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1 Introduction

In this paper, we present an extraction of Transverse Momentum Distributions (TMDs) [1–
4] using more than two thousand data points from several experiments for two different
kinds of processes: Semi-Inclusive Deep Inelastic Scattering (SIDIS) and production of
Drell-Yan (DY) lepton pairs, significantly improving our previous analysis [5].

Building maps of the internal partonic structure of nucleons is a crucial step towards
understanding the interactions between quarks and gluons and the phenomenon of con-
finement. A steady progress in the last decades has led to more and more refined versions
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of such maps. The TMDs extracted in this article encode information about the three-
dimensional distributions of quarks in momentum space. The level of sophistication of a
TMD extraction essentially depends on two ingredients: the amount of analyzed data from
different processes, namely how “global” the experimental information from which TMDs
are extracted, and the perturbative accuracy reached in the theoretical formalism.

The extraction of TMDs is based on TMD factorization theorems, which provide a
precise definition of the objects to be extracted, establishing their universality and evolution
equations. In this case, the accuracy of the calculation is defined by the amount of large
logarithms being resummed, that in turn defines the powers of the strong coupling αs to
be included in the perturbative quantities [6–9].

Of particular relevance is also the combination of analyzed data from different pro-
cesses. Similarly to the extraction of collinear Parton Distribution Functions (PDFs), we
can talk about a global fit, i.e., a fit that leverages the universality of the parton distri-
butions and uses different processes to constrain them. However, in SIDIS two types of
TMDs enter the cross section: the TMD PDFs, describing how partons are arranged in the
nucleon, and TMD Fragmentation Functions (FFs), describing how a parton produces a
final-state hadron. The knowledge of TMDs, in particular of TMD FFs, would be greatly
improved by using data from electron-positron annihilations into two almost back-to-back
hadrons [10]. Unfortunately, this data is presently not available. There are measurements
for the inclusive production of single hadrons [11] but, in this case, transverse momenta
need to be defined with respect to the thrust axis: a careful description of the latter is
non trivial, and a rigorous factorization theorem for this process has been discussed only
recently (see, e.g., refs. [12–14] and references therein). Therefore, for TMD extractions we
currently talk about a global fit when data from SIDIS and DY processes are included.

In the last ten years, several extractions of TMDs have been presented [5, 7, 15–24].
Most of them suffered some shortcomings: they were either obtained in a parton-model
framework without QCD corrections, or they took into account only a limited set of data,
or did not perform a full fit. TMDs were also studied in a different framework, the so-called
parton-branching approach [25–27].

At present, only two works have reached the stage of combining SIDIS and DY data in
a full-fledged global TMD fit: the above mentioned extraction of ref. [5], henceforth named
PV17, and the extraction of ref. [22], henceforth named SV19.

The PV17 extraction reached the NLL accuracy, was based on the calculation of ob-
servables at mean kinematics in each bin, and did not manage to describe the normalization
of all datasets. In this work, we push the accuracy of the analysis to what we will refer
to as N3LL− (only NNLO collinear FFs are currently missing in order to reach full N3LL
accuracy).1 Apart from the increase in perturbative accuracy, in this work we also include
many measurements published after 2017.

The SV19 extraction reached the same perturbative accuracy and included essentially
the same datasets. Our work has crucial differences in the selection of specific data points

1While this work was being completed, further efforts, including a work by the MAP collaboration, were
made to include part of the NNLO corrections [28, 29] in the extraction of FFs.
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(we include a much larger number of points), the implementation of TMD evolution, the
choice of nonperturbative components, and the handling of normalization for SIDIS data.

As we will describe in detail, we found it particularly difficult to describe in a satisfac-
tory way the normalization of SIDIS data obtained in fixed-target experiments at moderate
to low scales. When the analysis is performed at NLL accuracy, we can describe well shape
and normalization of SIDIS data, but the description of high-energy DY data is very poor.
Going to N2LL and N3LL−, the description of DY data significantly improves, but we fail
to reproduce the normalization of SIDIS data, mainly due to the O(αs) corrections to the
hard factor. As a possible solution, we choose to adjust the normalization of the TMD
predictions by comparing their integral upon transverse momentum and the corresponding
collinear formula. With this procedure, we fix the normalization a priori, in a way that is
independent of the results of the fit.

Our baseline fit is performed at N3LL−, using 2031 data points and obtaining χ2/Ndat =
1.06. We also discuss variations of this baseline fit by changing the theoretical accuracy
and the selected data.

The paper is organized as follows. In section 2 we describe the theoretical framework
used in the analysis. In section 3 we explain how experimental data have been selected.
Section 4 presents the results of our extraction. Finally, in section 5 we draw our conclu-
sions.

2 Formalism

2.1 Drell-Yan

In the Drell-Yan (DY) process

hA(PA) + hB(PB) −→ γ∗/Z(q) +X −→ `+(l) + `−(l′) +X , (2.1)

two hadrons hA and hB with four-momenta PA and PB, respectively, collide with center-
of-mass energy squared s = (PA + PB)2, producing a neutral vector boson γ∗/Z with
four-momentum q and large invariant mass Q =

√
q2. The vector boson eventually decays

into a lepton and an antilepton with four-momenta constrained by momentum conservation,
q = l+l′. The involved momenta and the respective transverse components are summarized
in figure 1.

The hadronic four momenta PA and PB can be chosen to identify the longitudinal
direction z and define the transverse momentum qT of the γ∗/Z. The rapidity of the
neutral boson (or, equivalently, of the lepton pair) is defined as

y = 1
2 ln

(
q0 + qz
q0 − qz

)
. (2.2)

For our purposes, we need the cross section for this process initiated by unpolarized
hadrons and integrated over the azimuthal angle of the exchanged boson. That cross
section can be written in terms of two structure functions, F 1

UU and F 2
UU [30, 31]. In the
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Figure 1. Diagram describing the relevant momenta involved in a DY event. Two partons from
two hadrons collide. They have transverse momenta k⊥A and k⊥B (not measured). They produce
a virtual photon with (measured) transverse momentum qT = k⊥A + k⊥B with respect to the
hadron collision axis.

limit M2 � Q2 (with M the mass of the incoming hadrons) and q2
T � Q2, the F 2

UU is
suppressed. Accordingly, the cross section reads

dσDY/Z

d|qT | dy dQ
= 16π2α2

9Q3 |qT | P F 1
UU

(
xA, xB, |qT |, Q

)
, (2.3)

where α is the electromagnetic coupling, P is the phase space factor to account for potential
cuts on the lepton kinematics, which turns out to have a relevant impact when high-
precision data are taken into account (see, e.g., a recent analysis in ref. [32]).2 At low
transverse momentum q2

T � Q2, the structure function can be expressed as a convolution
over the partonic transverse momenta of two TMD PDFs:

F 1
UU

(
xA, xB, |qT |, Q

)
= xA xBHDY(Q,µ)

∑
a

ca(Q2)
ˆ
d2k⊥A d

2k⊥B f
a
1 (xA,k2

⊥A;µ, ζA) f ā1 (xB,k2
⊥B;µ, ζB)

δ(2)(k⊥A + k⊥B − qT )

= xAxB
2π HDY(Q,µ)

∑
a

ca(Q2)
ˆ +∞

0
d|bT ||bT |J0

(|bT ||qT |)f̂a1 (xA, b2
T ;µ, ζA)

f̂ ā1 (xB, b2
T ;µ, ζB).

(2.4)

In the above equation, HDY is the hard factor, which can be computed order by order in
the strong coupling αs and is equal to 1 at leading order.3 This function encodes the virtual
part of the hard scattering and depends on the hard scale Q and on the renormalisation
scale µ. The unpolarized TMDs are denoted by f1. They depend on the renormalization

2In the presence of cuts on single-lepton variables, an additional parity-violating term contributes to the
cross section [33]. However, in ref. [7] it was shown that this contribution is negligible in the experimental
conditions considered in this analysis.

3In the present work, we follow the definition of ref. [34].
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scale µ and the rapidity scale ζ. The rapidity scales must obey the relation ζAζB = Q4.
Throughout the paper, we will set µ2 = ζA = ζB = Q2.

The following definition of the Fourier transform of the TMD PDFs has been used:4

f̂a1
(
x, |bT |;µ, ζ

)
=
ˆ
d2k⊥ e

ibT ·k⊥ fa1
(
x,k2

⊥;µ, ζ
)

= 2π
ˆ ∞

0
d|k⊥| |k⊥|J0(|bT ||k⊥|) fa1

(
x,k2

⊥;µ, ζ
)
.

(2.5)

The structure of the TMD PDFs will be addressed in details in section 2.3. The
transverse momentum of the active quark and antiquark are denoted as k⊥A,B. At low
transverse momenta, the two variables xA,B take the values:

xA = Q√
s
ey , xB = Q√

s
e−y . (2.6)

The summation over a in eq. (2.4) runs over the active quarks and antiquarks at the
scale Q, and ca(Q2) are the respective electroweak charges given by

ca(Q2) = e2
a − 2eaVaV` χ1(Q2) + (V 2

` +A2
` ) (V 2

a +A2
a)χ2(Q2) , (2.7)

with

χ1(Q2) = 1
4 sin2 θW cos2 θW

Q2(Q2 −M2
Z)

(Q2 −M2
Z)2 +M2

ZΓ2
Z

, (2.8)

χ2(Q2) = 1
16 sin4 θW cos4 θW

Q4

(Q2 −M2
Z)2 +M2

ZΓ2
Z

, (2.9)

where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively;
V` and A` are the vector and axial charges of the lepton `; sin θW is the weak mixing angle;
MZ and ΓZ are mass and width of the Z boson.

As discussed in section 3 and summarized in table 2, for DY production the observable
provided by the experimental collaborations is the (normalized) cross section differential
with respect to |qT |. For each bin delimited by the initial (i) and final (f) values of
kinematical variables, the experimental values are compared with the following theoretical
quantity:

OthDY, 1(|qT |i,f , yi,f , Qi,f ) =
 |qT |f
|qT |i

d|qT |
ˆ yf

yi

dy

ˆ Qf

Qi

dQ
dσDY/Z

d|qT | dy dQ
, (2.10)

where the
ffl

symbol represents the integral divided by the width of the integration range.
Hence, eq. (2.10) corresponds to the cross section in eq. (2.3) averaged over the transverse
momentum and integrated over rapidity and invariant mass of the exchanged boson. The
normalized cross section is obtained by dividing both sides of eq. (2.10) by the appropriate
fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

4Notice that in ref. [5] the Fourier transform was defined with an extra 1/(2π) factor.
5See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html.
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The low-energy fixed-target experiments included in this analysis (E288, E605, E772,
see table 2) measure the following cross section

E
dσDY

d3q
= 1

2π |qT |
dσDY

d|qT | dy
, (2.11)

where E and q are the energy and the three-momentum of the photon, respectively.
Given eq. (2.11), in principle the experimental value in a given bin needs to be com-

pared against the following theoretical quantity:

OthDY, ft(|qT |i,f , yi,f , Qi,f ) =
 |qT |f
|qT |i

d|qT |
 yf

yi

dy

ˆ Qf

Qi

dQ
1

2π |qT |
dσDY

d|qT | dy dQ
. (2.12)

However, since all the considered fixed-target experiments do not provide bins of |qT | but
just the average transverse momentum values |qT |, the integration over |qT | is not consid-
ered. Moreover, the E288 provides only the average value y for the rapidity. Accordingly,
the theoretical quantity considered for that experiment reads

OthDY, E288(|qT |, y,Qi,f ) = 1
2π |qT |

ˆ Qf

Qi

dQ
dσDY

d|qT | dy dQ

∣∣∣∣
y=y, |qT |=|qT |

. (2.13)

The E605 and E772 low-energy fixed-target experiments (see table 2) use, in place
of the rapidity y, the variable xF , which is connected to the other kinematic variables as
follows:

y(xF , Q) = sinh−1
(√

s

Q

xF
2

)
, xA =

√
Q2

s
+ x2

F

4 + xF
2 , xB = xA − xF . (2.14)

Using eq. (2.14), one obtains

E
dσDY

d3q
= 2E
π
√
s

dσDY

dq2
T dxF

. (2.15)

The E772 collaboration provides bins in xF and average transverse momentum values
|qT |. Accordingly, in that case the experimental values are compared against the following
theoretical quantity:

OthDY, E772(|qT |, xF i,f , Qi,f ) =
ˆ Qf

Qi

dQ

 xF f

xF i

dxF
2E
π
√
s

dσDY

dq2
T dxF dQ

∣∣∣∣
|qT |=|qT |

(2.16)

≈ Q cosh(y)
π |qT |

√
s (xF f − xF i)

ˆ y(xF f ,Q)

y(xF i,Q)
dy

ˆ Qf

Qi

dQ
dσDY

d|qT | dy dQ

∣∣∣∣
|qT |=|qT |

,

where

Q = (Qi +Qf )/2 , y = [y(xF i, Q) + y(xF f , Q)]/2 . (2.17)

For the sake of simplicity, we replaced y and Q with y and Q in the prefactor in front of
the cross section and pull it out of the integral.
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The E605 experiment, instead, provides average values for both transverse momentum
and xF and its data are compared against the following theoretical quantity:

OthDY, E605(|qT |, xF , Qi,f ) ≈ Q cosh(y)
π |qT |

√
s

ˆ Qf

Qi

dQ
dσDY

d|qT | dy dQ

∣∣∣∣
|qT |=|qT |, y=y

, (2.18)

where, in this case, y = y(xF , Q) with xF = (xFi + xFf )/2.

