versions of the double copy are
identical; it is difficult to imagine a generalization of the double copy that deviates from
this prescription at this order. For supersymmetric theories, the double copy is defined
analogously for superamplitudes. Including little group projectors

AA⊗B3

(
γ
{K1}
NA+NB , γ

{K2}
NA+NB , γ

{K3}
NA+NB

)
= 1
MP
P{K1}
{I1,J1}P

{K2}
{I2,J2}P

{K3}
{I3,J3}A

A
3

[
α
{I1}
NA , α

{I2}
NA , α

{I3}
NA

]
×AB3

[
β
{J1}
NB , β

{J2}
NB , β

{J3}
NB

]
. (5.16)

All the possible double copy constructions of graviton supermultiplets are given in table 5.
Below, we study these cases in detail, first by constructing the superfields in the double
copy and then the superamplitudes. We discuss which cubic massive graviton interactions
are generated in each case and comment on physical implications.

N = 0⊗N = 0: in the non-supersymmetric case, there are three fields generated by the
double copy: the graviton hIJKL, the anti-symmetric 2-form (which is dual to a massive
vector field) BIJ and the dilaton D. When discussing the supersymmetric double copy
below, we will use the double copy listed in the first row of table 5 as the definition for
hIJKL, BIJ and D. This means that we identify these states as different projections of the
massive gluon component field double copied with itself gIJ ⊗ gKL.

Using a generic cubic massive gluon amplitude (5.2) as the single copy, we can construct
the most general double copy amplitudes. Projecting onto the cubic massive graviton
amplitude gives (3.11) with coefficients

b1 = −3
4MP(c2d1 + c1d2 + 48 c3d3) ,

b2 = 1
4MP(c1d2 + c2d1 + 4 c2d2) ,

b3 = 1
4MP(c2d1 + c1d2 + 144 c3d3) ,

b4 = MP(c1d1 − 144 c3d3) ,

b5 = 3
2MP(c3d2 + c2d3) ,

b6 = −MP(c3d1 + c1d3) . (5.17)

Here ci and di are the free coefficients in the non-supersymmetric massive gluon amplitudes
of the left and right copies respectively.

– 37 –



J
H
E
P
1
0
(
2
0
2
2
)
1
3
0

Double Copy Fields Generated R-Symmetry

N = 0 + 0
g(IJ ⊗ gKL)

εKLg
(I
K ⊗ g

J)
L

gIJ ⊗ gIJ

Graviton hIJKL

Massive 2-form BIJ

Dilaton D

−−

N = 1 + 0
Π(I ⊗ gJK)

ΠJ ⊗ gIJ
Graviton superfield ΨIJK

Vector superfield V I
U(1)

N = 2 + 0 Θ⊗ gIJ Graviton superfield ΓIJ U(2)

N = 1 + 1
Π(I ⊗ΠJ)

εIJΠI ⊗ΠJ

Graviton superfield ΓIJ

Vector superfield W
U(1)×U(1)

N = 2 + 1 Θ⊗ΠI Graviton superfield ΛI U(2)×U(1)

N = 2 + 2 Θ⊗Θ Graviton superfield Φ U(2)×U(2)

Table 5. To realize supermultiplets with different numbers of supersymmetries N as double copies,
we use the double copy prescriptions listed in the table above. In both cases where a vector superfield
is generated, the N = 1 and N = 2 vector multiplets V I and W , these contain both the dilaton
and 2-form fields. Here gIJ , ΠI and Θ are the N = 0, N = 1 and N = 2 massive gluon multiplets
given in section 5.1. Note that there are two ways to realize an N = 2 graviton supermultiplet as
a double copy.

The double copy of massive Yang-Mills i.e. c1 = c3 = 0, has been studied in detail [86,
93]. In this case, the double copy produces an emergent Z2 symmetry that acts on the
2-form as B → −B. From the coefficient assignments above, we find that only the operator
3L2 + L1, corresponding to α3 = −1/2, is generated in this case.

N = 1⊗N = 0: the simplest non-trivial supersymmetric double copy is the construc-
tion of an N = 1 graviton superfield as given in table 5. By using the full expression for the
gluon and graviton superfields, we see how the product of superfields has non-zero projec-
tions onto two distinct irreducible representations: a graviton multiplet ΨIJK and a vector
multiplet V I . The first double copy reduces to the following in terms of the component
fields,

ΨIJK = g(IJ ⊗ΠK) ,

ψIJK + 1
2
√

3
η(IγJK) + ηLh

IJKL + 1
2η

2ψ̃IJK = g(IJ⊗
[
λK) + ηLg

K)L + ηK)H + 1
2η

2λ̃K)
]
.

(5.18)

This further allows us to identify the B-field and dilaton as belonging to the massive vector
superfield generated by the double copy,

V I = gIJ ⊗ΠJ , (5.19)

λI + ηLB
IL + ηID + 1

2η
2λ̃I = gIJ ⊗

(
λJ + ηLg

L
J + ηJH + 1

2η
2λ̃J

)
. (5.20)
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Double copying the N = 1 cubic super amplitude with the N = 0 cubic gluon amplitudes
give an N = 1 graviton amplitude,

AN=1
3

(
ΨI1J1K1 ,ΨI2J2K2 ,ΨI3J3K3

)
= 1
MP
AN=0

3

[
g(I1J1 , g(I2J2 , g(I3J3

]
×AN=1

3

[
ΠK1),ΠK2),ΠK3)

]
. (5.21)

Using the explicit expressions (5.2) and (5.6), gives

A3 (Ψ,Ψ,Ψ)

= δ(2)
(
Q†
)
η12,L1β1

[
−2{11L1}{23}+ {21}{31L1}+ {13}{1L12}

+{12}({31L1} − {1L13})
]
× (c1 C1 + c2 C2 + c3 C3) . (5.22)

Projecting onto the cubic graviton amplitude and matching with the general expression (3.11)
gives

b1 = 12
√

2m6MP c1β1 ,

b2 = −4
√

2m6MP β1(c1 + 4 c2) ,
b3 = −4

√
2m6MP c1 β1 ,

b5 = −24
√

2m6MP c3 β1 ,

b4 = b6 = 0 . (5.23)

Matching this to the basis of local operators (3.6) we find that there are 3 independent
N = 1 supersymmetrizable interactions L1, L2 and L5. Here we see the constraining power
of the double copy, from the general 4 parameter family of N = 1 supersymmetrizable
interactions we are reduced to a 3 parameter family.

