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1 Introduction and summary

The low-energy dynamics of M2-branes probing some backgrounds is described by a certain
three-dimensional (3d) superconformal field theories (SCFTs). For such M2-brane SCFTs,
one finds various ultraviolet (UV) dual descriptions which flow to the same infrared (IR)
fixed point. For example, the low energy dynamics of N M2-branes probing the singularity
of C4/Zk can be captured by certain Chern-Simons matter theory called the Aharony-
Bergman-Jafferis-Maldacena (ABJM) theory with gauge groups U(N)k ×U(N)−k where
the subscripts stand for the Chern-Simons level [1]. One can generalize the configuration
by introducing fractional M2-branes and/or replacing C4/Zk with C4/D̂k where D̂k is
the binary dihedral group of order 4k. The low energy dynamics can be again described
by a Chern-Simons matter theory with different gauge groups [2, 3], which is referred
to as the Aharony-Bergman-Jafferis (ABJ) theory. Another generalization is considering
a background (C2/Zp × C2/Zq)/Zk with positive integers p, q, k, which generically yields
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a circular quiver Chern-Simons theory [4, 5]. A special case with q = k = 1 gives rise
to the 3d U(N) gauge theory with a hypermultiplet in the adjoint representation and p

hypermultiplets in the fundamental representation, which we call the U(N) Atiyah-Drinfeld-
Hitchin-Manin (ADHM) theory [6, 7]. The name comes from the fact that the Higgs branch
of the ADHM theory describes the moduli space of N SU(p) instantons. 3d theories with
other gauge group G whose Higgs branches capture instanton moduli spaces may be also
referred to as the G ADHM theories. There is also another Lagrangian construction using
a Lie-3 algebra for describing multiple M2-branes called the Bagger-Lambert-Gustavsson
(BLG) theory [8–12].

In this paper we study the flavored supersymmetric indices of the M2-brane SCFTs
which at least haveN = 4 supersymmetry, including ADHM theories, ABJ(M) theories, BLG
theories, discrete gauge theories and quiver Chern-Simons theories. The 3d supersymmetric
indices [13–18] are a powerful tool to study supersymmetric quantum field theories and
their dualities. While the flavored indices of the ABJ(M) theory and BLG theory were
computed in vast literature e.g. [15, 19–21], those of the N = 4 ADHM theories and their
cousin have not yet been fully computed.1 We find precise agreement of flavored indices as
strong evidence of the conjectural dualities of M2-brane SCFTs including ADHM theory
and other descriptions by comparing a large number of terms by expanding the flavored
indices. In addition, the flavored indices enable us to find the mapping of operators and
global symmetries under the dualities. We also explicitly give them in this paper.

Also we find stringent evidence for new dualities of the M2-brane SCFTs

U(2)2 ×U(1)−2 ABJ ⊗ U(1)1 ×U(1)−1 ABJM
⇔ U(2)1 ×U(2)−1 ABJM, (1.1)

SU(2)1 × SU(2)−1 BLG
⇔ U(2)2 ×U(1)−2 ABJ⊗U(1)2 ×U(1)−2 ABJM, (1.2)

where some parameters of the factorized theories are identified and then the numbers of the
parameters become the same between the dual theories. The duality (1.1) indicates that the
U(2)1×U(2)−1 ABJM theory can be factorized into the decoupled free sector isomorphic to
the U(1)1×U(1)−1 ABJM theory and the interacting sector described by the U(2)2×U(1)−2
ABJ theory. The duality (1.2) leads to an interpretation of the SU(2)1 × SU(2)−1 BLG
theory as a product of M2-brane theories. We evaluate the flavored indices to find the
precise agreement.

There exist limits of the fugacities (A.4) in which the N = 4 flavored indices reduce
to the Hilbert series for the Coulomb and Higgs branches [23]. We compute the Hilbert
series of M2-brane SCFTs and find that the Hilbert series which counts the local operators
on the N = 4 Coulomb branch precisely gives the Hilbert series for the geometry probed
by M2-branes not only for the ADHM theory but also for highly supersymmetric N ≥ 4
Chern-Simons matter theories. We give several analytic and semi-analytic expressions of
the Hilbert series for the supersymmetric Chern-Simons matter theories by taking the

1See [22] for the unflavored indices of specific ADHM theories.
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appropriate limit of the fugacities in the flavored indices. Besides, the flavored indices
allow us to count the mixed branch operators which cannot be detected by the Hilbert
series or unflavored indices. We concern ourselves with the analysis of the mixed branch
operators in the U(N) ADHM theory which consist of monopole operators dressed by the
adjoint hypermultiplets.

For the U(N) ADHM theory with l fundamental hypermultiplets and the U(N)k ×
U(N)⊗(l−2)

0 × U(N)−k Chern-Simons matter theory which is conjectured to be dual to the
ADHM theory when k = 1, we also find closed form expressions of the fully dressed indices
in the Coulomb limit.2 For both of the two theories, our calculations are based on a special
simplification which occurs in the grand canonical version of the indices, i.e. the generating
function of the indices in terms of rank N , which is reminiscent of the Fermi gas formalism
for the S3 partition functions [25], correlation functions [26–28] and the four dimensional
Schur indices [26, 29–31]. Our result for the ADHM theory is the generalization of [32] for
l ≥ 1, and when we take the unrefined limit our result also agrees with the closed form
expressions for the corresponding Coulomb branch Hilbert series obtained in [33]. Following
the correspondence in [33], we conjecture that a refined generating function, that is a
generating function for plane partitions of n which has a trace τ(n) = N and the difference∑
i>0 τi(n)−∑i<0 τi(n) = M between the sum of the i-traces τi(n) with i > 0 and the sum

of those with i < 0 is given by

∞∑
n=1

n∑
N=0

n∑
M=−n

α(n,N,M)tnκNzM =
∞∏
m=0

1
1− κt2m+1

∞∏
n=1

∏
±

1
1− κt2m+n+1z±n

, (1.3)

where the trace τ(n) = ∑
i nii is a sum of diagonal entries of the plane partitions and

the i-trace τi(n) is a sum of entries in the i-th diagonal and α(n,N,M) is the number of
plane partitions of n with τ(n) = N and ∑i>0 τi −

∑
i<0 τi = M . We find the closed form

expression for the ADHM theory and that for the Chern-Simons matter theory with k = 1
coincides with each other, giving a direct proof for the duality in the Coulomb limit. By
using the closed form expressions we can also write down the large N expansion of the
Coulomb limit of the fully dressed index, in a power series of tN (t = t−1q

1
4 ) together with

the explicit expressions for each coefficient of tnN (3.75).
For the U(N)k × U(N)⊗(l−2)

0 × U(N)−k Chern-Simons matter theory we also find that
the integrations over holonomies can be performed explicitly in the Higgs limit, resulting
in a new expression for the fully dressed index in the Higgs limit. Although our final
expression (7.32) still contains infinite sums for the monopole charges which we could not
perform explicitly for general N and l, with our expression we can compute the Higgs
limit of the index in the small t (t = tq

1
4 ) expansion more easily than calculating the small

q expansion of the full index by using the original expression first and then taking the
Higgs limit.

2A different kind of Hilbert series of circular quiver Chern-Simons matter theories is also investigated
in [24].
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1.1 Open problems

• There are variants which are not studied in this work, such as the USp(2N) gauge
theories with a rank 2 matter and an odd number of half-hypermultiplets, orthogonal
gauge theories with gauge groups SO(2N + γ), Spin(2N + γ) and Pin±(2N + γ),
Chern-Simons theory with affine D-type or affine E-type quiver [34] and quiver Chern-
Simons theory with gauge group SU(N)× SU(N). We hope to report the analysis of
such theories by evaluating the flavored indices.

• The local operators in the M2-brane SCFTs form certain algebras. For the U(N)
ADHM theory with l flavors the algebra formed by the Coulomb branch operators
is the spherical part of the cyclotomic rational Cherednik algebra [35]. It would be
interesting to categorify the dualities of the M2-brane SCFTs as rigorous isomorphisms
or equivalences of algebras or modules.

• The BPS boundary conditions can realize the M5-branes on which M2-branes end.
Such BPS boundary conditions are studied in the ABJM theory [36–38]. The dualities
of N = (0, 4) boundary conditions and N = (2, 2) boundary conditions in 3d N = 4
Abelian gauge theories are studied by evaluating the half-indices [39, 40] and by
engineering them in brane setup [41]. They will generalize the dualities of the
M2-brane SCFTs associated with the 3d N = 4 ADHM theories.

• The indices can be decorated by the BPS Wilson line and vortex line operators [42].
The dualities of line operators in the M2-brane SCFTs may be studied by engineering
the line operators in Type IIB setup [43].

• The finite N corrections of the gravity indices of the M2-brane SCFTs describing the
M2-branes at the A-type singularity are investigated in [32, 44–46]. It would be nice to
study the finite N corrections for the other M2-brane SCFTs by further analyzing our
flavored indices. It would also be nice if we could find a gravitational interpretation
of the giant graviton coefficients we obtained in the Coulomb limit (3.75).

• The grand canonical index of the M2-brane SCFT describing a stack of N M2-branes
probing C4 is studied in [32]. Also the grand canonical index of its Coulomb limit
is shown to be given by the generating functions for plane partitions [33]. It would
be interesting to study the grand canonical indices obtained from our flavored index
of other M2-brane SCFTs with symplectic and orthogonal gauge groups and explore
their combinatorial interpretation.

• It would be interesting to analyze the Higgs limit of the fully dressed indices of
U(N)k ×U(N)⊗(l−2)

0 ×U(N)−k quiver Chern-Simons theory further. For example, we
may use (7.32) to calculate the small t expansion to very high order for various l, k,N
and try to guess a rational function which complete each series, as we do in (7.37). It
would also be interesting to extend our analysis for the Coulomb/Higgs limit of the
supersymmetric indices of U(N) ADHM theory with l and the U(N)k ×U(N)⊗(l−2)

0 ×
U(N)−k quiver Chern-Simons theory to other theories of M2-branes, such as the

– 4 –
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U(N)k × U(N)⊗(p−1)
0 × U(N)−k × U(N)⊗(q−1)

0 quiver Chern-Simons theories and the
ADHM theories/quiver Chern-Simons theories with orthogonal or symplectic gauge
groups.

• Higher-form symmetries of N ≥ 6 quiver Chern-Simons matter theories including
ABJ(M) and BLG theory are examined in [21, 47, 48]. It would be nice to study
higher-form symmetries in the proposed dual theories and explore further dualities
of the N ≥ 4 M2-brane SCFTs including the ADHM theory, the circular quiver CS
theory and the discrete gauge theory.

1.2 Structure

The organization of the paper is as follows. In section 2 we review the three-dimensional
low-energy effective theories of D2-branes and M2-branes. We summarize the brane setup
in Type IIA, Type IIB and M-theory and known dualities of these theories. In section 3
we study the N = 4 U(N) ADHM theory which has U(N) gauge group and a single
adjoint hypermultiplet as well as fundamental hypermultiplets. By computing the indices
we examine the local operators on the Coulomb, Higgs and mixed branches. We find the
precise matching of the flavored indices with those of their mirror theories and derive the
mapping of operators and symmetries under the mirror symmetry. In section 3.3 we also
derive the closed form expression for the Coulomb limit of the fully dressed indices of U(N)
ADHM theory with l fundamental hypermultiplets. As a consequence, we propose a refined
generating function for plane partitions. In section 4 we investigate the N = 4 USp(2N)
gauge theories with a hypermultiplet transforming as (anti)symmetric representation and
multiple fundamental half-hypermultiplets. The indices perfectly agree with those of their
mirror theories. In section 5 we study the N = 4 gauge theories with orthogonal gauge
groups, rank 2 matter fields and fundamental flavors. We give formulae of indices which
allow us to get the Hilbert series for the Coulomb and Higgs branches in appropriate limits
and to check dualities of the orthogonal gauge theories. In section 6 we evaluate the flavored
indices of ABJ(M) theory. We show that their limits lead to the Hilbert series corresponding
to the geometry probed by M2-branes. We confirm the proposed dualities with ADHM
theory, discrete gauge theories as well as a new duality between U(2)1 × U(2)−1 ABJM
theory and a product of U(2)2 ×U(1)−2 ABJ theory and U(1)1 ×U(1)−1 ABJM theory. In
section 7 we study the N = 4 quiver Chern-Simons theories. The dualities between the
ADHM theory with multiple flavors and the quiver Chern-Simons theories are confirmed as
their flavored indices agree with each other. We also derive the closed form expression for
the fully dressed indices of these theories in the Coulomb limit in section 7.3, and reduce
the Higgs limit of the indices into a simpler expression than the original expression (7.2)
in section 7.4. In section 8 we evaluate the flavored indices of the BLG theories with
gauge groups SU(2)× SU(2) and (SU(2)× SU(2))/Z2. The flavored indices reduce to the
Hilbert series for (C4 × C4)/Dm where Dm is the dihedral group order m in the limits. We
also propose a new duality between the SU(2)1 × SU(2)−1 BLG theory and a product of
the U(2)2 ×U(1)−2 ABJ theory and the U(1)2 ×U(1)−2 ABJM theory and confirm it by
finding the precise agreement of indices. In appendix A we introduce some notations for
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0 1 2 3 4 5 6 7 8 9
D2/O2 × × ×
D6/O6 × × × × × × ×

Table 1. The configuration of branes and orientifolds in type IIA string theory.

the supersymmetric indices. In appendix B we consider a further generalization of the
supersymmetric indices so that we can keep track which field components contribute to
each term in the indices. In appendix C we write the explicit expressions of the Hilbert
series for the dihedral groups.

In this paper we evaluate the indices by expanding them with respect to q at least up
to q5 for most of the examples except for the cases where we explicitly mention the orders
we computed and show only several terms.

2 3d theories on probe M2-branes

In this paper we consider 3d theories which can be engineered on M2-branes probing some
backgrounds in M-theory. In this section we first review string theory construction of the
3d theories.

2.1 Type IIA/M-theory construction

Before considering M-theory configurations we start from type IIA string theory construction.
The worldvolume theory on N D2-branes yields the 3d N = 8 supersymmetric Yang-Mills
theory with a gauge group U(N). The supersymmetry can be reduced by half by introducing
D6-branes. The brane configuration in the 10d spacetime of type IIA string theory is
summarized in table 1. The worldvolume theory on N D2-branes in the presence of l D6-
branes give rise to 3d N = 4 U(N) gauge theory with l hypermultiplets in the fundamental
representation and one hypermultiplet in the adjoint representation, which is called the
U(N) ADHM theory. The Coulomb branch of the 3d theory is realized when the D2-branes
are apart from the D6-branes. It is parameterized by the position of the D2-branes together
with vacuum expectation values (vevs) of scalars which are dual to 3d photons. The Higgs
branch of the 3d theory is realized when the D2-branes are on top of the D6-branes and is
give by the moduli space of N SU(l) instantons [6, 7, 49].

We can add an O2-plane or an O6-plane into the configuration without further breaking
the supersymmetry. The O2-plane and the O6-plane are placed parallel to the D2-branes
and the D6-branes respectively, as shown in table 1. For both O2-plane and O6-plane,
there are four types of orientifolds depending on the discrete torsion associated to the
Neveu-Schwarz (NS) B-field and a Ramond-Ramond (R-R) field. The four types are denoted
by O2−, Õ2−, O2+, Õ2+ and O6−, Õ6−, O6+, Õ6+. Note that in order to introduce an Õ6±-
plane one needs to turn on an odd background cosmological constant in type IIA string
theory [50–53]. Since we are interested in configurations which can be lifted to M-theory
we will not introduce an Õ6±-plane as their M-theory lift has not been known to our best
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0 1 2 3 4 5 6 7 8 9 11
M2 × × ×
KK × × × × × × ×

Table 2. The configuration of M2-branes and KK monopoles in M-theory. The x11 is the direction
along the M-theory circle.

knowledge. We will not also consider an Õ2+-plane since it will not give rise to a new
theory in the setup we will focus on.

Let us consider each case one by one. Introducing an O2−-plane changes the gauge
group U(2N) into O(2N). Similarly the adjoint hypermultiplet of U(2N) becomes an
adjoint hypermultiplet of O(2N). Then the 3d theory on N D2-branes on top of an
O2−-plane with l D6-branes gives 3d N = 4 O(2N) gauge theory with l hypermultiplets
in the fundamental representation and one hypermultiplet in the adjoint (i.e. rank-two
antisymmetric) representation. An Õ2−-plane can be effectively given by an O2−-plane
with a half D2-brane stuck at the orientifold as far as the D2-brane charge is concerned.
The effective half D2-brane further alters the gauge group into O(2N + 1). Hence the
3d theory on N D2-branes on top of an Õ2−-plane with l D6-branes realizes 3d N = 4
O(2N + 1) gauge theory with l hypermultiplets in the fundamental representation and one
hypermultiplet in the adjoint (i.e. rank-two antisymmeric) representation. On the other
hand an O2+-plane changes the gauge group U(2N) into USp(2N). Then the 3d theory
on N D2-branes on top of an O2+-plane with l D6-branes gives 3d N = 4 USp(2N) gauge
theory with l hypermultiplets in the fundamental representation and one hypermultiplet in
the adjoint (i.e. rank-two symmetric) representation.

In the cases of introducing an O6-plane, the orientifold action on the adjoint hyper-
multiplet is different from the action on the vector multiplets [54]. Then when the gauge
group changes into O(2N + γ)/USp(2N) (γ = 0 or 1) the adjoint hypermultiplet becomes
a hypermultiplet in the rank-two symmetric/antisymmetric representation respectively.
When we consider N D2-branes with an O6−-plane and l D6-branes, the worldvolume
theory on the D2-branes is the 3d N = 4 USp(2N) gauge theory with l hypermultiplets
or 2l half-hypermultiplets in the fundamental representation and a hypermultiplet in the
rank-two antisymmetric representation. On the other hand an O6+-plane changes the
unitary gauge group into an orthogonal group. Then the 3d theory on (2N + γ) half
D2-branes with an O6+-plane and l D6-branes gives the 3d N = 4 O(2N + γ) gauge theory
with l hypermultiplets in the fundamental representation and one hypermultiplet in the
rank-two symmetric representation. When γ = 1, one half D2-brane should be stuck at
the orientifold. In these cases the Higgs branch moduli space is the moduli space of N
Gl instantons where Gl is the same as the flavor symmetry group associated with the
fundamental hypermultiplets [6, 49, 54–57].

It is possible to lift the type IIA configurations to M-theory by taking the strong string
coupling limit. In M-theory N D2-branes simply become N M2-branes. On the other hand,
D6-branes are geometrized and a D6-brane becomes a Kaluza-Klein (KK) monopole [58].
The configuration in M-theory is summarized in table 2 where x11 is the direction along
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the M-theory circle. Then the transverse space of l D6-branes is described by an l-center
Taub-NUT space TNl in the x7, x8, x9, x11-direction. When l D6-branes are on top of
each other, the l centers are at the same position which gives rise to an Al−1 singularity.
The transverse geometry around the singularity is described by an asymptotically locally
Euclidean (ALE) space XAl−1 = C2/Zl. Here Zl is the cyclic group of order l. Therefore,
N D2-branes probing l D6-branes in type IIA string theory become N M2-branes probing
the Al−1 singularity of C2/Zl in M-theory. In this picture the Coulomb branch of the 3d
theory on the M2-branes can be explicitly seen as the geometry which M2-branes probe.
When N = 1 the Coulomb branch is XAl−1 itself and for general N it is given by the N -th
symmetric product,

MC = SymNXAl−1 . (2.1)

Let us then consider the M-theory lift of the orientifolds. We start from an O2-plane.
In the presence of an O2-plane the space in the x3, · · · , x9-direction becomes an orbifold
R7/Z2 where Z2 action is

(x3, x4, x5, x6, x7, x8, x9)→ (−x3,−x4,−x5,−x6,−x7,−x8,−x9), (2.2)

with a sign flip for the R-R 1-form. An O2-plane at the origin of R7/Z2 is given by two
OM2-planes which sit at the two fixed points of (R7 × S1)/Z2 [59, 60]. Here the S1 is
the M-theory circle on which M-theory is reduced to type IIA string theory. We can
reparameterize the eight real coordinates of the R7 × S1 by four complex coordinates
y1, y2, y3, y4 of C4,

x3 =Re(y1), x4 = Im(y1), x5 =Re(y2), x6 = Im(y2),

x7 =Re(y3y
∗
4), x8 = Im(y3y

∗
4), x9 = |y3|2−|y4|2, x11 = 1

2(arg(y3)+arg(y4)).
(2.3)

Then the Z2 action on (x3, x4, x5, x6, x7, x8, x9, x11) can be realized by [61]

(y1, y2, y3, y4)→ (−y1,−y2, iy
∗
4, iy

∗
3) . (2.4)

There are two types of OM2-planes denoted by OM2±-planes. On the quotient space,
the OM2−-plane has − 1

16 units of M2-brane charge whereas OM2+-plane has 3
16 units

of M2-brane charge. Their M2-brane charges suggest that an O2−-plane splits into two
OM2−-planes and an Õ2−-plane splits into two OM2+-planes. On the other hand an
O2+-plane splits into one OM2−-plane at one fixed point and one OM2+-plane at the
other fixed point. Introducing l physical D6-branes is realized by having 2l KK monopoles
in the covering space. When the KK monopoles are on top of each other the space has an
A2l−1 singularity which is locally described by an ALE space C2/Z2l in the (y3, y4)-direction
where the Z2l action is given by

(y3, y4)→ e
πi
l (y3, y4). (2.5)

When the 2l KK monopoles are on top of the OM2±-plane, the location of the KK monopoles
with the OM2±-plane develops a Dl+2 singularity since the combinations of the action (2.4)
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and (2.5) yield XDl+2 = C2/D̂l [22, 61]. Here D̂l stands for the binary dihedral group of
order 4l, which is also known as dicyclic group. Then the Coulomb branch of the 3d theory
on the N M2-branes is given by

MC = SymNXDl+2 . (2.6)

As for O6-planes, an O6−-plane becomes a smooth geometry and the transverse space
of the M-theory uplift of an O6−-plane is given by the Atiyah-Hitchin space [62–64]. When
l (l ≥ 3) physical D6-branes are on top of an O6−-plane the configuration exhibits a Dl

singularity in M-theory at the location where the D6-branes and the O6−-plane are placed.
The transverse geometry around the singularity is described by XDl = C2/D̂l−2 [62–64].
Then the Coulomb branch of the 3d theory on the N M2-branes is given by

MC = SymNXDl . (2.7)

On the other hand an O6+-plane is lifted to a frozen D4 singularity [65, 66]. A non-zero
flux is turned on around the singularity. The flux prohibits a resolution and hence it is
called a frozen singularity. When l physical D6-branes are on top of an O6+-plane the
transverse geometry around the singularity is given by XDl+4 = C2/D̂l+2. Therefore the
Coulomb branch of the 3d theory on the N M2-branes is

MC = SymNXDl+4 . (2.8)

It is also possible to consider M-theory from the beginning to construct 3d theories.
An interesting class of such examples arise from N M2-branes probing a singularity of
C4/Zk (k = 1.2, · · · ) with the Zk action given by

(z1, z2, z3, z4)→
(
e

2πi
k z1, e

2πi
k z2, e

2πi
k z3, e

2πi
k z4

)
, (2.9)

where z1, z2, z3, z4 are the four complex coordinates of C4. The commutant of the orbifold
action in SO(8), which is the rotation group for R8, is SU(4)×U(1). In the 3d theory on
the M2-branes SU(4) serves as the R-symmetry. Hence the 3d theory generically has an
N = 6 supersymmetry. In this case the N = 4 Coulomb branch is combined with the N = 4
Higgs branch and the total moduli sapce of the 3d theory on the N M2-branes is given by

M = SymN
(
C4/Zk

)
. (2.10)

The supersymmetry is enhanced in the cases of k = 1, 2. When k = 1, the geometry which
the M2-branes probe is simply C4 and the full SO(8) symmetry remains. Then the theory
possesses an N = 8 supersymmetry. When k = 2, the geometry is described by C4/Z2
with the orbifold action zI → −zI (I = 1, 2, 3, 4). The orbifold action commutes with the
whole SO(8) and the supersymmetry is also enhanced to N = 8. The 3d theory realized
on N M2-branes probing a singularity of C4/Zk can be described by a Lagrangian theory,
called the ABJM theory, characterized by U(N)×U(N) gauge groups with a Chern-Simons
term of level k for one U(N) and that of level −k for the other U(N) [1]. The theory also
has a hypermultipet in the bifundamental representation of U(N)×U(N) and a twisted
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hypermultiplet in the bifundamental representation of U(N)×U(N) in the N = 4 language.
The relation between the M2-brane picture and the Lagrangian theory can be explicitly
seen by considering a type IIB dual configuration, which will be discussed in section 2.2.

This class of theories can be generalized by deforming the rank of the gauge groups
and/or changing the unitary gauge groups into O × USp [2, 3]. Such theories are referred
to as the ABJ theories. The rank deformation can be achieved by introducing M5-branes
wrapped on a vanishing 3-cycle in C4/Zk. The 3-cycle is a torsion cycle characterized
by H3

(
S7/Zk,Z

)
= Zk. Then wrapping k M5-branes on it is equivalent to no M5-brane

and we can wrap at most (k − 1) M5-branes. The M5-branes wrapped on the vanishing
3-cycle can be interpreted as fractional M2-branes. The presence of L(< k) fractional
M2-branes alters the gauge group U(N)k × U(N)−k into U(N + L)k × U(N)−k with the
matter content unchanged. The subscripts of the gauge groups represent the CS levels
associated with the gauge groups and we will use this notation throughout this paper. The
amount of supersymmetry does not change since the fractional M2-branes preserve the
same supersymmetry as that of M2-branes. The theory also has a duality given by [3]

U(N + L)k ×U(N)−k ⇔ U(N)k ×U(N + k − L)−k, (2.11)

which can be seen from a type IIB dual picture.
The change of the unitary gauge groups into O × USp can be achieved by considering

an M-theory background C4/D̂k (k = 1, 2, · · · ) where the orbifold action is generated by

(z1, z2, z3, z4)→
(
e
πi
k z1, e

πi
k z2, e

πi
k z3, e

πi
k z4

)
, (2.12)

(z1, z2, z3, z4)→ (iz∗2 ,−iz∗1 , iz∗4 ,−iz∗3). (2.13)

The orbifold action can be embedded in SU(2) and the commutant inside SO(8) is SO(5).
Hence the theory has an N = 5 supersymmetry generically. The moduli space of the 3d
theory on the N M2-branes is given by

M = SymN
(
C4/D̂k

)
. (2.14)

The geometry also has a vanishing 3-cycle which is characterized by H3
(
S7/D̂k,Z

)
= Z4k.

Then we can also wrap M5-branes on the vanishing 3-cycle, leading to fractional M2-branes.
When N M2-branes probe the singularity of C4/D̂k with some fractional M2-branes the 3d
theory on the M2-branes can be described again by a Chern-Simons matter theory [3] and
they are characterized by the following four types of gauge groups and the CS levels,

O(2N + 2L1)2k ×USp(2N)−k, (2.15)
USp(2N + 2L2)k ×O(2N)−2k, (2.16)

O(2N + 2L3 + 1)2k ×USp(2N)−k, (2.17)
USp(2N + 2L4)k ×O(2N + 1)−2k. (2.18)

Each theory has a half-hypermultiplet in the bifundamental representation of O × USp
and a twisted half-hypermultiplet in the bifundamental representation of O × USp. The
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L1, L2, L3, L4 are restricted by 0 ≤ L1 ≤ k+ 1, 0 ≤ L2 ≤ k− 1, 0 ≤ L3 ≤ k and 0 ≤ L4 ≤ k.
The theories in (2.15)–(2.18) also have dual descriptions given by [3]

O(2N + 2L1)2k ×USp(2N)−k ⇔ O(2N + 2(k − L1 + 1))−2k ×USp(2N)k, (2.19)
USp(2N + 2L2)k ×O(2N)−2k ⇔ USp(2N + 2(k − L2 − 1))−k ×O(2N)2k, (2.20)

O(2N + 2L3 + 1)2k ×USp(2N)−k ⇔ O(2N + 2(k − L3) + 1)−2k ×USp(2N)k, (2.21)
USp(2N + 2L4)k ×O(2N + 1)−2k ⇔ USp(2N + 2(k − L4))−k ×O(2N + 1)2k. (2.22)

The dualities imply that some of the theories of (2.19)–(2.22) at the boundary values of
Li (i = 1, 2, 3, 4) are equivalent with each other and we have 4k different choices of the Li’s.
When k = 1 the supersymmetry is enhanced to N = 6 since the geometry becomes C4/Z4.
This leads to orthosymplectic-unitary dualities given by [3, 67]

O(2N)2 ×USp(2N)−1 ⇔ U(N)4 ×U(N)−4, (2.23)
O(2N + 2)2 ×USp(2N)−1 ⇔ U(N + 2)4 ×U(N)−4, (2.24)

O(2N + 1)2 ×USp(2N)−1
O(2N + 3)2 ×USp(2N)−1

}
⇔
{

U(N + 1)4 ×U(N)−4
U(N + 3)4 ×U(N)−4

. (2.25)

Due to the duality (2.21) or (2.11), the two theories on each side of (2.25) are related by
the parity transformation. Furthermore, gauging one-form symmetries of the theories lead
to another dualities [21]

SO(2N)2 ×USp(2N)−1 ⇔ [U(N)4 ×U(N)−4] /Z2, (2.26)
[SO(2N)2 ×USp(2N)−1] /Z2 ⇔ [U(N)4 ×U(N)−4] /Z4, (2.27)

SO(2N + 1)2 ×USp(2N)−1 ⇔ [U(N + 1)4 ×U(N)−4] /Z2, (2.28)
SO(2N + 2)2 ×USp(2N)−1 ⇔ [U(N + 2)4 ×U(N)−4] /Z2. (2.29)

The special cases with N = 1 for (2.26) and (2.27) give [21]

SO(2)2 ×USp(2)−1 ⇔ [U(1)4 ×U(1)−4] /Z2 ⇔ U(1)2 ×U(1)−2, (2.30)
[SO(2)2 ×USp(2)−1] /Z2 ⇔ [U(1)4 ×U(1)−4] /Z4 ⇔ U(1)1 ×U(1)−1. (2.31)

Another generalization is to consider an M-theory background
(
C2/Zp × C2/Zq

)
/Zk

where p, q, k are positive integers. The action of Zp is given by (z1, z2)→
(
e

2πi
p z1, e

− 2πi
p z2

)
while the action of Zq is given by (z3, z4) →

(
e

2πi
q z3, e

− 2πi
q z4

)
. The Zk acts on the all

four complex coordinates and it is given by (2.9). The orbifold action can be embedded
in SU(2) × SU(2) and the commutant inside SO(8) is SO(4). Hence the 3d theory on
M2-branes probing the singularity has an N = 4 supersymmetry generically. The moduli
space of the 3d theory on the N M2-branes is given by

M = SymN
((

C2/Zp × C2/Zq
)
/Zk

)
. (2.32)

It turns out that the moduli space can be achieved by a Chern-Simons matter theory
characterized by a circular quiver theory with the following gauge groups and the CS
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level [4, 5],

U(N)k ×U(N)0 × · · ·U(N)0︸ ︷︷ ︸
p−1

×U(N)−k ×U(N)0 × · · ·U(N)0︸ ︷︷ ︸
q−1

. (2.33)

The theory has twisted hypermultiplets and hypermultiplets, both of which are in the
bifundamental representation of U(N)×U(N) that are next to each other. When one of
the two U(N)’s comes from the (p− 1) U(N)’s of (2.33) then the bifundamental matter
is a twisted hypermultiplet. When it comes from the (q − 1) U(N)’s of (2.33) then the
bifundamental matter is a hypermultiplet. We can further introduce fractional M2-branes
into the configuration. The presence of the fractional M2-branes can change the gauge
group (2.33) into

U(N + L1)k ×U(N + L2)0 × · · ·U(N + Lp)0︸ ︷︷ ︸
p−1

×

×U(N + Lp+1)−k ×U(N + Lp+2)0 × · · ·U(N + Lp+q)0︸ ︷︷ ︸
q−1

,
(2.34)

where 0 ≤ L1, Lp+1 ≤ k − 1. The theory also has various dual descriptions, which can be
seen in a dual type IIB picture.

When p = 2, q = 1, k = 2, the moduli space becomes

SymN
((

C2/Z2 × C2
)
/Z2

)
. (2.35)

The overall Z2 quotient may imply the presence of an OM2-plane. Furthermore the
singularity for the first C2 in the case of N = 1 is given by C2/Z4, which is isomorphic
to C2/D̂1. Hence the configuration is equivalent to N M2-branes probing an OM2-plane
on top of 2 KK monopoles. When no fractional M2-brane is introduced the configuration
corresponds to the one with an OM2−-plane. Hence this suggests a duality [22]

3d O(2N) gauge theory with one adjoint hyper and a fundamental hyper
⇔ 3d U(N)2 ×U(N)0 ×U(N)−2 Chern-Simons matter theory. (2.36)

We can also introduce fractional M2-branes. Since k = 2, we can have 0 ≤ L1, L3 ≤ 1. It
turns out that this case leads to another duality [22],

3d USp(2N) gauge theory with one adjoint hyper and a fundamental hyper
⇔ 3d U(N)2 ×U(N)0 ×U(N + 1)−2 Chern-Simons matter theory.

(2.37)

There is yet another Lagrangian construction called the BLG theories which describe
3d theories on multiplet M2-branes using a Lie 3-algebra [8–12]. When we preserve N = 8
supersymmetry, there are two families of the BLG theories, which are characterized by the
gauge groups G = SU(2)k × SU(2)−k or G = (SU(2)k × SU(2)−k)/Z2 [1, 68, 69]. From the
Lagrangian description one can calculate the moduli space for each case and it is given by

M =
(
C4 × C4

)
/D4k, (2.38)
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for G = SU(2)k × SU(2)−k and

M =
(
C4 × C4

)
/D2k, (2.39)

for G = (SU(2)k × SU(2)−k)/Z2 [70, 71] where Dk is the dihedral group of order k. For
special values of k the moduli spaces (2.38) and (2.39) agree with the N = 2 case of (2.10).
Then the BLG theory has an interpretation of a 3d theory on two M2-branes probing an
A-type singularity. Since D2 ∼= Z2, we have

M(SU(2)1×SU(2)−1)/Z2 = Sym2
(
C4
)
, (2.40)

and this implies a duality [69, 72]

(SU(2)1 × SU(2)−1)/Z2 BLG⇔ U(2)1 ×U(2)−1 ABJM. (2.41)

The other two cases are SU(2)2 × SU(2)−2 and (SU(2)4 × SU(2)−4)/Z2 and their moduli
spaces can be identified with Sym2 (C4/Z2

)
with discrete torsion turned on for the latter

case. Hence we have dualities [69, 72]

SU(2)2 × SU(2)−2 BLG⇔ U(2)2 ×U(2)−2 ABJM, (2.42)
(SU(2)4 × SU(2)−4)/Z2 BLG⇔ U(3)2 ×U(2)−2 ABJ. (2.43)

There is also another type of duality given by [20]

(SU(2)3 × SU(2)−3)/Z2 BLG⊗U(1)1 ×U(1)−1 ABJM⇔ U(3)1 ×U(3)−1 ABJM. (2.44)

2.2 Type IIB construction

In fact most of the theories considered in the previous subsection can be also realized as
low energy effective theories on D3-branes in type IIB string theory compactified on S1.
These brane setups consist of D3-branes wrapped on S1 segmented by the NS5-branes or
the bound states of an NS5-brane and k D5-branes (which we call (1, k) 5-brane) with
D5-branes. Here each five-brane is extended in the directions indicated in table 3 and
table 4. In a brane configuration consisting only of D3-branes, NS5-branes and D5-branes,
each segment of D3-branes corresponds to a gauge node. The open strings ending on single
segment correspond to an N = 4 vector multiplet, while the open strings between the
D3-brane segment and somewhere else corresponds to an N = 4 hypermultiplet. We can
also consider NS5-branes and D5-branes extended in the different directions, which we
shall call ÑS5-brane and D̃5-brane, as indicated in table 3. Brane setups consisting only of
D3-branes, ÑS5-branes and D̃5-branes also realize N = 4 quiver gauge theories, where the
open strings ending on single segment correspond to an N = 4 twisted vector multiplet,
while the open strings between the D3-brane segment and somewhere else corresponds to
an N = 4 twisted hypermultiplet.

On the other hand, circular quiver superconformal Chern-Simons matter theories
are realized by the brane configurations consisting of D3-branes, NS5-branes and (1, k)
5-branes [73, 74]. The N = 4 supersymmetry is realized by assigning the supermultiplets
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0 1 2 3 4 5 6 7 8 9
D3( ) × × × ×
NS5( ) × × × × × ×
D5( ) × × × × × ×
ÑS5( ) × × × × × ×
D̃5( ) × × × × × ×

brane configuration supermultiplet quiver

N = 4 vector multiplet
U(N)

N = 4 bifundamental hypermultiplet (X,Y )

N = 4 fundamental hypermultiplet (I, J)

N = 4 twisted vector multiplet
U(N)

N = 4 bifundamental twisted hypermultiplet (X̃, Ỹ )

N = 4 fundamental twisted hypermultiplet (Ĩ , J̃)

Table 3. Top: directions of the branes in the configuration realizing 3d quiver gauge theories; bottom:
supermultiplets corresponding to the open string (red line) ending on D3-branes in various situations.

to the open strings ending on each D3-brane segment appropriately depending on the type
of 5-branes involved [5, 75], as summarized in table 4.3

These type IIB brane configurations are related to the configuration of M2-branes
as follows. By taking the T-duality in the x3-direction we obtain the type IIA brane
configuration, where D3-branes are transformed into D2-branes, D5-branes are transformed
into D6-branens while NS5-branes become a KK monopole along x3 (a (1, k)5-brane is
treated as an NS5-brane and k D5-branes). By further uplifting the type IIA configuration
to the M-theory with a new S1 direction x11, D2-branes become M2-branes while D6-
branes become a KK monople along x11. Hence each of the N = 4 theories realized by
a IIB brane configuration with N D3-branes wrapped on S1 and the five-branes can be
interpreted as the theory of N M2-branes in M-theory probing some singularity of C4/Γ.
The detail of the singularity can be read off from the KK monopole background. For
example, for the U(N) ADHM theory with l flavors, which is realized by the type IIB brane

3Here we assume that D3-branes are wrapped on the direction compactified on S1 and also that there is
at least one NS5-brane in each configuration.
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0 1 2 3 4 5 6 7 8 9
D3( ) × × × ×
NS5( ) × × × × × ×

(1, k)5( ) × × × (47)k, (58)k, (69)k

brane configuration supermultiplet quiver

N = 4 vector multiplet
U(N)

N = 2 vector multiplet with CS level k
U(N)k

N = 2 vector multiplet with CS level −k
U(N)−k

N = 4 twisted vector multiplet
U(N)

N = 4 bifundamental hypermultiplet (H, H̃)

N = 4 bifundamental twisted hypermultiplet (T, T̃ )

Table 4. Top: directions of the branes in the configuration realizing N = 4 superconformal Chern-
Simons matter theories, where (ab)k stands for the direction in ab-plane with angle arctan k from
a-axis; bottom: supermultiplets corresponding to the open string (red line) ending on D3-branes in
various situations. In [5] the N = 4 vector multiplet and the N = 4 twisted vector multiplet are
referred to as the auxiliary vector multiplet.

configuration with one NS5-brane and l D5-branes, the singularity is C2/Zl × C2. For the
superconformal Chern-Simons matter theory realized by p NS5-branes and q (1, k)5-branes,
the singularity is (C2/Zp × C2/Zq)/Zk where Zk acts on (z1, z2) ∈ C2/Zp, (z3, z4) ∈ C2/Zq
as (z1, z2, z3, z4)→ (e

2πi
kp z1, e

− 2πi
kp z2, e

2πi
kq z3, e

− 2πi
kq z4) [4].

In the brane setup with NS5-branes and (1, k) 5-branes we can also realize non-uniform
ranks N1, N2, · · · by introducing fractional D3-branes stretched between each pair of an
NS5-brane and a (1, k) 5-brane. See table 4. Under the M-theory uplift these fractional D3-
branes become fractional M2-branes which are trapped on top of the singularity C4/Γ and
cannot move, hence the fractional D3-branes do not affect the structure of the singularity [3].