2.2 Semi-Inclusive Deep-Inelastic Scattering (SIDIS)

In SIDIS, a lepton with momentum l scatters off a hadron target N with mass M and four
momentum P . In the final state, the scattered lepton momentum l′ is measured together
with one hadron h with mass Mh and four momentum Ph. The other products of the
scattering are undetected. Thus the reaction reads

`(l) +N(P )→ `(l′) + h(Ph) +X . (2.19)

The (space-like) four-momentum transfer is q = l − l′, with Q2 ≡ −q2 > 0. We use the
standard SIDIS variables [37, 38]:

x = Q2

2P · q , y = P · q
P · l , z = P · Ph

P · q , γ = 2Mx

Q
. (2.20)

For transverse momenta, we will follow the definitions and notations discussed in
refs. [39, 40] (see also figure 2). In particular, we define PhT as the hadron transverse
momentum in the Breit frame, where P and q form a light-cone basis; as a consequence,
Ph has only transverse components and |PhT |2 = −P 2

hT , which is frame independent. Sim-
ilarly, we define qT as the photon transverse momentum in the hadron frame, where P
and Ph form a light-cone basis; as a consequence, qT has only transverse components and
|qT |2 = −q2

T , which is also frame independent. The two momenta are related by [41, 42]

qµT = −P
µ
hT

z
− 2x |qT |

2

Q2 Pµ . (2.21)

In the following, we will always work assuming that the invariant mass of the photon
is large compared to the target and hadron masses (M2,M2

h � Q2) and to the transverse
momenta qT and PhT (q2

T , P
2
hT � Q2). We neglect any power corrections that vanish in

this limit, both kinematic and dynamical (higher twist), apart from some modifications
to the normalization of the SIDIS observables (that could be seen as the effect of power
corrections, see section 2.4 for more details). In this limit, eq. (2.21) reduces to

qT ≈ −
PhT
z

. (2.22)

Several studies have been made concerning higher-twist corrections of various origin
(see, e.g., refs. [38, 43, 44] for recent works). A careful study of the impact of power cor-
rections to the case of unpolarized TMDs has been discussed in ref. [22]. Lately, important
advances in the study of higher-twist TMD factorization have been published [42, 45–47],
but they do not directly affect the observables we consider here.
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hadron

photon

nucleon

quark

P

k

Ph

q

k‹

k‹

PhT

P‹

p

≥ zk‹

Figure 2. Diagram describing the relevant momenta involved in a SIDIS event in the Breit (nucleon-
photon) frame. A virtual photon with momentum q (defining the reference axis) strikes a parton
with momentum k inside a nucleon with momentum P . The parton has a transverse momentum
k⊥ (not measured). The struck parton with momentum p = k + q fragments into a hadron with
momentum Ph, which acquires a further transverse momentum P⊥ (not measured) with respect
to the fragmenting quark axis. The total measured transverse-momentum of the final hadron is
PhT . When Q2 is very large, the longitudinal components are all much larger than the transverse
components. In this regime, PhT ≈ zk⊥ + P⊥.

The differential cross section for SIDIS can be witten in terms of two structure func-
tions, FUU,T and FUU,L [37]. The subscripts refer to the lepton, the target, and the photon
polarization, respectively. The second structure function is formally a twist four contri-
bution and is suppressed in the limit considered here, thus we neglect it. The differential
cross section at small transverse momentum [5, 37] reads

dσSIDIS

dx dz d|qT | dQ
= 8π2 α2 z2 |qT |

xQ3
y2

2(1− ε)

(
1 + γ2

2x

)
FUU,T

(
x, z, |qT |, Q

)
, (2.23)

where α is the QED coupling constant and ε is the photon flux factor [37]. Neglecting
target mass corrections O(γ) and O(γ2), the prefactors can be approximated as

y ≈ Q2

xs
,

y2

(1− ε)

(
1 + γ2

2x

)
≈ Y+ = 1 +

(
1− Q2

xs

)2
. (2.24)

Since we are interested only in the small-transverse-momentum limit, in eq. (2.23) we
have neglected the contributions from fixed-order calculations at high |qT | [48, 49] and the
matching of these on TMD factorization [50–52].
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The unpolarized SIDIS structure function FUU,T is defined as [37]

FUU,T
(
x, z, |qT |, Q

)
= xHSIDIS(Q,µ)

∑
a

e2
a

ˆ
d2k⊥

ˆ
d2P⊥
z2 fa1 (x,k2

⊥;µ, ζA)Da→h
1 (z,P 2

⊥;µ, ζB)

δ(2)(k⊥ + P⊥/z + qT )

= x

2π H
SIDIS(Q,µ)

∑
a

e2
a

ˆ +∞

0
d|bT ||bT |J0

(|bT ||qT |)f̂a1 (x, b2
T ;µ, ζA)

D̂a→h
1 (z, b2

T ;µ, ζB) ,
(2.25)

where the sum runs over quarks and antiquarks a. The hard factor HSIDIS can be computed
order by order in the strong coupling αs and is equal to 1 at leading order.6 The variable k⊥
is the transverse momentum of the struck quark with respect to the nucleon axis, whereas
P⊥ is the transverse momentum of the produced hadron h with respect to the fragmenting
quark axis (see figure 2).

The variable bT is conjugated via Fourier transform to the transverse momentum qT .
fa1 (x,k2

⊥;µ, ζA) and Da→h
1 (z,P 2

⊥;µ, ζB) are the unpolarized TMD PDF for a quark a in
a nucleon and the unpolarized TMD FF for a quark with flavor a fragmenting into a
hadron with flavor h, respectively; f̂a1 (x, b2

T ;µ, ζA) and D̂a→h
1 (z, b2

T ;µ, ζB) are their Fourier
transforms. The former is defined in eq. (2.5), the latter is defined as

D̂a→h
1

(
z, b2

T ;µ, ζ
)

=
ˆ
d2P⊥
z2 e−ibT ·P⊥/zDa

1
(
z,P 2

⊥;µ, ζ
)

= 2π
ˆ ∞

0

d|P⊥|
z2 |P⊥|J0(|bT ||P⊥|/z)Da

1
(
z,P 2

⊥;µ, ζ
)
.

(2.26)

Their structure will be discussed in details in section 2.3.
The observable provided by the HERMES and COMPASS collaborations is the mul-

tiplicity, namely the ratio of the one-hadron inclusive cross section as a function of the
transverse momentum of the hadron |PhT | over the fully inclusive one:

M(x, z, |PhT |, Q) = dσSIDIS

dx dz d|PhT | dQ

/
dσDIS

dx dQ
= 1

z

dσSIDIS

dx dz d|qT | dQ

/
dσDIS

dx dQ
. (2.27)

The cross section for unpolarized DIS in the denominator of the multiplicities reads

dσDIS

dx dQ
= 8π α2

s

xQ3
y2

2(1− ε)

[
FT (x,Q2) + εFL(x,Q2)

]
≈ 4π α2

s

xQ3

[
Y+F2(x,Q2)− y2FL(x,Q2)

]
,

(2.28)
where the approximation is justified by neglecting the target mass corrections. At the
perturbative order considered in this analysis, the longitudinal DIS structure function FL
cannot be neglected, at variance with, e.g., refs. [5, 15].

6In the present work, we follow the definition of ref. [34].
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The experimental values in each bin are compared against the quantity built by sepa-
rately averaging the numerator and denominator of the multiplicity in eq. (2.27) over the
respective kinematics:

OthSIDIS(xi,f , zi,f , |PhT |i,f , Qi,f ) =
 Qf

Qi

dQ

 xf

xi

dx

 zf

zi

dz

 |PhT |f
|PhT |i

d|PhT |
dσSIDIS

dxdzd|PhT |dQ
,

(2.29)

OthDIS(xi,f , Qi,f ) =
 Qf

Qi

dQ

 xf

xi

dx
dσDIS

dxdQ
,

Mth(xi,f , zi,f , |PhT |i,f , Qi,f ) = OthSIDIS(xi,f , zi,f , |PhT |i,f , Qi,f )
/
OthDIS(xi,f , Qi,f ). (2.30)

The HERMES collaboration provides multiplicities in bins of |PhT |, whereas the
COMPASS collaboration in bins of P 2

hT (see also table 3). In both cases, the observ-
able can be calculated as in eq. (2.29), but in the COMPASS case the average is on P 2

hT .
Moreover, both collaborations introduce a cut on the invariant mass of the hadronic fi-
nal states W 2 = (P + q)2 (see table 3), which makes the upper integration limit xf a
Q-dependent quantity.

2.3 Transverse Momentum Distributions (TMDs)

As a consequence of the renormalization of ultraviolet and rapidity divergences [6, 53, 54],
TMD PDFs and FFs acquire a dependence on the renormalization scale µ and on the
rapidity scale ζ. The evolution of TMDs from some initial values of the scales µi, ζi, to
some final values µf , ζf , is given by

f̂a1 (x, b2
T ;µf , ζf ) = f̂a1 (x, b2

T ;µi, ζi) exp
{ˆ µf

µi

dµ

µ
γ
(
µ, ζf

)}(ζf
ζi

)K(|bT |, µi)/2
. (2.31)

The anomalous dimension γ for the renormalization-group evolution in µ reads:

γ
(
µ, ζ

)
= γF

(
αs(µ)

)− γK(αs(µ)
)

ln
√
ζ

µ
, (2.32)

where γK is the cusp anomalous dimension and γF
(
αs(µ)

)
= γ

(
µ, µ2) is the boundary

condition [7]. The Collins-Soper kernel K, instead, is the anomalous dimension for the
evolution in ζ [6]. The same structure holds for the TMD FF. In order to avoid the
insurgence of large logarithms, the scales µi and ζi are conveniently fixed as µi =

√
ζi =

µb = 2e−γE/|bT |. Since the coupling αs is computed at this scale (see eq. (2.32)) the
evolution of the TMD is perturbatively meaningful only at low values of |bT | such that
the scale µb is sufficiently larger than the Landau pole ΛQCD. This condition can be
implemented by replacing the scale µb with µb∗ = 2e−γE/b∗, where [5]

b∗(|bT |, bmin, bmax) = bmax

(1− e−|bT |4/b4
max

1− e−|bT |4/b4
min

)1/4
, (2.33)

with

bmax = 2e−γE GeV−1 ≈ 1.123 GeV−1 , bmin = 2e−γE/µf . (2.34)
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As suggested by the CSS formalism [6], b∗ saturates to bmax at large |bT | guaranteeing
that µb∗ never enters the nonperturbative regime. However, this has also the effect of
introducing power corrections scaling like (ΛQCD/|qT |)k [55], with k > 0, that in the region
|qT | ' ΛQCD need to be accounted for by a nonperturbative function. At small |bT |,
b∗ saturates to bmin. Since µf is of the order of the boson virtuality Q, this introduces
subleading power corrections scaling like (|qT |/Q)n, with n > 0. Such a procedure has the
advantage of facilitating a possible matching of the TMD formula, valid for |qT | � Q, onto
the fixed-order calculation valid for |qT | ' Q [8, 56, 57]. Accordingly, in the limit |bT | → 0
the Sudakov exponent vanishes.

