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1 Introduction

In recent years, interest for tensor models has remarkably grown. The main reason is
that they exhibit a melonic large-N limit [2–4] which is both richer than that of vector
models [5, 6] and simpler than the planar limit of matrix models [7–9]. Even though, as
algebraic objects, tensors are more complicated than matrices, their large-N limit is simpler
as melonic diagrams are a subset of planar diagrams.
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Tensor models were first introduced in zero dimension in the context of quantum grav-
ity and random geometry [10–14]. They were then used as an analytic tool to explore
strong coupling effects in many-body quantum mechanics [15–25] (see also [4, 26] for re-
views). In one dimension, for example, they were useful to provide an alternative to the
SYK model without the quenched disorder of the latter [27–32]. Finally, tensor models
were generalized in higher dimensions where they can be studied as proper field theories.
An interesting feature is that they give rise to a new class of conformal field theories, called
melonic CFTs [1, 33–40] (see also [41, 42] for reviews).

This was first observed in dimensional regularization for a short-range model in [33].
The existence of a melonic fixed point was then proven for a long-range quartic O(N)3

model in [38]. Conformal properties and next-to-leading order corrections were then com-
puted in [39] and in [43]. However, there have been less studies for sextic models. They
were first considered without studying the fixed points and in rank 5 in [33]. In [36], a
O(N)3 bosonic tensor model was considered and a so-called “prismatic” fixed point was
found in d = 3 − ε dimensions. 1/N corrections to this real stable fixed point were also
computed. Two models (in rank 3 and 5) were then studied at large N in [1] with the op-
timal scaling defined in [44] differently to what was done in [36]. A non-trivial fixed point
was found for the sextic model in rank 3 in both the short and the long-range settings.
However, in rank 5, only a non-perturbative fixed point was found.

In this paper, we go one step further and compute the next-to-leading order contribu-
tions to the sextic fixed points in rank 3 both in short and long range.

To do so, we start by computing the beta functions of a generic sextic multi-scalar
model with N complex fields. Sextic vector models with a O(N ) symmetry were studied
both at large and finite N [45–49]. Computations up to six-loops were carried out in [50].
Generic multi-scalar models with real fields were also considered in [51–53] as well as hyper-
cubic models in [54] respectively. Here, we choose complex fields in order to reduce the num-
ber of tensor invariants when the symmetry is specified to U(N)3 with N = N3. After spec-
ifying the symmetry, we compute the 1/N corrections of the sextic tensor model in rank 3.

Main results. In the short-range case, our results are the following. At large N we
recover the real interacting fixed point of [1]. At leading-order, the stability matrix has an
eigenvalue of multiplicity two and is thus non-diagonalizable: the fixed point corresponds
to a logarithmic CFT. At next-to-leading order, the corrections to the fixed point are still
real and the stability matrix is now diagonalizable. An interesting feature of this fixed
point is that, except for the so-called wheel coupling, all critical couplings have terms of
order O(ε0). This is thus a different type of fixed point than those found in quartic tensor
models. In the long-range case, we again recover the results of [1] at large N . However,
at NLO, the fixed points are non-perturbative and do not correspond to a precursor of the
large-N line of fixed points.

Plan of the paper. In section 2, we study a general short-range sextic multi-scalar
model. After defining the action, we compute the wave function renormalization and
the beta functions. Then, we apply those results to the U(N)3 sextic tensor model in
subsection 2.4.
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In section 3, we study a general long-range sextic multi-scalar model. We again com-
pute the beta functions and finally apply those results to a U(N)3 long-range tensor model
in 3.3.

Finally, we give more details on our computations and conventions in the appendices.
In appendix A, we detail the computation of the renormalized series. In appendix B and
appendix C, we give detailed computations of the melon integrals and of the Feynman
integrals appearing in the beta functions. In appendix D, we give the explicit forms of the
interaction terms appearing in the action of the short and long-range sextic tensor models.
In appendix E, we give the full stability matrix for the U(N)3 short-range model. Lastly, in
appendix F we compare our results to previous results obtained for the short-range sextic
O(N) model.

2 The short-range sextic multi-scalar model

2.1 Action

The short-range multi-scalar model with sextic interactions and complex fields in dimension
d is defined by the action:

S[φ] =
∫
ddx

[1
2∂µφ̄a(x)∂µφa(x) + 1

(3!)2 λabc;defφa(x)φb(x)φc(x)φ̄d(x)φ̄e(x)φ̄f (x)
]
,

(2.1)
where the indices take values from 1 to N , and a summation over repeated indices is
implicit. The coupling λabc;def is fully symmetric into the first three indices (corresponding
to fields φ) and the last three indices (corresponding to fields φ̄). It thus amounts in general
to 2

(N+2
3
)

= N (N+1)(N+2)
3 couplings.

In d = 3, the sextic interaction is marginal. Two and four-point functions are power
divergent while six-point functions are logarithmically divergent in the UV. Correlation
functions with more than eight external points are trivially convergent.

In the following, we will work in dimensional regularization with d = 3 − ε and are
interested in Wilson-Fisher like fixed points with ε 6= 0 but small. This allows UV di-
vergences to be regularized. Moreover, we choose the BPHZ zero momentum subtraction
scheme. One could wonder why we chose this prescription and not the usual Gell-Mann
and Low subtraction at non-zero momentum. The reason is that, with this prescription,
we were not able to obtain analytic results for the amplitudes of four-loop diagrams in
the long-range case. For consistency, we chose the zero momentum subtraction scheme for
both short and long-range models.

However, as we work with a massless propagator, we also need an IR regulator. Fol-
lowing [55], we introduce an IR regulator by modifying the covariance as:1

Cµ(p) = 1
p2 + µ2 =

∫ ∞
0

da e−ap
2−aµ2 (2.2)

1We denote x, y and so on positions, and
∫
x

≡
∫
ddx. We denote p, q and so on momenta and

∫
p

≡∫
ddp

(2π)d . The Fourier transform is f(p) =
∫
x
eipxf(x) with inverse f(x) =

∫
p
e−ipxf(p).

– 3 –
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Figure 1. Two-point melon graph contributing to the wave function renormalization.

for some mass parameter µ > 0. We give the modified covariance in momentum space as
in the following the beta functions will be computed from the momentum space Lagra-
gian. We also explicitly wrote the integral representation of the covariance with Schwinger
parameters as we will use it to compute Feynman amplitudes.

Working in dimensional regularization we can renormalize the mass terms to zero.
Moreover, there are no divergences in the four-point kernel (see [1] for a detailed proof).
We can thus take the four-point couplings to be zero from the beginning.

2.2 Wave function renormalization

We introduce the wave function renormalization by rescaling the bare field φa as φa =(√
Z
)

ab
φRb with φRb the renormalized field.

In dimensional regularization, d = 3− ε, there is only one Feynman graph contributing
at lowest order: the melon graph (see figure 1).

We then have for the expansion of the renormalized two-point function at lowest order:

Γ(2)
ab(p) ≡ GRab(p)−1 = Zabp

2 −
λacd;efgλefg;cdb

24 M1(p) . (2.3)

withM1(p) the melonic integral. It is computed in appendix B, eq. (B.4). At leading order
in ε, we have:

M1(p) = −p2−4ε 2π2

3ε(4π)6 +O(ε0) , (2.4)

At last, we fix Zab such that

lim
ε→0

dΓ(2)
ab(p)
dp2 |p2=µ2 = δab . (2.5)

At quadratic order in the coupling constant, we obtain:

Zab = δab +
λacd;efgλefg;cdb

24 M̃1(µ) = δab − µ−4ελacd;efgλefg;cdbπ
2

36ε(4π)6 , (2.6)

with M̃1(µ) = d
dp2M1(p)|p2=µ2 .

2.3 Beta functions

We define the renormalized sextic coupling gabc;def in terms of the bare expansion of the
six-point function by the following renormalization condition:

gabc;def = µ−2εΓ(6)
ghj;kpq(0, . . . , 0)

(√
Z
)

ga

(√
Z
)

hb

(√
Z
)

jc

(√
Z
)

kd

(√
Z
)

pe

(√
Z
)

qf
,

(2.7)
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Dζ . D2
ζ .

Sζ . Iζ . Jζ .

