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1 Introduction

The dynamics of five-dimensional Superconformal Field Theories (SCFTs) has been at-
tracting, in the course of the recent years, a great deal of attention. One of the main tools
for studying SCFTs in various dimensions is to regard them as fixed points of supersymmet-
ric gauge theories. In five dimensions, however, the gauge theory analysis fails to capture
relevant features of the SCFTs dynamics due to the presence of non-perturbative degrees
of freedom becoming massless at the infinite coupling point. A different perspective is to
rely on string theory inspired techniques. Among the huge variety of approaches, in this
paper we adopt the so-called geometric engineering point of view. In particular, we study
the 5d dynamics of M-theory on an isolated, non-compact Calabi-Yau (CY) threefold sin-
gularity X (the subject was initiated in [1, 2]1). More specifically, we will concentrate on
isolated hypersurface singularities of C4, admitting a quasi-homogeneous C∗-action. Fur-
thermore, we will focus exclusively on singularities leading to rank-zero theories with an
empty Coulomb Branch (CB). This reflects, from the geometric point of view, the fact that
either X does not admit any crepant Kähler resolution, or that it admits a small crepant
resolution π : X̂ � X. This can be equivalently formulated requiring that X only possesses
an isolated terminal singularity.2 In the framework of M-theory geometric engineering, the
degrees of freedom of the five-dimensional SCFTs corresponding to such CY threefolds X
descend from the M-theory M2-branes, wrapped on the curves contracted by π. The the-
ory is effectively five-dimensional, as a consequence of the fact that the eleven-dimensional
profile describing the M2-brane state is peaked on the point where the curves have been
contracted, namely on the singular point of X.

It is a known mathematical fact that all Gorenstein isolated terminal CY threefold
singularities can be described, locally [22], as compound Du Val (cDV) singularities: these
are families of ALE spaces over a complex line Cw, developing an ADE singularity at
the origin w = 0. The singular point of the ALE fiber, over w = 0, corresponds to the
singular point of X. In particular, in the course of this work we focus on the subclass of
quasi-homogeneous cDV singularities, that have been completely classified in [23, 24].

The simplest example of this setup is the conifold singularity, that can be thought of
as a family of deformed A1 singularities over a complex parameter w:

x2 + y2 + z2 + w2 = 0, (x, y, w, z) ∈ C4. (1.1)

The crepant resolution of the conifold blows-up a single P1, hence being a small resolution,
and supports a single M2-brane state that yields a five-dimensional hypermultiplet. The
divisor dual to the inflated P1 is associated with a non-normalizable two-form, that, upon
reduction of the M-theory three-form C3, gives the Cartan of the Sp(2) flavor symmetry
associated with a single five-dimensional hypermultiplet.

In this paper we complete the study, initiated in [25], of M-theory dynamics on all the
isolated, quasi-homogeneous, cDV hypersurface singularities. In particular, we compute

1In the past years, the subject has seen a revival, with systematic studies of such theories and various
methods for constructing them, producing a vast literature; some key works include [3–21].

2In this context, “small” means that the exceptional locus of the resolution π has C-dimension one, or,
equivalently, is a collection of rigid curves, contracted on the singular point by π.
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the Higgs Branches (HBs) of the 5d N = 1 SCFTs arising from M-theory on all the quasi-
homogeneous cDV singularities. To achieve this result, we use the techniques outlined
in [26–28], regarding X as a deformation of a trivial fibration of G-type ADE singularities,
with G ∈ A,D,E. M-theory on a trivial ADE fibration over Cw gives origin to a seven-
dimensional N = 1 gauge theory on R5 × Cw, with gauge algebra G. We now break half
of the supercharges of the seven-dimensional theory as follows: we re-organize the three
real scalars into a complex adjoint scalar Φ = φ1 + iφ2 and a real adjoint scalar φ3. We
then switch on a vev for Φ that depends holomorphically on the complex coordinate w. As
a result we obtain:

• The 7d gauge algebra G is broken to the commutant H of Φ. The 7d vector boson
resides now in 5d background vector multiplets that support the 5d flavor group.
There can also be a discrete part of the 7d gauge group that survives the Higgsing:
this leads to 5d discrete gauging.

• The zero modes of Φ are deformations in G that cannot be gauge fixed to zero; in
particular one obtains zero modes that are localized at w = 0, i.e. they are 5d modes.
These organize in 5d hypermultiplets and correspond, in M-theory, to the M2 brane
states. The total number of hypermultiplets gives the dimension of the HB (as there
is no continuous 5d gauge group).

• With our method, one can easily derive the charges of the hypermultiplets with
respect to the continuous flavor group and the discrete symmetry.3

One can physically interpret the seven-dimensional theory, and the fields Φ, φ3, as describ-
ing the dynamics of type IIA brane systems. In the case of classical Lie algebras, this is
simply the type IIA limit of M-theory on C∗-fibered threefolds. The E6, E7, E8 singularities
are instead elliptically fibered: we can then consider F-theory on them, reducing to type
IIB with seven-branes, and T-dualize the system to produce the seven-dimensional gauge
theory with E6, E7, E8 gauge algebra.

From a geometric point of view, the Casimir invariants of the vevs Φ and φ3 (for fixed
w) control, respectively, the complex structure and the Kähler moduli of the ALE fiber
over the point w. In other words, introducing a w-dependence on the vev of Φ deforms the
trivial ADE fibration to a non-trivially fibered threefold X. In this fashion we can realize
all the cDV singular threefolds.

Some of 5d Higgs Branches studied in this paper were already discussed in previous
works using the following different method [15, 16, 18]: the 5d HB is computed in the 3d
theory coming from reducing M-theory on X × T 2; this theory is found starting from type
IIB string theory on X × S1, applying 3d mirror symmetry and finally ungauging some
U(1) symmetries. In [29, 30] the authors analyze type IIB reduced on a large subclass
of quasi-homogeneous cDV singularities (among many other threefolds that we do not
consider here); applying the method of [15, 16, 18] that we have just outlined, one finds
complete agreement with our results in the overlapping cases.4

3This allows, in principle, to compute refined quantities, such as the Hilbert series of the Higgs branch.
4We thank F. Carta, S. Giacomelli, N. Mekareeya and A. Mininno for intense exchanges on this point.
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The main technical problem we had to solved in order to carry this program to comple-
tion is finding the explicit Higgs background Φ corresponding to a given quasi-homogeneous
cDV singularity: indeed, once it is in our hands, we can compute all the relevant quantities
needed to characterize the 5d Higgs Branch. In this paper we introduce a novel method
to directly identify the Higgs backgrounds, solely by looking at the quasi-homogeneous
cDV threefold equations and relying on the homogeneity of the coefficients of the versal
deformation of the ADE singularities.

As one could expect, there is an ambiguity: several different Φ’s (leading to different 5d
symmetries and modes) can lead to the same CY equation. This means that the geometry
is not able to capture all the information of the 5d theory; one needs to add more, and our
claim is that the field Φ, that we specify, does the job. This phenomenon is common in
the F-theory literature, in the context of T-brane backgrounds [31–37].

The work is structured as follows: in section 2 we recall the main features of compound
Du Val threefolds, focusing on how to interpret them as non-trivial ADE fibrations over
Cw. In section 3 we describe the dynamics of M-theory on these singularities, and how
it is related to the physics of the seven-dimensional theory associated with M-theory on
the trivial ADE fibration. In section 4 and section 5 we build the dictionary between the
physics of the seven-dimensional gauge theory, and M-theory on quasi-homogeneous cDV
singularities: in section 4 we show how starting from the 7d vev Φ one can derive the associ-
ated CY equation, count the zero modes, and pinpoint the 5d symmetry group; in section 5
we invert the procedure, namely we start from the quasi-homogeneous cDV singularity and
exhibit a method to swiftly obtain an Higgs vev Φ capturing the physics of M-theory on the
considered singularity. In section 6 we provide explicit examples, and sum up the results
that we obtained for all the quasi-homogeneous cDV singularities. In section 7 we describe
the physics of the so-called T-branes states. In section 8 we draw our conclusions.

In appendix A we perform an explicit computation of the five-dimensional modes for
the (A2, D4) singularity. In appendix B we focus on some mathematical aspects related to
the main text. In appendix C we list the expressions of the deformed E singularities as
functions of the Casimirs of the respective algebras. Finally, in appendix D we present the
ancillary Mathematica code that we used to compute the Higgs branches.

2 cDV 3-folds as families of deformed ADE surfaces

2.1 Isolated quasi-homogeneous 3-fold singularities of cDV type

The rational Gorenstein singularities in dimension two are called Du Val singularities and
take the form

x2 + PG(y, z) = 0 , (2.1)
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with PG(y, z) following the ADE classification:

PAn = y2 + zn+1

PDn = zy2 + zn−1

PE6 = y3 + z4

PE7 = y3 + yz3

PE8 = y3 + z5

(2.2)

Now, let us consider the class of threefolds singularities called compound Du Val (cDV).
They are of the form

x2 + PG(y, z) + w g(x, y, z, w) = 0 . (2.3)

The isolated quasi-homogeneous 3-fold singularities of cDV type are precisely the ones listed
in table 1, computed in [23]. A famous sub-class of cDV singularities are, for example, the
threefolds of type (A,G), with the following threefold hypersurfaces5 in C4:

x2 + PG(y, z) + wN = 0 . (2.4)

2.2 ADE families and cDV threefolds

In all the threefold equations in table 1 the first three monomials reconstruct the ADE sin-
gularity of type G in (2.1), while the last term can be interpreted as a deformation of this sin-
gularity. This is manifest in the equations (2.3) and (2.4). Hence the equations in table 1 de-
scribe one-parameter families of deformed G-singularities, fibered over a complex plane Cw.

Threefolds that are families of ADE surfaces have been extensively studied in the
past and techniques have been developed to extract their geometric data [22, 40–44]. In
particular, in this paper we apply the methods recently developed in [27, 28] to work out the
dynamics of M-theory on all the quasi-homogeneous compound Du Val 3-fold singularities,
adding data that were not present before.

To tackle this task, we first look more closely on such threefolds, built as families
of deformed ADE surfaces. We start from the generic versal deformation of an ADE
singularity of type G (an ADE Lie algebra of rank r):

x2 + PG(y, z) +
r∑
i=1

µigi = 0, (2.5)

where the monomials gi belong to the ring R = C[x,y,z](
f, ∂f
∂x
, ∂f
∂y
, ∂f
∂z

) , where f = x2 +PG(y, z). The
equation (2.5) describes the total space of a family of deformed ADE singularities of type
G. This is a fibration over the space Bµ of deformations parametrized by the coefficients
µi of the monomials gi in (2.5). The generic fiber is a deformation of the corresponding
ADE singularity.

The base Bµ is isomorphic to the r-dimensional space t/W, where t is the Cartan
subalgebra and W the Weyl group of the underlying Lie algebra. At the origin of Bµ,

5It is known that reducing type IIB string theory on such threefolds, one obtains Argyres-Douglas theory
of type (A,G) [38, 39].
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ADE Label Singularity Non-vanishing
deformation parameter

A (AN−1, Ak−1) x2 + y2 + zk + wN = 0 µk = wN

A
(k−1)
k−1 [N ] x2 + y2 + zk + wNz = 0 µk−1 = wN

D (AN−1, Dk) x2 + zy2 + zk−1 + wN = 0 µ2k−2 = wN

D
(k)
k [N ] x2 + zy2 + zk−1 + wNy = 0 µ̃k = wN

E6 (AN−1, E6) x2 + y3 + z4 + wN = 0 µ12 = wN

E
(9)
6 [N ] x2 + y3 + z4 + wNz = 0 µ9 = wN

E
(8)
6 [N ] x2 + y3 + z4 + wNy = 0 µ8 = wN

E7 (AN−1, E7) x2 + y3 + yz3 + wN = 0 µ18 = wN

E
(14)
7 [N ] x2 + y3 + yz3 + wNz = 0 µ14 = wN

E8 (AN−1, E8) x2 + y3 + z5 + wN = 0 µ30 = wN

E
(24)
8 [N ] x2 + y3 + z5 + wNz = 0 µ24 = wN

E
(20)
8 [N ] x2 + y3 + z5 + wNy = 0 µ20 = wN

Table 1. Quasi-homogeneous cDV singularities as ADE families.

the surface develops a singularity of type G. At a generic point of Bµ, the singularity is
deformed: the surface admits r non-vanishing S2 intersecting in the same pattern as the
nodes of the Dynkin diagram and whose volume is measured by the holomorphic (2,0)-
form. In the deformed ALE surface, the holomorphic (2,0)-form is along an element t of
the Cartan subalgebra, such that volαi =

∫
αi

Ω2,0 = αi[t]. We choose a set of coordinates
ti of t such that the volumes of the simple roots are given by

Ar : volαi = ti − ti+1 i = 1, . . . , r

Dr : volαi =

 ti − ti+1 i = 1, . . . , r − 1
tr−1 + tr i = r

Er : volαi =

 ti − ti+1 i = 1, . . . , r − 1
−t1 − t2 − t3 i = r

(2.6)

The coordinates µi’s can be written as homogeneous functions of the ti’s that are invariant
under the action of the Weyl group W. If one uses these functions to make a base change,
one obtains a family of deformed G-singularities fibered this time over the space t. This
family is a singular space. Resolving the singularity at t1 = . . . = tr = 0 blows up all the
P1’s corresponding to the simple roots of G in the central fiber. This is called a simultaneous
resolution.

One can also choose a different base change in which t/W ′ is mapped to t/W, where
W ′ ⊂ W . In this case, the resolution of the family blows up the roots that are left invariant
by W ′, in the central fiber. The base of the fibration B% ∼= t/W ′ is now parametrized by

– 6 –
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t −→ B% −→ Bµ

1) ti 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ µi(tj)

2) ti 7−−−−−−−−−→ %i(tj)

3) %i 7−−−−−−−−−→ µi(%j)

Figure 1. Three possible base changes: 1) from t to Bµ = t/W, 2) from t to Bρ = t/W ′, 3) from
Bρ = t/W ′ to Bµ = t/W.

the r W ′ invariants, that we call %i (i = 1, . . . , r). The %i’s can also be associated with
W ′-invariant homogeneous functions of coordinates ti on t.