N = 2⊗N = 0: from now on, we will implicitly use the superfield double copy listed
in table 5 and begin with the cubic amplitude double copy directly. Note that in this
first N = 2 construction, only one superfield is generated. Thus both the B-field and
dilaton D belong to the graviton superfield ΓIJ . The corresponding N = 2 superamplitude
constructed from the double copy is

AN=2
3 (Γ,Γ,Γ)

= 1
MP

AN=0
3 [g, g, g]×AN=2

3 [Θ,Θ,Θ]

= δ(4)
(
Q†
)
εabη12,a,K1η12,b,L1β1

[
{1K11L1}+ {1L11K1}

]
(c1C1 + c2C2 + c3C3) . (5.24)

Projecting onto the 3-graviton amplitude gives (3.11) with the coefficient assignments

b1 = −12
√

2 c1m
4MP β1 ,

b2 = 4
√

2m4MP β1 (4 c2 + c1) ,
b3 = 4

√
2 c1m

4MP β1 ,

b5 = 24
√

2 c3m
4MP β1 ,

b4 = b6 = 0 . (5.25)
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Matching this to the basis of local operators (3.6) we find the same supersymmetrizable
local operators as N = 1 ⊗ N = 0. In this case, we start with an R-symmetry group of
SU(2)R ×U(1)R and so the resulting theory has maximal R-symmetry.

N = 1⊗N = 1: the product of a N = 1 gluon superfield with itself can be projected
onto two little group representations: a graviton superfield ΓIJ and a vector superfield W I .
The B-field belongs to the graviton multiplet, whereas the dilaton D = gIJ ⊗ gIJ belongs
to a linear combination of these two multiplets.

The N = 2 superamplitude from this double copy construction is

AN=2
3 (Γ,Γ,Γ)

= 1
MP
AN=1

3 [Π,Π,Π]×AN=1
3 [Π,Π,Π]

= δ(4)
(
Q†
)
η12,1,K1η12,2,L1α1β1

[
−2{11K1}{23}+ {21}{31K1}+ {13}{1K12}

+{12}({31K1} − {1K13})
]
×
[
−2{11L1}{23}+ {21}{31L1}+ {13}{1L12}

+{12}({31L1} − {1L13})
]
. (5.26)

Projecting onto the cubic graviton amplitude gives (3.11) with the coefficient assignments

b2 = 512m12MP α1 β1 ,

b1 = b3 = b4 = b5 = b6 = 0 . (5.27)

Matching this to the basis of local operators (3.6) we find that only the operator 3L1 +L2
has been generated.

Studying the double copy with extended supersymmetry, raises the natural question of
whether R-symmetry is enhanced in any of the resulting theories. In the massless double
copy, this is known to happen at two-derivative order. For example, in the case of the double
copy of N = 4 super Yang-Mills with itself, the manifest SU(4)R × SU(4)R symmetry is
enhanced to SU(8)R. For the massive double copy considered here, unlike in the case of
N = 2 ⊗ N = 0, the N = 1 ⊗ N = 1 double copy manifests a non-maximal R-symmetry
group U(1)R × U(1)R. Does this enhance to the maximal N = 2 R-symmetry group of
SU(2)R ×U(1)R? Below we discuss why it cannot.

The double copy of massive cubic interactions necessarily gives rise to a non-zero hhD
(graviton2-dilaton) vertex [93, 94]. In order for such a vertex to be present in a theory
with SU(2)R × U(1)R symmetry, the dilaton must be an R-symmetry singlet. Therefore
a necessary condition that must be satisfied in order for the double copy theory to be
R-symmetric, is that the resulting supermultiplets must contain a scalar state that is
uncharged under R-symmetry. Since the vector multiplet contributes to the dilaton and
the N = 2 vector multiplet does not contain a SU(2)R singlet scalar state (see table 4), we
conclude that the theory produced by double copying a N = 1 gluon multiplet with itself
cannot preserve SU(2)R ×U(1)R, but only U(1)R ×U(1)R.
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N = 2⊗N = 1: since only one superfield is generated, the graviton superfield ΛI con-
tains both the B-field and the dilaton. The resulting N = 3 superamplitude is

AN=3
3 (Λ,Λ,Λ)

= 1
MP
AN=2

3 [Θ,Θ,Θ]×AN=1
3 [Π Π Π]

= δ(6)
(
Q†
)
εab12η12,a,K1η12,b,L1η12,3,M1α1β1

[
{1K11L1}+ {1L11K1}

]
×
[
{21}{31M1} − 2{11M1}{23}+ {13}{1M12}+ {12}({31M1} − {1M13})

]
, (5.28)

where εab12 corresponds to the Levi-Civita symbol for the (1, 2) R-index subspace. Projecting
onto the cubic graviton amplitude gives (3.11) with the coefficient assignments

b2 = 512m10MP α1 β1 ,

b1 = b3 = b4 = b5 = b6 = 0 . (5.29)

Again, matching to the basis of local operators (3.6), we find that only the operator 3L1+L2
has been generated. Since the N = 3 graviton superfield does not have a candidate R-
symmetric scalar state, by the same argument we used above, the double copy theory cannot
be maximally R-symmetric. Nonetheless, it has a minimum of SU(2)R × U(1)R × U(1)R
symmetry inherited from the single copies.