Figure 2. The five graphs contributing to the bare expansion up to order 3 in the coupling
constant. For the short-range case, ζ = 1.

where Γ(6)
ghj;kpq(0, . . . , 0) is the one-particle irreducible six-point function at zero external

momentum. We compute it up to order three in the coupling constant (four-loops) using
the bare expansion in terms of connected amputated one particle irreducible Feynman
graphs. We write the amplitude of the latter in Schwinger parametrization as [55]:

A(G) =µ(2d−6ζ)(V−1) Â(G) , Â(G) = 1[
(4π)dΓ(ζ)3]V−1

∫ ∞
0

∏
e∈G

dae

∏
e∈Ga

ζ−1
e e−

∑
e∈G ae(∑

T ∈G
∏
e/∈T ae

)d/2 ,

(2.8)
where V denote the numbers of vertices of G, e ∈ G runs over the edges of G, and T
denotes the spanning trees in G (e.g. [56]). Note that we used the fact that we only deal
with six-point graphs with sextic vertices, as these are sufficient to describe the divergent
graphs described above. The dependence in µ was found by rescaling all internal momenta
by µ before introducing the Schwinger parametrization.

There are five graphs contributing to the bare expansion up to order 3 in the coupling
constant. They are represented in figure 2 and we call Dζ , Sζ , Iζ , Jζ the amplitudes Â(G)
of these diagrams. These are the amplitudes without the µ dependence that has been
factored out. For the second diagram in figure 2, we use the fact that the amplitude of a
one-vertex reducible diagram factors into the product of the amplitudes of its one-vertex
irreducible parts.

We should also be careful to conserve the permutation symmetry of the six-point
function in its indices. Therefore, we should completely symmetrize over external white
and black vertices. However, due to specific symmetries of the diagrams under relabeling,
certain terms are equal. Grouping them together and setting ζ = 1, we get:

Γ(6)
abc;def (p1,...,p6)=λabc;def−

1
6 [3(λabg;hjdλchj;efg+8 terms)+λabc;ghjλghj;def ]µ−2εD1 (2.9)

+ 1
12[3(λagh;jklλbjk;ghmλlmc;def +2 terms)+3(λjkl;dghλghm;ejkλabc;flm+2 terms)

+3(λagh;jklλjkm;ghdλlbc;efm+8 terms)+2(λagh;jklλjkl;hmdλmbc;efg+8 terms)]µ−4εS1

+ 1
36[9(λagh;jefλjkl;mghλmbc;kld+8 terms)+λabc;ghjλghj;klmλklm;def ]µ−4εD2

1
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+1
4[(λagh;djkλbcl;ghmλjkm;lef +8 terms)+2(λagh;djkλbcj;glmλklm;hef +8 terms)

+(λagh;djkλblm;eghλcjk;flm+5 terms)+4(λagh;djkλbjl;egmλckm;fhl+5 terms)]µ−4εI1

+ 1
12[(λagh;jefλbcj;klmλklm;ghd+ 8 terms)+6(λagh;jefλbck;glmλlmj;hkd+ 8 terms)

+(λjbc;dghλklm;efjλagh;klm+ 8 terms)+6(λjbc;dghλglm;kefλahk;lmj+ 8 terms)
+3(λakl;medλbjm;fghλcgh;jkl+ 17 terms)+6(λalm;hdeλbjk;gmfλcgh;jkl+ 17 terms)
+3(λmab;dklλcgh;ejmλjkl;ghf + 17 terms)+6(λabh;dlmλcgm;ejkλjkl;ghf + 17 terms)
+3(λabc;ghjλjlm;kdeλghk;lmf + 2 terms)+3(λghj;defλabk;jlmλlmc;ghk+ 2 terms)]µ−4εJ1,

where the notation + . . . terms corresponds to a sum over terms obtained by permuting
external indices into non-equivalent ways. For example, the nine terms in the first line
correspond to the choice of the white index a,b or c on the second coupling and the choice
of the black index d, e or f on the first coupling. The integrals Dζ , Sζ , Iζ , Jζ are computed
in appendix C both for the short-range case ζ = 1 and the long-range case 0 < ζ < 1.

The beta function is then the scale derivative of the running coupling at fixed bare
coupling:

βabc;def = µ∂µgabc;def . (2.10)

We rescale the couplings by g̃abc;def = (4π)−dgabc;def and we define:

αD1 = ε(4π)dD1
3 = 2π

3 , αS1 = −ε(4π)2dS1
3 = 2π2

3 , αI1 = −ε(4π)2dI1 = −π4 ,

αJ1 = ε(4π)2d (D2
1 − 2J1)

6 = −4π2

3 , αM1 = −ε(4π)2d M̃1
12 = π2

18 . (2.11)

We finally obtain the following beta function:

βabc;def =−2εg̃abc;def +αD1 [3(g̃abg;hjdg̃chj;efg +8 terms)+ g̃abc;ghjg̃ghj;def ]
+αS1 [3(g̃agh;jklg̃bjk;ghmg̃lmc;def +2 terms)+3(g̃jkl;dghg̃ghm;ejkg̃abc;flm +2 terms)

+3(g̃agh;jklg̃jkm;ghdg̃lbc;efm +8 terms)+2(g̃agh;jklg̃jkl;hmdg̃mbc;efg +8 terms)]
+αI1 [(g̃agh;djkg̃bcl;ghmg̃jkm;lef +8 terms)+2(g̃agh;djkg̃bcj;glmg̃klm;hef +8 terms)

+(g̃agh;djkg̃blm;eghg̃cjk;flm +5 terms)+4(g̃agh;djkg̃bjl;egmg̃ckm;fhl +5 terms)]
+αJ1 [(g̃agh;jef g̃bcj;klmg̃klm;ghd + 8 terms)+6(g̃agh;jef g̃bck;glmg̃lmj;hkd + 8 terms)

(g̃jbc;dghg̃klm;efjg̃agh;klm + 8 terms)+6(g̃jbc;dghg̃glm;kef g̃ahk;lmj + 8 terms)
+3(g̃akl;medg̃bjm;fghg̃cgh;jkl + 17 terms)+6(g̃alm;hdeg̃bjk;gmf g̃cgh;jkl + 17 terms)
+3(g̃mab;dklg̃cgh;ejmg̃jkl;ghf + 17 terms)+6(g̃abh;dlmg̃cgm;ejkg̃jkl;ghf + 17 terms)
+3(g̃abc;ghjg̃jlm;kdeg̃ghk;lmf + 2 terms)+3(g̃ghj;def g̃abk;jlmg̃lmc;ghk + 2 terms)]

+αM1 (g̃agh;jklg̃jkl;ghmg̃mbc;def +5 terms) . (2.12)

We also compute the field critical exponent defined by:

ηab = 2βkcd;efg

(
∂Z1/2

∂g̃kcd;efg
Z−1/2

)
ab

(2.13)

Using (2.6) and (2.12), we obtain:

ηab = π2

9 g̃acd;efgg̃efg;cdb (2.14)

– 6 –
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δ
(1)
abc;def . δ

(2)
ad;be;cf . δ

(3)
ad;be;cf . δ

(4)
ad;be;cf . δ

(5)
ad;be;cf .

Figure 3. The five U(N)3 invariants. Each white vertex represents a field φ while each black
vertex represents a field φ̄. Each edge corresponds to a contraction of indices and is assigned a color
corresponding to the position of the indices in the tensor. The first invariant starting from the left
is called the wheel invariant.

By imposing various symmetry restrictions on the interaction, one obtains different
models. We study here the case with U(N)3 invariance in order to obtain subleading
corrections to the fixed point of [1].

2.4 Application: U(N)3 symmetry

In this subsection, we specify the symmetry to U(N)3 with N = N3. Each index is now a
triplet of indices going from 1 to N . There are five different invariants, thus five couplings.
We set:2

g̃abc;def = g̃1
(
δ

(1)
abc;def +5 terms

)
+ 1

2 g̃2
(
δ

(2)
ad;be;cf +11 terms

)
+ 1

2 g̃3
(
δ

(3)
ad;be;cf +11 terms

)
+ g̃4

(
δ

(4)
ad;be;cf +5 terms

)
+ g̃5

(
δ

(5)
ad;be;cf +5 terms

)
, (2.15)

where the contractions are specified in appendix D. The corresponding invariants are rep-
resented in figure 3. The first one is called the wheel and we will refer to the associated
coupling g̃1 as the wheel coupling.