In figure 1, we summarize the possible base changes that can be done at the level of
the (r + 2)-dimensional family.

In the cases we are interested in this paper, we restrict to families where we set µi = 0,
for all i except one (see the last column of table 1). Let us first keep only the constant
term, i.e. we take the family

x2 + PG(y, z) + µ = 0, (2.7)

where µ does not depend on x, y, z. This is a non-singular threefold hypersurface in
C4[x, y, z, µ]. We can recover the (A,G) space (2.4), by making the base change µ = wN .
Now, the threefold is singular at x = y = z = w = 0.

We want to describe this base change in the following way:

1. we first go from B% to Bµ, by putting µi = µi(%1, . . . , %r);

2. we then allow a holomorphic dependence %i = %i(w) that makes all µi = 0, except
the constant deformation that must take the form µ(%i(w)) = wN .

Of course this is not unique: several choices ofW ′ ⊂ W produce the same threefold (2.4), by
taking the proper expressions for %i(w). As we will see in detail below, the different choices
ofW ′ correspond to different T-brane backgrounds associated with the same singular three-
fold in M-theory. The presence of a T-brane can obstruct the resolution of some roots [31,
32], enlarging the subgroup W ′. In order to have a geometry without T-branes, we will
make the following choice: we consider the smallest choice of W ′ that reproduces the equa-
tion (2.4) (that is not necessarily the trivial subgroup). This corresponds to a family over
B% with the biggest possible number of resolved simple roots in the simultaneous resolution.

The same considerations can be done for the other compound Du Val threefold singu-
larities in table 1 that do not belong to the (A,G) class.

– 7 –
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3 M-theory on quasi-homogeneous cDV threefold singularities

3.1 5d from M-theory on quasi-homogeneous CY threefolds

The threefolds X in table 1 have isolated singularities, whose exceptional locus contains
only dimC = 1 loci: these are the P1’s blown up in the simultaneous resolution of the
singularity. Since there are no exceptional divisors, M-theory on X gives a rank-zero 5d
N = 1 SCFT. The theory then has no Coulomb branch.

Each exceptional P1 comes with a dual non-compact divisor6 that, upon reducing C3,
gives a background vector multiplet corresponding to a U(1) flavor symmetry under which
the hypermultiplets are charged. Hence, if the (partial) simultaneous resolution blows up
` ≤ r spheres, the flavor group acting on the Higgs Branch is

GF = U(1)`. (3.1)

In particular, in the resolved threefold, the size of the exceptional P1’s are controlled by
the vev’s of the scalars in the background vector multiplets associated with GF .

These theories have a bunch of massless hypermultiplets localized at the singularity
that come from BPS M2-branes wrapping the exceptional P1’s. Their vev’s live in the
Higgs branch of the theory, that is believed to be a discrete gauging of a product of H [15].

3.2 The field Φ and 7d to 5d Higgsing

Due to the fibration structure of the threefolds X under study, we can apply the following
point of view to compute the data of the 5d SCFT [25, 27, 28] .

M-theory on a ADE singularity (2.1) of type G gives rise to a 7d N = 1 field theory
with a vector multiplet in the adjoint representation of G. This supermultiplet contains
three real scalars φ1, φ2, φ3.

We split R7 = R5×Cw, where Cw is parametrized by a complex coordinate w. We give
a vev to the complex adjoint scalar Φ = φ1 + iφ2, that is holomorphic in w. The vev for Φ
breaks the 7d Poincaré group to the 5d one and preserves half of the supersymmetries. We
consider only cases when the 5d symmetry is abelian, say U(1)`. The zero modes around
such a background organize then in 5d supermultiplets:

• The zero modes of Aµ (µ = 0, . . . , 4) and φ3 propagate in 7d and are collected into
U(1) background vector multiplets, giving rise to the U(1)` flavor group.

• There are 7d zero modes of Φ that are collected together with zero modes of A5 + iA6
into background hypermultiplets, that are neutral under the flavor U(1)’s.

• There are 5d zero modes of Φ that are localized at w = 0. They are collected into 5d
massless hypermultiplets that are charged under the U(1)` flavor group.

From the geometric point of view, a vev for Φ means that the ADE surface is deformed,
with deformation parameters depending on its Casimir invariants. Switching on a w-
dependent vev gives then a threefold X that is a family of deformed ADE singularities

6The non-Cartier divisor of the singularity associated with the small resolution.
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fibered over Cw. The fact that the algebra preserved by 〈Φ〉 is abelian means that the
surface is smooth on top of generic points of Cw. If the preserved algebra contained a
simple summand of type G′, the threefold X would have a non-isolated singularity of type
G′ on top of each point of the base.

Furthermore, at the level of the ALE fiber a vev for φ3, with [〈φ3〉, 〈Φ〉] = 0, means
resolving some simple roots, i.e. switching on Kähler deformations along some Cartan
generators. Given a vev for Φ, then, its (abelian) commutant H tells us what are the
blown up roots in the simultaneous resolution. Given a basis α∗1, . . . α∗r of t that is dual to
the basis of simple roots, the subalgebra H can be written as

H = 〈α∗1, . . . α∗` 〉 . (3.2)

the blown up roots are then α1, . . . , α`.
The Higgs field7 Φ breaks G to the abelian subalgebra H in (3.2), then it must live in

the commutant of H in G. A subalgebra L that is the commutant of an abelian subalgebra
is called a Levi subalgebra. The Levi subalgebras of a Lie algebra G are in one-to-one
correspondence with the choices of a set of simple roots (see [45]). L will be a direct sum
of H with a semi-simple Lie algebra, i.e. L = Lsemi−simp ⊕H. In order to break to H, it is
enough that Φ belongs toM =Msemi−simp⊕H, whereMsemi−simp is a maximal subalgebra
of Lsemi−simp of maximal rank.8 We are assuming Φ|Msemi−simp to be a generic element of
Msemi−simp, i.e. it is not contained in any proper subalgebra of Msemi−simp. We can then
write

Φ ∈M ≡
⊕
h

Mh ⊕H , (3.3)

whereMh are simple Lie algebras.
To sum up, we have the relations

simult.resol.: α1, . . . , α` ↔ H = 〈α∗1, . . . α∗` 〉 ↔ L . (3.4)

We can summarize these data in the Dynkin diagram of G: we color in black the nodes
corresponding to roots belonging to H (namely, they are the nodes that get blown-up by
the simultaneous resolution). Then the semi-simple part Lsemi−simp of the corresponding
Levi subalgebra is given by the Dynkin diagram colored in white. Hence, a coloring of the
nodes of the Dynkin diagram completely and univocally fixes a Levi subalgebra L = H⊕
Lsemi−simp. Given the Levi L, one can look for maximal subalgebras of the form (3.3), em-
ploying the usual technique based on extended Dynkin diagrams. A Φ producing a fibration
with the given simultaneous resolution must belong to one of these maximal subalgebras.

Let us see a simple example of this framework: take the Dynkin diagram of the Lie
algebra D7 and color one node αres in black as in figure 2. We immediately read L =
D4 ⊕ A2 ⊕ 〈α∗res〉 from the white nodes. D4 has a maximal subalgebra A⊕4

1 , that we can
extract pictorially as in figure 2. If we want Φ to produce a threefold with a simultaneous
resolution of only the root αres, then either Φ ∈M = L or Φ ∈M = A4

1 ⊕A2 ⊕ 〈α∗res〉.
7From now on, when we write Φ, we mean the vev.
8This is true because the Cartan subalgebra of Lsemi−simp coincides with the Cartan subalgebra of

Msemi−simp, as it is a maximal subalgebra of maximal rank.
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Figure 2. A4
1 ⊕A2 subalgebra of D7.

4 Data from the Higgs field

In this paper we want to analyze the 5d theories coming fromM-theory on specific threefolds
X, namely the quasi-homogeneous cDV singularities in table 1. We first derive which vev
of Φ produces such threefold fibrations. Afterwards, we derive the data of 5d theory by
studying the Higgsing of the corresponding 7d theory. In the following, we describe the
necessary techniques to attain such results.

4.1 The threefold equation from 〈Φ〉

Once we define a Higgs field Φ(w), we have determined the threefold fibrations. The
key point is the geometric correspondence between the vev of Φ and the deformed ADE
singularity, or better the volumes of the spheres that get non-zero size in the deformation:
at a generic w ∈ Cw, Φ is diagonalizable. After diagonalizing Φ, one obtains an element Φd

in the Cartan subalgebra t. The volumes of the finite size spheres in the deformed ADE
surface are now given by

volαi = αi[Φd] . (4.1)

Using the definitions (2.6), we obtain the values of the ti-coordinates in t corresponding to
a given Φd. Given Φ(w), we can then compute ti = ti(w).

The versal deformations in terms of the ti’s are known [22], and they specify which
monomials are turned on when a particular sphere takes non-zero volume. One has:

Ar : x2 +y2 +
r+1∏
i=1

(z+ ti) = 0
r+1∑
i=1

ti = 0

Dr : x2 +zy2 +
∏r
i=1
(
z+ t2i

)
−
∏r
i=1 t

2
i

z
+2

r∏
i=1

tiy= 0

E6 : x2 +z4 +y3 +µ2yz
2 +µ5yz+µ6z

2 +µ8y+µ9z+µ12 = 0
E7 : x2 +y3 +yz3 +µ2y

2z+µ6y
2 +µ8yz+µ10z

2 +µ12y+µ14z+µ18 = 0
E8 : x2 +y3 +z5 +µ2yz

3 +µ8yz
2 +µ12z

3 +µ14yz+µ18z
2 +µ20y+µ24z+µ30 = 0,

(4.2)
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where the µi are known functions of ti ∈ t (see [22] for the explicit expressions of µi in
E6, E7 and an algorithm to compute them for E8). For us, the important information is
that µi(t) is a homogeneous polynomial in the ti’s of degree i.

In principle, in order to obtain the equation of the hypersurface related to a given
Higgs field Φ(w), one hence diagonalizes Φ(w) and then inserts the corresponding ti(w)’s
in (4.2), obtaining µi(w) and the equation of the threefold hypersurface. Even if it is
not obvious, this produces µi(w) that are holomorphic in w. There are several ways to
implement this involved procedure, that becomes more and more complicated as the rank
of the ADE algebra increases [22].

It is most useful for us to take the approach given in [28]. It allows to obtain directly
the form of µi’s in terms of the Casimir invariants of Φ ∈ g. These can easily be computed
by taking Φ(w) in a given representation and computing traces of powers of it. For families
of A- and D-type one obtains the hypersurface equations

Ar : x2 + y2 + det(z1− Φ) = 0

Dr : x2 + zy2 −
√
det(z1 + Φ2)− Pfaff2(Φ)

z
+ 2y Pfaff(Φ) = 0 ,

(4.3)

that manifestly depends on the Casimirs invariants of Φ, i.e.

Ar ki = Tr(Φi) for i = 2, . . . , r + 1

Dr
k̃i = Tr(Φi)
k̂r = Pfaff(Φ) for i = 2, 4, . . . , 2(r − 1)

. (4.4)

with Φ in the fundamental representation. One can show [28] analogous formulae for the
exceptional cases, where one can write the deformation parameters µi in terms of the
Casimir invariants of Er, that can easily be computed once one has the explicit form of Φ.
We report the formulae in appendix C.

After we have the relations between the coefficients of the versal deformation and
the Casimir invariants of Φ, we can plug in a given choice of Φ(w) and easily obtain the
corresponding threefold.

Let us make a simple example: take a Higgs field in M = A
(1)
1 ⊕ A

(3)
1 ⊕ 〈α∗2〉 ⊂ A3,

given by

Φ|
A

(1)
1

=

0 1
w 0

 , Φ|
A

(3)
1

=

 0 1
−w 0

 (4.5)

and with zero coefficient along α∗2. Computing the characteristic polynomial of such Φ one
immediately obtains that all the Casimirs are zero except the one of degree 4 that is equal
to w2. If we plug this Φ into (4.3), we in fact obtain

x2 + y2 + z4︸ ︷︷ ︸
PA3(y,z)

+w2 = 0, (4.6)

i.e. the (A1,G) threefold with G = A3.
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4.2 5d zero modes computation

Given a Higgs field Φ, the zero modes are the holomorphic deformations of the Higgs field
up to (linearized) gauge transformations, i.e. ϕ ∈ G such that

∂ϕ = 0 ϕ ∼ ϕ+ [〈Φ〉, g] , (4.7)

with g ∈ G. To study the zero modes, we then have to work out which components of the
deformation ϕ can be set to zero by a gauge transformation (4.7). One then tries to solve
the equation

ϕ+ δgϕ = 0 , with δgϕ = [Φ(w), g] (4.8)

with unknown g ∈ G. Each component of ϕ is a holomorphic polynomial in w. There will
be gauge transformations that cancel the full polynomial and gauge transformations that
allow to cancel only some powers in w. In the first case, that component does not support
any zero-mode. In the second case, the gauge fixed mode may belong to C[w]/(w); this
means that at w 6= 0 the mode can be gauge fixed to zero, but at w = 0 we still have some
freedom: the result is one 5d zero mode localized at w = 0. The gauge fixing may also
produce modes in C[w]/(wk); in this case we have k zero modes localized at w = 0. Finally,
there are components that are not touched by the gauge fixing procedure: they host a 7d
mode that extends in all Cw.

Let us make an example: we consider the conifold singularity, that in the language of
this paper is the (A1, A1) threefold. We let Φ belong to the Cartan subalgebra of A1; this
gives a U(1) flavor group generated by H = 〈α∗〉. The Higgs field corresponding to the
threefold equation (using (4.3)) is

Φ =

w 0
0 −w

 , x2 + y2 + z2 − w2 = 0 . (4.9)

Let us count the zero modes. We parameterize both the fluctuation and gauge param-
eter as follows:

ϕ =

ϕ0 ϕ+

ϕ− −ϕ0

 , g = 1
2

g0 g+

g− −g0

 . (4.10)

We then have

ϕ ∼ ϕ+ w

 0 g+

−g− 0

 . (4.11)

This tells us a few things. The entry ϕ0 is not gauge fixed; this then gives a 7d mode.
Moreover, the fluctuations ϕ± are defined up to any multiple of w, i.e. ϕ± ∈ C[w]/(w) ∼= C.
This means that they are localized on w = 0 and are therefore genuinely 5d dynamical
fields. These are charged under the U(1) flavor group. The pair (ϕ+, ϕ−) forms a free
hypermultiplet, as expected for the conifold.