N = 2⊗N = 2: once again, only one superfield is generated, thus the graviton super-
field Φ contains both the B-field and the dilaton. The resulting N = 4 superamplitude is

AN=4
3 (Φ,Φ,Φ)

= 1
MP
AN=2

3 [Θ,Θ,Θ]×AN=2
3 [Θ,Θ,Θ]

= δ(8)
(
Q†
)
εab12η12,a,K1η12,b,L1ε

cd
34η12,c,M1η12,d,N1α1

[
{1K11L1}+ {1L11K1}

]
× β1

[
{1M11N1}+ {1N11M1}

]
. (5.30)

Projecting onto the cubic graviton amplitude gives (3.11) with the coefficient assignments

b2 = 512m8MP α1 β1 ,

b1 = b3 = b4 = b5 = b6 = 0 . (5.31)

Note that in section 3.1, we found a unique N = 4 supersymmetric cubic amplitude
and so as expected this is the result obtained from the double copy. In some sense this
construction could not have failed, and so the existence of an N = 4 supersymmetrizable
cubic massive graviton interaction follows as a necessary consequence of the existence of
an N = 2 supersymmetrizable cubic massive gluon interaction.

SU(4)R-invariance would require that the coefficient of the Grassmann polynomial
above be fully symmetric in I1, J1, K1 and L1 which it is not. Indeed the N = 4 graviton
superfield does not have a scalar R-singlet state, and so the double copy theory cannot be
SU(4)R-symmetric. Nonetheless, it has a minimum of SU(2)R × U(1)R × SU(2)R × U(1)R
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symmetry inherited from the single copies. As a consequence, unlike the maximally R-
symmetric case, the pure massive graviton sector of the double copy is not a consistent
truncation.

6 Discussion

Supersymmetry and non-renormalization of ghost-free interactions. It is a spe-
cial property of on-shell cubic amplitudes that, since there are no available Lorentz and
SU(2)LG singlets, the number of possible kinematic structures is strictly finite. As a con-
sequence, the classification of supersymmetric on-shell cubic amplitudes in section 3.2 is
valid non-perturbatively. Importantly, this means that quantum corrections cannot gener-
ate operators forbidden by supersymmetry.

One motivation for considering supersymmetrizations of massive gravity is to gain
control over quantum corrections. One-loop corrections to massive gravity were consid-
ered in [53], and it was found that quantum corrections involving matter loops led to a
renormalizing of the cosmological constant, as they do in general relativity, and gravitons
running in the loops led to a detuning of the potential, although this detuning occurs in
a way such that it never leads to a ghost with a mass smaller than the Planck scale. The
results of section 3.2 may suggest that for N = 3 and 4 no such detuning occurs at any
scale.

We found that for N ≥ 3 supersymmetry, only the operators L1 and L2 (3.6) were con-
sistent. These are precisely the interactions that appear in the ghost-free dRGT Lagrangian
at cubic order (1.1). Therefore, not only is the restriction to the ghost-free interactions
mandatory at this order, since these are the only interactions compatible with N = 3 super-
symmetry, quantum effects cannot generate any new terms in the Lagrangian. Therefore
at cubic order in the fields, the Boulware-Deser ghost must decouple non-perturbatively.
In the case of N = 4, interactions are further restricted to the unique operator 3L1 + L2,
and this specific tuning cannot be modified by quantum corrections.

This result is reminiscent of well-known non-renormalization theorems for supersym-
metric models [97]. The usual argument for these theorems relies on holomorphy in off-
shell superspace. Since we have constructed the interactions on-shell in this paper, it is not
clear to what extent these arguments apply. It would be very interesting to construct an
off-shell effective action for these models, perhaps using the N = 1 off-shell superfields de-
scribed in [36], and determine if holomorphy implies similar non-renormalization theorems.
Alternatively, it may be possible to re-derive these supersymmetric non-renormalization
theorems directly in on-shell language.

In addition to dRGT massive gravity, pseudolinear massive gravity is also ghost free
and enjoys a Λ3 cutoff11 [98, 99]. It is also possible that there could be a parity-odd version
of massive gravity, which may be ghost-free. The highest possible cutoff scale of such a
theory would be Λ7/2 [100]. It would be an interesting question to investigate whether
supersymmetry is picking out theories that are ghost-free.

11Here we use the common notation for the cutoff scale Λn ≡
(
MPm

n−1)1/n.
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Maximal supersymmetry, CTCs and asymptotic superluminality. Perhaps the
most interesting result of the analysis of section 3.2 was the discovery that for N = 4
supersymmetry, there is a unique consistent cubic interaction corresponding to the value
α3 = −1

2 in the dRGT potential (1.1).
Interestingly, this value has previously been noted to be special in a seemingly unrelated

context. In [17] it was shown to be the unique cubic interaction of a generic massive spin-
2 particle free from an asymptotic Shapiro time advance, measured by the positivity of
the eikonal phase. In addition, dRGT massive gravity apparently admits closed time-like
curves unless α3 = −1

2 [54]. Thus we find that N = 4 supersymmetry constrains the
dRGT parameter space to be exactly that which is compatible with avoiding these two
distinct forms of pathological behavior. Coupled with our previous discussion about non-
renormalization, we see that this tuning cannot be corrected by loop effects since this is
the unique N = 4 interaction.

This coincidence could be a hint that N = 4 massive gravity really does exist and can
be embedded in a UV complete model with good causal behavior.

Maximal supersymmetry and partially massless symmetry. In addition to its
appearance in connection to causality, the special α3 value also makes an appearance in
the context of partially massless symmetry [73, 101, 102]. Although there is no tuning of
the parameters of dRGT massive gravity with partially massless symmetry, in the partial
decoupling limit of massive gravity on a de Sitter background, the theory with α2 = −1

2
and α3 = 1

8 has the special property that its strong coupling scale is raised from Λ̃4 =
(MP∆3)1/4 with α3, α4 free to Λ̃2 = (MP∆)1/2, where in de Sitter spacetime we can set,
m2 = 2H2 +∆2. Here H is the Hubble constant, ∆ measures the distance from the Higuchi
bound [103], and the partially massless limit is found by taking ∆→ 0. This is analagous
to the way the cutoff scale in flat space is raised from Λ5 to Λ3 when the parameters are
tuned to those of dRGT. Although the flat space limit of this theory would not maintain
an enhanced cutoff scale beyond Λ3, there are interactions that vanish for these special
tunings in the high energy limit. In flat space, the partially massless limit coincides with
the massless limit. It is possible that N = 3 picks out the interactions that have enhanced
behavior in the massless limit, while N = 4 picks out interactions that have enhanced
behavior in the partially massless limit.