We rescale the couplings as:

g̃1 = ḡ1
N3 , g̃2 = ḡ2

N4 , g̃3 = ḡ3
N4 , g̃4 = ḡ4

N5 , g̃5 = ḡ5
N6 . (2.16)

This rescaling ensures that the model admits a well-behaved large-N expansion (see [57]
for a rigorous proof).

We then obtain the following beta functions up to order N−1:

β1 =−2ḡ1
(
ε− ḡ2

1π
2)− 24π4

N
ḡ3

1 +O(N−2) ,

β2 =−2ḡ2
(
ε− ḡ2

1π
2)+4π2ḡ2

1

(
9

2π +9ḡ1 + ḡ2

)
+ 4
N

[
π

9
(
81ḡ2

1 +36ḡ1ḡ2 + ḡ2
2 +6ḡ3(9ḡ1 + ḡ2)

)
−2π4ḡ2

1 ḡ2−π2ḡ2
1(63ḡ1−2ḡ2 +9ḡ3)

]
+O(N−2) ,

2The normalization was chosen so that the couplings are normalized by 1/6 as usually done in sextic
tensor models.
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β3 =−2ḡ3
(
ε−4ḡ2

1π
2)+ 2

N

[
π

9
(
36ḡ1ḡ2 +2ḡ2

2 +9ḡ2
3
)

+4π2ḡ2
1 (ḡ2−18ḡ1)

]
+O(N−2) ,

β4 =−2ḡ4
(
ε− ḡ2

1π
2)+2π2ḡ2

1 (27ḡ1 +10ḡ2 +12ḡ3 +7ḡ4)

+ 1
N

[
2π
9 (2ḡ2(5ḡ2 +12ḡ3 +4ḡ4)+36ḡ1(ḡ2 +3ḡ3 +2ḡ4)+3ḡ3(9ḡ3 +4ḡ4))

− π
4

81
(
162ḡ2

1(54ḡ1 +5ḡ2)+3ḡ3(648ḡ2
1 +2ḡ2

2 +12ḡ2ḡ3 +9ḡ2
3)+2ḡ4(324ḡ2

1 + ḡ2
2 +18ḡ2

3)
)

−4π2ḡ2
1(36ḡ1 +25ḡ2 +6ḡ3 +6ḡ4)

]
+O(N−2) ,

β5 =−2ḡ5
(
ε− ḡ2

1π
2)+π2ḡ2

1

(
2
π

+6ḡ2 +16ḡ4 +30ḡ5

)
+ 1
N

[
− 2π4

243
(
3(31ḡ3 +7ḡ4)ḡ2

2 +10ḡ3
2 +9ḡ3ḡ4(3ḡ3 +2ḡ4)+2ḡ4

3 +243ḡ2
1(ḡ2 +3ḡ3 + ḡ4)

+6ḡ2(9ḡ2
3 +12ḡ3ḡ4 +2ḡ2

4)
)

+ 4π
9 (ḡ2(ḡ2 +6ḡ3 +4ḡ4)+2ḡ4(3ḡ3 + ḡ4))−4π2ḡ2

1(3ḡ2 +3ḡ3 +4ḡ4)
]

+O(N−2) . (2.17)

Similarly, we find for the field critical exponent:

η = 2π2ḡ2
1

3 +O(N−2) . (2.18)

If we try to solve naively these beta functions, we find non-perturbative fixed points
that blow up when we send ε→ 0. For example, g?2 has the following form:

g?2 = a+ b
√
ε+ c

εN
+O(N−2) . (2.19)

with a, b, c constants of order 1.
It is because here the behavior of the fixed point is governed by the combination εN .

Indeed, the fixed points of the typical melonic large-N limit are obtained for 1 � 1
εN or

εN � 1. As we wish to study the 1/N corrections to these fixed points we set:

Ñ = εN , (2.20)

and we expand first in 1/Ñ and then in ε. This is very similar to what happened in [43].
We parametrize the critical couplings as ḡi = ḡi,0 + ḡi,1

Ñ
+ O(Ñ−2) for i = 1, . . . , 5.

Solving for the zeros of the beta functions at leading order, apart from the Gaussian fixed
point, we find the following solutions:

ḡ∗1,0 = ±
√
ε

π
; ḡ∗2,0 = 9

2π
(
−1∓ 2

√
ε
)

; ḡ∗3,0 = 0 ;

ḡ∗4,0 = 9
7π
(
5± 7

√
ε
)

; ḡ∗5,0 = −109∓ 126
√
ε

42π . (2.21)

The signs for all five couplings are taken to be simultaneously either the upper or lower
ones. We thus recover the two interacting large-N fixed points of [1]. These fixed points
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exhibit an interesting new feature: apart from the wheel coupling, all critical couplings
start at order O(ε0) and not O(ε1/2). This is very different from the quartic model and is
due to the fact that the graph D1 contributes at leading order only with wheel vertices.
Indeed, all contributions of this graph with other interactions as vertices are of order 1/N
or higher. Moreover, these fixed points are still perturbative because the beta functions βi
for i ≥ 2 are linear in ḡi exactly at large N . More precisely, they are linear combinations
of the couplings, with coefficients that are functions of ḡ2

1:

βi = −2εḡi + Ãi(ḡ2
1) +

∑
j

B̃ij(ḡ2
1)ḡj , (2.22)

where Ãi(ḡ2
1) and B̃ij(ḡ2

1) are series in ḡ2
1 (see [1] for the complete derivation). The critical

coupling ḡ?1 being of order
√
ε at large N , this is indeed a perturbative expansion.

Substituting (2.21) into the order Ñ−1 of the beta functions, we find the following
corrections to the fixed points:

ḡ∗1,1 = ±6πε3/2, ḡ∗2,1 = 9
4π
(
−1± 4

√
ε
)

+O(ε), ḡ∗3,1 = − 3
2π +O(ε),

ḡ∗4,1 = 9(68− π2)
98π ∓ 9(392 + 15π2)

√
ε

196π +O(ε),

ḡ∗5,1 = −18459 + 566π2

6860π ± 3(2940 + 193π2)
√
ε

980π +O(ε) . (2.23)

where the choice of sign is the same as for the leading order so that we still have two fixed
points.

We then compute the critical exponents up to order Ñ−1. They are the eigenvalues of
the stability matrix ∂βi

∂g̃j
evaluated at the fixed points. We find for both fixed points:

(
4ε , 4ε− 4ε

Ñ
± 8ε3/2

Ñ
, 6ε , 14ε− (16 + π2)ε

2Ñ
∓ 2π2

Ñ
ε3/2 , 30ε

)
, (2.24)

where the choice of sign is the same as in (2.21). The full stability matrix is given in
appendix E.

All critical exponents are real positive. Therefore, both fixed points are infrared stable.
Moreover, contrary to the large-N case, we now have five different eigenvalues: the stability
matrix is diagonalizable at order Ñ−1.

We can finally compute the field critical exponent at the fixed points. We find for both
fixed points:

η(ḡ?) = 2π2

3

(
ε

π2 + 12ε2

N

)
+O(N−2) . (2.25)
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3 The long-range sextic multi-scalar model

3.1 Action

The long-range multi-scalar model with sextic interactions and complex fields in dimension
d is defined by the action:

S[φ] =
∫
ddx

[1
2 φ̄a(x)

(
−∂2

)ζ
φa(x) + 1

(3!)2 λabc;defφa(x)φb(x)φc(x)φ̄d(x)φ̄e(x)φ̄f (x)
]
.

(3.1)
This model is called long-range because of the non-trivial power of the Laplacian

0 < ζ < 1. The parameter ζ must be strictly positive in order to have a well-defined
thermodynamic limit.3 It is bounded above by 1 to satisfy reflection positivity. For this
entire section, the dimension is now fixed to be smaller than three (but not necessarily
close to three).

The covariance of the free theory is:

C(p) = 1
p2ζ = 1

Γ(ζ)

∫ ∞
0

da aζ−1e−ap
2
, (3.2)

and the canonical dimension of the field is ∆φ = d−2ζ
2 . This means that for ζ < d/3 the

sextic interaction is irrelevant and leads to a mean-field behavior [59]. On the contrary, for
ζ > d/3, the sextic interaction is now relevant and we can expect a non-trivial IR behavior.
Finally, at exactly ζ = d/3, we are in the marginal case.