In a more complicated model, it is worth using the fact that the Higgs field lives in
the maximal subalgebra M of the Levi subalgebra L. We can then branch the algebra G
w.r.t.M:

G =
⊕
p

RMp . (4.12)
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A representation RM ofM can be written more explicitly as

RM = (RM1 , RM2 , . . . )q1,...,q` , (4.13)

where (q1, . . . , q`) are the charges under the U(1)` flavor group generated by H. Since
Φ ∈ M, if we take g ∈ RM, then also the commutator in (4.7) lives in RM. We can
then solve the equation (4.8) in each representation in (4.12) individually, i.e. we consider
the deformations ϕ in each RM and check how much of it can be fixed by (4.7). All the
modes living in a given representation RM have the same charges (q1, . . . , q`) under the
U(1)` flavor group generated by H. We provide an example of zero modes computation in
a given representation in appendix A.

In [28] we have worked out an algorithm that allows to compute the zero modes in all
cases, together with their charges under the 5d symmetries. We will use that algorithm
also to get the results in the following sections. In appendix D, we describe how to use the
Mathematica code that implements the algorithm (and that is uploaded as supplementary
material of the present paper).

We conclude by considering a case that we will recurrently encounter in the following.
Consider two Higgs fields Φ and Φ̃ related as

Φ̃ = wjΦ , (4.14)

and with Φ(0) 6= 0, while Φ̃ has a zero of order j at w = 0.
We can compute the zero modes of Φ̃, knowing the zero modes of Φ: the compo-

nents of the deformation ϕ that were gauge fixed to zero by Φ, now host zero modes
in C[w]/(wj). Components that hosted localized modes in C[w]/(wk), now support zero
modes in C[w]/(wj+k). We further note that the Casimir invariants of Φ and Φ̃ are related
by Tr

(
(Φ̃)i

)
= Tr

(
(wjΦ)i

)
= wi·jTr

(
(Φ)i

)
.

These simple facts will permit us to reproduce the Higgs fields of all the quasi-
homogeneous cDV, first identifying a finite set of Higgs field profiles, and then producing
all the other Higgs fields multiplying them by an appropriate power of w.

4.3 The symmetry group

The 7d theory has gauge group G, whose Lie algebra is G. Since all fields are in the adjoint
representation of G, the non-trivial acting group is the quotient of the simply connected
group associated with G modulo its center.9 We take such a quotient as our 7d group G.

Switching on the vev for Φ(w) on one side breaks G and on the other side generates
zero modes localized at w = 0, that are charged under the preserved symmetry group.
Such a symmetry group is StabG(Φ) ⊂ G, with

StabG(Φ) ≡
{
U ∈ G s.t. UΦU−1 = Φ

}
. (4.15)

9Actually there is an ambiguity in choosing the global group of the 7d theory [46–50]. Taking the
minimal choice, as we are doing, one captures the non-trivial discrete symmetries that come solely from
Higgsing. Different choices would enlarge the discrete symmetries with elements of the center of the group.
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Figure 3. A⊕4
1 subalgebra of D4.

Our Higgs field Φ engineers a threefold family that (simultaneously) resolves the roots
α1, . . . , α`. This is realized by lettingH (defined in (3.2)) commute with Φ. The commutant
of H is the Levi subalgebra L associated with the choice of the roots α1, . . . , α`. If the
Higgs field Φ is a generic element of L, then StabG(Φ) = U(1)` (generated by H).

Such U(1)` group, namely the symmetry preserved by Φ ∈ L, is nothing but the
five-dimensional flavor group, acting via its adjoint representation on the hypermultiplets
coming from the deformation ϕ. The explicit flavor charges of the hypermultiplets can
be readily computed employing the irrep decomposition (4.12), that naturally regroups
hypers of the same charge into the same irrep. In general, if we only have one U(1) factor,
associated with a simple root αi, then the flavor charges can acquire values only up to the
dual Coxeter label of the node αi in the Dynkin diagram of the considered 7d algebra [28].
If, instead, StabG(Φ) = U(1)` with ` > 1, this is not valid anymore.

As we have said, generically we have

Φ ∈M, with M =
⊕
h

Mh ⊕H (4.16)

whereM is a maximal subalgebra of L. IfM⊂ L, the preserved group will be bigger than
U(1)` and it will develop a discrete group part.

To explain how this works, we consider a simple example (that will appear often in
the threefolds studied in the following). We take

L = D4 and M = A⊕4
1 .

The Dynkin diagram of D4 with its dual Coxeter labels, along with its A⊕4
1 subalgebra,

is depicted in figure 3. The A⊕4
1 maximal subalgebra is generated by adding the external

node of the extended D4 Dynkin diagram and removing the central one.
There are transformations of10 GL that preserve all the elements of M = A⊕4

1 (while
they break L = D4). In this case there is one such element: it is generated by the Car-
tan α∗2, i.e. the dual of the root that should be removed from the D4 extended Dynkin
diagram to obtain the Dynkin diagram of A⊕4

1 .11 The element that is in the stabilizer of
Φ ∈M = A⊕4

1 is
γ = exp

[2πi
qα2

α∗2

]
, (4.17)

10Given a subalgebra L ⊂ G, we call GL the subgroup of G, whose Lie algebra is L.
11In Heterotic string theory on T 3, this element is known as a discrete Wilson line.
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Figure 4. A⊕6
1 subalgebra of D6.

where qαi is the dual Coxeter label of the simple root αi, and where γ ∈ G acts on the
adjoint representation. In our case, we read qα2 = 2 (see figure 3). In particular, we have

γ · eαi = e
2πi

2 0eαi = eαi for i = 1, 3, 4, γ · eα2 = e
2πi

2 1eα2 = −eα2 , (4.18)

and
γ · eαθ = e

2πi
2 (−2)eαθ = eαθ , (4.19)

where αθ is the (minus the) highest root corresponding to the extended node. Note that
the Lie algebra element eα2 is not preserved by γ.

We see that it is crucial for preserving a maximal subalgebra that the coefficient in
front of α∗2 in γ is 2πi

qα2
and not any other number. The discrete group generated by γ

in (4.17) is isomorphic to Z2.
Let us generalize this to an example that is a bit more involved, i.e.

L = D6 and M = A⊕6
1 .

In this case we proceed by steps, following the inclusions D6 ⊃ D4 ⊕A⊕2
1 ⊃ A⊕4

1 ⊕A
⊕2
1 =

A⊕6
1 , depicted in figure 4. In the first step, we remove a node with dual Coxeter label equal

to 2. We are then left with the final step in which we embed A⊕4
1 intoD4: again we remove a

node ofD4 Dynkin diagram with label equal to 2. We conclude that the discrete group is Z2
2.

It is then easy to generalize to a generic case. Say that a simple summand of L has
a maximal subalgebra, obtained by subsequently removing nodes with dual Coxeter labels
qαι1 , . . . , qαιk . Then the stabilizer of Φ will include the discrete group

Zqαι1
× . . .× Zqαιk

.

Doing this for all simple summands of L, we obtain the full discrete symmetry ΓΦ. The
full symmetry group is then

StabG(Φ) = U(1)` × ΓΦ . (4.20)

Since we know how the generators of this group act on the Lie algebra G, we can easily derive
the charges under StabG(Φ) of the deformations ϕ in RM, i.e. of the 5d hypermultiplets.
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The symmetry group (4.20) is the 7d gauge group that survives the Higgsing. In order
to deduce the 5d flavor and gauge symmetries we can proceed as in [27]: we consider the 7d
space as a decompactification limit from 5d times a 2-torus. Before the limit, (4.20) is a 5d
gauge group; the decompactification limit will ungauge the continuous factor as its gauge
coupling vanishes. The discrete part, having no gauge coupling, remain gauged in 5d.

Explicit example: (A2, D4) singularity and discrete groups. Let us visualize how
it works in an explicit example. We can consider the (A2, D4) singularity:

x2 + zy2 + z3 + w3 = 0, (x, y, w, z) ∈ C4. (4.21)

The threefold can be described as a family of D4 ADE singularities deformed by the param-
eter w. The Higgs field is taken in the maximal subalgebra of D4, i.e.M = D2⊕D2 ∼= A4

1.
From what we said above, it is immediate to find out

Stab(Φ)G = Z2 . (4.22)

We now see how this discrete group acts on the 5d hypermultiplets. We first branch G = D4
underM:

D4 = A
(I)
1 ⊕A

(II)
1 ⊕A(III)

1 ⊕A(IV )
1 ⊕ (2,2,2,2) =M⊕ (2,2,2,2). (4.23)

We then see how γ in (4.17) acts on the elements of (2,2,2,2). The generators of D4
appearing in this representation of M are related to roots that are linear combination of
the simple roots where α2 appears with coefficient 1. This immediately tells us that all
elements of (2,2,2,2) get a −1 factor when we act with γ.

This can be easily generalized to any choice of Φ ∈M ⊂ G with G = A,D,E.

5 The Higgs vev from the threefold equation

Our question is now: given a CY equation like (2.4), what is the Higgs field that can
generate it? The answer to this question is crucial in order to tackle the dynamics of
M-theory on the quasi-homogeneous cDV singularities in table 1.

With this objective in mind, we will consider the two steps at page 7, implemented at
the Higgs level. From this perspective, the threefold is naturally embedded into the family
over B% = t/W ′ by choosing a one-dimensional subspace parametrized by Cw. This means
that the threefold will inherit the partial simultaneous resolution associated with W ′: both
in the family and in the threefold the blown up roots will be, say α1, . . . , α`. This imme-
diately tells us that the commutant of Φ is H in (3.2). The choice of W ′ selects a maximal
subalgebraM of the commutant L of H (see (3.3)), whose Casimirs are invariant underW ′
and are then good coordinates on B% = t/W ′. An element Φ ∈M ⊆ L can be written as

Φ =
∑
h

Φh +
∑̀
a=1

%a1α
∗
a (5.1)

where Φh is an element ofMh. Collecting the degree-j Casimir invariants %hj of Φh inMh,
together with the coefficients %a1 , one obtains the invariant coordinates %i on the base B%.
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5.1 From the threefold equation to the partial Casimirs %i(w)

Now, we will proceed as follows: we start from the equation of a threefold in table 1.
We will derive what is the minimal W ′ such that the partial Casimirs %i can be taken as
holomorphic (homogeneous) functions of w, in a way that produces the CY equation by
taking µi = µi(%(w)). This will tell us what is the w-dependence of the Casimirs %hj of each
Φh and the w-dependence of the coefficients %a. Finally, we will look for Higgs fields Φ(w) ∈
M, holomorphic in w, that have the given w-dependence for their partial Casimirs.12

In particular, to reproduce the threefolds in table 1, we want to determine which
holomorphic functions %Ij (w), with I = (h, a) make all deformation parameters vanish
except one of degree M , that is

µM (%(w)) = wN . (5.2)

We stress that µM (%(w)) is a homogeneous polynomial in w of degree N .
Both the µM and the %Ij can be written as homogeneous polynomials in the ti ∈ t of

degree, respectively, M and j. This implies that µM (%) will be a weighted homogeneous
polynomial in the coordinates %Ij ’s of degreeM , where the coordinate %Ij has weight j. This,
together with (5.2), implies that %Ij (w) is a homogeneous function of w with degree j N

M , i.e.

%Ij (w) = cIj w
jN
M . (5.3)

Now:

• Since we require that %Ij (w) is holomorphic, the partial Casimirs that give a non-zero
contribution (i.e. cIj 6= 0) are those with j such that

j N

M
∈ Z>0 . (5.4)

• Moreover, we want to pick the smallest W ′ that allows holomorphic functions %Ij (w)
compatible with (5.2). Small W ′ correspond to subalgebras M with several simple
summands with small rank. This subalgebra then yields the smallest degree partial
Casimirs that realize (5.4), for given M,N .

Choosing the threefold in table 1 determines M (see the last column of the table). For
each value of N , we look for the minimal value of j that satisfies (5.4). Say that M has
nM divisors q1, . . . , qnM , where q1 = 1 and qnM = M . Then N can always be written in a
unique way as

N = p

qα
M mod M , (5.5)

with qα a divisor of M , p < qα and (p, qα) coprime. The condition (5.4) becomes then

j p

qα
∈ Z>0 , (5.6)

and the minimal value of j fulfilling it is j = qα.
12Fixing the w-dependence of the partial Casimir invariants does not give a unique choice for a holomor-

phic element ofM.
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Given N , only %Ij with j a multiple of qα can be non zero. In other words, cIj = 0
when j 6= mqα with m ∈ Z. Because of homogeneity, this implies also that µi(%) = 0 with
i 6= mqα. We are then left with the following equations with unknown cIj (j = mqα): µmqα(c) = 0 mqα < M

µM (c) = 1
(5.7)

(where we have factored out the powers in w). In order to have a non-trivial solution, one
requires that all cIj with j = mqα be non-zero.13

Let us see how we can use this information to extract the subalgebraM corresponding
to a given choice of (AN−1, G). We describe this in a simple example, i.e. (AN−1, D4). The
D4 algebra has four Casimirs: µ2, µ4, µ̃4 and µ6. HenceM = 6. There are four divisors of 6:

qα ∈ {1, 2, 3, 6}.

We now see which (minimal) degree can take the partial Casimirs and then what is the
choice of the minimal subalgebraM (minimal W ′). Let us vary N :

For N = 0 mod 6 (qα = 1), the minimal degree is j = 1. We look for a subalgebraM
with all four partial Casimirs of degree 1. This is the smallest possible choice, i.e.
the Cartan subalgebra of D4. In this case, all four roots of D4 are blown up in the
simultaneous resolution.

For N = 3 mod 6 (qα = 2), the minimal degree is j = 2. There is actually a subalgebra
of D4 with four partial Casimirs of degree 2, i.e.M = A⊕4

1 .14 M is now a maximal
subalgebra of D4; correspondingly, there is no resolution at the origin of the family,
hence the singularity is terminal.