The type IIB brane configurations are also useful to predict the dualities of the N = 4
theories. The first example is the duality induced by the SL(2,Z) transformations of the
5-brane charges. Let τ = χ + i/gs be the Type IIB coupling where χ = C0 is the axion
(R-R scalar) and gs = eΦ is the string coupling, i.e. the expectation value of the dilaton Φ
(NS-NS scalar). The SL(2,Z) S-duality in Type IIB string theory act on τ as

τ → aτ + b

cτ + d
, (2.45)
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with a, b, c, d,∈ Z and ad − bc = 1. A (p, q) 5-brane with p units of NS-NS charge and q
units of R-R charge transforms as

(p q)→ (p q)
(
a b

c d

)
. (2.46)

The action of SL(2,Z) S-duality can be specified by the action of two generators

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
. (2.47)

The S transformation that swaps an NS5-brane with a D5-brane conjectures that the U(N)
ADHM theory with l flavors is mirror to the U(N)⊗l necklace quiver theory [6, 7, 76]. The
brane configuration and the quiver diagram for the U(N) ADHM theory are depicted in
the leftmost column in figure 1. The notation of the brane setup and the quiver diagram
are explained in table 3. The mirror theory has the N = 4 twisted vector multiplets of
gauge groups ∏l

I=1 U(N)(I), the twisted hypermultiplets (X̃I,I+1, ỸI,I+1) transforming as
the bifundamental representation under the I-th factor U(N)(I) and the (I + 1)-th factor
U(N)(I+1) of the gauge groups where I = 1, · · · , l and l+ 1 = 1. Also it has a single twisted
hypermultiplet (Ĩ , J̃) transforming as the fundamental representation under the first factor
U(N)(1) of the gauge groups. The brane setup and the quiver diagram of the mirror necklace
quiver theory are displayed in the center picture in figure 1. On the other hand, if we
perform the STS transformation, an NS5-brane turns into an NS5-brane while a D5-brane
turns into a (1, 1) 5-brane. This proposes the duality between the U(N) ADHM theory
with l flavors and an N = 4 circular quiver Chern-Simons matter theory with l + 1 nodes
which consist of an N = 2 U(N)(1) vector multiplet with the CS level k = 1, l − 1 U(N)(a)

twisted vectormultiplet (a = 2, 3, · · · , l), an N = 2 U(N)(l+1) vector multiplet with the CS
level k = −1, l twisted bifundamental hypermultiplets (Ta,a+1, T̃a,a+1) (a = 1, 2, , · · · , l) and
a bifundamental hypermultiplet (Hl+1,1, H̃l+1,1). The brane configuration and the quiver
diagram of the theory are given in the rightmost picture in figure 1. In this case with CS
levels, the notation of the brane setup and the quiver diagram in table 4 is used.

One can also move the five-branes along the x3-direction and create/annihilate D3-
branes on each segment according to the Hanany-Witten effect [77], which transforms the
brane configuration with M fractional D3-branes into a different configuration with k −M
fractional D3-branes (see figure 2). The N = 4 theories realized by the two configurations
before and after this transformation are suggested to be dual to each other. The duality of
the U(N + L)k ×U(N)−k ABJ theory (2.11) is also obtained from this effect.

In section 2.1, we have also constructed 3d theories with other gauge groups. Some of the
theories can be also realized by introducing an orientifold in the type IIB configuration. We
can introduce either an O3-plane along the D3-branes or an O5-plane along the D5-branes
without further breaking supersymmetry. In the type IIA brane setup we can consider an
O2-plane or an O6-plane. While an O6-plane is T-dual to two O5-planes, we need two
O2-planes to obtain an O3-plane. Hence we focus on the type IIB dual descriptions of the
type IIA construction for the theories realized on D2-branes with an O6-plane.
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U(N)

l

(I, J)

(X,Y )

U(N)(l)

U(N)(5)

U(N)(4)

U(N)(3)

U(N)(2)

U(N)(1)

1

(X̃l,1, Ỹl,1) (X̃1,2, Ỹ1,2)

(X̃2,3, Ỹ2,3)

(X̃3,4, Ỹ3,4)(X̃4,5, Ỹ4,5)

(Ĩ , J̃)

U(N)(1)
k

U(N)(2)

U(N)(3)

U(N)(l−1)

U(N)(l)

U(N)(l+1)
−k

(T1,2, T̃1,2)

(T2,3, T̃2,3)

(Tl−1,l, T̃l−1,l)

(Tl,l+1, T̃l,l+1)

(Hl+1,1, H̃l+1,1)

Figure 1. Top: type IIB brane configuration related by SL(2,Z) transformations; bot-
tom: U(N) ADHM theory with l flavors, U(N)⊗l necklace quiver theory with one flavor and
U(N)k × U(N)⊗(l−1) × U(N)−k quiver superconformal Chern-Simons matter theory with k = 1,
each of which are realized by the three brane configuration on top of the quiver diagram.

N1 N2 N3 N1 N1 +N3 −N2 + k N3

Figure 2. The change of the number of D3-branes due to the Hanany-Witten brane cre-
ation/annihilation effect.

First we consider the 3d N = 4 USp(2N) gauge theory with l flavors and an antisym-
metric hypermultiplet. The field content can be summarized as a quiver diagram given by
the left figure in figure 3. The brane configuration which realizes the 3d theory is depicted as

O5− O5−
· · ·

︷ ︸︸ ︷l

2N D3 . (2.48)

We use a dotted diagonal line for representing an O5-plane. In (2.48) the two dotted diagonal
lines are two O5−-planes. The presence of the two O5−-planes makes the horizontal direction
periodic. When one end of an open string is on the D3-branes, the other end can cross the
NS5-brane and then it ends on the D3-branes. Such an open string yields the antisymmetric
hypermultiplet. The mirror dual of the theory is obtained by the S-dual of the configuration.
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USp(2N)

SO(2l)

(I, J)

(X,Y )

U(N)(1)U(N)(2)

U(2N)(5)

U(2N)(6)

U(2N)(l+1)

U(N)(3)U(N)(4)

1

(X̃1,5, Ỹ1,5)(X̃2,5, Ỹ2,5)

(X̃5,6, Ỹ5,6)

(X̃l+1,3, Ỹl+1,3)(X̃l+1,4, Ỹl+1,4)

(Ĩ , J̃)

Figure 3. Left: the 3d USp(2N) ADHM theory with one antisymmetric hyper (X,Y ) and 2l
half-hypers (I, J). Right: the 3d U(N)⊗4 ×U(2N)⊗l−3 quiver theory with one flavor (Ĩ , J̃). This
theory is mirror dual of the theory on the left.

Then a D5-brane on top of an O5−-plane changes into an ON0-plane [78, 79]. The brane
setup after the S-duality becomes

ON0 ON0
· · ·

︷ ︸︸ ︷l − 2

2N D3 , (2.49)

where the vertical dotted lines represent the ON0-planes. Then the 3d theory realized on
the D3-branes is a quiver theory whose quiver shape is given by the Dynkin diagram of
ŝo(2l) with one flavor attached to an end node [55, 56]. The extra flavor comes from the
D5-brane in (2.49). The quiver diagram of the theory is given by the right diagram in
figure 3. This theory is the mirror dual of the USp(2N) gauge theory with l flavors and an
antisymmetric hypermultiplet [6, 55, 76].

On the other hand, the 3d N = 4 O(2N + γ) gauge theory with l fundamental
hypermultiplets and a symmetric hypermultiplet is realized by brane construction with two
O5+-planes. The configuration can be depicted as

O5+ O5+
· · ·

︷ ︸︸ ︷l

(2N + γ) D3 . (2.50)

Although it is also possible to consider the S-dual of the configurations (2.50) a conventional
Lagrangian description of the theories on the D3-branes has not been known. However
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O3+ +N D3

O3− + (N + L1) D3

(a)

O3− +N D3

O3+ + (N + L2) D3

(b)

Õ3
+

+N D3

Õ3
−

+ (N + L3) D3

(c)

Õ3
−

+N D3

Õ3
+

+ (N + L4) D3

(d)

Figure 4. The brane configurations which realize the O × USp ABJ theories. The configurations
in 4(a), 4(b), 4(c) and 4(d) give rise to (2.15), (2.16), (2.17) and (2.18) respectively. The vertical
dashed line in each figure is a (1, 2k) 5-brane.

the Coulomb branches of the mirror theories can be extracted by non-simply laced quiver
theories [80].

An O3-plane can be introduced to the type IIB brane setup for the ABJM theory. In the
original ABJM setup the configuration contains an NS5-brane and a (1, k) 5-brane. When an
O3±/Õ3±-plane crosses an NS5-brane it changes into respectively an O3∓/Õ3∓-plane. On
the other hand when an O3±/Õ3±-plane crosses a D5-brane it becomes an Õ3±/O3±-plane
respectively. Hence a consistent setup requires a pair of an NS5-brane and a (1, 2k) 5-brane
in the setup with an O3-plane. Then there are four configurations with an O3-plane along D3-
branes and they are summarized in figure 4. The brane configurations in figure 4(a), 4(b), 4(c)
and 4(d) realize the 3d theories which are written in respectively (2.15), (2.16), (2.17)
and (2.18). The equivalence of the theories (2.19), (2.20), (2.21) and (2.22) may be seen
from the Hanany-Witten effect when the NS5-brane is exchanged with the (1, 2k) 5-brane [3].

3 U(N) ADHM theory with l flavors

We start from the U(N) ADHM theory, that is the low-energy effective theory of N
coincident M2-branes probing the Al−1 singilarity. As reviewed in section 2, it is a 3d N = 4
supersymmetric gauge theory with U(N) gauge group and one adjoint hypermultiplet (X,Y )
and l fundamental hypermultiplets (Iα, Jα), α = 1, · · · , l.

3.1 Moduli space and local operators

The moduli space of supersymmetric vacua of the gauge theory is determined by the
following equations:

[φ, φ] = 0, (3.1)
[X,X†] + [Y, Y †] + JJ† − I†I = 0, (3.2)

[φ,X] = 0, [φ, Y ] = 0, φJ = 0, Iφ = 0, (3.3)
[X,Y ] + JI = 0, (3.4)
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where φ is the adjoint scalar field in the N = 4 vector multiplet and we split it into a
real component σ and a complex component ϕ. The first two equations (3.1) and (3.2) are
the D-term equations and the equations (3.3) and (3.4) are the F-term equations. The
equations (3.3) and (3.4) are deformed when one turns on mass parameters m, madj and FI
parameters ζ

[φ,X] = madjX, [φ, Y ] = madjY, φJ = Jm, Iφ = mI, (3.5)
[X,Y ] + JI = ζ. (3.6)

3.1.1 Coulomb branch

By setting the hypermultiplet scalar fields (X,Y ) and (Iα, Jα) to zero, we obtain the
Coulomb branch which is parametrized by the local operators constructed from the monopole
operators dressed by the vector multiplet scalar field ϕ. A solution to the equation (3.1) is
given by

ϕ = diag(ϕ1, · · · , ϕN ), (3.7)

and the gauge group is broken to U(1)N . The Coulomb branch receives the non-perturbative
quantum corrections from the monopole operators. The bare monopole v{mi} for the U(N)
ADHM theory with l flavors carries the GNO charge as an integer vector ~m = (m1, · · · ,mN ).
It has the conformal dimension [81]

∆(mi) = l

2

N∑
i=1
|mi|. (3.8)

First consider the Abelian case with N = 1. The Coulomb branch operators are not
independent as they obey a chiral ring relation which determines the OPE

v+v− ∼ ϕl. (3.9)

This is consistent with the dimension (3.8) of monopole.
We can parametrize ϕ and v±1 as ϕ = z1z2, v+ = zl1 and v− = zl2. Since (z1, z2) is

identified with (e 2πi
l z1, e

− 2πi
l z2), the Coulomb branch operators describe the ALE singularity

XAl−1 = C2/Zl. More generally, the Coulomb branch of the non-Abelian U(N) ADHM
theory with l flavors is given by the N -th symmetric product (2.1) of the ALE space XAl−1

SymNXAl−1 = SymN
(
C2/Zl

)
, (3.10)

whose dimension is dimCMC = 2N . It has singularities coming from the Al−1 singularity
and from the quotient singularity of the symmetric group. The adjoint mass parameter
m resolves the quotient singularity, which results in a Hilbert scheme of N points of ALE
space of Al−1-type. The fundamental mass parameters mα α = 1, · · · , l resolve the Al−1
singularity. It gives the resolved ALE space X̃Al−1 of Al−1-type.
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3.1.2 Higgs branch

When the vector multiplet scalar is turned off, we find the Higgs branch that is parametrized
by the half-BPS local operators constructed from two types of hypermultiplet scalar fields
(X,Y ) and (I, J). They obey the equations (3.2) and (3.4).

When the theory has a single flavor, that is l = 1, the equations (3.2) and (3.4) implies
that the fundamental hypermultiplet (I, J) vanishes and that the adjoint hypermultiplet
(X,Y ) can be diagonalized

X = diag(X1, · · · , XN ), Y = diag(Y1, · · · , YN ). (3.11)

The Higgs branch is given by N copies of C2 parametrized by (Xi, Yi), i = 1, · · · , N divided
by the residual permutation symmetry SN , which is the N -th symmetric product of C2.

For l ≥ 2 the equations (3.2) and (3.4) are identified with the ADHM equations for the
N SU(l) instantons on R4 [82]. Hence The Higgs branch of the U(N) ADHM theory with l
flavors is the moduli space of SU(l) N -instantons. It has dimension dimCMH = 2Nl

The gauge invariant operators can be described by closed words with the form TrX lY m

and open words with the form JX lY mI. For the closed words the multi-traces at level
n ≤ N give the gauge invariant basis which are one-to-one correspondence with the p(n)
conjugacy classes of the permutation group Sn where p(n) is the number of partition of n.

3.1.3 Mixed branch

On the mixed branch in the moduli space, both scalar fields in the hypermultiplet and
the vector multiplet do not vanish so that the bare monopole can be also dressed by the
adjoint scalar fields (X,Y ) in the hypermultiplet. Consider the configuration where the
vector multiplet scalar fields takes the form

ϕ = diag(ϕ1, · · · , ϕ1︸ ︷︷ ︸
N1

, · · · , ϕn, · · · , ϕn︸ ︷︷ ︸
Nn

, 0, · · · , 0︸ ︷︷ ︸
N0

), (3.12)

where ∑n
i=0Ni = N . By fixing the gauge for the action of the Weyl group of U(N), one

can write the GNO charge as

(m1, · · · ,m1︸ ︷︷ ︸
N1

, · · · ,mn′ , · · · ,mn′︸ ︷︷ ︸
Nn′

,mn′+1, · · · ,mn′+1︸ ︷︷ ︸
Nn′+1

, · · · ,mn′+m′ , · · · ,mn′+m′︸ ︷︷ ︸
Nn′+m′

, 0, · · · , 0︸ ︷︷ ︸
N0

),

(3.13)

where m1 > m2 > · · · > mn′ > 0 and mn′+1 < mn′+2 < · · · < mn′+m′ < 0 with n′+m′ = n.
The magnetic flux for the bare monopole with the GNO charge (3.13) breaks the U(N)
gauge group down to the residual gauge group H{mi} = ∏n

j=1 U(Nj). Consequently, the
adjoint scalar field takes the block-diagonal form so that the bare monopole operator with
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the GNO charge (3.13) will be dressed by

X =



X
(1)
N1×N1

X
(2)
N2×N2

. . .
X

(n)
Nn×Nn

X
(0)
N0×N0


, (3.14)

which obey the F-term constraint (3.4). Here the U(Ni) adjoint scalar field X(i)
Ni×Ni shows

up for each factor U(Ni) in U(N). Therefore general monopole operators in the ADHM
theory are dressed by a collection of adjoint scalar fields ϕ, X and Y . In the following we
check that such dressed monopoles contribute to the indices.

3.2 Indices

The index of the U(N) ADHM theory with an adjoint hyper and l fundamental hypers is
given by

IU(N) ADHM−[l](t,x,yα,z;q)

= 1
N !

(
q

1
2 t2;q

)N
∞(

q1/2t−2;q
)N
∞

∑
m1,··· ,mN∈Z

∮ N∏
i=1

dsi
2πisi

∏
i<j

(
1−q

|mi−mj |
2 s±i s

∓
j

) (
q

1+|mi−mj |
2 t2s∓i s

±
j ;q

)
∞(

q
1+|mi−mj |

2 t−2s±i s
∓
j ;q

)
∞

×

(
q

3
4 t−1x∓;q

)N
∞(

q
1
4 tx±;q

)N
∞

∏
i<j

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
∓;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
±;q

)
∞

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
±;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
∓;q

)
∞

×
N∏
i=1

l∏
α=1

(
q

3
4 + |mi|2 t−1s∓i y

∓
α ;q

)
∞(

q
1
4 + |mi|2 ts±i y

±
α ;q

)
∞

q
∑N

i=1
l|mi|

4 t−l
∑N

i=1 |mi|zl
∑N

i=1mi (3.15)

Here x is the fugacity for a flavor symmetry of the adjoint hyper, yα are the fugacities
for an SU(l) flavor symmetry of the fundamental hypers obeying ∏α yα = 1 and z is the
fugacity for a topological symmetry.

3.2.1 U(1) ADHM with one flavor (N = 1, l = 1)

The simplest example is the case with N = 1 and l = 1. The theory describes a single
M2-brane moving in a flat space C4. It contains the BPS bare monopole operators vm of
the GNO charges m ∈ Z and the dimensions ∆(m) = |m|/2.
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We find the index

IU(1) ADHM−[1](t, x, z; q)

= 1 +

( x︸︷︷︸
X

+ x−1︸︷︷︸
Y

)t+ ( z︸︷︷︸
v1

+ z−1︸︷︷︸
v−1

)t−1

 q1/4

+

 xz︸︷︷︸
v1X

+x−1z−1︸ ︷︷ ︸
v−1Y

+xz−1︸ ︷︷ ︸
v−1X

+x−1z︸ ︷︷ ︸
v1Y

+( 1︸︷︷︸
XY

+ x2︸︷︷︸
X2

+ x−2︸︷︷︸
Y 2

)t2 + ( 1︸︷︷︸
ϕ

+ z2︸︷︷︸
v2

+ z−2︸︷︷︸
v−2

)t−2

 q1/2

+

( x2z︸︷︷︸
v1X2

+x−2z−1︸ ︷︷ ︸
v−1Y 2

+x−2z︸ ︷︷ ︸
v1Y 2

+x2z−1︸ ︷︷ ︸
v−1X2

)t+ (xz2︸︷︷︸
v2X

+x−1z−2︸ ︷︷ ︸
v−2Y

+xz−2︸ ︷︷ ︸
v−2X

x+ x−1z2︸ ︷︷ ︸
v2Y

)t−1

+( x︸︷︷︸
X2Y

+ x−1︸︷︷︸
XY 2

+ x3︸︷︷︸
X3

+ x−3︸︷︷︸
Y 3

)t3 + ( z︸︷︷︸
v1ϕ

+ z−1︸︷︷︸
v−1ϕ

+ z3︸︷︷︸
v3

+ z−3︸︷︷︸
v−3

)t−3

 q3/4 + · · · . (3.16)

The index (3.16) has no contributions from the fundamental hyper.
Notice that the U(1) ADHM theory with one flavor can be viewed as a theory of SQED1,

or equivalently a U(1) gauge theory coupled to a hypermultiplet of gauge charge one (or
equivalently a free twisted hypermultiplet) and a free hypermultiplet. Thus the index (3.16)
has the closed form

IU(1) ADHM−[1](t, x, z; q) = ISQED1(t, z; q)× IHM(t, x; q)

=

(
q

3
4 tz∓; q

)
∞(

q
1
4 t−1z±; q

)
∞

(
q

3
4 t−1x∓; q

)
∞(

q
1
4 tx±; q

)
∞

. (3.17)

When we turn off the global fugacities x and z, we get the simplified indices

IU (1) ADHM− [1] (t, x = 1, z = 1; q)

= 1 +
(
2t+ 2t−1

)
q1/4 +

(
4 + 3t2 + 3t−2

)
q1/2 +

(
4t3 + 4t+ 4t−1 + 4t−3

)
q3/2

+
(
1 + 5t4 + 4t2 + 4t−2 + 5−4

)
q +

(
6t5 + 4t3 + 4t−3 + 6t−5

)
q5/4 + · · · . (3.18)

The flavored index generally admits two limits of the fugacities in which the Coulomb and
Higgs branch operators are counted respectively. They are referred to as the Coulomb and
Higgs limits (see [23] and appendix A). The Coulomb limit and Higgs limit (A.4) of the
index (3.18) are equal. They are given by

IU(1) ADHM−[1](C)(t) = IU(1) ADHM−[1](H)(t) = 1
(1− t)2 , (3.19)

which simply counts two bosonic generators parametrizing C2 ⊂ C4. As argued in [33], the
Coulomb and Higgs branch operators correspond to the plane partition with trace 1.
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3.2.2 U(2) ADHM with one flavor (N = 2, l = 1)

Now consider the non-Abelian example where the BPS local operators include single-trace
operators as well as multi-trace operators.

When N = 2 and l = 1, the theory captures a stack of two M2-branes propagating in
flat space. The monopole operator vm1,m2 has the dimension ∆(mi) = ∑2

i=1 |mi|/2.
The ADHM index for N = 2 and l = 1 is given by4

IU(2) ADHM−[1](t, x, z; q) =

1 +

( x︸︷︷︸
TrX

+ x−1︸︷︷︸
TrY

)
t+ ( z︸︷︷︸

v1,0

+ z−1︸︷︷︸
v−1,0

)t−1

 q1/4 +
[

2xz︸︷︷︸
v1,0X(1),

v1,0X(2)

+ 2x−1z−1︸ ︷︷ ︸
v−1,0Y (1),

v−1,0Y (2)

+ 2xz−1︸ ︷︷ ︸
v−1,0X(1),

v−1,0X(2)

+ 2x−1z︸ ︷︷ ︸
v1,0Y (1),

v1,0Y (2)

+
(

2︸︷︷︸
TrXY,

TrXTrY

+ 2x2︸︷︷︸
TrX2,
(TrX)2

+ 2x−2︸ ︷︷ ︸
TrY 2

(TrY )2

)
t2 +

(
2︸︷︷︸

Trϕ,
v1,−1

+ 2z2︸︷︷︸
v2,0,
v1,1

+ 2z−2︸ ︷︷ ︸
v−2,0,
v−1,−1

)
t−2
]
q1/2

+
[(

3x2z︸ ︷︷ ︸
v1,0X(1)2,

v1,0X(2)2,

v1,0X(1)X(2)

+ 3x−2z−1︸ ︷︷ ︸
v−1,0Y (1)2,

v−1,0Y (2)2,

v−1,0Y (1)Y (2)

+ 3x−2z︸ ︷︷ ︸
v1,0Y (1)2,

v1,0Y (2)2,

v1,0Y (1)Y (2)

+ 3x2z−1︸ ︷︷ ︸
v−1,0X(1)2,

v−1,0X(2)2,

v−1,0X(1)X(2)

+ 3z︸︷︷︸
v1,0X(1)Y (1),

v1,0X(2)Y (2),

v1,0X(2)Y (1),

v1,0X(1)Y (2),
v1,0ψ

ϕ(1) ,

v1,0ψ
ϕ(2) ,

v1,0J(2)I(2),

+ 3z−1︸ ︷︷ ︸
v−1,0X(1)Y (1),

v−1,0X(2)Y (2),

v−1,0X(2)Y (1),

v−1,0X(1)Y (2),
v−1,0ψ

ϕ(1) ,

v−1,0ψ
ϕ(2) ,

v−1,0J(2)I(2),

)
t

+
(

3xz2︸ ︷︷ ︸
v2,0X(1),

v2,0X(2),
v1,1TrX

+ 3x−1z−2︸ ︷︷ ︸
v−2,0Y (1),

v−2,0Y (2),
v−1,−1TrY

+ 3xz−2︸ ︷︷ ︸
v−2,0X(1),

v2,0X(2),
v−1,−1TrX

+ 3x−1z2︸ ︷︷ ︸
v2,0Y (1),

v2,0Y (2),
v1,1TrY

+ 3x︸︷︷︸
v1,−1X(1),

v1,−1X(2),
Tr(ϕX),

Tr(ϕ)Tr(X),
TrψX

+ 3x−1︸ ︷︷ ︸
v1,−1Y (1),

v1,−1Y (2),
Tr(ϕY ),

Tr(ϕ)Tr(Y ),
TrψY

)
t−1

+
(

3x︸︷︷︸
TrX2Y,

TrXTrXY,
TrX2TrY

+ 3x−1︸ ︷︷ ︸
TrXY 2,

TrXY TrY,
TrXTrY 2

+ 2x3︸︷︷︸
TrX3,

TrX2TrX

+ 2x−3︸ ︷︷ ︸
TrY 3,

TrY 2TrY

)
t3 +

(
3z︸︷︷︸

v2,−1,

v1,0ϕ(1),

v1,0ϕ(2)

+ 3z−1︸ ︷︷ ︸
v−2,1,

v−1,0ϕ(1),

v−1,0ϕ(2)

+ 2z3︸︷︷︸
v3,0,
v2,1

+ 2z−3︸ ︷︷ ︸
v−3,0,
v−2,−1

)
t−3
]
q3/4 + · · · . (3.20)

Again the equations (3.2) and (3.4) imply that the fundamental hypermultiplet scalar fields
cannot get a non-trivial vev so that the index has no contribution from the fundamental
hyper. The Higgs branch operators are constructed as closed words of the form TrX lY m

and their double-trace operators.
We observe that on the mixed branch for the non-Abelian ADHM theory there exist

more operators corresponding to the terms q3/4tz, q3/4tz−1, q3/4t−1x and q3/4t−1x−1 than
those for the Abelian ADHM theory.

4The flavored indices for N = 2, 3 and l = 1 are also analyzed in [83] to study the enhancement of the
supersymmetry using the technology developed in [84], where the Coulomb branch operators contributing to
the indices are also identified.
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The first two terms q3/4tz and q3/4tz−1 are associated with the monopole operator v±,0.
The magnetic flux for the monopole operator v±,0 breaks down the U(2) gauge group down
to U(1)×U(1) where the vacuum equations (3.1)–(3.4) have a solution

ϕ =
(
ϕ(1) 0

0 0

)
, X =

(
X(1) 0

0 X(2)

)
, Y =

(
Y (1) 0

0 Y (2)

)
,

J =
(

0
J (2)

)
, I = (0 I(2)), ζ =

(
0 0
0 ζ(2)

)
, (3.21)

on the mixed branch. The configuration (3.21) admits four monopole operators

v±,0X(1)Y (1), v±,0X(1)Y (2), v±,0X(2)Y (1), v±,0X(2)Y (2), (3.22)

dressed by the adjoint hypermultiplet scalars (X,Y ), two monopole operators

v±,0ψϕ(1) , v±,0ψϕ(2) , (3.23)

dressed by the adjoint fermions and a single monopole

v±,0J (2)I(2), (3.24)

dressed by the fundamental hypermultiplet scalars. The terms q3/4tz and q3/4tz−1 in (3.20)
count these monopole operators as 4 + (−2) + 1 = 3 contributions.

The terms q3/4t−1x involves two dressed monopole operators

v1,−1X(1), v1,−1X(2), (3.25)

two bosonic operators

TrϕTrX, Tr(ϕX) (3.26)

and a single fermionic operator

TrψX . (3.27)

For the Abelian case there is a single bosonic operator ϕX since the dressed monopole
operators (3.25) do not exist and the double-trace operator is not available. Therefore the
term q3/4t−1x does not show up in the index (3.16). The absence of the term q3/4t−1x−1 is
similarly argued by replacing X with Y . The indices with auxiliary fugacities are shown
in (B.6) in appendix B.

The index (3.20) is simplified by turning off the fugacities x, z for the global symmetries:

IU(2) ADHM−[1](t, x = 1, z = 1; q)

= 1 +
(
2t+ 2t−1

)
q1/4 +

(
8 + 6t2 + 6t−2

)
q1/2 +

(
10t3 + 18t+ 18t−1 + 10t−3

)
q3/4

+
(
37 + 19t4 + 32t2 + 32t−2 + 19t−4

)
q + · · · . (3.28)

The difference from the U(1) ADHM index (3.18) appears from the power q1/2. This reflects
the fact that the U(2) ADHM theory has gauge invariant double-trace operators. In the
Coulomb and Higgs limit the index (3.28) reduces to

IU(2) ADHM−[1](C)(t) = IU(2) ADHM−[1](H)(t) = 1 + t2

(1 + t)2(1− t)4 . (3.29)
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This describes the symmetric product Sym2(C2) which are identified with the Coulomb
and Higgs branches. The function (3.29) counts the plane partitions of trace 2 which
corresponds to the pairs of column-strict plane partitions of the same shape λ whose weight
is |λ| = ∑

i λi = 2 [33].

3.2.3 U(3) ADHM with one flavor (N = 3, l = 1)

Next consider the case with higher rank gauge group. For N = 3 and l = 1 we find the
ADHM index

IU(3) ADHM−[1](t,x,z;q) =

1+
[(

x︸︷︷︸
TrX

+ x−1︸︷︷︸
TrY

)
t+
(

z︸︷︷︸
v1,0,0

+ z−1︸︷︷︸
v−1,0,0

)
t−1

]
q1/4+

[
2xz︸︷︷︸

v1,0,0X(1),

v1,0,0TrX(2)

+ 2x−1z−1︸ ︷︷ ︸
v−1,0,0Y (1),

v−1,0,0TrY (2)

+ 2xz−1︸ ︷︷ ︸
v−1,0,0X(1),

v−1,0,0TrX(2)

+ 2x−1z︸ ︷︷ ︸
v1,0,0Y (1),

v1,0,0TrY (2)

+
(

2︸︷︷︸
TrXY,

TrXTrY

+ 2x2︸︷︷︸
TrX2,

(TrX)2

+ 2x−2︸ ︷︷ ︸
TrY 2

(TrY )2

)
t2+

(
2︸︷︷︸
ϕ,

v1,−1,0

+ 2z2︸︷︷︸
v2,0,0,

v1,1,0

+ 2z−2︸ ︷︷ ︸
v−2,0,0,

v−1,−1,0

)
t−2

]
q1/2

+
[(

4x2z︸︷︷︸
v1,0,0X(1)2,

v1,0,0(TrX(2))2,

v1,0,0Tr(X(2)2)
v1,0,0X(1)TrX(2)

+ 4x−2z−1︸ ︷︷ ︸
v−1,0,0Y (1)2,

v−1,0,0(TrY (2))2
,

v−1,0,0Tr(Y (2)2),
v−1,0,0Y (1)TrY (2)

+ 4x−2z︸ ︷︷ ︸
v1,0,0Y (1)2,

v1,0,0(TrY (2))2
,

v1,0,0Tr(Y (2)2),
v1,0,0Y (1)TrY (2)

+ 4x2z−1︸ ︷︷ ︸
v−1,0,0X(1)2,

v−1,0,0(TrX(2))2,

v−1,0,0Tr(X(2)2)
v−1,0,0X(1)TrX(2)

+ 4z︸︷︷︸
v1,0,0X(1)Y (1),

v1,0,0X(1)TrY (2),

v1,0,0TrX(2)X(1),

v1,0,0TrX(2)TrY (2),

v1,0,0Tr(X(2)Y (2)),
v1,0,0ψ

ϕ(1) ,

v1,0,0Trψ
ϕ(2) ,

v1,0,0J(2)I(2),

+ 4z−1︸ ︷︷ ︸
v−1,0,0X(1)Y (1),

v−1,0,0X(1)TrY (2),

v−1,0,0TrX(2)Y (1),

v−1,0,0TrX(2)TrY (2),

v−1,0,0Tr(X(2)Y (2)),
v−1,0,0ψ

ϕ(1) ,

v−1,0,0Trψ
ϕ(2) ,

v−1,0,0J(2)I(2),

)
t+
(

4z2x︸︷︷︸
v2,0,0X(1),

v2,0,0TrX(2),

v1,1,0TrX(1),

v1,1,0X(2)

+ 4x−1z−2︸ ︷︷ ︸
v−2,0,0Y (1),

v−2,0,0TrY (2),

v−1,−1,0TrY (1),

v−1,−1,0Y (2)

+ 4xz−2︸ ︷︷ ︸
v−2,0,0X(1),

v−2,0,0TrX(2),

v−1,−1,0TrX(1),

v−1,−1,0X(2)

+ 4x−1z2︸ ︷︷ ︸
v2,0,0Y (1),

v2,0,0TrY (2),

v1,1,0TrY (1),

v1,1,0Y (2)

+ 4x︸︷︷︸
v1,−1,0X(1),

v1,−1,0X(2),

v1,−1,0X(3),
Tr(ϕX),
TrϕTrX,

TrψX ,

+ 4x−1︸ ︷︷ ︸
v1,−1,0Y (1),

v1,−1,0Y (2),

v1,−1,0Y (3),
Tr(ϕY ),
TrϕTrY,
TrψY ,

)
t−1+

(
4x︸︷︷︸

TrX2Y,
TrXTrXY,
TrX2TrY,

(TrX)2TrY

+ 4x−1︸ ︷︷ ︸
TrY 2X,

TrY TrXY,
TrY 2TrX,

(TrY )2TrX

+ 3x3︸︷︷︸
TrX3,

TrX2TrX,
(TrX)3

+ 3x−3︸ ︷︷ ︸
TrY 3,

TrY 2TrY,
(TrY )3

)
t3

+
(

4z︸︷︷︸
v2,−1,0,

v1,1,−1,

v1,0,0ϕ(1),

v1,0,0Trϕ(2)

+ 4z−1︸ ︷︷ ︸
v−2,1,0,

v−1,0ϕ(1),

v−1,0ϕ(2)

+ 3z3︸︷︷︸
v3,0,0,

v2,1,0,

v1,1,1

+ 3z−3︸ ︷︷ ︸
v−3,0,0,

v−2,−1,0,

v−1,−1,−1

)
t−3

]
q3/4+· · · . (3.30)
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The listed terms in the expansion (3.30) generally appear in the index of the U(N) ADHM
theory with one flavor for N ≥ 3. The finite N correction in the large N limit typically shows
up from the term with q(N+1)/4 as the U(N) ADHM theory does not contain (N + 1)-trace
operators as gauge invariant operators.

From (3.30) we see that for N ≥ 3 there appear more operators corresponding to the
terms q3/4tz, q3/4tz−1, q3/4t−1x and q3/4t−1x−1 on the mixed branch. The first two terms
are the contributions from the dressed monopole operators involving v±,0,0,··· ,0 for which
the gauge group is broken to U(1)×U(N − 1). The vacuum equations (3.1)–(3.4) admit
a solution of the same form as (3.21) on the mixed branch. However, when N ≥ 3, X(2)

and Y (2) are the (N − 1)× (N − 1) matrices and J (2) and I(2) are the (N − 1)-vectors so
that the monopole v±,0,0,··· ,0 can be dressed by two distinguished operators TrX(2)TrY (2)

and Tr(X(2)Y (2)). This leads to an additional operator that shows up in each of the terms
q3/4tz and q3/4tz−1.

The terms q3/4t−1x and q3/4t−1x−1 contain the monopole operator v1,−1,0,··· ,0 for which
the gauge group is broken to U(1)×U(1)×U(N − 2). While for N = 2 the adjoint scalar X
or Y split into two parts, for N ≥ 3 there are three parts. So the monopole can be dressed
by three distinct scalar fields X(i) (resp. Y (i)), i = 1, 2, 3 and there appears an additional
contribution in the term q3/4t−1x or q3/4t−1x−1. The indices with auxiliary fugacities are
shown in (B.9) in appendix B.

When the fugacities x and z are set to 1, the flavored index (3.30) becomes

IU(3) ADHM−[1](t, x = 1, z = 1; q)

= 1 +
(
2t+ 2t−1

)
q1/4 +

(
8 + 6t2 + 6t−2

)
q1/2 +

(
14t3 + 24t+ 24t−1 + 14t−3

)
q3/4

+
(
71 + 28t4 + 56t2 + 56t−2 + 28t−4

)
q + · · · . (3.31)

The difference of the U(3) ADHM index (3.31) from the U(2) ADHM index (3.28) begins
with the power q3/4 as the U(3) ADHM theory contains gauge invariant triple-trace operators
unlike the U(2) ADHM theory. The Coulomb and Higgs limits of the index (3.31) are

IU(3) ADHM−[1](C)(t) = IU(3) ADHM−[1](H)(t) = 1 + t2 + 2t3 + t4 + t6

(1 + t)2(1 + t + t2)2(1− t)6 . (3.32)

This is the Hilbert series for the symmetric product Sym3(C2). Again the function (3.32)
plays a role of the generating function for the plane partitions with trace 3 [33].

3.2.4 U(1) ADHM with two flavors (N = 1, l = 2)

Next example is the case with multiple flavors with l > 1. Unlike the case with one
flavor describing M2-branes in a flat space, the theory describes the M2-branes probing
C2 × (C2/Zl).

For N = 1 and l = 2 the monopole operator vm of the GNO charge m has the dimension
∆(m) = |m|. The basic monopoles of m = ±1 have the dimension one, which is consistent
with the OPE v1v−1 ∼ ϕ2. While the hypermultiplet scalar fields (X,Y ) parametrize
C2, the monopole operators v±1 and the vector multiplet scalar ϕ obeying the chiral ring
relation parametrize C2/Z2.
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The flavored index is computed as

IU(1) ADHM−[2](t,x,yα,z;q)

= 1+
(
x︸︷︷︸
X

+x−1︸︷︷︸
Y

)
tq1/4+

[(
2︸︷︷︸
XY,
J1I1

+ x2︸︷︷︸
X2

+x−2︸︷︷︸
Y 2

+ y1
y2︸︷︷︸
J2I1

+ y2
y1︸︷︷︸
J1I2

)
t2+

(
1︸︷︷︸
ϕ

+ z2︸︷︷︸
v1

+ z−2︸︷︷︸
v−1

)
t−2
]
q1/2

+
[(
xz2︸︷︷︸
v1X

+x−1z−2︸ ︷︷ ︸
v−1Y

+xz−2︸ ︷︷ ︸
v−1X

+x−1z2︸ ︷︷ ︸
v1Y

)
t−1

+
(

2x︸︷︷︸
X2Y,
J1XI1

+ 2x−1︸ ︷︷ ︸
XY 2,
J1Y I1

+ x3︸︷︷︸
X3

+x−3︸︷︷︸
Y 3

+ xy1
y2︸︷︷︸

J2XI1

+ y2
xy1︸︷︷︸
J1Y I2

+ xy2
y1︸︷︷︸

J1XI2

+ y1
xy2︸︷︷︸
J2Y I1

)
t3
]
q3/4+· · · . (3.33)

In this case, the three terms XY , J1I1 and J2I2 are not independent due to the F-term
relation (3.4) so that only two of them, e.g. XY and J1I1 show up in the expansion.

When the fugacities for the global symmetries are turned off, the flavored index (3.33)
reduces to

IU(1) ADHM−[2](t, x = 1, yα = 1, z = 1; q)

= 1 + 2tq1/4 +
(
6t2 + 3t−2

)
q1/2 +

(
10t3 + 4t−1

)
q3/4 +

(
−2 + 19t4 + 5t−4

)
q

+
(
28t5 − 12t+ 4t−3

)
q5/4 +

(
44t6 − 26t2 + 7t−6

)
q3/2 + · · · . (3.34)

The Coulomb branch limit of the index (3.34) is

IU(1) ADHM−[2](C)(t) = 1 + t2

(1− t2)2 = 1 + t2

(1 + t)2(1− t)2 , (3.35)

that describes the singularity C2/Z2. It is the geometry probed by a single M2-brane. The
Higgs limit coincides with the Hilbert series (3.29) that corresponds to Sym2(C2).

3.2.5 U(1) ADHM with three flavors (N = 1, l = 3)

Let us then consider the case with three flavors. The refined index of the U(1) ADHM with
three flavors is

IU(1) ADHM−[3](t, x, yα, z; q)

= 1 +
(
x︸︷︷︸
X

+ x−1︸︷︷︸
Y

)
tq1/4 +

[(
3︸︷︷︸
XY,
J1I1,
J2I2

+ x2︸︷︷︸
X2

+ x−2︸︷︷︸
Y 2

+
3∑

α 6=β

yα
yβ︸︷︷︸
JβIα

)
t2 + t−2︸︷︷︸

ϕ

]
q1/2

+
[(

3x︸︷︷︸
X2Y,
J1XI1,
J2XI2

+ 3x−1︸ ︷︷ ︸
XY 2,
J1Y I1,
J2Y I2

+ x3︸︷︷︸
X3

+ x−3︸︷︷︸
Y 3

+
∑
α 6=β

xyα
yβ︸︷︷︸

JβXIα

+
∑
α 6=β

yα
xyβ︸︷︷︸
JβY Iα

)
t3 +

(
z3︸︷︷︸
v1

+ z−3︸︷︷︸
v−1

)]
q3/4 + · · · .

