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1 Introduction

Black holes can exhibit wave amplification processes called superradiance (see ref. [1] for
a comprehensive review of black hole superradiance). In the first place, this phenomenon
is of interest in four-dimensional asymptotically flat black holes, which are characterized
by three conserved charges: mass, electric charge, and angular momentum. Let us focus
on a Kerr black hole. Radiation in a certain frequency band around the Kerr black hole
is amplified by a superradiant scattering, and mass and angular momentum are extracted
from the black hole. This implies that the black hole loses a fraction of its hairs, while
the area increases because of Hawking’s area theorem. This phenomenon for Kerr black
holes is called rotational superradiance. Similar wave amplification and extraction of mass
and electric charges can occur for Reissner-Nordström black holes if electrically charged
radiation is considered, and it is called charged superradiance. Kerr-Newman black holes
are subject to both.

If there is a potential barrier outside the horizon like in asymptotically AdS spacetimes,
the superradiance is related to a more dramatic consequence that black hole spacetime can
be unstable. The wave amplified by the superradiance is reflected by the potential barrier.
The wave is then scattered by the black hole and amplified again by the superradiance. This
leads to instability called the superradiant instability. Recent prosperity of AdS spacetimes
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follows the historic claiming of the AdS/CFT duality [2], and for rotating AdS black holes,
rotational superradiant instability has been widely studied [3–11]. The outcome of the
instability has been found to be deformed rotating black holes with fewer symmetries [9, 12–
15]. Their dual field theory interpretation is nevertheless unclear since the rotational
superradiant instability is seen only for small AdS black holes. For charged AdS black holes,
the instability leading to the condensation of a charged scalar field has been noticed [16] and
suggested to correspond to superconductivity or superfluidity in the dual field theory [17,
18]. We will discuss the relation of this instability with the charged superradiance. The
charged instability is of more interest to the dual field theory application compared with
the rotational one because the former can be observed for large black holes.

As described above, when the superradiance is discussed in asymptotically AdS space-
times, the instability has been mainly focused on. How can we characterize the superradi-
ance for stable charged/rotating black holes in AdS? How can we observe the superradiance
in the dual field theory? We will address these questions in this paper. We study super-
radiance in asymptotically AdS spacetimes by applying a source with a monochromatic
frequency from the AdS boundary. We use two setups for demonstrations: 1) the pertur-
bation of a four-dimensional Reissner-Nordström-AdS4 black hole (RNAdS4) with a flat
horizon topology by a charged scalar field, and 2) that of a Kerr-AdS black hole by a
neutral scalar field. It is shown that a monochromatic source with a frequency in a certain
frequency band does negative work to the AdS bulk, implying the extraction of energy
from the black holes. We hence characterize the superradiance of the AdS black holes by
the ability of the energy extraction. Periodic driving of asymptotically AdS spacetimes
has been considered mainly motivated by quench processes and thermalization in hologra-
phy [19–29]. Here we shed light on the aspect of the superradiance and energy extraction
for the periodic driving.

Here, we comment on the charged superradiant instability in AdS. It may have been
sometimes said that the superradiant instability is for small black holes because large ro-
tating AdS black holes are superradiant stable. Meanwhile, the instability of a charged
scalar field for large charged black holes is often associated with AdS near horizon insta-
bility, whereas that for small black holes is called superradiant instability [1, 30]. However,
if we characterize the superradiance by the ability of the energy extraction from a station-
ary black hole, the RNAdS4 with the flat horizon also can be considered to exhibit the
superradiance.

This paper is organized as follows. In section 2, we consider charged superradiance for
a probe charged scalar field in RNAdS4 with asymptotically Poincaré AdS boundary. In
section 3, rotational superradiance is discussed for a scalar field around a Kerr-AdS black
hole. The conclusion and discussion are given in section 4. Appendices contain technical
details omitted in the main text.

2 Charged superradiance in AdS

In this section, we consider the perturbation of the RNAdS4 by a charged scalar field.
Throughout this paper, we use units in which the AdS radius is unity.
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2.1 Reissner-Nordström-AdS4 spacetime

As a background solution that admits superradiance, we consider the RNAdS4 with the
planar horizon:

ds2 = 1
z2

[
−F (z)dt2 + dz2

F (z) + dx2 + dy2
]
, F (z) = 1− 2Mz3 + 1

4Q
2z4 . (2.1)

The horizon is located at z = z+ given by the smallest positive root of F (z) = 0. The
Maxwell field is given by

A = Atdt , At = −Qz , (2.2)

where we set At|z=0 = 0 using the U(1)-gauge freedom.
The black hole is equipped with thermodynamic quantities. The parameters M and

Q are proportional to the massM and electric charge Q densities of the black hole as

M = 2M
κ2 , Q = Q

2κ2 , (2.3)

where the constant κ2 is related to Newton’s constant of gravitation G as κ2 = 8πG.
The entropy density S, Hawking temperature T and electric potential on the horizon
ΦH = −At|z=z+ are given by

S = 2π
κ2z2

+
, T =

12− z4
+Q

2

16πz+
, ΦH = Qz+ . (2.4)

In our gauge, ΦH corresponds to the chemical potential of the U(1). For regularity of the
spacetime, we require T ≥ 0, giving Q2 ≤ 12/z4

+. The thermodynamic quantities satisfy
the first law of black hole mechanics,

dM = TdS + ΦHdQ . (2.5)

2.2 Charged scalar field perturbation

We perturb the RNAdS4 background by a charged scalar field with a negative mass squared
µ2 = −2. The perturbation equation is given by

D2Ψ + 2Ψ = 0 , (2.6)

where DµΨ = (∂µ−ieAµ)Ψ is the gauge covariant derivative and e denotes the U(1)-charge
of the scalar field.