For N = 2, 4 mod 6 (qα = 3), the minimal degree for the non-zero partial Casimir is
j = 3. In any subalgebra of D4, we can have at most one partial Casimir of degree
3. Moreover, µ2 must depend on partial Casimirs of degree lower than 3, that must
vanish identically (otherwise they would be non-holomorphic, due to (5.4)). We have
M = A2 ⊕ 〈α∗3, α∗4〉. Only the partial Casimirs of the semi-simple part ofM, that is
A2, are non-vanishing. In this case, the roots α3 and α4 of D4 are blown up in the
partial simultaneous resolution.

For N = 1, 5 mod 6 (qα = 6), the minimal degree for a non-vanishing partial Casimir
is j = 6, hence in this case M = D4 with all Casimirs equal to zero, except the
maximal degree one. For N = 1 the manifold is non-singular, while for N = 5 there
is a terminal singularity at the origin of the family.

13Otherwise the system of homogeneous equations in the first row of (5.7) will force all cIj ’s to vanish. We
notice that the number of holomorphic ρIj has to be equal to the number of all the µmqα , µM . If that was
not the case, the system (5.7) would be overconstrained, and a solution would not be guaranteed to exist.

14Notice that all cI2’s must be non-zero; otherwise, if one vanished, the equations µ2 = µ4 = µ̃4 = 0 would
force all the others cI2’s to be zero as well as µ6.
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As one can note in the presented example, the simple algebrasMh inM are all of the
same type for a given value of N . This actually happens for all the cases we study in this
paper. The reason is the following: we look for partial Casimirs with the lowest possible
degree, realizing µM = wN . If one degree is allowed, we take as many partial Casimirs
with that degree as we are allowed. Small degree partial Casimirs correspond to small
subalgebrasMh, hence we finish with as many summands of a given small algebra as we can.

5.2 From the partial Casimirs %i(w) to the Higgs field Φ(w)

Now that we have the w-dependence of the %Ij ’s, we need to take a Higgs field inM, whose
partial Casimirs have that dependence. In general, there are several choices for Φh(w)
(see (5.1)) with given %hj (w). Each choice produces a different number of zero modes. We
decide to look for the Higgs field Φ that localizes the maximal number of zero modes and
breaks the 7d gauge symmetry in the least disruptive way, and we interpret the others as
T-brane deformations of Φ, i.e. deformations that kill a number of modes, or destroy a
preserved symmetry, without touching the threefold singularity (we come to this point in
section 7). With this choice, we pick up the Higgs field that leads to the same number of
zero modes that are counted by the normalized complex structure deformations of the CY.15

Let us first describe what is the structure of the Higgs field. At w = 0 the fiber
of the one-parameter G-family must develop a full G-type singularity. This means that
Φ(0) must be a nilpotent element of M (as all its Casimirs should vanish), that we take
in its canonical form (e.g. for Ar it is the Jordan form; for general ADE singularities,
we refer to [45]). Now, Φ(w) must be a deformation of the nilpotent element Φ(0), with
deformation proportional to w and belonging toM. The way to do it in a way that goes
into a transverse direction to the nilpotent orbit (that includes Φ(0)) is dictated by taking
Φh in the Slodowy slice in Mh passing through Φh(0). We give the proper definition in
appendix B. What is important here is that this allows to have canonical forms for the
Higgs field in M, that are not equivalent by gauge transformations. The Higgs field will
then be given as the sum of some simple root generators of G multiplied by 1 and of other
generators (inM) multiplied by powers of w.

To pick up the Higgs field that localizes the maximal number of modes, we need
to properly choose the nilpotent orbit, which Φ(0) belongs to. Let us consider Φ,Φ′ ∈
M with the same expressions for %Ij , but such that Φ(0) and Φ′(0) belonging to two
different nilpotent orbits. Then, they produce a different number of zero modes: the one
whose nilpotent orbit at the origin is smaller has a bigger number of zero modes. Roughly

15In a nutshell, the procedure goes as follows [39]: first we write down a basis, as C-vector space, of the
Jacobian ring R = C[x,y,w,z]

(F, ∂F
∂x

, ∂F
∂y
, ∂F
∂w

, ∂F
∂z

)
, with F the polynomial defining X. It is a mathematical fact that

the elements of the basis can be chosen to be monomials, and hence have a well-defined scaling w.r.t. the
quasi-homogeneous action on X. It turns out that we can pair, looking at these scaling weights, a number
2npaired of monomials of the basis, while leaving other nunpaired unpaired. The expected Higgs branch
quaternionic dimension (that equals the number of 5d hypers), then, is

dH = npaired + nunpaired.

dH also coincides with the number of normalizable (and log-normalizable) complex structure deforma-
tions [51].
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speaking, if at the origin the orbit is bigger, one has a larger number of ‘1’s in the canonical
form of the Higgs; these gauge fix to zero a bigger number of Lie algebra components in the
deformation ϕ. A more detailed explanation of these aspects, complemented by explicit
examples, can be found in appendix B, where we lay down the complete recipe to connect
the partial Casimirs to the Higgs background.

If the power of w in the partial Casimirs %Ij is high, the minimal orbit at the origin
reproducing the required w-dependence will be the trivial one. In these cases, the Higgs
field that leads to the maximum number of zero modes is such that

Φ = wkΦ̂ , (5.8)

with Φ̂(0) a non-trivial nilpotent element ofM. Knowing the zero modes of Φ̂, one is able
to find the zero modes of Φ.

Let us illustrate how we pick the right choice of Φ with given %Ij (w), by using the
(AN−1, D4) example.

For N = 1,M = D4, ρ6 = µ6 = w. Φ(0) is in the maximal nilpotent orbit of D4 and its
expression at generic w is dictated by the w-dependence of the Casimir:

Φ = eα1 + eα2 + eα3 + eα4 + w

4 e−α1−2α2−α3−α4 . (5.9)

For N = 2, M = A2 ⊕ 〈α∗3, α∗4〉. The only non-zero partial Casimir is the degree 3
Casimir of A2: %3 = w. The unique (up to gauge transformations) holomorphic
Higgs field compatible with that is now

Φ = ΦA2 with ΦA2 =


0 1 0
0 0 1
w 0 0

 = eα1 + eα2 + w e−α1−α2 . (5.10)

For N = 3,M = A⊕4
1 , %h2 = chw (h = 1, . . . , 4), with ch solving (5.7). The form of the

Higgs field with these partial Casimirs is again unique:

Φ =
4∑

h=1
Φh with Φh =

 0 1
chw 0

 = eαh + chw e−αh , (5.11)

where αh is the root of the subalgebra Ah1 .

For N = 4,M = A2⊕〈α∗3, α∗4〉. Now, differently from the N = 2 case, the only non-zero
partial Casimir of degree 3 is quadratic in w: %3 = w2. In this case we have two
possible Higgs fields that are consistent with this, i.e. Φ = ΦA2 with

either ΦA2 =


0 1 0
0 0 1
w2 0 0

 or ΦA2 =


0 1 0
0 0 w
w 0 0

 . (5.12)
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At the origin w = 0, the left one is in the maximal nilpotent orbit while the right one
is in the minimal one. Hence we expect that choosing the right one will give us the
bigger number of zero modes. Indeed this happens, as it can be easily verified by an
explicit computation.

For N = 5,M = D4, %6 = µ6 = w5, the Higgs field is of the same shape as the N = 1
case, with some coefficients proportional to w:

Φ = eα1 + w

(
eα2 + eα3 + eα4 + 1

4e−α1−2α2−α3−α4

)
. (5.13)

For N = 6,M = H, %a1 = caw (a = 1, . . . , 4). Φ is forced to be of the form

Φ = c1wα∗1 + c2wα∗2 + c3wα∗3 + c4wα∗4 . (5.14)

Let us see some cases where we go up with the power N of w in µ6:

For N = 8, we obtain the same algebra as for N = 2, i.e. M = A2 ⊕ 〈α∗3, α∗4〉. Now,
the only non-zero partial Casimir of degree 3 of A2 takes the following w-dependence
%3 = w4. The minimal nilpotent orbit at the origin compatible with this partial
Casimir is now the trivial one. The Higgs field giving the maximal number of zero
modes is

Φ = ΦA2 with ΦA2 = w


0 1 0
0 0 1
w 0 0

 = w eα1 + w eα2 + w2 e−α1−α2 . (5.15)

For N = 9, we obtain the same algebra as for N = 3, i.e. M = A⊕4
1 . The Higgs field

giving the maximal number of zero modes is

Φ =
4∑

h=1
Φh with Φh = w

 0 1
chw 0

 = w eαh + chw2 e−αh . (5.16)

The same can be done for the cases N = 7, 10, 11, 12, where the Higgs contributing
most to the zero modes is the one with N − 6 multiplied by w. In general, the Higgs fields
given above for N = 1, . . . , 6 are enough to write the Higgs field for any N : if N = n+ 6k,
with n ∈ {1, . . . , 6}, the Higgs field is Φ = wkΦ(n), where Φ(n) is the Higgs field for N = n.

This is actually true for all the cDV singularities in table 1:

Given M and N as above, one needs to find the Higgs fields Φ(n) for N = n, with
n ∈ {1, . . . ,M}. The Higgs field for N = n+ kM is then Φ = wkΦ(n).

This is remarkably convenient also from the physical point of view, as the Higgs background
Φ encodes all the 5d physics, meaning the localized hypers and their charges under the flavor
and discrete symmetries. What the statement in italics is telling us is that, given a quasi-
homogeneous cDV singularity built as an ADE singularity with a µM = wN deformation

– 21 –



J
H
E
P
1
0
(
2
0
2
2
)
1
2
4

Figure 5. Dual Coxeter labels for the A series.

term, we need to know only the Higgs backgrounds for N up to M : all the rest can be
obtained simply by multiplying these Higgs backgrounds by some power of w. The 5d
mode counting changes as explained at the end of section 4.2, the symmetries act in the
same way on the (now possibly increased) modes, and the Higgs branch content varies
accordingly, so that no new computation must be performed.

6 5d Higgs branches from quasi-homogeneous cDV singularities

In this section we exhibit the complete classification of the 5d theories arising from M-
theory on quasi-homogeneous cDV singularities.

First, given a quasi-homogeneous cDV singularity, we must find the minimal subalgebra
M in which a Higgs background Φ can reside, compatibly with the threefold equation (see
section 5.1). Then, we find the Higgs field that produces the maximal number of modes
following section 5.2 (checking that it is consistent with the HB dimension given by the
normalizable complex structure deformations). Once we have the Higgs field Φ, we can
compute the 5d continuous flavor group, the discrete gauge group and the charges of the
hypermultiplets under these groups.

We proceed methodically through all the cases in table 1. We will be brief when dealing
with A- and D-families, as most of the work has already been done in [25]. We treat the
new exceptional cases in more detail.

6.1 Quasi-homogeneous cDV singularities of A type

Two quasi-homogeneous cDV singularities of A type exist: the (AN−1, AM−1) and the
A

(M)
M [N ]. Their defining equations are

(AM−1,AN−1) : x2 +y2 +zM +wN = 0, (6.1)

A
(M)
M [N ] : x2 +y2 +z ·(zM +wN ) = 0. (6.2)

The non-vanishing deformation parameters are, in both cases, µM (w) = wN . The equa-
tion (6.1) is a AM−1 family, while (6.2) is a AM family. It is however easy to see, adopting
the technique fleshed out in section 5 (or equivalently the Type IIA approach employed
in [25]), that the analysis of the A(M)

M [N ] singularities can be fully traced back to the
(AM−1, AN−1) singularities: in particular one can see that the Higgs field in the AM fam-
ily is living in a AM−1 subalgebra and that both spaces are produced by the same choice of
Φ ∈ AM−1. The Higgs fields for the (A,A) threefolds have already been considered in [25]
and can be used also for the A(M)

M [N ] singularities. In general (and for some suitable choice
of basis for the Cartan subalgebra), we find hypers of charge at most 1, as the dual Coxeter
labels of the nodes of the A Dynkin diagrams are all equal to 1, see figure 5. In table 2, we
report the results for both the (Ak−1, AN−1) and the A(k)

k [N ] singularities, rewriting them
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Singularity Resolution pattern Flavor
group

Hypers Total hypers

(Amp−1,Amq−1) U(1)m−1 Charged: pqm(m−1)
2

Uncharged: m (p−1)(q−1)
2

1
2m(p(mq−1)−q+1)

A
(mp)
mp [mq] U(1)m Charged: pqm(m−1)

2 +mq
Uncharged: m (p−1)(q−1)

2

1
2m(p(mq−1)−q+1)+mq

Table 2. Higgs Branch data for quasi-homogeneous cDV singularities of A type.

in full generality as (Amp−1, Amq−1) and A(mp)
mp [mq] singularities, respectively, and with p

and q coprime, p ≥ q. We give the resolution pattern, the corresponding flavor group, the
number of charged hypers and the number of uncharged ones. The last ones are a signal
of a non-resolvable singularity. The flavor groups are respectively U(1)m−1 and U(1)m =
U(1)×U(1)m−1, where in the latter case the factor U(1)m−1 is contained in a Amp−1 sub-
algebra, as we have mentioned above. The flavor charges can be succintly understood as
follows, in some basis of the Cartan subalgebra:16 for the (Amp−1, Amq−1) cases, writing
U(1)m−1 ∼= U(1)m

Ucm(1) (where Ucm(1) is the decoupled diagonal center of mass U(1)) there are
pq hypers charged in the bifundamental of every possible pair of U(1)’s in U(1)m, as well
as m (p−1)(q−1)

2 uncharged hypers. For the A(mp)
mp [mq] cases, there are pq hypers charged

in the bifundamental of every possible pair of U(1)’s in the numerator of the flavor group
contained in the Amp−1 subalgebra (regarded again as U(1)m

Ucm(1)
∼= U(1)m−1), q hypers charged

bifundamentally under every possible pair formed by the U(1) outside the Amp−1 subalgebra
and a U(1) in the numerator of U(1)m

Ucm(1) , and finally there are m (p−1)(q−1)
2 uncharged hypers.