(3.36)
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Keeping fugacity t and setting other global fugacities to 1, we get

IU(1) ADHM−[3](t, x = 1, yα = 1, z = 1; q)

= 1 + 2tq1/4 +
(
11t2 + t−2

)
q1/2 +

(
20t3 + 2t−3

)
q3/4 +

(
−11 + 56t4 + 4t−2 + t−4

)
q

+
(
92t5 − 36t+ 4t−1 + 2t−5

)
q5/4 +

(
4 + 192t6 − 107t2 + 3t−6

)
q3/2 + · · · (3.37)

We have the Coulomb limit

IU(1) ADHM−[3](C)(t) = 1− t + t2

(1 + t + t2)(1− t)2 = 1 + t3

(1 + t)(1 + t + t2)(1− t)2 (3.38)

that describes the geometry C2/Z3. This is the expected geometry probed by an M2-brane.
In the Higgs branch limit we get

IU(1) ADHM−[3](H)(t) = 1 + 4t2 + t4

(1 + t)4(1− t)6 . (3.39)

3.2.6 U(1) ADHM with l flavors (N = 1, l ≥ 4)

We also show the expansion of the index for N = 1 and l = 4 as we will see various dual
descriptions of the U(1) ADHM with four flavors in the following discussion. It is given by

IU(1)ADHM-[4](t, x, yα, z; q)

= 1 + (x+ x−1)tq
1
4 +

t−2 +

4 + x2 + x−2 +
∑
α 6=β

yα
yβ

 t2
 q 1

2 +
(
x−3 + 4x−1 + 4x+ x3

+
(
x+ x−1

) ∑
α 6=β

yα
yβ

)
t3q

3
4 + · · · . (3.40)

For x = yα = z = 1 we have

IU(1) ADHM−[4](t, x = 1, yα = 1, z = 1; q)
= 1 + 2tq1/4 + (18t2 + t−2)q1/2 + 34t3q3/4 + (−18 + 134t4 + 3t−4)q

+
(
234t5 − 64t+ 4t−3

)
q5/4 +

(
634t6 − 283t2 + 4t−2 + 3t−6

)
q3/2 + · · · . (3.41)

The Coulomb limit is

IU(1) ADHM−[4](C)(t) = 1 + t4

(1 + t2)(1− t2)2 , (3.42)

which describes the singularity C2/Z4. Again this is identified with the geometry probed
by an M2-brane. In the Higgs limit the index (3.41) reduces to

IU(1) ADHM−[4](H)(t) = 1 + 9t2 + 9t4 + t6

(1 + t)6(1− t)8 . (3.43)

More generally for general l flavors we can get the Coulomb and Higgs limits of the
index. In the Coulomb limit we find

IU(1) ADHM−[l](C)(t) = 1 + tl

(1 + t)(1 + t + t2 + · · ·+ tl−1)(1− t)2 . (3.44)
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As expected this describes the Al−1 singularity C2/Zl [85]. The Higgs limit is given by

IU (1) ADHM− [l](H) (t) =
∑l−1
m=0 ( l−1

m )2
t2m

(1 + t)2(l−1) (1− t)2l = 2F1
(
1− l, 1− l; 1; t2

)
(1 + t)2(l−1) (1− t)2l , (3.45)

where 2F1(a, b; c; z) is the hypergeometric function of the first kind. The order of pole at
t = 1 in (3.45) is 2l which is equivalent to the dimension of the Higgs branch for the U(1)
ADHM with l flavors. This reproduces the formula in [86].

3.2.7 U(2) ADHM with two flavors (N = 2, l = 2)
As the simplest example of the non-Abelian ADHM theory with multi flavors, we consider
the case with N = 2 and l = 2. The theory has the monopole operator of dimension
∆(mi) = |m1|+ |m2|.

We obtain the index

IU(2) ADHM−[2](t,x,yα,z;q) =

1+( x︸︷︷︸
TrX

+x−1︸︷︷︸
TrY

)tq1/4+
[(

3︸︷︷︸
TrXY,

TrXTrY,
J1I1

+ 2x2︸︷︷︸
TrX2,

(TrX)2

+ 2x−2︸ ︷︷ ︸
TrY 2,

(TrY )2

+ y1

y2︸︷︷︸
J2I1

+ y2

y1︸︷︷︸
J1I2

)
t2+

(
1︸︷︷︸

Trϕ

+ z2︸︷︷︸
v1,0

+ z−2︸︷︷︸
v−1,0

)
t−2

]
q1/2+

[(
x︸︷︷︸

Tr(ϕX)

+ x−1︸︷︷︸
Tr(ϕY )

+ 2xz2︸ ︷︷ ︸
v1,0X(1),

v1,0X(2)

+ 2x−1z−2︸ ︷︷ ︸
v−1,0Y (1),

v−1,0Y (2)

+ 2xz−2︸ ︷︷ ︸
v−1,0X(1),

v−1,0X(2)

+2x−1z2x︸ ︷︷ ︸
v1,0Y (1),

v1,0Y (2)

)
t−1

+
(

5x︸︷︷︸
TrX2Y,

TrX2TrY,
TrXY TrX,
J1I1TrX,
J1XI1

+ 5x−1︸ ︷︷ ︸
TrXY 2,

TrY 2TrX,
TrXY TrY,
J1I1TrY,
J1Y I1

+ 2x3︸︷︷︸
TrX3,

TrXTrX2

+ 2x−3︸ ︷︷ ︸
TrY 3,

TrY TrY 2

+ 2xy1

y2︸ ︷︷ ︸
J2I1TrX,
J2XI1,

+ 2y2

xy1︸︷︷︸
J1I2TrY,
J1Y I2

+ 2xy2

y1︸ ︷︷ ︸
J1I2TrX,
J1XI2

+ 2y1

xy2︸︷︷︸
J2I1TrY,
J2Y I1

)
t3
]
q3/4

+· · · . (3.46)

Again the F-term constraint (3.4) gets rid of one of the open or closed words.
The simplified index is

IU(2) ADHM−[2](t, x = 1, yα = 1, z = 1; q)

= 1 + 2tq1/4 +
(
9t2 + 3t−2

)
q1/2 +

(
22t3 + 10t−1

)
q3/4 +

(
25 + 55t4 + 11t−4

)
q

+
(
116t5 + 46t+ 26t−3

)
q5/4 +

(
242t6 + 60t2 + 44t−2 + 22t−6

)
q3/2 + · · · . (3.47)

The Coulomb branch limit of the index (3.47) is

IU(2) ADHM−[2](C)(t) = 1 + t2 + 4t4 + t6 + t8

(1 + t2)2(1− t2)4 . (3.48)

This is the Coulomb branch Hilbert series describing the Sym2(C2/Z2). The Higgs limit of
the index (3.47) gives

IU(2) ADHM−[2](H)(t) = 1 + t + 3t2 + 6t3 + 8t4 + 6t5 + 8t6 + 6t7 + 3t8 + t9 + t10

(1 + t)4(1 + t + t2)3(1− t)8 .

(3.49)

This is the Hilbert sereis for the two SU(2) instanton moduli space [87, 88].5
5Note that the expression (3.48) is different from eq. (4.24) in [87] by the overall factor (1− t)−2.
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3.2.8 U(2) ADHM with four flavors (N = 2, l = 4)

Another interesting example is the case with N = 2 and l = 4, i.e. the U(2) ADHM theory
with four flavors. It has the monopole operator of dimension ∆(mi) = 2(|m1|+ |m2|).

The flavored index is given by

IU(2) ADHM−[4](t, x, yα, z; q)

= 1 + ( x︸︷︷︸
TrX

+ x−1︸︷︷︸
TrY

)tq1/4 +
[(

5︸︷︷︸
TrXY,

TrXTrY,
J1I1,
J2I2

+ 2x2︸︷︷︸
TrX2,
(TrX)2

+ 2x−2︸ ︷︷ ︸
TrY 2,
(TrY )2

+
∑
α 6=β

yα
yβ︸︷︷︸
JβIα

)
t2 + t−2︸︷︷︸

Trϕ

]
q1/2

+
[(

x︸︷︷︸
Tr(ϕX)

+ x−1︸︷︷︸
Tr(ϕY )

)
t−1 +

(
9x︸︷︷︸

TrX2Y,
TrX2TrY,
TrXY TrX,
JαIαTrX,
JαXIα

+ 9x−1︸ ︷︷ ︸
TrXY 2,

TrY 2TrX,
TrXY TrY,
JαIαTrY,
JαY Iα

+ 2x3︸︷︷︸
TrX3,

TrXTrX2

+ 2x−3︸ ︷︷ ︸
TrY 3,

TrY TrY 2

+
∑
α 6=β

2xyα
yβ︸ ︷︷ ︸

JαIβTrY,
JβY Iα

+
∑
α 6=β

2yα
xyβ︸︷︷︸

JβIαTrY,
JβY Iα

)
t3
]
q3/4 + · · · . (3.50)

When we turn off the global fugacities x, yα and z, we find

IU(2) ADHM−[4](t, x = 1, yα = 1, z = 1; q)

= 1 + 2tq1/4 +
(
21t2 + t−2

)
q1/2 +

(
70t3 + t−1

)
q3/4 +

(
1 + 289t4 + 4t−4

)
q

+
(
946t5 − 34t+ 10t−3

)
q5/4 +

(
2961t6 − 335t2 + 48t−2 + 6t−6

)
q3/2 + · · · . (3.51)

The Coulomb limit of the index (3.51) is

IU(2) ADHM−[4](C)(t) = 1− t2 + 2t4 + 2t8 − t10 + t12

(1 + t4)(1 + t2)2(1− t2)4 . (3.52)

This is the Hilbert series of Sym2(C2/Z4) corresponding to the Coulomb branch. The
index (3.51) reduces to

IU(2) ADHM−[4](H)(t) = 1
(1− t)16(1 + t)(1 + t + t2)2

×
(
1 + t + 11t2 + 34t3 + 88t4 + 216t5 + 473t6 + 797t7

+ 1243t8 + 1738t9 + 2080t10 + 2152t11 + palindrome + t22
)

(3.53)

in the Higgs limit. This is the Hilbert series for the moduli space of two SU(4) instan-
tons [87].6

6Again the expression (3.53) is different from eq. (3.21) in [87] by the overall factor (1− t)−2.
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3.2.9 Mirror symmetry

The U(N) ADHM theory with l flavors has the mirror description given in the center figure
in figure 1. We have confirmed that the ADHM index (3.15) perfectly agrees with the
following index

IU(N)⊗lmADHM−[1](t, x, yα, z; q) = 1
N !

(
q

1
2 t−2; q

)N
∞(

q1/2t2; q
)N
∞


l ∑
m

(1)
1 ,··· ,m(l)

N ∈Z

∮ l∏
I=1

N∏
i=1

ds
(I)
i

2πis(I)
i

×
∏
i<j

1− q
|m(I)
i
−m(I)

j
|

2 s
(I)±
i s

(I)∓
j


q 1+|m(I)

i
−m(I)

j
|

2 t−2s
(I)∓
i s

(I)±
j ; q


∞q 1+|m(I)

i
−m(I)

j
|

2 t2s
(I)±
i s

(I)∓
j ; q


∞

×
N∏

i,j=1

l−1∏
I=1

q 3
4 +
|m(I)
i
−m(I+1)

j
|

2 ts
(I)∓
i s

(I+1)±
j z∓; q


∞q 1

4 +
|m(I)
i
−m(I+1)

j
|

2 t−1s
(I)±
i s

(I+1)∓
j z±; q


∞

q 3
4 +
|m(l)
i
−m(1)

j
|

2 ts
(l)∓
i s

(1)±
j z±; q


∞q 1

4 +
|m(l)
i
−m(1)

j
|

2 t−1s
(l)±
i s

(1)∓
j x∓; q


∞

×
N∏
i=1

(
q

3
4 +
|m(1)
i
|

2 ts
(1)∓
i ; q

)
∞(

q
1
4 +
|m(1)
i
|

2 t−1s
(1)±
i ; q

)
∞

× q
1
4

(∑N

i=1 |m
(1)
i |+

∑l−1
I=1

∑
i,j
|m(I)

i −m
(I+1)
j |+

∑
i,j
|m(l)

i −m
(1)
j |
)
− 1

2
∑l

I=1

∑
i<j
|m(I)

i −m
(I)
j |

× t
∑N

i=1 |m
(1)
i |+

∑l−1
I=1

∑
i,j
|m(I)

i −m
(I+1)
j |+

∑
i,j
|m(l)

i −m
(1)
j |−2

∑l

I=1

∑
i<j
|m(I)

i −m
(I)
j |

× x
∑N

i=1 m
(1)
i

l∏
α=1

(
yα
yα+1

)∑N

i=1 m
(α)
i

, (3.54)

of the mirror U(N)⊗l necklace quiver gauge theory with one flavor.
In particular, the ADHM theories with l = 1 are self-mirror where their indices are

invariant under the transformation

t→ t−1, x→ z, z → x, (3.55)

as explicitly checked from the previous computations, e.g. (3.16), (3.20) and (3.30).
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From the equality of the indices (3.15) and (3.54) we find the following fugacity map:

U(N) ADHM with l flavors U(N)⊗l necklace quiver with one flavor
z (topological sym.) x̃ (flavor sym. for (X̃, Ỹ ))

x̃ = z

x (flavor sym. for (X,Y )) z̃(α) (topological sym.)
yα (flavor sym. for (I, J)) z̃(1) = xy1

y2

z̃(α) = yα
yα+1

, α = 2, · · · , l

(3.56)

where x̃ and z̃(α) are respectively the fugacities coupled to the flavor symmetry for the
bifundamental hypers (X̃, Ỹ ) and the topological symmetry for the α-th factor of gauge node.

Also we obtain the operator mapping under the mirror symmetry. For the Abelian case
we find

U(1) ADHM with l flavors U(1)⊗l necklace quiver with one flavor
Xm vm;m;··· ;m

Y m v−m;−m;··· ;−m

XY,
∑
α 6=l JαIα ϕ̃(α)∑

α<β,
α 6=1

JαIβ v0;··· ;0;m(α)=−1;−1;··· ;m(β−1)=−1;0;··· ;0

J1Iα>1 v0;··· ;0;m(α)=1;1,··· ;1∑
α>β,
β 6=1

JαIβ v0;··· ;0;m(β)=1;1;··· ;m(α−1)=1;0;··· ;0

Jα>1I1 v0;··· ;0;m(α)=−1;−1,··· ;−1

vm (X̃1,2X̃2,3 · · · X̃l,1)m

v−m (Ỹ1,2Ỹ2,3 · · · Ỹl,1)m

ϕ J̃Ĩ

. (3.57)

For the non-Abelian case we get

U(N) ADHM with l flavors U(N)⊗l necklace quiver with one flavor
TrX v1,0,··· ,0;··· ;1,0,··· ,0

TrY v−1,0,··· ,0;··· ;−1,0,··· ,0

TrXY, TrXTrY, ∑
α 6=l JαIα v1,−1,0,··· ;1,−1,0,··· ;··· ;1,−1,0,···, Trϕ̃(α)∑

α<β,
α 6=1

JαIβ v0;··· ;0;m(α)
1 =−1,0,··· ,0;··· ;m(β−1)

1 =−1,0,··· ,0;0;··· ;0

J1Iα>1 v0;··· ;0;m(α)
1 =1,0··· ,0;··· ;1,0,··· ,0∑

α>β,
β 6=1

JαIβ v0;··· ;0;m(β)
1 =1,0··· ,0;··· ;m(α−1)

1 =1,0,··· ,0;0;··· ;0

Jα>1I1 v0;··· ;0;m(α)
1 =−1,0,··· ,0;··· ;−1,0,··· ,0

v1,0,··· ,0 TrX̃1,2X̃2,3 · · · X̃l,1

v−1,0,··· ,0 TrỸ1,2Ỹ2,3 · · · Ỹl,1
Trϕ J̃Ĩ

. (3.58)
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3.3 Closed form expression for the Coulomb limit with general N, l

In fact, it is possible to obtain a closed form expression for the Coulomb limit (A.4) of the
supersymmetric index of the U(N) ADHM theory. Here we assume |t| < 1 and that all the
other remaining fugacities have absolute values 1.

First of all, since the overall factor q
l
4
∑

i
|mi|t−l

∑
i
|mi| = tl

∑
i
|mi| is not in a negative

power of q, we can take the Coulomb limit (A.4) separately in each factor within the
summation and the integration of (3.15):

IU(N)ADHM-[l] (C) = lim
t=q

1
4 t−1: fixed
q→0

IU(N)ADHM-[l]

= 1
N !

∑
mi∈Z

∮ N∏
i=1

dsi
2πisi

N∏
i 6=j

lim
t=q

1
4 t−1: fixed
q→0

(
1− q

|mi−mj |
2

si
sj

)

N∏
i,j

lim
t=q

1
4 t−1: fixed
q→0

(
q

1
2 +
|mi−mj |

2 t2 sisj ; q
)
∞(

q
1
2 +
|mi−mj |

2 t−2 si
sj

; q
)
∞

tl
∑N

i
|mi|zl

∑
i
mi . (3.59)

To further proceed we notice that each factor under the limit is 1 unless mi = mj . This
motivates us to label each choice of the monopole charges mi ∈ ZN by νm, the number of i
where mi = m, with which the Coulomb limit of the index (3.59) can be written as

IU(N)ADHM-[l] (C) =
∞∑

νm=0
(∑m

νm=N)

∞∏
m=−∞

1
νm!

∮ νm∏
i=1

dsi
2πisi

νm∏
i 6=j

(
1− si

sj

)
νm∏
i,j

1
1−t2 sisj

tl|m|νmzlmνm .

(3.60)

The constraint on the summation over νm can be removed by considering the grand
canonical sum

Ξ(κ) =
∞∑
N=0

κNIU(N)ADHM-[l] (C) =
∞∏

m=−∞
Ξ̃
(
κtl|m|zlm, t

)
, (3.61)

where

Ξ̃(κ, t) =
∞∑
ν=0

κν

ν!

∮ ν∏
i=1

dsi
2πisi

ν∏
i 6=j

(
1− si

sj

)
ν∏
i,j

1
1− t2 sisj

. (3.62)

By using the Cauchy determinant formula∏N
i<j(xi − xj)(yi − yj)∏N

i,j(xi + yj)
= det

i,j

1
xi + yj

, (3.63)

we can rewrite Ξ̃ as

Ξ̃(κ, t) =
∞∑
ν=0

κνΩν(t), (3.64)
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where

Ων(t) = t−ν(ν−1)

ν!

ν∏
i=1

∮
dsi
2πi det

i,j

1
si − t2sj

. (3.65)

By using Ων(t) we can write the grand canonical sum Ξ(κ) (3.61) as

log Ξ (κ) =
∞∑
ν=1

κν
1− t2lν∏

± (1− tlνz±lν)

ν∑
n=1

(−1)n−1

n

∑
ν1,··· ,νn≥1
(∑i

νi=ν)

n∏
i=1

Ωνi (t) . (3.66)

Here Ων(t) (3.65) can be obtained by the following generating function
∞∑
ν=0

κνtν(ν−1)Ων(t) = Det (1 + κρ)

= expTr log (1 + κρ)

= exp
[ ∞∑
n=1

(−1)n−1

n
κn

1
1− t2n

]
, (3.67)

where ρ(s, s′) = 1
s−t2s′ , operator product is defined as (ρ ◦ ρ)(s, s′) =

∮ ds′′

2πiρ(s, s′′)ρ(s′′, s′)
and in the third line we have used Trρn =

∮ ds
2πi(ρ◦n)(s, s) = 1

1−t2n which is obtained by
evaluating the integrations explicitly. Expanding the right-hand side we observe

Ων(t) =
ν∏

n=1

1
1− t2n

. (3.68)

Using this result we further observe
ν∑

n=1

(−1)n−1

n

∞∑
ν1,··· ,νn=1
(∑i

νi=ν)

n∏
i=1

Ωνi (t) = 1
ν (1− t2ν) . (3.69)

Hence (3.66) simplifies as

Ξ(κ) = e
∑∞

ν=1 κ
νAν(z,t), Aν(z, t) = 1− t2lν

ν(1− t2ν)∏±(1− tlνz±lν) . (3.70)

After a few manipulation we can also write this as

Ξ(κ) =
∞∏
m=0

1
1− t2mκ

∞∏
n=1

∏
±

1
1− t2m+nlz±lnκ

. (3.71)

Note that this result is consistent with the result for l = 1 [32], and also with the results for
the Hilbert series obtained in [33] if we set z = 1.

Here we propose a combinatorial interpretation of the formula (3.71). Let π = {nij}
be a plane partition. The sum of all the entries is called the norm n = ∑

ij nij of π and
the sum τi(π) = ∑

k τkk+i of the i-th diagonal entries is referred to as the i-trace of π. We
write the 0-trace as τ(π) and simply call it the trace of π, i.e. τ(π) = ∑

i nii.
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According to the correspondence in [33] the local operators with scaling dimension ∆
and flavor charge M in the M2-brane SCFT parametrizing the geometry C2 probed by N
M2-branes correspond to plane partitions of n = 2∆ with trace τ(π) = N and the difference∑
i>0 τi(π)−∑i<0 τi(π) = M of the sums of the i-traces. Therefore we conjecture that
∞∑
n=1

n∑
N=0

n∑
M=−n

α(n,N,M)qnκNzM =
∞∏
m=0

1
1− κq2m+1

∞∏
n=1

∏
±

1
1− κq2m+n+1z±n

,

(3.72)

where α(n,N,M) is the number of plane partitions of n = 2∆ with trace τ(π) = N and∑
i>0 τi(π)−∑i<0 τi(π) = M .
Also we can obtain IU(N)ADHM-[l] (C) by inverting (3.61). For small N , this can be done

explicitly by using (3.70) as

IU(N) ADHM-[l](C) =
N∑
n=1

1
n!

∑
ν1,··· ,νn≥1

(∑n

i=1 νi=N)

n∏
i=1

Aνi (z, t) ,

IU(1) ADHM-[l] (C) = 1−t2l
(1−t2)∏± (1−tlz±l) ,

IU(2) ADHM-[l] (C) =

(
1−t2l

)(
1+
(
zl+z−l

)
t2+l+t2l−t2l+2−

(
zl+z−l

)
t3l−t4l+2

)
(1−t2)(1−t4)∏± (1−z±ltl)(1−z±2lt2l) ,

IU(3) ADHM-[l] (C) =

(
1−t2l

)
(1−t2)(1−t4)(1−t6)∏± (1−z±ltl)(1−z±2lt2l)(1−z±3lt3l)

×
[
1+
(
zl+z−l

)(
tl+2+tl+4

)
+t2l+

(
z2l+z−2l

)(
t2l+2+t2l+4

)
+t2l+6

+
(
z3l+z−3l

)
t3l+6+

(
−z2l−z−2l

)
t4l−2

(
t4l+2+t4l+4

)
+
(
1−z2l−z−2l

)
t4l+6+

(
−zl−z−l

)
t5l

+
(
−z3l−zl−z−l−z−3l

)(
t5l+2+t5l+4

)
+
(
−zl−z−l

)
t5l+6

+
(
1−z2l−z−2l

)
t6l−2

(
t6l+2+t6l+4

)
+
(
−z2l−z−2l

)
t6l+6

+
(
z3l+z−3l

)
t7l+t8l+

(
z2l+z−2l

)(
t8l+2+t8l+4

)
+t8l+6

+
(
zl+z−l

)(
t9l+2+t9l+4

)
+t10l+6

]
,

.... (3.73)

After setting z to 1, these results precisely reproduce the Coulomb branch Hilbert series
written in (3.44) (N = 1),(3.29),(3.48),(3.52) (N = 2) and (3.32) (N = 3).

For general N we can use the product expression (3.71) together with the follow-
ing relation

IU(N)ADHM-[l] (C) =
∮

dκ

2πiκκ
−NΞ(κ). (3.74)
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By evaluating the integration by collecting the residues of the poles at |κ| > 1 we obtain

IU(N)ADHM-[l] (C)

=
∞∑
m=0

t2mN
∏
m′≥0

(m′ 6=m)

1
1− t2(m′−m)

∏
m′≥0,n′≥1,σ′=±

1
1− t2(m′−m)+n′lzσ′n′l

+
∞∑
m=0

∞∑
n=1

∑
σ=±

(t2m+nlzσnl)N
∞∏

m′=0

1
1− t2(m′−m)−nlz−σnl

×
∏

m′≥0,n′≥1,σ′=±
((m′,n′,σ′) 6=(m,n,σ))

1
1− t2(m′−m)+(n′−n)lzl(σ′n′−σn) . (3.75)

Note that (3.75) gives the explicit expression for IU(∞)ADHM-[l] (C)

IU(∞)ADHM-[l] (C) =
∏
m≥1

1
1− t2m

∏
m≥0,n≥1,±

1
1− t2m+nlz±nl

, (3.76)

which is consistent with the results obtained in [33] for l = 1, 2 and z = 1, as well as the
explicit coefficients of all order giant graviton expansion.

4 USp(2N) gauge theories of M2-branes

Let us study 3d N = 4 supersymmetric gauge theories with a USp(2N) gauge group which
can describe N M2-branes probing a D-type singularity. As reviewed in section 2.1, there
are two types of hypermultiplets (X,Y ) transforming as rank 2 tensor representations;
either a symmetric (i.e. adjoint) or an antisymmetric under the gauge group as well as 2l
half-hypermultiplets (I, J) transforming as the fundamental representation. The quiver
diagram for the antisymmetric case is depicted in the left figure in figure 3.

4.1 Moduli space and local operators

4.1.1 Coulomb branch

On the Coulomb branch the vevs of the (half-)hypermultiplet scalar fields are turned off
and the equation (3.1) can be solved by

ϕ = diag(ϕ1,−ϕ1, ϕ2,−ϕ2, · · · , ϕN ,−ϕN ) (4.1)

so that the gauge group is broken to U(1)N . The monopole in the USp(2N) gauge theory
has the GNO charge labeled by N integers (m1, · · · ,mN ) as points in the weight lattice of
the Langlands dual group SO(2N + 1). The monopole operator v{mi} has the dimension

∆(mi) = (l − 2 + 2ε+ δ/2)
N∑
i=1
|mi| (4.2)

where

ε =

0 for antisym. hyper
1 for sym. hyper

, δ =

0 for 2l fund. half-hypers
1 for (2l + 1) fund. half-hypers

. (4.3)
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The good UV theories in the classification of [81] can be obtained when one has at least two
(resp. six) fundamental half-hypers for the theory with a symmetric (resp. antisymmetric)
hyper. In the expression (4.2) we include the cases with odd number of half-hypermultiplets
but we will focus on the cases with δ = 0 in the following, where the theories are expected
to describe the N M2-branes probing a D-type singularity.

For N = 1, i.e. USp(2) ∼= SU(2) and δ = 0 the Coulomb branch operators describe the
singularity XDl+2ε = C2/D̂l−2+2ε,7 where the dicyclic group D̂l−2+2ε is generated by the
rotation associated to the chiral ring relation consistent with the OPE

v+v− ∼ ϕ2(l−2+2ε) (4.4)

and by the reflection ϕ→ −ϕ, v± ↔ v∓ corresponding to the Z2 Weyl group of SU(2). For
N > 1 the Coulomb branch is identified with the N -th symmetric product (2.7) or (2.6) of
the ALE space XDl+2ε

MC = SymNXDl+2ε = SymN
(
C2/D̂l−2+2ε

)
(4.5)

whose dimension is dimCMC = 2N .

4.1.2 Higgs branch

When the vector multiplet scalars vanish, one finds the Higgs branch that is parametrized
by the hypermultiplet scalar fields (X,Y ) and the half-hypermultiplet scalar fields (I, J)
where the gauge group is completely broken.

The Higgs branch of the USp(2N) gauge theory with either an adjoint or antisymmetric
hyper and 2l + δ fundamental half-hypers has dimension

dimCMH = 2N(l + δ/2− 1 + 2ε). (4.6)

In the case with an antisymmetric hyper, i.e. ε = 0, the equations (3.2) and (3.4) are
the ADHM equations for the N SO(2l + δ) instantons on R4 [82]. So the Higgs branch is
identified with the moduli space of SO(2l + δ) N -instantons.

4.1.3 Mixed branch

The vacuum equations (3.1)–(3.4) can be also solved when both of the vector multiplet
scalar and the (half-)hypermultiplet scalar fields are non-zero. The equation (3.1) can be
solved by the configuration

ϕ =
(

1 0
0 −1

)
⊗ diag(ϕ1, · · · , ϕ1︸ ︷︷ ︸

N1

, · · · , ϕn, · · · , ϕn︸ ︷︷ ︸
Nn

, 0, · · · , 0︸ ︷︷ ︸
N0

), (4.7)

7A quotient singularity Xg = C2/Γ with Γ = D̂n−2 of order 4(n− 2) corresponds to g = Dn.
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where 2N0 of 2N components of scalar fields in (4.1) vanish so that USp(2N0) gauge group
is restored. The monopole operators can be dressed by the rank-2 tensor matter fields

X =
(

1 0
0 −1

)
⊗ diag(X1, · · · , XN0),

Y =
(

1 0
0 −1

)
⊗ diag(Y1, · · · , YN0), (4.8)

which solve the remaining vacuum equations (3.2), (3.3) and (3.4) when one turns on the
FI parameter. Such dressed monopole operators form the gauge invariant half-BPS local
operators on the mixed branch as they are distinguished from the Coulomb and Higgs
branch operators.

4.2 Indices

The supersymmetric index of the USp(2N) gauge theory with a single symmetric or an
antisymmetric hyper and 2l fundamental half-hypers can be calculated as

IUSp(2N)+(a)sym. hyper−[2l+δ](t,x,yα;q) =

1
2NN !

(
q

1
2 t2;q

)N
∞(

q
1
2 t−2;q

)N
∞

∑
m1,··· ,mN∈Z

∮ N∏
i=1

dsi
2πisi

×
N∏
i=1

(
1−q|mi|s±2

i

)∏
i<j

(
1−q

|mi−mj |
2 s±i s

∓
j

)(
1−q

|mi+mj |
2 s±i s

±
j

)

×
N∏
i=1

(
q

1
2 +|mi|t2s∓2

i ;q
)
∞(

q
1
2 +|mi|t−2s±2

i ;q
)
∞

∏
i<j

(
q

1
2 +
|mi−mj |

2 t2s∓i s
±
j ;q

)
∞(

q
1
2 +
|mi−mj |

2 t−2s±i s
∓
j ;q

)
∞

∏
i<j

(
q

1
2 +
|mi+mj |

2 t2s∓i s
∓
j ;q

)
∞(

q
1
2 +
|mi+mj |

2 t−2s±i s
±
j ;q

)
∞

×

(
q

3
4 t−1x∓;q

)N
∞(

q
1
4 tx±;q

)N
∞

∏
i<j

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
∓;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
±;q

)
∞

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
±;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
∓;q

)
∞

×
∏
i<j

(
q

3
4 +
|mi+mj |

2 t−1s∓i s
∓
j x
∓;q

)
∞(

q
1
4 +
|mi+mj |

2 ts±i s
±
j x
±;q

)
∞

(
q

3
4 +
|mi+mj |

2 t−1s∓i s
∓
j x
±;q

)
∞(

q
1
4 +
|mi+mj |

2 ts±i s
±
j x
∓;q

)
∞

×
N∏
i=1

2l+δ∏
α=1

(
q

3
4 + |mi|2 t−1s∓i y

−1
α ;q

)
∞(

q
1
4 + |mi|2 ts±i yα;q

)
∞

 N∏
i=1

(
q

3
4 +|mi|t−1s∓2

i x∓;q
)
∞(

q
1
4 +|mi|ts±2

i x±;q
)
∞

(
q

3
4 +|mi|t−1s∓2

i x±;q
)
∞(

q
1
4 +|mi|ts±2

i x∓;q
)
∞

ε

×q
l−2+2ε+δ/2

2
∑N

i=1 |mi|t−2(l−2+2ε+δ/2)
∑N

i=1 |mi|. (4.9)

Here the flavor fugacities yα obey the SO(2l + δ) conditions yα+l = y−1
α for α = 1, · · · , l

and y2l+1 = 1. In the Coulomb limit (A.4) the USp(2N) index (4.9) for the case with an
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antisymmetric hyper (ε = 0) and 2l fundamental half-hypers (δ = 0) becomes the Coulomb
branch Hilbert series studied in [85], which corresponds to the geometry C2/D̂l−2 probed
by the M2-branes. In the Higgs limit (A.4) it becomes the Higgs branch Hilbert series
studied in [86].

4.2.1 USp(2) with 1 sym. and 2 fund. (N = 1, ε = 1, l = 1)

We start with the USp(2) ∼= SU(2) gauge theory with a symmetric hypermultiplet. The
dimension (4.2) of monopole operator can be positive when l ≥ 1 or δ ≥ 0. For l = 1 with
two half-hypers we find the flavored index

IUSp(2)+sym. hyper−[2](t, x, y; q)

= 1 +
((

2 + x2 + x−2
)
t2 + t−2

)
q1/2 +

((
xy2 + x−1y−2 + xy−2 + x−1y2

)
t3

+
(
2x+ 2x−1

)
t−1
)
q3/4 +

(
−3 +

(
3 + x4 + x−4 + 2x2 + 2x−2

)
t4 + 3t−4

)
q+

+
((
x3y2 + x−3y−2 + x3y−2 + x−3y2 + 2xy2 + 2x−1y−2 + 2xy−2 + 2x−1y2

)
t5

+
(
2x3 + 2x−3 − xy2 − x−1y−2 − xy−2 − x−1y2

)
t

)
q5/4 + · · · . (4.10)

For x = 1 and y = 1 it becomes

IUSp(2)+sym. hyper−[2](t, x = 1, y = 1; q)

= 1 +
(
4t2 + t−2

)
q1/2 +

(
4t3 + 4t−1

)
q3/4 +

(
−3 + 9t4 + 3t−4

)
q + 12t5q5/4

+
(
−12 + 22t6 + 3t−2 + 3t−6

)
q3/2 +

(
−20t3 + 24t7 − 4t−1 + 4t−5

)
q7/4 + · · · . (4.11)

Its Coulomb limit (A.4) yields the Hilbert series that coincides with (3.42). This is consistent
with the Coulomb branch (4.5), that is C2/D̂1 = C2/Z4. Also we find the Higgs limit

IUSp(2)+sym. hyper−[2](H)(t) = 1 + 2t2 + 2t3 + 2t4 + t6

(1 + t)2(1 + t + t2)2(1− t)4 . (4.12)

The order 4 of the pole at t = 1 in (4.12) is the complex dimension (4.6) of the Higgs branch.

4.2.2 USp(2) with 1 antisym. and 6 fund. (N = 1, ε = 0, l = 3)

For the USp(2) ADHM theory with an antisymmetric hypermultiplet the dimension (4.2)
of monopole operator can be positive when l ≥ 3.

So the simplest example of the good theory is realized when l = 3, that is the USp(2)
gauge theory with an antisymmetric hyper and six fundamental half-hypers. We find that
the flavored index precisely agrees with the flavored index (3.40) of the U(1) ADHM theory
with four flavors. This can be understood as a duality associated with the ŝo(6) = ŝu(4)
quiver [55] (see section 4.2.6). This is consistent with the statement that the theory has
the Coulomb branch C2/D̂1 and that the Higgs branch is the moduli space of a single
SO(6) ∼= SU(4) instanton.
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4.2.3 USp(2) with 1 antisym. and 8 fund. (N = 1, ε = 0, l = 4)

Next example is the USp(2) gauge theory with an antisymmetric hyper and eight half-hypers.
In this case we get the flavored index

IUSp(2)+asym. hyper−[8](t, x, yα; q)

= 1 + (x+ x−1)tq1/4 +
(

5 + x2 + 5x−2 +
4∑

α<β

(
yαyβ + y−1

α y−1
β + yαy

−1
β + y−1

α yβ
))
t2q1/2

+
((

x3 + x−3 + 5x+ 5x−1 +
(
x+ x−1

) 4∑
α<β

(
yαyβ + y−1

α y−1
β + yαy

−1
β + y−1

α yβ
))
t3

−
(
x+ x−1

)
t−1
)
q3/4 + · · · . (4.13)

For x = yα = 1 it becomes

IUSp (2) +asym. hyper− [8] (t, x = 1, yα = 1; q)

= 1 + 2tq1/4 + 31t2q1/2 +
(
−2t−1 + 60t3

)
q3/4 +

(
−33 + 2t−4 + 389t4

)
q

+
(
4t−3 − 118t+ 718t5

)
q5/4 +

(
t−6 + 4t−2 − 852t2 + 2972t6

)
q3/2 + · · · . (4.14)

The Coulomb limit of the index (4.14) is

IUSp(2)+asym. hyper−[8](C)(t) = 1− t2 + t4

(1 + t2)(1− t2)2 = 1 + t6

(1 + t2)(1 + t2)(1− t2)2 . (4.15)

This is the Hilbert series for the C2/D̂2 = C2/Q8 where Q8 is the quaternion group of order
8. This is compatible with the expectation that the theory describes an M2-brane probing
C2 × (C2/Q8). The Higgs limit of the index (4.14) is

IUSp(2)+asym. hyper−[8](H)(t) =
(
1 + t2

) (
1 + 17t2 + 48t4 + 17t6 + t8

)
(1 + t)10 (1− t)12

. (4.16)

This reproduces the Hilbert series of the moduli space of one SO(8) instanton [86].

4.2.4 USp(4) with 1 sym. and 2 fund. (N = 2, ε = 1, l = 1)

The flavored index of the USp(4) gauge theory with an adjoint hyper and two half-hypers
is evaluated as

IUSp(4)+sym. hyper−[2](t, x, y; q)

= 1 +
((

2 + x2 + x−2
)
t2 + t−2

)
q1/2

+
((
xy2 + x−1y−2 + xy−2 + x−1y2

)
t3 +

(
2x+ 2x−1

)
t
)
q3/4

+
(
−1 + x2 + x−2 +

(
6 + 2x4 + 2x−4 + 4x2 + 4x−2

)
t4 + 4t−4

)
q + · · · . (4.17)
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When x = 1 and y = 1 it reduces to

IUSp (4) +sym. hyper− [2] (t, x = 1, yα = 1; q)

= 1 +
(
4t2 + t−2

)
q1/2 +

(
4t3 + t−1

)
q3/4 +

(
1 + 18t4 + 4t−4

)
q

+
(
24t5 + 20t+ 4t−3

)
q5/4 +

(
58t6 + 9t2 + 23t−2 + 6t−6

)
q3/2 + · · · (4.18)

The Coulomb limit of the index (4.18) coincides with (3.52) as the Coulomb branch of
the theory is Sym2(C2/D̂1) ∼= Sym2(C2/Z4). As stated in (2.37), the theory has a dual
description as the U(2)2 ×U(2)0 ×U(3)−2 quiver Chern-Simons theory.

4.2.5 USp(4) with 1 antisym. and 6 fund. (N = 2, ε = 0, l = 3)

We find that the flavored index of the USp(4) ADHM theory with six fundamental half-
hypers coincides with the flavored index (3.50) of the U(2) ADHM theory with four flavors
for z = 1. This again supports a special duality corresponding to the ŝo(6) = ŝu(4) quiver
proposed in [55].

4.2.6 Mirror symmetry

As reviewed in section 2.2, the USp(2N) gauge theory with an antisymmetric hyper and
2l half-hypers has a conjectural mirror theory which is the quiver gauge theory with
U(N)⊗4×U(2N)⊗l−3 gauge group and matter content which are encoded by the ŝo(l) affine
Dynkin diagram as in figure 3 [6].