Here, we will use dimensional regularization in the weakly relevant case: ζ = d+ε
3 . As

for the short-range case we use BPHZ subtraction at zero momentum and introduce an IR
regulator by modifying the covariance as:

Cµ(p) = 1
(p2 + µ2)ζ

= 1
Γ(ζ)

∫ ∞
0

da aζ−1e−ap
2−aµ2 (3.3)

for some mass parameter µ > 0.
The key difference with the short-range case is that we now don’t have any wave

function renormalization. Indeed, the Laplacian is non-local while the divergences are
local: it is not renormalized. The bare and renormalized fields thus coincide and there
is no anomalous dimension. This is an important feature of long-range models [60–64].
In particular, a rigorous proof of the absence of anomalous dimension for the two-point
function can be found in [65].

3.2 Beta functions

The beta function is then the scale derivative of the running coupling at fixed bare coupling:

βabc;def = µ∂µgabc;def . (3.4)

3Models with negative ζ are still of phenomenological interest. They are called strong long-range models
by opposition to weak long-range models for positive ζ [58].
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The running coupling is defined by:

gabc;def = µ−2εΓ(6)
abc;def (0, . . . , 0) , (3.5)

with the following bare expansion:

Γ(6)
abc;def (p1, . . . ,p6) =λabc;def −

1
6 [3(λabg;hjdλchj;efg +8 terms)+λabc;ghjλghj;def ]µ−2εDd/3 (3.6)

+ 1
12 [3(λagh;jklλbjk;ghmλlmc;def +2 terms)+3(λjkl;dghλghm;ejkλabc;flm +2 terms)

+3(λagh;jklλjkm;ghdλlbc;efm +8 terms)+2(λagh;jklλjkl;hmdλmbc;efg +8 terms)]µ−4εSd/3

+ 1
36 [9(λagh;jefλjkl;mghλmbc;kld +8 terms)+λabc;ghjλghj;klmλklm;def ]µ−4εD2

d/3

+ 1
4 [(λagh;djkλbcl;ghmλjkm;lef +8 terms)+2(λagh;djkλbcj;glmλklm;hef +8 terms)

+(λagh;djkλblm;eghλcjk;flm +5 terms)+4(λagh;djkλbjl;egmλckm;fhl +5 terms)]µ−4εId/3

+ 1
12 [(λagh;jefλbcj;klmλklm;ghd + 8 terms)+6(λagh;jefλbck;glmλlmj;hkd + 8 terms)

+(λjbc;dghλklm;efjλagh;klm + 8 terms)+6(λjbc;dghλglm;kefλahk;lmj + 8 terms)
+3(λakl;medλbjm;fghλcgh;jkl + 17 terms)+6(λalm;hdeλbjk;gmfλcgh;jkl + 17 terms)
+3(λmab;dklλcgh;ejmλjkl;ghf + 17 terms)+6(λabh;dlmλcgm;ejkλjkl;ghf + 17 terms)
+3(λabc;ghjλjlm;kdeλghk;lmf + 2 terms)+3(λghj;defλabk;jlmλlmc;ghk + 2 terms)]µ−4εJd/3 .

We rescale the couplings by g̃abc;def = (4π)−dΓ(d/3)−3gabc;def and we define:

αDd/3 = ε(4π)dΓ(d/3)3Dd/3

3 = Γ(d/6)3

3Γ(d/2) , αSd/3 =−ε(4π)2dΓ(d/3)6Sd/3

3 =−Γ(d/6)4Γ(−d/6)Γ(d/3)2

6Γ(d/2)Γ(2d/3)

αId/3 =−ε(4π)2dΓ(d/3)6Id/3 =− Γ(d/6)9

2Γ(d/3)3Γ(d/2) , (3.7)

αJd/3 = ε(4π)2dΓ(d/3)6 (D2
d/3−2Jd/3)

6 = Γ(d/6)6

6Γ(d/2)2Γ(d/3)6

[
ψ(d/6)−ψ(1)+ψ(d/3)−ψ(d/2)

]
.

We finally obtain the following beta functions:

βabc;def =−2εg̃abc;def +αDd/3 [3(g̃abg;hjdg̃chj;efg +8 terms)+ g̃abc;ghjg̃ghj;def ] (3.8)
+αSd/3 [3(g̃agh;jklg̃bjk;ghmg̃lmc;def +2 terms)+3(g̃jkl;dghg̃ghm;ejkg̃abc;flm +2 terms)

+3(g̃agh;jklg̃jkm;ghdg̃lbc;efm +8 terms)+2(g̃agh;jklg̃jkl;hmdg̃mbc;efg +8 terms)]
+αId/3 [(g̃agh;djkg̃bcl;ghmg̃jkm;lef +8 terms)+2(g̃agh;djkg̃bcj;glmg̃klm;hef +8 terms)

+(g̃agh;djkg̃blm;eghg̃cjk;flm +5 terms)+4(g̃agh;djkg̃bjl;egmg̃ckm;fhl +5 terms)]
+αJd/3 [(g̃agh;jef g̃bcj;klmg̃klm;ghd + 8 terms)+6(g̃agh;jef g̃bck;glmg̃lmj;hkd + 8 terms)

(g̃jbc;dghg̃klm;efjg̃agh;klm + 8 terms)+6(g̃jbc;dghg̃glm;kef g̃ahk;lmj + 8 terms)
+3(g̃akl;medg̃bjm;fghg̃cgh;jkl + 17 terms)+6(g̃alm;hdeg̃bjk;gmf g̃cgh;jkl + 17 terms)
+3(g̃mab;dklg̃cgh;ejmg̃jkl;ghf + 17 terms)+6(g̃abh;dlmg̃cgm;ejkg̃jkl;ghf + 17 terms)
+3(g̃abc;ghjg̃jlm;kdeg̃ghk;lmf + 2 terms)+3(g̃ghj;def g̃abk;jlmg̃lmc;ghk + 2 terms)] .
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3.3 Application: U(N)3 symmetry

We specify again the symmetry to U(N)3 as in section 2.4. Now, for the long-range case,
setting ζ = d+ε

3 , we obtain the following beta functions up to order N−1:

β1 =−2εḡ1 + 48
N
αId/3 ḡ

3
1 +O(N−2) ,

β2 =−2εḡ2 +3ḡ2
1
(
9αDd/3 +2αSd/3(9ḡ1 + ḡ2)

)
+ 2
N

[
αDd/3

3
(
81ḡ2

1 +36ḡ1ḡ2 + ḡ2
2 +6ḡ3(9ḡ1 + ḡ2)

)
+2ḡ2

1
(
9(4αJd/3 +αSd/3)(3ḡ1 + ḡ3)+2(4αId/3 +3αSd/3)ḡ2

)]
+O(N−2) ,

β3 =−2εḡ3 +9αSd/3 ḡ
2
1 ḡ3

+ 1
N

[
3αDd/3 ḡ

2
3 +

2αDd/3

3 ḡ2 (18ḡ1 + ḡ2)+108αJd/3 ḡ
3
1 +12αSd/3 ḡ

2
1 ḡ2

]
+O(N−2) ,

β4 =−2εḡ4 +3αSd/3 ḡ
2
1 (27ḡ1 +10ḡ2 +12ḡ3 +7ḡ4)

+ 1
27N

[
9αDd/3 (36ḡ1 (ḡ2 +3ḡ3 +2ḡ4)+2ḡ2 (5ḡ2 +12ḡ3 +4ḡ4)+3ḡ3 (9ḡ3 +4ḡ4))

+ 2
3αId/3

(
162ḡ1

2 (54ḡ1 +5ḡ2 +12ḡ3 +4ḡ4)+2ḡ2
2 (2ḡ2 + ḡ4)+3ḡ3

(
2ḡ2

2 +12ḡ2ḡ3 +9ḡ2
3 +6ḡ3ḡ4

))
+324αSd/3 ḡ

2
1 (4ḡ2 +6ḡ3 + ḡ4)+81αJd/3 ḡ

2
1 (36ḡ1 +33ḡ2 +18ḡ3 +8ḡ4)

]
+O(N−2) ,

β5 =−2εḡ5 +3ḡ2
1
(
αDd/3 +αSd/3(3ḡ2 +8ḡ4 +15ḡ5)

)
+ 1
N

[
2
3αDd/3 (ḡ2(ḡ2 +6ḡ3 +4ḡ4)+2ḡ4(3ḡ3 + ḡ4))+6αSd/3 ḡ

2
1 (3ḡ3 +4ḡ4)