Dimensional deconstruction of 11d supergravity. If an N = 4 supersymmetric
model of ghost-free massive gravity exists beyond cubic order, an obvious goal is to con-
struct the complete off-shell effective action. This would be necessary to establish the
decoupling of the Boulware-Deser ghost and study the properties of non-linear classical
solutions. Important among these are the various known “black hole” solutions of massive
gravity [104]. It would be particularly interesting to try and construct BPS black holes,
and understand if they reduce to BPS solutions in massless supergravity in an appropriate
limit. This may require coupling the massive graviton to additional, massless Maxwell
fields (supermultiplets), along the lines of [105].

A possible path forward is to first construct a massive N = (1, 0) supersymmetric
model of massive gravity in 10d and then dimensionally reduce to 4d. This is the strategy
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that was originally used to obtain the off-shell action of both N = 4 super Yang-Mills [1]
and N = 8 supergravity [106, 107]. At the linearized level, the 4d N = 4 massive graviton
multiplet has the same helicity content as the N = 8 massless graviton multiplet. This
correspondence should lift to 10d where the massive N = (1, 0) multiplet arises from a
kind of Higgsing of (linearized) type-IIA supergravity where every state becomes massive.
We can verify the self-consistency of this picture for the bosonic states

Massless graviton ⊕ R-R 1-form ⊕Dilaton Higgs−−−→ Massive graviton

R-R 3-form⊕ NS-NS 2-form Higgs−−−→ Massive 3-form. (6.1)

This massive spectrum suggests some sort of connection with 11d supergravity. In [108],
building on earlier work [80, 109, 110], it was shown that d-dimensional ghost-free massive
gravity can be obtained by a discrete dimensional reduction (a dimensional deconstruction)
of Einstein gravity in d + 1-dimensions. In [10], this approach was extended to linearized
supersymmetric massive gravity, obtaining the free N = 1 massive graviton in 4d from
the N = 2 massive graviton in 5d. Whether this approach remains viable and preserves
the requisite (half) of the original supercharges in the presence of interactions remains
unknown. A possible path to constructing the fully non-linear 10d N = (1, 0) massive
gravity model (and subsequently the 4d N = 4 model) is as a dimensional deconstruction
of massless 11d supergravity.

Higher-multiplicity. The analysis in this paper is restricted to cubic interactions. In
section 3, we found that N ≥ 3 supersymmetry automatically selects the cubic dRGT
interactions. This could be a hint that sufficiently extended supersymmetry requires the
decoupling of the Boulware-Deser ghost. In general, at quartic order there are two distinct
(non-redundant on-shell) operators in the zero-derivative graviton potential, and only a
specific linear combination is ghost-free. It would be interesting to see if sufficient super-
symmetry uniquely selects this tuning.

The extension to higher-multiplicity is conceptually straightforward, although techni-
cally more challenging. At 4-point there are infinitely many non-redundant local operators
that may appear in an effective action, and so the corresponding superspace analysis should
be carried out order-by-order in a consistent derivative expansion. There is the additional
complication that non-local contributions from tree-level Feynman diagrams can mix with
local contact contributions, and so these should also be included in the construction of a
4-point superamplitude ansatz. In such a calculation the empirically observed maximally
improved high-energy growth of ghost-free interactions may be an important organizing
principle [18, 47, 80, 111].

It should be noted that using the supersymmetric cubic amplitudes presented in sec-
tion 3.2, we can construct n-point amplitudes that are compatible with supersymmetry by
gluing together 3-point amplitudes on poles. This procedure is ambiguous up to n-point
supersymmetric contact terms. Such n-point amplitudes will correspond to a theory with
the correct particle content and appropriately chosen supersymmetric “contact” contribu-
tions. Starting with the 3-point amplitude of a ghost-free theory b1B1 +b2B2 however, does
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not guarantee that n-point amplitudes constructed in this way will also be ghost-free. For
this, the pole terms may not be enough and contact contributions may have to be added.
This entails a full higher-point analysis, which is more involved as discussed above.

Alternatively, as for massless supergravity, it might be possible to construct higher-
multiplicity tree-level scattering amplitudes using a superspace on-shell recursion [112,
113]. BCFW-inspired recursion for massive states was described in [114, 115] and extended
to massive on-shell superspace in [69, 70]. There is the usual difficulty that establishing re-
cursion relations requires exceptional high-energy growth for large complex momenta [116].
Since, as discussed above, the dRGT model is uniquely characterized by its high-energy
growth for physical momenta, it would be interesting to try and construct a complex mo-
mentum shift that exploits this. It is possible that an on-shell recursion relation only
exists for the supersymmetric model, or a consistent truncation thereof. For example, for
massless Yang-Mills coupled to a massless complex (adjoint) scalar, BCFW recursion is
possible only if a specifically tuned quartic scalar potential term is added to the minimal
Lagrangian [117]. The value of this coupling is precisely the value required for this model
to be obtained as a consistent truncation of N = 2 super Yang-Mills. It would be interest-
ing to see if an analogous connection between on-shell constructability and supersymmetry
exists for massive gravity.

Evading the N = 4 Galileon no-go theorem. Following the logic of section 4.2,
an easier approach to studying higher-multiplicity interactions may be to first construct a
massless supersymmetric model describing the decoupling limit. The problem of constrain-
ing models of a supersymmetric Galileon has been considered [118–123], and we might hope
to make use of these results to constrain supersymmetric massive gravity. Of particular
interest, [123] recently proved an interesting no-go theorem for Galileons in N = 4 super-
symmetric models. Below we will re-derive this result in detail and discuss why it does not
lead to any constraints on an N = 4 supersymmetric model of massive gravity.