The dimension of the monopole operator for the mirror theory is given by

∆
(
m

(I)
i

)
= −

4∑
I=1

N∑
i<j

|m(I)
i −m

(I)
j | −

l+1∑
I=5

2N∑
i<j

|m(I)
i −m

(I)
j |+

1
2

N∑
i=1
|m(1)

i |

+ 1
2

2∑
I=1

∑
i,j

|m(I)
i −m

(5)
j |+

1
2

l∑
I=5

∑
i,j

|m(I)
i −m

(I+1)
j |+ 1

2

4∑
I=3

∑
i,j

|m(I)
i −m

(l+1)
j |,

(4.19)

where {m(I)
i } is the GNO charge for the I-th gauge node with

i =

1, · · · , N for I = 1, 2, 3, 4
1, · · · , 2N otherwise

(4.20)
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The index for the conjectural mirror theory takes the form

IU(N)⊗4×U(2N)⊗l−3
(t,zI ;q) =

1
(N !)4

1
(2N !)l−3

∑
m

(I)
i ∈Z

4∏
I=1

∮ N∏
i=1

ds
(I)
i

2πis(I)
i

l+1∏
I=5

∮ 2N∏
i=1

ds
(I)
i

2πis(I)
i

×
∏
i<j

1−q
|m(I)
i
−m(I)

j
|

2 s
(I)
i

±
s

(I)∓
j


q 1

2 +
|m(I)
i
−m(I)

j
|

2 t−2s
(I)∓
i s

(I)±
j ;q


∞q 1

2 +
|m(I)
i
−m(I)

j
|

2 t2s
(I)±
i s

(I)∓
j ;q


∞

×
2∏
I=1

∏
i,j

q 3
4 +
|m(I)
i
−m(5)

j
|

2 ts
(I)∓
i s

(5)±
j ;q


∞q 1

4 +
|m(I)
i
−m(5)

j
|

2 t−1s
(I)±
i s

(5)∓
j ;q


∞

l∏
I=5

∏
i,j

q 3
4 +
|m(I)
i
−m(I+1)

j
|

2 ts
(I)∓
i s

(I+1)±
j ;q


∞q 1

4 +
|m(I)
i
−m(I+1)

j
|

2 t−1s
(I)±
i s

(I+1)∓
j ;q


∞

×
4∏
I=3

∏
i,j

q 3
4 +
|m(I)
i
−m(l+1)

j
|

2 ts
(I)∓
i s

(l+1)±
j ;q


∞q 1

4 +
|m(I)
i
−m(l+1)

j
|

2 t−1s
(I)±
i s

(l+1)∓
j ;q


∞

N∏
i=1

(
q

3
4 +
|m(1)
i
|

2 ts
(1)∓
i ;q

)
∞(

q
1
4 +
|m(1)
i
|

2 t−1s
(1)±
i ;q

)
∞

×
(
q−

1
2 t−2

)∑4
I=1

∑N

i<j
|m(I)

i −m
(I)
j |+

∑l+1
I=5

∑2N
i<j
|m(I)

i −m
(I)
j |

(
q

1
4 t
)(∑N

i=1 |m
(1)
i |+

∑2
I=1

∑
i,j
|m(I)

i −m
(5)
j |+

∑l

I=5

∑
i,j
|m(I)

i −m
(I+1)
j |+

∑4
I=3

∑
i,j
|m(I)

i −m
(l+1)
j |

)

×
l+1∏
I=1

z

∑
i
m

(I)
i

I . (4.21)

For N = 1 and l = 4 we confirm that the index (4.21) for the mirror theory precisely agrees
with the index (4.13) for the USp(2) ADHM theory with an antisymmetric hyper and eight
fundamental half-hypers under the following mapping of fugacities:

z1 = xy−1
1 y−1

2 , z2 = y1y
−1
2 , z3 = y3y

−1
4 , z4 = y3y4, z5 = y2y

−1
3 .

(4.22)

For l = 5, we found that the index (4.21) agrees with that of the USp(2) ADHM theory
with the following parameter identification:

z1 =xy−1
1 y−1

2 , z2 = y1y
−1
2 , z3 = y4y

−1
5 , z4 = y4y5, z5 = y2y

−1
3 , z6 = y3y

−1
4 .

(4.23)

From these results we conjecture the following parameter identification for general l ≥ 4:

z1 = xy−1
1 y−1

2 , z2 = y1y
−1
2 , z3 = yl−1y

−1
l , z4 = yl−1yl, z5 = y2y

−1
3 ,

z6 = y3y
−1
4 , · · · , zl+1 = yl−2y

−1
l−1. (4.24)
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USp(2N)

6

(I, J)

(X,Y )

U(N)

4

(I, J)

(X,Y )

U(N)(1) U(N)(2)

U(N)(4) U(N)(3)

1

(X̃1,2, Ỹ1,2)

(X̃1,4, Ỹ1,4) (X̃2,3, Ỹ2,3)

(X̃3,4, Ỹ3,4)

(Ĩ , J̃)

Figure 5. Mirror symmetry of the USp(2N) ADHM theory with one antisymmetric hyper (X,Y )
and 6 half-hypers (I, J) and the U(N)⊗4 ŝo(6) = ŝu(4) quiver theory with one flavor (Ĩ , J̃). It is
also dual to the U(N) ADHM theory with four flavors.

For l = 3, the mirror theory is identical to the U(N)⊗4 gauge theory which is mirror to
the U(N) ADHM theory with four flavors corresponding to the ŝo(6) = ŝu(4) quiver theory
depicted in figure 5. In this case, the index (4.21) is equal to the index (3.54). This confirms
the duality [55] between the USp(2N) ADHM theory with six fundamental half-hypers and
the U(N) ADHM theory with four hypers.

5 O(N) gauge theories of M2-branes

Let us study 3d N = 4 supersymmetric gauge theories with orthogonal gauge group
which can describe M2-branes. As reviewed in section 2.1, the theories have rank-2 tensor
matter, either an antisymmetric (i.e. adjoint) or a symmetric hypermultiplet (X,Y ) and l
fundamental hypermultiplets (I, J).
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5.1 Moduli space and local operators

5.1.1 Coulomb branch

Setting the hypermultiplet scalar fields to zero, we obtain the Coulomb branch. For the
SO(2N + γ) gauge theory with γ = 1 or 0 the equation (3.1) can be solved by skew-
diagonal configuration

ϕ =



0 ϕ1
−ϕ1 0

. . .
0 ϕN
−ϕN 0


. (5.1)

This breaks the gauge group down to U(1)N . For γ = 1 there is an additional row and a
column of zeroes in (5.1). The Coulomb branch receives perturbative and non-perturbative
quantum corrections. The monopole operators for SO(2N + γ) gauge theories carry the
GNO charge labeled by integers (m1, · · · ,mN ) in the weight lattice of the Langlands dual
group USp(2N). When the theory contains a rank-2 hyper and fundamental hypers, it has
the monopole operator whose dimension is

∆(mi) = (l + 2ε)
N∑
i=1
|mi|, (5.2)

where

ε =

0 for antisym. hyper
1 for sym. hyper

. (5.3)

According to the classification in [81] the theory with a symmetric (resp. antisymmetric)
hyper is good for l ≥ 0 (resp. l ≥ 1).

The Lie algebra so(2N + γ) admits several gauge theories of distinct gauge groups
including O(2N + γ)±, Pin(2N + γ)±, SO(2N + γ) and Spin(2N + γ). The SO(2N + γ)
gauge group has two zero-form global symmetries, the charge conjugation symmetry ZC2 and
the magnetic symmetry ZM2 . The other gauge groups can be obtained by gauging these
global symmetries.

In particular, 3d N = 4 O(2N+γ)+ gauge theories with a rank-2 hyper and fundamental
hypers are expected to describe multiple M2-branes at D-type singularities. So we will
mainly focus on this case.

For N = 1, i.e. O(2 + γ) gauge theories with a rank-2 tensor hyper and l fundamental
hypers the Coulomb branch is the quotient singularities XDl+2ε+2 = C2/D̂l+2ε. For higher
rank gauge groups the Coulomb branch is given by the N -th symmetric product (2.6)
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or (2.8) of the ALE space XDl+2ε+2

MC = SymNXDl+2ε+2 = SymN
(
C2/D̂l+2ε

)
(5.4)

of the singularity whose dimension is dimCMC = 2N .

5.1.2 Higgs branch

The vacuum equations (3.1)–(3.4) can be solved by setting the vector multiplet scalar field
to zero, for which we find the Higgs branch parametrized by the hypermultiplet scalar fields.

For l ≥ N the orthogonal gauge theories, e.g. SO(2N + γ) gauge theory can admit
baryonic operators of the form

εa1···a2N+γJa1 · · · Ja2N+γ , εa1···a2N+γI
a1 · · · Ia2N+γ . (5.5)

For the O(2N + γ) theory with a symmetric hyper and l fundamental hypers the
equations (3.1)–(3.4) are the ADHM equations for the (2N + γ) USp(2l) instantons on
R4 [82] so that the Higgs branch is identified with the moduli space of the (2N + γ) USp(2l)
instantons.

5.1.3 Mixed branch

There exist solutions to the equations (3.3)–(3.4) where both of the vector multiplet scalar
and the hypermultiplet scalars take non-zero values. The monopole operators may be
dressed by the rank-2 tensor matter fields (X,Y ) which solve the remaining vacuum
equations (3.2), (3.3) and (3.4) in the presence of the FI parameter. They form the gauge
invariant half-BPS local operators which are distinguished from the Coulomb and Higgs
branch operators.

5.2 Indices

The supersymmetric indices of 3d gauge theories with orthogonal gauge groups depend on
the global structure of the gauge group [89].8 All the indices can be obtained from the
SO(2N + γ) indices with discrete fugacities ζ and χ for the ZM2 and ZC2 global symmetries.

For χ = 1 or γ = 1 the O(2N + γ) holonomy can take the following form:

diag
(
s1, s

−1
1 , · · · , sN , s−1

N

)
, or diag

(
s1, s

−1
1 , · · · , sN , s−1

N , χ
)
. (5.6)

8The indices of 3d gauge theories with gauge group O(2N + γ)+ are computed in [90, 91].
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Accordingly, the index takes the form

ISO(2N+γ)+(a)sym. hyper−[2l](t,x,yα;ζ;χ;q)

= 1
2N+γ−1N !

(
q

1
2 t2;q

)N
∞(

q
1
2 t−2;q

)N
∞

×
∑

m1,··· ,mn∈Z

∮ N∏
i=1

dsi
2πisi

N∏
i=1

(
1−χq

|mi|
2 s±i

)γ∏
i<j

(
1−q

|mi−mj |
2 s±i s

∓
j

)(
1−q

|mi+mj |
2 s±i s

±
j

)

×

 N∏
i=1

(
χq

1
2 + |mi|2 t2s∓i ;q

)
∞(

χq
1
2 + |mi|2 t−2s±i ;q

)
∞


γ∏
i<j

(
q

1
2 +
|mi−mj |

2 t2s∓i s
±
j ;q

)
∞(

q
1
2 +
|mi−mj |

2 t−2s±i s
∓
j ;q

)
∞

(
q

1
2 +
|mi+mj |

2 t2s∓i s
∓
j ;q

)
∞(

q
1
2 +
|mi+mj |

2 t−2s±i s
±
j ;q

)
∞

×

(
q

3
4 t−1x∓;q

)N+γ

∞(
q

1
4 tx±;q

)N+γ

∞

∏
i<j

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
∓;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
±;q

)
∞

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
±;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
∓;q

)
∞

×
∏
i<j

(
q

3
4 +
|mi+mj |

2 t−1s∓i s
∓
j x
∓;q

)
∞(

q
1
4 +
|mi+mj |

2 ts±i s
±
j x
±;q

)
∞

(
q

3
4 +
|mi+mj |

2 t−1s∓i s
∓
j x
±;q

)
∞(

q
1
4 +
|mi+mj |

2 ts±i s
±
j x
∓;q

)
∞

×

 N∏
i=1

(
χq

3
4 + |mi|2 t−1s∓i x

∓;q
)
∞(

χq
1
4 + |mi|2 ts±i x

±;q
)
∞

(
χq

3
4 + |mi|2 t−1s∓i x

±;q
)
∞(

χq
1
4 + |mi|2 ts±i x

∓;q
)
∞


γ

×

 N∏
i=1

(
q

3
4 +|mi|t−1s∓2

i x∓;q
)
∞(

q
3
4 +|mi|ts±2

i x±;q
)
∞

(
q

3
4 +|mi|t−1s∓2

i x±;q
)
∞(

q
3
4 +|mi|ts±2

i x∓;q
)
∞

ε

×
N∏
i=1

2l∏
α=1

(
q

3
4 + |mi|2 t−1s∓i y

−1
α ;q

)
∞(

q
1
4 + |mi|2 ts±i yα;q

)
∞


(
χq

3
4 t−1y−1

α ;q
)
∞(

χq
1
4 tyα;q

)
∞

γ

×q
l+2ε

2
∑N

i=1 |mi|t−2(l+2ε)
∑N

i=1 |mi|ζ
∑N

i=1mi . (5.7)

Again the flavor fugacities yα satisfy the USp(2l) condition yl+α = y−1
α .

When χ = −1 and γ = 0, one can set the O(2N) holonomy to

diag
(
s1, s

−1
1 , · · · , sN−1, s

−1
N−1, 1,−1

)
(5.8)

so that the gauge fugacity sN is simply replaced with ±1 and the magnetic flux mN is set
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to zero. The formula of the index for χ = −1 and γ = 0 is

ISO(2N)+(a)sym. hyper−[2l](t,x,yα;ζ;χ=−;q)

= 1
2N−1 (N−1)!

(
−q

1
2 t2;q

)
∞(

−q
1
2 t−2;q

)
∞

(
q

1
2 t2;q

)N−1

∞(
q

1
2 t−2;q

)N−1

∞

∑
m1,··· ,mN−1∈Z

∮ N−1∏
i=1

dsi
2πisi

×
N−1∏
i=1

(
1−q|mi|s±2

i

)∏
i<j

(
1−q

|mi−mj |
2 s±i s

∓
j

)(
1−q

|mi+mj |
2 s±i s

±
j

)

×
N−1∏
i=1

(
q

1
2 + |mi|2 t2s∓i ;q

)
∞(

q
1
2 + |mi|2 t−2s±i ;q

)
∞

(
−q

1
2 + |mi|2 t2s∓i ;q

)
∞(

−q
1
2 + |mi|2 t−2s±i ;q

)
∞

×
∏
i<j

(
q

1
2 +
|mi−mj |

2 t2s∓i s
±
j ;q

)
∞(

q
1
2 +
|mi−mj |

2 t−2s±i s
∓
j ;q

)
∞

(
q

1
2 +
|mi+mj |

2 t2s∓i s
∓
j ;q

)
∞(

q
1
2 +
|mi+mj |

2 t−2s±i s
±
j ;q

)
∞

×

(
−q

3
4 t−1x∓;q

)
∞(

−q
1
4 tx±;q

)
∞

(
q

3
4 t−1x∓;q

)N−1

∞(
q

1
4 tx±;q

)N−1

∞

N−1∏
i=1

(
q

3
4 + |mi|2 t−1s∓i x

∓;q
)
∞(

q
1
4 + |mi|2 ts±i x

±;q
)
∞

(
q

3
4 + |mi|2 t−1s∓i x

±;q
)
∞(

q
1
4 + |mi|2 ts±i x

∓;q
)
∞

×
N−1∏
i=1

(
−q

3
4 + |mi|2 t−1s∓i x

∓;q
)
∞(

−q
1
4 + |mi|2 ts±i x

±;q
)
∞

(
−q

3
4 + |mi|2 t−1s∓i x

±;q
)
∞(

−q
1
4 + |mi|2 ts±i x

∓;q
)
∞

×
∏
i<j

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
∓;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
±;q

)
∞

(
q

3
4 +
|mi−mj |

2 t−1s∓i s
±
j x
±;q

)
∞(

q
1
4 +
|mi−mj |

2 ts±i s
∓
j x
∓;q

)
∞

×
∏
i<j

(
q

3
4 +
|mi+mj |

2 t−1s∓i s
∓
j x
∓;q

)
∞(

q
1
4 +
|mi+mj |

2 ts±i s
±
j x
±;q

)
∞

(
q

3
4 +
|mi+mj |

2 t−1s∓i s
∓
j x
±;q

)
∞(

q
1
4 +
|mi+mj |

2 ts±i s
±
j x
∓;q

)
∞

×

N−1∏
i=1

(
q

3
4 +|mi|t−1s∓2

i x∓;q
)
∞(

q
3
4 +|mi|ts±2

i x±;q
)
∞

(
q

3
4 +|mi|t−1s∓2

i x±;q
)
∞(

q
3
4 +|mi|ts±2

i x∓;q
)
∞

(
q

3
4 t−1x∓;q

)2

∞(
q

1
4 tx±;q

)2

∞


ε

×
N∏
i=1

2l∏
α=1

(
q

3
4 + |mi|2 t−1s∓i y

−1
α ;q

)
∞(

q
1
4 + |mi|2 ts±i yα;q

)
∞

(
±q

3
4 t−1y−1

α ;q
)
∞(

±q
1
4 tyα;q

)
∞

×q
(l+2ε)

2
∑N−1

i=1 |mi|t−2(l+2ε)
∑N−1

i=1 |mi|ζ
∑N−1

i=1 mi . (5.9)

For simplicity we often use the shorthand notation I(t; ζ;χ; q) = I(ζ;χ) etc. in the follow-
ing analysis.
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The index of the O(2N + γ) gauge theory can be obtained by gauging the ZC2 charge
conjugation symmetry

IO(2N+γ)(ζ, χ′) = 1
2
(
ISO(2N+γ)(ζ,+) + χ′ISO(2N+γ)(ζ,−)

)
, (5.10)

where χ′ is + or −. Since the integral formulae of the indices are more subtle than the
previous theories with gauge groups, U(N) and USp(2N), we will present explicit expressions
for several examples.

5.2.1 O(1) with 1 fund. (N = 0, γ = 1, l = 1)

The SO(1) gauge theory is a free theory with matter fields. The index is not sensitive to
the value of ζ. For example, when the theory has a single hyper the index reads

ISO(1)− [1](t; ζ = ±;χ = +; q) =

(
q

3
4 t−1; q

)2

∞(
q

1
4 t; q

)2

∞

, (5.11)

ISO (1)− [1] (t; ζ = ±;χ = −; q) =

(
−q

3
4 t−1; q

)2

∞(
−q

1
4 t; q

)2

∞

. (5.12)

By gauging the global ZC2 we get the index for the O(1)+ gauge theory

IO(1)+ − [1](ζ, χ′) = 1
2
(
ISO(1)− [1](ζ,+) + χ′ISO(1)− [1](ζ,−)

)
. (5.13)

While the O(1)+ = Z2 gauge theory has no Coulomb branch, the Higgs branch is C2/Z2.
In fact, we find that the Higgs limit of the index (5.13) agrees with (3.35) for C2/Z2.

In section 6.3 we will see discrete gauge theories of the M2-brane which generalize the
O(1)+ = Z2 gauge theories.

5.2.2 O(2) with 1 antisym. and 1 fund. (N = 1, γ = 0, ε = 0, l = 1)

The O(2) gauge theory with an adjoint hyper and one flavor has a conjectural dual theory,
a U(1)2 × U(1)× U(1)−2 circular quiver Chern-Simons matter theory as in (2.36). Thus
we give a full flavored index of this theory. The index of the SO(2) gauge theory with an
adjoint hyper and one flavor can be expressed as

ISO(2)+asym. hyper−[2](ζ;χ = +;x, y)

=

(
q

1
2 t2; q

)
∞(

q
1
2 t−2; q

)
∞

(
q

3
4 t−1x∓; q

)
∞(

q
1
4 tx±; q

)
∞

∑
m∈Z

∮ (
q

3
4 + |m|2 t−1s∓y∓; q

)
∞(

q
1
4 + |m|2 ts±y±; q

)
∞

(
q

3
4 + |m|2 t−1s∓y±; q

)
∞(

q
1
4 + |m|2 ts±y∓; q

)
∞

× q
|m|
2 t−2|m|ζm, (5.14)

ISO (2) +asym. hyper− [2] (ζ;χ = −;x, y)

=

(
−q

1
2 t2; q

)
∞(

−q
1
2 t−2; q

)
∞

(
−q

3
4 t−1x∓; q

)
∞(

−q
1
4 tx±; q

)
∞

(
q

3
4 t−1y±; q

)
∞(

q
1
4 ty±; q

)2

∞

(
−q

3
4 t−1y∓; q

)
∞(

−q
1
4 ty±; q

)
∞

. (5.15)
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One can evaluate the indices as

ISO (2) +asym. hyper− [2] (ζ = +;χ = +;x, y) = IU (1) ADHM− [2] (t, x, y; q) , (5.16)

ISO (2) +asym. hyper− [2] (ζ = +;χ = −;x, y)

= 1−
(
x+ x−1

)
tq1/4 +

((
2 + x2 + x−2 + y2 + y−2

)
t2 − t2

)
q1/2 + · · · , (5.17)

where IU(1) ADHM−[2](t; q) is the index (3.33) of the U(1) ADHM with two flavors. When
the fugacities x and y are turned off, the index (5.17) becomes

ISO(2)+asym. hyper−[2](ζ = +;χ = −)

= 1− 2tq1/4 +
(
6t2 − t−2

)
q1/2 +

(
−10t3 + 4t−1

)
q3/4

+
(
−10 + 19t4 + t−4

)
q +

(
−28t5 + 20t+ 4t−3

)
q5/4

+
(
44t6 − 34t2 + 8t−2 − t−6

)
q3/2 + · · · . (5.18)

By gauging the ZC2 symmetry we obtain the index of the O(2)+ gauge theory with an
antisymmetric hyper and a fundamental hyper:

IO(2)++asym. hyper−[2](ζ = +;χ′= +;x,y)

= 1
2
[
ISO(2)+asym. hyper−[2](ζ = +;χ= +;x,y)+ISO(2)+asym. hyper−[2](ζ = +;χ=−;x,y)

]
= 1+

((
2+x2+x−2+y2+y−2

)
t2+t−2

)
q1/2+2

(
x+x−1

)
t−1q3/4+

(
−4−y2−y−2

+
(
3+2x2+2x−2+2y2+2y−2+x4+x−4+x2y2+x2y−2+x−2y2+x−2y−2

)
t4+3t−4

)
q

+2
(
x3+x−3

)
tq5/4+· · · . (5.19)

When t = 1, we have

IO (2)+ +asym. hyper− [2] (ζ = +;χ′ = +
)

= 1 +
(
6t2 + t−2

)
q1/2 + 4t−1q3/4 +

(
−6 + 19t4 + 3t−4

)
q + 4tq5/4

+
(
44t6 − 30t2 + 4t−2 + 3t−6

)
q3/2 +

(
4t3 + 4t−5

)
q7/4

+
(
24 + 85t8 − 70t4 − 4t−4 + 5t−8

)
q2 + · · · . (5.20)

As expected from (5.4), in the Coulomb limit the index (5.20) agrees with the Hilbert
series (3.42) for C2/D̂1 ∼= C2/Z4. On the other hand, the Higgs limit is

IO (2)+ +asym. hyper− [2](H) (t) = 1 + 2t2 + t4

(1− t2)4 . (5.21)
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5.2.3 O(2) with 1 sym. and 1 fund. (N = 1, γ = 0, ε = 1, l = 1)

The indices of the SO(2) gauge theory with a symmetric hyper and a fundamental hyper read

ISO(2)+sym. hyper−[2](ζ;χ = +)

= (q 1
2 t2; q)∞

(q 1
2 t−2; q)∞

(q 3
4 t−1; q)2

∞

(q 1
4 t; q)2

∞

∑
m∈Z

∮ (q 3
4 + |m|2 t−1s∓2; q)2

∞

(q 1
4 + |m|2 ts±2; q)2

∞

(q 3
4 + |m|2 t−1s∓; q)2

∞

(q 1
4 + |m|2 ts±; q)2

∞

q
3|m|

2 t−6|m|ζm,

(5.22)
ISO(2)+sym. hyper−[2](ζ;χ = −)

=

(
−q

1
2 t2; q

)
∞(

−q
1
2 t−2; q

)
∞

(
−q

3
4 t−1; q

)2

∞(
−q

1
4 t; q

)2

∞

(
q

3
4 t−1; q

)4

∞(
q

1
4 t; q

)4

(
q

3
4 t−1; q

)2

∞(
q

1
4 t; q

)2

∞

(
−q

3
4 t−1; q

)2

∞(
−q

1
4 t; q

)2

∞

. (5.23)

For (ζ, χ) = (+,+) and (+,−) we find

ISO (2) +sym. hyper− [2] (ζ = +;χ = +)

= 1 + 2tq1/4 +
(
10t2 + t−2

)
q1/2 + 30t3q3/4 +

(
−10 + 76t4 + t−4

)
q

+
(
178t5 − 48t

)
q5/4 +

(
380t6 − 165t2 + 3t−6

)
q3/2 + · · · , (5.24)

ISO (2) +sym. hyper− [2] (ζ = +;χ = −)

= 1 + 2tq1/4 +
(
8t2 − t−2

)
q1/2 +

(
14t3 − 4t−1

)
q3/4 +

(
−12 + 34t4 + t−4

)
q

+
(
54t5 − 28t+ 4t−3

)
q5/4 +

(
104t6 − 57t2 + 8t−2 − t−6

)
q3/2 + · · · . (5.25)

After gauging the ZC2 , we find the flavored index of the O(2)+ gauge theory with a
symmetric hyper and a fundamental hyper

IO(2)+sym. hyper−[2](ζ = +;χ′= +;x,y)

= 1
2
[
ISO(2)+sym. hyper− [2] (ζ = +;χ= +;x,y)+ISO(2)+sym. hyper− [2] (ζ = +;χ=−;x,y)

]
= 1+

(
x+x−1

)
tq1/4+

(
3+2x2+2x−2+y2+y−2

)
t2q1/2

+
((

2x3+2x−3+5x+5x−1+2xy2+2x−1y−2+2xy−2+2x−1y2
)
t3

−
(
x+x−1

)
t−1
)
q3/4+· · · . (5.26)

Turning off x and y, we get

IO (2) +sym. hyper− [2] (ζ = +;χ′ = +
)

= 1 + 2tq1/4 + 9t2q1/2 +
(
22t3 − 2t−1

)
q3/4 +

(
−11 + 55t4 + t−4

)
q

+
(
116t5 − 38t+ 2t−3

)
q5/4 +

(
242t6 − 111t2 + 4t−2 + t−6

)
q3/2 + · · · . (5.27)

The Coulomb limit of the index (5.27) is

IO(2)+sym. hyper−[2](C)(t) = 1 + t8

1− t4 − t6 + t10 = 1 + t8

(1 + t2)(1 + t2 + t4)(1− t2)2 . (5.28)

– 51 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
3

This is the Hilbert series of C2/D̂3. The Higgs limit of the index (5.27) coincides with (3.49).
It is consistent with the fact that the Higgs branch of the theory is the two USp(2) instanton
moduli space.

5.2.4 O(2) with 1 sym. and 2 fund. (N = 1, γ = 0, ε = 1, l = 2)

In this case the indices take the similar form as (5.22), (5.23) and (5.27). The flavored
index is evaluated as

IO(2)+sym. hyper−[4](ζ = +;χ′= +;x,yα)

= 1+
(
x+x−1) tq1/4+

(
4+2x2+2x−2+

2∑
α=1

(
y2
α+y−2

α

)
+
∑
α<β

(
y±α y

±
β +y±α y∓β

))
t2q1/2

+
((

2x3+2x−3+7x+7x−1+2
(
x+x−1) 2∑

α=1

(
y2
α+y−2

α

)
+2
(
x+x−1)∑

α<β

(
y±α y

±
β +y±α y∓β

))
t3

−
(
x+x−1) t−1

)
q3/4+· · · . (5.29)

For x = yα = 1, it reduces to

IO (2) +sym. hyper− [4] (ζ = +;χ′ = +
)

= 1 + 2tq1/4 + 16t2q1/2 +
(
50t3 − 2t−1

)
q3/4 +

(
−18 + 174t4 + t−4

)
q

+
(
498t5 − 90t+ 2t−3

)
q5/4 +

(
1359t6 − 399t2 + 4t−2

)
q3/2 + · · · . (5.30)

In the Coulomb limit the index (5.30) becomes

IO(2)+sym. hyper−[4](C)(t) = 1− t20

(1− t4)(1− t8)(1− t10) = 1 + t10

(1 + t2)(1 + t2 + t4 + t6)(1− t2)2 .

(5.31)

This is the Hilbert series for C2/D̂4. The Higgs branch limit of the index (5.30) is

IO(2)+sym. hyper−[4](H)(t) = 1
(1 + t)6(1 + t + t2)5(1− t)12

×
(
1 + t + 8t2 + 23t3 + 50t4 + 95t5 + 177t6 + 222t7 + 236t8

+ 222t9 + 177t10 + 95t11 + 50t12 + 23t13 + 8t14 + t15 + t16
)
.

(5.32)

This is the Hilbert series of the moduli space of two USp(4) instantons [87].
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5.2.5 O(3) with 1 sym. and 1 fund. (N = 1, γ = 1 ε = 1, l = 1)

The indices of the SO(3) gauge theory with a symmetric hyper and one flavor is

ISO (3) +sym. hyper− [2] (ζ = +;χ = +)

= 1
2

(
q

1
2 t2; q

)
∞(

q
1
2 t−2; q

)
∞

∑
m∈Z

∮
ds

2πis

(
1− q

|m|
2 s±

) (
q

1
2 t2s∓; q

)
∞(

q
1
2 t−2s±; q

)
∞

×

(
q

3
4 t−1; q

)4

∞(
q

1
4 t; q

)4

∞

(
q

3
4 +|m|t−1s∓2; q

)2

∞(
q

1
4 +|m|ts±2; q

)2

∞

(
q

3
4 + |m|2 t−1s∓; q

)2

∞(
q

1
4 + |m|2 ts±; q

)2

∞

×

(
q

3
4 + |m|2 t−1s∓; q

)2

∞(
q

1
4 + |m|2 ts±; q

)2

∞

(
q

3
4 t−1; q

)2

∞(
q

1
4 t; q

)2

∞

q
3
2 |m|t−6|m|, (5.33)

ISO (3) +sym. hyper− [2] (ζ = +;χ = −)

= 1
2

(
q

1
2 t2; q

)
∞(

q
1
2 t−2; q

)
∞

∑
m∈Z

∮
ds

2πis

(
1 + q

|m|
2 s±

) (
−q

1
2 t2s∓; q

)
∞(

−q
1
2 t−2s±; q

)
∞

×

(
q

3
4 t−1; q

)4

∞(
q

1
4 t; q

)4

∞

(
q

3
4 +|m|t−1s∓2; q

)2

∞(
q

1
4 +|m|ts±2; q

)2

∞

(
−q

3
4 + |m|2 t−1s∓; q

)2

∞(
−q

1
4 + |m|2 ts±; q

)2

∞

×

(
q

3
4 + |m|2 t−1s∓; q

)2

∞(
q

1
4 + |m|2 ts±; q

)2

∞

(
−q

3
4 t−1; q

)2

∞(
−q

1
4 t; q

)2

∞

q
3
2 |m|t−6|m|. (5.34)

We find the flavored index for the O(3)+ gauge theory by gauging the ZC2 :

IO(3)+sym. hyper−[2](ζ = +;χ′ = +;x, y)

= 1 +
(
x+ x−1

)
tq1/4 +

(
3 + 2x2 + 2x−2 + y2 + y−2

)
t2q1/2

+
( (

3x3 + 3x−3 + 6x+ 6x−1 + 2
(
xy2 + x−1y−2 + xy−2 + x−1y2

))
t3

−
(
x+ x−1

)
t−1
)
q3/4 + · · · . (5.35)

By setting x = y = 1, one finds

IO(3)+sym. hyper−[2](ζ = +;χ′ = +)

= 1 + 2tq1/4 + 9t2q1/2 +
(
26t3 − 2t−1

)
q3/4 +

(
−11 + 73t4 + t−4

)
q

+
(
178t5 − 42t+ 4t−3

)
q5/4 +

(
430t6 − 140t2 + 14t−2 + t−6

)
q3/2 + · · · . (5.36)
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The Coulomb limit of the index (5.36) agrees with the Hilbert series (5.28) for the C2/D̂3.
We have checked that in the Higgs limit the index (5.36) coincides with the Higgs branch
Hilbert series of the U(3) ADHM theory with two flavors. This is consistent with the fact
that both theories have the same Higgs branch which is identical to the moduli space of
three USp(2) instantons.

5.2.6 O(3) with 1 sym. and 2 fund. (N = 1, γ = 1 ε = 1, l = 2)

The flavored index of the O(3) gauge theory with a symmetric hyper and two flavors is
evaluated as

IO(3)+sym. hyper−[4](ζ = +;χ= +;x,y)

= 1+
(
x+x−1) tq1/4+

4+2x2+2x−2+
∑
α

(
y2
α+y−2

α

)
+
∑
α<β

(
y±α y

±
β +y±α y∓β

) t2q1/2

+
((

3x3+3x−3+8x+8x−1+2
(
x+x−1)∑

α

(
y2
α+y−2

α

)
+2
(
x+x−1)∑

α<β

(
y±α y

±
β +y±α y∓β

))
t3

−
(
x+x−1) t−1

)
q3/4+· · · . (5.37)

For x = yα = 1, it becomes

IO(3)+sym. hyper−[4](ζ = +;χ = +)

= 1 + 2tq1/4 + 16t2q1/2 +
(
54t3 − 2t−1

)
q3/4 +

(
−18 + 213t4 + t−4

)
q

+
(
618t5 − 84t+ 4t−3

)
q5/4 +

(
2193t6 − 414t2 + 21t−2

)
q3/2 + · · · . (5.38)

The Coulomb limit of the index (5.38) is equal to the Hilbert series (5.31) for the C2/D̂4.
The Higgs limit of the index (5.38) is

IO(3)+sym. hyper−[4](H)(t)

= 1
(1 + t)10 (1 + t2)5 (1 + t + t2)6 (1− t)18

×
(
1 + 8t2 + 18t3 + 61t4 + 142t5 + 388t6 + 792t7 + 1691t8 + 2996t9 + 5255t10

+ 7994t11 + 11713t12 + 15134t13 + 18773t14 + 20796t15 + 21980t16 + palindrome + t32
)
.

(5.39)

This describes the Hilbert series for the moduli space of three USp(4) instantons [80].9

5.2.7 O(4) with 1 antisym. and 1 fund. (N = 2, γ = 0 ε = 0, l = 1)

Let us study higher rank orthogonal gauge theories. In order to see the duality (2.36)
between the O(4) gauge theory with an adjoint hyper and one flavor and the quiver Chern-

9Note that we have the additional factor (1− t)−2 in the denominator compared to that in [80].
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Simons theory, we compute the relevant full indices. The indices of the SO(4) gauge theory
with an antisymmetric hyper and one flavor can be obtained from the integrals

ISO(4)+asym. hyper−[2](ζ = +;χ = +;x, y)

= 1
4

(
q

1
2 t2; q

)2

∞(
q

1
2 t−2; q

)2

∞

∑
m1,m2∈Z

∮ 2∏
i=1

dsi
2πisi

(
1− q

|m1−m2|
2 s±1 s

∓
2

)(
1− q

|m1+m2|
2 s±1 s

±
2

)

×

(
q

1
2 + |m1−m2|

2 t2s∓1 s
±
2 ; q

)
∞(

q
1
2 + |m1−m2|

2 t−2s±1 s
∓
2 ; q

)
∞

(
q

1
2 + |m1+m2|

2 t2s∓1 s
∓
2 ; q

)
∞(

q
1
2 + |m1+m2|

2 t−2s±1 s
±
2 ; q

)
∞

×

(
q

3
4 t−1x∓; q

)2

∞(
q

1
4 tx±; q

)2

∞

2∏
i=1

(
q

3
4 + |m1−m2|

2 t−1s∓1 s
±
2 x
∓; q

)
∞(

q
1
4 + |m1−m2|

2 ts±1 s
∓
2 x
±; q

)
∞

(
q

3
4 + |m1−m2|

2 t−1s∓1 s
±
2 x
±; q

)
∞(

q
1
4 + |m1−m2|

2 ts±1 s
∓
2 x
∓; q

)
∞

×

(
q

3
4 + |m1+m2|

2 t−1s∓1 s
∓
2 x
∓; q

)
∞(

q
1
4 + |m1+m2|

2 ts±1 s
±
2 x
±; q

)
∞

(
q

3
4 + |m1+m2|

2 t−1s∓1 s
∓
2 x
±; q

)
∞(

q
1
4 + |m1+m2|

2 ts±1 s
±
2 x
∓; q

)
∞

×
2∏
i=1

(
q

3
4 + |mi|2 t−1s∓i y

∓; q
)
∞(

q
1
4 + |mi|2 ts±i y

±; q
)
∞

(
q

3
4 + |mi|2 t−1s∓i y

±; q
)
∞(

q
1
4 + |mi|2 ts±i y

∓; q
)
∞

q
1
2
∑2

i=1 |mi|t−2
∑2

i=1 |mi|, (5.40)

ISO (4) +asym. hyper− [2] (ζ = +;χ = −;x, y)

= 1
2

(
±q

1
2 t2; q

)
∞(

±q
1
2 t−2; q

)
∞

∑
m∈Z

∮
ds

2πis
(
1− q|m|s∓2

) (
q

1
2 + |m|2 t2s∓; q

)
∞(

q
1
2 + |m|2 t−2s±; q

)
∞

(
−q

1
2 + |m|2 t2s∓; q

)
∞(

−q
1
2 + |m|2 t−2s±; q

)
∞

×

(
−q

3
4 t−1x∓; q

)
∞(

−q
1
4 tx±; q

)
∞

(
−q

3
4 t−1x∓; q

)
∞(

−q
1
4 tx±; q

)
∞

(
q

3
4 + |m|2 t−1s∓x±; q

)
∞(

q
1
4 + |m|2 ts±x±; q

)
∞

(
q

3
4 + |m|2 t−1s∓x∓; q

)
∞(

q
1
4 + |m|2 ts±x∓; q

)
∞

×

(
−q

3
4 + |m|2 t−1s±x∓; q

)
∞(

−q
1
4 + |m|2 ts±x±; q

)
∞

(
−q

3
4 + |m|2 t−1s±x±; q

)
∞(

−q
1
4 + |m|2 ts±x∓; q

)
∞

×

(
q

3
4 + |m|2 t−1s∓y∓; q

)
∞(

q
1
4 + |m|2 ts±y±; q

)
∞

(
q

3
4 + |m|2 t−1s∓y±; q

)
∞(

q
1
4 + |m|2 ts±y∓; q

)
∞

(
±q

3
4 t−1y∓; q

)
∞(

±q
1
4 ty±; q

)
∞

q
1
2 |m|t−2|m|. (5.41)
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By gauging the ZC2 we find the index of the O(4)+ gauge theory with an antisymmetric
hyper and one flavor

IO(4)++asym. hyper−[2](ζ = +;χ′= +,x,y)

= 1
2
[
ISO(4)+asym. hyper−[2](ζ = +;χ= +,x,y)+ISO(4)+asym. hyper−[2](ζ = +;χ=−,x,y)

]
= 1+

((
2+x2+x−2+y2+y−2

)
t2+t−2

)
q1/2+2

(
x+x−1

)
t−1q3/4

+
(
−1+x2+x−2+

(
7+4x2+4x−2+3y2+3y−2

++2x4+2x−4+2x2y2+2x−2y−2+2x2y−2+2x−2y2+y4+y−4
)
t4+4t−4

)
q+· · · . (5.42)

For x = y = 1 the index (5.42) reduces to

IO(4)++asym. hyper−[2](ζ = +;χ′ = +)

= 1 +
(
6t2 + t−2

)
q1/2 + 4t−1q3/4 +

(
1 + 35t4 + 4t−4

)
q +

(
28t+ 4t−3

)
q5/4

+
(
131t6 − 22t2 + 26t−2 + 6t−6

)
q3/2 + · · · . (5.43)

The index (5.42) in fact coincides with the index of the circular U(2)2 × U(2) × U(2)−2
quiver Chern-Simons theory which will be discussed in section 7. In the Coulomb limit the
index (5.42) becomes the Hilbert series (3.52) for Sym2(C2/D̂1) ∼= Sym2(C2/Z4). In the
Higgs limit we find the Higgs branch Hilbert series

IO(4)++asym. hyper−[2](H)(t) = 1 + 2t2 + 13t4 + 15t6 + 28t8 + 15t10 + 13t12 + 2t14 + t16

(1− t2)4(1− t4)4 .