Performing at the input scales the Operator Product Expansion (OPE) of the TMD
PDFs (TMD FFs) around |bT | = 0 one gets:

f̂a1 (x, b∗;µb∗ , µ2
b∗) =

∑
b

ˆ 1

x

dx′

x′
Cab(x′, b∗;µb∗ , µ2

b∗) f
b
1

(
x

x′
;µb∗

)
≡ [C ⊗ f1](x, b∗;µb∗ , µ2

b∗) ,

(2.35)
where the sum runs over quarks, antiquarks, and the gluon. The matching coefficients C
are calculated as a perturbative expansion in powers of αs.

In view of the power corrections introduced by the b∗ prescription, both the Collins-
Soper kernelK [54] and the OPE in eq. (2.35) need to be modified to account for nonpertur-
bative effects. For the Collins-Soper kernel K, this results in a nonperturbative correction
term, gK(b2

T ), for which we choose a specific functional form:

K(|bT |, µb∗) = K(b∗, µb∗) + gK(|bT |) , gK(b2
T ) = −g2

2
b2
T

2 . (2.36)

This correction gives rise in the evolution to a nonperturbative factor that goes like
(ζf/Q2

0)gK/2 where Q0 is an arbitrary scale at which this correction is parameterised; we
set Q0 = 1GeV. In order not to affect the perturbative calculation at small |bT |, the term
gK needs to vanish in the limit |bT | → 0. The nonperturbative corrections to the OPE
can also be parameterised by a multiplicative function that generally depends on x or z
and bT . The net result of the inclusion of the nonperturbative corrections into the evolved
TMD PDF reads:
f̂a1 (x, b2

T ;µf , ζf )

= [C ⊗ f1](x, b∗;µb∗ , µ2
b∗) exp

{ˆ µf

µb∗

dµ

µ
γ
(
µ, ζf

)}( ζf
µ2
b∗

)K(b∗,µb∗ )/2
f1NP (x, b2

T ; ζf , Q0),

(2.37)

and the same holds for the TMD FF where one introduces D1NP (z, b2
T ; ζ,Q0). Note that

the number of active flavors nf in the perturbative quantities γ, C, and the hard function
H of eqs. (2.4) and (2.25), is separately determined by the scales µ, µb∗ and Q, respectively.
To be more precise, given a set of quark thresholds {m1,m2,m3, . . . }, the nf associated
to each of the three scales above is computed by requiring that the scale lies between mnf

and mnf+1. Analogously, since the collinear distributions involved in the matching formula
in eq. (2.35) are computed at the scale µb∗ , the value of nf for PDFs and FFs is chosen
accordingly, i.e. it is the same used for the matching functions C.
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The f1NP and D1NP factors (which we assume to be flavor-independent) incorporate
both the correction to the evolution associated to the gK function and the correction to
the respective OPE. For the TMD PDF we define

f1NP (x, b2
T ; ζ,Q0)

=
g1(x)e−g1(x)

b2
T
4 +λ2g2

1B(x)
[
1−g1B(x)b

2
T
4

]
e−g1B(x)

b2
T
4 +λ2

2g1C(x)e−g1C(x)
b2
T
4

g1(x)+λ2g2
1B(x)+λ2

2g1C(x)

[
ζ

Q2
0

]gK(b2
T )/2

,

(2.38)

and for the TMD FF the form is

D1NP (z, b2
T ; ζ,Q0) =

g3(z)e−g3(z)
b2
T

4z2 + λF
z2 g

2
3B(z)

[
1−g3B(z) b

2
T

4z2

]
e−g3B(z)

b2
T

4z2

g3(z)+ λF
z2 g

2
3B(z)

[
ζ

Q2
0

]gK(b2
T )/2

.

(2.39)

The nonperturbative factors f1NP , D1NP → 1 for bT → 0. The gi functions describe the
dependence of the widths of the distributions on x and z:

g{1,1B,1C}(x) = N{1,1B,1C}
xσ{1,2,3}(1− x)α

2
{1,2,3}

x̂σ{1,2,3}(1− x̂)α
2
{1,2,3}

, (2.40)

g{3,3B}(z) = N{3,3B}
(zβ{1,2} + δ2

{1,2})(1− z)γ
2
{1,2}

(ẑβ{1,2} + δ2
{1,2})(1− ẑ)γ

2
{1,2}

, (2.41)

where x̂ = 0.1, ẑ = 0.5.
In total, the default configuration for the fit involves 21 free parameters: one associ-

ated to the nonperturbative part of the Collins-Soper kernel (eq. (2.36)), 11 related to the
nonperturbative part of the TMD PDF (eqs. (2.38), (2.40)), and 9 for the nonperturbative
part of the TMD FF (eqs. (2.39), (2.41)).

The functional forms in eqs. (2.38)–(2.41) are largely arbitrary. However, an important
feature is that they are the Fourier transforms of the sum of a Gaussian, a weighted
Gaussian (multiplied by k2

⊥) and, in the case of the TMD PDFs, a third Gaussian. They
are therefore positive definite for all values of k2

⊥.7 The parameters λ and λ2 in eq. (2.38) are
squared in order to avoid negative contributions (there is no need to square the parameter
λF in eq. (2.39) because the fit always selects positive values for this parameter). The
widths of the Gaussians, expressed by eqs. (2.40), (2.41), are x (or z) dependent and
vanish as x (or z) approaches 1. Our choice of the functional form is also inspired by
model calculations of TMD PDFs (see, e.g., [58–65]) and TMD FFs (see, e.g, [66, 67]).
Many of these models predict the existence of terms that behave similarly to Gaussians and

7Note, however, that the evolved TMD PDF, eq. (2.37), can become negative at large values of transverse
momentum. The same holds true for TMD FFs.
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Accuracy H and C K and γF γK PDF and αs evolution FF evolution
NLL 0 1 2 LO LO
N2LL 1 2 3 NLO NLO
N3LL− 2 3 4 NNLO NLO
N3LL 2 3 4 NNLO NNLO

Table 1. Truncation orders in the expansions of the perturbative ingredients of TMDs relevant to
the logarithmic counting considered in this paper (see text). The last column refers to the order
used for the evolution of the collinear FFs.

weighted Gaussians. The details of the functional dependence predicted by the models are
related to the correlation between the spin of the quarks and their transverse momentum.
In the case of fragmentaton functions, a different role can be played by different producton
channels (e.g., direct production vs. production through the decay of hadronic resonances).

Finally, for the logarithmic ordering we use the same convention adopted in ref. [7]. In
particular, the orders of truncation of the perturbative ingredients relevant to the present
analysis are summarized in table 1. At the time of this analysis, the full N3LL accuracy
could not be achieved because NNLO collinear FFs were not available. Very recently, two
analyses of collinear FFs were presented in refs. [28, 29] making an extraction of TMDs at
full N3LL possible. We leave this study to a future pubblication.

2.4 Normalization factors for SIDIS

In ref. [5] it was demonstrated that TMD factorization at NLL accuracy is able to suc-
cessfully reproduce the normalization and shape of HERMES SIDIS multiplicities and the
shape of the available COMPASS multiplicities. More recently, the COMPASS collabora-
tion published a reanalysis of their data [68]. The NLL TMD predictions correctly repro-
duce normalization and shape of the new data [69]. However, when increasing the accuracy
to N2LL or higher, the TMD formula severely underestimates the measurements [69, 70]
by nearly constant factors in each bin. Note that tensions between the TMD cross sections
and the associated measurements exist also at large transverse momentum in SIDIS [48],
DY [71], and electron-positron annihilation into two hadrons [72].

In the present study, as will be shown in section 4, we confirm that we obtain an
excellent description of both normalization and shape of the SIDIS multiplicities at NLL
and that the N2LL results are much smaller. At N3LL the results increase slightly, but
they are still far from the NLL ones and, therefore, from data. At average kinematics of
the COMPASS measurements, we obtain the following ratios of multiplicities:

MNLL
MN2LL

& 2, MNLL
MN3LL

& 1.5. (2.42)

The reason for the difference between the logarithmic orders is almost entirely due to
the hard factor in eq. (2.25) [34]. If we look at the explicit expression for the hard factor8

8There are different definitions for the hard factor in the literature, which are compensated by different
definitions of the matching coefficients C in eq. (2.35). Here we follow the definition of ref. [34].
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with the standard choice µ = Q

HSIDIS(Q,Q) = 1 + αs(Q)
4π CF

(
− 16 + π2

3

)
, (2.43)

we can immediately see that just by introducing O(αs) corrections, at Q = 2GeV with
αs ≈ 0.3, we reduce the structure function to about 60% of its original value. This change
is not compensated by a similar reduction in the denominator of eq. (2.27): the differences
between the LO and NLO expressions of the inclusive DIS cross section are typically below
5% and the NLO results are actually larger than the LO ones.

If the NLL expression is much larger than the N2LL and N3LL ones, we may suspect
that it should overshoot the data by a factor 1.5 at least. However, several works before the
present one have shown a good agreement with data using a parton-model approach [15, 16]
or at NLL [17, 18]. Moreover, the integral of the structure function over qT is equal to the
value of its Fourier transform at bT = 0. Using any b∗ prescription with bmin = 2e−γE/Q,
the integral of the NLL expression by construction corresponds to the LO expression of the
collinear SIDIS structure function, independent of the TMD nonperturbative parameters:9

ˆ
d2qT FUU,T

(
x, z, |qT |, Q

)
= x

∑
a

e2
aHSIDIS(Q,Q)

(
f̂a1 (x, b2

T ;Q,Q2) D̂a→h
1 (z, b2

T ;Q,Q2)
)∣∣∣∣
|bT |=0

NLL= x
∑
a

e2
a f

a
1 (x;Q)Da→h

1 (z;Q).

(2.44)

The LO collinear SIDIS predictions are known to describe the data reasonably well
and, if anything, they seem to be lower than the data [73, 74]. Therefore, the integral of
our NLL expression is in good agreement with data, which also indicates the absence of a
large normalization error.

If the NLL predictions describe the data well and are a factor 2 or 1.5 above the N2LL
and N3LL predictions, we propose to modify the normalization of the latter to recover a
good agreement with data. An extended discussion of this issue can be found in ref. [69].
We observe that the integral of the TMD formula, valid at low qT , should reproduce only
part of the full collinear cross section. The only exception is the order O(α0

s) case, as we
have seen above, since at that order there is no contribution from gluon radiation at high
transverse momentum, beyond the TMD region.

However, at N2LL or higher, in the kinematics of fixed-target SIDIS experiments, the
integral of the TMD region (i.e., the integral of the so-called W term in the language
of ref. [6]) is much smaller than the corresponding collinear cross section. The missing
contribution to the integral should be recovered by the terms in the fixed-order calculation
that are not included in the TMD resummed expression (the so-called Y term). Ideally, the
Y term should be negligible in the low-qT region. This is not the case in the experimental
regions under consideration: the Y term is finite but relatively large, even at qT = 0.