6.2 Quasi-homogeneous cDV singularities of D type

There exist two quasi-homogeneous cDV singularities arising from one-parameter defor-
mations of D singularities: the (AN−1, Dm+1) and the D(m)

m [N ]. Their defining equations
read

(AN−1, Dm+1) : x2 + zy2 + zm + wN = 0, (6.3)
D(m)
m [N ] : x2 + zy2 + zm−1 + ywN = 0. (6.4)

In the two cases, the non-vanishing deformation parameter is µM = wN , that is the maximal
degree one for the first case (M = 2m), while for the second case it is the always present
r-degree deformation parameter of Dr (M = m).

The 5d theories from M-theory on (A,D) singularities have been worked out in [25].
We refer to that paper for the results. We have applied our method to work out also the
D

(m)
m [N ] singularities. As they are useful to identify the flavor charges of the hypermulti-

plets whenever a single node is resolved, in figure 6 we report the dual Coxeter labels of
the nodes of the Dynkin diagrams in the D series.

We notice that, in full generality, all the (A2km−1, Dm+1) and the D(m)
m [km] are com-

pletely resolvable, because in that case N = kM ; this means, following section 5, that
qα = 1 and the minimal degree for the partial Casimirs is j = 1, i.e. M is the Cartan
subalgebra of G.

16For further details, we refer to the much more in-depth analysis of [25].
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Figure 6. Dual Coxeter labels for the D series.

Singularity Resolution pattern M Symmetry
group

Hypers Total
hypers

(AN−1,D4)

N = 6n :
t U(1)4 12n

Charges: root system of D4
2N

N = 2n
n 6= 3j

: A2⊕〈α∗1,α∗4〉 U(1)a×U(1)b
(qa, qb) = (2,0) :n

(qa, qb) = (1,1) : 2n
(qa, qb) = (0,0) :n−1

2N−1

N = 3n
n 6= 2j

: A⊕4
1 Z2

qZ2 6= 0 : 4n
qZ2 = 0 : 2(n−1)

2(N−1)

N 6= 2n,3n :
D4 ∅ 2(N−1) 2(N−1)

(AN−1,D7)

N = 12n : t U(1)7 42n
Charges: root system of D7

7N
2

N = 6n
n 6= 2j

: A⊕6
1 ⊕〈α

∗
6〉 U(1)a×Z(b)

2 ×Z(c)
2

(qa, qb, qc) = (1,0,0) : 2n
(qa, qb, qc) = (1,0,1) : 2n
(qa, qb, qc) = (1,1,0) : 2n

(qa, qb, qc) = (0,1,1) :n−1
(qa, qb, qc) = (0,1,0) :n−1
(qa, qb, qc) = (0,0,1) :n−1
(qa, qb, qc) = (0,0,0) : 12n

7N
2 −3

N = 3n
n 6= 2j

: D4⊕A3 Z2
qZ2 6= 0 : 6n
qZ2 = 0 : 9n−7

2

7(N−1)
2

N = 4n
n 6= 3j

:
A2⊕A2⊕
〈α∗3,α∗6,α∗7〉

U(1)a×U(1)b×U(1)c

(qa, qb, qc) = (0,2,0) :n
(qa, qb, qc) = (0,0,2) :n

(qa, qb, qc) = (0,1,1) : 6n
(qa, qb, qc) = (1,1,0) : 2n
(qa, qb, qc) = (1,0,1) : 2n

(qa, qb, qc) = (0,0,0) : 2(n−1)

7N
2 −2

N = 2n
n 6= 2j,3j

: D6⊕〈α∗6〉 U(1)
q= 1 : 5n−3
q= 0 : 2n

7N
2 −3

N 6= 2n,3n : D7 ∅ 7(N−1)
2

7(N−1)
2

Table 3. Higgs branch data for quasi-homogeneous cDV singularities of (AN−1, D4) and
(AN−1, D7) type.

In table 3 and table 4 we report the results for the Higgs branch data, respectively,
of the (AN−1, D4), (AN−1, D7) and D

(4)
4 [N ], D(5)

5 [N ], D(6)
6 [N ] cases, specifying the flavor

and discrete charges of the hypermultiplets. Other deformed Dr examples can be treated
analogously.

6.3 Quasi-homogeneous cDV singularities of E6, E7, E8 type

In this section, we focus on the deformed E6, E7, E8 cases, looking for the minimal sub-
algebras containing the Higgs backgrounds reproducing a given quasi-homogeneous cDV
singularity of E6, E7, E8 type.
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Singularity Resolution pattern M Symmetry
group

Hypers Total
hypers

D
(4)
4 [N ]

N = 4n :
t U(1)4 12n

Charges: root system of D4
3N

N = 2(2n−1) :
A⊕4

1 Z2
qZ2 6= 0 : 4(2n−1)
qZ2 = 0 : 4(n−1)

3N−2

N 6= 4n,4n−2 :
D4 ∅ 3N−2 3N−2

D
(5)
5 [N ]

N = 5n :
t U(1)5 20n

Charges: root system of D5
4N

N 6= 5n :
A4⊕〈α∗5〉 U(1)

q= 1 : 2N
q= 0 : 2(N−1)

2(2N−1)

D
(6)
6 [N ]

N = 6n :
t U(1)6 30n

Charges: root system of D6
5N

N = 2n
n 6= 3j

:
A2⊕A2⊕
〈α∗3,α∗6〉

U(1)a×U(1)b

(qa, qb) = (2,0) :n
(qa, qb) = (0,2) :n

(qa, qb) = (1,1) : 6n
(qa, qb) = (0,0) : 2(n−1)

5N−2

N = 6n−3 :
A⊕6

1 Z2
2

qZ2 6= 0 : 12(2n−1)
qZ2 = 0 : 6(n−1)

5N−3

N 6= 2n,6n−3 :
D6 ∅ 5N−3 5N−3

Table 4. Higgs branch data for quasi-homogeneous cDV singularities of D(4)
4 [N ], D(5)

5 [N ], D(6)
6 [N ]

type.

Figure 7. Dual Coxeter labels for the E series.

As they are useful to identify the flavor charges, we report the dual Coxeter labels for
the E6, E7, E8 Dynkin diagrams in figure 7.

To illustrate how we get our results, we explicitly go through the (AN−1, E6) and the
E

(14)
7 [N ] cases. We sum up the results for all the cases in tables 5, 6, 7, 8, 9, 10.

(A,E6) singularities. Let us start by showing how this works in the (AN−1, E6) class,
employing the techniques of section 5. The (AN−1, E6) threefolds are expressed as:

x2 + y3 + z4︸ ︷︷ ︸
E6 sing

+ wN︸︷︷︸
def

= 0. (6.5)
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Figure 8. D4 subalgebra in the N = 3, 9 case.

Notice that the only non-vanishing deformation parameter is:

µ12(w) = wN . (6.6)

The other (vanishing) deformation parameters are µ2, µ5, µ6, µ8, µ9. Eq. (6.6) tells us that
M = 12, according to the notation of section 5. There are six divisors of 12:

qα ∈ {1, 2, 3, 4, 6, 12}. (6.7)

Now, we must look for the minimal degrees that the candidate partial Casimirs can ac-
quire, thus forecasting the minimal subalgebra in which Φ can be contained. As M = 12,
the minimal subalgebras will recur with periodicity 12, namely the minimal subalgebra
corresponding to the Higgs describing the (Ak, E6) singularity coincides with the one of
(Ak+12, E6). Let us proceed case by case:

For N = 5, 7, 10, 11 mod 12 (qα = 12), the minimal degree is j = 12. This means
thatM = E6, with all Casimirs equal to zero, except the maximal degree one. This
implies that no resolution is possible.

For N = 2 mod 12 (qα = 6), the candidate minimal degree is j = 6. This tells us that
the only c’s that can be non-vanishing are cI6 and cI12, according to the notation of
section 5. To solve the system (5.7) where only µ6, µ12 appear, we need at least two
Casimirs of degree 6, but this is not possible because of the rank of E6.17 This implies
that no resolution is possible, and that the correct minimal subalgebra is M = E6
with all Casimirs equal to zero, except the maximal degree one.

For N = 3, 9 mod 12 (qα = 4), the minimal degree for the non-vanishing partial
Casimirs is j = 4. To solve system (5.7), we have to set two parameters (µ8 and µ12),
and thus we need at least two partial Casimirs of degree 4. They are provided by
M = D4. This implies that the two external nodes of the E6 Dynkin diagram get
inflated, as can be seen in figure 8. This yields 5d hypers with charge 1 under the
flavor groups corresponding to the resolved nodes, as they have dual Coxeter label
equal to 1, as well as uncharged hypers.

For N = 4, 8 mod 12 (qα = 3), the minimal degree for the non-zero partial Casimirs
is j = 3. System (5.7) tells us that we need at least three Casimirs of degree 3
to extract a solution and fix the deformation parameters µ6, µ9, µ12. Indeed, the
subalgebra M = A2 ⊕ A2 ⊕ A2 gives us the correct partial Casimirs. This choice
produces no simultaneous resolution of the deformed family. Furthermore, the fact

17For example, one could have two degree 6 Casimirs usingM = A5⊕A5, orM = D6, but these cannot
be embedded into E6.
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Figure 9. A⊕3
2 subalgebra in the N = 4, 8 case.

Figure 10. A⊕4
1 subalgebra in the N = 6 case.

that Φ ∈M = A2⊕A2⊕A2 signals that in this case we have a non trivial StabG(Φ) =
Z3, that reflects in a discrete-gauging of the hypermultiplets of the five-dimensional
SCFT. The actual discrete group Z3 comes because the maximal subalgebra A⊕3

2 of
E6 is obtained removing the trivalent node from the extended Dynkin diagram of E6,
that has dual Coxeter number equal to 3 (see section 4.3), as depicted in figure 9.

For N = 6 mod 12 (qα = 2), the minimal degree for the non-zero partial Casimirs is
j = 2. According to the system (5.7), we have to set the µ2, µ6, µ8 parameters to zero,
as well as µ12 = w6. This requires four partial Casimirs of minimal degree 2. It turns
out that there exists a unique subalgebra of E6 doing the work, i.e. A1⊕A1⊕A1⊕A1.
We then have M = A⊕4

1 ⊕ H, with H generated by the two external nodes in the
Dynkin diagram of E6. The Higgs field take values in the semi-simple part of M.
This choice yields the resolution of the two external nodes with Coxeter label 1 of
the E6 Dynkin diagram, and produces a Z2 discrete group in 5d (since L = D4 and
A⊕4

1 is its maximal subalgebra, see section 4.3), as depicted in figure 10.

For N = 12 mod 12 (qα = 1), the minimal degree for the non-zero partial Casimirs
is j = 1. Then M is the Cartan subalgebra of E6. As a result, all the simple roots
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Figure 11. A6 subalgebra in the N = 2, 4, 6, 8, 10, 12 case.

of E6 are blown up in the simultaneous resolution. The flavor charges of the 5d
hypermultiplets are given, in some basis, by the root system of the E6 algebra.18

E
(14)
7 [N ] singularities. The E(14)

7 [N ] singularities are expressed as deformed Du Val
E7 singularities:

x2 + y3 + yz3 + zwN = 0 . (6.8)

Notice that the only non-zero deformation parameter is

µ14(w) = wN . (6.9)

The other (vanishing) deformation parameters are µ2, µ6, µ8, µ10, µ12, µ18. From (6.9), we
read M = 14. Its divisors are:

qα ∈ {1, 2, 7, 14}. (6.10)

With this in hand, we can start looking for the minimal degrees of candidate partial
Casimirs, pinpointing the minimal subalgebra of E7 containing Φ for a given E(14)

7 [N ]. As
in the previous section, we expect that the subalgebra corresponding to E(14)

7 [N ] is equal
to the one of E(14)

7 [N+14], given the degree 14 deformation parameter that is switched on.

For N = 1, 3, 5, 9, 11, 13 mod 14 (qα = 14), the minimal degree is j = 14. Conse-
quently, M = E7, with all Casimirs equal to zero except the maximal degree one.
This entails that no resolution is possible.

For N = 2, 4, 6, 8, 10, 12 mod 14 (qα = 7), the minimal degree for the partial Casimirs
is 7. In order to solve system (5.7), namely to fix µ14, we need only one partial
Casimir. A degree 7 partial Casimir can be provided choosingM = A6⊕〈α∗7〉, which
naturally lies inside E7. This implies that a single node of E7, with Coxeter label
2, gets inflated by the allowed resolution (see figure 11). This yields 5d hypers with
charge 1 and 2, as well as uncharged hypers. The Higgs field Φ lives only in the
semi-simple part ofM. See figure 11.

For N = 7 mod 14 (qα = 2), the minimal degree for the partial Casimirs is 2. According
to (5.7), we need seven distinct such Casimirs. It can be shown that indeed there
exists a choice M = A⊕7

1 ∈ E7, that yields seven partial Casimirs of degree 2.
This maximal subalgebra can be found noticing the chain of maximal subalgebras
E7 ⊃ A1 ⊕D6 ⊃ A1 ⊕A⊕2

1 ⊕D4 ⊃ A7
1, that is depicted in figure 12. The three steps

in obtaining the maximal subalgebra A⊕7
1 of E7, where nodes with Coxeter number

equal to two are removed, tells us that we have the non trivial discrete StabG(Φ) = Z3
2.

18In general, for all the completely resolvable cases of tables (5) and (6), the flavor charges are given by
the roots of the corresponding algebra.
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Figure 12. Maximal subalgebra in the N = 7 case.

For N = 14 mod 14 (qα = 1), the minimal degree for the non-vanishing partial
Casimirs is j = 1. We need at least seven partial Casimirs to fix all the deformation
parameters, and hence we can pick as partial Casimirs the Casimirs of the Cartan
subalgebra of E7. In this way, we see that all the simple roots of E7 are blown-up in
the simultaneous resolution. The flavor charges of the 5d hypers can be written as
the root system of E7.

Other quasi-homogeneous cDV singularities of type E. Proceeding along the same
path as the previous sections, we can readily find the minimal subalgebras containing the
appropriate Higgs background Φ for each class of quasi-homogeneous cDV singularities
arising from deformed E6, E7, E8 singularities.

We sum up our results in table 5, 6, 7, 8, 9 and 10. In particular, we list:

• In the first column, the cDV singularity.

• In the second column, the maximal allowed simultaneous resolution (resolved nodes
are in black). This fixes the Levi subalgebra.