(5.44)

5.2.8 O(4) with 1 sym. and 1 fund. (N = 2, γ = 0 ε = 1, l = 1)

The indices for the SO(4) gauge theory with a symmetric hyper and one flavor take the form

ISO(4)+sym. hyper−[2](ζ = +;χ= +) =

1
4

(
q

1
2 t2;q

)2

∞(
q

1
2 t−2;q

)2

∞

∑
m1,m2∈Z

∮ 2∏
i=1

dsi
2πisi

(
1−q

|m1−m2|
2 s±1 s

∓
2

)(
1−q

|m1+m2|
2 s±1 s

±
2

)

×

(
q

1
2 + |m1−m2|

2 t2s∓1 s
±
2 ;q

)
∞(

q
1
2 + |m1−m2|

2 t−2s±1 s
∓
2 ;q

)
∞

(
q

1
2 + |m1+m2|

2 t2s∓1 s
∓
2 ;q

)
∞(

q
1
2 + |m1+m2|

2 t−2s±1 s
±
2 ;q

)
∞

×

(
q

3
4 t−1;q

)4

∞(
q

1
4 t;q

)4

∞

2∏
i=1

(
q

3
4 +|mi|t−1s∓2

i ;q
)2

∞(
q

1
4 +|mi|ts±2

i ;q
)2

∞

(
q

3
4 + |m1−m2|

2 t−1s∓1 s
±
2 ;q

)2

∞(
q

1
4 + |m1−m2|

2 ts±1 s
∓
2 ;q

)2

∞

(
q

3
4 + |m1+m2|

2 t−1s∓1 s
∓
2 ;q

)2

∞(
q

1
4 + |m1+m2|

2 ts±1 s
±
2 ;q

)2

∞

×
2∏
i=1

(
q

3
4 + |mi|2 t−1s∓i ;q

)2

∞(
q

1
4 + |mi|2 ts±i ;q

)2

∞

q
3
2

∑2
i=1
|mi|t−6

∑2
i=1
|mi|, (5.45)
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ISO(4)+sym. hyper−[2](ζ = +;χ=−)

= 1
2

(
±q 1

2 t2;q
)
∞(

±q 1
2 t−2;q

)
∞

∑
m∈Z

∮
ds

2πis
(

1−q|m|s∓2
) (q 1

2 + |m|2 t2s∓;q
)
∞(

q
1
2 + |m|2 t−2s±;q

)
∞

(
−q 1

2 + |m|2 t2s∓;q
)
∞(

−q 1
2 + |m|2 t−2s±;q

)
∞

×

(
±q 3

4 t−1;q
)2

∞(
±q 1

4 t;q
)2

∞

(
q

3
4 + |m|2 t−1s∓;q

)2

∞(
q

1
4 + |m|2 ts±;q

)2

∞

(
−q 3

4 + |m|2 t−1s∓;q
)2

∞(
−q 1

4 + |m|2 ts±;q
)2

∞

(
q

3
4 +|m|t−1s∓2;q

)2

∞(
q

1
4 +|m|ts±2;q

)2

∞

(
q

3
4 t−1;q

)4

∞(
q

1
4 t;q

)4

∞

×

(
q

3
4 + |m|2 t−1s∓;q

)2

∞(
q

1
4 + |m|2 ts±;q

)2

∞

(
±q 3

4 t−1;q
)2

∞

(±q 1
4 t;q)2

∞
q

3
2 |m|t−6|m|. (5.46)

The flavored index of the O(4)+ gauge theory with a symmetric hyper and a fundamental
hyper is

IO (4) +sym. hyper− [2] (ζ = +;χ′ = +;x, y
)

=

1 +
(
x+ x−1

)
tq1/4 +

(
3 + 2x2 + 2x−2 + y2 + y−2

)
t2q1/2

+
( (

3x3 + 3x−3 + 6x+ 6x−1 + 2
(
xy2 + x−1y−2 + xy−2 + x−1y

))
t3

−
(
x+ x−1

)
t−1
)
q3/4 + · · · . (5.47)

By setting the fugacities x and y to unity, we get

IO (4) +sym. hyper− [2] (ζ = +;χ′ = +
)

= 1 + 2tq
1
4 + 9t2q +

(
26t3 − 2t−1

)
q

3
4 +

(
−11 + 78t4 + t−4

)
q +

(
202t5 − 42t+ 4t−3

)
q

5
4

+
(
518t6 − 145t2 + 17t−2 + t−6

)
q

3
2 +

(
1228t7 − 452t3 + 64t−1

)
q

7
4 + · · · . (5.48)

In the Coulomb limit the index (5.48) is equal to the Hilbert series

IO(4)+sym. hyper−[2](C)(t) = 1 + t8 + t10 + t12 + t14 + t16 + t18 + t26

(1 + t4)(1 + t6)(1− t6)2(1− t4)2 , (5.49)

which describes Sym2(C2/D̂3). In the Higgs limit the index (5.48) becomes

IO(4)+sym. hyper−[2](H)(t)

= 1
(1 + t)8 (1 + t2)4 (1 + t + t2)4 (1 + t + t2 + t3 + t4)3 (1− t)16

×
(
1 + t + 3t2 + 9t3 + 22t4 + 43t5 + 85t6 + 153t7 + 273t8 + 440t9 + 680t10

+ 982t11 + 1364t12 + 1778t13 + 2225t14 + 2633t15 + 2981t16

+ 3187t17 + 6548t18 + palindrome + t36
)
. (5.50)

This reproduces the Hilbert series for four USp(2) instantons [88].
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5.2.9 O(6) with 1 antisym. and 1 fund. (N = 3, γ = 0 ε = 0, l = 1)

One can further test the duality (2.36) between the O(2N) gauge theory with an adjoint
hyper and one flavor and the U(N)2 ×U(N)0 ×U(N)−2 quiver Chern-Simons theory (see
section 7). The flavored index of the O(6) gauge theory with an adjoint hyper and one
flavor is evaluated as

IO (6) +asym. hyper− [2] (ζ = +;χ′ = +;x, y
)

= 1 +
((

2 + x2 + x−2 + y2 + y−2
)
t2 + t−2

)
q1/2 +

(
2x+ 2x−1

)
t−1q3/4 + · · · . (5.51)

Turning off x and y, this becomes

IO(6)+asym. hyper−[2](ζ = +;χ′ = +)

= 1 +
(
6t2 + t−2

)
q1/2 + 4t−1q3/4 +

(
1 + 35t4 + 4t−4

)
q +

(
28t+ 4t−3

)
q5/4

+
(
162t6 − 3t2 + 33t−2 + 7t−6

)
q3/2 + · · · , (5.52)

where we have evaluated the index up to q3. In the Coulomb limit the index (5.52) reduces to

IO(6)+asym. hyper−[2](C)(t) = 1− t2 + t4 + t6 + 3t8 − t10 + 4t12 + palindrome + t24

(1 + t2)3(1 + t2 + t4)2(1− t2 + t4)(1− t2)6 .

(5.53)

As expected, this agrees with the Hilbert series for Sym3(C2/D̂1) ∼= Sym3(C2/Z4). In the
Higgs limit we get

IO(6)+asym. hyper−[2](H)(t) = 1 + 6t2 + 35t4 + 162t6 + 636t8 + 2193t10 + · · · . (5.54)

This agrees with the Higgs limit (7.38) of the flavored indices of the U(3)2×U(3)0×U(3)−2
quiver Chern-Simons theory which is expected to be dual to the O(6) gauge theory with an
adjoint hyper and one flavor.

6 ABJ(M) theory

In this section we consider supersymmetric indices of ABJ(M) theories. As reviewed in
section 2 the U(N)k ×U(N)−k ABJM theory is a 3d N = 6 supersymmetric gauge theory
consisting of the N = 2 vector multiplet of U(N)×U(N) gauge group with opposite Chern-
Simons levels k and −k and a twisted bifundamental ((�, �̄)) hypermultiplet (T, T̃ ) and a
bifundamental ((�̄,�)) hypermultiplet (H, H̃) [1].10 When k = 1, 2 the supersymmetry is
enhanced to N = 8.

The ABJ theory [2, 3] is a generalization of the ABJM theory whose gauge group
is replaced by a product U(N)k × U(M)−k of unitary gauge groups with N 6= M or a
product O(2N + γ)2k × USp(2M)−k of orthogonal and symplectic gauge groups. The
U(N)k×U(M)−k ABJ theory can be unitary SCFT when |M −N | ≤ |k|. While the general
ortho-symplectic ABJ model has N = 5 supersymmetry, the O(2)2k × USp(2M)−k ABJ
theory has enhanced N ≥ 6 supersymmetry.

10The 3d N = 6 Chern-Simons matter theories are classified in [47, 92].

– 58 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
3

6.1 Moduli spaces and local operators

The moduli space of the ABJ(M) theory is parametrized by the bifundamental hyper and
the twisted hyper that dress the monopole operators. There exist two sets of topological
currents and magnetic fluxes {m(1)

i }, {m
(2)
i } corresponding to the two gauge groups. The

dimension of the monopole operator in the U(N)k ×U(M)−k ABJ(M) model is

∆(m(1)
i ,m

(2)
j ) = −

2∑
I=1

∑
i<j

|m(I)
i −m

(I)
j |+

∑
i,j

|m(1)
i −m

(2)
j |, (6.1)

and that in the O(2N + γ)2k ×USp(2M)−k ABJ model is

∆
(
m

(1)
i ,m

(2)
j

)
= −

N∑
i=1
|m(1)

i | − 2
M∑
i=1
|m(2)

i | −
2∑
I=1

∑
i<j

(
|m(I)

i −m
(I)
j |+ |m

(I)
i +m

(I)
j |
)

+
∑
i,j

(
|m(1)

i −m
(2)
j |+ |m

(1)
i +m

(2)
j |
)
. (6.2)

Since the monopole operators carry electric charges due to the CS coupling, they are not
gauge invariant by themselves so that the vevs do no parametrize the moduli space but
rather fixes the action of the residual gauge group.

The moduli space of the U(1)k ×U(1)−k ABJM theory is C4/Zk and that for the non-
Abelian U(N)k ×U(M)−k ABJ(M) theory is the min(N,M)-th symmetric product (2.10)
of C4/Zk [1, 3]

MU(N)k ×U(M)−k ABJ(M) = Symmin(N,M)
(
C4/Zk

)
. (6.3)

For N > M the effective theory on the moduli space has an extra U(N−M)k CS theory. The
moduli space of the O(2 + γ)2×USp(2)−1 is C4/D̂k and that of the O(2N + γ)×USp(2M)
ABJ theory is the min(N,M)-th symmetric product (2.14) of C4/D̂k [2, 3]

MO(2N + γ)k ×USp(2M)−k ABJ = Symmin(N,M)(C4/D̂k). (6.4)

There appears an effective CS theory on the moduli space. For 2N + γ ≥M it is a pure
N = 3 O(2N+γ−2M)2k CS theory. For 2N+γ ≤ 2M it is a pure N = 3 USp(2M−2N)−k
× O(γ)2k CS theory. The ABJ theory has a duality (2.11) [3].

In the presence of the CS coupling, the monopole operators carry electric charges. For
example, the basic monopole v+,0,··· ,0 in the U(N) gauge theory of level k, it carries k units
of electric charges and transforms as k-th symmetric representation of the U(N) gauge
group. Since the electric charge of the gauge invariant operator should vanish, the monopole
operators in the ABJ(M) theory are not gauge invariant by themselves so that they need to
be dressed by the bifundamental hyper and the twisted hypermultiplet. According to the
Gauss law constraint, i.e. equations of motion of gauge field, the monopole operators with
m

(1)
i = m

(2)
i are counted by the Hilbert series [24]. When one computes the supersymmetric

indices, the milder condition ∑im
(1)
i = ∑

im
(2)
i holds [21]. For example, one finds gauge
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invariant dressed monopole operators in the ABJ(M) theory of the following forms:

v{m(1)=m};{m(2)=m} · (H)mkSym , v

{
m

(1)
i =−m

}
;{m(2)=−m} ·

(
H̃
)mk

Sym
, (6.5)

v{m(1)=m};{m(2)=m} ·
(
T̃
)mk

Sym
, v{m(1)=−m};{m(2)=−m} · (T )mkSym , (6.6)

where m > 0 for the m(1)
i = m

(2)
i sector. In the ABJ(M) theory with unitary gauge groups

each of the dressed monopole operators (6.5) and (6.6) parametrizes the factor C2/Zk
⊂ C4/Zk probed by M2-branes. Similarly, for the ortho-symplectic ABJ theory each of
them parametrizes the factor C2/D̂k ⊂ C4/D̂k. Also there are gauge invariant monopole
operators dressed by both of the hyper and the twisted hypermultiplet as well as their
fermionic superpartners. We will see them in the expansions in the indices in the following
analysis and find the mapping of these operators under the relevant dualities.

6.2 Indices

The index of the ABJ(M) theory is computed in [15, 19–22, 47, 67, 72] from the UV gauge
theory. The ABJM index in the large N limit is shown to agree with the index of the
Kaluza-Klein modes in the holographic dual AdS4 × S7/Zk [15]. The finite N corrections
are proposed as contributions of the wrapped M5-branes in the gravity side [44].

In order to investigate further dualities and geometries, we consider the N = 4
index (A.1) by introducing global fugacity t coupled to the generators of the R-symmetry
and additional fugacities for the flavor symmetry and the topological symmetry which allow
for several limits.

The index of the U(N)k ×U(M)−k ABJ(M) theory is given by

IU(N)k ×U(M)−kABJM(t, x, z, y; q)

= 1
N !M !

∑
m

(1)
1 ,··· ,m(1)

N ,m
(2)
1 ,··· ,m(2)

M ∈Z

∮ N∏
i=1

ds
(1)
i

2πis(1)
i

(
s

(1)
i

)km(1)
i

∮ M∏
i=1

ds
(2)
i

2πis(2)
i

(
s

(2)
i

)−km(2)
i

×
N∏
i<j

1− q
|m(1)
i
−m(1)

j
|

2 s
(1)±
i s

(1)∓
j

 M∏
i<j

1− q
|m(2)
i
−m(2)

j
|

2 s
(2)±
i s

(2)∓
j



×
∏
i,j

q 3
4 +
|m(1)
i
−m(2)

j
|

2 ts
(1)∓
i s

(2)±
j z∓; q


∞q 1

4 +
|m(1)
i
−m(2)

j
|

2 t−1s
(1)±
i s

(2)∓
j z±; q


∞

q 3
4 +
|m(2)
i
−m(1)

j
|

2 t−1s
(2)∓
i s

(1)±
j x∓; q


∞q 1

4 +
|m(2)
i
−m(1)

j
|

2 ts
(2)±
i s

(1)∓
j x±; q


∞

× q−
1
2
∑2

I=1

∑
i<j
|m(I)

i −m
(I)
j |+

1
2
∑

i,j
|m(1)

i −m
(2)
j |y

1
2
∑2

I=1

∑
i
m

(I)
i . (6.7)

Note that there are redundancies11 in the parameter dependence of the index (6.7). For
11Related to the enhanced global symmetry, there are many other ways to remove the redundancy. For

example, we can also write (6.7) as

IU(N)k×U(M)−kABJM (t, x, z, y; q) = IU(N)k×U(M)−kABJM
(

(xz)
1
2 ,
(
xz−1) 1

2 ,
(
xz−1) 1

2 , t; q
)
.
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example, by rescaling s(1)
i one can absorb y to x, z, that is,

IU(N)k×U(M)−kABJM(t, x, z, y; q) = IU(N)k×U(M)−kABJM
(
t, xy

1
k , zy−

1
k , 1; q

)
. (6.8)

As we will see in the subsequent sections, once we fix y to unity, the index of the ABJM
theory with k = 1 coincides with the index of the U(N) ADHM theory with one flavor
where the two fugacities x, z are directly identified with the same fugacities in the ADHM
theory. However, for the purpose of reading off the operators corresponding to each term,
we would like to keep y in the subsequent sections.

For γ = 1 or χ = 1 the flavored index of the SO(2N + γ)2k × USp(2M)−k ABJ
model is12

ISO(2N+γ)2k×USp(2M)−kABJM (t;ζ;q) =

1
2N+γ−1N !2MM !

∑
m

(1)
1 ,··· ,m(1)

N
,m

(2)
1 ,··· ,m(2)

M
∈Z

∮ N∏
i=1

ds
(1)
i

2πis(1)
i

(
s

(1)
i

)2km(1)
i

∮ M∏
i=1

ds
(2)
i

2πis(2)
i

(
s

(2)
i

)−2km(2)
i

×
N∏
i=1

(
1−χq

|m(1)
i
|

2 s
(1)±
i

)γ N∏
i<j

(
1−q

|m(1)
i
−m(1)

j
|

2 s
(1)±
i s

(1)∓
j

)
N∏
i<j

(
1−q

|m(1)
i

+m(1)
j
|

2 s
(1)±
i s

(1)±
j

)

×
M∏
i=1

(
1−q|m

(2)
i |s

(2)±2
i

) M∏
i<j

(
1−q

|m(2)
i
−m(2)

j
|

2 s
(2)±
i s

(2)∓
j

)
M∏
i<j

(
1−q

|m(2)
i

+m(2)
j
|

2 s
(2)±
i s

(2)±
j

)

×
∏
i,j

(
q

3
4 +
|m(1)
i
−m(2)

j
|

2 t−1s
(1)∓
i s

(2)±
j ;q

)
∞(

q
1
4 +
|m(1)
i
−m(2)

j
|

2 ts
(1)±
i s

(2)∓
j ;q

)
∞

(
q

3
4 +
|m(1)
i

+m(2)
j
|

2 t−1s
(1)∓
i s

(2)∓
j ;q

)
∞(

q
1
4 +
|m(1)
i

+m(2)
j
|

2 ts
(1)±
i s

(2)±
j ;q

)
∞

×

(
q

3
4 +
|m(2)
i
−m(1)

j
|

2 ts
(2)∓
i s

(1)±
j ;q

)
∞(

q
1
4 +
|m(2)
i
−m(1)

j
|

2 t−1s
(2)±
i s

(1)∓
j ;q

)
∞

(
q

3
4 +
|m(2)
i

+m(1)
j
|

2 ts
(2)∓
i s

(1)∓
j ;q

)
∞(

q
1
4 +
|m(2)
i

+m(1)
j
|

2 t−1s
(2)±
i s

(1)±
j ;q

)
∞

×


(
χq

3
4 +
|m(2)
j
|

2 t−1s
(2)∓
j ;q

)
∞(

χq
1
4 +
|m(2)
j
|

2 ts
(2)±
j ;q

)
∞

(
χq

3
4 +
|m(2)
j
|

2 ts
(2)∓
j ;q

)
∞(

χq
1
4 +
|m(2)
j
|

2 t−1s
(2)±
j ;q

)
∞


γ

×q−
γ
2

∑N

i=1
|m(1)

i |−
∑M

i=1
|m(2)

i |−
1
2

∑2
I=1

∑
i<j

(
|m(I)

i −m
(I)
j |+|m

(I)
i +m(I)

j |
)

+ 1
2

∑
i,j

(
|m(1)

i −m
(2)
j |+|m

(1)
i +m(2)

j |
)

×ζ
∑N

i=1
m

(1)
i . (6.9)

12While we get a consistent flavored index (6.34) of the SO(2)2 ×USp(2)−1 with (χ, ζ) = (+,+) which
include the fugacities x and z, we are not sure how they can be consistently introduced in the general indices
of the SO(2N + γ)2k ×USp(2M)−k ABJ model.
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For γ = 0 and χ = −1 we have

ISO(2N+γ)2k×USp(2M)−kABJM (t;q) =
1

2N−1 (N−1)!2MM !×

×
∑

m
(1)
1 ,··· ,m(1)

N−1,m
(2)
1 ,··· ,m(2)

M
∈Z

∮ N−1∏
i=1

ds
(1)
i

2πis(1)
i

(
s

(1)
i

)2km(1)
i

∮ M∏
i=1

ds
(2)
i

2πis(2)
i

(
s

(2)
i

)−2km(2)
i

×
N−1∏
i=1

(
1−q|m

(1)
i |s

(1)±2
i

)N−1∏
i<j

(
1−q

|m(1)
i
−m(1)

j
|

2 s
(1)±
i s

(1)∓
j

)
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i<j

(
1−q

|m(1)
i

+m(1)
j
|

2 s
(1)±
i s

(1)±
j

)

×
M∏
i=1

(
1−q|m

(2)
i |s

(2)±2
i

) M∏
i<j

(
1−q

|m(2)
i
−m(2)

j
|

2 s
(2)±
i s

(2)∓
j

)
M∏
i<j

(
1−q

|m(2)
i

+m(2)
j
|
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(2)±
i s

(2)±
j

)

∏
i,j

(
q

3
4 +
|m(1)
i
−m(2)

j
|

2 t−1s
(1)∓
i s

(2)±
j ;q

)
∞(
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1
4 +
|m(1)
i
−m(2)

j
|

2 ts
(1)±
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(2)∓
j ;q

)
∞

(
q

3
4 +
|m(1)
i

+m(2)
j
|
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(2)±
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|m(2)
j
|

2 ts
(2)∓
j ;q

)
∞

(
±q 3

4 +
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|
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−m(1)

j
|
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j ;q
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)
∞

(
q

3
4 +
|m(2)
i
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|
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∞(
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1
4 +
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i
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j
|

2 t−1s
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i s
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j ;q
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×

(
±q 3

4 +
|m(2)
j
|
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|m(2)
j
|

2 t−1s
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)
∞

(
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|m(2)
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|
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)
∞(
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4 +
|m(2)
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|

2 t−1s
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)
∞

×q−
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i=1
|m(1)

i |−
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i=1
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1
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I=1

∑
i<j

(
|m(I)
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j |+|m

(I)
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j |
)

+ 1
2

∑
i,j

(
|m(1)

i −m
(2)
j |+|m

(1)
i +m(2)

j |
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×ζ
∑N−1

i=1
m

(1)
i . (6.10)

6.2.1 U(1)1 ×U(1)−1 ABJM (N = M = 1, k = 1)

For N = 1 the bare monopole vm;m has electric charges (m,−m) due to the effect of the
Chern-Simons level k = 1. It can form a gauge invariant operator when dressed by the
chiral multiplet T (resp. T̃ ) of electric charges (+1,−1) (resp. (−1,+1)) and the chiral
multiplet H (resp. H̃) of electric charges (−1,+1) (resp. (+1,−1)).
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The flavored index of U(1)1 ×U(1)−1 ABJM is calculated as

IU(1)1×U(1)−1ABJM(t,x,y,z;q) =

1+
[
( xy︸︷︷︸
v1;1H

+x−1y−1︸ ︷︷ ︸
v−1;−1H̃

)t+(yz−1︸ ︷︷ ︸
v1;1T̃

+ y−1z︸ ︷︷ ︸
v−1;−1T

)t−1
]
q1/4+

[
xz︸︷︷︸
TH

+x−1z−1︸ ︷︷ ︸
T̃ H̃

+xy2z−1︸ ︷︷ ︸
v2;2T̃H

+x−1y−2z︸ ︷︷ ︸
v−2;−2TH̃

+( 1︸︷︷︸
HH̃

+ x2y2︸ ︷︷ ︸
v2;2H2

+ x−2y−2︸ ︷︷ ︸
v−2;−2H̃2

)t2+( 1︸︷︷︸
T T̃

+y2z−2︸ ︷︷ ︸
v2;2T̃ 2

+ y−2z2︸ ︷︷ ︸
v−2;−2T 2

)t−2
]
q1/2+

[(
x−2y−1z−1︸ ︷︷ ︸
v−1;−1T̃ H̃2

+ x2yz︸ ︷︷ ︸
v1;1TH2

+x2y3z−1︸ ︷︷ ︸
v3;3T̃H2

+ x−2y−3z︸ ︷︷ ︸
v−3;−3TH̃2

)
t+
(
xy−1z2︸ ︷︷ ︸
v−1;−1T 2H

+x−1yz−2︸ ︷︷ ︸
v1;1T̃ 2H̃

+xy3z−2︸ ︷︷ ︸
v3;3T̃ 2H

+x−1y−3z2︸ ︷︷ ︸
v−3;−3T 2H̃

)
t−1

+
(

xy︸︷︷︸
v1;1H2H̃

+ x−1y−1︸ ︷︷ ︸
v−1;−1HH̃2

+ x3y3︸ ︷︷ ︸
v3;3H3

+ x−3y−3︸ ︷︷ ︸
v−3;−3H̃3

)
t3+

(
y−1z︸ ︷︷ ︸

v−1;−1T 2T̃

+ yz−1︸ ︷︷ ︸
v1;1T T̃ 2

+ y−3z3︸ ︷︷ ︸
v−3;−3T 3

+y3z−3︸ ︷︷ ︸
v3;3T̃ 3

)
t−3
]
q3/4+· · · . (6.11)

Note that the terms of order y±z∓tq 3
4 , x±1y±t−1q

3
4 are absent due to the cancellation by

the fermionic modes. For example, at the order y−1ztq
3
4 there are a bosonic contribution

THH̃ and a fermionic contribution ψT , hence the total coefficient vanishes. See table (B.11)
in appendix B.2. As we will discuss the dualities between the ADHM theory and the
ABJM theory in subsection 6.2.13, when we set y = 1, the index (6.11) coincides with the
index (3.16) for the ADHM U(1) with one flavor. Thus the Coulomb and Higgs limits of the
indices lead to the Hilbert series (3.19) of the geometry C2 probed by a single M2-brane.

6.2.2 U(2)1 ×U(2)−1 ABJM (N = M = 2, k = 1)

The flavored index of the U(2)1 ×U(2)−1 ABJM theory is given by

IU(2)1×U(2)−1ABJM(t,x,y,z;q) =

1+
[(

xy︸︷︷︸
v1,0;1,0H(1)

+ x−1y−1︸ ︷︷ ︸
v−1,0;−1,0H̃(1)

)
t+
(

y−1z︸ ︷︷ ︸
v−1,0;−1,0T (1)

+ yz−1︸ ︷︷ ︸
v1,0;1,0T̃ (1)

)
t−1

]
q1/4

+
[

2xz︸︷︷︸
TrTH,

v1,−1;1,−1T (2)H(1)

+ 2x−1z−1︸ ︷︷ ︸
TrT̃ H̃,

v1,−1;1,−1T̃ (1)H̃(2)

+ 2xy2z−1︸ ︷︷ ︸
v2,0;2,0T̃ (1)H(1),

v1,1;1,1TrT̃H

+ 2x−1y−2z︸ ︷︷ ︸
v−2,0;−2,0T (1)H̃(1),

v−1,−1;−1,−1TrTH̃

+
(

2︸︷︷︸
TrHH̃,

v1,−1;1,−1H(1)H̃(2)

+ 2x2y2︸ ︷︷ ︸
v2,0;2,0H(1)2,
v1,1;1,1TrH2

+ 2x−2y−2︸ ︷︷ ︸
v−2,0;−2,0H̃(1)2,

v−1,−1;−1,−1TrH̃2

)
t2+

(
2︸︷︷︸

TrT T̃ ,
v1,−1;1,−1T (2)T̃ (1)

+ 2y−2z2︸ ︷︷ ︸
v−2,0;−2,0T (1)2,

v−1,−1;−1,−1TrT 2

+ 2y2z−2︸ ︷︷ ︸
v2,0;2,0T̃ (1)2,

v1,1;1,1TrT̃ 2

)
t−2

]
q1/2+
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+
[(

3x−2y−1z−1︸ ︷︷ ︸
v−1,0;−1,0T̃ (1)H̃(1)2,

v−1,0;−1,0T̃ (1)T̃ (2)H̃(2),

v−2,1;−2,1T̃ (2)H̃(1)2

+ 3x2yz︸ ︷︷ ︸
v1,0;1,0T (1)H(1)2,

v1,0;1,0T (2)H(1)H(2),

v2,−1;2,−1T (2)H(1)2

+ 3x2y3z−1︸ ︷︷ ︸
v3,0;3,0T̃ (1)H(1)2,

v2,1;2,1T̃ (1)H(1)H(2),

v2,1;2,1T̃ (2)H(1)2

+ 3x−2y−3z︸ ︷︷ ︸
v−3,0;−3,0T (1)H̃(1)2,

v−2,−1;−2,−1T (1)H̃(1)H̃(2),

v−2,−1;−2,−1T (2)H̃(1)2

+ 3y−1z︸ ︷︷ ︸
v−1,0;−1,0T (1)H(1)H̃(1),

v−1,0;−1,0ψ
T (1) ,

v−1,0;−1,0T (1)H(2)H̃(2),

v−1,0;−1,0T (2)H(2)H̃(1),

v−2,1;−2,1T (1)H(2)H̃(1)

+ 3yz−1︸ ︷︷ ︸
v1,0;1,0T̃ (1)H(1)H̃(1),

v1,0;1,0ψ
T̃ (1) ,

v1,0;1,0T̃ (1)H(2)H̃(2),

v1,0;1,0T̃ (2)H(1)H̃(2),

v2,−1;2,−1T̃ (1)H(1)H̃(2)

)
t+
(

3xy−1z2︸ ︷︷ ︸
v−1,0;−1,0T (1)2H(1),

v−1,0;−1,0T (1)T (2)H(2),

v−2,1;−2,1T (1)2H(2)

+ 3x−1yz−2︸ ︷︷ ︸
v1,0;1,0T̃ (1)2H̃(1),

v1,0;1,0T̃ (1)T̃ (2)H̃(2),

v2,−1;2,−1T̃ (1)2H̃(2)

+ 3xy3z−2︸ ︷︷ ︸
v3,0;3,0T̃ (1)2H(1),

v2,1;2,1T̃ (1)T̃ (2)H(1),

v2,1;2,1T̃ (1)2H(2)

+ 3x−1y−3z2︸ ︷︷ ︸
v−3,0;−3,0T (1)2H̃(1),

v−2,−1;−2,−1T (1)T (2)H̃(1),

v−2,−1;−2,−1T (1)2H̃(2)

+ 3xy︸︷︷︸
v1,0;1,0T (1)T̃ (1)H(1),

v1,0;1,0ψ
H(1) ,

v1,0;1,0T (2)T̃ (2)H(1),

v1,0;1,0T (2)T̃ (1)H(2),

v2,−1;2,−1T (2)T̃ (1)H(1)

+ 3x−1y−1︸ ︷︷ ︸
v−1,0;−1,0T (1)T̃ (1)H̃(1),

v−1,0;−1,0ψ
H̃(1) ,

v−1,0;−1,0T (2)T̃ (2)H̃(1),

v−1,0;−1,0T (1)T̃ (2)H̃(2),

v−2,1;−2,1T (1)T̃ (2)H̃(1)

)
t−1

+
(

3xy︸︷︷︸
v1,0;1,0H(1)2H̃(1),

v1,0;1,0H(1)H(2)H̃(2),

v2,−1;2,−1H(1)2H̃(2)

+ 3x−1y−1︸ ︷︷ ︸
v−1,0;−1,0H(1)H̃(1)2,

v−1,0;−1,0H(2)H̃(1)H̃(2),

v−2,1;−2,1H(2)H̃(1)2

+ 2x3y3︸ ︷︷ ︸
v3,0;3,0H(1)3,

v2,1;2,1H(1)2H(2)

+ 2x−3y−3︸ ︷︷ ︸
v−3,0;−3,0H̃(1)3,

v−2,−1;−2,−1H̃(1)2H̃(2)

)
t3

+
(

3y−1z︸ ︷︷ ︸
v−1,0;−1,0T (1)2T̃ (1),

v−1,0;−1,0T (1)T (2)T̃ (2),

v−2,1;−2,1T (1)2T̃ (2)

+ 3yz−1︸ ︷︷ ︸
v1,0;1,0T̃ (1)2T (1),

v1,0;1,0T̃ (1)T̃ (2)T (2),

v2,−1;2,−1T̃ (1)2T (2)

+ 2y−3z3︸ ︷︷ ︸
v−3,0;−3,0T (1)3,

v−2,−1;−2,−1T (1)2T (2)

+ 2y3z−3︸ ︷︷ ︸
v3,0;3,0T̃ (1)3,

v2,1;2,1T̃ (1)2T̃ (2)

)
t−3

]
q3/4+· · · .

(6.12)

The difference from the Abelian theory starts from the terms with q1/2. The terms with
q3/4t and q3/4t−1 count the mixed branch operators which contain the cancellations between
the monopole operators dressed by the (twisted) hyper and the monopole operators dressed
by the (twisted) hyperino (also see appendix B.2.1):

v−1,0;−1,0T̃ (1)H(1)H̃(1) ↔ v−1,0;−1,0ψT (1) ,

v1,0;1,0T̃ (1)H(1)H̃(1) ↔ v1,0;1,0ψ
T̃ (1) ,

v1,0;1,0T (1)T̃ (1)H(1) ↔ v1,0;1,0ψH(1) ,

v−1,0;−1,0T (1)T̃ (1)H̃(1) ↔ v−1,0;−1,0ψ
H̃(1) . (6.13)

These cancellations also occur in the U(1)1×U(1)−1 ABJM theory so that they do not show
up in the expansion (6.11). However, in the U(2)1 × U(2)−1 ABJM theory additional three
operators with the same charges appear so that we get the non-trivial terms 3y±z∓q3/4t

and 3x±y±q3/4t−1.
Again there exist redundancies of the fugacities and they can be fixed by setting

y = 1 (6.8). Then the index (6.12) is equal to the index (3.20) for the U(2) ADHM
theory with one flavor. This is the simplest non-Abelian duality between the ADHM
theory and ABJM theory. In the Coulomb and Higgs limit we find the Hilbert series (3.29)
for Sym2(C2).
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6.2.3 U(3)1 ×U(3)−1 ABJM (N = M = 3, k = 1)
Similarly, one can check that the flavored index of the U(3)1 × U(3)−1 ABJM theory
coincides with the index (3.30) of the U(3) ADHM theory with a single flavor. We have
evaluated the index up to q2. The Coulomb and Higgs limits of the index again give rise to
the Hilbert series (3.32) of Sym3(C2).

6.2.4 U(1)k ×U(1)−k ABJM (N = M = 1, k ≥ 2)
The flavored index of the U(1)2 ×U(1)−2 is given by

IU(1)2×U(1)−2ABJM(t, x, y, z; q)

= 1 +
[
x−1z−1 + xyz−1 + xz + x−1y−1z +

(
1 + x−2y−1 + x2y

)
t2 +

(
1 + yz−2

+ y−1z2
)
t−2
]
q

1
2 +

[
− 3 + x−2z−2 + x2y2z−2 + x2z2 + x−2y−2z2 +

(
1 + x−4y−2

+ x−2y−1 + x2y + x4y2
)
t4 +

(
x−3y−1z−1 + x3y2z−1 + x−3y−2z + x3yz

)
t2

+
(
x−1yz−3 + xy2z−3 + x−1y−2z3 + xy−1z3

)
t−2 +

(
1 + y2z−4 + yz−2 + y−1z2

+ y−2z4
)
t−4
]
q + · · · . (6.14)

For x = y = z = 1 we have

IU (1)2 ×U (1)−2ABJM (t, x = 1, y = 1, z = 1; q)

= 1 +
(
4 + 3t2 + 3t−2

)
q1/2

+
(
1 + 5t4 + 4t2 + 4t−2 + 5t−4

)
q +

(
4 + 7t6 + 4t4 + 4t−4 + 7t−6

)
q3/2

+
(
7 + 9t8 + 4t6 + 8t2 + 8t−2 + 4t−6 + 9t−8

)
q2 + · · · . (6.15)

In the Coulomb and Higgs limits the index (6.15) gives rise to the Hilbert series (3.35) for
the singularity C2/Z2 probed by the M2-brane. The variant (U(1)2 ×U(1)−2)/Z2 is dual
to the U(1)1 ×U(1)−1 ABJM theory as their indices are the same.

For the U(1)k × U(1)−k ABJM theory with k = 3, 4 we have the following flavored
indices

IU(1)3×U(1)−3ABJM(t, x, y, z; q)

= 1 +
(
x−1z−1 + xz + t−2 + t2

)
q

1
2 +

[
(x−3y−1 + x3y)t3 +

(
x2yz−1 + x−2y−1z

)
t

+
(
xyz−2 + x−1y−1z2

)
t−1 +

(
yz−3 + y−1z3

)
t−3
]
q

3
4 +

(
− 3 + x−2z−2 + x2z2 + t4

+ t−4
)
q + · · · , (6.16)

and

IU(1)4×U(1)−4ABJM(t, x, y, z; q)

= 1 +
(
x−1z−1 + xz + t2 + t−2

)
q

1
2 +

[
− 3 + x−2z−2 + x2yz−2 + x2z2 + x−2y−1z2

+
(
1 + x−4y−1 + x4y

)
t4 +

(
x3yz−1 + x−3y−1z

)
t2 +

(
xyz−3 + x−1y−1z3

)
t−2

+
(
1 + yz−4 + y−1z4

)
t−4
]
q + · · · . (6.17)
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For x = y = z = 1 we have

IU(1)3 ×U(1)−3ABJM(t, x = 1, y = 1, z = 1; q)

= 1 +
(
2 + t2 + t−2

)
q1/2 +

(
2t3 + 2t+ 2t−1 + 2t−3

)
q3/4

+
(
−1 + t4 + t−4

)
q +

(
2t5 + 2t3 + 2t−3 + 2t−5

)
q5/4 + · · · , (6.18)

and

IU(1)4 ×U(1)−4ABJM(t, x = 1, y = 1, z = 1; q)

= 1 +
(
2 + t2 + t−2

)
q1/2 +

(
1 + 3t4 + 2t2 + 2t−2 + 3t−4

)
q

+
(
2 + 3t6 + 2t4 + 2t−4 + 3t−6

)
q3/2 + · · · . (6.19)

As expected, we find the Hilbert series (3.38) and (3.42) in the Coulomb and Higgs limits.
For general k we get the Hilbert series (3.44) for C2/Zk. We will see that these indices have
closed expressions in section 6.3.

6.2.5 U(N)k ×U(N)−k ABJM (N = M ≥ 2, k ≥ 2)

For more general U(N)k ×U(N)−k ABJM theory the indices reduce the N -th symmetric
product SymN (C2/Zk) in the Coulomb and Higgs limits. For example, the flavored indices
for N = 2 and k = 2, 4 are given by

IU(2)2×U(2)−2ABJM(t,x,y,z;q)

= 1+
(
xz+x−1z−1+xyz−1+x−1y−1z+

(
1+x2y+x−2y−1

)
t2

+
(
1+yz−2+y−1z2

)
t−2
)
q1/2+

(
1+2x−2y−1+2x2y+3x2z2+3x−2z−2

+3x2y2z−2+3x−2y−2z2+2yz−2+2y−1z2+
(
3+2x4y2+2x−4y−2+2x2y+2x−2y−1

)
t4

+
(
2xz+2x−1z−1+2x3y2z−1+2x−3y−2z+2xyz−1+2x−1y−1z

+2x3yz+2x−3y−1z−1
)
t2+

(
2xz+2x−1z−1+2x−1y−2z3+2xy2z−3

+2x−1y−1z+2xyz−1+2xy−1z3+2x−1yz−3
)
t−2

+
(
3+2y2z−4+2yz−2+2y−1z2+2y−2z4

)
t−4
)
q+· · · , (6.20)

and

IU(2)4 ×U(2)−4ABJM(t, x, y, z; q)

= 1 +
(
xz + x−1z−1 + t2 + t−2

)
q1/2 +

(
2x2z2 + 2x−2z−2 + x2yz−2 + x−2y−1z2

+
(
2 + x4y + x−4y−1

)
t4 +

(
xz + x−1z−1 + x3yz−1 + x−3y−1z

)
t2

+
(
2 + yz−4 + y−1z4

)
t−4 +

(
xz + x−1z−1 + xyz−3 + x−1y−1z3

)
t−2
)
q + · · · . (6.21)
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When we set x = z = y = 1, we have

IU(2)2 ×U(2)−2ABJM(t, x = 1, y = 1, z = 1; q)
= 1 + (4 + 3t2 + 3t−2)q1/2 + (21 + 11t4 + 11t−4 + 16t2 + 16t−2)q

+
(
32 + 22t6 + 22t−6 + 36t4 + 36t−4 + 36t2 + 36t−2

)
q3/2

+
(
53 + 45t8 + 45−8 + 64t6 + 64t−6 + 54t4 + 54t−4 + 48t2 + 48t−2

)
q2 + · · · ,

(6.22)

and

IU(2)4 ×U(2)−4ABJM(t, x = 1, y = 1, z = 1; q)

= 1 +
(
2 + t2 + t−2

)
q1/2 +

(
6 + 4t4 + 4t2 + 4t−2 + 4t−4

)
q

+ 2
(
1 + t2

) (
1 + t−2

) (
3t4 − t2 + 3− t−2 + 3t−4

)
q3/2

+
(
17 + 14t8 + 16t6 + 15t4 + 12t2 +

(
t→ t−1

))
q2 + · · · . (6.23)

The Coulomb and Higgs limits of (6.22) and (6.23) reproduce the Hilbert series (3.48)
and (3.52).

