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1 Introduction

String Theory concerns itself not only with objects extended in a single dimension, the epony-
mous strings, but also with objects extended in many dimensions, namely branes. These
extended objects, as well as the quantum fields that live on them, are deeply consequential to
modern String Theory research in both its most formal and most phenomenological aspects.
Despite the ubiquity of branes in String Theory and the prominent position of fermions in
physics, the fermionic fields living on branes are often less well understood than their bosonic
counterparts due in no small part to their inherent technical complexities. Nevertheless,
many phenomena in high-energy physics involve fermions, and in a large variety of string
theoretic scenarios branes are crucial tools, therefore a detailed understanding of fermions
on branes is of paramount importance.

Ever since the discovery that branes are objects intrinsic to string theories [1], they have
been extensively studied in a multitude of contexts. In type II theories, D-branes provide
string theoretic realizations of gauge theories, supersymmetry breaking, and inflation,
among others. In many of these studies their worldvolume fermions play central roles in the
mechanisms under investigation. Of particular interest recently is the KKLT scenario [2], a
proposal to generate de Sitter vacua in String Theory, where branes are crucial for multiple
purposes. The KKLT construction was originally described at an effective 4-dimensional
level and so the viability of the proposal has now got to be scrutinized at the 10-dimensional
level. This has been done from many perspectives (see e.g. [3–21]). Initially, KKLT-related
works considering fermions on branes focused on counting zero modes of brane instantons
(see e.g. [22–24]). More recently new developments in this sector have lead to an interest in
higher order fermion terms on brane actions [25–32], bringing to this context open questions
first posed by Hořava and Witten [33–35]. In the well-understood case of non-localized
gauginos, supersymmetry gives rise to a ‘perfect square’ structure in the action [36], and
it is not currently known how this structure extends to the case of localized gauginos.
Shedding light on these terms has been one of the main motivations that has led us to
study higher-order fermionic couplings in Dp-brane actions. Another feature that makes
branes extremely promising tools for model building resides in the fact that they break
half of the bulk supersymmetries (this was first observed in [37, 38]). Supersymmetry
breaking is still not completely understood in String Theory proposals, but Dp-branes
are good candidates to provide ways to achieve it without spoiling the solution to the
Hierarchy Problem since their fermionic degrees of freedom can realize supersymmetry
non-linearly [37–41]. This is a key reason for devoting our interest to the topic from a very
generic point of view. In [24, 42–46], the worldvolume action of Dp- and Mp-branes in an
arbitrary bosonic background has been determined up to quadratic terms in fermions. Our
aim is to understand more deeply the mathematical structure underlying the action of a
Dp-brane, independently of the fermionic order of interest, and to set the stage for a concrete
determination of the order-4 fermionic terms in the imminent future. A fundamental feature
will be the structure inherited by the Dp-branes from the more fundamental underlying
theory, the M2-brane theory, as part of the web of string dualities. It would also be possible
to inherit the structure from the M5-brane action, but the simplicity of the M2-brane action
makes this choice more practical.
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Figure 1. A schematic of the web of dualities between the five 10-dimensional string theories and
11-dimensional supergravity (and M-theory). We will use the superspace generalization of this web
to investigate the expansion in fermions of the superfields in different theories, and the expansion
in fermions of the actions for the branes those theories contain. The parts of the web relevant for
this work have been highlighted with thicker arrows. We begin with the superspace formulation
of 11-dimensional supergravity. We find the expansion in fermions of the superfields therein, and
use these to find the fermionic expansion of the M2-brane action. Compactification on S1 is then
performed in order to obtain the fermionic expansion of the fields in type IIA, and of the D2-brane
action. Finally, T-duality between type IIA and type IIB is used repeatedly to obtain expansions of
the fields in type IIB, and so the expansions for Dp-branes for all p.

It has been understood for quite some time that the five initially distinct-looking
superstring theories are in fact limiting cases of a single fundamental theory, M-theory [47].
The five string theories and M-theory are related to each other via a web of dualities that
we sketch in figure 1. In this work, we are going to concentrate on three of these related
theories, the dualities which connect them, and the fermions on the branes that the theories
contain. We will be investigating the M2-brane from M-theory and the Dp-branes from
the type IIA and type IIB superstring theories (more properly, we will be working with
the low-energy supergravity limit of these theories, i.e. 11-dimensional supergravity, from
M-theory, and type IIA and type IIB supergravities, from type IIA and type IIB string
theories). Compactifying the 11-dimensional spacetime of M-theory on a circle transforms
the M2-brane into a D2-brane (when the circle is orthogonal to the brane), and then an
arbitrary number of T-dualizations along directions wrapped by the brane, or orthogonal
to it, allow us to investigate descriptions of any Dp-brane. Our goal when it comes to
these branes is to explore how to explicitly obtain the terms in the single-brane Abelian
actions corresponding to high-order couplings for the fermions. Of critical importance to
us is the requirement that our methods are, at least in principle, applicable to arbitrary
order in the fermions. As we will show, a central development consists of understanding
how to dimensionally reduce and T-dualize the theories into each other in a manifestly
supersymmetric way, by working in superspace.
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We now outline the core details of the strategy that we follow in this work. Due to
the existence of the string duality web, if we have a method for obtaining the high-order
fermion couplings in one theory it can in principle be extended to the others. We start with
11-dimensional supergravity, which has a particularly simple formulation in superspace,
wherein the usual dimensions of spacetime are augmented with anticommuting dimensions
with Grassman-valued coordinates. In this formulation the usual fields are combined into
superfields which contain both bosonic and fermionic degrees of freedom. What we then
require is a way of systematically extracting information about the fermionic degrees of
freedom from the superfield formulation. The technique used to do this in a complete way
is called the ‘normal coordinate’ method,1 first developed in superspace in [48], and often
simply referred to as NORCOR. The question of determining fermionic couplings is turned
into a question of differential geometry in superspace in a way that is both elegant and
powerful. In [49], many of the results necessary for finding the expansion of the M2-brane
action to fourth order in fermions were developed and this is also the order up to which we
will expand in the examples which accompany our analysis. The NORCOR method can
be applied to determine expansions of the superfields of 11-dimensional supergravity at all
orders in fermions [50]. Nevertheless, we show that the usefulness of the approach can be
limited because the size of the formulae grows quickly as one computes terms of higher
θ-order in the superfields. This is the main obstacle we find in our computations, and it
will bring us to the conclusion that unless one succeeds in combing terms obtained with
NORCOR together into simple and manageable formulae, it remains extremely challenging
to extract information valuable for physics.

After setting up the problem in M-theory we are going to use the web of string dualities
to carry the information about fermionic expansions to the type II theories. However,
in order to use the above mentioned superspace formalism when considering the web of
dualities, we promote the duality procedures to superspace as well. This circumvents some
of the difficulties in applying NORCOR directly to the type II theories by instead only
requiring the explicit use of NORCOR in the relatively simple world of 11-dimensional
supergravity. In this way a circle compactification will provide us with the superspace
formulation of the D2-brane action and T-dualities will allow us to obtain the Dp-brane
actions in superspace for an arbitrary value of p, in both type IIA and type IIB string
theories. We will take advantage of the T-duality rules for fermions [51–53] and express
them in a convenient formalism for our superspace approach, spinor doublet notation.

While our motivations are certainly braney in origin, the techniques we investigate
and develop are far more broadly applicable. The actions of the single M2-brane and for
single Dp-branes are just some examples of composite superfields that can be built from
the fundamental superfields of their respective theories, although, as we have discussed,
even these Abelian cases are particularly relevant and interesting. We will structure our
discussion, therefore, to concentrate on obtaining the θ-expansions of certain superfields in
each theory, and investigate how they can be combined in order to obtain the brane action
expansions in separate examples.

1We shall see in section 3 that for our purposes this name is an anachronism and that for the physics we
investigate we do not require the specific use of a normal coordinate system.
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This paper is organized as follows. In section 2, we review background information
about branes which motivates the analysis of later sections. We concentrate on viewing
branes as hypersurfaces in curved superspace, and the role of the Goldstone fermions arising
from the broken supersymmetry caused by the presence of a brane. In section 3, we review
the use of the ‘normal coordinate’ method to provide an expansion in orders of fermions
starting with the superspace formulation of the fields of 11-dimensional supergravity. In
section 4, we consider the application of the normal coordinate expansion to the superspace
formulation of the M2-brane action and we obtain expansions to quartic order in fermions. In
section 5, we investigate the superspace generalization of the dimensional reduction of fields
in 11-dimensional supergravity to type IIA. We use this to determine the D2-brane action
to quartic order in fermions. In section 6, we discuss the superspace generalization of the
T-duality relation between fields in type IIA and type IIB string theories. We demonstrate
how this can be used in principle to move from the action for the D2-brane at a given
order in fermions to that for any Dp-brane at the same order, and give explicit examples at
second order. We end in section 7 with a summary of our results, our conclusions, and a
discussion of future lines of inquiry. Our discussion is complemented by several appendices.
Appendix A summarizes our spinor conventions. Appendix B reviews 11-dimensional
supergravity. Appendix C contains details about quartic-order fermionic expansions in
superspace. Appendix D contains a catalogue of useful identities for the dimensional
reduction from eleven to ten dimensions. Appendix E is reserved for a discussion of topics
related to T-duality.

Notes on notation. Throughout this work we perform a large number of steps on a
large number of quantities. Making our full discussion as clear as possible by avoiding
notational clashes therefore necessitates the use of a large range of notation. It is worth our
time to take a moment to mention a few of the most consequential choices and changes we
make in this regard.

Indices. We are going to be working with many different sets of indices through this paper.
We collect details about all of these index choices here for easy reference. For easy reading
we will repeat our conventions in the context of the sections when appropriate.

In sections 2, 3 and 4, we will be working with (11|32)-dimensional superspace. Our
superspace conventions are the following. Superspace coordinates are ZM = (xm, θµ), where
upper-case letters in the middle of the alphabet are used to denote superspace coordinates,
lower-case Latin letters denote spacetime indices, m = 0, 1, . . . , 10, and lower-case Greek
letters stand for Grassmann indices, µ = 1, . . . , 32. We will use Latin and Greek indices
in the beginning of the alphabet to refer to tangent space directions as A = (a, α), with
a = 0, 1, . . . , 10 and α = 1, . . . , 32. We will use lower-case Latin indices like i, j, k for
worldvolume directions, because we work only with the M2-brane this means that i = 0, 1, 2.

In section 5, we will perform dimensional reduction from (11|32)-superspace to (10|32)-
superspace. All 11-dimensional spacetime or tangent spacetime indices will now receive
hats such that m̂ = 0, 1, . . . , 10 and â = 0, 1, . . . , 10 whereas the 10-dimensional indices
will not receive hats so that m = 0, 1, . . . , 9 and a = 0, 1, . . . , 9. Under the dimensional
reduction we perform the M2-brane gets taken to the D2-brane. Therefore in section 5,
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where only the D2-brane is discussed, we still have i = 0, 1, 2. The Grassman indices will
remain unchanged.

Finally, in section 6 we perform T-duality on (10|32)-superspace. This involves singling
out a direction to take as a circle, which we will take to be the direction x9. We will
then maintain the convention that 10-dimensional indices will not receive hats so that
m = 0, 1, . . . , 9, and we shall use a dotted index if referring only to the directions transverse
to the T-duality circle so that ṁ = 0, 1, . . . , 8. We will also shift to using double spinor
notation; however a detailed explanation of this change is given in the section itself. When
dealing with Dp-branes, T-duality maps the brane content of the type IIA theory and the
brane content of the type IIB theory into one another, changing the dimensionality. As
such, the worldvolume indices k, l run over all the p+ 1 worldvolume directions, whereas
indices m′, n′ span the complementary transverse directions, with p always being clear in
context. If the brane wraps the T-dual direction, we will employ a dot-notation k̇, l̇ when
referring to all the worldvolume directions other than the T-dual one.

Hats. In sections 3 and 4, we will be working in eleven spacetime dimensions. Then, in
section 5, we will be reducing to ten dimensions many of the quantities from previous
sections, and we will also work with them in section 6. In order to distinguish 11-dimensional
quantities from 10-dimensional ones when performing dimensional reduction in section 5
we place hats on all 11-dimensional objects and indices. However, because our use of
11-dimensions is implicit in sections 3 and 4, and to avoid swamping the notation in those
sections with hats, we do not use the convention of hatting 11-dimensional quantities until
section 5 itself. Similarly, in appendices A and D, where we discuss both 11-dimensional
and 10-dimensional quantities, we are sure to distinguish them from one another with
the hatting convention, however in appendices B and C where everything is implicitly
11-dimensional, we drop them.