9Note that in the absence of a bmin prescription, the integral would vanish.
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If we consider the contribution to the integral of the W term (i.e., the integral of
eq. (2.23)), with our bmin prescription, at order αs we obtain, schematically
ˆ
d2qT W

∣∣∣∣
O(αs)

= σ0
αs
4π
∑
q

e2
q

[
Dq→h

1 ⊗ CqqTMD ⊗ f
q
1 +Dq→h

1 ⊗ CqgTMD ⊗ f
g
1 +Dg→h

1 ⊗ CgqTMD ⊗ f
q
1

]
(x, z,Q),

(2.45)

where
σ0 = 4π2 α2 z2 |qT |

xQ3 Y+. (2.46)

The double convolution over both x and z is defined as[
Da→h

1 ⊗Cab⊗f b1
]
(x, z,Q) = 1

z2

ˆ 1

x

dx′

x′

ˆ 1

z

dz′

z′
Da→h

1 (z′;Q)Cab
( x
x′
,
z

z′

)
f b1(x′;Q) (2.47)

and the CTMD coefficients can be found in appendix A.
The integral in eq. (2.45) should be compared to the collinear expression at the same

order (see, e.g., ref. [75])

dσSIDIS

dxdQdz

∣∣∣∣
O(αs)

= σ0
αs
4π
∑
q

e2
q

{[
Dq→h

1 ⊗ Cqq1 ⊗ f q1 +Dq→h
1 ⊗ Cqg1 ⊗ fg1 +Dg→h

1 ⊗ Cgq1 ⊗ f q1
]
(x, z,Q)

+ 1− y
1 + (1− y)2

[
Dq→h

1 ⊗ CqqL ⊗ f
q
1 +Dq→h

1 ⊗ CqgL ⊗ f
g
1 +Dg→h

1 ⊗ CgqL ⊗ f
q
1

]
(x, z,Q)

}
.

(2.48)

The QCD coefficients Cab1 and CabL are calculated in perturbation theory. The former can
be written as

Cab1 (x, z;Q,µ) = Cabnomix(x, z,Q, µ) + Cabmix(x, z). (2.49)

The coefficient Cnomix is the sum of all those terms that contain either a δ(1 − x) or a
δ(1− z) (or both). Some of these terms are present in CTMD, but not all. This definition
holds at all orders in αs. The CL matching coefficients, instead, only contain “mixed”
contributions. For convenience, we reproduce all coefficients at order αs in appendix A.

In order to increase the size of the TMD component, we consider the contribution of
all the “nonmixed” terms Cnomix. The reason behind this choice is that it might be possible
to include such terms into a redefinition of the individual TMDs. Hence, we define

dσnomix

dxdQdz

∣∣∣∣
O(αs)

= σ0
αs
4π
∑
q

e2
q

[
Dq→h

1 ⊗Cqqnomix ⊗ f q1 +Dq→h
1 ⊗Cqgnomix ⊗ fg1 +Dg→h

1 ⊗Cgqnomix ⊗ f q1
]
(x, z,Q),

(2.50)
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and similarly for higher orders, and we introduce the following normalization factor:

ω(x, z,Q) = dσnomix

dx dz dQ

/ ˆ
d2qT W . (2.51)

We stress that these normalization factors depend only on the collinear PDFs and FFs, are
independent of the parametrization of the nonperturbative part of the TMDs, and can be
computed before performing a fit of the latter.

At NLL, ω(x, z,Q) = 1. Beyond NLL, the prefactor becomes larger than one and
guarantees that the integral of the TMD part of the cross section reproduces most of the
collinear cross section, as suggested by the data. On the contrary, without the enhancement
due to the normalization factor, the integral of the TMD part of the cross section would
be too small, requiring a large role of the high-transverse-momentum tail, which is not
observed in the data. The impact of the normalization factor defined in eq. (2.51) will be
addressed in detail in section 4.

As a consequence of our procedure, the theoretical expression for the SIDIS cross
section in eq. (2.23) becomes

dσSIDIS
ω

dx dz d|qT | dQ
= ω(x, z,Q) dσSIDIS

dx dz d|qT | dQ
. (2.52)

3 Data selection

In this section we describe the experimental data included in our global analysis. We
consider a large number of datasets related to DY lepton pair production and SIDIS, for
the observables discussed in section 2.1 and section 2.2. The coverage in the x-Q2 plane
spanned by these datasets is illustrated in figure 3.

The majority of datasets analyzed in the present work was already included in the
global analysis of SIDIS and DY data in ref. [5] and in the fit of DY data discussed in
ref. [7]. For more details, we refer the reader to those references. The new datasets
included in the present analysis are:

• DY di-muon production from the collision of a proton beam with an energy of 800GeV
on a 2H fixed target from E772 (

√
s = 38.8GeV) [76];

• DY di-muon production from the PHENIX Collaboration [77];

• DY data at 13TeV from the CMS Collaboration [78] and the ATLAS Collabora-
tion [79].

3.1 Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | � Q.
Therefore, in agreement with the choices of refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (3.1)
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Figure 3. The x vs. Q2 coverage spanned by the experimental data considered in this analysis (see
also table 2 and table 3).

Table 2 summarizes all the DY datasets included in our analysis. For some DY datasets
the experimental observable is given within a fiducial region. This means that kinematic
cuts on transverse momentum pT` and pseudo-rapidity η` of the single final-state leptons
are enforced (values reported in the next-to-last column of table 2). For more details we
refer the reader to ref. [7]. The second column of table 2 reports, for each experiment, the
number of data points (Ndat) that survive the kinematic cuts. The total number of DY
data points considered in this work is 484. Note that for E605 and E288 at 400GeV we
have excluded the bin in Q containing the Υ resonance (Q ' 9.5GeV).

As can be seen in table 2, the cross sections are released in different forms: some of them
are normalized to the total (fiducial) cross section while others are not. When necessary,
the required total cross section σ is computed using the code DYNNLO [35, 36] with the
MMHT14 collinear PDF set, consistently with the perturbative order of the differential
cross section (see also table 1). More precisely, the total cross section is computed at NLO
for NNLL accuracy, and NNLO for N3LL− accuracy. The values of the total cross sections
at different orders can be found in table 3 of ref. [7]. For the ATLAS dataset at 13TeV,
the value of the fiducial cross section is 694.3 pb at NLO and 707.3 pb at NNLO.

3.2 SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to
revision as new data appears and the theoretical description is improved, as discussed in
dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect
the condition Q� ΛQCD needed for perturbation theory to be applicable. In this way also
mass corrections and higher twist corrections can be neglected. In this work, we require
that Q > 1.4GeV. Studies of SIDIS in collinear kinematics employ similar cuts [29, 96].
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Experiment Ndat Observable
√
s [GeV] Q [GeV] y or xF Lepton cuts Ref.

E605 50 Ed3σ/d3q 38.8 7 - 18 xF = 0.1 - [80]
E772 53 Ed3σ/d3q 38.8 5 - 15 0.1 < xF < 0.3 - [76]

E288 200GeV 30 Ed3σ/d3q 19.4 4 - 9 y = 0.40 - [81]
E288 300GeV 39 Ed3σ/d3q 23.8 4 - 12 y = 0.21 - [81]
E288 400GeV 61 Ed3σ/d3q 27.4 5 - 14 y = 0.03 - [81]

STAR 510 7 dσ/d|qT | 510 73 - 114 |y| < 1 pT` > 25GeV
|η`| < 1

-

PHENIX200 2 dσ/d|qT | 200 4.8 - 8.2 1.2 < y < 2.2 - [77]
CDF Run I 25 dσ/d|qT | 1800 66 - 116 Inclusive - [82]
CDF Run II 26 dσ/d|qT | 1960 66 - 116 Inclusive - [83]
D0 Run I 12 dσ/d|qT | 1800 75 - 105 Inclusive - [84]
D0 Run II 5 (1/σ)dσ/d|qT | 1960 70 - 110 Inclusive - [85]

D0 Run II (µ) 3 (1/σ)dσ/d|qT | 1960 65 - 115 |y| < 1.7 pT` > 15GeV
|η`| < 1.7

[86]

LHCb 7TeV 7 dσ/d|qT | 7000 60 - 120 2 < y < 4.5 pT` > 20GeV
2 < η` < 4.5

[87]

LHCb 8TeV 7 dσ/d|qT | 8000 60 - 120 2 < y < 4.5 pT` > 20GeV
2 < η` < 4.5

[88]

LHCb 13TeV 7 dσ/d|qT | 13000 60 - 120 2 < y < 4.5 pT` > 20GeV
2 < η` < 4.5

[89]

CMS 7TeV 4 (1/σ)dσ/d|qT | 7000 60 - 120 |y| < 2.1 pT` > 20GeV
|η`| < 2.1

[90]

CMS 8TeV 4 (1/σ)dσ/d|qT | 8000 60 - 120 |y| < 2.1 pT` > 15GeV
|η`| < 2.1

[91]

CMS 13TeV 70 dσ/d|qT | 13000 76 - 106

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2.4

pT` > 25GeV
|η`| < 2.4

[78]

ATLAS 7TeV
6
6
6

(1/σ)dσ/d|qT | 7000 66 - 116
|y| < 1

1 < |y| < 2
2 < |y| < 2.4

pT` > 20GeV
|η`| < 2.4

[92]

ATLAS 8TeV
on-peak

6
6
6
6
6
6

(1/σ)dσ/d|qT | 8000 66 - 116

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

pT` > 20GeV
|η`| < 2.4

[93]

ATLAS 8TeV
off-peak

4
8

(1/σ)dσ/d|qT | 8000 46 - 66
116 - 150

|y| < 2.4 pT` > 20GeV
|η`| < 2.4

[93]

ATLAS 13TeV 6 (1/σ)dσ/d|qT | 13000 66 - 113 |y| < 2.5 pT` > 27GeV
|η`| < 2.5

[79]

Total 484

Table 2. Breakdown of the DY datasets considered in this analysis. For each dataset, the table
includes information on: the number of data points (Ndat) that survive the nominal cut on |qT |
(see eq. (3.1)), the observable delivered, the center-of-mass energy

√
s, the range(s) in invariant

mass Q, the angular variable (either y or xF ), possible cuts on the single final-state leptons, and
the published reference (when available). The total number of DY data points amounts to 484.
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Experiment Ndat Observable Channels Q [GeV] x z Phase space cuts Ref.

HERMES 344 M(x, z, |PhT |, Q)

p→ π+

p→ π−

p→ K+

p→ K−

d→ π+

d→ π−

d→ K+

d→ K−

1 -
√

15 0.023 < x < 0.6
(6 bins)

0.1 < z < 1.1
(8 bins)

W 2 > 10GeV2

0.1 < y < 0.85 [74]

COMPASS 1203 M(x, z,P 2
hT , Q) d→ h+

d→ h−
1 - 9

(5 bins)
0.003 < x < 0.4

(8 bins)
0.2 < z < 0.8

(4 bins)
W 2 > 25GeV2

0.1 < y < 0.9 [68]

Total 1547

Table 3. Breakdown of the SIDIS datasets included in this analysis. For each dataset, the table
includes information on: the number of data points (Ndat) surviving the nominal cut on |PhT |, the
observable delivered, the SIDIS channel, the range(s) in photon invariant mass Q, the ranges in the
kinematic variables x and z, possible cuts on the single final-state lepton, and the public reference
(when available). The total number of SIDIS data points amounts to 1547.

In order to restrict ourselves to the SIDIS current fragmentation region and interpret
the observables in terms of parton distribution and fragmentation functions, we apply a
cut in the kinematic variable z by requiring 0.2 < z < 0.7. The lower limit is the same
used in the study of collinear fragmentation functions [29, 96]. We used a slightly more
restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
[
min[c1Q, c2 zQ] + c3 GeV, zQ

]
, (3.2)

with fixed parameters c1 = 0.2, c2 = 0.5 and c3 = 0.3. This choice is more restrictive than
a similar one made in ref. [5], but less restrictive than the one made in ref. [22]. It allows
for many data points with |PhT | � Q but also with 0.2Q < |qT | < Q. In section 4, we
will discuss variations of the baseline SIDIS cut in eq. (3.2) that give phenomenological
support to our choice.

As for the datasets included in the present analysis, the main difference with ref. [5] is
that we include the new release of COMPASS data [68]. In this dataset, the vector-boson
contributions have been subtracted. For the HERMES dataset we consistently select the
vector-meson-subtracted dataset (.vmsub set). Moreover, we select the zxpt-3D-binning
for HERMES multiplicities, since it presents a finer binning in |PhT |. The breakdown of
the entire SIDIS dataset included in the present analysis is reported in table 3.