The Klein-Gordon equation (2.6) can be brought into a form convenient for our analy-
sis. Writing the scalar field as Ψ(t, x, y, z) = zψ(z)e−iωt+ik·x, we obtain a Schrödinger-like
equation, [

− d2

dr2
∗

+ V (z)
]
ψ = (ω + eAt)2ψ , (2.7)

V (r) = F

z2 (k2z2 − zF ′ + 2F − 2) , (2.8)
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where r∗ = −
∫ z

0 dz
′/F (z′) is the tortoise coordinate. The AdS boundary z = 0 and horizon

z = z+ correspond to r∗ = 0 and r∗ = −∞, respectively. The asymptotic solution to the
above equation near the AdS boundary takes the form

ψ(z) = ψ1 + ψ2z + · · · , (2.9)

where ψ1 and ψ2 are unfixed in the boundary analysis. Near the horizon, we impose the
ingoing wave boundary condition as

ψ(z) ' Ce−i(ω−eΦH)r∗ , (2.10)

where C is a complex constant that is free in the near horizon analysis.
A relation among the three coefficients ψ1, ψ2, C can be obtained through the Wron-

skian. Let us define the Wronskian as

W = ψ∗
dψ

dr∗
− ψdψ

∗

dr∗
. (2.11)

Upon using eq. (2.7), it can be shown that the Wronskian is conserved along the r∗-
direction: dW/dr∗ = 0. The Wronskian can be evaluated at the horizon and AdS boundary
by plugging eqs. (2.9) and (2.10), respectively, to eq. (2.11). Equating the results, we obtain

ψ1ψ
∗
2 − ψ∗1ψ2 = −2i(ω − eΦH)|C|2 . (2.12)

In the following, we will show that this quantity is related to the work done by the scalar
field source on the AdS boundary.

2.3 Energy extraction through superradiance

The asymptotic behavior of the scalar field Ψ near the AdS boundary is related to the
expectation value of the scalar operator and its source in the dual field theory. From
eq. (2.6), the scalar field has the series solution near the AdS boundary of the form

Ψ(t, x, y, z) = Ψ1(t, x, y)z + Ψ2(t, x, y)z2 + · · · . (2.13)

From the AdS/CFT dictionary [31, 32], the leading term in the expansion is interpreted
as the source J ≡ Ψ1 that couples to the scalar operator O in the boundary theory. The
expectation value of the latter is given by the sub-leading term in eq. (2.13), 〈O〉 = Ψ2. (It
could depend on the counterterm of the on-shell action in general, but it does not in the
present case. See appendix A for details.)

The source J , which has the U(1)-charge e, can be considered as the “source” of the
U(1) current in the boundary theory. In the presence of J , the divergence of the electric
current is given by

∇i〈ji〉 = ie(〈O〉∗J − 〈O〉J∗) , (2.14)

where ∇i represents the covariant derivative with respect to the boundary metric γij =
limε→0 z

2hij |z=ε where hij is the induced metric of z = ε. (For the RNAdS4 (2.1), we have
γij = ηij .) This formula follows from the U(1)-gauge invariance of the bulk on-shell action.
For the derivation, see appendix A or ref. [33].
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Also, the source J does work in the boundary theory, changing the energy. The
divergence of the energy momentum tensor of the boundary theory satisfies

∇j〈Tij〉 = Fij〈jj〉+ 〈O〉∗DiJ + 〈O〉DiJ
∗ , (2.15)

where Fij = ∂iAj − ∂jAi and Ai is the Maxwell field at the AdS boundary. The boundary
gauge covariant derivative is defined by DiJ = (∂i − ieAi)J . Eq. (2.15) follows from the
diffeomorphism invariance of the bulk on-shell action. See again appendix A or ref. [33].
Eqs. (2.14) and (2.15) are known as the Ward-Takahashi identities.

The source induces changes of M and Q because of the Ward-Takahashi identities.
Let us take two constant time slices Σ1 and Σ2 at times t = t1 and t = t2 (t2 > t1). The
difference of the electric charges on Σ1 and Σ2 is then given by

∆QV = −
∫
dΣ2〈ji〉ni +

∫
dΣ1〈ji〉ni =

∫
d3x
√
−γ∇i〈ji〉

= ie

∫ t=t2

t=t1
d3x
√
−γ(〈O〉∗J − 〈O〉J∗) ,

(2.16)

where V is the infinite volume of the t =constant surface and ni is the unit normal of
Σ1 and Σ2. (Note that M and Q are the mass and charge “densities” in eq. (2.3).) In
the second equality, the divergence theorem is used. (Note that the minus sign is needed
for the surface integral when the boundary is the spacelike hypersurface [34].) The last
equality follows from eq. (2.14). This equation implies that the change of the charge per
unit time and volume is given by

Q̇ = ie(〈O〉∗J − 〈O〉J∗) . (2.17)

Similarly, we obtain the difference of the energy between Σ1 and Σ2 as

∆MV =
∫
dΣ2Tijk

inj −
∫
dΣ1Tijk

inj

= −
∫
d3x
√
−γ∇j(Tijki) = −

∫
d3x
√
−γ(∇jTij)ki

= −
∫
d3x
√
−γ

[
Fij〈jj〉+ 〈O〉∗DiJ + 〈O〉DiJ

∗
]
ki ,

(2.18)

where k = ∂t is the timelike Killing vector. In the third equality, we used the Killing
equation ∇ikj + ∇jki = 0. Eq. (2.15) is used in the last equality. Because we adopt the
gauge in which the asymptotic value of the Maxwell field is zero as well as Fij = 0 for the
RNAdS4, the change of the energy per unit time and unit volume is given by

Ṁ = −(〈O〉∗J̇ − 〈O〉J̇∗) . (2.19)

The formulae (2.17) and (2.19) can then be translated to the conditions of superra-
diance. Specifically for the source with a monochromatic frequency ω and a single wave
number k,

J(t, x, y) = ψ1e
−iωt+ik·x , 〈O(t, x, y)〉 = ψ2e

−iωt+ik·x , (2.20)
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we find

Q̇ = ie(ψ1ψ
∗
2 − ψ∗1ψ2) = 2e(ω − eΦH)|C|2 , (2.21)

Ṁ = iω(ψ1ψ
∗
2 − ψ∗1ψ2) = 2ω(ω − eΦH)|C|2 , (2.22)

where the conservation of the Wronskian (2.12) is used. In appendix B, we provide an
alternative derivation of eqs. (2.21) and (2.22) by taking into account the backreaction of
the scalar field to the metric and Maxwell field.