6.2.6 U(N + k)k ×U(N)−k ABJ

Because of the duality (2.11), the U(N + k)k × U(N)−k ABJ theory is equivalent to the
U(N)k×U(N)−k ABJM theory. So one can check that the corresponding ABJ index agrees
with the ABJM index.

6.2.7 U(2)2 ×U(1)−2 ABJ (N = 2,M = 1, k = 2)

The simplest ABJ theory which is not equivalent to the ABJM is the U(2)2 × U(1)−2 ABJ
model. The index is

IU(2)2×U(1)−2 ABJ

= 1 +
[
t2
(
1 + x−2y−1 + x2y

)
+ x−1z−1 + xyz−1 + xz + x−1y−1z

+
(
1 + yz−2 + y−1z2

)
t−2
]
q

1
2

+
[
− 2 + t4

(
1 + x−4y−2 + x−2y−1 + x2y + x4y2

)
+ x−2z−2 + x2y2z−2 + x2z2

+ x−2y−2z2 + t2
(
x−3y−1z−1 + x3y2z−1 + x−3y−2z + x3yz

)
+
(
x−1yz−3 + xy2z−3

+ x−1y−2z3 + xy−1z3
)
t−2 +

(
1 + y2z−4 + yz−2 + y−1z2 + y−2z4

)
t−4
]
q + · · · .

(6.24)

Since the bare monopole has two units of an electric charge due to the Chern-Simons coupling
of k = 2, it can form the gauge invariant operators when dressed by quadratic polynomials
in the charged matter fields. The terms q1/2t2 and q1/2t2x±2y± are contributed from the
operators HH̃, v1;1H2 and v−1;−1H̃2. The terms q1/2t−2 and q1/2t−2z∓2y± correspond to
the operators T T̃ , v1;1T̃ 2 and v−1;−1T 2. The terms xz± and x±y±z∓ count the operators
HT , H̃T , v1;1HT̃ and v−1;−1H̃T .
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For x = y = z = 1 we have

IU(2)2 ×U(1)−2ABJ(t, x = 1, y = 1, z = 1; q)
= 1 + (4 + 3t2 + 3t−2)q1/2 + (2 + 4t2 + 5t4 + 4t−2 + 5t−4)q

+
(
−t2 + 4t4 + 7t6 − t−2 + 4t−4 + 7t−6

)
q3/2

+
(
15 + 12t2 + 4t6 + 9t8 + 12t−2 + 4t−6 + 9t−8

)
q2

+
(
−20− 8t2 + 8t4 + 4t8 + 11t10 − 8t−2 + 8t−4 + 4t−8 + 11t−10

)
q5/2 + · · · . (6.25)

Here we find that

IU(2)1 ×U(2)−1ABJM(t, x, y, z; q)
= IU(1)1 ×U(1)−1ABJM(t, x, y, z; q)IU(2)2 ×U(1)−2ABJ(t, x, y2, z; q). (6.26)

The operators corresponding to the terms with q1/4 in the U(2)1 ×U(2)−1 ABJM theory
map to those in the U(1)1 × U(1)−1 ABJM theory and those for the terms q1/2 correspond
to those in the U(2)2×U(1)−2 ABJ and the U(1)1×U(1)−1 ABJM theory. From the terms
with q3/4 we find the following operator map:

fugacity (x = z = 1) U(2)1 ×U(2)−1 U(1)1 ×U(1)−1 U(2)2 ×U(1)−2

y3t3q
3
4 v3,0;3,0(H(1))3 v3;3H3 1

v2,1;2,1(H(1))2H̃(2) v1;1H v1;1H2

yt3q
3
4 v1,0;1,0(H(1))2H̃(1) v1;1H2H̃ 1

v1,0;1,0H(1)H̃(1)H(2) v1;1H HH̃

v2,−1(H(1))2H̃(2) v−1;−1H̃ v1;1H2

y3tq
3
4 v3,0;3,0T̃ (1)(H(1))2 v3;3T̃H2 1

v2,1;2,1T̃ (2)(H(1))2 v1;1T̃ v1;1H̃2

v2,1;2,1T̃ (1)H(1)H(2) v1;1H v1;1T̃H

ytq
3
4 v2,−1;2,−1T (2)(H(1))2 v−1;−1T v1;1H2

v2,−1;2,−1T̃ (1)H(1)H̃(2) v−1;−1H̃ v1;1T̃H

v1,0;1,0T̃ (1)H(2)H̃(2) v1;1T̃ HH̃

v1,0;1,0T̃ (2)H(1)H̃(2) v1;1H T̃H̃

. (6.27)

Note that the monopole operators in the U(2)1 × U(2)−1 ABJM theory can be dressed
by two components of the matter fields as each of the U(2) gauge group is broken to the
U(1)×U(1). When they are only dressed by the first components with the superscript (1),
they correspond to the dressed monopoles in the U(1)1 × U(1)−1 ABJM theory. Otherwise,
they map to composite operators constructed from the operators in the U(1)1 × U(1)−1
ABJM theory and those of the U(2)2 ×U(1)−2 ABJ theory.

Hence we conjecture a duality

U(2)2 ×U(1)−2 ABJ ⊗ U(1)1 ×U(1)−1 ABJM
⇔ U(2)1 ×U(2)−1 ABJM. (6.28)
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In other words, the U(2)1 ×U(2)−1 ABJM theory is factorized into a product theory of the
U(1)1 ×U(1)−1 ABJM theory and the U(2)2 ×U(1)−2 ABJ theory. The U(1)1 ×U(1)−1
ABJM is a free theory that describes the center of motion of a stack of M2-branes.

Note that (6.28) is also consistent with the exact values of S3 partition function
Z

U(1)1×U(1)−1
S3 = 1

4 , Z
U(2)2×U(1)−2
S3 = 1

4π , Z
U(2)1×U(2)−1
S3 = 1

16π computed in [93, 94]. The
U(2)1 ×U(1)−1 ABJ captures an interacting sector of the two coincident M2-branes.

In the Coulomb and Higgs limits the index (6.25) becomes the Hilbert series (3.35)
for C2/Z2.

6.2.8 U(3)4 ×U(1)−4 ABJ (N = 3,M = 1, k = 4)

For the U(3)4 ×U(1)−4 ABJ theory we have the flavored index

IU(3)4 ×U(1)−4ABJ(t, x, y, z; q)

= 1 +
(
xz + x−1z−1 + t2 + t−2

)
q1/2 +

(
− 2 + x2yz−2 + x−2y−1z2 + x2z2 + x−2z−2

+
(
1 + x4y + x−4y−1

)
t4 +

(
x3yz−1 + x−3y−1z

)
t2

+
(
xyz−3 + x−1y−1z3

)
t−2 +

(
1 + yz−4 + y−1z4

)
t−4
)
q + · · · . (6.29)

When the fugacities x, y and z are turned off, it reduces to

IU(3)4 ×U(1)−4ABJ(t, x = 1, y = 1, z = 1; q)

= 1 +
(
2 + t2 + t−2

)
q1/2 +

(
2 + 3t4 + 2t2 + 2t−2 + 3t−4

)
q

+
(
3t6 + 2t4 − t2 + t−2 + 2t−4 + 3t−6

)
q3/2 + · · · . (6.30)

The Coulomb and Higgs limits of the index give rise to the Hilbert series (3.42) for C2/D̂1.

6.2.9 U(3)2 ×U(2)−2 ABJ (N = 3, N = 2, k = 2)

For the U(3)2 ×U(2)−2 ABJ theory we find the flavored index

IU(3)2×U(2)−2ABJ(t,x,y,z;q)

= 1+
(
xz+x−1z−1+xyz−1+x−1y−1z+

(
1+x2y+x−2y−1

)
t2+

(
1+y−1z2+yz−2

)
t−2
)
q1/2

+
(
1+3

(
x2z2+x−2z−2+x2y2z−2+x−2y−2z2

)
+2
(
x2y+x−2y−1+y−1z2+yz−2

)
+
(
3+2x4y2+2x−4y−2+2x2y+2x−2y−1

)
t4+2

(
x3yz+x−3y−1z−1+x3y2z−1+x−3y−2z

+xyz−1+x−1y−1z+xz+x−1z−1
)
t2+2

(
xy2z−3+x−1y−2z3+xy−1z3+x−1yz−3

+xyz−1+x−1y−1z+xz+x−1z−1
)
t−2+

(
3+2y−2z4+2y2z−4+2y−1z2+2yz−2

)
t−4
)
q+· · ·.
(6.31)
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Setting x, y and z to unity, we get

IU(3)2 ×U(2)−2ABJ(t, x = 1, y = 1, z = 1; q)

= 1 +
(
4 + 3t2 + 3t−2

)
q1/2 +

(
21 + 11t4 + 16t2 + 16t−2 + 11t−4

)
q

+
(
36 + 22t6 + 36t4 + 39t2 + 36−4 + 22t−6

)
q3/2 + · · · . (6.32)

Both of the Coulomb and Higgs limits of the index (6.32) coincide with the Hilbert
series (3.48) for Sym2(C2/Z2). As discussed in section 2.1, this is dual to the (SU(2)4 ×
SU(2)−4)/Z2 BLG theory.

6.2.10 O(2)2 ×USp(2)−1 ABJ

The flavored index of the SO(2)2 × USp(2)−1 ABJ theory with (ζ, χ) = (+,+) coincides
with the flavored index (6.14) of the U(1)2 ×U(1)−2 ABJM theory for x = z = y = 1. This
implies the duality (2.30) [21]. Thus it yields the Hilbert series (3.35) for C2/Z2 in the
Coulomb and Higgs limits.

The flavored indices with (ζ, χ) = (+,−) and (−,+) are given by

ISO(2)2 ×USp(2)−1ABJ(t, ζ = +, χ = −; q)

= ISO(2)2 ×USp(2)−1ABJ(t, ζ = −, χ = +; q)

= 1−
(
t2 + t−2

)
q1/2 +

(
1 + t4 + t−4

)
q −

(
t6 + t−6

)
q3/2 +

(
−1 + t8 + t−8

)
q2 + · · · .

(6.33)

The flavored index of the O(2)2 × USp(2)−1 ABJ theory that can be obtained by
gauging the Z2 charge conjugation symmetry is equal to the flavored index (6.17) for
the U(1)4 × U(1)−4 ABJM model for x = y = z = 1. This is a consequence of the
duality (2.23) [3]. The gauge group SO(2)×USp(2) admits two families of theories whose
indices involve the sum over the magnetic fluxes which take values in integers or half-
integers (also see the discussion for the BLG theory in section 8). The flavored index of the
(SO(2)2 ×USp(2)−1)/Z2 ABJ theory in which the magnetic fluxes are summed over Z/2
(i.e. both integers and half-integers) is equal to the index (3.18) of the U(1) ADHM theory
with one flavor or equivalently to the index (3.16) of the U(1)1 ×U(1)−1 ABJM theory for
x = z = y = 1. This implies the duality (2.31) [21].
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We note that the refinement of the index of the O(2)2 × USp(2)−1 ABJ theory with
additional fugacities x and z of the form

ISO(2)2 ×USp(2)−1ABJ(t, ζ, χ = +, x, z; q)

= 1
2

∑
m(1),m(2)∈Z

∮
ds(1)

2πis(1)

∮
ds(2)

2πis(2)

(
1− q|m(2)|s(2)±2)

s(1)2m(1)
s(2)−2m(2)

×

(
q

3
4 + |m

(1)−m(2)|
2 t−1s(1)∓s(2)±x∓; q

)
∞(

q
1
4 + |m

(1)−m(2)|
2 ts(1)±s(2)∓x±; q

)
∞

(
q

3
4 + |m

(1)+m(2)|
2 t−1s(1)∓s(2)∓x∓; q

)
∞(

q
1
4 + |m

(1)+m(2)|
2 ts(1)±s(2)±x±; q

)
∞

×

(
q

3
4 + |m

(1)−m(2)|
2 ts(1)∓s(2)±z±; q

)
∞(

q
1
4 + |m

(1)−m(2)|
2 t−1s(1)±s(2)∓z∓; q

)
∞

(
q

3
4 + |m

(1)+m(2)|
2 ts(1)∓s(2)∓z±; q

)
∞(

q
1
4 + |m

(1)+m(2)|
2 t−1s(1)±s(2)±z∓; q

)
∞

× q−|m(2)|+ |m
(1)−m(2)|

2 + |m
(1)+m(2)|

2 ζm
(1)
, (6.34)

matches with the flavored index (6.14) for y = 1 when ζ = +. This generalizes the identity
of the indices. Also for ζ = − we have

ISO(2)2 ×USp(2)−1ABJ(t, ζ = −, χ = +, x, z; q)

= 1 +
(
xz + x−1z−1 − xz−1 − x−1z +

(
1− x2 − x−2

)
t2 +

(
1− z2 − z−2

)
t−2
)
q1/2

+
(
− 3 + x2z2 + x−2z−2 + x2z−2 + x−2z2 +

(
1 + x4 + x−4 − x2 − x−2

)
t4

+
(
x3z−1 + x−3z − x3z − x−3z−1

)
t2 +

(
1 + z4 + z−4 − z2 − z−2

)
t−4

+
(
xz−3 + x−1z3 − xz3 − x−1z−3

)
t−2
)
q + · · · . (6.35)

We find that the average of the refinement (6.35) with ζ = + and that with ζ = − exactly
coincides with the flavored index (6.17) for y = 1.

6.2.11 O(4)2 ×USp(2)−1 ABJ

We can increase the rank of the orthogonal group by 1 and consider O(4)2×USp(2)−1 ABJ
theory. This theory is dual to the U(3)4 × U(1)−4 ABJ theory due to the duality (2.24).
Indeed, the index of the O(4)2×USp(2)−1 ABJ theory, 1

2(ISO(4)2×USp(2)−1ABJ(t, ζ = +, χ =
+; q) + ISO(4)2×USp(2)−1ABJ(t, ζ = +, χ = −; q)), agrees with the flavored index (6.29)
for x = z = y = 1.

6.2.12 O(4)2 ×USp(4)−1 ABJ

Lastly let us consider the O(4)2×USp(4)−1 ABJ theory. For ζ=+ the indices are evaluated as
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ISO(4)2×USp(4)−1ABJ(t,ζ = +,χ= +;q) =

1
32

∑
m

(1)
i
,m

(2)
i
∈Z

2∏
I=1

∮ 2∏
i=1

ds
(I)
i

2πis(I)
i

(
1−q

|m(1)
1 −m(1)

2 |
2 s

(1)±
1 s

(1)∓
2

)(
1−q

|m(1)
1 +m(1)

2 |
2 s

(1)±
1 s

(1)±
2

)

×

(∏
i

(
1−q|m

(2)
i
|s

(2)±2
i

))(
1−q

|m(2)
1 −m(2)

2 |
2 s

(2)±
1 s

(2)∓
2

)(
1−q

|m(2)
1 +m(2)

2 |
2 s

(2)±
1 s

(2)±
2

)

×

(∏
i

s
(1)
i

2m(1)
i
s

(2)
i

−2m(2)
i

)

×
∏
i,j

(
q

3
4 +
|m(1)
i
−m(2)

j
|

2 t−1s
(1)∓
i s

(2)±
j ;q

)
∞(

q
1
4 +
|m(1)
i
−m(2)

j
|

2 ts
(1)±
i s

(2)∓
j ;q

)
∞

(
q

3
4 +
|m(1)
i

+m(2)
j
|

2 t−1s
(1)∓
i s

(2)∓
j ;q

)
∞(

q
1
4 +
|m(1)
i

+m(2)
j
|

2 ts
(1)±
i s

(2)±
j ;q

)
∞

×
∏
i,j

(
q

3
4 +
|m(1)
i
−m(2)

j
|

2 ts
(1)∓
i s

(2)±
j ;q

)
∞(

q
1
4 +
|m(1)
i
−m(2)

j
|

2 t−1s
(1)±
i s

(2)∓
j ;q

)
∞

(
q

3
4 +
|m(1)
i

+m(2)
j
|

2 ts
(1)∓
i s

(2)∓
j ;q

)
∞(

q
1
4 +
|m(1)
i

+m(2)
j
|

2 t−1s
(1)±
i s

(2)±
j ;q

)
∞

×q−
1
2 |m

(1)
1 −m

(1)
2 |−

1
2 |m

(1)
1 +m(1)

2 |−
∑

i
|m(2)

i
|− 1

2 |m
(2)
1 −m

(2)
2 |−

1
2 |m

(2)
1 +m(2)

2 |+
1
2

∑
i,j

(
|m(1)

i
−m(2)

j
|+|m(1)

i
+m(2)

j
|
)
,

(6.36)

ISO(4)2×USp(4)−1ABJ(t,ζ = +,χ=−;q) =

1
16

∑
m(1),m

(2)
i
∈Z

∮
ds(1)

2πis(1)

2∏
i=1

ds
(2)
i

2πis(2)
i

(
1−q|m

(1)|s(1)±2
)(∏

i

(
1−q|m

(2)
i
|s

(2)±2
i

))

×

(
1−q

|m(2)
1 −m(2)

2 |
2 s

(2)±
1 s

(2)∓
2

)(
1−q

|m(2)
1 +m(2)

2 |
2 s

(2)±
1 s

(2)±
2

)
s(1)2m(1)

(∏
i

s
(2)
i

−2m(2)
i

)

×
2∏
i=1

(
q

3
4 +
|m(1)−m(2)

i
|

2 t−1s(1)∓s
(2)±
i ;q

)
∞(

q
1
4 +
|m(1)−m(2)

i
|

2 ts(1)±s
(2)∓
i ;q

)
∞

(
q

3
4 +
|m(1)+m(2)

i
|

2 t−1s(1)∓s
(2)∓
i ;q

)
∞(

q
1
4 +
|m(1)+m(2)

i
|

2 ts(1)±s
(2)±
i ;q

)
∞

×

(
±q 3

4 +
|m(2)
i
|

2 t−1s
(2)∓
i ;q

)
∞(

∓q 1
4 +
|m(2)
i
|

2 ts
(2)±
i ;q

)
∞

(
∓q 3

4 +
|m(2)
i
|

2 t−1s
(2)∓
i ;q

)
∞(

±q 1
4 +
|m(2)
i
|

2 ts
(2)±
i ;q

)
∞

×

(
q

3
4 +
|m(1)−m(2)

i
|

2 ts(1)∓s
(2)±
i ;q

)
∞(

q
1
4 +
|m(1)−m(2)

i
|

2 t−1s(1)±s
(2)∓
i ;q

)
∞

(
q

3
4 +
|m(1)+m(2)

i
|

2 ts(1)∓s
(2)∓
i ;q

)
∞(

q
1
4 +
|m(1)+m(2)

i
|

2 t−1s(1)±s
(2)±
i ;q

)
∞

×

(
±q 3

4 +
|m(2)
i
|

2 ts
(2)∓
i ;q

)
∞(

∓q 1
4 +
|m(2)
i
|

2 t−1s
(2)±
i ;q

)
∞

(
∓q 3

4 +
|m(2)
i
|

2 ts
(2)∓
i ;q

)
∞(

±q 1
4 +
|m(2)
i
|

2 t−1s
(2)±
i ;q

)
∞

×q−|m
(1)|− 1

2

(
|m(2)

1 −m
(2)
2 |+|m

(2)
1 +m(2)

2 |
)

+ 1
2

∑
i,j

(
|m(1)−m(2)

i
|+|m(1)+m(2)

i
|
)
. (6.37)
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We get the indices

ISO (4)2 ×USp (4)−1ABJ (t, ζ = +, χ = +; q)

= 1 +
(
2 + t2 + t−2

)
q1/2 +

(
13 + 7t4 + 8t2 + 8t−2 + 7t−4

)
q

−
(
1 + t2

) (
1 + t−2

) (
10t4 − 2t2 + 11− 2t−2 + 10t−4

)
q3/2 + · · · , (6.38)

ISO (4)2 ×USp (4)−1ABJ (t, ζ = +, χ = −; q)

= 1 +
(
2 + t2 + t−2

)
q1/2 +

(
−1 + t4 + t−4

)
q

−
(
1 + t2

) (
1 + t−2

) (
2t4 − 2t2 + 1− 2t−2 + 2t−4

)
q3/2 + · · · . (6.39)

The index for the O(4)2×USp(4)−1 ABJ theory obtained from (6.38) and (6.39) by gauging
the charge conjugation symmetry matches with the index (6.23), which is consistent with
the duality (2.23). So both theories describe two M2-branes probing C2/Z2.

6.2.13 ADHM-ABJM dualities

As reviewed in section 2.2, the U(N) ADHM theory with one flavor is conjectured to be
equivalent to the ABJM theory of CS level k = 1 in the IR [95]. Comparing the flavored
indices, e.g. (6.11) and (6.12) with (3.16) and (3.20), we see that the ADHM index (3.15)
with one flavor and the ABJM index (6.7) with N = M and k = 1 perfectly agree with
each other by turning off the topological fugacity y for the ABJM model. Consequently, we
find the operator mapping under the duality. For the Abelian case it is given by

U(1) ADHM with one flavor U(1)1 ×U(1)−1ABJM
X v1;1H

Y v−1;−1H̃

XY HH̃

X lY m vl−m;l−mH lH̃m

v1 v−1;−1T

v−1 v1;1T̃

ϕ T T̃

v1X TH

v1Y v−2;−2TH̃

v−1X v2;2T̃H

v−1Y T̃ H̃

v1ψϕ v−1;−1ψT

v−1ψϕ v1;1ψ
T̃

ψX v1;1ψH

ψY v−1;−1ψ
H̃

. (6.40)

The Higgs branch operators in the ADHM theory correspond to the monopole operators
dressed by the bifundamental hypermultiplet in the ABJM theory. On the other hand,
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the Coulomb branch operators in the ADHM theory map to the monopole operators only
dressed by the bifundamental twisted hypermultiplet in the ABJM theory. The remaining
mixed branch operator in the ADHM theory are dual to the monopole operators dressed by
the both hyper and twisted hypers in the ABJM model.

In addition, the flavored indices allow us to find the mapping of the mixed branch
operators which contain the fermionic operators. The fermion ψϕ is the superpartner of the
vector multiplet scalar ϕ and ψX (resp. ψY ) is that of the adjoint hypermultiplet scalar
fields X (resp. Y ) in the ADHM theory. The mapping of the fermionic operators are
consistent with that of their bosonic partners.

For U(2) gauge group, by comparing (3.20) and (6.12) we conjecture the following
operator mapping:

U(2) ADHM with one flavor U(2)1 ×U(2)−1ABJM
TrX v1,0;1,0H(1)

TrY v−1,0;−1,0H̃(1)

Tr(XY ) Tr(HH̃)
TrXTrY v1,−1;1,−1H(1)H̃(2)

TrX2 v1,1;1,1Tr(H2)
(TrX)2 v2,0;2,0(H(1))2

v1,0 v−1,0;−1,0T (1)

v−1,0 v1,0;1,0T̃ (1)

Trϕ Tr(T T̃ )
v1,−1 v1,−1;1,−1T (2)T̃ (1)

v2,0 v−2,0;−2,0(T (1))2

v1,1 v−1,−1;−1,−1Tr(T 2)
ϕ(1) T (1)T̃ (1)

X(2) v1,0;1,0H(1)

X(1) v0,1;0,1H(2)

Y (2) v−1,0;−1,0H̃(1)

Y (1) v0,−1;0,−1H̃(2)

v1,0J (1)I(1) + v1,0ψϕ(1) + v1,0ψϕ(2) v−1,0;−1,0ψT (1)

v−1,0J (1)I(1) + v−1,0ψϕ(1) + v−1,0ψϕ(2) v1,0;1,0ψ
T̃ (1)

. (6.41)

Similarly the Higgs (resp. Coulomb) branch operators in the non-Abelian U(N) ADHM
theory map to the monopole operators dressed by the bifundamental hypermultiplet (resp.
twisted hypermultiplet) in the non-Abelian U(N)1 × U(N)−1 ABJM theory. Each of these
local operators corresponds to the plane partition with trace N or a pair of column-strict
plane partitions of shape λ = {λi}Ni=1 with ∑i λi = N [33].

6.3 Duality to discrete gauge theories

In this section we consider discrete gauge theories which are expected to describe an M2-
brane. When a gauge group is discrete, a theory is the rank-zero theory so that it has no
gauge fields but matter fields may carry non-trivial gauge charges.
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Consider a 3d N = 4 gauge theory of a discrete cyclic group Zk with a hypermultiplet
and a twisted hypermultiplet. Based on the argument in [96], it is conjectured that we have
the following duality:

Zk gauge theory ⇔ U(1)k ×U(1)−k ABJM theory
+ a hyper (X,Y )+ a twisted hyper (T, T̃ ) . (6.42)

In the following we explicitly demonstrate this by computing supersymmetric indices which
precisely agree with each other.

6.3.1 Z2 (k = 2)

A simple example is the Z2 gauge theory. It can be viewed as a generalization of the O(1)+
gauge theory discussed in subsection 5.2.1. The index takes the form

IZ2-hyper+thyper(t;x, z; q)

= 1
2


(
q

3
4 t−1x∓; q

)
∞(

q
1
4 tx±; q

)
∞

(
q

3
4 tz∓; q

)
∞(

q
1
4 t−1z±; q

)
∞

+

(
−q

3
4 t−1x∓; q

)
∞(

−q
1
4 tx±; q

)
∞

(
−q

3
4 tz∓; q

)
∞(

−q
1
4 t−1z±; q

)
∞

 . (6.43)

The index (6.43) matches with the index (6.14) for the U(1)2 × U(1)−2 ABJM model.

6.3.2 Z3 (k = 3)

Z3 contains three one-dimensional irreps, which correspond to the mapping of generators to
1, ω = e2πi/3 = −1/2 +

√
3i/2 and ω2. The index reads

IZ3-hyper+thyper(t;x, z; q)

= 1
3


(
q

3
4 t−1x∓; q

)
∞(

q
1
4 tx±; q

)
∞

(
q

3
4 tz±; q

)
∞(

q
1
4 t−1z±; q

)
∞

+

(
q

3
4 t−1ω∓x∓; q

)
∞(

q
1
4 tω±x±; q

)
∞

(
q

3
4 tω∓z∓; q

)
∞(

q
1
4 t−1ω±z±; q

)
∞

+

(
q

3
4 t−1ω∓2x∓; q

)
∞(

q
1
4 tω±2x±; q

)
∞

(
q

3
4 tω∓2z∓; q

)
∞(

q
1
4 t−1ω±2z±; q

)
∞

 . (6.44)

Again the index (6.44) agrees with the index (6.16) for the U(1)3 ×U(1)−3 ABJM theory.

6.3.3 Zk (k ≥ 4)

For Z4 ∼= D̂1 we have generators ±1, ±i. The index is

IZ4-hyper+thyper(t;x, z; q) = 1
4

3∑
l=0

(
q

3
4 t−1i∓lx±; q

)
∞(

q
1
4 ti±lx±; q

)
∞

(
q

3
4 ti∓lz±; q

)
∞(

q
1
4 t−1i±lz±; q

)
∞

. (6.45)

This is equal to the index (6.17) for the U(1)4 ×U(1)−4 ABJM theory. Also we find that

ISO(2)2 ×USp(2)−1ABJ(t, ζ = +, χ = −; q)

= 1
2


(
q

3
4 t−1i∓; q

)
∞(

q
1
4 ti±; q

)
∞

(
q

3
4 ti∓; q

)
∞(

q
1
4 t−1i±; q

)
∞

+

(
−q

3
4 t−1i∓; q

)
∞(

−q
1
4 ti±; q

)
∞

(
−q

3
4 ti∓; q

)
∞(

−q
1
4 t−1i±; q

)
∞

 . (6.46)
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For general k we have the index

IZk-hyper+thyper(t;x, z; q) = 1
k

k−1∑
l=0

(
q

3
4 t−1ω∓lx±; q

)
∞(

q
1
4 tω±lx±; q

)
∞

(
q

3
4 tω∓lz±; q

)
∞(

q
1
4 t−1ω±lz±; q

)
∞

, (6.47)

where ω = e2πi/k. We confirm that the index (6.47) agrees with the index for the U(1)k ×
U(1)−k ABJM theory when the fugacity y is turned off.

From the matching of indices we find the map of operators under the proposed dual-
ity (6.42):

Zk gauge theory U(1)k ×U(1)−kABJM
H v1;1H

H̃ v−1;−1H̃

HH̃ HH̃

H lH̃m vl−m;l−mH lH̃m

T v−1;−1T

T̃ v1;1T̃

T T̃ T T̃

HT TH

H̃T v−2;−2TH̃

HT̃ v2;2T̃H

H̃T̃ T̃ H̃

. (6.48)

The operators in the Zk gauge theory are simply obtained from those in the U(1)k×U(1)−k
ABJM theory by stripping off the monopole operators.

7 N = 4 quiver CS theories

We investigate a class of 3d N = 4 circular quiver Chern-Simons matter theories which
describe M2-branes, which were discussed in section 2. In the following we focus on the
N = 4 quiver CS theories which are conjecturally dual to the ADHM as in figure 1 and
their cousin theories.

7.1 Moduli spaces and local operators

The dimension of a monopole operator is given by

∆(m(I)
i ) = −

l+1∑
I=1

∑
i<j

|m(I)
i −m

(I)
j |+

1
2

l+1∑
I=1

∑
i,j

|m(I)
i −m

(I+1)
j |. (7.1)

For the N = 2 vector multiplet with non-trivial CS level, the monopole operators carry
electric charge so that they need to be dressed by matter fields to form gauge invariant
operators. For the N = 4 vector multiplet with vanishing CS level, the monopole operators
can form gauge invariant operators by themselves.
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Unlike the 3d N = 4 SYM theories coupled to the matter multiplets, the non-
renormalization argument does not work for 3d N = 4 CS matter theories [97]. So
there are non-trivial quantum corrections to the moduli space of vacua.

We examine the local operators by computing the supersymmetric indices and the
moduli space of vacua by analyzing their Coulomb and Higgs limits.

7.2 Indices

The supersymmetric index of the quiver Chern-Simons theory in the right column in figure 1
with ranks N1, N2, · · · , Nl+1 reads

IU(N1)k×U(NI)⊗(l−1)
0 ×U(Nl+1)−kquiver CS (t,x,yI ,zI ;q)

= 1∏l+1
I=1NI !

∑
m

(1)
i ,··· ,m(l+1)

i ∈Z

l+1∏
I=1

y

∑
i
m

(I)
i

I

∮ ∏
I

NI∏
i=1

ds
(I)
i

2πis(I)
i

N1∏
i=1

(
s

(1)
i

)km(1)
i

Nl+1∏
i=1

(
s

(l+1)
i

)−km(l+1)
i

×
l+1∏
I=1

NI∏
i 6=j

1−q
|m(I)
i
−m(I)

j
|

2
s

(I)
i

s
(I)
j

 l∏
I=2

NI∏
i,j=1

q 1
2 +
|m(I)
i
−m(I)

j
|

2 t−2 s
(I)
i

s
(I)
j

;q


∞q 1

2 +
|m(I)
i
−m(I)

j
|

2 t2
s
(I)
i

s
(I)
j

;q


∞

×
l∏

I=1

NI∏
i=1

NI+1∏
j=1

∏
±

q 3
4 +
|m(I)
i
−m(I+1)

j
|

2 t

(
s
(I)
i

s
(I+1)
j

)±
z±I ;q


∞q 1

4 +
|m(I)
i
−m(I+1)

j
|

2 t−1

(
s
(I)
i

s
(I+1)
j

)±
z±I ;q


∞

×
Nl+1∏
i=1

N1∏
j=1

∏
±

q 3
4 +
|m(l+1)
i

−m(1)
j
|

2 t−1
(
s
(l+1)
i

s
(1)
j

)±
x±;q


∞q 1

4 +
|m(l+1)
i

−m(1)
j
|

2 t

(
s
(l+1)
i

s
(1)
j

)±
x±;q


∞

×q−
1
2
∑l+1

I=1

∑NI
i<j
|m(I)

i −m
(I)
j |+

1
4
∑l+1

I=1

∑NI
i=1

∑NI+1
j=1 |m(I)

i −m
(I+1)
j |

×t−2
∑l

I=2

∑NI
i<j
|m(I)

i −m
(I)
j |+

∑l

I=1

∑NI
i=1

∑NI+1
j=1 |m(I)

i −m
(I+1)
j |−

∑Nl+1
i=1

∑N1
j=1 |m

(l+1)
i −m(1)

j |. (7.2)

As in the case of the ABJM theory (6.8), this index also has redundancies in the parameter
dependence, which can be seen as follows. First, by tracking the gauge indices, one can see
that only the terms where the powers of zI are the same and the monopole charges satisfy∑
im

(1)
i = ∑

im
(l+1)
i can contribute to the full index. Hence we conclude that the index

depends on z1, z2, · · · , zl and y1, yl+1 only through z1z2 · · · zl and y1yl+1. Also, by rescaling
the integration variable s(1)

i → cs
(1)
i , we find that the index is invariant under the change of

parameters (y1, z1, x)→ (cky1, cz1, c
−1x). The redundancies can be fixed, for example, by

imposing ∏l+1
I=1 yI = 1 and yl+1 = z2 = z3 = · · · = zl = 1. The parameters before and after
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imposing these constraints are related to each other as

IU(N1)k×U(NI)⊗(l−1)
0 ×U(Nl+1)−kquiver CS(t, x, yI , zI ; q)

= IU(N1)k×U(NI)⊗(l−1)
0 ×U(Nl+1)−kquiver CS(t, x′, y′I , z′I ; q), (7.3)

with

x′ =
(
l+1∏
I=1

yI

) 1
k

x, y′1 =
(

l∏
I=2

yI

)−1

, y′l+1 = 1, y′I = yI (I = 2, · · · , l) ,

z′1 =
(
l+1∏
I=1

yI

)− 1
k
(

l∏
I=1

zI

)
, z′I = 1 (I = 2, · · · , l) . (7.4)

Note that under the constraint ∏l+1
I=1 yI = 1 we can match x, zI , yI with the fugacities in

the dual ADHM theory (3.15) without mixing between the Coulomb parameters (z) and
the Higgs parameters (x, y) (see table (7.13)).

In the following sections we would like to keep these redundancies unfixed for the
purpose of reading off the operators corresponding to each term.

7.2.1 U(1)1 ×U(1)0 ×U(1)−1

In the first three subsections we consider circular quiver CS theories in figure 1. Let us
consider the U(1)1×U(1)0×U(1)−1 CS theory with two bifundamental twisted hypermulti-
plets (T1,2, T̃1,2), (T2,3, T̃2,3) and a bifundamental hypermultiplet (H3,1, H̃3,1). The flavored
index (7.2) of this model to the order q 3

4 is given by

IU(1)1×U(1)0×U(1)−1(t,x,yI ,zI ;q) =

1+
(
xy1y2y3︸ ︷︷ ︸
v1;1;1H3,1

+x−1y−1
1 y−1

2 y−1
3︸ ︷︷ ︸

v−1;−1;−1H̃3,1

)
tq

1
4 +
[(

2︸︷︷︸
ϕ(2),

H3,1H̃3,1

+x2y2
1y

2
2y

2
3︸ ︷︷ ︸

v2;2;2H2
3,1

+x−2y−2
1 y−2

2 y−2
3︸ ︷︷ ︸

v−2;−2;−2H̃2
3,1

+ y−1
2︸︷︷︸

v0;−1;0

+ y2︸︷︷︸
v0;1;0

)
t2

+
(

1︸︷︷︸
ψ
ϕ(2) ,

T1,2T̃1,2,

T2,3T̃2,3

+y1y2y3z
−1
1 z−1

2︸ ︷︷ ︸
v1;1;1T̃1,2T̃2,3

+y−1
1 y−1

2 y−1
3 z1z2︸ ︷︷ ︸

v−1;−1;−1T1,2T2,3

)
t−2

]
q

1
2 +
[(
xy2

1y
2
2y

2
3z
−1
1 z−1

2︸ ︷︷ ︸
v2;2;2T̃1,2T̃2,3H3,1

+x−1y−2
1 y−2

2 y−2
3 z1z2︸ ︷︷ ︸

v−2;−2;−2T1,2T2,3H̃3,1

+x−1z−1
1 z−1

2︸ ︷︷ ︸
T̃1,2T̃2,3H̃3,1

+ xz1z2︸ ︷︷ ︸
T1,2T2,3H3,1

)
t−1+

(
2xy1y2y3︸ ︷︷ ︸

v1;1;1H2
3,1H̃3,1,

v1;1;1ϕ(2)H3,1

+2x−1y−1
1 y−1

2 y−1
3︸ ︷︷ ︸

v−1;−1;−1H3,1H̃
2
3,1

v−1;−1;−1ϕ(2)H̃3,1

+x−3y−3
1 y−3

2 y−3
3︸ ︷︷ ︸

v−3;−3;−3H̃3
3,1

+x3y3
1y

3
2y

3
3︸ ︷︷ ︸

v3;3;3H3
3,1

+ xy1y3︸ ︷︷ ︸
v1;0;1H3,1

+x−1y−1
1 y−1

3︸ ︷︷ ︸
v−1;0;−1H̃3,1

+xy1y
2
2y3︸ ︷︷ ︸

v1;2;1H3,1

+x−1y−1
1 y−2

2 y−1
3︸ ︷︷ ︸

v−1;−2;−1H̃3,1

)
t3
]
q

3
4 +· · · . (7.5)

The coefficient for the term q1/2t−2 will be contributed from the two bosonic operators
T1,2T̃1,2 and T2,3T̃2,3 as well as a fermionic operator ψϕ(2) that is the superpartner of ϕ(2).
This indicates that the bosonic operators consisting of bifundamental twisted hypers are
not independent due to a constraint corresponding to the fermionic operator ψ(2).
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The index (7.5) coincides with the index (3.33) for the U(1) ADHM theory with two
flavors, which agrees with the duality between the leftmost quiver and the rightmost quiver
in figure 1.

7.2.2 U(1)1 ×U(1)⊗2
0 ×U(1)−1

Similarly, we get the index for the U(1)1 ×U(1)0 ×U(1)0 ×U(1)−1 quiver CS theory

IU(1)1×U(1)⊗2
0 ×U(1)−1(t,x,yI ,zI ;q) =

1+
(
x

4∏
I=1

yI︸ ︷︷ ︸
v1;1;1;1H4,1

+ x−1
4∏
I=1

y−1
I︸ ︷︷ ︸

v−1;−1;−1;−1H̃4,1

)
tq1/4+

[(
3︸︷︷︸

ϕ(2),
ϕ(3),

H4,1H̃4,1

+ x2
4∏
I=1

y2
I︸ ︷︷ ︸

v2;2;2;2H2
4,1

+ x−2 ∏
I=1

y−2
I︸ ︷︷ ︸

v−2;−2;−2;−2H̃2
4,1

+ y2y3︸︷︷︸
v0;1;1;0

+ y−1
2 y−1

3︸ ︷︷ ︸
v0;−1;−1;0

+ y3︸︷︷︸
v0;0;1;0

+ y−1
3︸︷︷︸

v0;0;−1;0

+ y2︸︷︷︸
v0;1;0;0

+ y−1
2︸︷︷︸

v0;−1;0;0

)
t2+ t−2︸︷︷︸

ψ
ϕ(2) ,

ψ
ϕ(3) ,

T1,2T̃1,2,

T2,3T̃2,3,

T3,4T̃3,4

]
q1/2

+
(

3x
4∏
I=1

yI︸ ︷︷ ︸
v1;1;1;1ϕ(2)H4,1,

v1;1;1;1ϕ(3)H4,1,

v1;1;1;1H2
4,1H̃4,1

+ 3x−1
4∏
I=1

y−1
I︸ ︷︷ ︸

v−1;−1;−1;−1ϕ(2)H̃4,1,

v−1;−1;−1;−1ϕ(3)H̃4,1,

v−1;−1;−1;−1H2
4,1H̃4,1

+ x−3
4∏
I=1

y−3
I︸ ︷︷ ︸

v−3;−3;−3;−3H̃3
4,1

+ x3
4∏
I=1

y3
I︸ ︷︷ ︸

v3;3;3;3H3
4,1

+ xy1y4︸ ︷︷ ︸
v1;0;0;1H4,1

+ x−1y−1
1 y−1

4︸ ︷︷ ︸
v−1;0;0;−1H̃4,1

+ xy1y3y4︸ ︷︷ ︸
v1;0;1;1H4,1

+x−1y−1
1 y−1

3 y−1
4︸ ︷︷ ︸

v−1;0;−1;−1H̃4,1

+xy1y
2
2y

2
3y4︸ ︷︷ ︸

v1;2;2;1H4,1

+x−1y−1
1 y−2

2 y−2
3 y−1

4︸ ︷︷ ︸
v−1;−2;−2;−1H̃4,1

+xy1y
2
2y3y4︸ ︷︷ ︸

v1;2;1;1H4,1

+x−1y−1
1 y−2

2 y−1
3 y−1

4︸ ︷︷ ︸
v−1;−2;−1;−1H̃4,1

+ xy1y2y4︸ ︷︷ ︸
v1;1;0;1H4,1

+x−1y−1
1 y−1

2 y−1
4︸ ︷︷ ︸

v−1;−1;0;−1H̃4,1

+xy1y2y
2
3y4︸ ︷︷ ︸

v1;1;2;1H4,1

+x−1y−1
1 y−1

2 y−2
3 y−1

4︸ ︷︷ ︸
v−1;−1;−2;−1H̃4,1

)
t3+

(
z−1

1 z−1
2 z−1

3
∏
I

yI︸ ︷︷ ︸
v1;1;1;1T̃1,2T̃2,3T̃3,4

+ z1z2z3
∏
I

y−2
I︸ ︷︷ ︸

v−1;−1;−1;−1T1,2T2,3T3,4

)
t−3
]
q3/4+· · · .