• In the third column, the minimal subalgebraM⊆ L containing Φ. If it is non-trivial,
this yields a discrete group in 5d.

• In the fourth column, the symmetry group preserved by Φ. In general, it comprises
both a continuous and a discrete factor.

• In the fifth column, the number of five-dimensional hypers localized in 5d, and their
charges under the continuous and discrete symmetries. We also report the total
number of hypers, to be compared with the number of normalizable complex structure
deformations of the corresponding cDV singularity.
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Singularity Resolution pattern M Symmetry group Hypers

Deformed E6

(AN−1,E6)

N = 12n : t U(1)6 Charges: root system of E6

TOT: 3N

N = 6n
n 6= 2j

:
A⊕4

1 ⊕〈α
∗
1,α
∗
5〉 U(1)a×U(1)b×Z2

(qa, qb, qZ2) = (1,0,1) : 2n

(qa, qb, qZ2) = (1,0,0) : 2n

(qa, qb, qZ2) = (0,1,1) : 2n

(qa, qb, qZ2) = (0,1,0) : 2n

(qa, qb, qZ2) = (1,1,1) : 2n

(qa, qb, qZ2) = (1,1,0) : 2n

(qa, qb, qZ2) = (0,0,1) : 6n−2

TOT: 3N−2

N = 3n
n 6= 2j

:
D4⊕〈α∗1,α∗5〉 U(1)a×U(1)b

(qa, qb) = (1,0) : 2n

(qa, qb) = (0,1) : 2n

(qa, qb) = (1,1) : 2n

(qa, qb) = (0,0) : 3n−2

TOT: 3N−2

N = 4n
n 6= 3j

:
A⊕3

2 Z3

qZ3 = 1 : 9n

qZ3 = 0 : 3(n−1)

TOT: 3(N−1)

N 6= 3n,4n : E6 ∅ TOT: 3(N−1)

Table 5. Higgs branch data for quasi-homogeneous cDV singularities of (AN−1, E6) type.

7 T-branes

The analysis performed in this work, other than allowing the classification of 5d theories
from M-theory on quasi-homogeneous cDV singularities, further elucidates the pivotal role
of T-branes for the physical description of such theories. In fact, in the preceding sections
we have always searched for a Higgs background in some ADE Lie algebra G, thatmaximizes
the number of hypermultiplets of the 5d theory, namely the dimension of the Higgs Branch,
at the same time breaking the 7d gauge group in the least brutal way. These requirements
translate into imposing that the Higgs background Φ(w) lives in the minimal subalgebraM
of G that allows for a holomorphic dependence of its Casimir invariants on the deformation
parameter w. In section 5, we have developed the machinery to satisfy this constraint for
all the quasi-homogeneous cDV singularities.

It must be stressed, though, that looking for the minimal subalgebra is a mere choice,
enabling comparisons and checks with other existing methods to extract the 5d Higgs
Branch, but that it is by no means unique, nor necessary from a M-theory point of view.
Indeed, in general the Higgs background can be embedded into some larger subalgebra
MT-brane ⊃M, while generating the same threefold equation. This may yield:

1. Less localized modes and a smaller unbroken continuous symmetry in 5d.19

19In this case part of the resolution is obstructed, even though it would appear possible from the geometry.
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Singularity Resolution pattern M Symmetry group Hypers

E
(8)
6 [N ]

N = 8n : t U(1)6 Charges: root system of E6

TOT: 9N
2

N = 4n
n 6= 2j

:
A⊕4

1 ⊕〈α
∗
1,α
∗
5〉 U(1)a×U(1)b×Z2

(qa, qb, qZ2) = (1,0,1) : 2n

(qa, qb, qZ2) = (1,0,0) : 2n

(qa, qb, qZ2) = (0,1,1) : 2n

(qa, qb, qZ2) = (0,1,0) : 2n

(qa, qb, qZ2) = (1,1,1) : 2n

(qa, qb, qZ2) = (1,1,0) : 2n

(qa, qb, qZ2) = (0,0,1) : 6n−2

TOT: 9N
2 −2

N = 2n
n 6= 2j

:
D4⊕〈α∗1,α∗5〉 U(1)a×U(1)b

(qa, qb) = (1,0) : 2n

(qa, qb) = (0,1) : 2n

(qa, qb) = (1,1) : 2n

(qa, qb) = (0,0) : 3n−2

TOT: 9N
2 −2

N = 2n+1 : D5⊕〈α∗1〉 U(1)

q= 1 : 4n+2

q= 0 : 5n

TOT: 9N−5
2

E
(9)
6 [N ]

N = 9n : t U(1)6 Charges: root system of E6

TOT: 4N

N = 3n
n 6= 3j

:
A⊕3

2 Z3

qZ3 = 1 : 9n

qZ3 = 0 : 3(n−1)

TOT: 4N−3

N 6= 3n : E6 ∅ TOT: 4N−3

Table 6. Higgs branch data for quasi-homogeneous cDV singularities of E(8)
6 [N ] and E(9)

6 [N ] type.

2. A smaller unbroken discrete symmetry in 5d.

3. A combination of 1 and 2.

In this regard, the most trivial choice one can pick is:

Φ ∈MT-brane = G, (7.1)

namely embedding the Higgs field in the whole algebra.20 This completely breaks the 7d
gauge group and does not produce any hypermultiplet in 5d.

Let us consider a trivial example for the (A1, A3) singularity. The Higgs background
producing the maximal amount of modes, as well as the expected U(1) flavor symmetry,

20This can be naturally achieved recalling a theorem by Slodowy [52], that establishes a one-to-one
correspondence between the Slodowy slice through the principal nilpotent orbit of G and the coordinates
on t/W. Employing this fact one can, for all the quasi-homogeneous cDV singularities, pick as Higgs
background an element in the Slodowy slice through the principal nilpotent orbit of the corresponding G,
with appropriate coefficients.
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Singularity Resolution pattern M Symmetry group Hypers

Deformed E7

(AN−1,E7)

N = 18n : t U(1)7 Charges: root system of E7

TOT: 7N
2

N = 9n
n 6= 2j

: A⊕7
1 Z3

2

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,0,0) : 7
2 (n−1)

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,0,0) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,1,0) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,0,1) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,1,1) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,1,0) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,0,1) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,1,1) : 4n

TOT: 7(N−1)
2

N = 6n
n 6= 3j

A⊕3
2 ⊕〈α

∗
6〉 U(1)×Z3

(q,qZ3 ) = (1,0) : 3n
(q,qZ3 ) = (1,1) : 3n
(q,qZ3 ) = (1,2) : 3n

(q,qZ3 ) = (0,0) : 3(n−1)
(q,qZ3 ) = (0,1) : 9n

TOT: 7N
2 −3

N = 2n+1
2n 6= 9j−1

: E7 ∅ TOT: 7(N−1)
2

N = 2n
n 6= 3j

: E6⊕〈α∗6〉 U(1)
q= 1 : 3n

q= 0 : 4n−3
TOT: 7N

2 −3

E
(14)
7 [N ]

N = 14n : t U(1)7 Charges: root system of E7

TOT: 9N
2

N = 7n
n 6= 2j

: A⊕7
1 Z3

2

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,0,0) : 7
2 (n−1)

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,0,0) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,1,0) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,0,1) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (0,1,1) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,1,0) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,0,1) : 4n

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2

) = (1,1,1) : 4n

TOT: 9N−7
2

N = 2n+1
2n 6= 7j−1

: E7 ∅ TOT: 9N−7
2

N = 2n
n 6= 7j

: A6⊕〈α∗7〉 U(1)

q= 2 :n
q= 1 : 5n

q= 0 : 3(n−1)
TOT: 9N

2 −3

Table 7. Higgs branch data for quasi-homogeneous cDV singularities of (AN−1, E7) and E(14)
7 [N ]

type.
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Deformed E8

(AN−1,E8)

N = 30n : t U(1)8 Charges: root system of E8

TOT: 4N

N = 6n
n 6= 5j

:
A4⊕A4 Z5

qZ5 = 2 : 10n
qZ5 = 1 : 10n

qZ5 = 0 : 4(n−1)
TOT: 4(N−1)

N = 10n
n 6= 3j

:
A⊕4

2 Z2
3

(q(a)
Z3
, q

(b)
Z3

) = (1,0) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (0,1) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (1,1) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (1,2) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (0,0) : 4(n−1)
TOT: 4(N−1)

N = 15n
n 6= 2j

:
A⊕8

1 Z4
2

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,0,0) : 4(n−1)
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,1,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,1,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,1,1) : 4n
TOT: 4(N−1)

N 6= 6n,10n,15n :
E8 ∅ TOT: 4(N−1)

Table 8. Higgs branch data for quasi-homogeneous cDV singularities of (AN−1, E8) type.

lies in the algebraM = A1 ⊕A1 ⊕ 〈α∗2〉 ⊂ A3, and reads:

ΦT-brane =


0 1 0 0
w 0 0 0
0 0 0 1
0 0 −w 0

 . (7.2)

In this case, we could have also chosen the following Higgs background:

ΦT-brane =


0 1 0 0
0 0 1 0
0 0 0 1
w2 0 0 0

 . (7.3)

This background obviously reproduces the defining equation of the (A1, A3) singularity,
via (4.3), but breaks all the 7d gauge group (in contrast with a preserved U(1) in the case
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E
(24)
8 [N ]

N = 24n : t U(1)8 Charges: root system of E8

TOT: 5N

N = 12n
n 6= 2j

:
A⊕8

1 Z4
2

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,0,0) : 4(n−1)
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,1,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,1,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,1,1) : 4n
TOT: 5N−4

N = 6n
n 6= 2j

:
D4⊕D4 Z2

2

(q(a)
Z2
, q

(b)
Z2

) = (1,0) : 8n
(q(a)

Z2
, q

(b)
Z2

) = (0,1) : 8n
(q(a)

Z2
, q

(b)
Z2

) = (1,1) : 8n
(q(a)

Z2
, q

(b)
Z2

) = (0,0) : 6n−4
TOT: 5N−4

N = 3n
n 6= 2j

:
D8 Z2

qZ2 = 1 : 7n−4
qZ2 = 0 : 8n

TOT: 5N−4

N = 8n
n 6= 3j

:
A⊕4

2 Z2
3

(q(a)
Z3
, q

(b)
Z3

) = (1,0) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (0,1) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (1,1) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (1,2) : 9n
(q(a)

Z3
, q

(b)
Z3

) = (0,0) : 4(n−1)
TOT: 5N−4

N 6= 3n,8n :
E8 ∅ TOT: 5N−4

Table 9. Higgs branch data for quasi-homogeneous cDV singularities of E(24)
8 [N ] type.

of Φ in the minimal allowed subalgebra M), and does not localize any mode in 5d. This
is an example of phenomenon 1.

Furthermore, there can be T-brane cases preserving a smaller discrete group in 5d with
respect to their counterpart obtained from Φ in the minimal allowed subalgebraM. Let us
take a look again at the (A2, D4) example examined in section 4.3, with Higgs background
living in the minimal allowed subalgebra:

Φ ∈M = A⊕4
1 . (7.4)

This choice yields:

• 4 hypers in 5d.

• A preserved Z2 discrete symmetry in 5d.

On the other hand, one could have also made the choice:

Φ ∈MT-brane = D4 = G, (7.5)
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E
(20)
8 [N ]

N = 20n : t U(1)8 Charges: root system of E8

TOT: 6N

N = 10n
n 6= 2j

:
A⊕8

1 Z4
2

(q(a)
Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,0,0) : 4(n−1)
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,0,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,0,1,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,1,0) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,1,0,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (1,0,1,1) : 4n
(q(a)

Z2
, q

(b)
Z2
, q

(c)
Z2
, q

(d)
Z2

) = (0,1,1,1) : 4n
TOT: 6N−4

N = 5n
n 6= 2j

:
D4⊕D4 Z2

2

(q(a)
Z2
, q

(b)
Z2

) = (1,0) : 8n
(q(a)

Z2
, q

(b)
Z2

) = (0,1) : 8n
(q(a)

Z2
, q

(b)
Z2

) = (1,1) : 8n
(q(a)

Z2
, q

(b)
Z2

) = (0,0) : 6n−4
TOT: 6N−4

N = 4n
n 6= 5j

:
A4⊕A4 Z5

qZ5 = 2 : 10n
qZ5 = 1 : 10n

qZ5 = 0 : 4(n−1)
TOT: 6N−4

N 6= 4n,5n :
E8 ∅ TOT: 6N−4

Table 10. Higgs branch data for quasi-homogeneous cDV singularities of E(20)
8 [N ] type.

that explicitly reads, in the basis convention of [45]:

ΦT-brane =



0 1 0 0 0 0 0 0
0 0 w 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 −1 0
0 −w

4 0 0 0 0 0 0
w
4 0 0 0 −1 0 0 0
0 0 0 0 0 −w 0 0
0 0 0 0 0 0 −1 0



. (7.6)

It is then easy to check that ΦT-brane produces:

• 4 hypers in 5d.

• No preserved discrete symmetry in 5d.

The dimension of the Higgs Branch is unaffected, but the discrete symmetry is broken:
this is the most simple example of phenomenon 2.
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Figure 13. Allowed 5d theories from T-branes.

In full generality, one can easily construct Higgs backgrounds living in some subalgebra
MT-brane ⊃ M such that both phenomenon 1 and 2 arise. This fact entails that, given
a quasi-homogeneous cDV singularity,21 a plethora of consistent 5d theories, with varying
dimension of the Higgs Branch, as well as diverse flavor and discrete symmetries, are
possible. Φ ∈ M is the choice producing the largest Higgs Branch dimension, as well as
the smallest breaking of the 7d gauge group. This is another manifestation of the fact
that the geometry of the M-theory background does not uniquely fix the effective low
dimensional theory [31–37]. Intuitively one faces the possibilities depicted in figure 13.

It would be extremely interesting to understand the counterpart of the 5d theories
arising from T-brane backgrounds in complementary approaches, such as the techniques
relying on magnetic quivers.