We find that Ṁ becomes negative for

0 < ω < eΦH (eΦH > 0) , eΦH < ω < 0 (eΦH < 0) . (2.23)

The source does negative work for the frequencies satisfying the above conditions. In
other words, we can extract energy from the thermal state dual to RNAdS4 by apply-
ing a monochromatic source with its frequency in the range (2.23). In the case of the
asymptotically flat charged black holes, the inequality (2.23) appears as the superradiant
condition, i.e., an incident wave towards the black hole is reflected as waves with larger
amplitudes. For asymptotically AdS spacetimes, this inequality gives the condition for the
energy extraction through the external source.

Note that the first law of black hole mechanics (2.5) implies the change of the entropy
density to be

T Ṡ = Ṁ − ΦHQ̇ = 2(ω − eΦH)2|C|2 . (2.24)

This is always positive, consistent with Hawking’s area theorem.
Eqs. (2.21), (2.22) and (2.24) indicate that we can extract energy from the black hole

by a reversible process. Writing the frequency as ω = eΦH − δω (δω � eΦH), we find
Ṁ = O(δω), Q̇ = O(δω) and Ṡ = O(δω2). Hence, when ω is sufficiently close to eΦH, the
mass and charge can be changed while the entropy is fixed. The energy extraction process
can be isentropic (adiabatic and reversible).

From eqs. (2.3) and (2.4), the mass density can be given as a function of the charge
and entropy densities as

M(S,Q) =
( S

2π

)3/2
{

1 +Q2
( S

2π

)−2
}
, (2.25)

where we set κ2 = 1 for simplicity. The κ-dependence can be easily recovered by replacing
M→ κ2M, S → κ2S, Q → κ2Q. The condition for the absence of the naked singularity
is written as M ≥ 4 · 3−3/4Q3/2, where the equality is satisfied for the extreme RNAdS4.
Contours of the entropy density in the (M,Q)-space are shown in figure 1.1 In an isentropic
process, M and Q change along a contour. In a non-isentropic process, the trajectory of
the change in (M,Q)-space goes upward from the contour of the initial entropy.

1If dimensionless variables are introduced as M̃ =MS−3/2 and Q̃ = QS−2, these contours merge into
a single curve. This is because of the planar horizon we consider for simplicity. However, generalization to
non-planar horizons such as asymptotically global AdS is straightforward, and hence we discuss isentropic
contours in the (M,Q)-space rather than reducing them to the aforementioned dimensionless variables.
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Figure 1. Contours of the entropy density of the RNAdS4 for S/2π = 0.1, 0.2, . . . , 0.9.

How much energy can we maximally extract from the black hole? Let the initial mass
and charge densities beMini and Qini. The initial entropy Sini is determined by solving

Mini =M(Sini,Qini) . (2.26)

As long as the black hole has nonzero charges, we can extract energy using the frequency
satisfying eq. (2.23). The energy extraction terminates when all electric charges are ex-
tracted Q = 0 (i.e. when the trajectory in figure 1 reaches the vertical axis). The final
mass is minimal in the isentropic process because the trajectory of the change for general
processes is in the upper side of the isentropic contour for Sini in figure 1. It follows that
the maximum energy extraction is for the isentropic process, where the final mass of the
black hole is given byMfin =M(Sini, 0). Therefore, the maximum energy per unit volume
that we can extract from the black hole is given by a function ofMini and Qini as

∆M =Mini −Mfin = Q2
ini

(Sini
2π

)−1/2
, (2.27)

where Sini(Mini,Qini) is determined by solving eq. (2.26).

2.4 Detailed calculation of the energy extraction

In this subsection, we numerically calculate the variation of the mass density Ṁ for different
wave frequencies ω and black holes charge densities Q. We will show that the relation (2.22)
is satisfied indeed. Since there is a scaling symmetry for the flat horizon spacetime, we
can set z+ = 1. Besides, the overall factor of the scalar field is free because it is a linear
perturbation. Here, we assume that we apply an external source with constant amplitude
in the dual picture in QFT, and we evaluate the variation of the mass density normalized
by the magnitude of the boundary source: Ṁ/|ψ1|2. The electric charge is fixed to e = 1
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Figure 2. The ω/(eΦH) dependence of the energy variation Ṁ/|ψ1|2 for the black hole charges
Q = 2.0, 2.1, · · · , 2.9. The superradiant condition is satisfied in the red region.

and the spatial wave number is fixed to k = 0, but the behavior is qualitatively the same
for other e, k.

It is known that the RNAdS4 becomes unstable against the charged scalar perturbation
in a certain parameter space even without the source [16, 18]. At the onset of the instability,
the response rescaled by the source 〈O〉/ψ1 hence diverges. The instability of the RNAdS4
is discussed together with quasinormal modes in appendix C.

In figure 2, we show the ω-dependence of the rescaled variation of the mass density
Ṁ/|ψ1|2 for Q = 2.0, 2.1, · · · , 2.9. Since the horizontal axis is rescaled as ω/(eΦH), the
superradiant condition is satisfied for 0 < ω/(eΦH) < 1, which is shown as the red region.
It is obvious that Ṁ is negative when the superradiant condition is satisfied, and we can
extract energy from the charged black hole. Also, as the charge is increased, a sharp peak
appears at ω/(eΦH) . 1. In other words, we can extract more energy from a black hole
per unit time per an external source magnitude by applying the scalar field with frequency
ω/(eΦH) . 1 just before the onset of instability. At the onset of instability Q = 2.981, the
peak diverges since our definition of the rescaled mass variation is singular at that time.
Beyond this Q, the RNAdS4 becomes unstable and is replaced with black holes with scalar
hair [18]. Hence, here we do not include Q bigger than the onset.