From the results of section 4.1 we know that the 4-particle scattering of the N = 4
Galileon must be a particular projection of the superamplitude describing the scattering
of 4 massless vector multiplets. This has the general form [117]

A4 (Γi1j1 ,Γi2j2 ,Γi3j3 ,Γi4j4) = δ(8)
(
Q†
) A4

(
γ+
i1j1

, γ+
i2j2

, γ−i3j , γ
−
i4j4

)
〈34〉4 . (6.2)

Here A4
(
γ+
i1j1

, γ+
i2j2

, γ−i3j3 , γ
−
i4j4

)
is the component amplitude of 4 massless vectors, the

(anti-symmetric) subscripts correspond to the 6 representation of SU(4)global. The on-shell
superfield for the CPT self-conjugate N = 4 massless vector multiplet is12

Γij = γ+
ij + ηaλ

+a
ij −

1
2ηaηbφ

ab
ij −

1
6ηaηbηcλ̃

−abc
ij + η1η2η3η4γ

−
ij , (6.3)

and the massless supersymmetric delta function is defined as

δ(8)
(
Q†
)

= 1
16

4∏
a=1

4∑
i,j=1
〈ij〉ηiaηja. (6.4)

12See [117] for a review of massless on-shell superspace.
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In the non-supersymmetric dRGT model, the leading high-energy 2-to-2 (tree-level) scat-
tering of Galileon modes takes the form13

A4 (1φ, 2φ, 3φ, 4φ) = −1 + 2α3 + 9α2
3 − 16α4

6m4M2
P

stu+O
(
E4
)
. (6.5)

If we impose invariance under the maximal R-symmetry group SU(4)R×U(1)R, restricting
to the pure graviton sector of N = 4 massive gravity becomes a consistent truncation.
Therefore the above quartic Galileon amplitude must be valid in that case also with the
modification that we must set α3 = −1/2 to satisfy the cubic constraints derived in sec-
tion 3.2. The no-go theorem of [123] is the claim that the amplitude (6.5) cannot be
obtained from an N = 4 supersymmetric model if the Galileon φ is a combination of
scalars in a massless vector multiplet. This would seem to be consistent with a maxi-
mally R-symmetric model of N = 4 massive gravity only if the prefactor in the above
expression vanishes, giving α4 = 9/64. This is a very intriguing possibility since the
values (α3, α4) = (−1/2, 9/64) are almost uniquely singled out by combining causality
constraints [54, 55] and (a proposed refinement of) S-matrix positivity constraints [56].
Unfortunately, there is actually a subtle difference between the assumptions made in [123]
and the present analysis, and the no-go theorem does not apply in this case. To see this
we will explicitly construct the most general form of the superamplitude (6.2).

The strategy will be to first enumerate a list of properties satisfied by the component
amplitude A4

(
γ+
i1j1

, γ+
i2j2

, γ−i3j3 , γ
−
i4j4

)
, and use this to write down the general form of this

object up to a set of undetermined coefficients. We then impose the additional super-
statistics constraints on this expression and find a solution only if (6.2) has non-trivial
dependence on additional flavor structure. We begin with some basic dimensional analysis.
Since the quartic Galileon (6.5) corresponds to a 6-derivative operator we need only consider
contributions to the 4-vector component amplitude at this order. These can be either
local contact contributions from operators of the schematic form ∂2F 4 or from tree-level
exchange diagrams. For the latter we can immediately rule out the possibility of massless
exchange in the t- or u-channels. If such exchanges were present then on the corresponding
singularity the amplitude would factor into a product of 3-point amplitudes of the form

A3
(
γ+
ij , γ

−
kl, X

+h
)
∝ 1
Mh−1

[13]2

[12]2
( [13][23]

[12]

)h
, (6.6)

whereM is some mass scale controlling the derivative expansion. Requiring this interaction
to mix with 6-derivative contact terms uniquely fixes the helicity of the exchanged state to
be h = 2 and therefore this state must be identified with the massless limit of the tensor
mode of the massive graviton. Such an interaction describes a long-range gravitational
force between matter particles. A model containing this interaction is mathematically self-
consistent only if it also contains a cubic graviton self-interaction of the same strength, the
on-shell statement of the Einstein equivalence principle [59]. Such self-interactions for the
tensor mode are set to zero in the decoupling limit by taking MP →∞ and so we conclude

13In this paper we use the Mandelstam convention s = (p1 + p2)2, t = (p1 + p3)2, and u = (p1 + p4)2.
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that t- and u-channel singularities must be absent. Massless exchange in the s-channel can-
not be excluded by such an argument since, due to the helicity structure, the corresponding
3-point amplitude is non-minimal and a priori could survive the decoupling limit. Next,
since the Galileon is an SU(4)R×U(1)R singlet we can restrict to a superamplitude in this
sector. The massless vectors γij are singlets of SU(4)m=0

R × U(1)m=0
R × U(1)global and so

this condition is the same as the 4-vector component amplitude being SU(4)global invariant.
Finally, we require Bose symmetry for the exchange of particles 1 ↔ 2 and 3 ↔ 4. The
general form of the component amplitude satisfying these constraints is

A4
(
γ+
i1j1

, γ+
i2j2

, γ−i3j3 , γ
−
i4j4

)
= [12]2〈34〉2

[
b1εi1j1i2j2εi3j3i4j4s+ b2 (εi1j1i3j3εi2j2i4j4 + εi1j1i4j4εi2j2i3j3) s

+ b3 (εi1j1i3j3εi2j2i4j4t+ εi1j1i4j4εi2j2i3j3u)

+ b4εi1j1i2j2εi3j3i4j4
tu

s
+ b5

(
εi1j1i3j3εi2j2i4j4

t2

s
+ εi1j1i4j4εi2j2i3j3

u2

s

)]
. (6.7)

Not every choice of coefficients bi defines a consistent superamplitude however, there are
additional super-statistics constraints that we must impose on the component amplitude
to ensure that the superamplitude (6.2) is completely symmetric under relabelling. These
take the form