8 Conclusions

In the present work, we have completely classified the Higgs Branches of the 5d SCFTs
arising from M-theory on quasi-homogeneous cDV singularities, explicitly computing their
dimension, the flavor and discrete symmetries, as well as the charges of the hypermultiplets
under such symmetries. This has been possible thanks to our novel method, allowing to
associate with every quasi-homogeneous cDV singularity an explicit Higgs background (and
viceversa) encoding the physics of the 5d SCFT, in a completely systematic fashion. In

21We remark that T-brane states such as the ones described in the text may appear in all one-parameter
deformed ADE singularities.
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general, we observe that the Higgs Branches of 5d theories arising from M-theory on quasi-
homogeneous cDV singularities consist of free hypers, up to discrete gauging.

In the cases overlapping with the work of [30], namely the (A,E) singularities, we find
complete agreement between our perspective and their Type IIB approach, as regards the
HB dimension, the symmetry group and the charges of the hypers under such group.

Furthermore, as preliminarily explored in [25], we notice a one-to-one correspondence
between the discrete 0-form symmetries enjoyed by the 5d SCFTs from M-theory on quasi-
homogeneous cDV singularities (that are nothing by the discrete symmetries preserved
by our Higgs background), and the discrete 1-form symmetries of Type IIB on the same
singularities (that can be extracted e.g. computing the torsion of the singular threefolds at
infinity). This is consistent with the analysis of [15, 16, 18]: compactifying the 4d SCFT
on a circle, the line operators charged under the 1-form symmetry and wrapping the circle
become point-like operators in 3d and, correspondingly, the one-form symmetry becomes
a zero-form symmetry acting on the magnetic quiver Coulomb branch; one then ends up
with a 0-form symmetry acting on the 5d Higgs Branch.

Finally, we have highlighted the crucial role of T-brane backgrounds in determining the
physical content of the 5d theories: chosen a quasi-homogeneous cDV singularity, a wide
range of different Higgs Branches, corresponding to different Higgs fields Φ and varying
both in dimension and in flavor and discrete symmetries, are compatible with the same
geometry. Among them, only the HB with maximal dimension and largest symmetry group
matches the results known in the literature, such as the ones for the (A,E) singularities
examined by [30]. Such framework arises in a natural fashion from our approach based on
a Higgs field. It would be interesting to elucidate the meaning of the T-brane related Higgs
Branches when the 5d theories engineered from the studied singularities are obtained with
different methods.
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A Example of zero mode computations

In this appendix, we give an explicit example of zero mode computation in a case that is
more involved than the conifold one presented in section 4.2. We consider the (A1, A3)
threefold. The Higgs field is in the subalgebra (M = L)

M = A
(1)
1 ⊕A

(3)
1 ⊕H ⊂ A3 , with H = 〈α∗2〉. (A.1)
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The algebra G = A3 can be decomposed into representations ofM as

A3 = (3, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ [(2, 2)1 ⊕ c.c.] (A.2)

The representations (3, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 support one 7d mode each, as can be
checked by a simple computation. Let us focus on the most interesting representation, i.e.
(2, 2)1. Let us write Φ in this four dimensional representation:

Φ(2,2)1 =


0 1 0 0
0 0 1 0
0 0 0 w
−4w 0 0 0

 (A.3)

Since we fixed a basis of (2, 2)1, then ϕ|(2,2)1 and g|(2,2)1 are vectors with four entries, along
the basis elements of (2, 2)1 and, in particular,

[
Φ, g|(2,2)1

]
= Φ(2,2)1 ·


g1

g2

g3

g4

 =


g2

g3

g4w

−4g1w

 , (A.4)

with gi, with i = 1, 2, 3, 4 holomorphic functions of w. We now perform the gauge fixing:
we have to solve (4.8) inside (2, 2)1:

ϕ1

ϕ2

ϕ3

ϕ4

+


g2

g3

g4w

−4g1w

 = 0, (A.5)

where ϕi are holomorphic functions of w. We see that we can pick g2 = −ϕ1, g3 = −ϕ2,
that will completely gauge-fix to zero the first two entries of ϕ|(2,2)1 . On the other hand,
ϕ3,4 ∈ C[w]/(w), i.e. they give 5d modes localized at w = 0, that are charged under the
U(1) flavor group. The complex conjugate representation analogously gives two modes with
opposite charge. Hence in total we obtain two free hypermultiplets that are charged under
U(1). With the same method, one can check that the other irreducible representations do
not localize any 5d mode.

B Slodowy slices and nilpotent orbits

In this appendix, we provide definitions for the Slodowy slices, used in the main text to
explicitly construct Higgs backgrounds Φ, and show how nilpotent orbits influence the
number of localized 5d modes.
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Let us start giving a definition of Slodowy slices. Consider a nilpotent element x ∈ g

belonging to some nilpotent orbit O: the Jacobson-Morozov theorem ensures that there ex-
ists a standard triple {x, y, h} of elements in g satisfying the su(2) algebra relations.22 Now,
we define the Slodowy slice through the point x as those Lie algebra elements satisfying:

Sx = {z ∈ g | [z− x, y] = 0}. (B.1)

In the main text, we allow ourselves to switch on Higgs backgrounds

Φ(w) =
∑
h

Φh(w) +
∑̀
a=1

%a1(w)α∗a (B.2)

with Φ(w) ∈M ⊂ G, whereM = ⊕
hMh⊕H and for some G ∈ ADE depending on the ex-

amined cDV singularity, only along the Slodowy slices inMh through the nilpotent Φh(0).
To pick the right nilpotent orbit at fixed Mh we can proceed as follows. First, we

can compute the quasi-homogeneous weights of the coordinates of all the Slodowy slices
associated to the nilpotent orbits of Mh. Comparing them with the expression of the
Casimirs of Φh(w), we exclude many Slodowy slices that can not host a holomorphic
Φh(w) due to the quasi-homogeneous scaling. Then, we pick Φh(w) along the Slodowy
slice, among the remaining ones, associated to the nilpotent orbit of largest codimension.

Actually, as in the analysis of quasi-homogeneous cDV singularities we need to switch
on only selected Casimirs in the addends Φh(w) of decomposition (B.2), we can explicitly
state a “canonical” choice of the Slodowy slice element inMh that we are turning on. Let
us immediately give the recipe for the addends inMh = An, for some n. In these cases, in
the main text we always need to turn on the top degree Casimirs, and nothing else. Hence,
we can pick as canonical form for Φh(w) the following element (its shape can be gleaned
from the form of the Slodowy slice through the principal nilpotent orbit ofMh, with only
the top Casimir switched on):

Φh(w) = c1eα1 + c2eα2 + . . .+ cneαn + cn+1e−α1−α2−...−αn , (B.3)

where the ci, i = 1, . . . , n + 1 can either be constant or depend on w (though not all of
them can be constant, otherwise we would realize a non-nilpotent Φh(0)).

The form (B.3) yields a non-vanishing top degree Casimir ρtop = ∏n+1
i=1 ci, and al-

lows Φh(0) to belong to any nilpotent orbit in the A algebra, by a careful choice of the
coefficients.23

A similar reasoning works for the Mh = D and the Mh = E cases, in which it is
sufficient, for the purposes of the main text, to turn on only some of the possible Casimirs.
More precisely, in the D cases we might need either the top degree Casimir, or the Casimirs
having the same degree as the Pfaffian (for the definition of the Casimirs, we refer to
table 4.3). To turn on only these Casimirs, we can construct a “canonical” Φh(w) in a

22The triple related to x is unique up to conjugation.
23Namely, recalling that nilpotent orbits of the An algebras are in correspondence with the allowed Jordan

forms in a matrix representation of sln+1, we can set some of the ci to 1 and the rest to c̃iw, with c̃i a
constant, obtaining any desired Jordan form.
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fashion similar to the A cases: the only difference is that in general we have a choice
between two such canonical forms, one inspired by the Slodowy slice through the principal
nilpotent orbit, and the other along the subregular nilpotent orbit.24 An analogous story
goes for the En cases, in which we can pick as many canonical forms as the number of
orbits with the “En” label (displayed in tables in [45]).

The choice of nilpotent orbit where Φ(0) lies strongly influences the physics of the
underlying 5d theory. In [25] we introduced a formula to obtain preliminary information
regarding the number of localized 5d modes without performing the zero mode computa-
tions illustrated in section 4.2. We found that the number of Lie algebra G elements that
support 5d zero modes (i.e. that they are neither completely gauge fixed to zero nor remain
untouched by gauge transformations) is given by the following codimension formula:

nind = codC

(
O0 ↪→ N

)
, (B.4)

where O0 is the nilpotent orbit in which the Higgs background Φ lives on the origin:

Φ(w)|w=0 = Φ(0) ∈ O0, (B.5)

and N is the nilpotent cone of G.
This is of great practical relevance for our computations, as it is roughly telling us that

the higher the codimension of O0, the higher is the number of 5d modes localized by Φ(w).
Using this fact, we can give a prescription to find the correct Higgs background field in
all cases where ambiguities might arise. More precisely, there can be cases in which mul-
tiple Higgs backgrounds reproduce the same threefold equation pertaining to some quasi-
homogeneous cDV singularity, yet yielding different amount of 5d modes. This means that
the Higgs backgrounds localizing less modes are T-brane states. The way to immediately
tell which is the correct Higgs is then implied by the codimension formula (B.4):

The Higgs field localizing the maximal amount of 5d modes satisfies:

Φ(w)|w=0 = Φ(0) ∈ Olow
0 ,

with Olow
0 the nilpotent orbit of lowest dimension (that is, biggest codimension) allowed by

the compatibility with the threefold equation.
This is equivalent to requiring that every addend Φh(0) in (B.2) lies in the smallest

allowed nilpotent orbit of the corresponding subalgebra, compatibly with the threefold
equation.

Let us give a trivial example. Given the (A2, A4) cDV singularity, we construct the
Higgs background using the canonical form in (B.3). We could have (among other choices)
two different Higgs backgrounds with linear coefficients in w:

Φ1 =


0 1 0 0 0
0 0 w 0 0
0 0 0 1 0
0 0 0 0 w
w 0 0 0 0

 , Φ2 =


0 1 0 0 0
0 0 1 0 0
0 0 0 w 0
0 0 0 0 w

w 0 0 0 0

 . (B.6)

24This happens because in theD cases not all nilpotent orbits can be obtained from the principal nilpotent
orbit by removing some algebra elements.
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The Higgs localizing the maximal amount modes is Φ1, because:

Φ1(0) ∈ O[2,2,1], Φ2(0) ∈ O[3,1,1], (B.7)

and the orbit25 O[2,2,1] has a bigger codimension than O[3,1,1].
Thus, recalling the form (B.3) and its top Casimir ρtop = ∏n+1

i=1 ci, we can lay down the
following general recipe to promptly construct the Higgs background Φh(w) ∈ Mh = An:
if we require ρtop = wk, with k < n, the corresponding Φh(w) has the shape (B.3), with k
parameters ci equal to w, and the rest equal to 1. The 1’s are distributed in such a way
that Φh(0) lies in the nilpotent orbit labelled by a partition of k parts [d1, . . . , dk] with the
largest codimension among the allowed ones.

C Casimirs for the E6, E7, E8 families

In this appendix, we present the explicit expressions of the coefficients of the versal defor-
mations of E6, E7, E8 in terms of the Casimir invariants of the Higgs backgrounds Φ. This
allows to build a bridge between a given quasi-homogeneous cDV threefold arising from a
deformation of a G = E6, E7, E8 singularity and a Higgs background Φ.

The Er singularities possess r deformation parameters:

E6 µi for i = 2, 5, 6, 8, 9, 12
E7 µi for i = 2, 6, 8, 10, 12, 14, 18
E8 µi for i = 2, 8, 12, 14, 18, 20, 24, 30

(C.1)

entering in the equation of the family as in (4.3).
Now fix the representations of G = E6, E7, E8 as follows: 27 for E6, 133 for E7 and 248

for E8. One then defines the Casimirs of an element g ∈ G in the respective representation
as [53, 54]:

E6 cki(g) = Tr(gki) for ki = 2, 5, 6, 8, 9, 12
E7 c̃ki(g) = Tr(gki) for ki = 2, 6, 8, 10, 12, 14, 18
E8 ĉki(g) = Tr(gki) for ki = 2, 8, 12, 14, 18, 20, 24, 30

, (C.2)

and i = 1, . . . , r. In particular, we are interested in the relationship between the Casimirs
of g = Φ and the deformation parameters (C.1).

25We have used the conventions labelling nilpotent orbits of [45].
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The result for the E6 case is:

µ2 = − c2
24

µ5 = c5
60

µ6 = c3
2

13824 −
c6

144

µ8 = − c4
2

110592 + 13c2c6
8640 −

c8
240

µ9 = c9
756 −

c2
2c5

11520

µ12 = − c12
3240 + 109c6

2
4299816960 −

847c3
2c6

134369280 + 109c2
2c8

3732480 + 13c2c
2
5

466560 + 61c2
6

933120 .