The peak for each Q in figure 2 shows that we can extract the maximum energy per
unit time |Ṁmin| from the black hole by applying an appropriate wave frequency. The
Q-dependence of the maximum energy extraction rate is shown in figure 3. The red line is
the maximum extraction rate |Ṁmin|/|ψ1|2, the blue line is the corresponding frequency,
and the blue dashed line is ω = eΦH. A black vertical line at Q = 2.981 shows the location
of the onset of instability. The behavior of |Ṁmin|/|ψ1|2 implies that the maximum value
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Figure 3. Maximum energy extraction rate with respect to Q. The red line is the maximum
extracted energy per unit time |Ṁmin|/|ψ1|2, the blue line is the corresponding frequency, and the
blue dashed line shows ω = eΦH. The black grid line at Q = 2.981 is the location of the onset of
instability.

of the extractable energy grows rapidly as we get close to the onset of instability. Note that
the quasinormal mode that becomes unstable (see appendix C) has a respectable residue
and affects the spectrum of the response [35]. Also, we see that the negative peak gets
closer to the upper bound of the superradiant condition ω = eΦH as we raise Q. If we
tune the wave frequency so as to follow the blue line in figure 3 toward the left-bottom,
we can extract the mass and the charge of the black hole in the most rapid way. Note
that although we can extract the largest energy per unit time by following the blue line,
the total amount of the extracted energy is not always the maximum, since it is not an
isentropic process (see also figure 1).

3 Rotational superradiance in AdS

In this section, we consider a neutral scalar field in the Kerr-AdS4 black hole background
for an alternative setup of the energy extraction from AdS black holes.

3.1 Kerr-AdS4 spacetime

The metric of the Kerr-AdS4 spacetime is given by [36–38]

ds2 = −∆
ρ2

(
dt− a

Ξ sin2 θdφ

)2
+ ρ2

∆ dr2 + ρ2

∆θ
dθ2 + ∆θ sin2 θ

ρ2

(
adt− r2 + a2

Ξ dφ

)2

,

(3.1)

where
∆ = (r2 + a2)(1 + r2)− 2Mr , ∆θ = 1− a2 cos2 θ ,

ρ2 = r2 + a2 cos2 θ , Ξ = 1− a2 ,
(3.2)

and we set the AdS radius unity: L = 1. The event horizon is located at r = r+ given by
the largest root of ∆(r) = 0. Note that the above metric is written in the rotating frame
at infinity.
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The metric can be rewritten in the non-rotating frame at infinity. We introduce new
coordinates (t′, φ′, θ′, φ′) defined as [37]

t′ = t , φ′ = φ+ at , r′ cos θ′ = r cos θ , Ξr′2 = ∆θr
2 + a2 sin2 θ . (3.3)

However, directly transforming the metric (3.1) is cumbersome, and hence we focus only on
the asymptotic form near the asymptotic infinity r′ →∞. There, the original coordinates
(r, θ) can be expressed by (r′, θ′) as

r = 1
h(θ′) r

′ +O(1) , cos θ = h(θ′) cos θ′ +O(1/r′2) , (3.4)

where
h(θ′)−2 ≡ 1− a2 sin2 θ′ . (3.5)

It is easy to check that the following formula holds:

d(h(θ′) cos θ′) = Ξh(θ′)3d(cos θ′) . (3.6)

This will be convenient when we change integration variables later. In terms of the new
coordinate system, the asymptotic form of the metric becomes

ds2 ' −(1 + r′2)dt′2 + dr′2

1 + r′2
+ r′2(dθ′2 + sin2 θ′dφ′2) . (3.7)

The mass, angular momentum and entropy of the Kerr-AdS4 are given by [39]

M = 8πM
κ2Ξ2 , J = 8πMa

κ2Ξ2 , S =
8π2(r2

+ + a2)
κ2Ξ . (3.8)

The Hawking temperature and angular velocity of the horizon are

T =
r+(1 + a2 + 3r2

+ − a2/r2
+)

4π(r2
+ + a2)

, Ω =
a(1 + r2

+)
r2

+ + a2 . (3.9)

They satisfy the first law of black hole mechanics:

dM = TdS + ΩdJ . (3.10)

3.2 Scalar field perturbation of Kerr-AdS4

Let us consider the massive Klein-Gordon equation �Ψ = µ2Ψ in the Kerr-AdS4. We
decompose the scalar field as

Ψ = e−iωt
′+imφ′Rωlm(r)Sωlm(cos θ) = e−i(ω−am)t+imφRωlm (r)Sωlm(cos θ) (3.11)

where we define the frequency ω and the azimuthal mode number m in terms of the
coordinates in the non-rotating frame. The Klein-Gordon equation is separated into d

dr
∆ d

dr
+ (r2 + a2)2

∆

(
ω − a(r2 + 1)

r2 + a2 m

)2

− µ2r2

Rωlm(r) = AωlmRωlm(r) , (3.12)
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and [
1

sin θ
d

dθ
∆θ sin θ d

dθ
− a2 sin2 θ

∆θ

(
ω − ∆θ

a sin2 θ
m

)2
+

− µ2a2 cos2 θ

]
Sωlm(cos θ) = −AωlmSωlm(cos θ) , (3.13)

where Aωlm is the separation constant and determined by solving the eigenvalue problem
given by eq. (3.13). The eigenvalue is parametrized by the integers l and m satisfying
l ≥ |m| as well as ω. (The eigenfunction becomes Sωlm(θ)eimφ → Ylm(θ, φ) in a → 0,
where Ylm(θ, φ) are the spherical harmonics.) Since the differential operator in the left
hand side of eq. (3.13) is hermitian under the inner product (f, g) ≡