The second column of table 3 shows the number of data points (Ndat) that respect the
kinematic cuts for each dataset, with a total number of 1547 data points.

In conclusion, the total number of DY and SIDIS data points surviving our kinematic
cuts is 2031.
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3.3 Error treatment

The considered experimental datasets are released with a set of systematic and statistical
uncertainties. As already pointed out in ref. [7], a proper treatment of the experimental
uncertainties is extremely important in order to obtain a reliable extraction of TMDs. Thus,
we choose to treat systematic uncertainties as fully correlated only if, in the corresponding
publication, it is explicitly specified that they are correlated. The statistical uncertainties,
instead, are always considered as uncorrelated.

At variance with ref. [7], in this analysis we do not make use of the iterative t0-
prescription [97] for the treatment of correlated normalization uncertainties. This prescrip-
tion is usually introduced to avoid the underestimation of the predictions caused by the
so-called D’Agostini bias [98]. After performing the fit with and without the t0-prescription,
we found that our analysis is not affected by the D’Agostini bias and therefore we saw no
reason to introduce the t0-prescription in the computation of the χ2.

On top of experimental systematic uncertainties, there can be several sources of system-
atic theoretical errors. The first one comes from the choice of the underlying collinear par-
ton distribution and fragmentation functions. In our case we choose the MMHT2014 [99]
collinear PDFs and the DSS collinear FFs. Since the HERMES collaboration provides
multiplicities for pions and kaons separately (see table 3), we use DSS14 [100] for π± and
DSS17 [96] for K±. Given the nature of the PDF and FF set used in this analysis, their
uncertainties are computed using the Hessian method [100–102]. We observed that PDF
and FF uncertainties are significantly correlated across bins. In order to account for this
correlation, we decomposed the corresponding uncertainties into a fully correlated part
that amounts to 80% of the total, while we treated the remaining 60% as uncorrelated.10

Moreover, for the observables measured by COMPASS one needs a collinear set of
FFs for unidentified charged hadrons. Since the dedicated DSS07 FF set for unidentified
charged hadrons [103] does not provide an estimate of the uncertainties, we computed
the COMPASS multiplicities by using the sum of the DSS14 and DSS17 sets for pions
and kaons.11 The associated uncertainty is calculated by propagating to the multiplicity
the Hessian errors associated to each of the two hadronic component. As pointed out
in ref. [22], the choice of specific sets for the collinear distributions may have a sizeable
impact on the final result. In our analysis, we did not consider alternative collinear sets
and postpone this study to a future publication. Likewise, we leave for future work the
study of other sources of theoretical uncertainties such as higher-twist corrections, TMD
flavor dependence and the choice of the perturbative scales.

10Notice that, using this decomposition, the sum in quadrature of correlated and uncorrelated parts
reproduce the original uncertainties.

11We thus assumed that the yield due to other hadronic species, such as protons, Λ, etc., is negligible as
compared to the sum of kaons and pions. As argued in ref. [104], the contribution to the total yield due to
hadrons heavier that pions and kaons is indeed marginal.
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4 Results

In this section, we present the results obtained for the extraction of unpolarized quark
TMDs from a global analysis including both DY and SIDIS data (see section 3). This work
represents an important upgrade with respect to ref. [7]. In fact, in the SIDIS process a
single hadron is measured in the final state, allowing us to extract information about frag-
mentation functions. Therefore, the final result of this work is the simultaneous extraction
of both TMD PDFs and FFs at N3LL−. At the moment, this is the most precise extraction
of TMDs that has been achieved on more than two thousand data points. In section 4.1
we present the quality of the fit, in section 4.2 we discuss the extracted TMD distributions,
and in section 4.3 we investigate the effect of variations on the baseline fit configuration.

4.1 Fit quality

In this section, we discuss the quality of the baseline fit performed at N3LL− imposing the
cuts on |qT |/Q as discussed in section 3. The error analysis is performed with the so-called
bootstrap method, which consists in fitting an ensemble of 250 Monte Carlo replicas of the
experimental data (see ref. [5] for more details).

The most complete statistical information about the TMDs is given by the full ensemble
of 250 replicas. For some purposes, however, it is useful to define a single, representative
result instead of the full replica ensemble. In order to estimate the quality of our fit, the
most appropriate indicator is the χ2 value of the best fit to the central (not fluctuated)
experimental data (χ2

0). We refer to this fit as the “central replica.”
It is possible to analyze also the average of the χ2 over all replicas (〈χ2〉) as well as the

χ2 of the mean replica (χ2
m), constructed as the average of all replicas [7]. These values

should be very close to each other.
Table 4 reports the breakdown of the χ2

0 values normalized to the number of data
points (Ndat) for DY and SIDIS datasets. As already discussed in ref. [7], in the presence
of bin-by-bin correlated uncertainties the total χ2 can be expressed as the sum of two
contributions

χ2 =
N∑
i

(
expi − thi

σi

)2

+ χ2
λ = χ2

D + χ2
λ , (4.1)

where χ2
D is given by the standard formula for N experimental data points expi and sta-

tistical and uncorrelated uncertainties σ2
i = σ2

i,stat + σ2
i,uncor, but involving theoretical pre-

dictions shifted by the correlated uncertainties,

thi = thi +
k∑

α=1
λα σ

(α)
i,corr , (4.2)

where σ(α)
i,corr is the α-th (100%) correlated uncertainty associated with the i-th experimental

data point and λα is the so-called nuisance parameter. In eq. (4.1), the χ2
λ is a penalty

term due to the presence of correlated uncertainties and is completely determined by the
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nuisance parameters,

χ2
λ =

k∑
α=1

λ2
α . (4.3)

The optimal value of the nuisance parameters is obtained by minimizing the total χ2 in
eq. (4.1) with respect to them. Because the shifted predictions in eq. (4.2) provide a better
visual assessment of the fit quality, we will consistently display them for all observables
used in the fit.

From table 4, the global χ2
0 value is 1.06, indicating that the description of the whole

dataset is very good.12 This means that the fit is able to simultaneously describe experi-
mental data coming from two different processes over a wide kinematic range. As can be
seen in tables 2 and 3, the low-energy dataset comes from fixed-target DY experiments and
SIDIS observables, while the high-energy dataset comes from collider experiments at the
LHC and Tevatron at energies higher by more than two orders of magnitude.

It is important to notice that the correlated penalty term χ2
λ gives a significant contri-

bution to the total χ2
0 value. This means that the shifts induced by correlated uncertainties

are often large. The χ2
λ/Ndat = 0.29 obtained in this analysis is larger than the one in

ref. [7], mainly because of the different treatment of the theoretical uncertainties related
to collinear PDFs and FFs, which are considered here as 80% correlated.

4.1.1 SIDIS

For HERMES and COMPASS multiplicities, which represent about 75% of the total num-
ber of data points considered in this work, the description obtained by our global analysis
is very good. From table 4, the values of χ2

0/Ndat are almost always smaller than 1.
In the case of HERMES multiplicities, we note that the largest contribution to the χ2

0
comes from the π+ channel, for both proton and deuteron targets. This result is consistent
with the findings in both refs. [5, 15] and [22]. Since kaon multiplicities are affected by
larger statistical errors, and the collinear FFs for kaons display large uncertainties, the
corresponding χ2

0 value is lower.
The comparison between theoretical results for the SIDIS multiplicities of eq. (2.30)

and HERMES data for the production of charged pions and kaons off a deuteron target
is shown in figure 4. Each column corresponds to a specific x bin. Each row corresponds
to a specific final-state channel. The results are displayed as functions of the transverse
momentum |PhT | of the measured final-state hadron. Points with different markers and
colors correspond to different representative z bins, and are offset for a better visualization
as indicated in the plot legend. The light blue rectangles are the theoretical results and
correspond to the 68% Confidence-Level (CL) band (namely excluding the largest and
smallest 16% of the replicas).

We note that for K− production the central column, corresponding to the 0.2 < x <

0.35 bin, does not include the magenta points for the highest 0.6 < z < 0.8 bin because
of the kinematic cut in z. Similarly, in all panels there are only three green points (for
the lowest z bin) because of the z-dependent cut in eq. (3.2), which leads to the exclusion

12We also obtain 〈χ2〉 = 1.08± 0.01 and χ2
m = 1.07.
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N3LL−

Data set Ndat χ2
D χ2

λ χ2
0

CDF Run I 25 0.45 0.09 0.54
CDF Run II 26 0.995 0.004 1.0
D0 Run I 12 0.67 0.01 0.68
D0 Run II 5 0.89 0.21 1.10
D0 Run II (µ) 3 3.96 0.28 4.2
Tevatron total 71 0.87 0.06 0.93
LHCb 7TeV 7 1.24 0.49 1.73
LHCb 8TeV 7 0.78 0.36 1.14
LHCb 13TeV 7 1.42 0.06 1.48
LHCb total 21 1.15 0.3 1.45
ATLAS 7TeV 18 6.43 0.92 7.35
ATLAS 8TeV 48 3.7 0.32 4.02
ATLAS 13TeV 6 5.9 0.5 6.4
ATLAS total 72 4.56 0.48 5.05
CMS 7TeV 4 2.21 0.10 2.31
CMS 8TeV 4 1.938 0.001 1.94
CMS 13TeV 70 0.36 0.02 0.37
CMS total 78 0.53 0.02 0.55
PHENIX 200 2 2.21 0.88 3.08
STAR 510 7 1.05 0.10 1.15

DY collider total 251 1.86 0.2 2.06

E288 200GeV 30 0.35 0.19 0.54
E288 300GeV 39 0.33 0.09 0.42
E288 400GeV 61 0.5 0.11 0.61
E772 53 1.52 1.03 2.56
E605 50 1.26 0.44 1.7

DY fixed-target total 233 0.85 0.4 1.24

HERMES (p→ π+) 45 0.86 0.42 1.28
HERMES (p→ π−) 45 0.61 0.31 0.92
HERMES (p→ K+) 45 0.49 0.04 0.53
HERMES (p→ K−) 37 0.18 0.13 0.31
HERMES (d→ π+) 41 0.68 0.45 1.13
HERMES (d→ π−) 45 0.63 0.35 0.97
HERMES (d→ K+) 45 0.2 0.02 0.22
HERMES (d→ K−) 41 0.14 0.08 0.22
HERMES total 344 0.48 0.23 0.71
COMPASS (d→ h+) 602 0.55 0.31 0.86
COMPASS (d→ h−) 601 0.68 0.3 0.98
COMPASS total 1203 0.62 0.3 0.92

SIDIS total 1547 0.59 0.28 0.87

Total 2031 0.77 0.29 1.06

Table 4. Breakdown of the values of χ2 normalized to the number of data points Ndat that survive
the kinematic cuts for all datasets considered in our baseline fit. The χ2

D refers to uncorrelated
uncertainties, χ2

λ is the penalty term due to correlated uncertainties (see eq. (4.1)), χ2
0 is the sum

of χ2
D and χ2

λ. All χ2 values refer to the central replica (see text).
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Figure 4. Comparison between data and theoretical predictions for the HERMES multiplicities
for the production of charged pions and kaons off a deuteron target for different x and z bins as
a function of the transverse momentum |PhT | of the final-state hadron. For better visualization,
each z bin is shifted by the indicated offset.
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Figure 5. Same conventions and notation as in previous figure but for charged pions and kaons
off proton target.

of a larger number of |qT | bins at lower values of z. The theoretical results display larger
uncertainties for K− production (second row) because of the combined effect of larger
experimental errors and larger uncertainties in the kaon collinear FFs.
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Figure 5 refers to the same HERMES multiplicities with same conventions and notation
as in figure 4 but off a proton target. We remark that for K− production the kinematic
cuts have a more drastic effect because the magenta points for the |PhT | distributions at
the largest z bin are excluded for the two largest x bins considered (central and rightmost
panels of second row from top).

In figure 6, we show the result of our fit for the COMPASS SIDIS multiplicities for the
production of unidentified negatively charged hadrons off a deuteron target. For each Q and
x bin, each panel displays the multiplicity on a logarithmic scale as a function of P 2

hT /Q
2.