2 Branes, fermions, and superspace

In this section we provide some general background information about both M2-branes
and Dp-branes. This will motivate our discussion in the coming sections. For concreteness
we mostly focus on the case of a single M2-brane, but the ideas apply in a similar way for
Dp-branes as well. The ideas in this section also hold for the M5-brane and the Green-
Schwarz string, but as we already mentioned we will restrict ourselves to the M2-brane and
Dp-brane cases.

M2-branes and Dp-branes are solitonic solutions of M-theory and type II supergravities,
respectively. ‘Brane-only’ solutions are characterized by the breaking of the 11- or 10-
dimensional Poincaré symmetry group down to the Poincaré group on the directions
spanned by the brane times the group of rotations in the transverse space, i.e. ISO(1, 10)→
ISO(1, 2)× SO(8) for M2-branes and ISO(1, 9)→ ISO(1, p)× SO(9− p) for Dp-branes. The
Goldstone modes associated to the breaking of the Poincaré symmetry become bosonic
degrees of freedom living on the brane worldvolume [54]. In these cases, the brane solution
also triggers a spontaneous breaking of half of the bulk supersymmetries and the associated
fermionic Goldstone modes turn into fermionic degrees of freedom on the brane.

– 5 –
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In this paper we are interested in the action describing these localized branes, with
a particular interest in fermionic modes living on them and their couplings in the brane
worldvolumes. For this purpose it is convenient to approach branes from a slightly different
perspective, that of the superspace formulation of the supergravity theories. In this
formulation, branes can be regarded as extended objects in curved superspace. This is
the approach taken in [55, 56] to construct the action of the M2-brane: the M2-brane is a
(2 + 1)-dimensional object in (11|32)-dimensional superspace and its action consists of a
brane worldvolume term, coupling the brane to the background metric, and a Wess-Zumino
term, coupling the brane to the background gauge sector. Denoting the coordinates that
span the worldvolume as ζi, with i = 0, 1, 2, this action reads

SM2 = −TM2

∫
d3ζ

√
−det (P [G](Z)) + µM2

∫
P [A](Z), (2.1)

where TM2 is the M2-brane tension, µM2 = TM2 is the brane charge, and P [G](Z) and
P [A](Z) are the pullbacks of the 11-dimensional supermetric and three-form gauge potential
onto the brane worldvolume respectively, with ZM representing the superspace coordinates.
The pulled-back superfields are built out of components of the supervielbein E A

M (Z) and
the super-three-form AABC(Z).

The above action is a superspace generalization of the standard bosonic action of the
M2-brane, where all fields in the latter are replaced by their superfield counterparts. A
product of superfields is a superfield itself, so what we have above is the M2-brane action
superfield. Of course, since all superfields depend on superspace Grassmann coordinates
θµ, so does the action, and both allow for finite expansions in θ. Concretely, because the
superfields in the action are the supervielbein E A

M (Z) and the super three-form gauge
potential AABC(Z), if one knows the θ-expansion of these superfields, one can obtain the
expansion of the action superfield. Both 11-dimensional supergravity, and the type II
supergravities in ten dimensions considered in this paper, have 32 supercharges and so the
fermionic expansion of the superfields goes up to order 32 in Grassmann coordinates θµ.
Note that although we are dealing with the brane action, and the presence of the brane leads
to partial supersymmetry breaking, we construct the brane action using off-shell superfields.

We mentioned before that, from the perspective of the bulk, the presence of the brane
in the brane-only solutions only preserves half of the supersymmetries. Let us consider
the bulk supercharges that are preserved in this type of solutions separately from those
that are spontaneously broken. The Goldstone modes associated to the latter are fermionic
degrees of freedom localized on the brane, arising from the θµ-directions that the broken
supercharges generate on the (off-shell) superfields. The other supercharges are not affected
by the presence of the brane, and so the brane action must be invariant under the shifts
they generate in the corresponding Grassmann directions. Combining these ideas together,
we see that the superspace Grassmann coordinates on the brane action superfield are lifted
to localized fermions living on the brane θµ(ζi), with only half of them (the ones generated
by spontaneously broken supercharges) being physical and the other half being associated
to transformations that leave the action invariant. From the brane worldvolume perspective,
when we lift the Grassmann coordinates θµ to fermions living on the brane, because we
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use the bulk off-shell superfields to write the action, we find that half of these fermions are
physical whereas the other half are not physical and instead correspond to redundancies.
The existence of these redundancies implies a fermionic gauge symmetry of the action,
commonly known as κ-symmetry. In [55] it was shown that the action (2.1) is indeed
invariant under κ-symmetry transformations. More comments about the interplay between
bulk supersymmetry and κ-symmetry are in section 4.

These arguments provide a clear approach for obtaining the fermion couplings of the
M2-brane action. One needs to obtain the θ-expansion of the superfields involved, plug
them into the action (2.1), and then lift the Grassmann coordinates to fermionic fields on
the brane θµ(ζi). We will follow this approach in order to obtain the M2-brane action at
order (θ)4, and so obtain fermionic interaction terms up to quartic order. The approach
can in principle be used to obtain the action at all orders in fermions.

Note that we used the brane-only solution to illustrate how to obtain fermion couplings
on the brane worldvolume, but our interest includes much more general solutions with
the only demand being that they include branes. Many points made above change when
moving from the brane-only solution to more general solutions with branes, for example
some of the fermions on the brane can be massive and not correspond to the goldstinos of
the solution (points of this kind can be found in e.g. [57]). Crucial for our purposes, the
fermion couplings that are obtained in the superspace formulation are completely general
and do not restrict to couplings on the brane-only solution.

In the above analysis we focused on the M2-brane case, but the same ideas can be
extended to all other branes, and in particular to Dp-branes in type II supergravities. Hence,
in order to obtain the Dp-brane action superfields, one ‘only’ needs to know the superfields
involved. Unfortunately, there is no known simple approach to obtain the θ-expansion of
superfields that appear in any of the theories in which we are interested. The method we
will use, based on a normal coordinate expansion, is systematic but has limitations in its
current form. While effective for the expansion of the M2-brane action, computing the
expansion of all superfields using this method turns out not to be the best strategy for all
Dp-branes, as we will explain in more detail later. In fact, our strategy will be to use the
‘normal coordinate’ method to obtain the θ-expansion of the M2-brane action superfield,
and then pursue the results for Dp-branes using the superspace generalization of the duality
web in figure 1.

3 The ‘normal coordinate’ method

In section 2 we explained that in order to obtain a fermionic expansion of the M2-brane
action one requires the θ-expansions of the superfields involved. In this section we review a
systematic approach to obtain these θ-expansions. Later we will specialize and apply this
approach to obtain the expansion of some superfields in 11-dimensional supergravity, but
the approach discussed here is completely general.

Supergravity in eleven dimensions [58] has a well-established formulation in super-
space2 [59, 60]. From this perspective, the θ-expansion of the superfields is just a Taylor

2Appendix A reports our spinor and Γ-matrix conventions. Appendix B provides notes on the supergravity
constraints and Bianchi identities necessary to carry out the analysis in this work.
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expansion describing the dependence of the superfields on the superspace Grassmann coor-
dinates θµ. We will use this geometric interpretation in order to obtain the θ-expansions
we are after. This approach is known as the ‘normal coordinate method’, or NORCOR,
because the normal coordinate system was very useful for performing the Taylor expansion
of fields in spacetime when the method was originally proposed. We will show, however, that
the superspace analysis in which we are interested does not require any special coordinate
system. The normal coordinate method is a variant of the background field method to obtain
covariant expressions in Taylor expansions of fields. Relevant literature in the development
and application of NORCOR is [48, 49, 61–65]. In particular, [49] proposed the use of this
method to obtain the θ-expansion of the M2-brane action. In this section we provide an
intuitive and self-contained description of the method.

The purpose of the NORCOR approach is to obtain the value of a (super)field at a
point zM1 in (super)space by starting from the value of the (super)field, and its derivatives,
at another point, zM0 , which is close to zM1 , with

zM1 = zM0 + ΣM . (3.1)

In other words, we obtain the value of the superfield at points in the proximity of a point
zM0 by performing a Taylor expansion around zM0 . This approach is useful when we have
plenty of information about the value of the superfield and its derivatives at the origin zM0 ,
but the information available at zM1 is much more limited.

In our case, we want to Taylor-expand superfields in the Grassmann directions θµ: we
will take the spacetime, i.e. the subspace zM0 = (xm, θµ = 0), to be the origin, and perform
the expansion along a direction ΣM that is purely Grassmannian. So, let S = S(Z) be any
superfield, and let zM0 = (xm, 0) be the starting point. In order to determine the value S(zM1 ),
we demand that there exists an auto-parallel curve ZM (t) with parameter t connecting zM0
and zM1 , such that ZM (t = 0) = zM0 and ZM (t = 1) = zM1 . The tangent vector of the curve
is yM (t) ≡ dZM (t)/dt. This tangent vector obeys the auto-parallel equation

yM (t)∇MyA(t) = dyA(t)
dt + yM (t)ω A

M ByB(t) = 0, (3.2)

where yA(t) = yM (t)E A
M (ZN (t)) is written with the tangent superspace index because

the superspace covariant derivative ∇ comes with a superconnection ω generalizing the
spin-connection, but nothing analogously comparable to the affine connection. We are
expanding along a purely Grassmannian direction, so we want the tangent vector at the
origin to point in Grassmann directions, i.e. yM (t = 0) = (ym = 0, yµ).

Before proceeding, let us explain why our approach does not need the normal coordinate
system. The point of the normal coordinate system is to simplify the auto-parallel equation
at the origin. This is usually achieved because the (affine) connection vanishes there.
In our case of interest, however, we can use local Lorentz transformations to set some
components of the superconnection to vanish at the origin of Grassmann coordinates, i.e.
ω A
µ B(θµ = 0) = 0. So the auto-parallel equation simplifies at θ = 0 regardless of the

coordinate system used because the connection term vanishes there.
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Moreover, yMyN∂E A
M /∂ZN = 0 at θ = 0,3 and so the auto-parallel equation at the

origin is simply dyM/dt = 0. The solution we are looking for is ZM (t) = zM0 + yM (t = 0) t,
and it is a good approximation at the origin and its surroundings. The point zM1 = (xm, θµ)
is at t = 1 on the curve, and this allows us to effectively identify the Grassmann coordinate
and the origin tangent vector as yµ(t = 0)↔ θµ.

We are now ready to obtain the θ-expansion of any superfield S(z0). To do so, we
first use the curve above to compute the Taylor expansion with respect to the parameter t
around the point at t = 0, i.e.

S(ZM (t))
∣∣
t=0 =

∞∑
k=0

tk

k!

(
δ

δt

)k
S(ZM (t = 0)). (3.3)

Computing variations in t means comparing the superfield at the origin with the superfield
after dragging it along the auto-parallel curve, so we can replace the t variations with Lie
derivatives, denoted Ly, along the tangent vector field yM (t). Because we evaluate the
derivatives at t = 0 the vector y that appears in the Lie derivatives will also be evaluated at
this point. From here on we simply write it as y and drop that it is evaluated at t = 0, where
it only has components in Grassmann directions. Finally, we are interested in obtaining
the value of the superfield at the point zM1 , where t = 1. Putting these things together we
find that

S(ZM (t = 1))
∣∣
t=0 =

∞∑
k=0

(Ly)k

k! S(ZM (t = 0)) = (eLyS)
∣∣
t=0. (3.4)

This means that the θ-expansion of any superfield in this approach is obtained by repeatedly
acting with the Lie derivative. This is effectively the approach followed in [48, 49, 61–65].
It is interesting to point out that we can write the expansion using the exponential of a
differential operator, because this agrees with the fact that a product of superfields is a
superfield itself: if S is a product of superfields, using the Leibniz rule and the exponential
expansion one finds that there will be an exponential acting on each superfield involved in
the product.