∫ 1
−1 d(cos θ)f∗(θ)g(θ),

the eigenfunctions Sωlm are orthogonal. We normalize them such that

(Sωlm, Sωl′m) = Ξ
2πδll

′ . (3.14)

In the following, we will fix (ω, l,m) and omit tedious subscripts as

Rωlm(r) = R(r) , Sωlm(cos θ) = S(cos θ) , Aωlm = A . (3.15)

Once A is determined, we turn to the radial part of the Klein-Gordon equation (3.12).
With a rescaled variable ψ(r) =

√
r2 + a2R(r), it is rewritten as

[
− d2

dr2
∗

+ V (r)
]
ψ =

(
ω − a(r2 + 1)

r2 + a2 m

)2

ψ . (3.16)

where r∗ =
∫ r
∞ dr

′(r′2 + a2)/∆(r′) and

V = ∆
(r2 + a2)4 {2r

6 + 5a2r4 + 2Mr3 + a2(3a2 + 1)r2+

− 4Ma2r + a4 + (r2 + a2)2(A+ r2µ2)} . (3.17)

Hereafter, we consider the case that µ2 = −2 for simplicity. Then, near the AdS boundary,
the asymptotic form of the solution is of the form

ψ = ψ1 + ψ2
r

+ · · · . (3.18)

Near the horizon, we impose the ingoing wave condition as

ψ(z) ' Ce−i(ω−mΩ)r∗ , (3.19)

where C is a complex constant. The conservation of the Wronskian (2.11) implies that

ψ1ψ
∗
2 − ψ∗1ψ2 = −2i(ω −mΩ)|C|2 . (3.20)

– 11 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
4

The coefficients ψ1 and ψ2 in eq. (3.18) are related to the source and response in the
boundary theory, but we need to be careful about the nontrivial coordinate transforma-
tion (3.3). In the coordinates in the non-rotating frame (t′, r′, θ′, φ′), the expansion of the
scalar field near the asymptotic infinity becomes

Ψ = e−iωt
′+imφ′ S(cos θ)√

r2 + a2

(
ψ1 + ψ2

r
+ · · ·

)

= e−iωt
′+imφ′S(h(θ′) cos θ′)h(θ′)

(
ψ1
r′

+ h(θ′)ψ2
r′2

+ · · ·
)
,

(3.21)

where eq. (3.3) was used in the second equality. Then, the source and response are given by

J(t′, θ′, φ′) = e−iωt
′+imφ′S(h(θ′) cos θ′)h(θ′)ψ1 ,

〈O(t′, θ′, φ′)〉 = e−iωt
′+imφ′S(h(θ′) cos θ′)h(θ′)2ψ2 .

(3.22)

3.3 Energy extraction through superradiance

In the Kerr-AdS4 background, we use the Ward-Takahashi identity (2.15) with a vanishing
Maxwell field, Ai = 0. Calculations are parallel to the case of the RNAdS4. The change of
the energy per unit time is given by

Ṁ = −
∫
dΩ(〈O〉∗∂t′J + 〈O〉∂t′J∗) , (3.23)

where
∫
dΩ =

∫ 2π
0 dφ′

∫ 1
−1 d(cos θ′). Note that the energy is defined in the non-rotating

frame at infinity. Meanwhile, the angular momentum is defined on a spacelike hypersurface
Σ by −

∫
dΣTijniξj with ξ = ∂φ′ . In a similar way as eq. (2.18), we obtain the change of

the angular momentum per unit time as

J̇ =
∫
dΩ(〈O〉∗∂φ′J + 〈O〉∂φ′J∗) . (3.24)

These expressions can be translated to the superradiant condition by making use of
the Wronskian. Using eq. (3.22) to (3.23), we obtain

Ṁ = iω

∫ 2π

0
dφ′

∫ 1

−1
d(cos θ′)h(θ′)3|S(h(θ′) cos θ′)|2(ψ1ψ

∗
2 − ψ∗1ψ2)

= iω(ψ1ψ
∗
2 − ψ∗1ψ2) = 2ω(ω −mΩ)|C|2 ,

(3.25)

where we used eqs. (3.6) and (3.14) in the second equality and the conservation of the
Wronskian (3.20) in the last equality. Similarly, we have

J̇ = im(ψ1ψ
∗
2 − ψ∗1ψ2) = 2ω(ω −mΩ)|C|2 . (3.26)

We find that Ṁ becomes negative for

0 < ω < mΩ (mΩ > 0) , mΩ < ω < 0 (mΩ < 0) . (3.27)

Thus, we can extract energy from the thermal state dual to the Kerr-AdS4 by applying
a source with the frequency satisfying the above condition. In asymptotically flat spacetime,
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Figure 4. Contours of the entropy of Kerr-AdS4.

the above inequality appears as the ordinary superradiant condition. In the asymptotically
AdS spacetime, it can be regarded as the condition for the energy extraction from the
rotating black hole.

The first law of black hole mechanics implies the change of the entropy to be

T Ṡ = Ṁ − ΩJ̇ = 2(ω −mΩ)2|C|2 . (3.28)

This is always positive and consistent with Hawking’s area theorem. For the same reason as
argued in section 2.3, the most efficient energy extraction can be realized by an isentropic
process Ṡ = 0 as in figure 4, where eliminating r+ and a from (3.8) givesM as a function
of (S,J ) as

M(S,J ) =
√

8π2 + S
4π2
√

2S

√
32π4J 2 + 8π2S + S3 , (3.29)

where we set κ2 = 1 for simplicity. Let the initial mass and angular momentum be Mini
and Jini. Then, the initial entropy Sini is obtained by solving Mini = M(Sini,Jini). For
the isentropic process, the final mass is given byMfin =M(Sini, 0). The maximum energy
that can be extracted is ∆M =Mini −M(Sini, 0).