A4
(
γ+
i1j1

, γ+
i2j2

, γ−i3j3 , γ
−
i4j4

)
= 〈34〉4

〈14〉4
[
A4
(
γ+
i1j1

, γ+
i2j2

, γ−i3j3 , γ
−
i4j4

)]
1↔3

A4
(
γ+
i1j1

, γ+
i2j2

, γ−i3j3 , γ
−
i4j4

)
= 〈34〉4

〈13〉4
[
A4
(
γ+
i1j1

, γ+
i2j2

, γ−i3j3 , γ
−
i4j4

)]
1↔4

. (6.8)

Imposing these constraints on (6.7), we find a unique non-trivial solution

b1 = b3, b2 = b4 = b5 = 0, (6.9)

or equivalently the complete superamplitude

A4 (Γi1j1 ,Γi2j2 ,Γi3j3 ,Γi4j4)

∝ δ(8)
(
Q†
) [12][34]
〈12〉〈34〉 [εi1j1i2j2εi3j3i4j4s+ εi1j1i3j3εi2j2i4j4t+ εi1j1i4j4εi2j2i3j3u] . (6.10)

Here we see how to evade the no-go theorem of [123]. In the absence of the SU(4)global tensor
structures the above analysis gives the same result but without the Levi-Civita symbols,
and so the unique N = 4 compatible amplitude at six-derivative order is proportional to
s+ t+ u = 0.

This argument does not imply that N = 4 massive gravity is supersymmetric at
quartic order, or that it is consistent with any choice of α4. Rather we have shown that
the quartic Galileon interactions in the decoupling limit do not by themselves give any
additional constraints. To determine the true quartic order constraints requires a detailed
massive superspace analysis that is left to future work.
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A Conventions

Lorentz and supersymmetry conventions. We will assume the mostly-plus metric
convention

ηµν =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 . (A.1)

The on-shell condition for a massive momentum pµ is therefore p2 = −m2. Our spinor
conventions follow [41, 124], and also the mostly-plus version of [125]. In particular our
Pauli matrices take the form

σ0 = σ0 =

1 0
0 1

 , σ1 = −σ1 =

0 1
1 0

 ,

σ2 = −σ2 =

0 −i
i 0

 , σ3 = −σ3 =

1 0
0 −1

 . (A.2)

For both Lorentz spinors and SU(2)LG the Levi-Civita symbol is defined as

εαβ = εα̇β̇ = εIJ =

 0 1
−1 0

 , εαβ = εα̇β̇ = εIJ =

0 −1
1 0

 . (A.3)

Our supersymmetry conventions follow [41, 124]. In particular we assume the following
form of the super Poincaré algebra

[Mµν , P ρ] = i (Pµηνρ − P νηµρ) ,
[Mµν ,Mρσ] = i (Mµσηνρ −Mνσηµρ +Mνρηµσ −Mµρηνσ) ,

{Qaα, Q
†
bα̇} = −2δabσ

µ
αα̇Pµ ,

{Qaα, Qbβ} = 0 ,

{Q†aα̇, Q
†
bβ̇
} = 0 ,

[Qaα,Mµν ] = (σµν)αβQaβ ,

[Q†aα̇,Mµν ] = (σµν)α̇β̇Q†aβ̇ . (A.4)

As discussed in section (2.1), we are assuming the absence of central charges.
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Massive Spinors. For a massive particle, we define the massive spinors from the bispinor
representation of the momentum

piµσ
µ
αα̇ = piαα̇ = |iI ]α〈iI |α̇, piµσ

µα̇α = pα̇αi = −|iI〉α̇[iI |α. (A.5)

The little-group indices can be raised and lowered with the Levi-Civita symbol

|iI ] = εIJ |iJ ], [iI | = εIJ [iJ |, |iI〉 = εIJ |iJ〉, 〈iI | = εIJ〈iJ |. (A.6)

In addition to the redundancy corresponding to the action of the massive little group
SU(2)LG, the definition (A.5) has an additional redundancy of the form

|iI ]→ t|iI ], |iI〉 → t−1|iI〉, (A.7)

for arbitrary t 6= 0. We fix this by imposing the normalization conditions

〈iIiJ〉 = mεIJ , [iIiJ ] = −mεIJ . (A.8)

By making this choice we can derive the Weyl equations

pi|iI ] = −m|iI〉 , pi|iI〉 = −m|iI ] ,
[iI |pi = m〈iI | , 〈iI |pi = m[iI |, (A.9)

and the completeness relations

|iI ]α[iI |β = mδβα , |iI〉α̇〈iI |β̇ = −mδα̇
β̇
. (A.10)

For real momenta the massive spinors satisfy the following Hermiticity conditions

(|pI ]α)† = −〈pI |α̇ , (〈pI |α̇)† = |pI ]α . (A.11)

In this formalism, particles of spin s are represented as symmetric tensors with 2s + 1
indices. Thus we will often need to explicitly symmetrize over little group indices. We will
use the conventions

X(I1,··· ,In) =
∑
σ∈Sn

XIσ1 ,··· ,Iσn (A.12)

where Sn is the symmetric group, i.e. the set of all n! permutations of n labels.

High-Energy Limit. Following the results of [42], we can take the massless limit of
massive amplitudes by defining the massive spinors as

|iI〉α̇ =
(
|i〉α̇ |ηi〉α̇

)
, 〈iI |α̇ = (〈i|α̇ 〈ηi|α̇) ,

|iI ]α = (|i]α |ηi]α) , [iI |α = ([i|α [ηi|α) , (A.13)

where the little group indices can be raised and lowered with the Levi-Civita tensors (A.3).
For convenience, the spinors with lowered little group indices are given here:

|iI〉α̇ =
(
−|ηi〉α̇ |i〉α̇

)
, 〈iI |α̇ = (−〈ηi|α̇ 〈i|α̇) ,

|iI ]α = (|ηi]α − |i]α) , [iI |α = ([ηi|α − [i|α) . (A.14)
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Although for most of the results given here, we won’t need explicit expressions in
terms of momentum and their angles, the spinors can be given explicitly for momentum
pµ = (E, p sin θ cosφ, p sin θ sinφ, p cos θ) as

|i〉α̇ =
√
E + p

c
s

 , |ηi〉α̇ =
√
E − p

−s∗
c

 ,
〈i|α̇ =

√
E + p

−s
c

 , 〈ηi|α̇ =
√
E − p

 −c
−s∗


|i]α =

√
E + p

−s∗
c

 , |ηi]α =
√
E − p

−c
−s

 ,
[i|α =

√
E + p

 c

s∗

 , [ηi|α =
√
E − p

−s
c

 , (A.15)

where c = cos
(
θ
2

)
and s = sin

(
θ
2

)
eiφ. From our definitions, we see that

〈iIiJ〉 =

 〈i i〉 〈i ηi〉
〈ηi i〉 〈ηi ηi〉

 = mεIJ (A.16)

and

[iIiJ ] =

 [i i] [i ηi]
[ηi i] [ηi ηi]