For applying the NORCOR procedure it is important to note that in superspace we
have the superconnection (that generalizes the spin connection), and we defined a Lorentz
covariant derivative, but we did not define the notion of an affine connection or a fully
covariant derivative. For this reason we are often interested in writing superfields with
Lorentz indices. Regular Lie derivatives acting on Lorentz tensors do not lead to Lorentz
tensors. To fix this problem, we need to replace the regular Lie derivative by the Lie-
Lorentz derivative (see e.g. [66, 67] and the original reference [68]). This is a Lorentz
covariantization of the regular Lie derivative, wherein partial derivatives are replaced by
their Lorentz-covariant counterparts, complemented with the inclusion of an extra term that

3This can be checked using the θ-expansion of the supervielbein components E A
µ (Z) that can be obtained

e.g. using the method described in this section. The expansion of these components is only useful at this
point for our purposes, so we omit the derivation and just give the necessary formulas here. They are

E a
µ = − i2θ

νδαν (Γa)αβδβµ +O(θ2), E α
µ = δαµ +O(θ2) .
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gives an infinitesimal Lorentz transformation. The effect of this Lorentz transformation is to
trivialize the effect on the holonomy group driven by the inclusion of spin-connection terms
in the covariantization. For practical purposes we observe that in (2.1) there are no free
Lorentz indices, so the extra terms demanded by the Lie-Lorentz derivative will cancel each
other in the expansions of the objects we are interested in. For this reason we can (and will)
safely ignore the presence of these extra terms. Physics provides an alternative (and, dare
we say it, more intuitive) description of the same idea: the Lorentz-Lie derivative above is a
combination of a supersymmetry transformation and a local Lorentz transformation, and we
will ignore the latter because brane actions have no free Lorentz indices. The θ-expansion
is therefore obtained by repeatedly taking supersymmetry variations of the fields.

Note that we have turned a problem about worldvolume couplings on branes into a
differential geometry problem in superspace, and there is a price to pay for it. If we wish to
obtain the superfield expansion systematically using this technique we are also required to
do some extra work. On the one hand, we need the value of the superfield at the origin of
Grassmann coordinates θ = 0, and on the other hand we need to be able to manipulate the
outcome of the repeated application of the Lie derivative to write the results in terms of
familiar objects. This is substantially easier to accomplish when we focus on computing the
expansion of the individual superfields appearing in the action, rather than trying to treat
the full action superfield directly. We will use some examples to illustrate these points.

As a first example consider the expansion of the 11-dimensional supervielbein that
appears in the M2-brane action. We will employ the conventions and the definitions of
11-dimensional supergravity that are reviewed in appendix B. For the first term in the
expansion one needs the Lie derivative

LyE
A

M = ∇MyA + yCE B
M T A

BC . (3.5)

This formula is obtained via integration by parts, and involves the (Lorentz) covariant
exterior derivative, ∇yA = dyA − yBECω A

BC (where yA = yME A
M ), and the (superspace)

torsion tensor T , whose definition is given in (B.4). Note that we wrote the torsion tensor
with all indices in tangent space by introducing a supervielbein for convenience. Obtaining
the order-(θ)1 term in the expansion requires evaluating this expression at θ = 0, which in
turn requires knowledge of the superspace torsion tensor and the supervielbein evaluated
on this subspace. We will shortly explain how to perform this evaluation. For now let us
point out that without the notion of e.g. the superspace torsion tensor, the Lie derivative
would be meaningless, and this makes manifest the need for extra structure to obtain any
useful information from this approach.

Let us provide some further formulae necessary to compute higher order terms of the
supervielbein expansion. In particular, we will need

LyG = yA∇AG, (3.6)
LyyA = 0, (3.7)

Ly(∇MyA) = −yBE C
M yDR A

DCB . (3.8)

The first formula indicates how the Lie derivative acts on any Lorentz tensor G. For the
second formula we used the previous one together with the auto-parallel equation. The
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last formula is also obtained by using integration by parts and the auto-parallel equation,
and R there is the superspace Riemann tensor defined in (B.5). Again, we find the need
of extra structure in order to make sense of certain Lie derivatives. It turns out that the
four expressions provided are enough to obtain the θ-expansion of the supervielbein at any
order. We perform computations up to order four in section 4 and appendix C.1.

Once the necessary Lie derivatives have been computed, the next step is to evaluate
them at the reference point for the Taylor expansion, that we choose to be θ = 0. Again,
we concentrate on the 11-dimensional supervielbein for concreteness. The first object to
evaluate at this point is the supervielbein itself. We use local Lorentz transformations to
fix the so-called Wess-Zumino (WZ) gauge,4 i.e.

E A
M (θ = 0) =

(
e a
m (x) ψαm(x)

0 δαµ

)
, (3.9)

where e a
m (x) is the 11-dimensional vielbein and ψαm(x) the 11-dimensional gravitino. For

all other terms appearing in the derivatives, there are a few steps to follow. First we must
decide which component of the superfield we are assessing by choosing which of the free
indices we would like to be bosonic or Grassmann. Contractions over superspace indices
involve both kind of indices, upon expansion we will often find that only one of these kinds
contributes. This can be for a number of the reasons including: (1) The supervielbein in
the WZ-gauge has some vanishing component. (2) The vector tangent to the auto-parallel
curve at the origin is constrained to be yM = (0, yµ) for our particular expansion. Note
that the WZ-gauge means that this is yA = (0, yα). (3) The tangent space structure means
no mixing between bosonic and fermionic indices in the superconnection (and so also no
mixing in the superspace Riemann tensor). This means ω d

γ = ω γ
d = R d

ABγ = R γ
ABd = 0.

For the terms that survive all of these constraints, one needs to evaluate the superspace
tensors involved and write them in terms of spacetime fields. To do this we make use of
the supergravity constraints and superspace Bianchi identities. It turns out that many
components of superspace tensors vanish (for example T c

αb = 0) or are constant (for example
T c
αβ ) all over superspace [60]. Fixing the value of the latter is a matter of conventions. The

value of all other components of these superspace tensors can be obtained from superspace
Bianchi identities. A list of supergravity constraints can be found in (B.9a)–(B.9d) and a
list of useful formulae derived from Bianchi identities is given in (B.11a)–(B.11c).

As a clarifying example, we evaluate some components of (3.5), at θ = 0, using the
ideas above. In both cases we consider that the index M will be restricted to spacetime,
and we evaluate the cases where the tangent space index A is spacetime and Grassmann
separately. We obtain,

LyE
a

m = ∇mya + yγE B
m T a

Bγ = ∇mya + yγE β
m T a

βγ
θ=0= −iyγ(Γa)βγψβm, (3.10a)

LyE
α

m = ∇myα + yγE B
m T α

Bγ = ∇myα + yγE b
m T α

bγ
θ=0= ∇myα + yγe b

m T α
bγ . (3.10b)

In both cases we first fixed as many indices as possible to be either spacetime or Grassmann,
leaving only the contraction of B with both types involved, then we got rid of vanishing

4We previously used local Lorentz transformations to set to zero the component ω AB
µ of the supercon-

nection at the origin. These two choices are compatible with one another (see e.g. section 5.6 of [69]).
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contributions by using T a
bγ = T α

βγ = 0. Finally we evaluated the surviving terms using
the WZ-gauge for the vielbein (3.9) and our convention for the constant torsion component
T a
βγ = −i(Γa)βγ . We left T α

bγ untouched here, but it is a simple combination of Γ-matrices
and four-form flux, as shown in (B.12a).

Once the formulae for the Lie derivatives have been evaluated at the origin of Grassmann
coordinates, and re-written as described above, one can write the superfield expansion. In
order to do so one must replace the tangent vector y by the Grassmann coordinate θ (this
happens when we evaluate the auto-parallel curve at t = 1). For the components of the
supervielbein in the above example this gives the expansions up to order (θ)1, i.e.

E a
m (Z) = e a

m (x)− iθ̄Γaψm(x) + . . . , (3.11a)
E α
m (Z) = ψαm(x) +

(
Dm(x)θ

)α + . . . . (3.11b)

In the first formula we wrote the fermion bilinear with the Dirac conjugate θ̄ = θTC, with
C being the charge conjugation matrix, see appendix A for our conventions. For the second
formula, we noted that the torsion can be manipulated and combined with the covariant
derivative into the supercovariant derivative Dm = ∇m + Ťm, where Ťm is related to Tm
by a transposition. An alert reader will notice that the first order terms in the expansion
are (unsurprisingly) the expressions that appear in the supersymmetry variations of the
vielbein and the gravitino.

The above method gives rise to a superfield expansion in terms of familiar objects. This
is not the end of the story, however. The method relies on writing all contractions in terms
of tangent space indices. This often requires including numerous supervielbeins, and these
can result in a rapidly growing number of terms when one computes higher and higher order
Lie derivatives of any superfield. Higher-order terms, written in terms of spacetime fields,
therefore involve an increasing number of contributions. This can cause the expansion to
become enormously cumbersome unless one finds a way to put contributions at each level
together into more compact and tractable combinations. As a simple example, recall that
in the supervielbein expansion we combined the covariant derivative of θ together with the
term related to the torsion into the supercovariant derivative. At higher orders it becomes
increasingly complicated to combine terms together into manageable expressions. This will
be the primary cause of the limitations we find in our computations. We will make further
comments about this when we can make more precise statements.

Finally, we will concentrate on determining expressions for the case where the back-
ground is bosonic. Practically speaking, we do this by turning to zero all the terms involving
the 11-dimensional gravitino. This means that we also turn to zero all superspace tensors
with an odd number of Grassmann indices, since they involve the gravitinos when written
in terms of spacetime objects. This restriction causes many more terms in the expansions
to vanish. The Lie derivative applied to a bosonic field (a superspace tensor with an
even number of Grassmann indices) an odd number of times will always vanish in bosonic
backgrounds, as will the expression for the Lie derivative applied to a fermionic field an
even number of times. In order to study completely general backgrounds, one would simply
not perform this step and maintain all the gravitino terms in the discussion as well.
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Now that we have explained the approach, we are ready to spell out why it is more
convenient to only use NORCOR in eleven dimensions. In ten dimensions there are
more fields and more superspace tensors involved. This means that one needs to work
harder in order to obtain all the supergravity constraints and useful formulae from Bianchi
identities in each theory, and of course applying them to re-write the Taylor expansions
requires performing even more computations. Moreover, the ‘simplicity’ of 11-dimensional
supergravity enables us to more clearly capture the structure of the terms involved, and we
will show later that this structure is, in a sense, ‘inherited’ by the 10-dimensional theories.
We will make this statement more precise later. Nevertheless, we already mentioned that
even in this ‘more simple’ theory we encounter difficulties when manipulating higher-order
terms. Clearly this problem does not improve for 10-dimensional type II theories. Computing
NORCOR expansions in eleven dimensions is substantially cleaner and allows us to make
insights and extract information about structure more easily. It is a better strategy, then,
to obtain all expansions in this theory and then obtain expansions in ten dimensions via
the superspace duality web, as we describe below.

A final compelling reason to use the method in eleven dimensions only is that higher
order expansions of the M2-brane action can be obtained with essentially just the 11-
dimensional supervielbein expansion, whereas in all other cases one must compute the
expansions of more fields. In order to explain what we mean by ‘essentially’, we can consider
the M2-brane action. We can first note that in the volume term of the M2-brane action
we find the (super)metric, whose expansion follows directly from the supervielbein. For
the Wess-Zumino term, what we find is a combination of the supervielbein and of the
super-three-form gauge potential. If we compute the Lie derivative of this combination
we find

Ly
(
E A

[m E B
n E C

p] AABC
)

= E A
[m E B

n E C
p] yDHDABC (3.12)

up to total derivatives. This formula is a consequence of how the flux field-strength superfield
is defined, in (B.8). We now apply supergravity constraints (B.9c)–(B.9d) which tell us
that the only components of the field-strength superfield that are non-vanishing are Habcd

and Hαβab = i(Γab)αβ , which is constant. This has important consequences for expansions
of the above combination, and the M2-brane action as a whole, namely

(Ly)n(yDHDABC) = 0, for n ≥ 1. (3.13)

Hence, if we apply more Lie derivatives on the combined superfield appearing in the WZ-part
of the M2-brane action, only the terms with Lie derivatives acting on the supervielbeins
survive. This means that knowledge of the supervielbein expansion is sufficient for computing
the expansion of the whole M2-brane action. This is the final argument supporting our
general strategy.