3.4 Detailed calculation of the energy extraction

In this subsection, we numerically calculate the variation of the mass Ṁ for different
wave frequencies ω and black holes spins a. We will again show that the condition (2.22)
is satisfied indeed. We take units in which the AdS radius is unity and normalize the
variation of the mass by the amplitude of the source: Ṁ/|ψ1|2. In the following, the
azimuthal mode number is fixed to m = 1, and the separation constant Aωlm is taken as
the lowest eigenvalue of eq. (3.13); that is, m = 1, l = 1. Other choices of m, l also give
qualitatively the same behavior.
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Figure 5. The ω/(eΦH) dependence of the energy variation Ṁ/|ψ1|2 for the black hole spins
a = 0, 0.1, · · · , 0.9. The superradiant condition is satisfied in the red region.

According to [40], the Kerr-AdS4 black holes are unstable against the scalar pertur-
bation for a small horizon radius. In particular, the onset of the instability appears for
r+ . 0.1 in the case of l = 1,m = 1. Instability of the small Kerr-AdS4 black holes has
also been also studied in [4, 6]. Since we will consider a larger black hole r+ = 1 in order
to avoid numerical difficulty in the following, we will not see the divergence behavior due
to the small Kerr-AdS4 instability unlike the calculations in the RNAdS4 case.

In figure 5, we show the ω-dependence of the rescaled variation of the mass Ṁ/|ψ1|2

with respect to a = 0., 0.1, · · · , 0.9. We also use the horizontal axis rescaled as ω/(mΩ),
where the superradiant condition is satisfied for 0 < ω/(mΩ) < 1 as shown by the red
region. We find that Ṁ is negative in the frequency band. That means that we can extract
the energy from the rotating black hole when the superradiant condition is satisfied. The
maximal value of the energy extraction increases for a larger spin and reaches the upper
limit at a . 1. As described earlier, there is no divergent behavior since the onset of the
instability does not appear in the parameters we are considering.

4 Conclusion

In this paper, we studied the superradiance for the charged scalar field perturbation of
RNAdS4 and the neutral scalar field perturbation of Kerr-AdS4 when we apply sources with
monochromatic frequencies from the AdS boundary. We discussed the energy extraction
due to the superradiance. We derived the expressions of the change rates for mass, electric
charge, and angular momentum. The mass is shown to be extracted by the perturbation.
That means that the work done by the source at the AdS boundary is negative. Numerical
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results have been obtained showing the energy extraction for frequencies in the range
satisfying the superradiant condition.

The phenomena of the superradiance found in the AdS bulk can be mapped to that
in the dual field theory. The RNAdS4 and Kerr-AdS4 correspond to equilibrium thermal
states having finite charge and angular momentum, respectively. Applying external fields
with frequencies satisfying eq. (2.23) or eq. (3.27), we can extract energy even though the
states are initially in equilibrium. In particular, if we fine-tune the frequency, the process
becomes isentropic. Since the isentropic process is reversible, we can also add the energy
keeping the entropy. Through this process, the energy is stored in the black holes. In other
words, black holes play the role of a “battery”.

Even for the charged scalar field in the RNAdS4 with the flat horizon, we find the
energy extraction associated with the superradiant condition. The instability for a large
black hole is generically known as the instability due to the near horizon AdS2 region of the
RNAdS4 and hence called the AdS near horizon instability. Focusing on the ability of the
energy extraction, however, we have observed the superradiance even for large black holes.

In this work, we considered applying sources with monochromatic frequencies to extract
black hole energy. It would be also interesting to study if the superradiance can be identified
when a scalar field quench with a general profile is applied as a source. Another future
direction will be to consider the application to the Kerr-Newman-AdS4 black holes. Taking
into account the backreaction of the matter fields and considering nonlinear effects to the
superradiant energy extraction will be also important.
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A Ward-Takahashi identity

In this appendix, we summarize the derivation of the Ward-Takahashi identities (2.14)
and (2.15) (see e.g. refs. [33, 41–43]).

The full bulk action of the Einstein-Maxwell-charged scalar system in asymptotically
AdS4 spacetime is written as

S = 1
2κ2

∫
d4x
√
−g

[
R− 6− 1

4FµνF
µν
]

+
∫
d4x
√
−g(−|DΨ|2 + 2|Ψ|2)

+ 1
κ2

∫
z=ε

d3x
√
−h

[
K − 2− 1

2R
(h)
]
−
∫
z=ε

d3x
√
−h|Ψ|2 , (A.1)

where hij is the induced metric on the cutoff surface at z = ε, and h = det(hij). R(h) is
the three-dimensional Ricci scalar with respect to hij . The extrinsic curvature is defined
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as Kij = (∇µlν)eµi eνj , where lµ and eµi are the unit normal vector and projection tensor of
the hypersurface of z = ε. The third bracket in (A.1) contains the boundary terms for the
gravitational action, including the Gibbons-Hawing term and counterterms [41, 44]. The
last term is the counterterm for the charged scalar field, renormalizing the on-shell action
in the limit ε→ 0 [18].

Because the induced metric hij diverges for ε→ 0, the rescaled induced metric regular
at the AdS boundary is introduced as

γij = lim
ε→0

z2hij |z=ε . (A.2)

In the main text of the paper, we consider the limit of a probe scalar field. The scalar
field is decoupled from the gravity and Maxwell field in the limit κ2 → 0 while keeping the
gravity and Maxwell fields in the same order. In fact, the action (A.1) is written in such a
normalization for the Maxwell field, and the probe approximation is justified.