 = −mεIJ , (A.17)

consistent with our normalization conditions (A.8). For massive spin 2 amplitudes, each
external state is a totally symmetric rank-4 SU(2)LG tensor. There are five physical po-
larizations for a massive spin-2 and in this formalism they correspond to the possible little
group index combinations:

{(1, 1, 1, 1) , (1, 1, 1, 2) , (1, 1, 2, 2) , (1, 2, 2, 2) , (2, 2, 2, 2)} . (A.18)

In the massless limit, these correspond to the helicity states (h−, v−, φ, v+, h+). After
symmetrizing over all the particles’ little group indices and considering all possible he-
licities, we will have an array of size 5 × 5 × 5, each element consisting of functions of
〈ij〉, [ij], 〈iηj〉, [iηj ], 〈ηij〉, [ηij], 〈ηiηj〉 and [ηiηj ]. When doing the high energy expansion,

√
E + p ≈

√
2E

(
1− m2

8E2 + . . .

)
,
√
E − p ≈

√
2E

(
m

2E + m3

16E3 + . . .

)
. (A.19)

Due to this, the leading part of |i〉, |i] will be their massless counterparts, while |ηi〉, |ηi]
will be higher order in m. The caveat is that due to special 3-particle kinematics, for the
high energy limit, we have to pick whether to work with either angles or squares as one or
the other will vanish. For example, if we pick the angles to be non-vanishing, something
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like [ij] can be smaller than [iηj ] just due to special kinematics. We can remove square
brackets using identities from momentum conservation such as

[ij]〈jk〉 = −[iηj ]〈ηjk〉 − [iηi]〈ηik〉 − [iηk]〈ηkk〉
→ [ij] = (m〈ηik〉+m[iηk]− [iηj ]〈ηjk〉)/〈jk〉 (A.20)

as well as
[i, ηj ] = −m〈jk〉

〈ki〉
, and [ηiηj ] = −m

2〈ij〉
4EiEj

, for i 6= j. (A.21)

Similar identities can be used when the square brackets are non-vanishing.

B Spinor braces

Proof that brace polynomials form a spanning set. In this appendix we will give a
short argument justifying the claim that polynomials in spinor braces (3.1) span the space
of all massive 3-particle amplitudes and F -functions.

The objects we consider are functions of 3-particle, massive, on-shell kinematics, with
each external state labelled by an SU(2)LG tensor which we will not assume corresponds
to an irreducible representation. The only objects available with SU(2)LG indices are
the Levi-Civita symbols εIJ and massive spinors [iI | and 〈iI |. Using the normalization
condition (A.8) and the Weyl equations (A.9), the expression can always be rewritten so
that the SU(2)LG indices appear only in square massive spinors. The general form of such
an expression for rank-ni little-group tensors for particle i is

∼ [1|n1 [2|n2 [3|n3H(p1, p2, p3), (B.1)

where H is an object with n1 +n2 +n3 lowered, undotted Lorentz spinor indices. The only
available objects with these spinor indices are

εαβ , σµαα̇σ
να̇βεβγ , σµαα̇σ

να̇βσρ
ββ̇
σκβ̇γεγδ, . . . (B.2)

and so on with longer strings of σσσσσ . . .. The free Lorentz indices must be contracted
with either a momentum piµ or an invariant tensor ηµν or εµνρσ. In the latter two cases
well-known identities always allow us to rewrite the expression as products of lower-order
monomials of this kind with Lorentz indices contracted with momenta [125]. The general
expression (B.1) can therefore always be written as a polynomial of Lorentz-invariant (and
little group-covariant) monomials of the form

[iI |/pa1
. . . /pa2n

|jJ ], (B.3)

where ak ∈ {1, 2, 3} for cubic amplitudes. Further, we can always remove p3 using momen-
tum conservation and so it is sufficient to consider binary strings of /p1 and /p2. Next we
make use of the Clifford algebra identity

/pa/pb + /pb/pa = −2(pa · pb), (B.4)
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suppressing spinor indices. If n = 0 then this can be used to reintroduce momenta and
express the monomial in terms of braces14

[iIjJ ] = − 1
m2

1 +m2
2 −m3

3

(
{iIjJ} − {jJ iI}

)
. (B.5)

For n > 0, (B.4) can be used to either delete pairs of adjacent identical momenta or re-
order non-identical pairs. By some finite sequence of moves of this type, each monomial
can always be reduced to spinor braces multiplied by a scalar function of masses. We
therefore conclude that polynomials in spinor braces give a spanning set for 3-particle
massive scattering amplitudes and F -functions.