For ease of use, we summarize the computational steps of the strategy here:

1. Compute the derivatives in the superfield expansion superfield. In practice this means
using (3.5)–(3.8).

2. Evaluate the expressions at the origin, θ = 0.
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3. Apply the relevant supergravity constraints from (B.9a)–(B.9d) and those arising
as a consequence of superspace Bianchi Identities (B.12a)–(B.15b) in order to write
formulae in terms of familiar fields.

4. Apply the constraints of the bosonic background if appropriate.

4 The M2-brane action

The expansion of the M2-brane action up to order four in fermions was first performed
in [49]. In this section, with the aid of appendices, we review and correct the main results;
appendix B contains a review of the 11-dimensional supergravity conventions and appendix C
discusses useful superfield expansions up to fermionic order four. Our conventions are
described in appendices A and D.

Let the M2-brane worldvolume coordinates be defined as ζi, with i = 0, 1, 2. The
superfield action for the M2-brane in terms of the superspace embedding coordinates
ZM (ζ) = (xm(ζ), θµ(ζ)) is given in (2.1) which can be written as

SM2(Z) = −TM2

∫
d3ζ

[√
−det (Gij(Z))− 1

6ε
ijkAijk(Z)

]
, (4.1)

where, using the pullback of the supervielbein

E A
i (Z) = ∂ZM

∂ζi
E A
M (Z), (4.2)

we wrote the Dirac-Born-Infeld (DBI) term in terms of the pullback of the metric and the
Wess-Zumino (WZ) term in terms of the three-form pullback, which respectively read

Gij(Z) = E a
i (Z)E b

j (Z) ηab, (4.3)
Aijk(Z) = E A

i (Z)E B
j (Z)E C

k (Z)AABC(Z). (4.4)

We explained in section 2 that in order to obtain the θ-expansion of the action we need
to obtain the θ-expansions of the superfields involved. For the M2-brane we also showed
that, because of (3.12), the only superfield expansion we need is that of the supervielbein.
Nevertheless, it is more practical to work with Lorentz-invariant objects, so in what follows
we will compute the expansion of the (super)metric and the (super)three-form, that appear
in the brane action. Obtaining the action expansion from these is then simple. Working with
these superfields is sufficient and is a convenient middle-ground between dealing with the
full action and dealing with the numerous supervielbeins individually. For a large proportion
of the coming sections we will compute the Lorentz-invariant superfield expansions.

We start by applying the method to compute the metric superfield expansion. In order
to write the brane action up to order four in fermions, we need to expand the supermetric
to the same order. We write the necessary Lie derivatives acting on the supermetric in
terms of Lie derivatives acting on the supervielbeins involved and take into account the
fact that we consider a bosonic background, which means that several terms will actually
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vanish. With the understanding that everything outside of Lie derivatives is evaluated at
the origin, the relevant relations are

(Ly)2Gmn = 2
[
(Ly)2E a

(m
]
e b
n) ηab, (4.5a)

(Ly)4Gmn = 2
[
(Ly)4E a

(m
]
e b
n) ηab + 6

[
(Ly)2E a

(m
][

(Ly)2E b
n)
]
ηab. (4.5b)

For the WZ-term, the analysis is slightly more involved because one has both the super-
vielbein and the three-form in the combination (E A

M E B
N E C

P AABC)(Z). We saw in the
discussion around (3.12) how to deal with this combination, so here we simply use those
ideas and then follow the same procedure as we did for the metric. The relevant relations
up to fermionic order four in bosonic backgrounds are

(Ly)2Amnp = −3i yα
[
LyE

β
[m

]
e c
n e

d
p] (Γcd)βα, (4.6a)

(Ly)4Amnp = −3i yα
[
(Ly)3E β

[m
]
e c
n e

d
p] (Γcd)βα − 18i yα

[
LyE

β
[m

][
(Ly)2E c

n

]
e d
p] (Γcd)βα.

(4.6b)

We see that we require different components of the supervielbein expansion for the metric
and the three-form. Happily, using the supergravity constraints it can be shown that in
bosonic backgrounds these components are related by the condition, [50],

(Ly)2l+2E a
m = −iyβ(Γa)βγ

[
(Ly)2l+1E γ

m

]
, (4.7)

where l is a natural number. Therefore, in order to obtain the action at order four in
fermions, we only require two terms in the expansion of the supervielbein. These are

LyE
α

m = (Dm)αγyγ , (4.8a)
(Ly)3E α

m = −yβe c
m yδyε∇ε(R α

δcβ −∇δT α
cβ )− yβ(Dmyγ)yδR α

δγβ − i(ȳΓcDmy)yβT α
cβ .

(4.8b)

Here the first equation involves the supercovariant derivative that was discussed
around (3.11b). The supercovariant derivative will turn out to be a very important operator
for our purposes. In (4.8b) we have left the expression written in terms of superspace com-
ponents of the torsion and curvature tensors. Manipulating this expression using superspace
Bianchi identities in order to write it in terms of spacetime fields, though important for our
purposes, is a computation that does not add any insight to the present discussion. For
this reason we present the details of that analysis in appendix C.2. The outcome of our
manipulations is the expression

(Ly)3E α
m = i(Γbcy)α(ȳWmbcy) + i(Ť dfgh

b y)α(ȳHbmdfghy) (4.9)

where we have defined

Hbmdfgh = ΓbHdfghDm − 6e b
m Γdf [Dg, Dh], (4.10a)

Wmbc = RbcDm + 1
8Γm[Db, Dc] + 1

4Γb[Dm, Dc], (4.10b)

Rbc = 1
576

(
ΓbcΓdfgh − 8δ[d

[cΓb]Γfgh] − 12δ[d
[c δ

f
b]Γ

gh]
)
Hdfgh, (4.10c)

Ť dfgh
c = 1

288
(
ΓcΓdfgh − 12δ[d

c Γfgh]). (4.10d)
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There are some important points that need to be made about these formulae. First of all,
manipulations lead to some terms involving commutators of supercovariant derivatives. It
can be seen in appendix C.2 that these arise from the first term in (4.8b). There are also
terms involving a single supercovariant derivative and H(4)-flux. These contributions are the
outcome of manipulating the last two terms in (4.8b). We have so far been unable to write
these parts of the expressions strictly in terms of the supercovariant derivative. Note that
this problem appears for the first time at order (θ)4 for the M2-brane in bosonic backgrounds,
and was therefore not observed in the order-(θ)2 analysis carried out in [44–46, 70] where
everything can be packaged up in a tidy and supercovariant way. The result (4.9) agrees
with [71], but there are strong indications that these formulae should allow for further
manipulation into a more compact expression where supercovariance is made manifest. We
will see later that dealing with these complicated objects is the chief source of the difficulty
limiting our computational ability when performing dimensional reduction of the M2-brane
action to obtain the D2-brane action. We conclude this section by stating plainly that
our manipulation of the higher order expansion of the supervielbein probably needs to be
completed into a manifestly supercovariant formulation that we would expect to be more
compact and more manageable than the one presented above.

4.1 M2-brane at fermionic order two

In this section we review the M2-brane action at order two in fermions. We will use this
‘simple’ analysis for two main purposes. First, it is a warm-up exercise that nicely illustrates
how to proceed at higher orders. Second, we will use it to make more precise the relation
between κ-symmetry and bulk supersymmetry discussed in section 2.

Recall that we decided to perform expansions of Lorentz-invariant superfields in the
action since obtaining the full action expansion from these is simple. We begin with the
metric expansion. We ignore order-(θ)1 terms since they involve the gravitino and we
are interested in bosonic backgrounds. For the order-(θ)2 terms, we combine (4.5), (4.7),
and (4.8) to obtain (Ly)2Gmn

θ=0= −2iȳΓ(mDn)y. We can use this to write a truncation
of the metric superfield which includes only the terms relevant for the brane action. We
will use a boldface notation to refer to these truncated superfields. For the metric, the
combination is

gmn ≡ gmn(x)− iθ̄Γ(mDn)θ. (4.11)

The expansion of the three-form superfield can be similarly obtained. In fact, (4.6) and (4.8)
combine to give the order-2 correction in the combination Amnp(Z), whose truncated
expansion reads

Amnp ≡ Amnp(x)− 3i
2 θ̄Γ[mnDp]θ. (4.12)

These combinations of bosonic and fermionic fields first appeared in [44, 70] in what was
called a ‘superfield-like form of the action’, allowing one to write the order-(θ)2 expansion of
the M2-brane action in a compact way. Similar combinations appearing in other Dp-brane
actions were found and these allowed these actions to be written in a compact way as well.

Our discussion makes it manifest that the appearance of the truncated superfields is
not a mere trick valid only for the action up to this order, but rather a consequence of how
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the action superfield is built in the superspace formulation of supergravity. This means it is
valid at any order in fermions. Therefore in what follows our goal is to provide a systematic
approach to compute truncated superfields of this type appearing in all brane actions. For
practical purposes we will often refer to the metric and three form without specifying if we
refer to the field, the superfield, or the truncated superfield, as this will always be clear
from context.

We are now ready to write the M2-brane action at order (θ)2. Plugging the truncated
superfields (4.11) and (4.12) into the action (2.1) and then Taylor-expanding up to order
(θ)2, we get

S
(2)
M2 = −TM2

∫
d3ζ

[√
−det (g)− 1

6ε
ijkAijk

]
= −TM2

∫
d3ζ

[√
−det (g)− 1

6ε
ijkAijk

]
+ iTM2

∫
d3ζ

√
−det (g)

[
θ̄P

(0)
− ΓiDiθ

]
.

(4.13)

In the last line, we combined the order-(θ)2 terms together forming the so-called κ-symmetry
projector at order (θ)0, i.e.

P
(0)
− = 1

2
(
1− Γ(0)

M2
)
, (4.14)

where the Γ-matrix combination defining the operator is

Γ(0)
M2 = εijkΓijk

6
√
−det (g)

. (4.15)

This allows us to see explicitly the manifestation of κ-symmetry in the M2-brane action at
fermionic order (θ)2. We comment on κ-symmetry in detail now.

4.2 Supersymmetry and κ-symmetry

We are now in a position to make more precise comments about bulk supersymmetry and
κ-symmetry. As we already mentioned, it is worth taking two perspectives. First, from the
bulk perspective, the brane-only solution spontaneously breaks half of the supersymmetries,
while the other half are preserved on-shell. The corresponding goldstinos turn into the
fermionic degrees of freedom on the brane, θµ(ζ). Alternatively, from the brane worldvolume
perspective, we construct the brane action using off-shell superfields with all 32 Grassmann
coordinates, therefore only half of them correspond to actual degrees of freedom on the
brane while the rest are redundancies. This means that there must exist a fermionic gauge
symmetry, known as κ-symmetry, that gets rid of these redundant directions. The presence
of such a fermionic gauge symmetry in the M2-brane action (2.1) was shown in [55]. The
κ-symmetry variations are

(δκZM )E a
M (Z) = 0, (4.16a)

(δκZM )E α
M (Z) = (1 + ΓM2(Z))αβκβ , (4.16b)

where the operator

ΓM2(Z) = εijkΓijk(Z)
6
√
− det(G(Z))

(4.17)
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is a hermitian traceless matrix squaring as (ΓM2(Z))2 = 1. In the transformations, κ is an
arbitrary 32-component Majorana fermion in 11-dimensional spacetime. Note that these
expressions are valid all over superspace. If we evaluate them at the origin of Grassmann
coordinates, using the WZ-gauge (3.9) for the supervielbein, these variations read

δκx
m = 0, (4.18a)

(δκθµ) δαµ =
(
1 + Γ(0)

M2

)α
β
κβ , (4.18b)

with the matrix Γ(0)
M2 defined as in (4.15). Hence it is possible to use κ-symmetry transfor-

mations to project out half of the Grassmann coordinates θµ. We see that the appearance
of the orthogonal projector P (0)

− in the M2-brane action at order (θ)2 is not a coincidence,
but rather it is a consequence of κ-symmetry and what we did there was to write the action
in such a way as to make this symmetry manifest.