(7.6)

The index (7.6) matches with the index (3.36) for the U(1) ADHM theory with three flavors.

7.2.3 U(2)1 ×U(2)0 ×U(2)−1

We can increase the rank of the three unitary groups uniformly by 1 and consider the
U(2)1 × U(2)0 × U(2)−1 quiver CS theory. The index precisely agrees with the index (3.46)
for the U(2) ADHM theory with two flavors.
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7.2.4 U(1)2 ×U(1)0 ×U(2)−2

Let us then consider cases with different CS levels. The U(1)2 × U(1)0 × U(2)−2 quiver
CS theory is expected to have a USp(2) dual given in (2.37). Indeed the index for the
U(1)2×U(1)0×U(2)−2 quiver CS theory agrees with the index (4.10) for the USp(2) gauge
theory with an adjoint hyper and two fundamental half-hypers. After fixing ∏3

I=1 yI = 1
we have

IU(1)2×U(1)0×U(2)−2(t, x, yI , zI ; q)

= 1 +
[
t−2 +

(
2 + x−2 + x2

)
t2
]
q

1
2 +

[ (
y−1

2 + x2y−1
2 + y2 + x−2y2

)
t3 +

(
x−1z−1

1 z−1
2

+ xz−1
1 z−1

2 + x−1z1z2 + xz1z2
)
t−1
]
q

3
4 +

[
− 3 +

(
3 + x−4 + 2x−2 + 2x2 + x4

)
t4 +

(
1

+ z−2
1 z−2

2 + z2
1z

2
2

)
t−4
]
q +

[(
2y−1

2 + x−2y−1
2 + 2x2y−1

2 + x4y−1
2 + 2y2 + x−4y2 + 2x−2y2

+ x2y2
)
t5 +

(
− y−1

2 − x
2y−1

2 − y2 − x−2y2 + x−3z−1
1 z−1

2 + x3z−1
1 z−1

2 + x−3z1z2

+ x3z1z2
)
t
]
q

5
4 + · · · , (7.7)

where we have set y1 = y−1
2 y−1

3 so that y1y2y3 = 1 which can be done without loss of
generality due to the redundancy (7.3). The index (7.7) agrees with the flavored index (4.10)
of the USp(2) dual under the following identification of the fugacities:

y2 = xy2, z1 = z2 = 1. (7.8)

So the quiver CS theory can describe the M2-brane in C2/D̂1.

7.2.5 U(2)2 ×U(2)0 ×U(3)−2

For l = 2, k = 2, N1 = N2 = 2, N2 = 3 we find the following index

IU(2)2×U(2)0×U(3)−2 (t, x, yI , zI ; q) = 1 +
[
t−2 + (2 + x−2 + x2)t2

]
q

1
2 + · · · , (7.9)

where we have set y1 = y−1
2 y−1

3 . This agrees with the index (4.17) for the USp(4) theory with
an adjoint hypermultiplet and two fundamental half-hypermultiplets, at least up to the order
q. This is again consistent with the duality (2.37) between U(N)2 ×U(N)0 ×U(N + 1)−2
quiver Chern-Simons theory and the USp(2N) theory with an adjoint hypermultiplet and
two fundamental half-hypermultiplets.

7.2.6 U(1)2 ×U(1)0 ×U(1)−2

Another interesting cases are the CS quiver theories involved in the duality (2.36). Indeed
we find that the index (7.2) for the U(1)2 ×U(1)0 ×U(1)−2 quiver CS theory

IU(1)2×U(1)0×U(1)−2 (t, x, yI , zI ; q)

= 1 +
[
t−2 +

(
2 + x−2 + x2 + y−1

2 + y2
)
t2
]
q

1
2 +

(
x−1z−1

1 z−1
2 + xz−1

1 z−1
2 + x−1z1z2

+ xz1z2
)
t−1q

3
4 +

[
− 4− y−1

2 − y2 +
(
3 + x−4 + 2x−2 + 2x2 + x4 + y−2

2 + 2y−1
2

+ x−2y−1
2 + x2y−1

2 + 2y2 + x−2y2 + x2y2 + y2
2

)
t4 +

(
1 + z−2

1 z−2
2 + z2

1z
2
2

)
t−4
]
q

+
(
x−3z−1

1 z−1
2 + x3z−1

1 z−1
2 + x−3z1z2 + x3z1z2

)
tq

5
4 + · · · (7.10)
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(y1 set to y−1
2 y−1

3 ) agrees (at least up to the order q 3
2 ) with the index (5.19) for the

O(2) gauge theory with an adjoint hyper and one flavor, with the following parameter
identifications:

x(CS) =x(O(2N)), z
(CS)
1 z

(CS)
2 = 1, y

(CS)
1 y

(CS)
3 =

(
y(O(2N))

)−2
, y

(CS)
2 =

(
y(O(2N))

)2
.

(7.11)

Thus the quiver CS theory describes a motion of M2-brane in C2/D̂1.

7.2.7 U(2)2 ×U(2)0 ×U(2)−2

We can increase the ranks:

IU(2)2×U(2)0×U(2)−2(t, x, yI , zI ; q)

= 1 +
[
t−2 + t2

(
2 + x−2 + x2 + y−1

2 + y2
)]
q

1
2 +

(
x−1z−1

1 z−1
2 + xz−1

1 z−1
2 + x−1z1z2

+ xz1z2
)
t−1q

3
4 + · · · , (7.12)

(y1 set to y−1
2 y−1

3 ) and we confirm that the index of the U(2)2 × U(2)0 × U(2)−2 quiver CS
theory matches with the index (5.42) of the O(4) gauge theory with an anti-symmetric
hyper and one flavor with the parameter identification (7.11), at least up to the order q. We
also confirm that the Coulomb limit of the two indices agree with (3.52) up to the order t12,
and that the Higgs limit of the indices (5.44),(7.36) agree with each other up to the order
t12. These are again consistent with the conjectural duality (2.36) between the O(2N) gauge
theory with an anti-symmetric hyper and one flavor and the U(N)2 × U(N)0 × U(N)−2
quiver CS theory.

7.2.8 ADHM-CS dualities

From the equivalence of the flavored indices we can derive the mapping of operators under
the dualities between the ADHM theory and the circular quiver Chern-Simons theories
given in figure 1.

The flavored index for the U(1) ADHM theory with l flavors and the flavored index
for the U(1)1 ×U(1)⊗(l−1)

0 ×U(1)−1 CS theory agree with each other under the following
fugacity map:

U(1) ADHM with l flavors U(1)1 ×U(1)⊗(l−1)
0 ×U(1)−1 CS theory

zADHM (topological sym.) zCSI (flavor sym. for (TI,I+1, T̃I,I+1))
zADHMl = ∏l

I=1 z
CS
I

xADHM (flavor sym. for (X,Y )) xCS (flavor sym. for (Hl+1,1, H̃l+1,1))
xADHM = xCS

yADHM
α (flavor sym. for (I, J)) yCSI (topological sym.)

yADHM
1 = 1 ∏l+1

I=1 y
CS
I = 1,

yADHM
α = ∏α

I=2 y
CS
I

, (7.13)
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where we have distinguished the fugacities for the ADHM theory and those for the quiver
CS theory by superscripts.

As a consequence, we find the operator mapping under the duality between the U(1)
ADHM theory with l flavors and the U(1)1 ×U(1)⊗(l−1)

0 ×U(1)−1 CS theory

U(1) ADHM with l flavors U(1)1 ×U(1)⊗(l−1)
0 ×U(1)−1 CS theory

Xm vm;m;··· ;mHm
3,1

Y m v−m;−m;··· ;−mH̃m
3,1

XY,
⊕

α( 6=l) JαIα H3,1H̃3,1,
⊕l

I=2 ϕ
(I)

JαIβ (1 < α < β) v0;··· ;0;m(α+1)=1;··· ;m(β)=1;0;··· ;0

J1Iα (α > 1) v0;1;··· ;m(α)=1;0;··· ;0

JαIβ (α > β > 1) v0;··· ;0;m(β+1)=−1;··· ;m(α)=−1;0;··· ;0

JαI1 (α > 1) v0;−1;··· ;m(α)=−1;0;··· ;0

vm v−m;−m;··· ;−m∏l
I=1 TI,I+1

v−m vm;m;··· ;m∏l
I=1 T̃I,I+1

ϕ
⊕l

I=1 TI,I+1T̃I,I+1/
⊕l

I=2

[
ψ(I)

]

. (7.14)

In a similar manner as the mapping under the duality between the ADHM and ABJM theory
discussed in section 6.2.13, one can also generalize the map (7.14) to the non-Abelian case.

7.3 Closed form expression for the Coulomb limit with general k,N, l

We can also evaluate the Coulomb limit (7.2) of the supersymmetric index of the U(N)k ×
U(N)⊗(l−2)

0 × U(N)−k quiver Chern-Simons theory for general values of k,N, l, by the
similar calculation as in the case of the U(N) ADHM theory we considered in section 3.3.
We assume k > 0, |t| < 1, |∏l+1

I=1 yI | = 1 and |zI | = 1. First write the overall factor of q
and t in terms of t = q

1
4 t−1 and q as

q
− 1

2
∑l+1

I=1

∑N

i<j
|m(I)

i −m
(I)
j |+

1
4
∑l+1

I=1

∑N

i=1

∑N

j=1 |m
(I)
i −m

(I+1)
j |

× t−2
∑l

I=2

∑N

i<j
|m(I)

i −m
(I)
j |+

∑l

I=1

∑N

i=1

∑N

j=1 |m
(I)
i −m

(I+1)
j |−

∑N

i=1

∑N

j=1 |m
(l+1)
i −m(1)

j |

= t
2
∑l

I=2

∑N

i<j
|m(I)

i −m
(I)
j |−

∑l

I=1

∑N

i=1

∑N

j=1 |m
(I)
i −m

(I+1)
j |+

∑N

i=1

∑N

j=1 |m
(l+1)
i −m(1)

j |

× q−
1
2
∑

I=1,l+1

∑N

i<j
|m(I)

i −m
(I)
j |−

∑l

I=2

∑
i<j
|m(I)

i −m
(I)
j |+

1
2
∑l

I=1

∑N

i=1

∑N

j=1 |m
(I)
i −m

(I+1)
j |

.

(7.15)

We observe that the power of q in (7.15) is positive semi-definite which vanishes if and only
if all of the monopole charges (m(I)

1 , · · · ,m(I)
N ) coincide up to permutations of N charges
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for each I. Hence the Coulomb limit of the index (7.2) simplififes as

IU(N)k×U(N)⊗(l−1)
0 ×U(N)−kquiver CS (C)

= lim
t=q

1
4 t−1: fixed
q→0

IU(N)k×U(N)⊗(l−1)
0 ×U(N)−kquiver CS

= 1
(N !)l+1

∑
mi∈Z

r (mi)l
(
l+1∏
I=1

yI

)∑
i
mi ∮ ∏

I

N∏
i=1

ds
(I)
i

2πis(I)
i

N∏
i=1

(
s

(1)
i

)kmi N∏
i=1

(
s

(l+1)
i

)−kmi

×
l+1∏
I=1

N∏
i 6=j

lim
t=q

1
4 t−1: fixed
q→0

1− q
|mi−mj |

2
s

(I)
i

s
(I)
j

 l∏
I=2

N∏
i,j=1

lim
t=q

1
4 t−1: fixed
q→0

(
q

1
2 +
|mi−mj |

2 t−2 s
(I)
i

s
(I)
j

; q
)
∞(

q
1
2 +
|mi−mj |

2 t2
s
(I)
i

s
(I)
j

; q
)
∞

×
l∏

I=1

N∏
i,j

∏
±

lim
t=q

1
4 t−1: fixed
q→0

q 3
4 +
|mi−mj |

2 t

(
s
(I)
i

s
(I+1)
j

)±
z±I ; q


∞q 1

4 +
|mi−mj |

2 t−1

(
s
(I)
i

s
(I+1)
j

)±
z±I ; q


∞

×
N∏
i,j

∏
±

lim
t=q

1
4 t−1: fixed
q→0

q 3
4 +
|mi−mj |

2 t−1
(
s
(l+1)
i

s
(1)
j

)±
x±; q


∞q 1

4 +
|mi−mj |

2 t

(
s
(l+1)
i

s
(1)
j

)±
x±; q


∞

, (7.16)

where r(mi) is the number of permutations of (m1,m2, · · · ,mN ). If we label mi in the
same way as we have done for the ADHM theory (see section 3.3)

mi = (· · · ,−1, · · · ,−1︸ ︷︷ ︸
ν−1

, 0, · · · , 0︸ ︷︷ ︸
ν0

, 1, · · · , 1︸ ︷︷ ︸
ν1

, · · · ,m, · · · ,m︸ ︷︷ ︸
νm

, · · · ) (up to permutation),

(7.17)

then (7.16) can be written as

IU(N)k×U(N)⊗(l−1)
0 ×U(N)−kquiver CS (C)

=
∑
νm≥0(∑∞

m=−∞ νm=N
)

1∏∞
m=−∞ (νm!)l+1

(
l+1∏
I=1

yI

)∑∞
m=−∞mνm ∞∏

m=−∞

∮ l+1∏
I=1

νm∏
i=1

ds
(I)
i

2πis(I)
i

νm∏
i=1

(
s

(1)
i

s
(l+1)
i

)km l+1∏
I=1

νm∏
i 6=j

1− s
(I)
i

s
(I)
j

 l∏
I=2

νm∏
i,j

1− t2
s

(I)
i

s
(I)
j

 l∏
I=1

νm∏
i,j

1

1− tz±1
I

(
s
(I)
i

s
(I+1)
j

)±1 .

(7.18)
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Again, if we define the grand canonical sum we can remove the constraint of the summation:

Ξ (κ) =
∞∑
N=0
IU(N)k×U(N)⊗(l−1)

0 ×U(N)−kquiver CS (C) =
∞∏

m=−∞
Ξ̃km

κ( l+1∏
I=1

yI

)m
, zI , t

 ,
(7.19)

where

Ξ̃k′(κ, zI , t) =
∞∑
ν=0

κνΩk′,ν(t, za) (7.20)

with

Ωk′,ν (t, zI) = 1
(ν!)l+1

∮ l+1∏
I=1

ν∏
i=1

ds
(I)
i

2πis(I)
i

ν∏
i=1

(
s

(1)
i

)k′ ν∏
i=1

(
s

(l+1)
i

)−k′ l+1∏
I=1

ν∏
i 6=j

1− s
(I)
i

s
(I)
j


l∏

I=2

ν∏
i,j

1− t2
s

(I)
i

s
(I)
j

 l∏
I=1

ν∏
i,j

1

1− tz±1
I

(
s
(I)
i

s
(I+1)
j

)±1 . (7.21)

To evaluate Ωk′,ν let us first write it as

Ωk′,ν (t, zI) =
∏l
I=1

(
−t−1z−1

I

)ν2

(ν!)l+1

∮ l+1∏
I=1

ν∏
i=1

ds
(I)
i

2πi
∏
i

(
s

(1)
i

)k′∏
i

(
s

(l+1)
i

)−k′
∏l+1
I=1

∏
i 6=j

(
s

(I)
i − s

(I)
j

)∏l
I=2

∏
i,j

(
s

(I)
i − t2s

(I)
j

)
∏l
i=I

∏
i,j

∏
±

(
s

(I)
i − t±1z−1

I s
(I+1)
j

) . (7.22)

This integration can be evaluated iteratively with respect to I in the following way. First
let us suppose k′ ≥ 0. The integrand has no pole at s(1)

i = 0, hence the integration over s(I)
i

can be evaluated by picking the poles in |s(I)
i | < 1, which are

s
(1)
i = tz−1

I s
(2)
σ(i), (7.23)

with any permutation σ ∈ Sν . Since the integrand is symmetric in (s(2)
1 , · · · , s(2)

ν ) the
residue is independent of the choice of σ and the summation over σ ∈ Sν just gives an
overall factor ν!. Evaluating the residue we end up with

Ωk′,ν (t, zI) =
(
tz−1

1

)k′ν
·
∏l
I=2

(
−t−1z−1

I

)ν2

(ν!)l
∮ l+1∏

I=2

ν∏
i=1

ds
(I)
i

2πi
∏
i

(
s

(2)
i

)k′∏
i

(
s

(l+1)
i

)−k′
∏l+1
I=2

∏
i 6=j

(
s

(I)
i − s

(I)
j

)∏l
I=3

∏
i,j

(
s

(I)
i − t2s

(I)
j

)
∏l
I=2

∏
i,j

∏
±

(
s

(I)
i − t±1z−1

I s
(I+1)
j

) . (7.24)

– 84 –



J
H
E
P
1
0
(
2
0
2
2
)
0
2
3

Repeating the same calculation we finally obtain

Ωk′,ν (t, zI) = tk
′lν

l∏
I=1

z−k
′ν

I

1
ν!

∮
ds

(l+1)
i

2πi

∏
i 6=j

(
s

(l+1)
i − s(l+1)

j

)
∏
i,j

(
s

(l+1)
i − t2s

(l+1)
j

) . (7.25)

Note that up to the overall factor tk
′lν ∏l

I=1 z
−k′ν
I the right-hand side coincides with

Ων(t) (3.65) introduced in the calculation of the Coulomb limit of the ADHM theory. By
performing the same calculation for k′ < 0 where we pick the poles s(I)

i = t−1z−1
I s

(I+1)
σ(i)

(σ ∈ Sν) iteratively in I, we obtain

Ωk′,ν(t, zI) = t|k
′|lν

l∏
I=1

z−k
′ν

I Ων(t). (7.26)

Hence we conclude that

IU(N)k×U(N)⊗(l−1)
0 ×U(N)−kquiver CS (C) (t, yI , zI)

= IU(N)ADHM-[kl] (C)

t, z =
(
l+1∏
i=1

yI

l∏
I=1

z−kI

) 1
kl

 . (7.27)

7.4 A simplification of Higgs limit with general k,N, l

Lastly, let us also try to simplify the Higgs limit q → 0 with t = q
1
4 t fixed of the su-

persymmetric index of the Chern-Simons matter theory (7.2) (k ≥ 0). Here we consider
only the cases with Nl+1 = N1. We also assume l ≥ 2, since for l = 1 the Higgs limit
manifestly coincides with the Coulomb limit which we have already treated in section 7.3,
with ya → y−1

a and x↔ z. To treat the Higgs limit we write the overall factor of q, t for
each choice of the monopole charges as

q
− 1

2
∑l+1

I=1

∑N

i<j
|m(I)

i −m
(I)
j |+

1
4
∑l+1

I=1

∑N

i=1

∑N

j=1 |m
(I)
i −m

(I+1)
j |

× t−2
∑l

I=2

∑N

i<j
|m(I)

i −m
(I)
j |+

∑l

I=1

∑N

i=1

∑N

j=1 |m
(I)
i −m

(I+1)
j |−

∑N

i=1

∑N

j=1 |m
(l+1)
i −m(1)

j |

= t
−2
∑l

I=2

∑N

i<j
|m(I)

i −m
(I)
j |+

∑l

I=1

∑N

i=1

∑N

j=1 |m
(I)
i −m

(I+1)
j |−

∑N

i=1

∑N

j=1 |m
(l+1)
i −m(1)

j |

× q−
1
2
∑

I=1,l+1

∑
i<j
|m(I)

i −m
(I)
j |+

1
4
∑

i,j
|m(l+1)

i −m(1)
i |. (7.28)

The power of q is positive semi-definite and vanishes if and only if (m(1)
1 , · · · ,m(1)

N ) =
(m(l+1)

1 , · · · ,m(l+1)
1 ) up to permutation of the indices i = 1, · · · , N . Hence the supersym-
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metric index simplifies in the Higgs limit as

IU(N)k×U(N)⊗(l−1)
0 ×U(N)−k quiver CS(H)

= lim
t=q

1
4 t: fixed
q→0

IU(N)k×U(N)⊗(l−1)
0 ×U(N)−k quiver CS

=
∑

ν(1)
m ,··· ,ν(l)

m ≥0(∑∞
m=−∞

ν(a)
m =Na

) t
ε1(ν(a)

m )
[ ∞∏
m=−∞

(y1yl+1)mν
(1)
m

l∏
a=2

ymν
(a)
m

a

× 1(
ν

(1)
m !
)2

∮ ν(1)
m∏
i=1

ds
(1)
i

2πis(1)
i

ds
(l+1)
i

2πis(l+1)
i

(
s

(1)
i

)km(
s

(l+1)
i

)−km
∏ν(1)

m

i 6=j

(
1− s

(1)
i

s
(1)
j

)(
1− s

(l+1)
i

s
(l+1)
j

)
∏ν

(1)
m

i,j=1
∏
±

(
1−t

(
s

(l+1)
i

s
(1)
j

)±1
x±1

)

×
l∏

a=2

1
ν

(a)
m !

∮ ν(a)
m∏
i=1

ds
(a)
i

2πis(a)
i

∏ν(a)
m

i 6=j

(
1− s

(a)
i

s
(a)
j

)
∏ν

(a)
m

i,j

(
1−t2 s

(a)
i

s
(a)
j

)], (7.29)

where we have labeled each monopole charge (m(a)
1 , · · · ,m(a)

Na
) with ν(a)

m = #{m(a)
i |m

(a)
i =

m}, and defined ε1 as

ε1
(
ν(a)
m

)
=−2

l∑
I=2

NI∑
i<j

|m(I)
i −m

(I)
j |+

l∑
I=1

NI∑
i=1

NI+1∑
j=1
|m(I)

i −m
(I+1)
j |−

NI+1∑
i=1

NI∑
j=1
|m(l+1)

i −m(1)
j |
∣∣∣∣
m

(l+1)
i =m(1)

i

=−2
l∑

a=1

∑
m<m′

ν(a)
m ν

(a)
m′ |m−m

′|+
l∑

a=1

∑
m,m′

ν(a)
m ν

(a+1)
m′ |m−m′|. (7.30)

Here the 2ν(1)
m dimensional integration in the third line and the ν(a)

m dimensional integrations
in the fourth line of the final expression are what we have already calculated in (7.20)–(7.26)
and (3.62)–(3.68):

1
(ν!)2

∮ ν∏
i=1

dsi
2πisi

ds′i
2πis′i

skmi
(
s′i
)−km ∏

i 6=j

(
1− si

sj

)(
1− s′i

s′j

)
∏
i,j,±

(
1− t

(
s′i
sj

)±1
x±1

) = t|km|νxkmνΩν (t) ,

1
ν!

∮ ν∏
i=1

dsi
2πisi

∏
i 6=j

(
1− si

sj

)
∏
i,j

(
1− t2 sisj

) = Ων (t) , (7.31)
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where Ων(t) is given in (3.68). Plugging these into (7.29) we obtain

IU(N)k×U(N)⊗(l−1)
0 ×U(N)−k quiver CS(H)

=
∑

ν
(1)
m ,··· ,ν(l)

m ≥0(∑∞
m=−∞ ν

(a)
m =Na

)
t
ε1

(
ν

(a)
m

) [ ∞∏
m=−∞

t|km|ν
(1)
m

(
xky1yl+1

)mν(1)
m

l∏
a=2

ymν
(a)
m

a

l∏
a=1

Ω
ν

(a)
m

(t)
]
.

(7.32)

When l = 2 and Na = 1 we can perform the summation explicitly by relabeling ν(a)
m

in (7.32) as ν(1)
m = δm,m(1) , ν(2)

m = δm,m(1)+n(2) , as

IU(1)k×U(1)0×U(1)−k quiver CS(H)

= Ω1 (t)2
∞∑

m(1)=−∞

tk|m
(1)|xkm

(1)
3∏
I=1

ym
(1)

I

∞∑
n(2)=−∞

t2|n
(2)|yn

(2)
2

=

(
1− t2k

) (
1 + t2

)
(1− t2)∏± (1− x±k∏3

I=1 y
±1
I tk

) (
1− y±1

2 t2
) . (7.33)

In particular, if we set k = 1, 2 and y1 = y−1
2 y−1

3 to fix the redundancy (see (7.4)), the
result agrees with the Higgs limit of the supersymmetric index of U(1) ADHM theory (3.45)
with l = 2 and the Higgs limit of the supersymmetric index of O(2) with one antisymmetric
hypermultiplet and one fundamental hypermultiplet (5.21) respectively.

Unfortunately, we are not able to perform the infinite sum over ν(a)
m in (7.32) explicitly

for general l ≥ 2 and Na due to the overall tε1(ν(a)
m ) which does not factorize in m, a.

Nevertheless (7.32) is useful for computing the small t expansion of I(H) to any finite order.
For example, for l = 2 and N1 = N2 = N3 = 2, by classifying the summations over ν(a)

m into
the following four types:

(i): ν(1)
m = 2δm,m(1) , νm(2) = 2δm,m(2) ,

(ii): ν(1)
m = 2δm,m(1) , νm(2) = δ

m,m
(2)
1

+ δ
m,m

(2)
2

(
m

(2)
1 < m

(2)
2

)
,

(iii): ν(1)
m = δ

m,m
(1)
1

+ δ
m,m

(1)
2
, ν(2)

m = 2δm,m(2) ,
(
m

(1)
1 < m

(1)
2

)
,

(iv): ν(1)
m = δ

m,m
(1)
1

+ δ
m,m

(1)
2
, ν(2)

m = δ
m,m

(2)
1

+ δ
m,m

(2)
2
,

(
m

(a)
1 < m

(a)
2

)
,

(7.34)
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p\k 1 2 3 · · ·
1 (0, 0, 0, 1) (0, 0, 0, 0) (0, 0, 0, 0) · · ·
2 (1, 1, 0, 2) (0, 1, 0, 1) (0, 1, 0, 0) · · ·
3 (1, 1, 1, 3) (0, 1, 0, 1) (0, 1, 0, 1) · · ·
4 (2, 2, 1, 4) (1, 2, 1, 2) (0, 2, 0, 1) · · ·
5 (2, 2, 2, 5) (1, 2, 1, 2) (0, 2, 1, 2) · · ·
6 (3, 3, 2, 6) (1, 3, 1, 3) (1, 3, 1, 2) · · ·
7 (3, 3, 3, 7) (1, 3, 1, 3) (1, 3, 1, 3) · · ·
8 (4, 4, 3, 8) (2, 4, 2, 4) (1, 4, 1, 3) · · ·
9 (4, 4, 4, 9) (2, 4, 2, 4) (1, 4, 1, 4) · · ·
10 (5, 5, 4, 10) (2, 5, 2, 5) (1, 5, 2, 4) · · ·
...

...
...

...

Table 5. Values of (m(i)
max,m

(ii)
max,m

(iii)
max,m

(iv)
max) such that only (m(1),m(2)) with |m(1)|, |m(2)| ≤

m
(i)
max, (m(1),m

(2)
i ) with |m(1)|, |m(2)

i | ≤ m
(ii)
max, (m(1)

i ,m(2)) with |m(1)
i |, |m(2)| ≤ m

(iii)
max, and

(m(1)
i ,m

(2)
j ) with |m(1)

i |, |m
(2)
j | ≤ m

(iv)
max contribute to IU(2)k×U(2)0×U(2)−k quiver CS(H) (7.35) ex-

panded to the order tp.

we can write IU(2)k×U(2)0×U(2)−k quiver CS(H) (7.32) as

IU(2)k×U(2)0×U(2)−k quiver CS(H) =

Ω2 (t)2
∞∑

m(1)=−∞

∞∑
m(2)=−∞

t8|m
(1)−m(2)|+2|km(1)|

(
xky1y3

)2m(1)

y2m(2)

2

+Ω1 (t)2 Ω2 (t)

×
[ ∞∑
m(1)=−∞

∞∑
m

(2)
1 <m

(2)
2

t
−2|m(2)

1 −m
(2)
2 |+4

∑
i=1,2

|m(1)−m(2)
i |+2|km(1)|

(
xky1y3

)2m(1)

y
m

(2)
1 +m(2)

2
2

+
∞∑

m
(1)
1 <m

(1)
2

∞∑
m(2)=−∞

t
−2|m(1)

1 −m
(1)
2 |+4

∑
i=1,2

(
|m(1)

i −m
(2)|+|km(1)

i |
) (
xky1y3

)m(1)
1 +m(1)

2
y2m(2)

2

]

+Ω1 (t)4
∞∑

m
(1)
1 <m

(1)
2

∞∑
m

(2)
1 <m

(2)
2

t
−2|m(1)

1 −m
(1)
2 |−2|m(2)

1 −m
(2)
2 |+2

∑
i,j=1,2

|m(1)
i −m

(2)
j |+

∑
i=1,2

|km(1)
i |

×(xky1y3)m
(1)
1 +m(1)

2 y
m

(2)
1 +m(2)

2
2 . (7.35)

Now suppose we want to compute IU(2)k×U(2)0×U(2)−k quiver CS(H) to the order tp with some
p. Since Ων(t) (3.68) only contains positive powers of t, we can truncate the summation
over (m(1),m(2)), (m(1),m

(2)
i ), (m(1)

i ,m(2)), (m(1)
i ,m

(2)
j ) in (7.35) so that the powers of t

written explicitly in (7.35) are less than or equal to p. For each k and p, we observe that
only a finite number of (m(1),m(2)), (m(1),m

(2)
i ), (m(1)

i ,m(2)), (m(1)
i ,m

(2)
j ) satisfies this

condition (see table 5). From (7.35) (and table 5 for k = 1, 2, 3) we obtain (we have set
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x = y1 = y2 = y3 = 1 for simplicity)

IU(2)1×U(2)0×U(2)−1 quiver CS(H) = 1 + 2t + 9t2 + 22t3 + 55t4 + 116t5 + 242t6 + 448t7

+ 820t8 + 1400t9 + 2334t10 + · · · ,
IU(2)2×U(2)0×U(2)−2 quiver CS(H) = 1 + 6t2 + 35t4 + 131t6 + 427t8 + 1151t10 + · · · ,
IU(2)3×U(2)0×U(2)−3 quiver CS(H) = 1 + 4t2 + 2t3 + 14t4 + 16t5 + 40t6 + 58t7 + 112t8

+ 166t9 + 288t10 + · · · ,
IU(2)4×U(2)0×U(2)−4 quiver CS(H) = 1 + 4t2 + 16t4 + 51t6 + 143t8 + 350t10,

IU(2)5×U(2)0×U(2)−5 quiver CS(H) = 1 + 4t2 + 14t4 + 2t5 + 35t6 + 16t7 + 80t8 + 58t9

+ 163t10 + · · · . (7.36)

The result for k = 1 is consistent with the Higgs limit of the index of the U(2) ADHM theory
with l = 2 in (3.49). From the results including even higher order corrections, we also guess
the following closed form expressions for the IU(2)k×U(2)0×U(2)−k quiver CS(H) indices with
k = 2, 3, 4, 5:

IU(2)2×U(2)0×U(2)−2 quiver CS(H)

= 1 + 2t2 + 13t4 + 15t6 + 28t8 + 15t10 + 13t12 + 2t14 + t16

(1− t2)4(1− t4)4 (pth = 33),

IU(2)3×U(2)0×U(2)−3 quiver CS(H)

= 1
(1− t2)(1− t3)(1− t4)2(1− t5)3(1− t6)

(
1 + 3t2 + t3 + 8t4 + 8t5 + 17t6 + 21t7 + 33t8

+ 35t9 + 51t10 + 49t11 + 63t12 + 54t13 + 63t14 + 49t15 + 51t16 + 35t17 + 33t18 + 21t19

+ 17t20 + 8t21 + 8t22 + t23 + 3t24 + t26
)

(pth = 39),

IU(2)4×U(2)0×U(2)−4 quiver CS(H)

= 1
(1− t2)(1− t4)4(1− t6)3

(
1 + 3t2 + 8t4 + 20t6 + 41t8 + 61t10 + 78t12 + 84t14 + 78t16

+ 61t18 + 41t20 + 20t22 + 8t24 + 3t26 + t28
)

(pth = 45),

IU(2)5×U(2)0×U(2)−5 quiver CS(H)

= 1
(1− t2)(1− t4)2(1− t5)(1− t7)3(1− t10)

(
1 + 3t2 + 8t4 + t5 + 15t6 + 8t7 + 26t8

+ 21t9 + 41t10 + 35t11 + 63t12 + 51t13 + 87t14 + 65t15 + 105t16 + 79t17 + 111t18

+ 84t19 + 111t20 + 79t21 + 105t22 + 65t23 + 87t24 + 51t25 + 63t26 + 35t27 + 41t28

+ 21t29 + 26t30 + 8t31 + 15t32 + t33 + 8t34 + 3t36 + t38
)

(pth = 45), (7.37)

where pth indicates that each expression is confirmed up to the order tpth+1.
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In the same way we obtain for N = 3 the following results for x = y1 = y2 = y3 = 1

IU(3)1×U(3)0×U(3)−1 quiver CS(H)

= 1 + 2t + 9t2 + 26t3 + 73t4 + 178t5 + 430t6 + 940t7 + 1998t8 + 4008t9 + · · · ,

IU(3)2×U(3)0×U(3)−2 quiver CS(H)

= 1 + 6t2 + 35t4 + 162t6 + 636t8 + 2193t10 + 6768t12 + 18989t14 + 49143t16

+ 118565t18 + · · · ,

IU(3)3×U(3)0×U(3)−3 quiver CS(H)

= 1 + 4t2 + 2t3 + 14t4 + 16t5 + 45t6 + 68t7 + 144t8 + 232t9 + 438t10 + 696t11 + 1228t12

+ 1922t13 + 3191t14 + 4916t15 + 7781t16 + 11744t17 + 17925t18 + 26450t19 + · · · ,

IU(3)4×U(3)0×U(3)−4 quiver CS(H)

= 1 + 4t2 + 16t4 + 56t6 + 173t8 + 493t10 + 1308t12 + 3236t14 + 7563t16 + 16773t18 + · · · ,

IU(3)5×U(3)0×U(3)−5 quiver CS(H)

= 1 + 4t2 + 14t4 + 2t5 + 40t6 + 16t7 + 100t8 + 68t9 + 232t10 + 222t11 + 523t12 + 608t13

+ 1157t14 + 1478t15 + 2509t16 + 3310t17 + 5281t18 + 7014t19 + · · · ,

IU(3)6×U(3)0×U(3)−6 quiver CS(H)

= 1 + 4t2 + 14t4 + 42t6 + 116t8 + 295t10 + 706t12 + 1598t14 + 3454t16 + 7150t18 + · · · ,
(7.38)

up to the order t9+1 for k = 1 and the order t19+1 for k = 2, 3, 4, 5, 6.

For k = 2 and N = 2, 3, we obtain the following results before taking x=y1 =y2 =y3 =1:

IU(2)2×U(2)0×U(2)−2 quiver CS(H)

= 1 +
(
2 + y−1

2 + y2 + y−1
1 y−1

2 y−1
3 x−2 + x2y1y2y3

)
t2 +

[
7 + y−2

2 + 3y−1
2 + 3y2 + y2

2

+
(
2 + 2y−2

2 + 4y−1
2

)
y−1

1 y−1
3 x−2 + 2y−2

1 y−2
2 y−2

3 x−4 + 2x4y2
1y

2
2y

2
3

+
(
2 + 4y2 + 2y2

2

)
y1y3x

2
]
t4 +

[
15 + y−3

2 + 3y−2
2 + 10y−1

2 + 10y2 + 3y2
2 + y3

2

+
(
3y−3

2 + 6y−2
2 + 3y−1

2

)
y−2

1 y−2
3 x−4 +

(
7 + 2y−3

2 + 7y−2
2 + 12y−1

2 + 2y2
)
y−1

1 y−1
3 x−2

+ 2y−3
1 y−3

2 y−3
3 x−6 + 2x6y3

1y
3
2y

3
3 +

(
7 + 2y−2

2 + 12y2 + 7y2
2 + 2y3

2

)
y1y3x

2

+
(
3y2 + 6y2

2 + 3y3
2

)
y2

1y
2
3x

4
]
t6 + · · · ,
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IU(3)2×U(3)0×U(3)−2 quiver CS(H)

= 1 +
(
2 + y−1

2 + y2 + y−1
1 y−1

2 y−1
3 x−2 + x2y1y2y3

)
t2 +

[
7 + y−2

2 + 3y−1
2 + 3y2 + y2

2

+
(
2 + 2y−2

2 + 4y−1
2

)
y−1

1 y−1
3 x−2 + 2y−2

1 y−2
2 y−2

3 x−4 + 2x4y2
1y

2
2y

2
3

+
(
2 + 4y2 + 2y2

2

)
y1y3x

2
]
t4 +

[
20 + y−3

2 + 3y−2
2 + 12y−1

2 + 12y2 + 3y2
2 + y3

2

+
(
4y−3

2 + 8y−2
2 + 4y−1

2

)
y−2

1 y−2
3 x−4 +

(
8 + 2y−3

2 + 8y−2
2 + 16y−1

2 + 2y2
)
y−1

1 y−1
3 x−2

+ 3y−3
1 y−3

2 y−3
3 x−6 + 3x6y3

1y
3
2y

3
3 +

(
8 + 2y−1

2 + 16y2 + 8y2
2 + 2y3

2

)
y1y3x

2

+
(
4y2 + 8y2

2 + 4y3
2

)
y2

1y
2
3x

4
]
t6 + · · · , (7.39)

which are consistent with the indices of O(2N) theory with an antisymmetric hypermul-
tiplet and fundamental hypermultiplets with N = 2, 3 (5.42),(5.51), with the parameter
identification (7.11).

8 BLG theory

The BLG theories are 3d N = 8 Chern-Simons matter theories with so(4) gauge algebra
and Chern-Simons level k ∈ Z constructed in terms of Lie 3-algebra [8–12]. They are two
families of theories where one has gauge group G = SU(2) × SU(2) and the other has
G = (SU(2)× SU(2))/Z2 [1, 68, 69].