The expectation value of the operator dual to the scalar field is common to both the
probe scalar limit and the fully back-reacted system. The scalar field is expanded near
infinity as in eq. (2.13). Substituting this expansion into the variation of the on-shell
action with respect to Ψ(t, x, y), we obtain

δΨS =
∫
dtdxdy[Ψ2δΨ∗1 + Ψ∗2δΨ1] . (A.3)

The counterterm of the scalar field in eq. (A.1) cancels divergent terms in the bare action,
and the variational principle is well-defined when Ψ1(t, x, y) is varied at the AdS boundary.2

From the dictionary of the AdS/CFT correspondence [31, 32], J ≡ Ψ1 is regarded as the
source of the scalar operator O dual to Ψ in the boundary theory. The response with
respect to the source J is given by

〈O〉 = 1√
−γ

δS

δJ∗
= Ψ2 . (A.4)

We regard the bulk on-shell action (A.1) as the functional of γij , Ai, and J = Ψ1,
where Ai is the induced Maxwell field on z = ε. Along with (A.4), the boundary stress
tensor 〈Tij〉 and the electric current 〈ji〉 are defined by

〈Tij〉 = − 2√
−γ

δS

δγij
, 〈ji〉 = 1√

−γ
δS

δAi
. (A.5)

The general variation of the on-shell action is then written as

δS =
∫
d3x
√
−γ

[
−1

2〈Tij〉δγ
ij + 〈ji〉δAi + 〈O〉δJ∗ + 〈O〉∗δJ

]
. (A.6)

The U(1)-gauge invariance of the onshell action δU(1)S = 0 implies the divergence
formula for the electric current (2.14). Let us take the variation δ as the U(1)-gauge
transformation as

δU(1)γ
ij = 0 , δU(1)Ai = ∂iλ , δU(1)J = ieλJ , (A.7)

where λ is the arbitrary function. Then, we obtain (2.14) from (A.6).
2We employ the standard quantization where the Ψ1 is varied. For the mass squared µ2 = −2, the

alternative quantization that uses the variation for Ψ2 is also possible, but we do not consider the latter in
this paper.
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Similarly, we consider the coordinate transformation δdiff given by

δdiffγ
ij = −∇iξj −∇jξi , δdiffAi = ξj∇jAi +Aj∇iξj , δdiffJ = ξj∂jJ , (A.8)

where ξi is the arbitrary vector field. From the diffeomorphism invariance of the on-shell
action δdiffS = 0, we obtain

∇i〈Tij〉 = 〈ji〉∇jAi −∇i(〈ji〉Aj) + 〈O〉∂jJ∗ + 〈O〉∗∂jJ . (A.9)

Rewriting ∇i〈ji〉 by using eq. (2.14), we obtain the divergence formula for the energy
momentum tensor (2.15).

B Backreaction of the superradiance

We can compute the leading contribution to the change of mass and charge of the black
hole by a second-order perturbation. (See also [1] for the second-order perturbation of
asymptotically flat charged black holes.) The probe approximation of the scalar field is valid
in the limit of κ2 → 0, and the scalar field decouples from the gravity and Maxwell field.
We then take into account the backreaction of the scalar field to these fields perturbatively.

The scalar field is quadratic and gives an O(κ2) contribution to the equations for the
gravity and Maxwell field. The Einstein equations obtained from the full action (A.1) are

Rµν −
1
2gµνR− 3gµν = 1

2T
Maxwell
µν + κ2 T Scalar

µν , (B.1)

where

TMaxwell
µν = FµρFν

ρ − 1
4gµνFρσF

ρσ , (B.2)

T Scalar
µν = 2D(µΨDν)Ψ∗ + gµν(−|DΨ|2 + 2|Ψ|2) . (B.3)

The Maxwell equations are

∇νFµν = 2κ2 jScalarµ , jScalarµ = ie(ΨDµΨ∗ −Ψ∗DµΨ) . (B.4)

We consider the perturbation of the metric and Maxwell field as

gµν → gµν + κ2δgµν , Aµ → Aµ + κ2δAµ . (B.5)

We will focus on the O(κ2) contribution of the scalar field to these fields. In jScalarµ and
T Scalar
µν , we can take Ψ as the solution of the Klein-Gordon equation (2.6) in the fixed

background metric gµν and Maxwell field Aµ.
For simplicity, we assume that the scalar field is homogeneous in the (x, y)-space, i.e.,

Ψ = Ψ(t, z). Near the AdS boundary, we can expand the scalar field as

Ψ(t, z) =
∞∑
n=1

Ψn(t)zn . (B.6)
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For n ≥ 3, Ψn(t) is determined by the equation of motion (2.6) as

Ψ3(t) = Ψ̈1
2 , Ψ4(t) = ieQ

3 Ψ̈1 + M

3 Ψ1 + 1
6Ψ̈2 , (B.7)

and so on. Because of the homogeneity of the scalar field, we can assume that δgµν and
δAµ are also homogeneous: δgta = δgza = δgxy = δAa = 0 and δgxx = δgyy where a = x, y.

Note that there are gauge freedom in the perturbation: δgµν → δgµν − ∇µξν − ∇νξµ
and δA → δA + dλ where ξ = ξt(t, z)dt + ξz(t, z)dz and λ = λ(t, z). Using these, we can
further impose δgtz = gxx = 0 and δAz = 0. Then, the perturbation variables can be
written as

δgµνdx
µdxν = z

(
α(t, z)dt2 + β(t, z)

F 2 dz2
)
, δA = −zγ(t, z)dt . (B.8)

In O(κ2), we obtain a set of coupled equations for α(t, z), β(t, z), and γ(t, z). Taking
the O(κ2) part of the Maxwell equations (B.4), we find

zF

{
zA′t

(
z3(β − α)

2F

)′
+ (z2γ′)′

}
+ z5A′′t β = 2JScalar

t , (B.9)

z2

F

{
(zγ̇)′ + z3A′t

2F (β̇ − α̇)
}

= 2JScalar
z . (B.10)

From the Einstein equations (B.1), we obtain

−z2F

{
β′ − z3A′t

2

4F β + zF ′ − 3(F − 1)
zF

α− A′t
2 (zγ)′

}
= T Scalar

tt , (B.11)