+ 4
243αId/3

(
243ḡ1

2 (ḡ2 +3ḡ3 + ḡ4)+10ḡ3
2 + ḡ4 (3ḡ2 (7ḡ2 +24ḡ3 +4ḡ4)+9ḡ3 (3ḡ3 +2ḡ4)+2ḡ4)

+9ḡ3
(
7ḡ2

2 +6ḡ2ḡ3
))

+3αJd/3 ḡ
2
1 (3ḡ2 +6ḡ3 +8ḡ4)

]
+O(N−2) . (3.9)

In the long-range case, at ε = 0, the wheel coupling ḡ1 is exactly marginal. However,
at order N−1 the wheel beta function is non zero and the line of fixed points found in [1]
collapses to the trivial fixed point. Turning on ε does not solve the problem as it contributes
a term −2εḡ1 which already gives ḡ?1 = 0 at leading order. As for the short-range case, we
should also consider how small ε is compared to N . At next-to-leading order the wheel
beta function has the following form −2εḡ1 + ḡ3

1/N . Its fixed points are the trivial one and
ḡ?1 =

√
Nε. The latter goes to infinity for N → ∞ at fixed ε. This is solved by imposing

Nε� 1. We thus set:

ε = ε̃

N
, (3.10)

and as before we expand first in 1/N and then in ε̃. This is again similar to what happens
in [43].
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We parametrize again the critical couplings as ḡi = ḡi,0 + ḡi,1
N +O(N−2) for i = 1, . . . , 5.

Solving for the zeros of the beta functions at leading order we find the following solutions:4

ḡ∗2,0 = −9ḡ1,0 + 9Γ(2d/3)
Γ(−d/6)Γ(d/6)Γ(d/3)2 , ḡ∗3,0 = 0,

ḡ∗4,0 = 9ḡ1,0 −
90
7

Γ(2d/3)
Γ(−d/6)Γ(d/6)Γ(d/3)2 ,

ḡ∗5,0 = −3ḡ1,0 + 109Γ(2d/3)
21Γ(−d/6)Γ(d/6)Γ(d/3)2 . (3.11)

We thus again recover the line of fixed points found in [1]. Solving the wheel beta
functions at order N−1, we find:

ḡ1,0 = ±
√
ε̃

2
√

6αId/3
. (3.12)

Id/3 being negative, ḡ1,0 is thus purely imaginary. This implies that the other four
couplings are also complex at leading order. However, substituting these results into the
order N−1 of the beta functions, we find non perturbative corrections to the fixed points
which blow up when sending ε̃ → 0. This cannot be fixed by rescaling ε̃ or N . This is
due to the form of the beta functions. Indeed, as we saw in the short-range model, all
couplings except the wheel start at order 0 in ε. When solving at next-to-leading order,
this will lead to non-perturbative results. To cure this, we could rescale N as we did for the
short-range model, Ñ = εN . However, doing so instead of rescaling ε, the only fixed point
is the trivial one.5 We therefore conclude that there is no precursor at next-to-leading
order of the large-N fixed point.

4 Conclusion

In this paper we studied bosonic tensor models with sextic interactions at next-to-leading
order. We considered only the model of rank 3 of [1] as only trivial fixed points were found in
rank 5 at large N . We chose as free propagator either the standard short-range propagator
or the critical long-range propagator. In both cases, we studied the renormalization group
and computed fixed points of the beta functions at next-to-leading order. However, the
results are radically different in the two cases. In the short-range case, the theory admits a
non-trivial real stable IR fixed point with non-zero wheel coupling, thus leading to melonic
dominance. In the long-range case, the corrections to the large-N fixed points are not
perturbative in ε̃ and even blow up when ε̃ goes to zero. This indicates that the large-N
fixed point found in [1] has no precursor at next-to-leading order.

4There is also a solution with zero wheel coupling leading to a 4-dimensional manifold of fixed points.
We do not study this solution further as we are only interested in solutions with non-zero wheel coupling
in order to have a melonic fixed point.

5Solving at leading order first we find all critical couplings to be equal to zero ḡ?i,0 = 0. Re-injecting this
solution into the next-to-leading order of the beta functions, they reduce for all couplings to βi,1 = −2εḡi,1.
This indeed leads to only a trivial fixed point.
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As for the computation of 1/N corrections in quartic models [43], a subtle part of our
analysis is the identification of a proper hierarchy between our two small parameters 1/N
and ε. Indeed, in the short-range case we need εN � 1 while in the long-range case we
need εN � 1. These conditions are found by demanding that the large-N fixed points
remain dominant in the beta functions. However, for the long-range case, contrary to
quartic models, this condition is not enough to ensure a perturbative solution of the beta
functions at next-to-leading order. This is due to the presence of a term of order O(ε0) in
the large-N fixed point.

Nevertheless, this is an interesting new feature of our fixed point that also appears
in the short-range case. Indeed, the wheel coupling at large N is of order

√
ε while the

other couplings start at order ε0. This is very different from usual Wilson-Fisher like fixed
points and from the quartic model fixed points [43]. It is due to the fact that the graph D1
contributes to leading order in N only with wheel vertices whereas in quartic models the
one-loop Feynman graph contributes to leading order with all three quartic interactions on
the vertices. This model thus leads to a new kind of melonic fixed point.

One other interesting feature we found is the diagonalizability of the stability matrix
at next-to-leading order in the short-range case. At large N , the stability matrix was non
diagonalizable due to an eigenvalue of multiplicity two whereas at next-to-leading order, we
have five different eigenvalues and the stability matrix is diagonalizable. This suggests that
the logarithmic CFT of the large-N limit reduces to an ordinary CFT at next-to-leading
order. However, this statement requires further investigation that we leave for future work.
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A The renormalized series

To compute the beta functions in practice, we can derive the bare expansion (2.9) with
respect to µ and then substitute the bare constants in terms of the renormalized ones using
the renormalized series. The renormalized series can be obtained by explicit computation
or immediately using the Bogoliubov Parasuk recursion as in appendix A of [55].

For our multi-scalar model, both in short and long range we have at order two in the
renormalized coupling:

µ−2ελabc;def = gabc;def + Dζ

6
[
3
(
λabg;hjdλchj;efg + 8 terms

)
+ λabc;ghjλghj;def

]
. (A.1)

This then allows us to obtain the beta functions of (2.12) and (3.8).
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B The melon integral

In this section we compute the melon integral contributing to the wave function renormal-
ization in the short-range case:

M1(p) =
∫
q1,q2,q3,q4

G0(q1)G0(q2)G0(q3)G0(q4)G0(p+ q1 + q2 + q3 + q4) , (B.1)

with G0(p) = 1
p2 .

We will use the following formula:∫ ddk
(2π)d

1
k2α(k + p)2β = 1

(4π)d/2
Γ(d2 − α)Γ(d2 − β)Γ(α+ β − d

2)
Γ(α)Γ(β)Γ(d− α− β)

1
|p|2(α+β− d2 )

. (B.2)

We obtain:
M1(p) = p4d−10

(4π)2d
Γ(d2 − 1)5Γ(5− 2d)

Γ(5d
2 − 5)

. (B.3)

For d = 3− ε, this simplifies to:

M1(p) = p2−4ε

(4π)6−2ε
Γ(2ε− 1)Γ(1−ε

2 )5

Γ(5
2(1− ε))

. (B.4)

At first order in ε, we finally have:

M1(p) = −p
2−4ε

(4π)6
2π2

3ε +O(ε0) . (B.5)

C Beta functions details

C.1 2-loop amplitude

We want to compute the two-loop amputated Feynman integral Dζ represented in figure 2.
Because this amplitude appears squared in the coefficient αJζ of the beta functions, we need
to compute it up to order O(1). However, at this order, the amplitude is not independent
of the choice of IR regularization. Therefore, we have to be careful and compute both Dζ

and Jζ using the same IR regulator in order to obtain the correct cancellations. As the
Gell-Mann and Low subtraction used to compute Dζ in [1] did not lead to analytical results
for Jζ , we will resort here to subtraction at zero momentum for both amplitudes.