8.1 Moduli spaces and local operators

In the BLG model a bare monopole operator vm(1);m(2) has the conformal dimension

∆(m(1),m(2)) = −2|m(1)| − 2|m(2)|+ 2|m(1) −m(2)|+ 2|m(1) +m(2)|, (8.1)

where m(1),m(2) ∈ Z G = SU(2)× SU(2)
m(1),m(2) ∈ Z/2 G = (SU(2)× SU(2))/Z2

(8.2)

are the magnetic fluxes.
The moduli space is given by (2.38) or (2.39) [70, 71]

MBLG =


(
C4 × C4) /D4k G = SU(2)k × SU(2)−k(
C4 × C4) /D2k G = SU(2)k × SU(2)−k/Z2

. (8.3)

In particular, for (SU(2)1 × SU(2)−1)/Z2, SU(2)2 × SU(2)−2 and (SU(2)4 × SU(2)−4)/Z2
the moduli spaces are identified with

M(SU(2)1 × SU(2)−1)/Z2 BLG = Sym2
(
C4
)
, (8.4)

MSU (2)2 × SU (2)−2 BLG = Sym2
(
C4/Z2

)
, (8.5)

M(
SU (2)4 × SU (2)−4

)
/Z2 BLG = Sym2

(
C4/Z2

)
, (8.6)

which have the conjectural geometrical interpretation of two M2-branes. The difference
between the SU(2)2 × SU(2)−2 and (SU(2)4 × SU(2)−4)/Z2 BLG theories is expected to
come from the absence or presence of discrete torsion for the background 4-form.
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8.2 Indices

The index of the BLG theory of level k ∈ Z is computed in [19, 20, 47, 72]. We find a
simple equality which indicates a duality associated to the SU(2)1 × SU(2)−1 BLG theory.
For completeness, we also show the known equalities of indices in our convention.

In terms of the definition (A.1), the BLG index can be evaluated as

IBLG (t, x, z; q)

= 1
4

∑
m(1),m(2)

2∏
I=1

∮
ds(I)

2πis(I)

(
1− q|m(I)|s(I)±2

) (
s(1)

)2km(1) (
s(2)

)−2km(2)

×

(
q

3
4 + |m

(1)−m(2)|
2 t−1s(1)∓s(2)±x∓; q

)
∞(

q
1
4 + |m

(1)−m(2)|
2 ts(1)±s(2)∓x±; q

)
∞

(
q

3
4 + |m

(1)−m(2)|
2 t−1s(1)∓s(2)±x±; q

)
∞(

q
1
4 + |m

(1)−m(2)|
2 ts(1)±s(2)∓x∓; q

)
∞

×

(
q

3
4 + |m

(1)+m(2)|
2 t−1s(1)∓s(2)∓x∓; q

)
∞(

q
1
4 + |m

(1)+m(2)|
2 ts(1)±s(2)±x±; q

)
∞

(
q

3
4 + |m

(1)+m(2)|
2 t−1s(1)∓s(2)∓x±; q

)
∞(

q
1
4 + |m

(1)+m(2)|
2 ts(1)±s(2)±x∓; q

)
∞

×

(
q

3
4 + |m

(1)−m(2)|
2 ts(1)∓s(2)±z∓; q

)
∞(

q
1
4 + |m

(1)−m(2)|
2 t−1s(1)±s(2)∓z±; q

)
∞

(
q

3
4 + |m

(1)−m(2)|
2 ts(1)∓s(2)±z±; q

)
∞(

q
1
4 + |m

(1)−m(2)|
2 t−1s(1)±s(2)∓z∓; q

)
∞

×

(
q

3
4 + |m

(1)+m(2)|
2 ts(1)∓s(2)∓z∓; q

)
∞(

q
1
4 + |m

(1)+m(2)|
2 t−1s(1)±s(2)±z±; q

)
∞

(
q

3
4 + |m

(1)+m(2)|
2 ts(1)∓s(2)∓z±; q

)
∞(

q
1
4 + |m

(1)+m(2)|
2 t−1s(1)±s(2)±z∓; q

)
∞

× q−|m(1)|−|m(2)|+|m(1)−m(2)|+|m(1)+m(2)|, (8.7)

where the magnetic fluxes m(1) and m(2) are summed over Z and Z
2 for the SU(2)× SU(2)

BLG and the (SU(2)× SU(2))/Z2 BLG respectively.

8.2.1 SU(2)1 × SU(2)−1 BLG

The flavored index of the SU(2)1 × SU(2)−1 BLG theory is evaluated as

ISU(2)1 × SU(2)−1 BLG(t, x, z; q)

= 1 + 2
((
x+ x−1

) (
z + z−1

)
+ t2

(
1 + x2 + x−2

)
+ t−2

(
1 + z2 + z−2

))
q1/2

+
(
1 + 4

(
x2 + x−2 + z2 + z−2

)
+ 5

(
x2z2 + x−2z−2 + 5x2z−2 + 5x−2z2

+ t4
(
5 + 3x4 + 3x−4 + 4x2 + 4x−2

)
+ 4t2

(
x3 + x+ x−1 + x−3

) (
z + z−1

)
+ t−4

(
5 + 3z4 + 3z−4 + 4z2 + 4z−2

)
+ 4t−2

(
z3 + z + z−1 + z−3

) (
x+ x−1

) )
q + · · · .

(8.8)
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When x = z = 1, the index for the SU(2)1 × SU(2)−1 BLG theory reduces to

ISU(2)1 × SU(2)−1 BLG(t, x = 1, z = 1; q)

= 1 +
(
8 + 6t2 + 6t−2

)
q1/2 +

(
37 + 19t2 + 32t2 + 32t−2 + 19t−4

)
q

+
(
64 + 44t6 + 72t4 + 70t2 + 70t−2 + 72t−4 + 44t−6

)
q3/2

+
(
116 + 85t8 + 128t6 + 102t4 + 104t2 +

(
t→ t−1

))
q2 + · · · . (8.9)

Here we find that the flavored index (8.8) obeys a relation (see (6.14), (6.24))

ISU(2)1 × SU(2)−1 BLG(t;x; z; q)
= IU(2)2 ×U(1)−2ABJ(t, x, y = 1, z; q)× IU(1)2 ×U(1)−2ABJM(t, x, y = 1, z; q). (8.10)

Note that the redundancies of the ABJ(M) indices are fixed by setting the topological
fugacities to unity as in (6.8). Accordingly, we conjecture a duality

SU(2)1 × SU(2)−1 BLG
⇔ U(2)2 ×U(1)−2 ABJ⊗U(1)2 ×U(1)−2 ABJM. (8.11)

In the Coulomb and Higgs limits the index (8.9) reduces to

ISU(2)1 × SU(2)−1 BLG(C)(t) = ISU(2)1 × SU(2)−1 BLG(H)(t) =
(
1 + t2

)2
(1− t2)4 , (8.12)

which agrees with (C.7) with n = 2.

8.2.2 SU(2)2 × SU(2)−2 BLG

The flavored index for the SU(2)2×SU(2)−2 BLG theory is equal to the flavored index (6.20).
This demonstrates that they are dual to each other, mentioned in (2.42) [69, 72]. They
describe two M2-branes probing C2/Z2.

8.2.3 SU(2)3 × SU(2)−3 BLG

For the SU(2)3 × SU(2)−3 BLG model we have the flavored index

ISU (2)3 × SU (2)−3 BLG (t, x, z; q)

= 1 +
(
xz + x−1z−1 + xz−1 + x−1z +

(
1 + x2 + x−2

)
t2 +

(
1 + z2 + z−2

)
t−2
)
q1/2

+
(
x2 + x−2 + z2 + z−2 + 2

(
x2z2 + x−2z−2 + x2z−2 + x−2z2

)
+
(
2 + x4 + x−4 + x2 + x−2

)
t4 +

(
x3z + x−3z−1 + x3z−1 + x−3z

+ xz + x−1z−1 + xz−1 + x−1z
)
t2 +

(
xz3 + x−1z−3 + xz−3 + x−1z3

+ xz + x−1z−1 + xz−1 + x−1z
)
t−2 +

(
2 + z4 + z−4 + z2 + z−2

)
t−4
)
q + · · · . (8.13)
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For x = z = 1 it is simplified as

ISU(2)3 × SU(2)−3 BLG(t, x = 1, z = 1; q)

= 1 +
(
4 + 3t2 + 3t−2

)
q1/2 +

(
12 + 6t4 + 8t2 + 8t−2 + 6t−4

)
q

+
(
24 + 17t6 + 24t4 + 27t2 + 27t−2 + 24t−4 + 17t−6

)
q3/2 + · · · . (8.14)

In the Coulomb and Higgs limits the index (8.14) gives

ISU(2)3×SU(2)−3 BLG(C)(t) = ISU(2)3×SU(2)−3 BLG(H)(t) = 1+t2+t4+6t6+t8+t10+t12

(1+t2+t4)2(1−t2)4 ,

(8.15)
which agrees with (C.7) with n = 6.

8.2.4 (SU(2)1 × SU(2)−1)/Z2 BLG
The flavored index of the (SU(2)1 × SU(2)−1)/Z2 BLG theory agrees with the flavored
index (3.20) for the U(2) ADHM theory with one flavor or equivalently the U(2)1 × U(2)−1
ABJM theory (6.12) with y = 1. This reflects the duality (2.41) [69, 72]. They capture two
M2-branes moving in C2.

8.2.5 (SU(2)3 × SU(2)−3)/Z2 BLG
For the (SU(2)3 × SU(2)−3)/Z2 BLG model we have the flavored index

I(SU(2)3×SU(2)−3)/Z2 BLG(t,x,z;q)

= 1+
(
xz+x−1z−1+xz−1+x−1z+

(
1+x2+x−2

)
t2+

(
1+z2+z−2

)
t−2
)
q1/2

+
((
x3+x−3+x+x−1

)
t3+

(
z+z−1+x2z+x−2z−1+x2z−1+x−2z

)
t

+
(
x+x−1+xz2+x−1z−2+xz−2+x−1z2

)
t−1+

(
z3+z−3+z+z−1

)
t−3
)
q3/4+· · · .

(8.16)
When the fugacities x and z are taken to unity, we have

I(SU(2)3 × SU(2)−3)/Z2 BLG(t, x = 1, z = 1; q)

= 1 +
(
4 + 3t2 + 3t−2

)
q1/2 +

(
4t3 + 6t+ 6t−1 + 4t−3

)
q3/4

+
(
12 + 6t4 + 8t2 + 8t−2 + 6t−4

)
q + · · · . (8.17)

The Coulomb and Higgs limits of the index (8.17) are

I(SU(2)3 × SU(2)−3)/Z2 BLG(C)(t) = I(SU(2)3 × SU(2)−3)/Z2 BLG(H)(t)

= 1 + t2 + 2t3 + t4 + t6

(1 + t)2(1 + t + t2)2(1− t)4 , (8.18)

which agrees with (C.7) with n = 3. From (3.30), (6.11) and (8.16), we have

IU(3)1 ×U(3)−1ABJM(t, x, 1, z; q)
= I(SU(2)3 × SU(2)−3)/Z2 BLG(t, x, z; q)× IU(1)1 ×U(1)−1ABJM(t, x, 1, z; q), (8.19)

which implies the duality (2.44). This generalizes the identity of the indices in [20] in such
a way that (8.19) reduces to it when x = z = 1. While the U(1)1 ×U(1)−1 ABJM describes
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a center of motion of three M2-branes, the (SU(2)3 × SU(2)−3)/Z2 BLG model describes
an interacting sector [20].

8.2.6 (SU(2)4 × SU(2)−4)/Z2 BLG

The index of the (SU(2)4×SU(2)−4)/Z2 BLG theory coincides with the flavored index (6.31)
of the U(3)2×U(2)−2 ABJ theory for y = 1 as we have the duality (2.43) [72]. They capture
two M2-branes probing C2/Z2 in the presence one unit of discrete torsion for 4-form flux.
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A 3d supersymmetric indices

The supersymmetric index of 3d supersymmetric field theory can be defined as a trace over
the Hilbert space on S2. We use the definition in [98]13 for the supersymmetric index of 3d
N = 4 supersymmetric field theory

I(t, x; q) := TrOp(−1)F qJ+H+C
4 tH−Cxf , (A.1)

as a trace over the cohomology of the preserved supercharges. Here we have introduced F
as the Fermion number operator, J as the generator of the U(1)J rotational symmetry in
the space-time, H and C as the Cartan generators of the SU(2)H and SU(2)C R-symmetry
groups, f as the Cartan generator of the global symmetry.

The index can be calculated from the UV data via the localization [15–17]. It takes
the following form:

I3d G(t,xH ,xC ;q)

= 1
|Weyl(G)|

(q 1
2 t2;q)rank(G)

∞

(q 1
2 t−2;q)rank(G)

∞

∑
m∈cochar(G)

∮ ∏
α∈roots(G)

ds

2πis

(
1−q

|m·α|
2 sα

)(
q

1+|m·α|
2 t2sα;q

)
∞(

q
1+|m·α|

2 t−2sα;q
)
∞

×
∏
λ∈R

(
q

3
4 + |m·λ|2 t−1sλxH ;q

)
∞(

q
1
4 + |m·λ|2 tsλxH ;q

)
∞

q
∆(m)

2 ·t−2∆(m) ·xmC . (A.2)

The second line comes from the contribution of the N = 4 vector multiplet of gauge group
G. The third line contains the contribution from the hypermultiplets transforming as
representation R of the gauge group G as well as that from the monopole operators of
dimension ∆(m) where m ∈ cochar(G) is a magnetic flux carried by the monopoles. The
fugacities xH are coupled to the flavor symmetry, or the Higgs branch symmetry that
rotates hypermultiplets. The fugacities xC are associated to the topological symmetry, or
the Coulomb branch symmetry.

13This definition is also compatible with the half- and quarter-indices of 4d N = 4 SYM theory studied
in [99] including the half-indices of 3d N = 4 gauge theories analyzed in [39, 40].
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The fugacity is fixed so that the power of q is always strictly positive for a non-trivial
local operator according to a unitarity bound. Therefore the index (A.1) is a formal
power series in q whose coefficients count the local operators as Laurent polynomials in the
other fugacities.

We have introduced the following notation by defining q-shifted factorial

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(
1− aqk

)
, (q)n :=

n∏
k=1

(
1− qk

)
, n ≥ 1,

(a; q)∞ :=
∞∏
k=0

(
1− aqk

)
, (q)∞ :=

∞∏
k=1

(
1− qk

)
,

(
a±; q

)
∞ := (a; q)∞

(
a−1; q

)
∞
, (A.3)

where a and q are complex variables with |q| < 1.
The introduction of the fugacity t for the R-charges allows us to study various aspects

of the BPS local operators in the theories. For example, the 3d N = 4 index (A.1) can
reduces to the Coulomb (resp. Higgs) branch Hilbert series in the Coulomb (resp. Higgs)
limit [23]

I(C)(t, x) = lim
t=q1/4t−1:fixed,

q→0

I(t, x; q), I(H)(t, x) = lim
t=q1/4t:fixed,

q→0

I(t, x; q). (A.4)

They can count the Coulomb (reps. Higgs) branch operators in the theory as generators of
chiral rings of holomorphic functions on the Coulomb (resp. Higgs) branch. Also we can
count the number of mixed branch operators from the coefficients of the term with qntm
with m 6= ±4n.

B Counting operator contents of indices by auxiliary dressing

B.1 U(N) ADHM theory with l flavor

One may consider the following integration

I
U(N)ADHM-[l]
aux. dres (mi) =

1
N !

∑
m1,··· ,mN∈Z

∮ N∏
i=1

dsi
2πisi

N∏
i 6=j

(
1−q

|mi−mj |
2

si
sj
Aij

)
N∏

i,j=1

∞∏
r=0

(
1−q 1

2 +
|mi−mj |

2 +rt2 sisj ∂
r (ψϕ)ij

)
(

1−q 1
2 +
|mi−mj |

2 +rt−2 si
sj
∂rϕij

)

N∏
i,j=1

∞∏
r=0

(
1−q 3

4 +
|mi−mj |

2 +rt−1 si
sj
x∂r (ψX)ij

)(
1−q 3

4 +
|mi−mj |

2 +rt−1 sj
si
x−1∂r (ψY )ji

)
(

1−q 1
4 +
|mi−mj |

2 +rt sisj x∂
rXij

)(
1−q 1

4 +
|mi−mj |

2 +rt
sj
si
x−1∂rYji

)

N∏
i=1

l∏
α=1

∞∏
r=0

(
1−q 3

4 + |mi|2 +rt−1siyα∂
r (ψIα)i

)(
1−q 3

4 + |mi|2 +rt−1s−1
i y−1

α ∂r (ψJα)i
)

(
1−q 1

4 + |mi|2 +rtsiyα∂rIαi

)(
1−q 1

4 + |mi|2 +rts−1
i y−1

α ∂rJαi

)
q
∑N

i=1
l|mi|

4 t−l
∑N

i=1 |mi|, (B.1)
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with Aij , ∂rϕij , ∂r(ψϕ)ij , ∂rXij , ∂r(ψX)ij , ∂rYij , ∂r(ψY )ij , ∂rIαi , ∂r(ψIα)i, ∂rJαi and
∂r(ψJα)i a set of auxiliary parameters, instead of the supersymmetric index (3.15). Though
the auxiliary parameters are not allowed as the fugacities of the supersymmetric index,
the integration (B.1) is useful to understand the operator content of each term in the full
supersymmetric index. For l = 1, N = 1 and to the order q 3

4 we obtain

mi fugacity auxiliary fugacity
−3 t−3q

3
4 1

−2 t−2q
1
2 1

xt−1q
3
4 X

x−1t−1q
3
4 Y

−1 t−1q
1
4 1

xq
1
2 X

x−1q
1
2 Y

t−3q
3
4 ϕ

x2tq
3
4 X2

x−2tq
3
4 Y 2

tq
3
4 XY − ψϕ

0 1 1
xtq

1
4 X

x−1tq
1
4 Y

t−2q
1
2 ϕ

t2q
1
2 IJ +XY − ψϕ

x2t2q
1
2 X2

x−2t2q
1
2 Y 2

xt−1q
3
4 −ψX + ϕX

x−1t−1q
3
4 −ψY + ϕY

x3t3q
3
4 X3

x−3t3q
3
4 Y 3

xt3q
3
4 IJX +X2Y − ψϕX

x−1t3q
3
4 IJY +XY 2 − ψϕY

1 t−1q
1
4 1

xq
1
2 X

x−1q
1
2 Y

t−3q
3
4 ϕ

x2tq
3
4 X2

x−2tq
3
4 Y 2

tq
3
4 XY − ψϕ

2 t−2q
1
2 1

xt−1q
3
4 X

x−1t−1q
3
4 Y

3 t−3q
3
4 1

. (B.2)

This table reproduces the operator identification in (3.16). Note that the net coefficients
of tq 3

4 at monopole charge ±1 and x±1t−1q
3
4 at monopole charge 0 in the table are zero,

hence there are no corresponding terms in the supersymmetric index (3.16).
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For l = 2, N = 1 we obtain the following results:

mi fugacity auxiliary fugacity

−1 t−2q
1
2 1

xt−1q
3
4 X

x−1t−1q
3
4 Y

0 1 1

xtq
1
4 X

x−1tq
1
4 Y

t−2q
1
2 ϕ

t2q
1
2

∑
α
IαJα +XY − ψϕ

x2t2q
1
2 X2

yαy
−1
β t2q

1
2 IαJβ

x−2t2q
1
2 Y 2

xt−1q
3
4 −ψX + ϕX

x−1t−1q
3
4 −ψY + ϕY

x3t3q
3
4 X3

x−3t3q
3
4 Y 3

xt3q
3
4

∑
α
IαJαX +X2Y − ψϕX

xyαy
−1
β t3q

3
4 IαJβX

x−1t3q
3
4

∑
α
IαJαY +XY 2 − ψϕY

x−1yαy
−1
β t3q

3
4 IαJβY

1 t−2q
1
2 1

xt−1q
3
4 X

x−1t−1q
3
4 Y

. (B.3)

For l = 3, N = 1 we obtain the following results:

mi fugacity auxiliary fugacity
−1 t−3q

3
4 1

0 1 1
xtq

1
4 X

x−1tq
1
4 Y

t−2q
1
2 ϕ

t2q
1
2

∑
α
IαJα +XY − ψϕ

x2t2q
1
2 X2

yαy
−1
β t2q

1
2 IαJβ

x−2t2q
1
2 Y 2

xt−1q
3
4 −ψX + ϕX

x−1t−1q
3
4 −ψY + ϕY

x3t3q
3
4 X3

x−3t3q
3
4 Y 3

xt3q
3
4

∑
α
IαJαX +X2Y − ψϕX

xyαy
−1
β t3q

3
4 IαJβX

x−1t3q
3
4

∑
α
IαJαY +XY 2 − ψϕY

x−1yαy
−1
β t3q

3
4 IαJβY

. (B.4)
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For l = 4, N = 1 we obtain the following results:

mi fugacity auxiliary fugacity

0 1 1

xtq
1
4 X

x−1tq
1
4 Y

t−2q
1
2 ϕ

t2q
1
2

∑
α
IαJα +XY − ψϕ

x2t2q
1
2 X2

yαy
−1
β t2q

1
2 IαJβ

x−2t2q
1
2 Y 2

xt−1q
3
4 −ψX + ϕX

x−1t−1q
3
4 −ψY + ϕY

x3t3q
3
4 X3

x−3t3q
3
4 Y 3

xt3q
3
4

∑
α
IαJαX +X2Y − ψϕX

xyαy
−1
β t3q

3
4 IαJβX

x−1t3q
3
4

∑
α
IαJαY +XY 2 − ψϕY

x−1yαy
−1
β t3q

3
4 IαJβY

. (B.5)

B.1.1 Results for higher ranks

The following is the results for l = 1, N = 2. Here we display only the contributions
to z±1tq

3
4 and x±1t−1q

3
4 in the mixed branch where there is a fermionic contribution

(ψϕ, ψX , ψY , ψI , ψJ) from some of the monopole charge mi.

m
(a)
i fugacity auxiliary fugacity gauge indices ignored

(−1, 0) tq
3
4 I2J2 +∑

iXii
∑
j Yjj −

∑
i(ψϕ)ii IJ + 4XY − 2ψϕ

(1,−1) xt−1q
3
4

∑
iXii 2X

x−1t−1q
3
4

∑
i Yii 2Y

(0, 0) xt−1q
3
4

(1+A12A21)(−
∑

i
(ψX)ii+

∑
i
ϕii
∑

j
Xjj+ϕ12X21

+ϕ21X12)
−A21(−(ψX)12+

∑
i
ϕiiX12+

∑
i
ϕ12Xii)

−A12(−(ψX)21+
∑

i
ϕiiX21+

∑
i
ϕ21Xii)

4ϕX − 2ψX

x−1t−1q
3
4

(1+A12A21)(−
∑

i
(ψY )ii+

∑
i
ϕii
∑

j
Yjj+ϕ12Y21

+ϕ21Y12)
−A21(−(ψY )12+

∑
i
ϕiiY12+

∑
i
ϕ12Yii)

−A12(−(ψY )21+
∑

i
ϕiiY21+

∑
i
ϕ21Yii)

4ϕY − 2ψY

(1, 0) tq
3
4 I2J2 +∑

iXii
∑
j Yjj −

∑
i(ψϕ)ii IJ + 4XY − 2ψϕ

.

(B.6)
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The following is the results for l = 2, N = 2. Here we display only the contributions to
x±1t−1q

3
4 in the mixed branch where there is a fermionic contribution (ψϕ, ψX , ψY , ψI , ψJ)

from some of the monopole charge mi.

m
(a)
i fugacity auxiliary fugacity gauge indices ignored

(0, 0) xt−1q
3
4

(1+A12A21)(−
∑

i
(ψX)ii+

∑
i,j
Xiiϕjj+X12ϕ21

+X21ϕ12)
−A21(−(ψX)12+X12

∑
i
ϕii+

∑
i
Xiiϕ12)

−A12(−(ψX)21+X21
∑

i
ϕii+

∑
i
Xiiϕ21)

4ϕX − 2ψX

x−1t−1q
3
4

(1+A12A21)(−
∑

i
(ψY )ii+

∑
i,j
Yiiϕjj+Y12ϕ21

+Y21ϕ12)
−A21(−(ψY )12+Y12

∑
i
ϕii+

∑
i
Yiiϕ12)

−A12(−(ψY )21+Y21
∑

i
ϕii+

∑
i
Yiiϕ21)

4ϕY − 2ψY

.

(B.7)

The following is the results for l = 4, N = 2. Here we display only the contributions to
x±1t−1q

3
4 in the mixed branch where there is a fermionic contribution (ψϕ, ψX , ψY , ψI , ψJ)

from some of the monopole charge mi.

m
(a)
i fugacity auxiliary fugacity gauge indices ignored

(0, 0) xt−1q
3
4

(1+A12A21)(−
∑

i
(ψX)ii+

∑
i,j
Xiiϕjj+X12ϕ21

+X21ϕ12)
−A21(−(ψX)12+X12

∑
i
ϕii+

∑
i
Xiiϕ12)

−A12(−(ψX)21+X21
∑

i
ϕii+

∑
i
Xiiϕ21)

4ϕX − 2ψX

x−1t−1q
3
4

(1+A12A21)(−
∑

i
(ψY )ii+

∑
i,j
Yiiϕjj+Y12ϕ21

+Y21ϕ12)
−A21(−(ψY )12+Y12

∑
i
ϕii+

∑
i
Yiiϕ12)

−A12(−(ψY )21+Y21
∑

i
ϕii+

∑
i
Yiiϕ21)

4ϕY − 2ψY

.

(B.8)

The following is the results for l = 1, N = 3. Here we display only the contribu-
tions to tq 3

4 and x±1t−1q
3
4 in the mixed branch where there is a fermionic contribution

(ψϕ, ψX , ψY , ψI , ψJ) from some of the monopole charge mi.

m
(a)
i fugacity auxiliary fugacity (gauge indices ignored)

(−1, 0, 0) tq
3
4 2IJ + 10XY − 4ψϕ

(1,−1, 0) xt−1q
3
4 3X

x−1t−1q
3
4 3Y

(0, 0, 0) xt−1q
3
4 −6ψX + 12ϕX

x−1t−1q
3
4 −6ψY + 12ϕY

(1, 0, 0) tq
3
4 2IJ + 10XY − 4ψϕ

. (B.9)

Since with the full auxiliary dressing we have too many terms to write (in particular at
mi = (0, 0, 0)), here we have set Aij = 1 and also ignored all the gauge indices.
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B.2 U(N)k ×U(N)⊗(l−1)
0 ×U(N)−k Chern-Simons matter theory

For the U(N)k ×U(N)⊗(l−1)×U(N)−k supersymmetric Chern-Simons matter theory let us
consider the following generalization of the contribution to the full index (7.2) from each
monopole charge m(I)

i :

I
U(N1)k×U(NI)⊗(l−1)

0 ×U(Nl+1)−k
aux. dres

(
m

(I)
i

)
=
∮ ∏

I

NI∏
i=1

ds
(I)
i

2πis(I)
i

N1∏
i=1

(
s

(1)
i

)km(1)
i

Nl+1∏
i=1

(
s

(l+1)
i

)−km(l+1)
i

×
l+1∏
I=1

NI∏
i 6=j

1−q
|m(I)
i
−m(I)

j
|

2
s

(I)
i

s
(I)
j

A
(I)
ij

 l∏
I=2

NI∏
i,j=1

∞∏
r=0

1−q 1
2 +
|m(I)
i
−m(I)

j
|

2 +rt−2 s
(I)
i

s
(I)
j

∂r
(
ψϕ(I)

)
ij


1−q 1

2 +
|m(I)
i
−m(I)

j
|

2 +rt2
s
(I)
i

s
(I)
j

∂rϕ
(I)
ij



×
l∏

I=1

NI∏
i=1

NI+1∏
j=1

∞∏
r=0

1−q 3
4 +
|m(I)
i
−m(I+1)

j
|

2 +rt
s
(I)
i

s
(I+1)
j

zI∂
r
(
ψTI,I+1

)
ij


1−q 1

4 +
|m(I)
i
−m(I+1)

j
|

2 +rt−1 s
(I)
i

s
(I+1)
j

zI∂r (TI,I+1)ij



×

1−q 3
4 +
|m(I)
i
−m(I+1)

j
|

2 +rt
s
(I+1)
j

s
(I)
i

z−1
I ∂r

(
ψ
T̃I,I+1

)
ji


1−q 1

4 +
|m(I)
i
−m(I+1)

j
|

2 +rt−1 s
(I+1)
j

s
(I)
i

z−1
I ∂r

(
T̃I,I+1

)
ji



×
Nl+1∏
i=1

N1∏
j=1

∞∏
r=0

1−q 3
4 +
|m(l+1)
i

−m(1)
j
|

2 +rt−1 s
(l+1)
i

s
(1)
j

x∂r
(
ψHl+1,1

)
ij


1−q 1

4 +
|m(l+1)
i

−m(1)
j
|

2 +rt
s
(l+1)
i

s
(1)
j

x∂r (Hl+1,1)ij



×

1−q 3
4 +
|m(l+1)
i

−m(1)
j
|

2 +rt−1 s
(1)
j

s
(l+1)
i

x−1∂r
(
ψ
H̃l+1,1

)
ji


1−q 1

4 +
|m(l+1)
i

−m(1)
j
|

2 +rt
s
(1)
j

s
(l+1)
i

x−1∂r
(
H̃l+1,1

)
ji


×q−

1
2
∑l+1

I=1

∑NI
i<j
|m(I)

i −m
(I)
j |+

1
4
∑l+1

I=1

∑NI
i=1

∑NI+1
j=1 |m(I)

i −m
(I+1)
j |

×t2
∑l

I=2

∑NI
i<j
|m(I)

i −m
(I)
j |+

∑l

I=1

∑NI
i=1

∑NI+1
j=1 |m(I)

i −m
(I+1)
j |−

∑Nl+1
i=1

∑N1
j=1 |m

(l+1)
i −m(1)

j |,

(B.10)

with the auxiliary dressing parameters A(I)
ij , ∂4ϕ

(I)
ij , ∂r(ψϕ(I))ij , ∂r(TI,I+1)ij , ∂r(ψTI,I+1)ij ,

∂r(T̃I,I+1)ij , ∂r(ψT̃I,I+1
)ij , ∂r(Hl+1,1)ij , ∂r(ψHl+1,1)ij , ∂r(H̃l+1,1)ij and ∂r(ψ

H̃l+1,1
)ij . For
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k = 1, l = 1, N1 = N2 = 1 and to the order q 3
4 we obtain

m
(a)
i fugacity auxiliary fugacity

(−3;−3) x−3t3q
3
4 H̃3

x−2ztq
3
4 TH̃2

x−1z2t−1q
3
4 T 2H̃

z3t−3q
3
4 T 3

(−2;−2) x−2t2q
1
2 H̃2

x−1zq
1
2 TH̃

z2t−2q
1
2 T 2

(−1;−1) x−1tq
1
4 H̃

zt−1q
1
4 T

x−1t3q
3
4 HH̃2

zt−3q
3
4 T 2T̃

x−2z−1tq
3
4 T̃ H̃2

ztq
3
4 THH̃ − ψT

x−1t−1q
3
4 −ψ

H̃
+ T T̃ H̃

xz2t−1q
3
4 T 2H

(0; 0) 1 1

t2q
1
2 HH̃

t−2q
1
2 T T̃

x−1z−1q
1
2 T̃ H̃

xzq
1
2 TH

(1; 1) xtq
1
4 H

z−1t−1q
1
4 T̃

xt3q
3
4 H2H̃

z−1t−3q
3
4 T T̃ 2

x2ztq
3
4 TH2

z−1tq
3
4 T̃HH̃ − ψ

T̃

xt−1q
3
4 −ψH + T T̃H

x−1z−2t−1q
3
4 T̃ 2H̃

(2; 2) x2t2q
1
2 H2

xz−1q
1
2 T̃H

z−2t−2q
1
2 T̃ 2

(3; 3) x3t3q
3
4 H3

x2z−1tq
3
4 T̃H2

xz−2t−1q
3
4 T̃ 2H

z−3t−3q
3
4 T̃ 3

. (B.11)
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For k = 1, l = 2, N1 = N2 = N3 = 1 and to the order q 3
4 we obtain

(m(1),m(2),m(3)) fugacity auxiliary fugacity

(−3;−3;−3) x−3t3q
3
4 H̃3

3,1

(−2;−2;−2) x−2t2q
1
2 H̃2

3,1

z1z2x
−1t−1q

3
4 T1,2T2,3H̃3,1

(−1;−2;−1) x−1t3q
3
4 H̃3,1

(−1;−1;−1) x−1tq
1
4 H̃3,1

z1z2t
−2q

1
2 T1,2T2,3

x−1t3q
3
4 HH̃2

3,1 + ϕ(2)H̃3,1

x−1t−1q
3
4 −ψ

H̃3,1
+ T1,2T̃1,2H̃3,1 + T2,3T̃2,3H̃3,1 − ψϕ(2)H̃3,1

(−1; 0;−1) x−1t3q
3
4 H̃3,1

(0;−1; 0) t2q
1
2 1

(0; 0; 0) 1 1

z−1
1 z−1

2 x−1t−1q
3
4 T̃1,2T̃2,3H̃3,1

z1z2xt
−1q

3
4 T1,2T2,3H3,1

t2q
1
2 H3,1H̃3,1 + ϕ(2)

t−2q
1
2 T1,2T̃1,2 + T2,3T̃2,3 − ψϕ(2)

(0; 1; 0) t2q
1
2 1

(1; 0; 1) xt3q
3
4 H3,1

(1; 1; 1) xtq
1
4 H3,1

z−1
1 z−1

2 t−2q
1
2 T̃1,2T̃2,3

xt3q
3
4 H2

3,1H̃3,1 + ϕ(2)H3,1

xt−1q
3
4 −ψH3,1 + T1,2T̃1,2H3,1 + T2,3T̃2,3H3,1 − ψϕ(2)H3,1

(1; 2; 1) xt3q
3
4 H3,1

(2; 2; 2) x2t2q
1
2 H2

3,1

z−1
1 z−1

2 xt−1q
3
4 T̃1,2T̃2,3H3,1

(3; 3; 3) x3t3q
3
4 H3

3,1

.

(B.12)

The operators contributing to each term of the full supersymmetric index (7.5) can
also be read off from this table. Note that the net coefficients of x±1t−1q

3
4 at monopole

charge (±1;±1;±1) in the table are zero, hence there are no corresponding terms in the
supersymmetric index (7.5).
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For k = 1, l = 3, N1 = N2 = N3 = N4 = 1 and to the order q 3
4 we obtain

m
(a)
i fugacity auxiliary fugacity

(−3;−3;−3;−3) x−3t3q
3
4 H̃3

4,1

(−2;−2;−2;−2) x−2t2q
1
2 H̃2

4,1

(−1;−2;−2;−1) x−1t3q
3
4 H̃4,1

(−1;−2;−1;−1) x−1t3q
3
4 H̃4,1

(−1;−1;−2;−1) x−1t3q
3
4 H̃4,1

(−1;−1;−1;−1) x−1tq
1
4 H̃4,1

z1z2z3t
−3q

3
4 T1,2T2,3T3,4

x−1t3q
3
4 H4,1H̃

2
4,1 + H̃(ϕ(2) + ϕ(3))

x−1t−1q
3
4 −ψ

H̃4,1
+ H̃4,1(T1,2T̃1,2 + T2,3T̃2,3 + T3,4T̃3,4 − ψϕ(2) − ψϕ(3))

(−1;−1; 0;−1) x−1t3q
3
4 H̃4,1

(−1; 0;−1;−1) x−1t3q
3
4 H̃4,1

(−1; 0; 0;−1) x−1t3q
3
4 H̃4,1

(0;−1;−1; 0) t2q
1
2 1

(0;−1; 0; 0) t2q
1
2 1

(0; 0;−1; 0) t2q
1
2 1

(0; 0; 0; 0) 1 1

t2q
1
2 H4,1H̃4,1 + ϕ(2) + ϕ(3)

t−2q
1
2 T1,2T̃1,2 + T2,3T̃2,3 + T3,4T̃3,4 − ψϕ(2) − ψϕ(3)

(0; 0; 1; 0) t2q
1
2 1

(0; 1; 0; 0) t2q
1
2 1

(0; 1; 1; 0) t2q
1
2 1

(1; 0; 0; 1) xt3q
3
4 H4,1

(1; 0; 1; 1) xt3q
3
4 H4,1

(1; 1; 0; 1) xt3q
3
4 H4,1

(1; 1; 1; 1) xtq
1
4 H4,1

z−1
1 z−1

2 z−1
3 t−3q

3
4 T̃1,2T̃2,3T̃3,4

xt3q
3
4 H2

4,1H̃4,1 +H4,1(ϕ(2) + ϕ(3))

xt−1q
3
4 −ψH4,1 +H4,1(T1,2T̃1,2 + T2,3T̃2,3 + T3,4T̃3,4 − ψϕ(2) − ψϕ(3))

(1; 1; 2; 1) xt3q
3
4 H4,1

(1; 2; 1; 1) xt3q
3
4 H4,1

(1; 2; 2; 1) xt3q
3
4 H4,1

(2; 2; 2; 2) x2t2q
1
2 H2

4,1

(3; 3; 3; 3) x3t3q
3
4 H3

4,1

.

(B.13)
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B.2.1 Results for higher ranks

The following is the results for k = 1, l = 1, N1 = N2 = 2. We call T1,2, T̃1,2, H2,1, H̃2,1
respectively as T, T̃ ,H, H̃. Here we display only the contributions to y±1

1 y±1
2 x±1t−1q

3
4

and y±1
1 y±1

2 z∓1
1 tq

3
4 in the mixed branch where there is a fermionic contribution

(ψϕ(a) , ψT , ψT̃ , ψH , ψH̃) from some of the monopole charge (m(1)
i ,m

(2)
i ).

m
(a)
i fugacity auxiliary fugacity gauge indices ignored

(−2, 1;−2; 1) z1tq
3
4 H22H̃11T11 THH̃

x−1t−1q
3
4 H̃11T11T̃22 T T̃ H̃

(−1, 0;−1, 0) z1tq
3
4 H11H̃11T11+H22H̃22T11+H22H̃11T22

−(ψT )11
3THH̃ − ψT

x−1t−1q
3
4

−(ψ
H̃

)11+H̃11T11T̃11+H̃22T11T̃22

+H̃11T22T̃22
3T T̃ H̃ − ψ

H̃

(−1, 2;−1, 2) z−1
1 tq

3
4 H22H̃11T̃22 T̃HH̃

xt−1q
3
4 H22T11T̃22 T T̃H

(0, 1; 0, 1) xt−1q
3
4 −(ψH)22+H22T11T̃11+H11T11T̃22

+H22T22T̃22
3T T̃H − ψH

z−1
1 tq

3
4 H22H̃11T̃11+H11H̃11T̃22+H22H̃22T̃22

−(ψ
T̃

)22
3T̃HH̃ − ψ

T̃

.

(B.14)

C Hilbert series associated with dihedral groups

Let G be a finite group. We take a representation ρ : G → GL(m,C) and consider the
action of ρ(g) (g ∈ G) on complex coordinates of Cm. Then the generating function for the
number of independent polynomials invariant under the action G can be computed by the
Molien’s formula,

I(t;G, ρ) = 1
|G|

∑
g∈G

1
det(id− tρ(g)) , (C.1)

where id is the n× n identity matrix.
Let us apply the Molien’s formula to some representations of dihedral groups. The

dihedral group D2n consists of 2n elements given by {1, r, · · · , rn−1, s, rs, · · · , rn−1s} where
1 is the identity element and r, s satisfy

srs−1 = r−1, rn = 1, s2 = 1. (C.2)

For example a 2d representation of r, s is given by

ρ1(r) =
(
e

2πi
n 0
0 e−

2πi
n

)
, ρ1(s) =

(
0 1
1 0

)
. (C.3)
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Then the application of the Molien’s formula (C.1) to the representation of the dihedral
group yields

I (t;D2n,ρ1) = 1
2n

n−1∑
k=0

det
(

1−te 2πik
n 0

0 1−te− 2πin
k

)−1

+
n−1∑
k=0

det
(

1 −te
2πik
n

−te−
2πin
k 1

)−1
= 1

2n

 n

1−t2 +
n−1∑
k=0

1(
1−te 2πik

n

)(
1−te− 2πik

n

)


= 1
(1−t2)(1−tn) .

(C.4)

We can also consider a 4d representation of r, s,

ρ2(r) =


e

2πi
n 0 0 0
0 e−

2πi
n 0 0

0 0 e
2πi
n 0

0 0 0 e−
2πi
n

 , ρ2(s) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (C.5)

The Molien’s formula (C.1) with this representation becomes

I (t;D2n, ρ2) = 1
2n

 n

(1− t2)2 +
n−1∑
k=0

1(
1− te 2πik

n

)2 (
1− te− 2πik

n

)2

 . (C.6)

From the explicit evaluation of the expression (C.6) for some orders of t and some small n,
we conjecture that (C.6) can be also written as

I(t;D2n, ρ2) = 1 + (n− 1)tn − (n− 1)tn+2 − t2n+2

(1− t2)3(1− tn)2 . (C.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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