Let us now derive some bulk supersymmetry properties. We start with the M2-brane-
only solution, where the brane spontaneously breaks half of the supersymmetries. Here
we use κ-symmetry to determine whether a supersymmetry is preserved by the brane or
spontaneously broken, following [72, 73]. To make this point explicit, we need some of
the symmetries of the M2-brane action (see e.g. [56]). To start, recall that superfields
transform under global supersymmetry variations, and so does the brane action. Off-shell,
supersymmetry variations are shifts in any Grassmann direction(s) θµ. On-shell, in a
background where the brane is present, only some of those shifts leave the background
invariant. We denote the variation generated by the surviving killing spinors in this
background δεθ = εM2. The combination of surviving global supersymmetry and κ-symmetry
leads to a total variation (at the origin of Grassmann coordinates in order to connect with
the above discussion)

δε,κθ = εM2 +
(
1 + Γ(0)

M2

)
κ. (4.19)

In order to get rid of the fermionic redundancies on the brane, we write the κ-symmetry
gauge-fixing condition as Pθ = 0, where P is a projector independent of background fields.
This implies that the physical fermions on the brane are such that θ = (1 − P)θ. Once
the gauge is fixed, in order to preserve it, it is necessary that δε,κ(Pθ) = Pδε,κθ = 0 holds,
and so δε,κθ = 0. The latter formula, together with (4.19) implies that the surviving global
supersymmetry transformations that are compatible with this fact must satisfy

εM2 = −
(
1 + Γ(0)

M2

)
κ (4.20)

on the brane locus. Using this relation, one easily finds that any surviving supersymme-
try must satisfy P (0)

+ εM2 = εM2 (equivalently Γ(0)
M2εM2 = εM2) on the brane locus, where

P
(0)
+ = (1 + Γ(0)

M2)/2. On the other hand, the orthogonal projector P (0)
− selects Grassmann co-

ordinates generated by spontaneously broken supercharges, the goldstinos on the brane-only
solution. This is the reason why the combination P (0)

− θ appears on the brane action. (4.20)
also shows that preserved bulk supersymmetries are of the same aspect as κ-symmetry
transformations (they both involve P (0)

+ ) and so also leave the M2-brane action invariant
thanks to the presence of P (0)

− in the brane action.
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This physical picture is valid not only for the M2-brane, but also for all Dp-branes. In
order to study each case one must replace ΓM2 by the corresponding matrix ΓDp. In [45, 46]
it was shown that all Dp-brane actions at quadratic fermionic order can be written with the
corresponding κ-symmetry projector. In [41] the breaking of supersymmetry by Dp-branes
was shown to correspond to a non-linear realization of supersymmetry, generalizing first
results of this type [37, 38].

The brane-only solution is illuminating for deriving multiple facts regarding bulk
supersymmetry and κ-symmetry, but our interest is in more general setups. In the previous
configuration all fermions on the brane are massless goldstinos and many fermionic couplings
on the brane vanish. In general, those couplings do not vanish and are physically relevant.
For example, depending on the particular solution, some (or all) worldvolume fermions will
become massive and will no longer correspond to goldstinos of the solution. The superspace
approach in this paper includes all such couplings and therefore captures all of the relevant
physical features of these general solutions. Moreover, the argument above, telling which
supersymmetries survive in the solutions involving branes, is also valid for such solutions.

Finally, it is worth noting that we evaluated our expressions at the origin of Grassmann
coordinates and so formulae involved the zeroth order κ-symmetry matrix Γ(0)

M2 and the
projectors P (0)

± , that we used to connect with what we found for the brane action at order
(θ)2. Nevertheless, the above arguments work all over superspace and so the general formulas
about preserved supercharges and κ-symmetry involve ΓM2(Z) and P±(Z).

4.3 M2-brane at fermionic order four

In this section we apply what we learned at the second fermionic order to build the action
at order four in quite a direct way. We saw that in order to do so we need to find the metric
and 3-form superfield truncations up to order (θ)4.

We already provided all of the relevant formulae to write the supervielbein expansion
at order (θ)4 in (4.7) and (4.9). By plugging those results into (4.5) and (4.6), one finds
the metric and three-form superfields up to order (θ)4. The metric is

gmn = gmn − i(θ̄Γ(mDn)θ)−
1
4(θ̄ΓaD(mθ)(θ̄ΓaDn)θ)

+ 1
12(θ̄Γ(m|Ť

dfgh
b θ)(θ̄Hb|n)dfghθ) + 1

12(θ̄Γ(m|Γbcθ)(θ̄W|n)bcθ),
(4.21)

where we used the operators defined in (4.10), and, similarly, the three-form is

Amnp = Amnp −
3
2 i(θ̄Γ[mnDp]θ)−

3
4(θ̄Γa[mDnθ)(θ̄ΓaDp]θ)

+ 1
8(θ̄Γ[mn|Ť

dfgh
b θ)(θ̄Hb|p]dfghθ) + 1

8(θ̄Γ[mnΓbcθ)(θ̄Wp]bcθ).
(4.22)

In the same way as we did at second order, these expressions can be plugged into the action
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and then we can perform a Taylor expansion to find the action at quartic order

S
(4)
M2 =−TM2

∫
d3ζ

[√
−det(g)− 1

6ε
ijkAijk

]
=−TM2

∫
d3ζ

√
−det(g)

[
1− 1

6
εijk√
−det(g)

Aijk

]
+TM2

∫
d3ζ

√
−det(g)

[
i
(
θ̄P

(0)
− ΓiDiθ

)
+ 1

8
(
θ̄ΓiDiθ

)2− 1
8
(
θ̄ΓiDjθ

)(
θ̄ΓiDjθ

)
− 1

8
(
θ̄ΓiDjθ

)(
θ̄ΓjDiθ

)
+ 1

8
(
θ̄ΓmDiθ

)(
θ̄ΓmDiθ

)
− 1

8
εijk√
−det(g)

(
θ̄Γm[iDjθ

)(
θ̄ΓmDk]θ

)
− 1

12
(
θ̄P

(0)
− ΓiŤ dfgh

b θ
)(
θ̄Hbidfghθ

)
− 1

12
(
θ̄P

(0)
− ΓiΓbcθ

)(
θ̄Wibcθ

)]
.

(4.23)

We see that some of the fourth-order terms, like the second-order terms, may be organized
around zeroth-order κ-symmetry projectors, whereas some cannot be. Those terms which
cannot be (coming with a factor of 1/8) are related to the higher-order fermionic expansion
of the κ-symmetry projector superfield. We leave the study of this for future work, and for
now continue on without organising these terms around a κ-symmetry principle.

This completes the expansion of the bosonic background M2-brane action to quartic
order. In the next section we will examine the dimensional reduction of these expansions to
determine the D2-brane action up to order four in fermions.

5 Superspace dimensional reduction and the D2-brane action

We now know how to obtain the fermion couplings in the M2-brane action up to arbitrary
order, and we have calculated them explicitly up to order four. Our plan is to use this
knowledge to compute equivalent couplings on all Dp-branes. The first step in doing this is
compactifying M-theory on a circle, connecting the M2-brane in 11-dimensional supergravity
to the D2-brane in type IIA supergravity. Then, by T-dualizing the theory, move to branes
of arbitrary dimension in both type IIA and IIB theories.

Dp-branes are solutions of 10-dimensional type II supergravities and it is therefore
possible to construct their action using the superspace formulation of those supergravity
theories. This is indeed what we will do in this section and the next one. However, as we
previously explained, the approach we will use to obtain the Dp-brane action superfields
will not be a direct application of the NORCOR approach of section 4. Instead, in this
section we use a superspace generalization of the dimensional reduction relating M2-branes
and D2-branes. We start by quickly reviewing the S1-compactification of the 11-dimensional
spacetime that reproduces type IIA supergravity starting from 11-dimensional supergravity.
We then consider the M2-brane and its dimensional reduction to the D2-brane. After
revisiting the purely bosonic calculation, we then extend the compactification method
to superspace.

For a detailed account of the notation employed, see appendix A. See appendix D for
an overview of the relevant dimensional reductions.
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5.1 Reduction of 11-dimensional supergravity to type IIA supergravity

Type IIA string theory can be obtained by dimensional reduction of 11-dimensional super-
gravity. In this subsection we quickly review the main features of this dimensional reduction.

The notation for the dimensional reduction is as follows: 11-dimensional indices are
hatted whereas 10-dimensional indices are not and 11-dimensional objects are also hatted
whereas 10-dimensional objects are not; indices a, b, . . . are tangent space and m,n, . . . are
spacetime indices, with explicit number indices underlined for tangent space and unadorned
for spacetime, while i, j, . . . are M2- and D2-brane worldvolume indices; 11-dimensional
spacetime coordinates are x̂m̂ and they split as (xm, x10), while worldvolume coordinates
are ζi; we will leave implicit that the pull-back to the brane of an 11-dimensional object is a
different operation than the pull-back to the brane of a 10-dimensional object, but we will
keep track of this by observing whether the object is hatted or not, objects always being
pulled back in the appropriate way. Background fields are independent of x10.

To begin the dimensional reduction, we first deal with bosonic fields. Given the
11-dimensional metric ĝm̂n̂ = ê â

m̂ ê b̂
n̂ η̂âb̂, where ê â

m̂ is the 11-dimensional vielbein, the
S1-compactification ansatz for the vielbein leading to the type IIA action in the string
frame is

ê â
m̂ =

 e−φ3 e a
m e

2φ
3 Cm

0 e
2φ
3

 , (5.1)

where e a
m is the 10-dimensional vielbein, φ is the dilaton, and Cm is the Ramond-Ramond

one-form. The 10-dimensional metric is gmn = e a
m e b

n ηab. The 11-dimensional three-form
gauge potential decomposes as

Âmnp = Cmnp, (5.2a)
Âmn 10 = Bmn, (5.2b)

where C3 is the Ramond-Ramond three-form potential and B2 is the Kalb-Ramond potential.
Notice that our RR-field sign conventions differ from those used in [44, 45]. There are many
objects for which we need the dimensional reduction. Those calculations are crucial, but
laborious, so we provide a catalogue of the dimensional reduction results in appendix D.

Fermions are of course highly relevant for our purposes and so we need many details
from the dimensional reduction of fermionic fields. The ansatz for the 11-dimensional
gravitino ψ̂m̂ is

ψ̂m = e−φ/6
[
ψm −

1
6Γmλ+ 1

3e
φCmΓ∗λ

]
, (5.3a)

ψ̂10 = e−φ/6
[1

3e
φΓ∗λ

]
, (5.3b)

where ψm is the 10-dimensional gravitino, λ is the dilatino, and Γ∗ is the 10-dimensonal
chirality matrix. Recall that we start with 11-dimensional Majorana fermions. Upon
dimensional reduction, these will split into pairs of 10-dimensional Majorana-Weyl fermions
of opposite chiralities, so each 10-dimensional fermion above should be interpreted as a pair
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of Majorana-Weyl fermions of opposite chirality, e.g. λ = λ+ + λ−, where Γ∗λ± = ±λ±.
This dimensional reduction leads to the type IIA action in the fermionic frame of [74].
Moreover, any 11-dimensional Majorana fermion, like the supersymmetry parameter or
the fermions on the M2-brane, need to be dimensionally reduced like the gravitino, with
a rescaling involving the dilaton, and further need splitting into pairs of 10-dimensional
Majorana-Weyl fermions, so

θ̂ = e−φ/6 θ, θ = θ+ + θ−. (5.4)

Next, we are interested in the type IIA gravitino and dilatino supersymmetry variations
arising in the resulting 10-dimensional action. In 11-dimensional supergravity, the gravitino
supersymmetry variation reads

δε̂ψ̂m̂ = D̂m̂ε̂. (5.5)

In the type IIA theory, the supersymmetry variations of fermionic fields are

δεψm = Dmε, (5.6a)
δελ = ∆ε, (5.6b)

with the 10-dimensional supercovariant derivative Dm and the operator ∆ being defined as,

Dm = ∇m + 1
4H

(3)
m Γ∗ − 1

8e
φ(F (2)Γ∗ + F (4))Γm, (5.7a)

∆ = ∂φ+ 1
2H

(3)Γ∗ − 1
8e

φΓm
(
F (2)Γ∗ + F (4))Γm. (5.7b)

Using these definitions, the 11- and 10-dimensional operators are related as

D̂m = Dm −
1
6Γm∆ + 1

3e
φCmΓ∗∆ + 1

6∂mφ, (5.8a)

D̂10 = 1
3 e

φΓ∗∆. (5.8b)

We see that the 11-dimensional supercovariant derivative essentially splits in terms of the
operators determining the type IIA gravitino and dilatino variations. Recall that we defined
these operators from the supersymmetry variations of the type IIA gravitinos and dilatinos,
which depend on the chosen fermionic frame. Therefore if one makes a different dimensional
reduction ansatz for the 11-dimensional gravitino (or equivalently some redefinition in the
fermionic sector of type IIA), the definition of these operators will be modified accordingly.