Applying (2.8), the amplitude Dζ can be written as:

Dζ = 1
Γ(ζ)3(4π)d

∫
da1da2da3

(a1a2a3)ζ−1

(a1a2 + a1a3 + a2a3)
d
2
e−(a1+a2+a3) . (C.1)

To obtain this expression, we first associated a Schwinger parameter ai to each edge
in Dζ and then applied (2.8). To determine the denominator in the integrand, we noticed
that this graph has three spanning trees, each consisting of one edge. Equivalently, this
expression can be found by writing each propagator with a Schwinger parametrization as
in (2.2) and integrating the resulting Gaussian integrals on the internal momenta.
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In the following we will repeatedly use the Mellin-Barnes representation for Re(u) > 0:

1
(A1 + . . . Aq+1)u =

=
∫ 0−+i∞

0−−i∞
[dz]Γ(−z1) . . .Γ(−zq)Γ(z1 + . . . zq + u)

Γ(u) Az11 . . . Azqq A
−z1···−zq−u
q+1 , (C.2)

where we denote [dz] = dz
2πi . The only restriction on the integration contour is Re(zi) < 0

(see appendix B of [55] for more details).
Using this formula we can rewrite the denominator of Dζ as:

1
(a1a2 + a1a3 + a2a3)

d
2

=
∫

0−
[dz]

Γ(−z)Γ(z + d
2)

Γ(d2)
(a2a3)z

(a1(a2 + a3))z+
d
2
. (C.3)

We can then integrate the Schwinger parameters using the following formula:

∫
da1da2

(a1a2)u−1

(a1 + a2)γ = Γ(u)2Γ(2u− γ)
Γ(2u) , (C.4)

which is valid for Re(u) > 0 and Re(2u) > Re(γ).

Long-range: ζ = d+ε
3 , d < 3. We then obtain:

Dd/3 = 1
(4π)dΓ(ζ)3Γ

(
d
2

) ∫
− d6
− [dz]Γ(−z)Γ

(
z+ d

2

)Γ(d+ε
3 +z)2Γ(d6 + 2ε

3 +z)
Γ(2(d+ε)

3 +2z)
Γ
(
−d6 + ε

3−z
)
.

(C.5)
There is only one pole giving a singularity in ε located at z = −d

6 + ε
3 . We thus obtain:

Dd/3 = 1
(4π)dΓ(ζ)3Γ(d2)

[
Γ(d6 −

ε
3)Γ(d+ε

3 )Γ(d6 + 2ε
3 )2Γ(ε)

Γ(d3 + 4ε
3 )

(C.6)

+
∫

0−
[dz]Γ(−z)Γ

(
z + d

2

) Γ(d3 + z)2Γ(d6 + z)
Γ(2d

3 + 2z)
Γ
(
−d6 − z

)]
+O(ε) .

The remaining integral, that we denote K, has two types of poles, situated at z = n1
for n1 ≥ 0 and z = −d

6 + n2 for n2 ≥ 1. We have:

K =
∞∑
n=0

(−1)n

n!
Γ(n+ d

2)Γ(n+ d
3)2Γ(n+ d

6)Γ(−d
6 − n)

Γ(2d
3 + 2n)

+
∞∑
n=1

(−1)n

n!
Γ(d6 − n)Γ(n+ d

3)Γ(n+ d
6)2

Γ(2n+ d
3)

. (C.7)
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Both sums are convergent and can be expressed in terms of hypergeometric functions.6 We
finally obtain:

Dd/3 =
Γ(d6)3

(4π)dΓ(d3)3Γ(d2)

[1
ε

+ ψ(1) + ψ

(
d

6

)
− 2ψ

(
d

3

)
+K

]
+O(ε) . (C.8)

Short-range: ζ = 1, d = 3−ε. Following the same steps, we obtain in the short-range
case:

D1 = π

(4π)3

[2
ε

+ ψ

(1
2

)
+ ψ

(3
2

)
+ 4 ln

(2
3

)]
+O(ε) . (C.9)

C.2 4-loop amplitude

C.2.1 Sζ integral

The Sζ integral with Schwinger parameters can be written as:

Sζ = 1
Γ(ζ)6(4π)2d

∫
da1da2db1db2db3db4

(a1a2b1b2b3b4)ζ−1e−(a1+a2+b1+b2+b3+b4)

((a1+a2)(b1b2(b3+b4)+b3b4(b1+b2))+b1b2b3b4)
d
2
.

(C.10)
Doing the change of variables a1 = αβ and a2 = α(1−β), we can integrate β to obtain:

Sζ = 1
Γ(ζ)4Γ(2ζ)(4π)2d

∫
dαdb1db2db3db4

α2ζ−1(b1b2b3b4)ζ−1e−(α+b1+b2+b3+b4)

(α(b1b2(b3 + b4) + b3b4(b1 + b2)) + b1b2b3b4)
d
2
.

(C.11)
However, one needs to take into account the subtraction of the local part of the four-

point insertion. Using a Taylor expansion with integral rest, the subtracted Sζ can then
be written as:7

Sζ=
−d

2
Γ(ζ)4Γ(2ζ)(4π)2d

∫ 1

0
dt

∫
dαdb1db2db3db4

α2ζ−1(b1b2b3b4)ζe−(α+b1+b2+b3+b4)

(α(b1b2(b3+b4)+b3b4(b1+b2))+tb1b2b3b4)1+ d
2
.

(C.12)

6In particular we have:

K=
Γ(− d

6 )Γ( d3 )3Γ( d2 )
Γ( d6 )2Γ( 2d

3 ) 3F2

(
d

6 ,
d

3 ,
d

2 ;1+ d

6 ,
1
2 + d

3 ; 1
4

)
+ d2

2(d+3)(6−d) 4F3

(
1,1,1+ d

6 ,1+ d

3 ;2,2− d

6 ,
3
2 + d

6 ; 1
4

)
,

where pFq(a1 . . . ap; b1 . . . bq; z) are the generalized hypergeometric functions. This was obtained using
Mathematica.

7The local part of the four-point insertion responsible for the subdivergence is:

1
Γ(ζ)4Γ(2ζ)(4π)2d

∫
dαdb1db2db3db4

α2ζ−1(b1b2b3b4)ζ−1e−(α+b1+b2+b3+b4)

(α(b1b2(b3 + b4) + b3b4(b1 + b2)))
d
2

.

Denoting f(t) = 1
Γ(ζ)4Γ(2ζ)(4π)2d

∫
dαdb1db2db3db4

α2ζ−1(b1b2b3b4)ζ−1e−(α+b1+b2+b3+b4)

(α(b1b2(b3+b4)+b3b4(b1+b2))+tb1b2b3b4)
d
2
, the subtracted in-

tegral is thus f(1) − f(0). Using a Taylor expansion with integral rest f(1) = f(0) +
∫ 1

0 f
′(t)dt, we

obtain (C.12) where we still denote the subtracted integral as Sζ .
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Using two Mellin parameters, the denominator can be written as:

1
(α(b1b2(b3 + b4) + b3b4(b1 + b2)) + tb1b2b3b4)1+ d

2
= (C.13)

=
∫

[dz1][dz2]
Γ(−z1)Γ(−z2)Γ(z1 + z2 + d

2 + 1)
Γ(1 + d

2)
(tb1b2b3b4)z1(αb3b4(b1 + b2))z2

(αb1b2(b3 + b4))z1+z2+ d
2 +1

.

We can then integrate the Schwinger parameters using formula (C.4) as well as perform
the t integral.

Short-range: ζ = 1, d = 3 − ε. We obtain:

S1 =− 3−ε
2(4π)6Γ(5

2)

∫
− 1

2
−

[dz1]
∫
−1−

[dz2]Γ(−z1)Γ(−z2)Γ
(
z1 +z2 + 5−ε

2

)
Γ
(
−1

2 + ε

2−z1

)

×
Γ(2+z1 +z2)2Γ(3

2 + ε
2 +z1 +z2)

Γ(4+2z1 +2z2)(1+z1)
Γ(−1

2 + ε
2−z2)2Γ(−1+ε−z2)

Γ(−1+ε−2z2) , (C.14)

where we have moved the contours so that all Gamma functions have positive argument.
The poles in z1 and z2 are independent. There is only one pole giving a contribution

of order ε−1, situated at z1 = −1
2 + ε

2 and z2 = −1 + ε. We obtain:

S1 = − 2π2

ε(4π)6 +O(ε0) . (C.15)

Long-range: ζ = d+ε
3 . With the same method, we obtain in the long-range case:

Sd/3 = 1
2ε(4π)2d

Γ(−d
6)Γ(d6)4

Γ(d3)4Γ(2d
3 )Γ(d2)

+O(ε0) . (C.16)

C.2.2 Iζ integral

We now compute the I integral:

Iζ = 1
Γ(ζ)6(4π)2d

∫
da1da2db1db2dc1dc2(a1a2b1b2c1c2)ζ−1e−(a1+a2+b1+b2+c1+c2)

× 1
[c1c2(a1 +a2)(b1 +b2)+b1b2(a1 +a2)(c1 +c2)+a1a2(b1 +b2)(c1 +c2)]

d
2
. (C.17)

The denominator can be written as:

1
[c1c2(a1+a2)(b1+b2)+b1b2(a1+a2)(c1+c2)+a1a2(b1+b2)(c1+c2)]

d
2

(C.18)

=
∫ ∫

[dz1][dz2]
Γ(−z1)Γ(−z2)Γ(z1+z2+d

2)
Γ(d2)

(a1a2(b1+b2)(c1+c2))z1(b1b2(a1+a2)(c1+c2))z2

(c1c2(a1+a2)(b1+b2))z1+z2+ d
2

.
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Short-range: ζ = 1, d = 3 − ε. Integrating the Schwinger parameters, we find in the
short-range case:

I1 = 1
Γ(3

2)(4π)6

∫
− 1

2
−

[dz1]
∫
− 1

2
−

[dz2]Γ(−z1)Γ(−z2)Γ
(
z1 +z2 + 3−ε

2

)
(C.19)

×
Γ( ε−1

2 −z1−z2)2Γ(−1+ε−z1−z2)
Γ(−1+ε−2z1−2z2)

Γ(1+z2)2Γ(1+ε
2 +z2)

Γ(2+2z2)
Γ(1+z1)2Γ(1+ε

2 +z1)
Γ(2+2z1) .

The poles in z1 and z2 are not independent. Between, −1
2
− and 1

2
−, there are three

poles in z1: 0 , −1
2 + ε

2 − z2 , −1 + ε− z2. We obtain:

I1 = 1
Γ(3

2)(4π)6

∫
− 1

2
−

[dz2]Γ(−z2)
Γ(1 + z2)2Γ(1+ε

2 + z2)
Γ(2 + 2z2)

×
[
Γ
(
z2 + 3− ε

2

)
Γ
(1 + ε

2

) Γ(−1
2 + ε

2 − z2)2Γ(−1 + ε− z2)
Γ(−1 + ε− 2z2)

+ Γ
(1

2 −
ε

2 + z2

)
Γ
(
−1

2 + ε

2

) Γ(1
2 + ε

2 − z2)2Γ(ε− z2)
Γ(1 + ε− 2z2)

+ Γ(1− ε+ z2)Γ
(1

2 + ε

2

) Γ(1−ε
2 )2Γ(ε− z2)2Γ(−1

2 + 3ε
2 − z2)

Γ(1− ε)Γ(2ε− 2z2)

]
, (C.20)

where we have omitted the remaining double integral as it is of order O(ε0).
There is one contribution of order O(ε−1) from the first term from the pole z2 = −1

2 + ε
2 :

2
Γ(3

2)(4π)6 Γ
(
−1

2

)
Γ
(1

2

)4
Γ(ε) +O(ε0) . (C.21)

For the second term, there are three singular contributions from the poles at z2 = 0,
z2 = −1

2 + ε
2 and z2 = ε:

1
Γ(3

2)(4π)6

[
Γ
(
−1

2

)
Γ
(1

2

)4
Γ(ε) + Γ

(1
2

)4
Γ
(
−1

2

)
Γ(−ε)− 2Γ

(1
2

)4
Γ
(
−1

2

)
Γ(ε)

]
.

(C.22)
For the third term, again three poles give singular contributions, z2 = 0, z2 = −1

2 + 3ε
2

and z2 = ε:

1
Γ(3

2)(4π)6

[
Γ
(
−1

2

)
Γ
(1

2

)4 Γ(ε)2

Γ(2ε) + 2Γ
(1

2

)4
Γ
(
−1

2

)
Γ(−ε) + Γ

(1
2

)9
Γ(2ε)

]
. (C.23)

Putting all singular contributions together, we finally obtain:

I1 = 1
(4π)6

π4

ε
+O(ε0) . (C.24)

Long-range: ζ = d+ε
3 . Using the same computation method, we find in the long-range

case:
Id/3 = 1

(4π)2d
Γ(d6)9

2εΓ(d3)9Γ(d2)
+O(ε0) . (C.25)
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C.2.3 Jζ integral

We now compute the Jζ integral:

Jζ = 1
Γ(ζ)6(4π)2d (C.26)

×
∫
da1da2da3db1db2dc

(a1a2a3b1b2c)ζ−1e−(a1+a2+a3+b1+b2+c)

[a1a2a3(b1 + b2) + (c(b1 + b2) + b1b2)(a1a2 + a1a3 + a2a3)]
d
2
.

This integral has a leading divergence in O(ε−2). We thus have to compute the first
two singular contributions. We write the denominator as:

1
[a1a2a3(b1 + b2) + b1b2(a1a2 + a1a3 + a2a3) + c(b1 + b2)(a1a2 + a1a3 + a2a3)]

d
2

=
∫ ∫ ∫

[dz1][dz2][dz3]
Γ(−z1)Γ(−z2)Γ(−z3)Γ(z1 + z2 + d

2)Γ(z3 + z2 + d
2)

Γ(d2)Γ(z2 + d
2)

× (b1b2)z1(a1a2a3(b1 + b2)z2(a2a3)z3

(c(b1 + b2))z1+z2+ d
2 (a1(a2 + a3))z2+z3+ d

2
. (C.27)

We can then integrate the Schwinger parameters using (C.4).

Short-range: ζ = 1, d = 3 − ε. We obtain:

J1 = 1
(4π)6Γ( 3−ε

2 )

∫
− 1

2
−

[dz1]
∫

0−
[dz2]

∫
− 1

2
−

[dz3]Γ(−z1)Γ(−z2)Γ(−z3)
Γ(z2+ 3−ε

2 )
Γ
(
z1+z2+ 3−ε

2

)
Γ
(
z2+z3+ 3−ε

2

)
×Γ
(−1+ε

2 −z1−z2

)
Γ
(−1+ε

2 −z3

)Γ(1+z1)2Γ
(

1+ε
2 +z1

)
Γ(2+2z1)

Γ(1+z2+z3)2Γ
(

1+ε
2 +z2+z3

)
Γ(2+2z2+2z3) . (C.28)

Between −1
2
− and 1

2
−, there are two poles in z3: z3 = 0 and z3 = −1/2 + ε/2. We thus

have:

J1 = 1
(4π)6Γ( 3−ε

2 )

∫
− 1

2
−

[dz1]
∫

0−
[dz2]Γ(−z1)Γ(−z2)

Γ(z1+z2+ 3−ε
2 )

Γ(z2+ 3−ε
2 )

Γ
(−1+ε

2 −z1−z2

)
×

Γ(1+z1)2Γ( 1+ε
2 +z1)

Γ(2+2z1)

[
Γ
(

−1
2 + ε

2

)
Γ
(
z2+ 3−ε

2

)Γ(1+z2)2Γ( 1+ε
2 +z2)

Γ(2+2z2)

+Γ
(1

2 − ε

2

)
Γ(1+z2)

Γ( 1
2 + ε

2 +z2)2Γ(z2+ε)
Γ(1+ε+2z2)

]

+ 1
(4π)6Γ( 3−ε

2 )

∫
− 1

2
−

[dz1]
∫

0−
[dz2]

∫
1
2

−
[dz3]Γ(−z1)Γ(−z2)Γ(−z3)

Γ(z2+ 3−ε
2 )

Γ
(
z1+z2+ 3−ε

2

)
Γ
(
z2+z3+ 3−ε

2

)
×Γ
(−1+ε

2 −z1−z2

)
Γ
(−1+ε

2 −z3

)Γ(1+z1)2Γ( 1+ε
2 +z1)

Γ(2+2z1)
Γ(1+z2+z3)2Γ( 1+ε

2 +z2+z3)
Γ(2+2z2+2z3) . (C.29)

With a careful analysis of the poles of the first double integral, we can show that it is of
order O(ε0) and thus does not contribute to our final result. Likewise, with a long but
straightforward computation, we can show that the remaining triple integral is finite in ε.
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Let us now compute the second term in (C.29). The first poles in z2 are located at
z2 = 0 and z2 = −1

2 + ε
2 − z1. We obtain:

J1 = 1
(4π)6Γ(3−ε

2 )