Again, points with different markers and colors correspond to different representative z
bins, as indicated in the plot legend. As before, the light-blue rectangles correspond to
the 68% CL theoretical results. The results for unidentified negatively charged hadrons
h− are obtained by simply adding the results for negatively charged pions and kaons,
h− ∼ π− +K−.

We note that the agreement is good for almost all bins, which is reflected in small
χ2

0 values in table 4. The situation worsens for the lowest Q bin (1.3 < Q < 1.73GeV),
particularly for x & 0.02. We also remark that for some Q and x bins the theoretical
uncertainties for the largest z bin compatible with our kinematic cuts (0.6 < z < 0.8)
are significantly larger than for other z bins because of much larger uncertainties in the
collinear FFs. Finally, looking at the table of panels from top to bottom, we realize that
the lowest z-bin distributions (red diamonds) are present only for the largest Q bins, and
vice-versa, because of the kinematic cut in eq. (3.2)

Figure 7 refers to the same COMPASS multiplicities with same conventions and nota-
tion as in figure 6 but for unidentified positively charged hadrons h+. Again, the light-blue
rectangles correspond to the 68% CL theoretical results, and are obtained by adding the
results for positively charged pions and kaons, h+ ∼ π+ + K+. Comments similar to
figure 6 can be made about the agreement between data and theory.

4.1.2 Drell-Yan

DY data represents approximately 25% of the full set of analyzed data. From table 4 it
is evident that most of low-energy DY data from fixed-target experiments (E605, E288,
E772), but also from PHENIX and STAR, can be fitted with low χ2 values, much lower
than high-energy DY data from collider experiments like, e.g., those at the LHC. As already
pointed out in ref. [7], this most likely originates from the fact that low-energy DY data are
affected by larger errors and collinear PDFs at these kinematics have larger uncertainties.

From table 4, we also note that the quality of our fit for the ATLAS datasets is poor.
In particular, the description worsens for the first two low-rapidity bins of both ATLAS
7TeV and ATLAS 8TeV datasets, the worst case being at |y| < 1 for ATLAS 7TeV.
Several effects might be responsible for this result. Since the experimental observable is
a normalized cross section, systematic errors cancel in the ratio producing measurements
with very small error bars. Fitting these data is very difficult, also because small theoretical
effects can give significant contributions to the χ2. Moreover, different implementations of
phase-space cuts on the final-state leptons could lead to modifications in both the shape
and the normalization of the theoretical observable (see, e.g., refs. [32, 105, 106]). We
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Figure 6. Comparison between data and theoretical predictions for the COMPASS multiplicities
for the production of negatively charged hadrons off a deuteron target. For each Q, x bin, the
multiplicities are displayed as functions of P 2
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2 for different z bins surviving kinematic cuts, as

indicated in the legend.
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Figure 7. Same conventions and notation as in previous figure but for unidentified positively
charged hadrons off deuteron target.
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Figure 8. Upper panel: comparison between data and theoretical predictions for the DY cross
section differential in |qT | for the E288 dataset at Ebeam = 200GeV for different Q bins; uncertainty
bands correspond to the 68% CL. Lower panel: ratio between experimental data and theoretical
cross section.

leave this issue for future studies. At variance with ref. [22], we obtain our results without
excluding any extra data points on top of the ones exceeding the maximum value of |qT |/Q
in eq. (3.1).

It is interesting to comment the results of the fit for those datasets that were not
included in the previous analysis of ref. [7] (see section 3). For E772, we are able to obtain
a good description only for data points above the peak of the Υ resonance. For Q < 9GeV,
the quality of the fit worsens. At variance with ref. [22], we keep the Q < 9GeV bins
because there is no evident motivation to exclude them.

The new CMS dataset at
√
s = 13TeV is important because it extends the kinematic

coverage considered in ref. [7]. This dataset is very nicely described, even better than the
ones at the smaller center-of-mass energies

√
s = 7, 8TeV. This is probably due to the fact

that the CMS 13TeV dataset is densely binned in rapidity.
In order to visualize the quality of our fit, in figures 8–11 we present the comparison

between experimental data and theoretical results for a representative selection of the DY
dataset. In the upper panels of each plot, we display the cross section differential in |qT |,
while in the lower panels we show the ratio of data to theory. As for the SIDIS case, the
light-blue bands are the 68% CL theoretical results.

Figure 8 displays the DY cross section for the E288 dataset at beam energy Ebeam =
200GeV for different bins in Q. For DY fixed-target observables, we calculate the cross
section at mean values of |qT | (not integrating upon the bin limits). Hence, we display
the 68% CL uncertainty as a band rather than a series of rectangles. We remark that
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Figure 9. Upper panels: comparison between experimental data and theoretical predictions for
the cross section differential in |qT | for Z bosons produced in pp̄ collisions at the Tevatron from
CDF Run I (left panel) and run II (right panel); uncertainty bands correspond to the 68% CL.
Lower panel: ratio between experimental data and theoretical results.

the uncertainty band is larger for lower Q bins; this trend is induced by larger correlated
uncertainties for smaller invariant masses of the lepton pair.

In figure 9, we compare the theoretical results for the cross section for DY in pp̄

collisions at the Tevatron. Black data points in the left panel correspond to the results of
Run I of the CDF experiment, while in the right panel the results for Run II are reported.
The lower panels show the corresponding ratio of experimental data to theoretical results.
The latter are displayed as light-blue rectangles, each one corresponding to the integral of
the cross section within the corresponding bin limits. The size of the rectangle is given by
the 68% CL. The quality of the fit for CDF data is comparable to the one in ref. [7].

In figure 10, we compare the theoretical results for the DY cross section in pp collisions
at the LHC. From left to right, the black data points refer to the measurements by the
CMS Collaboration at increasing

√
s = 7, 8, 13TeV. For

√
s = 7, 8TeV, the results are

normalized to the fiducial cross section. As in previous figures, the lower panels display
the ratio of experimental data to the 68% CL theoretical results. For

√
s = 7, 8TeV, the

quality of the fit is comparable to that in ref. [7]. For the new dataset at
√
s = 13TeV, the

agreement in the displayed rapidity bin is excellent, but remains very good also for higher
rapidities.

In figure 11, we compare the theoretical results for the DY cross section in pp collisions
normalized to the fiducial cross section for the ATLAS data at

√
s = 7TeV. From left to

right, we consider three representative bins at increasing rapidity |y|. The leftmost one
corresponds to the worst described bin in our global fit, with χ2/Ndata = 13.5. As in
previous figures, the lower part of each panel displays the ratio of experimental data to the
68% CL theoretical results. The quality of the fit increases at more forward rapidities (from
left to right). The same trend is observed at

√
s = 8TeV, but not for CMS at 13TeV.

4.2 TMD distributions

We now discuss the TMD distributions extracted from our baseline fit with N3LL− ac-
curacy. Table 5 displays the list of our 21 fitting parameters with their mean value and
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Figure 10. Same as in previous figure but for Z boson production in pp collisions measured by
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√
s = 7, 8, 13TeV, respectively. For
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7, 8TeV, the results are normalized to the fiducial cross section.
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Figure 11. Same as in the left and central panels of previous figure, but for ATLAS kinematics
at
√
s = 7TeV. From left to right, results at increasing rapidity.

standard deviation. The majority of the parameters is well constrained. The only param-
eter that is compatible with zero is γ2.

The λ parameter measures the relative weight of the first Gaussian and the weighted-
Gaussian in the nonperturbative part of the TMD PDF in eq. (2.38). The value of this
parameter is close to 2, indicating that the contribution of the weighted-Gaussian compo-
nent is important. In eq. (2.38), the parameter λ2 measures the relative weight of the first
Gaussian and the third Gaussian; this parameter is small but not compatible with zero,
which means that also this component of the TMD PDF is important to reach a good
description of experimental data.

Our parametrization of the nonperturbative part of TMD FFs in eq. (2.39) contains
just the combination of a Gaussian and a weighted Gaussian: this is sufficient to describe
the data in an accurate way.
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Parameter Average over replicas
g2 [GeV] 0.248 ± 0.008
N1 [GeV2] 0.316 ± 0.025

α1 1.29 ± 0.19
σ1 0.68 ± 0.13

λ [GeV−1] 1.82 ± 0.29
N3 [GeV2] 0.0055 ± 0.0006

β1 10.23 ± 0.29
δ1 0.0094 ± 0.0012
γ1 1.406 ± 0.084

λF [GeV−2] 0.078 ± 0.011
N3B [GeV2] 0.2167 ± 0.0055
N1B [GeV2] 0.134 ± 0.017
N1C [GeV2] 0.0130 ± 0.0069
λ2 [GeV−1] 0.0215 ± 0.0058

α2 4.27 ± 0.31
α3 4.27 ± 0.13
σ2 0.455 ± 0.050
σ3 12.71 ± 0.21
β2 4.17 ± 0.13
δ2 0.167 ± 0.006
γ2 0.0007 ± 0.0110

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data.

The λF parameter measures the relative weight of the two components; its value is close
to 0.1, indicating that the contribution of the weighted Gaussian is small. Nevertheless, it
has non-trivial consequences on the tail of the TMD FF, as we will show below.

The g2 parameter is a key ingredient to the extraction of the Collins-Soper kernel,
discussed in section 4.2.1. The same parameter was used in the analysis of ref. [5]. It is
interesting to observe that the value obtained in the present global fit is smaller by almost a
factor of 4 with respect to ref. [5]. This may be due to the higher theoretical accuracy of the
present analysis and to the role of the very precise high-energy Drell-Yan measurements,
which also determine the very small standard deviation of g2.

In figure 12, we show a graphical representation of the correlations among the 21
fitting parameters. Using the color code indicated in the legend, it is easy to realize that
the nondiagonal elements are very small except for some (anti–)correlation among the β1,
δ1 and γ1 parameters that control the z-dependent width of the Gaussians in the TMD FF
(see eqs. (2.39), (2.41)). The overall absence of large correlations suggests that the model
parametrization of the non perturbative parts of TMDs is appropriate.

In figure 13, we show the unpolarized TMD PDF for the up quark in the proton at
µ =

√
ζ = Q = 2GeV (left panel) and 10GeV (right panel) as a function of the quark
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Figure 12. Graphical representation of the correlation matrix for the fitted parameters.
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Figure 13. The TMD PDF of the up quark in a proton at µ =
√
ζ = Q = 2GeV (left panel) and

10GeV (right panel) as a function of the partonic transverse momentum |k⊥| for x = 0.001, 0.01
and 0.1. The uncertainty bands represent the 68% CL.

transverse momentum |k⊥| for three different values of x, namely x = 0.001, 0.01, and 0.1.
The bands correspond to the 68% CL.

The TMD seems to be wider at intermediate x = 0.01, but has also a high tail at
x = 0.001. As already mentioned, a significant role is played by the weighted Gaussian and
by the second Gaussian in eq. (2.38). This may be a sign of the presence of contributions
from different quark flavors and/or from different spin configurations (see section 2.3).

It is worth noticing that in both left and right panels the TMD PDF at x = 0.001 shows
the largest error band, particularly at low |k⊥|. This is due to the lack of experimental
points in that kinematic region (see figure 3). Future data from the Electron-Ion Collider
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Figure 14. The TMD FF for an up quark fragmenting into a π+ at µ =
√
ζ = Q = 2GeV (left

panel) and 10GeV (right panel) as a function of the hadron transverse momentum |P⊥| for z = 0.3
and 0.6. The uncertainty bands represent the 68% CL.

(EIC) are expected to play an important role in getting a better description of the TMD
PDFs at low x [107, 108].

In figure 14, we show the TMD FF for the up quark fragmenting into a π+ at µ =√
ζ = Q = 2GeV (left panel) and 10GeV (right panel) as a function of the pion transverse

momentum |P⊥| (with respect to the fragmenting quark axis) for two different values of
z = 0.3 and 0.6. As in the previous figure, the uncertainty bands correspond to the 68%
CL. In both left and right panels, an additional structure clearly emerges at intermediate
P⊥, especially at z = 0.3, which is induced by the weighted Gaussian in eq. (2.39). Further
investigations on this topic are needed, and data from electron-positron annihilations would
be valuable to better explore these features.