5.2 Bosonic D2-brane action

Once we know how to dimensionally reduce the background, we can dimensionally reduce the
M2-brane action. We compactify along one direction that is not spanned by the M2-brane,
therefore the result is the D2-brane of type IIA supergravity. We start from the bosonic
part of the M2-brane action (2.1). Following our compactification ansatz, the pull-backs of
the 11-dimensional metric and of the three-form can be written in terms of pullbacks of
10-dimensional fields as

ĝij = e−2φ/3gij + e4φ/3pipj , (5.9)
Âijk = Cijk − 3C[iBjk] + 3 p[iBjk], (5.10)

– 22 –



J
H
E
P
1
0
(
2
0
2
1
)
2
4
3

where we defined the combination pi = ∂ix
10 +∂ixmCm. In terms of these fields, the bosonic

M2-brane action becomes the D2-brane action and it reads

S
(0)
D2 = −TD2

∫
d3ζ e−φ

√
−det (g)

√
1 + e2φp2 + TD2

6

∫
d3ζ εijk

[
Cijk − 3CiBjk + 3 piBjk

]
,

(5.11)
where TD2 = TM2 is the D2-brane tension. We would like to obtain the action for the
D2-brane in a fully 10-dimensional formulation. Currently, however, (5.11) contains factors
of pi and so that formulation of the action implicitly knows about the M-theory circle. We
need to get rid of pi. We do this by including a Lagrange multiplier term involving the one
form p1 and its worldvolume dual, the exact 2-form F2 = dA1, where A1 is the D2-brane
worldvolume gauge field. This Lagrange multiplier is

SLM = TD2
2

∫
d3ζ εijk(pi − Ci)Fjk. (5.12)

A fully 10-dimensional D2-brane action follows from including this term in the action, and
then integrating out pi by plugging the solutions to its equation of motion back into the
action. After doing this, and with a little massaging, we arrive at the familiar form the
bosonic D2-brane action

S
(0)
D2 = −TD2

∫
d3ζ e−φ

√
− det(g + f) + TD2

∫
(C3 − C1 ∧ f2), (5.13)

where we made the definition fij = Bij + Fij . This action, obtained from the M-theory
dimensional reduction, is in string frame. It is worth noting explicitly here that the
worldvolume field fij is built using one field that is pulled back from the bulk, Bij , and one
that specifically lives only on the worldvolume, Fij .

We have calculated a fully 10-dimensional formulation of the D2-brane bosonic action.
Our next goal is to find fermion couplings on the brane worldvolume. Therefore we turn to
the superspace generalization of the S1-compactification we have just used.

5.3 Superspace dimensional reduction and fermions on the D2-brane

In this section we obtain the fermion couplings on the D2-brane action. Following the same
reasoning as in the case of the M2-brane action discussed in section 4, this can be done by
moving to the superspace formulation of type IIA supergravity. One must promote fields in
the bosonic action to superfields and then find the corresponding θ-expansions. From the
expansions of the constituent superfields, the expansion of the brane action superfield may
then be determined.

A possible method to obtain the superfield expansions would be to construct all the
necessary superfields using the same geometrical strategy as we applied to the M2-brane, i.e.
NORCOR. However this requires more hard work than is necessary and there exists a better
strategy. The key of our approach is the following observation: the superspace formulation
of M-theory is in (11|32)-dimensional superspace, and the superspace formulation of type
IIA strings is in (10|32)-superspace. It is therefore natural to expect that, as for the
basic spacetime case, both superspaces are related via an S1-compactification of a bosonic
direction. This superspace compactification and knowledge of 11-dimensional superfields in
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the M2-brane action are all we need to obtain the expansion of the type IIA superfields
that appear in the D2-brane action.

Now we have to determine those 10-dimensional superfields. Same as in the M2-brane
case, at zeroth order in the θ-expansion, the superfields are simply the bosonic fields. Those
10-dimensional bosonic fields are related to the bosonic fields of 11-dimensional supergravity
by the dimensional reduction ansatzes (5.1) and (5.2). The spacetime dimensional reduction
is described by those equations, and it is natural to interpret all fields appearing there (both
11- and 10-dimensional fields) as the leading-order terms of the corresponding superfield
θ-expansions. The superspace dimensional reduction must be described by the superspace
generalization of those equations. Our method to compute the 10-dimensional superfields of
interest will therefore be to use this superfield generalization together with knowledge of the
11-dimensional superfields we already gleaned in the previous section. Before we write the
superspace compactification ansatz, recall that in eleven dimensions we did not compute
the whole expansion of superfields, but rather we restricted to even θ̂ powers because we
were interested in bosonic backgrounds and we considered truncations to quartic order in
the fermions. The same holds in ten dimensions, namely we are interested in explicitly
obtaining the same type of restricted and truncated superfield expansions. We promote (5.1)
and (5.2) to the superfield level and use bold notation to indicate that in practice we will
expand and truncated them. We obtain the promoted 11-dimensional metric

ĝm̂n̂ =
(
e−2φ/3(gmn + e2φCmCn) e4φ/3Cm

e4φ/3Cn e4φ/3

)
(5.14)

and the promoted 11-dimensional three-form5

Âmnp = C ′mnp, (5.15)
Âmn 10 = Bmn, (5.16)

where gmn is the truncated 10-dimensional supermetric, φ is the truncated dilaton superfield,
Bmn is the truncated Kalb-Ramond superfield, and Cm and C ′mnp are the truncated
Ramond-Ramond one- and three-form superfields, respectively.

With these relations in hand, we are ready to obtain the θ-expansions of the 10-
dimensional superfields. We are going to first compute the expansions of the 10-dimensional
superfields up to order (θ)2 as an illustrative example. We will do this in detail. Then we
will plug the expressions we find into the expression for D2-brane action superfield, expand,
and compare our findings with previous results for the D2-brane in bosonic backgrounds at
second order in fermions obtained with alternative methods. The results match, confirming
the validity of our approach. Finally, we will compute the order-(θ)4 terms of the truncated
superfields. We will use these results to support the point we made in previous sections, i.e.
that combining the terms in θ-expansions into a more compact and manifestly supercovariant
formulation is crucial. We argue strongly that this is the cornerstone of plausible methods
for making the calculation of high-order fermionic couplings in brane actions viable in
the future.

5For future convenience, we place a prime on the 10-dimensional RR three-form superfield here. We ask
that the reader indulges us in doing this for the time being and promise that the reason will be made clear.
The motivation of this choice is explained in (6.33).
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5.3.1 Order-(θ)2 terms

The superfield relations in (5.14)–(5.16) can be Taylor-expanded, and these expansions can
be truncated at a desired fermion order. This will lead to relations between 11- and 10-
dimensional fields. We will use the number of fermions (both in eleven and ten dimensions)
as an ordering principle to relate those 11- and 10-dimensional fields. At leading order,
one finds the original bosonic ansatz, which does not have any new information. For the
bosonic backgrounds we are considering, at next order, in eleven dimensions one finds
fermion bilinears with Γ̂-matrices and the 11-dimensional supercovariant derivative in which
several bosonic fields appear. It is natural to expect a similar behaviour in ten dimensions,
namely that at this order each superfield involves a bilinear in θ as well as Γ-matrices
and operators involving 10-dimensional fields. We can therefore make an ansatz for each
truncated superfield involving a (for now) unknown fermion bilnear, i.e.

gmn = gmn + γmn, (5.17a)
φ = φ+ ρ, (5.17b)

Bmn = Bmn + βmn, (5.17c)
Cm = Cm + τm, (5.17d)

C ′mnp = Cmnp + α′mnp. (5.17e)

We now need to obtain expressions for the unknown 10-dimensional bilinears. Our procedure
is to take each component of the 11-dimensional fields in (5.14)–(5.16) and then perform a
Taylor expansion in fermions. We do this by NORCOR for the 11-dimensional left-hand
side and by plugging in the ansatzes (5.17) for the 10-dimensional right-hand side. Then we
identify the corresponding 11-dimensional bilinears with the unknown 10-dimensional ones.
At that stage one has relations between fermion bilinears in different theories. The equations
indicate expressions for the unknown 10-dimensional bilinears in terms of 11-dimensional
fields. In order to write the results for the 10-dimensional bilinears in terms of 10-dimensional
fields, we are required to dimensionally reduce the 11-dimensional expressions. To properly
elucidate this procedure, which is critical to our overall method, we will provide several
examples at varying levels of technical complexity by calculating the bilinear terms for some
of fields in (5.17).

Example 1: dilaton

The simplest example case is that of the dilaton, for which we will provide every detail.
We read from (5.14) that it is related to the (10, 10)-component of the 11-dimensional
supermetric as ĝ10 10 = e4φ/3. We Taylor-expand both sides of this relation. For the
11-dimensional left-hand side we use the result (4.11) from the NORCOR procedure. For
the 10-dimensional right-hand side we use the expansion ansatz for the dilaton superfield
in (5.17b). Equating the fermion bilinear terms from each side, we find that

− i ˆ̄θΓ̂10D̂10θ̂ = e4φ/3 4ρ
3 . (5.18)

In order to determine an expression for ρ in terms of 10-dimensional fields we are required
to dimensionally reduce the 11-dimensional bilinear. All the necessary results are given in
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appendix D. We can eventually write

− i ˆ̄θΓ̂10D̂10θ̂ = −i3 e4φ/3θ̄∆θ, (5.19)

which means the dilaton superfield fermion bilinear contribution is

ρ = − i4 θ̄∆θ. (5.20)

We have found an expression for the bilinear ρ that is associated to the operator ∆
which appears in the supersymmetry variation of the dilatino. This was to be expected:
recall that we obtain the θ-expansion by taking supersymmetry variations. In the first
supersymmetry variation of the dilaton one finds the dilatino and so the supersymmetry
variation of the dilatino appears when we take a second variation (on the dilaton). It is
also worth remembering again at this point that, in ten dimensions, θ represents a pair of
Majorana-Weyl fermions of opposite chirality.

Example 2: Ramond-Ramond one-form

For this next example we will move through the steps a little faster. We read from (5.14)
that the Ramond-Ramond one-form superfield in ten dimensions is related to the (m, 10)-
component of the 11-dimensional supermetric as ĝm 10 = e4φ/3Cm. Taylor-expanding both
sides using (4.11) and (5.17d), and keeping fermion bilinear terms, we obtain

− i ˆ̄θΓ̂(mD̂10)θ̂ = e4φ/3τm −
i

3e
4φ/3(θ̄∆θ)Cm. (5.21)

Note that because the superfield relation involved both the dilaton and the Ramond-Ramond
one-form, we were obliged to use (5.20). After a little work for the dimensional reduction
of the 11-dimensional bilinear (again, all the relevant results are given in appendix D), we
arrive at

− i ˆ̄θΓ̂(mD̂10)θ̂ = − i2e
φ/3 θ̄Γ∗

(
Dm −

1
2Γm∆

)
θ − i

3e
4φ/3

(
θ̄∆θ

)
Cm, (5.22)

which indicates that the bilinear τm must be

τm = − i2e
−φ θ̄Γ∗

(
Dm −

1
2Γm∆

)
θ. (5.23)

Example 3: metric

The most complicated superfield relation is that of the (m,n)-component of the 11-
dimensonal supermetric. We read from (5.14) that it is related to the 10-dimensional super-
metric, the Ramond-Ramond one-form, and the dilaton as ĝmn = e−2φ/3(gmn + e2φCmCn).
With the ansatz (5.17a) and the previous results (5.20) and (5.23) for ρ and τm, Taylor-
expanding in exactly the way we have in previous examples yields

−i ˆ̄θΓ̂(mD̂n)θ̂ = −i e−2φ/3
[
− 1

6(θ̄∆θ)
(
gmn + e2φCmCn

)
+ iγmn

+ e2φ
(1

2(θ̄∆θ)CmCn + C(me
−φ θ̄Γ∗

(
Dn) −

1
2Γn)∆

)
θ

)]
.