−z
2

F
β̇ = T Scalar

tz , (B.12)

z2

F
α′ + 1

4F 2 {z
5A′2t + 12zF − 4z2F ′}α− 3z

F 2β −
z2A′t
2F (zγ)′ = T Scalar

zz , (B.13)

− z3

2F 2 β̈ −
z3

2 α
′′ − 2z2α′ + z2β′ − z3F ′

4F (β − α)′

+z2

4

(
zF ′2

F 2 −
2zF ′′

F
+ F ′

F

)
(β − α) + z5A′2t

4F (β − α)

+z2A′t
2 (zγ)′ = T Scalar

xx = T Scalar
yy . (B.14)

We solve these equations near the AdS boundary. The perturbation variables (α, β, γ)
can be expanded as

α(t, z) =
∞∑
n=0

αn(t)zn , β(t, z) =
∞∑

n=−1
βn(t)zn , γ(t, z) =

∞∑
n=0

γn(t)zn . (B.15)
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Substituting these expressions into eqs. (B.9)–(B.14), we can determine αn, βn, γn order by
order. For example, we find

β−1 = −|Ψ1|2 , α̇0 = 1
3{Ψ

∗
1Ψ̇2 + Ψ1Ψ̇∗2− 2(Ψ∗2Ψ̇1 + Ψ2Ψ̇∗1)} ,

β0 = −4
3(Ψ∗1Ψ2 + Ψ1Ψ∗2) +α0 , γ̇0 = −2ie(Ψ∗1Ψ2−Ψ1Ψ∗2) ,

α1 = 1
4(Ψ̈1Ψ∗1− 2Ψ̇1Ψ̇∗1 + Ψ1Ψ̈∗1− 2Qγ0) ,

β1 = −1
2(Ψ∗1Ψ̈1 + 2Ψ̇∗1Ψ̇1 + Ψ̈∗1Ψ1 + 4Ψ∗2Ψ2 +Qγ0), γ1 = −2ie(Ψ̇1Ψ∗1−Ψ1Ψ̇∗1) ,

(B.16)
where α0 and γ0 in the right hand side are given by the RNAdS4 background.

Let us now compute the changes in the mass and charge caused by the superradiant
scattering. The Brown-York boundary stress tensor [41, 44] is given by

Tij = 1
κ2 (−Kij +Khij − 2hij +Gij)−ΨΨ∗hij , (B.17)

where Gij is the Einstein tensor with respect to the induced metric hij . The last term of
eq. (B.17) comes from the boundary term in the action of the scalar field (A.1). Let Σ be
a two-dimensional spacelike surface in the cutoff three-dimensional hypersurface at z = ε.
The energy of the spacetime is given by

MV =
∫

Σ
d2x
√
σTijk

inj , (B.18)

where σab is the induced metric of Σ, ni is the unit normal to Σ and ki is the timelike Killing
vector. Taking Σ as the constant-t time slice, we find M =

∫
dxdyTtt/ε. Computing the

Brown-York boundary stress tensor by using the perturbed metric, we obtain the energy
density as

M = 2M
κ2 + β0 + Ψ1Ψ∗2 + Ψ2Ψ∗1 . (B.19)

From eq. (B.16), time derivative of the energy density is given by

Ṁ = −Ψ∗2Ψ̇1 −Ψ2Ψ̇∗1 , (B.20)

which is precisely eq. (2.19). We can also compute the charge density as

Q = 1
2κ2V

∫
dxdyFtz = Q

2κ2 + γ0
2 . (B.21)

Its time derivative is
Q̇ = −ie(Ψ∗1Ψ2 −Ψ1Ψ∗2) , (B.22)

which is nothing but eq. (2.17).

C Quasinormal modes and instability of the RNAdS4

In this appendix, we review the quasinormal modes and instability for the charged scalar
field in the RNAdS4 in relation to our numerical calculations in the main text.

We take the Klein-Gordon equation (2.7) and solve it with the vanishing source bound-
ary condition ψ(z)→ 0 in the AdS boundary (z → 0) as well as the ingoing wave boundary
condition (2.10) on the horizon z = z+. Then, regular solutions can be obtained for
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Figure 6. Location of the quasinormal mode frequencies for Q = 0 (left) and Q = 2.5 (right) when
e = 1. The red vertical lines in the right panel show the boundaries of the superradiant condition
0 < ω < eΦH.
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Figure 7. The Q dependence of the real and imaginary parts of the mode with the largest Imω.
The red line in the left panes shows the upper boundary of the superradiant condition ω = eΦH.
In the right panel, the line crosses Imω = 0 at Q = 2.981.

complex ω, corresponding to the frequencies of the quasinormal modes. We numerically
compute the frequencies by using pseudospectral methods with a Chebyshev grid. Note
that ΦH = Qz+ for the RNAdS4, and we show results in units where z+ = 1.

Figure 6 is the distribution of the quasinormal mode frequencies for Q = 0 (left panel)
and Q = 2.5 (right panel) when e = 1. In our convention, a frequency with a negative
imaginary part corresponds to a stable mode decaying in time as e(Imω)t. In the right
panel, the behavior can be seen that an infinite number of modes comes in from the negative
infinity of Imω when Q 6= 0. No stable modes (Imω < 0) are in the range 0 < Reω < eΦH.
This is quite natural because it is counterintuitive if we have stable quasinormal modes
that extract energy by superradiance.

In this system, Imω can become positive as Q is increased, resulting in instability. In
figure 7, we show the behavior of the mode with the largest Imω. The mode approaches
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the real axis as Q is increased, and it crosses the axis at Q = 2.981, where Reω = eΦH.
This point is called the onset of instability. Beyond the onset, the unstable mode exists
in 0 < Reω < eΦH with Imω > 0.3 The growth of the peak in Ṁ is correlated with the
approach of the mode to the real axis of ω, although the location of the peak in Ṁ is not
the same as Reω of this mode.
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