We stress that the error bands displayed in figures 13–14 reflect the uncertainty on
the fitted parameters (see eqs. (2.38)–(2.39)) that are determined by taking into account
the uncertainty on the collinear PDFs and FFs as discussed in section 3.3. However, since
the fits are performed using the central set of the collinear distributions, all TMD replicas
have the same integral in k⊥ (i.e., their values at bT = 0 are the same). As a consequence,
the plots in figures 13–14 only partially account for the error of the collinear distributions.

4.2.1 Collins-Soper kernel

It is interesting to study the Collins-Soper kernel [6, 109] that drives the evolution of TMDs
in terms of the rapidity scale ζ. Recent discussions of this crucial component of the TMD
formalism have been presented in refs. [110, 111] and estimates based on lattice QCD have
been proposed in refs. [112–114].

The Collins-Soper kernel, as written in eq. (2.36), is composed of two parts. The first
part can be calculated perturbatively at NkLL accuracy, and is computed at b∗:

K(b∗(|bT |), µ) =
k−1∑
n=0

(
αs(µb∗)

4π

)n+1
K(n,0) −

k∑
n=0

γ
(n)
K

ˆ µ

µb∗

dµ′

µ′

(
αs(µ′)

4π

)n+1
, (4.4)
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Figure 15. The Collins-Soper kernel as a function of |bT | at a scale µ = 2GeV from the present
analysis (MAPTMD22), compared with the PV17 [5], SV17 [20], PV19 [7], and SV19 [22] analyses.
For the MAPTMD22, PV17, and PV19 curves, the uncertainty bands represent the 68% CL. The
corresponding dashed lines show the effect of including the bmin-prescription (see text).

where K(n,0) and γ
(n)
K are coefficients of the perturbative expansion (see, e.g., ref. [34]).

Note that the integral on the r.h.s. is directly computed by means of numerical integration,
thus providing a fully resummed result. The second part, denoted as gK , cannot be com-
puted in perturbation theory and is one of the results of our fit. Only the full Collins-Soper
kernel can be compared with other works.

In figure 15, we show the Collins-Soper kernel as a function of |bT | by conventionally
keeping the scale µ fixed at 2GeV, for our present analysis (MAPTMD22, green band) and
for four other analyses in the literature [5, 7, 20, 22]. The solid lines at low |bT | follow
the perturbative result. For MAPTMD22, PV19 [7] and PV17 [5], they correspond to
setting bmin = 0 for sake of comparison with the other SV19 [22], SV17 [20] results. The
slight differences between the curves are due to the different logarithmic accuracies of the
perturbative calculations: the PV17 analysis was performed at NLL, the SV17 analysis at
N2LL, the PV19, SV19 and MAPTMD22 at N3LL. The size of the bands around the solid
lines corresponds to one standard deviation of the parameter g2 around its best-fit value.
The b∗ prescription modifies the curves starting from |bT | ≈ 1GeV−1. The behavior at
high |bT | is driven by gK and is different for the various analyses.

The dashed curves show the effect of using our prescription bmin = 2e−γE/µ ≈ 1.123/µ
in MAPTMD22, PV19 and PV17. This implies that at low |bT | the Collins-Soper kernel
saturates to a finite value, as indicated by the dashed lines. As the scale increases, this
modification occurs at lower and lower values of |bT | and becomes less relevant.

4.2.2 Average squared transverse momenta

The average squared transverse momenta 〈k2
⊥〉(x,Q), 〈P 2

⊥〉(z,Q) are calculated with the
Bessel weighting technique suggested in refs. [115, 116].
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In the case of the TMD PDF for a quark q in the proton at µ =
√
ζ = Q, one

has [115, 116]:

〈k2
⊥〉q(x,Q) =

´
d2k⊥ k

2
⊥ f

q
1 (x,k2

⊥, Q,Q
2)´

d2k⊥ f
q
1 (x,k2

⊥, Q,Q
2) = 2M2 f̂

q (1)
1 (x, |bT |, Q,Q2)

f̂ q1 (x, |bT |, Q,Q2)

∣∣∣∣
|bT |=0

, (4.5)

where the Fourier transform f̂ q1 of the TMD PDF has been defined in eq. (2.5) and the
first Bessel moment of the TMD PDF f̂

q (1)
1 is defined as [115]:

f̂
q (1)
1 (x, |bT |, Q,Q2) = 2π

M2

ˆ +∞

0
d|k⊥|

k2
⊥
|bT |

J1
(|k⊥||bT |) f q1 (x,k2

⊥, Q,Q
2)

= − 2
M2

∂

∂b2
T

f̂ q1 (x, |bT |, Q,Q2) .
(4.6)

In order to obtain meaningful values for the average squared transverse momenta, i.e.,
finite, positive, and not dominated by the perturbative tails of the TMDs, we shift the value
of |bT | from 0 to a value well inside the nonperturbative region [116]. In this way the Bessel
functions J0,1 tame the power-law behavior of the TMD at large transverse momentum.
The choice of the specific value for |bT | is of course arbitrary and has a significant effect
on the associated numerical values. We choose |bT | = 1.5 bmax that guarantees that the
average squared transverse momenta are positive across the x, Q values considered in the
fit. Accordingly, eq. (4.6) becomes:

〈k2
⊥〉qr(x,Q) = 2M2 f̂

q (1)
1 (x, |bT |, Q,Q2)

f̂ q1 (x, |bT |, Q,Q2)

∣∣∣∣
|bT |=1.5 bmax

, (4.7)

where the subscript r stands for regularized. We have checked that the results are consistent
when choosing either the integral or differential expressions in eq. (4.6).

The same arguments apply to the regularized average squared transverse momentum
produced during the hadronization of the quark q into the final state hadron h [42, 115, 116]:

〈P 2
⊥〉q→hr (z,Q) = 2 z2M2

h D̂
q→h (1)
1 (z, |bT |, Q,Q2)

D̂q→h
1 (z, |bT |, Q,Q2)

∣∣∣∣
|bT |=1.5 bmax

, (4.8)

where the Fourier transform D̂q→h
1 of the TMD FF is defined in eq. (2.26) and the first

Bessel moment of the TMD FF D̂
q→h (1)
1 is defined as [42]:

D̂
q→h (1)
1 (z, |bT |, Q,Q2) = 2π

M2
h

ˆ +∞

0

d|P⊥|
z

|P⊥|
z

|P⊥|
z|bT |

J1
(|bT ||P⊥|/z)Dq→h

1 (z,P 2
⊥, Q,Q

2)

= − 2
M2
h

∂

∂b2
T

D̂q→h
1 (z, |bT |, Q,Q2) .

(4.9)

In figure 16, we show the scatter plot of 〈k2
⊥〉ur (up quark contribution) at x =

0.1 vs. 〈P 2
⊥〉u→π

+
r (“favored” fragmentation) at z = 0.5. The blue circles (denoted by

MAPTMD22) correspond to the single replicas while the red square is the average over
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Figure 16. Scatter plot of average squared transverse momenta for the TMD PDF of the up quark
at x = 0.1 and for the TMD FF of the u → π+ fragmentation at z = 0.5. Orange circles for the
PV17 analysis [5] at NLL at Q = 1GeV; the black cross represents the average. Blue circles for this
analysis (MAPTMD22) at N3LL− and at Q = 1, 2, 4.75GeV; the red squares represent the average
values for each considered Q value.

all replicas for the N3LL− analysis. Three different values of Q = 1, 2, 4.75GeV are in-
cluded to show the evolution of the average transverse momenta with the scale. The orange
circles indicate the PV17 replicas [5] at NLL and Q = 1GeV with the black cross being
the average. No regularization is needed for the values extracted in the PV17 analysis,
since the involved TMDs at Q = 1 reduce entirely to their nonperturbative components.
By comparing MAPTMD22 at Q = 1GeV to PV17, we observe that the former produces
much less anti-correlation between 〈k2

⊥〉 and 〈P 2
⊥〉 than the latter, probably because of the

inclusion of very precise DY data.

4.3 Variations on the fit configurations

In this subsection we discuss the results obtained by modifying some of the baseline set-
tings. In sections 4.3.1 and 4.3.2 we present fits at NNLL and NLL accuracy, respectively,
comparing them to the baseline N3LL−. Finally, in section 4.3.3 we study the impact of
adopting different cuts in |qT | on the SIDIS dataset.

4.3.1 Global fit at NNLL

The baseline fit presented in the previous section is performed at N3LL− (see table 1). As
already emphasized in ref. [7], the inclusion of perturbative corrections up to N3LL is crucial
to achieve an optimal description of some of the most recent experimental measurements,
such as those by the LHC. However, it might be useful to extract unpolarized TMDs at
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N3LL− NNLL NLL
Data set Ndat 〈χ2〉 ± δ〈χ2〉 Ndat 〈χ2〉 ± δ〈χ2〉 Ndat 〈χ2〉 ± δ〈χ2〉
ATLAS 72 5.01 ± 0.26 / / / /
PHENIX 200 2 3.26 ± 0.31 2 0.81 ± 0.11 / /
STAR 510 7 1.16 ± 0.04 7 0.99 ± 0.03 / /
Other sets 170 0.83 ± 0.01 170 2.37 ± 0.11 / /

DY collider 251 2.06 ± 0.07 179 2.3 ± 0.1 / /

E772 53 2.48 ± 0.12 53 2.05 ± 0.22 / /
Other sets 180 0.87 ± 0.04 180 0.71 ± 0.04 180 0.81 ± 0.04

DY fixed-target 233 1.24 ± 0.04 233 1.01 ± 0.05 180 0.81 ± 0.04

HERMES 344 0.71 ± 0.04 344 1.1 ± 0.06 344 0.51 ± 0.02
COMPASS 1203 0.95 ± 0.02 1203 0.6 ± 0.06 1203 0.41 ± 0.01

SIDIS 1547 0.89 ± 0.02 1547 0.71 ± 0.05 1547 0.43 ± 0.01

Total 2031 1.08 ± 0.01 1959 0.89 ± 0.01 1727 0.47 ± 0.01

Table 6. Comparison of χ2 values normalised to the number of data points Ndat for fits at different
perturbative accuracies. The 〈χ2〉 and δ〈χ2〉 are the average and standard deviation of the χ2 values
of all replicas.

lower perturbative orders. One of the reasons is that such sets can be used in global
analyses of polarized TMDs where it is not possible to reach the same level of accuracy.

This is the case of the Sivers TMDs where the computation of the polarized cross
section for the Sivers effect presently cannot go beyond the NNLL level [117–119], hence
demanding unpolarised TMDs at the same level of accuracy.

To this aim, we perform a new global fit at NNLL. However, when lowering the per-
turbative accuracy, it is possible to obtain acceptably good fits only by excluding those
datasets whose precision requires the highest theoretical accuracy. Specifically, we found
that only by removing the ATLAS dataset we were able to achieve an acceptable global
description at NNLL accuracy. As a matter of fact, in table 6 the value of χ2 in this con-
figuration, namely for fixed-target DY and SIDIS, is lower than at N3LL− where ATLAS
data is included.

Because of the difference in the perturbative accuracy as well as in the dataset, we
do not expect to get compatible values for the best fit parameters between the NNLL and
N3LL− fits. For instance, we obtain λ = 12 ± 10GeV−1 and λF = 340 ± 280GeV−2 at
NNLL, to be compared to λ = 1.8± 0.3GeV−1 and λF = 0.08± 0.01GeV−2 at N3LL−.