(5.24)
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Once more applying the results of appendix D, the dimensional reduction of the 11-
dimensional bilinear can be determined to be

−i ˆ̄θΓ̂(mD̂n)θ̂=−i e−2φ/3
[
− 1

6(θ̄∆θ)
(
gmn+e2φCmCn

)
+ θ̄Γ(mDn)θ

+e2φ
(1

2(θ̄∆θ)CmCn+C(me
−φ θ̄Γ∗

(
Dn)−

1
2Γn)∆

)
θ

)]
.

(5.25)

By comparison, we are immediately able to discern the result

γmn = −iθ̄Γ(mDn)θ. (5.26)

One should observe that the metric superfield expansion takes on the same shape for the 11-
and the 10-dimensional metrics. In each case the fields and operators involved are not the
same, but equivalent objects appear in the same place. This is once again to be expected.
The first-order θ-expansion of the metric involves the (corresponding) gravitino, and we
obtain the expansion by taking supersymmetry variations. Upon a second variation we are
therefore not surprised to find the supersymmetry operator on the gravitino variation.

Application of our approach to the case of the relations (5.15) and (5.16) connecting
the 11-dimensional three-form superfield to the 10-dimensional superfields is essentially
straightforward and we leave the details of the calculation to the interested reader.

Full results

At the end of the day, the expansions of the 10-dimensional superfields for type IIA
supergravity up to quadratic order in fermions are

gmn = gmn − i θ̄Γ(mDn)θ, (5.27)

φ = φ− i

4 θ̄∆θ, (5.28)

Bmn = Bmn − i θ̄Γ∗Γ[mDn]θ, (5.29)

Cm = Cm −
i

2 e
−φ θ̄Γ∗

(
Dm −

1
2Γm∆

)
θ, (5.30)

C ′mnp = Cmnp −
i

2 e
−φ θ̄

(
3Γ[mnDp] −

1
2Γmnp∆

)
θ − 3i C[m θ̄Γ∗ΓnDp]θ. (5.31)

All bilinears involve one or both of the operators appearing in the supersymmetry variation
of the type IIA gravitino and dilatino, i.e. the supercovariant derivative Dm and the operator
∆, respectively. The Ramond-Ramond potential C(1) is also present in the expansion of
C ′

(3). We asked earlier that the reader indulge us in defining the three-form superfield with
a prime for the moment. The reason for this is that it will later become advantageous to
consider the three-form superfield expansion restricted to that bilinear which does not come
multiplied with C(1), and for notational convenience it will be this restricted expansion
which we shall call C(3). We will say more on this in the next section.
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Our results precisely match with those used in [44],6 where, however, the approach
followed was morally quite different. They used the results of [45], where all Dp-brane
actions at order (θ)2 were computed using a brute-force approach, and noticed that all
Dp-brane actions could be written in a particularly compact and convenient way using
field combinations like the ones above. The authors there labelled their observation a
‘superfield-like’ formulation. Using our more conceptually sophisticated approach we can
now confidently remove the ‘like’. We can see clearly that the reason these particular field
combinations proved to be so useful to previous authors is that they are indeed born out
of superfield considerations, namely the use of truncated superfield expansions as we have
developed here. Moreover, the brute force approach is very complicated to manage at
higher orders in θ. Our approach, though still somewhat complicated, does allow such
computations to be performed.

D2-brane action at order (θ)2

What bosonic fields do, the superfields do better. Or rather, the superfields do morally the
same thing but carry with them all of the information about the fermion terms. So it went
for the dimensional reduction of individual (super)fields, and so it goes for manipulations
of the (super)field quantities built from these constituent (super)fields. The composite
quantity we are concerned with now is the D2-brane action.

In section 5.2 we provided many details of the dimensional reduction of the bosonic
M2-brane action to the bosonic D2-brane one. Now its usefulness is apparent: we are going
to interpret the bosonic action as the zeroth-order fermionic expansion of the corresponding
superfield. Based on this idea, we start with the M2-brane superaction (4.13) and write
it in terms of 10-dimensional superfields by using the superspace dimensional reduction
ansatzes (5.14) and (5.15), (5.16). The appearance of pullbacks works exactly as in the
bosonic case, and so the outcome is the D2-brane super action written as

S
(2)
D2 = −TD2

∫
d3ζ e−φ

√
−det (g)

√
1 + e2φp2 + TD2

6

∫
d3ζ εijk

[
C ′ijk−3CiBjk+3piBjk

]
,

(5.32)
where pi = ∂ix

10 + ∂ix
mCm. Once again we would like to write this action in a fully

10-dimensional formulation, and so need to get rid of the explicit dependence on pi (which
knows about the M-theory S1). We do this by once again introducing the Lagrange
multiplier (5.12). Notice that the bilinears in the truncated expansions of pi and Ci cancel
in the Lagrange multiplier which depends on the difference (pi−Ci) and so in effect we can
promote these bosonic fields to truncated superfields for free. Integrating out pi proceeds
in formally the same way as integrating out pi did in the bosonic case. After doing so, we
are arrive at the D2-brane action superfield

S
(2)
D2 = −TD2

∫
d3ζ e−φ

√
− det(gij + f ij) + TD2

6

∫
d3ζ εijk(C ′ijk − 3Cif jk), (5.33)

where we have defined f ij = Bij + Fij . Note the worldvolume flux F2 = dA1 remains purely
bosonic because it is a brane worldvolume field, not a superfield.

6What we give as C′ijk here is denoted Cstandard
ijk there.
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Let us once again stress that this procedure is valid at any order in θ. The right-hand
side of (5.33) is the correct structure from which to obtain the D2-brane action to any
order. All one needs to do is plug in the expansions of the superfields truncated at a given
order in θ. The problem of obtaining the D2-brane action up to a given order in θ has
been reduced to the problem of determining the expansions of the individual superfields
involved. Once these superfield expansions are known, the D2-brane action can be written
down immediately.

To elaborate further on this claim, we reproduce the familiar form for the D2-brane
action at second order in fermions. Starting with (5.33), in order to obtain explicit couplings
we need only plug in the truncated superfields (5.27)–(5.31). We successfully reproduce the
quadratic D2-brane action

S
(2)
D2 =−TD2

∫
d3ζ e−φ

[√
−det(g+f)

[
1− iθ̄P (0)

−

(
MijΓiDj−

1
2∆
)
θ

]
−(C3−C1∧f2)

]
,

(5.34)
whereMij is the inverse of the combinationMij = (gij + Γ∗Bij) and we defined the (zeroth
order) D2-brane κ-symmetry projector

P
(0)
− ≡ 1

2
(
1− ΓD2

)
, (5.35)

where
ΓD2 = 1√

− det(g + f)
εijk

(1
6Γijk −

1
2Γ∗Γifjk

)
. (5.36)

Notice that this is slightly more involved than in the M2-brane case because of the inclusion
of worldvolume flux f2. The outcome is the full D2-brane action at second order in fermions,
and it matches exactly with the results in [45, 46]. This completes the fermionic second-
order analysis to exemplify our alternative approach to obtain the D2-brane action at any
fermion level.

5.3.2 Order-(θ)4 terms

We have developed an improved approach for determining superfield fermionic expansions
of fields in type IIA supergravity. We did this via NORCOR in 11-dimensional supergravity
and the string duality that gives the type IIA theory via an S1-compactification. In the
above subsection we demonstrated in detail how our approach can be used to obtain the
known results at second order in fermions with much less hassle than previous approaches.
In this section we move to use our approach to calculate the quartic θ terms for those same
type IIA superfield expansions.

As we discussed above, using our approach, the problem of determining the D2-brane
action superfield expansion gets reduced to the problem of determining the fermionic
expansion of the constituent superfields. Once these expansions have been found, the
D2-brane action follows immediately from plugging them into (5.33). All of the necessary
details for this to work function at fourth order just as well as second order, and indeed at
every order.
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Since our method is applicable at every fermion order, to find the superfield expansions
of the type IIA fields we can proceed in the same way as we did for the quadratic case
above. To start, we make ansatzes for the order-four terms in the truncated expansions
of the 10-dimensional superfields. We have already determined the bilinear terms and so
can include them immediately. We use the same symbols as we did for the ansatzes in the
order-two case, but now label the unknown quantities with their fermion order. We have

gmn = gmn − i θ̄Γ(mDn)θ + γ(4)
mn, (5.37a)

φ = φ− i

4 θ̄∆θ + ρ(4), (5.37b)

Bmn = Bmn − i θ̄Γ∗Γ[mDn]θ + β(4)
mn, (5.37c)

Cm = Cm −
i

2e
−φ θ̄Γ∗

(
Dm −

1
2Γm∆

)
θ + τ (4)

m , (5.37d)

C ′mnp = Cmnp −
i

2e
−φ θ̄

(
3Γ[mnDp] −

1
2Γijk∆

)
θ − 3iC[m θ̄Γ∗ΓnDp]θ + α′(4)

mnp. (5.37e)

Once again, we must determine the expressions for these unknown shifts by Taylor-expanding
both sides of (5.14) and (5.15), (5.16), now to quartic order in θ. Again, we appeal to
the results of the NORCOR procedure to Taylor-expand the left-hand side, whereas we
plug our quartic ansatzes in to Taylor-expand the right-hand side. Upon rearrangement,
this will result in expressions for the unknowns which contain both 10- and 11-dimensional
fields. We must then once again dimensionally reduce the 11-dimensional quantities that
appear in order to determine expressions for the unknowns that are entirely in terms of
10-dimensional quantities.

The mixing of the 10-dimensional metric, the dilaton and the Ramond-Ramond one-
form in (5.14) causes the expressions for the quartic ansatzes to be quite complicated to
deal with practically. For ease of notation, let us denote the quartic terms in the truncated
expansion of the 11-dimensional supermetric (4.21) as γ̂(4)

m̂n̂. Now, Taylor-expanding the
relation ĝ10 10 = e4φ/3 and keeping only the terms up to quartic order in fermions allows us
to find that

ρ(4) = 1
24
(
θ̄∆θ

)2
+ 3

4e
−4φ/3γ̂

(4)
10 10. (5.38)

Determining a 10-dimensional expression for ρ(4) now requires us to perform dimensional
reduction on γ̂(4)

10 10. Before that though we also note the results of Taylor-expanding and
rearranging the relations that allow us to determine expressions for τ (4)

m and γ(4)
mn. First,

expanding both sides of the equation ĝm 10 = e4φ/3Cm yields that the quartic shift on the
10-dimensional Ramond-Ramond one-form superfield is given by

eφτ (4)
m = 1

6(θ̄∆θ)(θ̄Γ∗Dmθ)−
1
12(θ̄∆θ)(θ̄Γ∗Γm∆θ) + 1

18e
φ(θ̄∆θ)2Cm

− 4
3e

φρ(4)Cm + e−φ/3γ̂
(4)
m 10.

(5.39)

As with the quadratic case, the mixing of 10-dimensional superfields in the right-hand side
of the supermetric relation in (5.14) means we are required to use the expressions for the
dilaton superfield expansion in this calculation. Second, we Taylor-expand the relation
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ĝmn = e−2φ/3(gmn+ e2φCmCn) in order to determine an expression for the quartic fermion
term of the expansion of the 10-dimensional supermetric, obtaining

γ(4)
mn = 2

3gmnρ
(4) + 1

4
(
θ̄Γ∗D(mθ

)(
θ̄Γ∗Dn)θ

)
− 1

4
(
θ̄Γ∗D(mθ

)(
θ̄Γ∗Γn)∆θ

)
+ 1

16
(
θ̄Γ∗Γ(m∆θ

)(
θ̄Γ∗Γn)∆θ

)
− 1

6
(
θ̄∆θ

)(
θ̄Γ(mDn)θ

)
+ 1

72gmn
(
θ̄∆θ

)2
− 2 e2φC(mτ

(4)
n) + 1

3e
φC(m

(
θ̄∆θ

)(
θ̄Γ∗Dn)θ

)
− 1

6e
φC(m

(
θ̄∆θ

)(
θ̄Γ∗Γn)∆θ

)
− 4

3e
2φC(mCn)ρ

(4) + 1
18e

2φC(mCn)
(
θ̄∆θ

)2 + e2φ/3γ̂(4)
mn.