∫
− 1

2
−

[dz1]Γ(−z1)Γ
(1

2 −
ε

2

) Γ(1 + z1)2Γ(1+ε
2 + z1)

Γ(2 + 2z1)

×
[

Γ(1
2 + ε

2)2Γ(ε)
Γ(1 + ε)Γ(3−ε

2 )
Γ
(
z1 + 3− ε

2

)
Γ
(
ε− 1

2 − z1

)

+
Γ(1−ε

2 + z1)
Γ(1− z1)

Γ(ε− z1)2Γ(3ε−1
2 − z1)Γ(1+ε

2 − z1)
Γ(2(ε− z1))

]
+O(ε0) , (C.30)

where we have omitted the remaining double integral as it is finite in ε. The first term can
be written as:

1
(4π)3Γ(3−ε

2 )
Γ(1

2 −
ε
2)Γ(1

2 + ε
2)2

Γ(1 + ε) Γ(ε)D1 . (C.31)

The second term has four poles giving singular contributions. The two located at 0
and ε cancel. The two located at −1

2 + 3ε
2 and −1

2 + ε
2 give the following contribution:8

1
(4π)6Γ(3−ε

2 )

[
Γ(1

2 −
3ε
2 )Γ(1

2 + 3ε
2 )2Γ(1

2 −
ε
2)3

Γ(3
2 −

3ε
2 )Γ(1 + 3ε)

Γ(ε)Γ(2ε)−
Γ(1

2 −
ε
2)2Γ(1

2 + ε
2)4

Γ(3
2 −

ε
2)Γ(1 + ε)2 Γ(ε)2

]
.

(C.32)
Gathering the contributions from (C.31) and (C.32), we finally obtain for J1:

J1 = 2π2

(4π)6

[ 1
ε2

+ 2
ε

(
2 log

(2
3

)
+ ψ

(3
2

))]
+O(ε0) . (C.33)

We then obtain for αJ1 :

αJ1 = 2π2

3

[
ψ

(1
2

)
− ψ

(3
2

)]
= −4π2

3 . (C.34)

Long-range: ζ = d+ε
3 . Using the same method, we find for Jd/3 and αJd/3 in the

long-range case:

Jd/3 =
Γ(d6)6

2(4π)2dΓ(d2)2Γ(d3)6

[ 1
ε2

+ 1
ε

(
3ψ(1)+ψ

(
d

6

)
−5ψ

(
d

3

)
+ψ

(
d

2

)
+K

)]
, (C.35)

αJd/3 =
Γ(d6)6

6Γ(d2)2Γ(d3)6

[
ψ

(
d

6

)
−ψ(1)+ψ

(
d

3

)
−ψ

(
d

2

)]
. (C.36)

D Conventions for the interaction terms

In this appendix, we write explicitly the interactions appearing in (2.15), as well as the
quartic invariants, in terms of contraction operators built as linear combinations of products
of Kronecker delta functions.

8There is also a pole at z1 = 1+ε
2 but as it does not lead to a singular contribution, we do not discuss it

further.
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We will use the compact notation a = (a1a2a3). The U(N)3 quartic invariants, called
pillow and double-trace, respectively, are:

Ip = δpab;cdφa(x)φ̄b(x)φc(x)φ̄d(x) , (D.1)

Id = δdab;cdφa(x)φ̄b(x)φc(x)φ̄d(x) , (D.2)

with:

δpab;cd = 1
3

3∑
i=1

δaidiδbici
∏
j 6=i

δajbjδcjdj , δdab;cd = δabδcd , (D.3)

and δab =
∏3
i=1 δaibi .

The sextic invariants depicted in figure 3 are:

I1 = δ
(1)
abc;defφa(x)φ̄d(x)φb(x)φ̄e(x)φd(x)φ̄f (x) , (D.4)

Ib = δ
(b)
ad;be;cfφa(x)φ̄d(x)φb(x)φ̄e(x)φc(x)φ̄f (x) , b = 2, . . . , 5 , (D.5)

with

δ
(1)
abc;def = δa1d1δa2f2δa3e3δb1e1δb2d2δb3f3δc1f1δc2e2δc3d3 ,

δ
(2)
ad;be;cf = 1

9

( 3∑
i=1

∑
j 6=i

δaieiδbidiδcjejδfjbj

∏
k 6=i

δakdk

∏
l 6=j

δflcl

 ∏
m 6=i,j

δbmem


+ be↔ ad + be↔ cf

)
,

δ
(3)
ad;be;cf = 1

3

3∑
i=1

δaifiδbidiδciei
∏
j 6=i

δajdjδbjejδcjfj ,

δ
(4)
ad;be;cf = 1

3
(
δadδ

p
be;cf + δbeδ

p
ad;cf + δcf δ

p
ad;be

)
,

δ
(5)
ad;be;cf = δadδbeδcf . (D.6)

Besides the color symmetrization, to simplify the computation of the beta-functions, we
have included a symmetrization with respect to exchange of pairs of black and white ver-
tices.

E Stability matrix

In this appendix, we give the expression of the full stability matrix ∂βi
∂g̃j

(g̃?) for the U(N)3

short-range model. At order Ñ−1 and ε3/2 we have:

∂β1
∂g̃j

(g̃?)=


4ε
0
0
0
0

 , (E.1)
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∂β2
∂g̃j

(g̃?)=



∓18
√
ε+ 9

√
ε

Ñ

(
∓3+4

√
ε±20(1+π2)ε

)
4ε+ 4ε

Ñ
(−1±2

√
ε)

−12ε
Ñ

0
0


, (E.2)

∂β3
∂g̃j

(g̃?)=



−12
√
ε

Ñ
(±2+3

√
ε)

4ε
Ñ

6ε
0
0


, (E.3)

∂β4
∂g̃j

(g̃?)= (E.4)

90
√
ε

7 (±2+7
√
ε)+ 18

√
ε

49Ñ
(
±(103−8π2)−2(203−30π2)

√
ε∓(1350+959π2)ε

)
20ε+ ε

7Ñ
(
−60−11π2∓(112+50π2)

√
ε
)

24ε+ 3ε
14Ñ

(
−32−7π2∓28π2√ε

)
14ε+ ε

2Ñ
(
−16−π2∓4π2√ε

)
0


,

∂β5
∂g̃j

(g̃?)= (E.5)

2
√
ε

7

(
∓109

3 +42
√
ε
)
± 2

√
ε

1715Ñ

(
1071

2 +2008π2±294(315−46π2)
√
ε+ 7

3(91656+60655π2)ε
)

6ε+ ε
49Ñ

(
±364+45π2+14(28±9π2)

√
ε
)

ε
98Ñ

(
504+51π2±84π2√ε

)
16ε+ ε

98Ñ
(
336+17π2±28π2√ε

)
30ε


.

The choice of sign is the same as in (2.21). To obtain the critical exponents, we have
to compute the eigenvalues of the above stability matrix.

F Comparison with the sextic O(N) model

In this appendix, we compare our results with the beta functions of the sextic O(N) model
up to four loops. This comparison is not straight-forward. First, we specify the symmetry of
the generic sextic multi-scalar model of section 2 to U(N). Then, we notice that for vector
fields U(N) symmetry is equivalent to O(2N) symmetry. We thus substitute N → M/2
in the U(N) beta functions in order to compare with known results for the O(N) beta
functions.

Let us first specify the symmetry in (2.12) to U(N) by setting:

g̃abc;def = g̃

6 (δadδbeδcf + δadδbfδce + δaeδbdδcf + δaeδbfδcd + δafδbdδce + δafδbeδcd) , (F.1)

where each index is now a single index going from 1 to N and N = N .
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We then obtain the following beta function and field critical exponent up to cubic
order in g̃:

βU = −2εg̃ + g̃2

48π2 (3N + 11)

+ g̃3

9216π4

(
53N2 − 429N − 826− π2

4
(
N3 + 17N2 + 155N + 340

))
, (F.2)

ηU = (N + 1)(N + 2)π2

27 g̃2 . (F.3)

We now substitute N → M/2 and rescale the coupling by g̃ = gO
5π in order to match

the conventions of [50]. We finally obtain:

βO = −2εgO + 2g2
O

15 (3M + 22)

− g3
O

1800
(
8
(
53M2 + 858M + 3304

)
+ π2

(
M3 + 34M2 + 620M + 2720

))
, (F.4)

ηO = (M + 2)(M + 4)
2700 g2

O , (F.5)

which agrees with the results of [50].
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