Notation translations. In section 3.2, we wrote a basis of massive spin-2 3-point ampli-
tudes (3.5) in a simple form by introducing a set of auxiliary vectors zµi . To compare these
amplitudes to the explicit projections of the 3-particle superamplitudes constructed in sec-
tion 3.2 we need the following replacement rules derived using (3.4). In index suppressed
notation, we find for the zi · zj

z1 · z2 →
1

4m6

(
{12}2 − {12}{21}

)
,

z1 · z3 →
1

4m6

(
{31}2 − {13}{31}

)
,

z2 · z3 →
1

4m6

(
{23}2 − {23}{32}

)
. (B.6)

Similarly for the pi · zj we have

p2 · z1 →
1

2
√

2m2 {11} ,

p3 · z2 →
1

2
√

2m2 {22} ,

p1 · z3 →
1

2
√

2m2 {33} . (B.7)

Finally, for the odd-parity structures, we have

ε (p1, p2, ε1, ε2)→ i

2m4

[
−{12}2 + 3{21}{12} − 2{21}2 + {11}{22}

]
ε (p1, p2, ε1, ε3)→ −i

2m4

[
−{31}2 + 3{31}{13} − 2{13}2 + {11}{33}

]
ε (p1, p2, ε2, ε3)→ i

2m4

[
−{23}2 + 3{32}{23} − 2{32}2 + {22}{33}

]
. (B.8)

Bose/Fermi symmetry. To impose the super-statistics constraints (3.9) on a general
ansatz for the F -functions constructed from spinor braces we need the following relations.
For 1↔ 2:

{1I1J} 12←−→ −{2J2I}, {3I3J} 12←−→ −{3J3I}, {1I2J} 12←−→ −{1J2I},

{1I3J} 12←−→ −{3J2I}, {2I1J} 12←−→ −{2J1I}, {2I3J} 12←−→ −{3J1I}. (B.9)
14In the exceptional case m2

3 = m2
1 +m2

2 a different pair of internal momenta should be chosen to define
the braces, e.g. {ij} ≡ [i|/p2/p3|j]. This is irrelevant for this paper since every state is mass degenerate.
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For 1↔ 3:

{1I1J} 13←−→ −{3J3I}, {2I2J} 13←−→ −{2J2I}, {1I2J} 13←−→ −{2J3I}

{1I3J} 13←−→ −{1J3I}, {3I1J} 13←−→ −{3J1I}, {3I2J} 13←−→ −{2J1I}. (B.10)

For 2↔ 3:

{1I1J} 23←−→ −{1J1I}, {2I2J} 23←−→ −{3J3I}, {1I2J} 23←−→ −{3J1I}

{2I1J} 23←−→ −{1J3I}, {2I3J} 23←−→ −{2J3I}, {3I2J} 23←−→ −{3J2I}. (B.11)

C Constructing superfields

Normalization and completeness. Given the charges of a component field under
U(1)R and SU(N )R, there is a unique choice for the Grassmann polynomial with an appro-
priate little group weight that multiplies the component field in the superfield. On the other
hand, the normalization of this field is not fixed by any symmetries. Here we describe how
to fix the normalization of the component fields to get the expressions (2.12), (2.13), (2.14)
and (2.15).

Consider for example an N = 1 massive scalar superfield Φ, which has been fixed up
to component field normalization,

Φ = α1φ+ α2ηIλ
I + α3ηIη

I φ̄ . (C.1)

The normalization condition we choose for the propagator of Φ is∫
d2η

1
p2 Φp

(̃
Φ†−p

)
. (C.2)

where the �̃ denotes a Grassmann Fourier transform. This must equal the sum of the
individual component field propagators,∫

d2ηΦp

(̃
Φ†−p

)
= φpφ̄−p + φ̄pφ−p + λI,pλ

I
−p . (C.3)

Thus if a proposed normalization gives us the correct state sum above, the superfield is
correct, up to phases that cannot be determined by this method.

Let us see how this works. First we take the Grassmann Fourier transform of the
superfield, (̃

Φ†−p
)

= FT
(
α1φ̄−p + α2η

†
Iλ

I
−p + α3η

†
Iη
†Iφ−p

)
= −1

2α1ηIη
I φ̄−p − α2ηIλ

I
−p + 2α3φ−p . (C.4)

Plugging this into the Grassmann integral, only terms quadratic in Grassmann variables
will contribute,∫

d2η

[
−1

2α
2
1ηIη

Iφpφ̄−p + 2α2
3ηIη

I φ̄pφ−p − α2
2ηIηJλ

I
pλ

J
−p

]
. (C.5)
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Using the following integrals, ∫
d2η

[
ηIη

I
]

=2 ,∫
d2η [ηKηL] =− εKL ,

we determine that the correctly normalized N = 1 massive scalar superfield is

Φ = φ+ ηIλ
I + 1

2ηIη
I φ̄ . (C.6)

With the introduction of non-trivial SU(N )R representations, the calculation is more
involved. Nonetheless we follow the same logic to normalize the superfields (2.12), (2.13),
(2.14) and (2.15).

Phases and CPT. Finally there is also an ambiguity in the relative phases between
the components of the superfield that is not fixed by the completeness relation. These
phases are in fact completely non-physical since they can always be removed by a suitable
unitary transformation on the Hilbert space. This is equivalent to the statement that the
representation of the supersymmetry algebra on the space of one-particle states (2.4) is
unique up to a unitary isomorphism.

The phase choice we make here is however correlated with the choice of phases that
appear in the action of certain discrete symmetries. For example, any physical model
must have an anti-unitary CPT symmetry which, in a supersymmetric model acts on the
supercharges as

(CPT )−1Qα(CPT ) = −iQ†α̇, (CPT )−1Q†α̇(CPT ) = iQα. (C.7)

The action of CPT on a given species of one-un state is defined up to an overall phase [126].
For example for the N = 1 massive gravity multiplet, CPT acts on the states as

CPT |ψIJK(~p)〉 = ζψ|ψ̃IJK(−~p)〉 ,
CPT |ψ̃IJK(~p)〉 = ζψ̃|ψ

IJK(−~p)〉 ,

CPT |γIJ(~p)〉 = ζγ |γIJ(−~p)〉 ,
CPT |hIJKL(~p)〉 = ζh|hIJKL(−~p)〉 , (C.8)

where the phases are further constrained by the requirement that (CPT )2 = (−1)F [126].
By explicit calculation, (2.4) is not compatible with (C.7) and (C.8) unless some of the
CPT phases are non-trivial. Contrarily, if the CPT phases are chosen to be trivial, then
compatibility with supersymmetry requires introducing non-trivial phases in the superfield.
These two options are related by a unitary isomorphism and therefore lead to the same
physics. In this paper, since it is simplest for our purposes, we choose to set the superfield
phases to unity.
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