(C.3)

For the E7 case:

µ2 = c̃2
18

µ6 = c̃3
2

139968 −
c̃6
72

µ8 = − 7c̃4
2

25194240 + 11c̃2c̃6
16200 −

c̃8
300

µ10 = −2c̃10
315 + c̃5

2
151165440 −

17c̃2
2c̃6

583200 + c̃2c̃8
1400

µ12 = − 16c̃10c̃2
1148175 + c̃12

12150 −
149c̃6

2
10579162152960 + 167c̃3

2c̃6
3401222400 + 737c̃2

2c̃8
881798400 −

31c̃2
6

437400

µ14 = 8303c̃10c̃
2
2

14935460400 −
2201c̃12c̃2
217314900 + 4c̃14

62601 + 11083c̃7
2

24082404724998144 −
11609c̃4

2c̃6
5530387622400

− 1289c̃3
2c̃8

1433804198400 + 353c̃2c̃
2
6

142242480 −
31c̃6c̃8

1463400

µ18 = 12182634587c̃10c̃
4
2

77806514663884339200 −
564449c̃10c̃2c̃6
3418744644000 + 1844c̃10c̃8

3956880375 −
27233975c̃12c̃

3
2

11321053720935552

+ 301c̃12c̃6
452214900 + 307855c̃14c̃

2
2

13588370378352 −
2c̃18

1507383 −
886993691c̃9

2
313644160640867419847393280

+ 4713945967c̃6
2c̃6

72026602145995788288000 −
14715122551c̃5

2c̃8
2334195439916530176000 −

579011753c̃3
2c̃

2
6

23156700792822720000

+ 2313866297c̃2
2c̃6c̃8

222355151645760000 −
77393c̃2c̃

2
8

3376537920000 −
15011c̃3

6
97678418400 . (C.4)
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For the E8 case:

µ2 =
ĉ2

120

µ8 =
13ĉ4

2
24883200000

−
ĉ8

5760

µ12 =
ĉ12

181440
+

101ĉ6
2

3224862720000000
−

ĉ2
2ĉ8

64512000

µ14 =−
71ĉ12ĉ2

798336000
+

ĉ14

1108800
−

2531ĉ7
2

9029615616000000000
+

103ĉ3
2ĉ8

696729600000

µ18 =−
4451ĉ12ĉ3

2
689762304000000

+
1523ĉ14ĉ2

2
12454041600000

−
ĉ18

47174400
−

26399ĉ9
2

2080423437926400000000000

+
4747ĉ5

2ĉ8

722369249280000000
+

331ĉ2ĉ2
8

1672151040000

µ20 =
191071ĉ12ĉ4

2
2121019084800000000

+
127ĉ12ĉ8

174569472000
−

1165063ĉ14ĉ3
2

612738846720000000
+

236627ĉ18ĉ2

434023349760000

+
10249681ĉ10

2
61414099887587328000000000000

−
2994007ĉ6

2ĉ8

35540567064576000000000
−

323371ĉ2
2ĉ

2
8

82269831168000000
−

ĉ20

220809600

µ24 =−
193ĉ2

12
17793312768000

+
228270563ĉ12ĉ6

2
29320967828275200000000000

+
234189517ĉ12ĉ2

2ĉ8

945465467240448000000

−
9171869023ĉ14ĉ5

2
52675933174824960000000000

−
23281ĉ14ĉ2ĉ8

9150846566400000
+

561557071ĉ18ĉ3
2

8291582073815040000000

+
8268193432181ĉ12

2
580761207304971815485440000000000000000

−
20976434911ĉ8

2ĉ8

3055351469407469568000000000000

−
16935675593ĉ4

2ĉ
2
8

33005339947302912000000000
−

666323ĉ2
2ĉ20

721337268326400000
+

ĉ24

10061694720
−

593ĉ3
8

887354818560000

µ30 =−
636328729ĉ2

12ĉ
3
2

367646783551116410880000000
−

189107437ĉ12ĉ14ĉ2
2

277976001893990400000000
+

2521ĉ12ĉ18

31907254579200000

+
122785779721089347ĉ12ĉ9

2
5354576379380206927872000000000000000000

+
374760114643099ĉ12ĉ5

2ĉ8

685159914799807856640000000000000

−
199931513ĉ12ĉ2ĉ2

8
94458563710156800000000

+
28501673ĉ2

14ĉ2

3860777804083200000000
−

1634513578407571229ĉ14ĉ8
2

3206548401263100769075200000000000000000

−
3442332938170993ĉ14ĉ4

2ĉ8

593805259493166809088000000000000
+

1223ĉ14ĉ2
8

112201334784000000
+

15587535288859801ĉ18ĉ6
2

76346390506264304025600000000000000

−
1051350791ĉ18ĉ2

2ĉ8

1243310844834938880000000
+

38736013334814563129113ĉ15
2

919171413254131073937239231692800000000000000000000000

−
966205043352894287ĉ11

2 ĉ8

46497194159854305977303040000000000000000000
−

53516928494297557ĉ7
2ĉ

2
8

42002885419922588958720000000000000000

−
2159242595767ĉ5

2ĉ20

737984035215212544000000000000
+

21328481ĉ3
2ĉ24

58332071437516800000000
+

225239997090599ĉ3
2ĉ

3
8

119591548765057371340800000000000

+
72667ĉ2ĉ20ĉ8

4518107320320000000
−

ĉ30

1978376400000
. (C.5)

D Mathematica code for computing the zero modes

In this appendix we are going to describe the ancillary Mathematica code that we used
to analyze the Higgs branches of M-theory on the quasi-homogeneous cDV. The code can
be found as supplementary material of this paper. In the supplementary material, the
reader can find a zipped folder, containing, together with the Mathematica notebook code
“CodeHiggsBranchDatav2.nb”, nine text files. The text files have to be placed in one of the
folders of the variable $Paths of Mathematica and contain the explicit matrix realization
of the exceptional Lie algebras.26

26We took the explicit matrix realization of the exceptional Lie algebras from [55–57].
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Figure 14. Roots labelling convention

The notebook file is divided in two sections. The first section (“Main Code”) contains
the functions that extract the Higgs branch data from the Higgs field Φ. The second section
“Examples” contains various examples where we show how to use the routines contained in
the section “Main Code”. The Mathematica code can be used also to analyze singularities
that are not quasi-homogeneous.

HbData function. The most important function contained in the notebook is
HbData[ADE, rank, simsrts, listhiggs, coeffhiggs, cartanhiggs, coeffcartan].

The arguments of the function are

• ADE: is a Symbol to be picked among “A, DD, E6, E7, E8” and specifies the type of
ADE algebra associated with the threefold.

• rank: is a positive Integer that specifies the rank of the ADE algebra associated
with the threefold.

• simsrts: is a List of Lists. Each sublists represents a root of the Lie algebra
specified by ADE and rank. The roots contained in simsrts are the simple roots of
the subalgebra M where Φ resides.27

The roots are described by their integer coefficients with respect to the basis of the
simple roots of G. We labelled the simple roots as in the figure 14. For example, the
lowest root of the D4 Lie algebra is expressed as

{−1,−2,−1,−1} .

Concretely, considering the Higgs field in (5.11) as an example, we see that it lies in
the subalgebraM = A4

1 of D4. This subalgebra is generated by the three outer roots
27They give the Dynkin diagram of the subalgebraM.
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of the D4 diagram and by the lowest root of D4. In our notation, the corresponding
input is

simsrts = {{1, 0, 0, 0} , {0, 0, 1, 0} , {0, 0, 0, 1} ,−{1, 2, 1, 1}} . (D.1)

The user can print on screen the roots system of G calling the function

PrintRootSystem[ADE,rank],

the first argument being again the ADE type of G, and the second argument its rank.
The highest root of the root system can be obtained calling the function

PrintHighestRoot[ADE,rank].

We will explain below how to prompt, using the function PrintMatrix, the explicit
matrices representing, in the adjoint representation, the root vectors associated with
the roots (as well as to the elements of the basis of the Cartan subalgebra of G).

• listhiggs: is a List of Lists. Each sublist represents a root such that the Higgs
field has a non-zero coefficient along the corresponding root-vector in G. We input in
this way all the components of the Higgs that do not lie in the Cartan subalgebra;
the elements in the Cartan subalgebra will be separately input with the variables
cartanhiggs and coeffcartan. For the (A2, D4) Higgs field (5.11) that we are
taking as example, the variable listhiggs is

listhiggs =
{
{1, 0, 0, 0} , {0, 0, 1, 0} , {0, 0, 0, 1} ,−{1, 2, 1, 1} ,

−{1, 0, 0, 0} ,−{0, 0, 1, 0} ,−{0, 0, 0, 1} , {1, 2, 1, 1}
}
. (D.2)

• coeffhiggs: is a List containing the coefficients corresponding to the elements of
listhiggs. If we again consider the Higgs field of (5.11) we have

coeffhiggs = {1, 1, 1, 1, c1w, c2w, c3w, c4w} , (D.3)

where we lowered the index h of the coefficients ch appearing in (5.11) for clarity of
notation.

• cartanhiggs: is a List of positive Integers ni, with ni = 1, . . . , rank, describing
the elements of the Cartan subalgebra of G along which the Higgs field has a non-zero
coefficient. We chose the generators of the Cartan subalgebra to be the dual elements
α∗j of the simple roots. For example, let’s consider the (A11, E6) singularity. We saw
in table 5 that its crepant resolution simultaneously resolves all the nodes of the E6
Dynkin diagram. In terms of the Higgs fields, this means that Φ has to lie in the
Cartan subalgebra of E6. Inside the Cartan subalgebra, the Higgs field associated
with (A11, E6) has non-zero component along all the α∗i , with i = 1, . . . , 6. In order
to pick a Higgs field with a non-zero component along all the α∗i we input

cartanhiggs = {1, 2, 3, 4, 5, 6} . (D.4)
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If we initialize the variable cartanhiggs as in (D.4), we get an Higgs field with a
(possibly) non-zero component along all the α∗i . We note that, however, cartanhiggs
does not specify the precise value of the coefficients. The coefficients will be specified
in the variable coeffcartan.

• coeffcartan: is the List of the coefficients corresponding to the elements of
cartanhiggs. For the (A11, E6) example, if we input

cartanhiggs = {1, 2, 3, 4, 5, 6} ,
coeffcartan = {wt1, wt2, wt3, wt4, wt5, wt6}

we picked the Higgs to have a coefficient wti along the corresponding α∗i .

Output. The function HbData has a void output and prints all the data that describe the
action of the flavor symmetries and discrete gauging symmetries on the five-dimensional
hypers. This permits to reconstruct the Higgs branch as complex algebraic variety and the
action of the flavor isometries on the Higgs branch.

We remark here that the user can print on the screen the explicit matrix (in the adjoint
representation) associated with a certain value of the variables listhiggs, coeffhiggs,
cartanhiggs, coeffcartan using

PrintMatrix[ADE,rank,listhiggs,coeffhiggs,cartanhiggs,coeffcartan].

For example, if we want to visualize the matrix associated with the generator corresponding
to the root {0, 1, 0, 0} of D4, we will input

PrintMatrix[DD,4,{{0,1,0,0}},{1},{},{}].

This permits the user to read off the explicit normalization we used for the generators of
the Lie algebra.28

Summing up, to obtain the Higgs branch data of the Higgs field associated with the
(A2, D4) singularity, we will input the following data:

• ADE = DD;

• rank = 4;

• simsrts: the subalgebraM containing the Higgs field is A4
1 ⊂ D4. The corresponding

simple roots are eα1 , eα3 , eα4 and the lowest root of D4 (see figure 3). Consequently,
we input (D.1).

• Given (5.11), recalling that αh, with h = 4 is the lowest root of the D4 Dynkin
diagram, we input (D.2), (D.3) as, respectively, listhiggs and coeffhiggs.

28In particular, for classical Lie algebra, we followed the convention of [45].
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• The subalgebra M = A4
1 has no u(1) factors. Consequently, the Higgs field can not

have non-zero coefficients along the Cartan elements α∗i , with i = 1, . . . , 4, dual to
the simple roots of D4. Then, we input29

cartanhiggs = {} , coeffcartan = {} .

We report here a part of the output for the (A2, D4) case.30 The first part of the output is

The first line is telling us that the considered threefold does not admit any small crepant
resolution. The second line is telling us that the discrete gauging group is non trivial.
The discrete gauging group is the direct product of the factors appearing between curly
brackets in the second line of the output. In this case, we have only one such factor, and
the discrete gauging group is isomorphic to Z2.

The second part of the output consists of many blocks (one for each irreducible rep-
resentation of the branching of G = D4 with respect to the A4

1 ⊂ D4 subalgebra) of the
following type:

From the first three lines we can reconstruct the number of five-dimensional modes localized
in the considered irreducible representation. In the first line, we read the List {4, 2, 0}, this
means that we have four modes localized in C[w]/(w), two modes localized in C[w]/(w2)
and zero in C[w]/(wk) with k > 2. The overall number of complex-valued modes is, hence,
4 ∗ 1 + 2 ∗ 2 = 8. The last four lines tell us, respectively:

• The complex dimension of the considered irreducible representation. In the example,
it is 16.

• The Dynkin indices of the highest weight state of the representation. In the example,
we read

{1, 1, 1, 1} . (D.5)
29We can also choose cartanhiggs as a non-void list and set to zero the corresponding coefficients inside

coeffcartan. For example, we can input

cartanhiggs = {1, 3, 4} , coeffcartan = {0, 0, 0} .

30For the full output please check the subsection “A2D4” inside the section “Examples” of the ancillary
Mathematica file.
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Each of the number appearing in (D.5) tells us the weight of the highest state of the
considered irreducible representation with respect to the roots contained in simsrts.
In other words, the first number of (D.5) is the Dynkin index of the highest weight
state with respect to the first root appearing in simsrts (in this case eα1 = {1, 0, 0, 0})
and so on. These data permit us to completely reconstruct the representation: in this
case, (D.5) tells us that we are considering the tensor product of all the fundamental
representations of the four A1 factors (that has dimension 24 = 16).

• The charges, with respect to the flavor group generators, of the modes localized in the
representation. The generators of the flavor group are the Cartan elements α∗i that
are dual to the roots that get resolved. In this case, the flavor group is trivial (since
no P1 can be simultaneosly resolved) and the list is void.

• The action of the discrete gauging group on the considered irreducible representation.
As we just learned, for the (A2, D4) case the discrete gauging group is Z2. We saw
that the discrete gauging groups are generated by diagonal matrices that respect the
branching of G with respect to M. Hence, their generators act multiplying by the
same phase all the elements of the considered irreducible representation. In this case,
the output is telling us that the generator of the Z2 group acts multiplying all the
elements of the considered irreducible representation by −1. In general, the list will
contain as many phases as the factors of the discrete gauging group.

Overloaded version of HbData. The function HbData is overloaded as

HbData[ADE, rank, simsrts, higgs].

The overloaded version of HbData can be used to analyze, in the language of this paper,
the Higgs fields we presented in [25, 27]. The first three arguments are exactly the same of
the version of the HbData function presented in the previous pages. The fourth argument
is a matrix representing the Higgs field. The Higgs field has to be input

• in the fundamental representations for the Ar, Dr cases (following the notations
in [45]);

• in the 27 representation for the E6 case;

• in the adjoint representation for the E7, E8 cases.

The output is exactly analogous to the one of HbData[ADE, rank, simsrts,
listhiggs, coeffhiggs, cartanhiggs, coeffcartan], and contains the data of the
Higgs branch of the five-dimensional SCFT associated with the Higgs field profile higgs
that we input in HbData[ADE, rank, simsrts, higgs].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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