The λ and λF parameters control the relative weight of the weighted Gaussian in
the non perturbative part of the TMD PDF and FF, respectively, and control the size of
the DY and SIDIS spectrum at middle to large values of |qT |. The large values obtained
in the NNLL imply that the weighted Gaussian dominates for both TMD PDF and FF
parametrizations. This behavior may be partially induced by the lack of perturbative
corrections of the NNLL fit with respect to the N3LL− one, which are compensated by
nonperturbative effects.
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4.3.2 Global fit at NLL

We performed also a global analysis at NLL accuracy. Similarly to the NNLL fit discussed
above, it might be useful to have also a global fit at NLL accuracy for contexts where it
is not possible to reach the highest accuracy. However, in order to obtain acceptable χ2

values at this order, we had to exclude all collider DY data and the E772 fixed-target DY
dataset. Thus, we reduced the dataset to the SIDIS data and the remaining fixed-target
DY data, i.e., E605 and E288.

We point out that in our approach the integral of the W -term at NLL is equal by
construction to the SIDIS qT -integrated collinear cross section. As a consequence, the
value of the prefactor ω in eq. (2.52) is automatically equal to 1. Moreover, for this fit we
consistently used MMHT2014 at LO for the collinear PDFs and we used DSS at NLO
for collinear FFs. As shown in table 1, at NLL both collinear PDFs and FFs should be
evaluated at LO, but we choose FFs at NLO because no recent extractions at LO are
currently available.

As can be seen in table 6, we obtain low χ2 values for all included datasets. It is
interesting to compare this result with that of the PV17 analysis [5]. In that work, the
normalization of COMPASS data was fixed by the first bin in P 2

hT . Here we demonstrate
that we can obtain an excellent description of the most recent COMPASS data without
any adjustment of the normalization.

4.3.3 Cut in |qT |/Q

A crucial ingredient of any phenomenological analysis of TMDs is the introduction of the
kinematic cut |qT |/Q � 1 on the dataset to ensure that TMD factorization is valid. Our
default choices are discussed in section 3. It is interesting to study how the global quality
of our fit changes upon variations of this cut in order to get quantitative information on
the range of validity of TMD factorization.

To this purpose, we changed the parameters c1, c2, and c3 in eq. (3.2) devised for the
SIDIS data, while keeping the constraint |qT |/Q < 0.2 for the DY data. We refer the
reader to ref. [7] for an analogous study of the effect of the |qT |/Q cut on the DY data.

We consider five different configurations for the cut on SIDIS data:

(a) A first and most conservative cut is performed by fixing the z-independent upper
value |qT |/Q < 0.4 which can be obtained by setting c1 = c2 = 0.4 and c3 = 0 in
eq. (3.2);

(b) A second cut by setting c1 = 0.15, c2 = 0.4 and c3 = 0.2 in eq. (3.2);

(c) The cut of our baseline fit with c1 = 0.2, c2 = 0.5 and c3 = 0.3;

(d) A fourth cut with c1 = 0.2, c2 = 0.6 and c3 = 0.4 but without imposing |qT | < Q

(i.e. removing the outermost “min” in eq. (3.2));

(e) A fifth cut inspired by the PV17 analysis [5], namely the same as in the previous case
but with c1 = 0.2, c2 = 0.7 and c3 = 0.5; this is the least conservative choice.
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Figure 17. Global χ2/Ndat for different configurations of the kinematic cut on SIDIS data sets
(see text). The blue point corresponds to the reference cut used in the present baseline fit.

In figure 17, we show how the global χ2/Ndat changes when considering the five config-
urations described above. By observing that more conservative choices do not necessarily
correspond to better χ2 values, we conclude that the TMD formalism is able to describe
SIDIS data that fails to fulfil the formal requirement |qT |/Q � 1. In this respect, we
notice that the global χ2/Ndat of cut (d) is smaller than the baseline fit, despite including
a larger amount of data, some of which at |qT | & Q, i.e., well outside the region where
TMD factorization is valid.

In figure 18, we better illustrate the situation by showing the comparison between
COMPASS data and theoretical predictions from our baseline fit for the SIDIS multiplicity
for positively charged hadrons as a function of |PhT |/Q in the bin 1.3 < Q < 1.73GeV,
0.02 < x < 0.032, 0.3 < z < 0.4. The upper panel of the plot displays the multiplicity while
the lower panel shows the ratio of experimental data to the theoretical predictions. The
solid circles indicate data points included in the fit while empty squares refer to those that
do not survive the cut. Remarkably, the agreement remains very good up to |PhT |/Q ' 0.5,
well beyond the largest |PhT | allowed by the cut. We also stress that this behavior is not
specific of the considered bin but is a general feature also of other bins, as well as of the
HERMES dataset.

In conclusion, from our analysis it emerges that the validity of the TMD formalism in
the kinematic region covered by COMPASS and HERMES seems to extend well beyond
the customary cut |qT |/Q� 1.

This evidence justifies in a quantitative way our choice for the cut |qT |/Q in eq. (3.2)
for the baseline fit, and explains why we obtain values of χ2/Ndat close to one also with
less conservative cuts. Moreover, it suggests that the applicability of TMD factorization
in SIDIS might be defined in terms of |PhT | rather than |qT |, calling for more extensive
studies in this direction.
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Figure 18. Comparison between COMPASS multiplicities and theoretical results for the SIDIS
production of unidentified positively charged hadrons off a deuteron target at 1.3 < Q < 1.73GeV,
0.02 < x < 0.032 and 0.3 < z < 0.4 as a function of |PhT |/Q. Upper panel: light-blue rectangles
for baseline fit at 68% CL, empty squares for data points not included in the baseline fit. Lower
panel: ratio between experimental data and theoretical results.

5 Conclusions and outlook

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent
Parton Distribution Functions and Fragmentation Functions (TMD PDFs and TMD FFs,
respectively), which we refer to as MAPTMD22.

We analyzed 2031 data points collected by several experiments: 251 data points from
Drell-Yan (DY) production measured at Tevatron, LHC and RHIC, 233 points from fixed-
target DY (see table 2) and 1547 data points from Semi-Inclusive Deep Inelastic Scattering
(SIDIS) measured by the HERMES and COMPASS collaborations (see table 3).

Our description of the experimental observables is based on TMD factorization at a
perturbative accuracy defined as N3LL−, in the sense that we use TMD evolution at the
N3LL level, hard factor and matching coefficients at order α2

s, collinear PDFs at NNLO,
and collinear FFs at NLO (see table 1).

We constructed the full TMDs by combining the perturbative components, regularized
by means of the b∗ prescription defined in eq. (2.33), and nonperturbative parts described
as a sum of Gaussians and weighted Gaussians (see eqs. (2.38) and (2.39)). We used 21 free
parameters: 11 related to the TMD PDF, 9 for the TMD FF, and one for the Collins-Soper
kernel driving the TMD evolution. We assumed these parameters to be the same for all
quark flavors.

The TMD formalism is applicable only if observed transverse momenta are much
smaller than the hard scale Q of the considered process. The details of our data selection
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are explained in section 3. In the DY case, for the final lepton pair transverse momen-
tum qT we adopted a simple criterion, |qT | < 0.2Q, which is common to other works in
the literature. In the SIDIS case, our selection criterion is more restrictive than the one
made in ref. [5], but less restrictive than the one made in ref. [22]. For SIDIS data, where
the detected hadron momentum is PhT ≈ −zqT , our cut includes many data points with
|PhT | � Q but also with 0.2Q < |qT | < Q.

We also tested the quality of our fit by exploring other criteria for the |qT |/Q cut.
Surprisingly, we find that fits of quality comparable to the baseline result can be obtained
with less conservative cuts such that |qT | & Q for several data points. We believe that the
definition of the range of applicability of the TMD factorization formula deserves further
studies.

We found it difficult to reproduce the normalization of SIDIS data measured in fixed-
target experiments at moderate to low scales. The formalism works well at NLL order, but
severely underestimates the data at the N2LL order and above. The reason can be traced
back to the fact that the integral upon transverse momentum of the TMD cross section
coincides with the known collinear result only at NLL, while it misses other contributions
at higher orders. A rigorous solution of the problem would imply the calculation of all
these contributions (including the so-called Y -term in the language of ref. [6]), which are
currently not under control, and are beyond the scope of this work. We decided to modify
our predictions by including pre-computed normalization factors that are independent of
the fit, and that are identified by comparing the integral upon transverse momenta of the
TMD formula to the corresponding collinear calculation, as explained in section 2.4.

The fit is performed with the bootstrap method, leading to an ensemble of 250 replicas.
We reach a very good overall agreement with data, with χ2/Ndat = 1.06 for the central
replica (defined in section 4.1). The description of all individual datasets is satisfactory,
except for a few cases, in particular for the ATLAS data (see table 4 and figure 11). The
discrepancy with the ATLAS data may be due to corrections not fully included in our
analysis (see, e.g., ref. [32]) which, in spite of being small, can have a large impact in the
comparison with very high precision data.

The resulting TMDs are shown in figures 13 and 14. It is interesting to note that they
deviate from a simple Gaussian shape (especially for the FFs) and the TMD shape changes
in a nontrivial way as a function of x or z. Tables with grids of the obtained TMDs will be
made publicly available at the NangaParbat website13 and the TMDlib website14 [120].

The availability of TMD analyses at increasing precision will be essential in guiding
detector design and feasibility studies for the future Electron Ion Collider, and will also
have a strong impact on precision measurements of observables particularly sensitive to the
hadron structure, such as W mass measurements at hadron colliders (see, e.g., refs. [121–
123]).

Our work can be extended by improving the perturbative accuracy of the analysis (see,
e.g., refs. [32, 124]), including theoretical uncertainties in terms of suitable scale variations

13https://github.com/MapCollaboration/NangaParbat.
14https://tmdlib.hepforge.org.
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(along the lines of ref. [125]), improving the treatment of correlated uncertainties, and
investigating possible flavor dependence of TMDs [15, 24].

A Explicit expression of C coefficients at order αs

For completeness, in this appendix we report the explicit expression of the coefficients
mentioned section 2.4. The CabTMD coefficients of eq. (2.45) are given by:

CqqTMD(x, z) = 2CF
(
−8δ(1− x)δ(1− z) + δ(1− x)

[
2L2(z) + (1− z)

]
+ δ(1− z)(1− x)

)
,

(A.1)

CgqTMD(x, z) = 2CF
(
Pgq(z)δ(1− x) ln (z(1− z)) + zδ(1− x)

)
, (A.2)

CqgTMD(x, z) = 2TF
(
δ(1− z)2x(1− x)

)
. (A.3)

They correspond to the combination of the matching coefficients Cab included in the
TMD PDFs and FFs in section 2.3. The following Cabnomix coefficients are the ones included
in the computation of the SIDIS normalization factors of eq. (2.50):

Cqqnomix(x, z;Q,µ) = CqqTMD(x, z) + 2CF
[
δ(1− x)

(
Pqq(z) ln Q

2

µ2 + L1(z)− L2(z)
)

+ δ(1− z)
(
Pqq(x) ln Q

2

µ2 + L1(x)− L2(x)
)]
,

(A.4)

Cgqnomix(x, z;Q,µ) = CgqTMD(x, z) + 2CF δ(1− x)Pgq(z) ln Q
2

µ2 , (A.5)

Cqgnomix(x, z;Q,µ) = CqgTMD(x, z) + 2TF δ(1− z)Pqg(x) ln
(
Q2

µ2
1− x
x

)
. (A.6)

Finally, the missing contributions to eq. (2.49), Cabmixed, are given by:

Cqqmixed(x, z;Q,µ) = 2CF
[
2 1

(1− x)+

1
(1− z)+

− 1 + z

(1− x)+
− 1 + x

(1− z)+
+2(1 + xz)

]
, (A.7)

Cgqmixed(x, z;Q,µ) = 2CF
[
Pgq(z) 1

(1− x)+
+ 2(1 + x− xz)− 1 + x

z

]
, (A.8)

Cqgmixed(x, z;Q,µ) = 2TFPqg(x)
[ 1

(1− z)+
+ 1
z
− 2

]
. (A.9)

In the above expressions µ denotes the factorization scale for PDFs or FFs, while L1,2
are abbreviations for the following logarithmic functions:

L1(ξ) ≡
(
1 + ξ2

)( ln(1− ξ)
1− ξ

)
+
, L2(ξ) ≡ 1 + ξ2

1− ξ ln ξ. (A.10)
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