(5.40)

The mixing of 10-dimensional superfields in the relation for the 11-dimensional supermetric
has again meant that we must include the previously calculated quartic terms for the
dilaton and the Ramond-Ramond one-form when making this expansion. Already we can
see that the relative complexity of the relation of the 11-dimensional supermetric to the
10-dimensional superfields results in expressions of some length even before we turn our
attention to the dimensional reduction step of our procedure.

As with the quadratic case, the initial Taylor expansion and rearrangement of the
relations in (5.15), (5.16) concerning the 11-dimensional three-form at quartic order are
essentially straightforward. Denoting the quartic terms in the NORCOR expansion of
the 11-dimensional super three-form (4.22) as α̂′(4)

m̂n̂p̂, it is clear that the quartic terms in
the truncated expansion of the 10-dimensional Ramond-Ramond three-form superfield
is given by α

′(4)
mnp = α̂

′(4)
mnp, and for the 10-dimensional Kalb-Ramond form superfield we

have β(4)
mn = α̂

′(4)
mn 10.

At this point, ‘all’ that is left to do in order to obtain expressions for the quartic
terms in the expansions of the 10-dimensional superfields is to dimensionally reduce the
11-dimensional quantities that appear, namely the components of γ̂(4)

m̂n̂ and α̂
(4)
m̂n̂p̂. The

calculation is very lengthy, so we provide all of the necessary tools and results in appendix D.
Despite their cumulative length, all the steps are the simple application of the dimensional
reduction procedure we are now very familiar with. For this reason, we place an example of
the calculation in the case of the dilaton in appendix D.5, but otherwise just report the
results of the calculations here.
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Quartic θ-terms for type IIA superfield expansions

In order to simplify the statement of the results, it is convenient to first make a few
definitions. Along with the familiar Dm and ∆, we will use the combinations

Dm ≡ Dm −
1
6Γm∆, (5.41)

Kq ≡
[
Dq,Γ∗∆

]
+ (∂qφ)Γ∗∆, (5.42)

Kpq ≡
[
Dp,Dq

]
+ 1

3e
φF (2)

pq Γ∗∆, (5.43)

as well as

Rmn≡
1
24
[
Γmn

(
eφF (4)+H(3)Γ∗

)
−2Γm

(
eφF (4)

n +H(3)
n Γ∗

)
+
(
eφF (4)

mn+H(3)
mnΓ∗

)]
,

Rm≡
1
24
[
ΓmΓ∗eφF (4)+Γ∗eφF (4)

m

]
.

(5.44)

We are now ready to list the quartic terms in the superfield expansion of the 10-dimensional
superfields using only 10-dimensional operators. The quartic fermionic terms in the dilaton
are given by

ρ(4) =− 1
768(θ̄Γmnpqθ)(θ̄ΓmnKpqθ) + 1

576(θ̄Γ∗Γmnpθ)
[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]

+ 1
384(θ̄Γ∗Γmnθ)

[
θ̄
[
3Γ∗Kmn − 2ΓmKn

]
θ
]

+ 1
48(θ̄Γ∗Γmnθ)(θ̄RmnΓ∗∆θ)

− 1
48(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

576
[
θ̄
[
2Γ∗eφF (4)

m − ΓmH(3)]θ](θ̄ΓmΓ∗∆θ)

+ 1
48(θ̄∆θ)2 + 1

576
[
θ̄
[
eφF (4) − 2H(3)Γ∗

]
θ
]
(θ̄∆θ).

(5.45)

The quartic fermionic terms in the Ramond-Ramond one-form superfield are

eφτ (4)
m = + 1

576
[
θ̄ΓmΓnpqθ

][
θ̄
[
3 Γ∗ΓnKpq − ΓnpKq

]
θ
]

+ 1
192

[
θ̄Γ∗Γnpqθ

][
θ̄
[
ΓmnKpq + ΓnpKmq

]
θ
]

+ 1
576

[
θ̄ΓmΓnpθ

][
θ̄
[
3Γ∗Knp − 2ΓnKp

]
θ
]

+ 1
72
[
θ̄ΓmΓnpθ

][
θ̄RnpΓ∗∆θ

]
+ 1

192
[
θ̄Γ∗Γnpθ

][
θ̄
[
ΓmKnp + 2ΓnKmp

]
θ
]

+ 1
24
[
θ̄Γ∗Γnpθ

][
θ̄RnpDmθ

]
+ 1

144
[
θ̄ΓmΓnΓ∗θ

][
θ̄Γ∗Knθ

]
+ 1

36
[
θ̄ΓmΓnΓ∗θ

][
θ̄RnΓ∗∆θ

]
+ 1

12[θ̄∆θ][θ̄Γ∗Dmθ]−
1
18[θ̄∆θ][θ̄Γ∗Γm∆θ]− 1

12
[
θ̄ΓnΓ∗∆θ

][
θ̄ΓnDmθ

]
+ 1

288
[
θ̄
[
eφF (4) − 2H(3)Γ∗

]
θ
][
θ̄Γ∗Dmθ

]
+ 1

864
[
θ̄ΓmΓ∗

[
eφF (4) − 2H(3)Γ∗

]
θ
][
θ̄∆θ

]
+ 1

288
[
θ̄
[
Γ∗ΓneφF (4) + ΓnH(3) − 3 Γ∗eφF (4)

n

]
θ
][
θ̄ΓnDmθ

]
− 1

864
[
θ̄Γm

[
3H(3)

n Γ∗ − ΓneφF (4) + 3 eφF (4)
n − ΓnH(3)Γ∗

]
θ
][
θ̄ΓnΓ∗∆θ

]
.

(5.46)
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The quartic fermionic terms for the 10-dimensional metric expansion read

γ(4)
mn =− 1

384gmn(θ̄Γpqrsθ)(θ̄ΓpqKrsθ) + 1
96
[
θ̄Γ(m|Γpqrθ

][
θ̄
[
Γ|n)pKqr + ΓpqK|n)r

]
θ
]

+ 1
288

[
θ̄Γ(m|ΓpqΓ∗θ

][
θ̄
[
2Γ|n)pKq + ΓpqK|n) + 3Γ|n)Γ∗Kpq − 6ΓpΓ∗K|n)q

]
θ
]

+ 1
576gmn(θ̄Γ∗Γpqθ)

[
θ̄
[
3Γ∗Kpq − 2ΓpKq

]
θ
]

+ 1
72gmn(θ̄Γ∗Γpqθ)(θ̄RpqΓ∗∆θ)

+ 1
96
[
θ̄Γ(m|Γpqθ

][
θ̄
[
Γ|n)Kpq + 2ΓpK|n)q

]
θ
]

+ 1
12
[
θ̄Γ(m|Γpqθ

][
θ̄RpqD|n)θ

]
+ 1

144
[
θ̄Γ(m|ΓpΓ∗θ

][
θ̄
[
Γ|n)Kp + ΓpK|n) − 3Γ∗K|n)p

]
θ
]

+ 1
6
[
θ̄Γ(m|ΓpΓ∗θ

][
θ̄RpD|n)θ

]
− 1

72gmn(θ̄ΓpΓ∗∆θ)(θ̄ΓpΓ∗∆θ)−
1
4
[
θ̄ΓpD(mθ

][
θ̄ΓpDn)θ

]
+ 1

36(θ̄Γ∗Γ(m∆θ)(θ̄Γ∗Γn)∆θ)−
1
6(θ̄Γ∗Γ(m∆θ)(θ̄Γ∗Dn)θ)−

1
6(θ̄∆θ)(θ̄Γ(mDn)θ)

− 1
864gmn

[
θ̄
[
2Γ∗eφF (4)

p − ΓpH(3)]θ](θ̄ΓpΓ∗∆θ)
− 1

144
[
θ̄Γ(m|

[
3H(3)

p Γ∗ − ΓpeφF (4) − ΓpH(3)Γ∗ + 3eφF (4)
p

]
θ
][
θ̄ΓpD|n)θ

]
− 1

144
[
θ̄Γ(m|Γ∗

[
2H(3)Γ∗ − eφF (4)]θ][θ̄Γ∗D|n)θ

]
+ 1

864gmn(θ̄∆θ)
[
θ̄
[
eφF (4) − 2H(3)Γ∗

]
θ
]
.

(5.47)
The quartic fermionic terms for the Kalb-Ramond two-form are

β(4)
mn =− 1

384(θ̄Γ∗ΓmnΓpqrsθ)
[
θ̄ΓpqKrsθ

]
− 1

96(θ̄Γ[m|Γ∗Γpqrθ)
[
θ̄
[
Γ|n]pKqr+ΓpqK|n]r

]
θ
]

+ 1
576(θ̄ΓmnΓpqθ)

[
θ̄
[
3Γ∗Kpq−2ΓpKq

]
θ
]
+ 1

72(θ̄ΓmnΓpqθ)
[
θ̄RpqΓ∗∆θ

]
− 1

96(θ̄Γ[m|Γ∗Γpqθ)
[
θ̄
[
Γ|n]Kpq+2ΓpK|n]q

]
θ
]
− 1

12(θ̄Γ[m|Γ∗Γpqθ)
[
θ̄RpqD|n]θ

]
− 1

288(θ̄Γ[m|Γpqθ)
[
θ̄
[
2Γ|n]pKq+ΓpqK|n] +3Γ|n]Γ∗Kpq−6ΓpΓ∗K|n]q

]
θ
]

+ 1
144(θ̄ΓmnΓpΓ∗θ)

[
θ̄Γ∗Kpθ

]
+ 1

36(θ̄ΓmnΓpΓ∗θ)
[
θ̄ŘpΓ∗∆θ

]
+ 1

6(θ̄Γ[m|Γpθ)
[
θ̄RpD|n]θ

]
+ 1

144(θ̄Γ[m|Γpθ)
[
θ̄
[
Γ|n]Kp+ΓpK|n]−3Γ∗K|n]p

]
θ
]
− 1

12(θ̄ΓpΓ[mDn]θ)(θ̄ΓpΓ∗∆θ)

− 1
4(θ̄ΓpΓ∗D[mθ)(θ̄ΓpDn]θ)+ 1

12(θ̄ΓpΓ[mΓ∗∆θ)(θ̄ΓpDn]θ)−
1
12(θ̄Γ∗Γ[mDn]θ)(θ̄∆θ)

− 1
12(θ̄Γ[m∆θ)(θ̄Γ∗Dn]θ)−

1
12(θ̄Γ∗∆θ)(θ̄Γ[mDn]θ)−

1
12(θ̄D[mθ)(θ̄Γn]Γ∗∆θ)

− 1
144

[
θ̄Γ[m|

[
Γ∗ΓpeφF (4) +ΓpH(3)−3Γ∗eφF (4)

p −3H(3)
p

]
θ
][
θ̄ΓpD|n]θ

]
+ 1

864
[
θ̄Γmn

[
ΓpeφF (4) +ΓpH(3)Γ∗−3H(3)

p Γ∗−3eφF (4)
p

]
θ
][
θ̄ΓpΓ∗∆θ

]
− 1

144
[
θ̄Γ[m|Γ∗

[
eφΓ∗F (4) +2H(3)]θ][θ̄Γ∗D|n]θ

]
+ 1

864
[
θ̄Γmn

[
Γ∗eφF (4) +2H(3)]θ][θ̄∆θ].

(5.48)
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Finally, the quartic fermionic terms for the Ramond-Ramond three-form superfield can be
written as

α′(4)
mnp = α′′(4)

mnp + 3β(4)
[mnCp], (5.49)

where α′′(4)
mnp is given by the expression,

eφα′′(4)
mnp =− 1

384(θ̄ΓmnpΓqrstθ)
[
θ̄ΓqrKstθ

]
− 1

576(θ̄ΓmnpΓqrsΓ∗θ)
[
θ̄
[
ΓqrKs−3Γ∗ΓqKrs

]
θ
]

+ 1
64(θ̄Γ[mn|Γqrsθ)

[
θ̄
[
Γ|p]qKrs+ΓqrK|p]s

]
θ
]

+ 1
192(θ̄Γ[mn|ΓqrΓ∗θ)

[
θ̄
[
2Γ|p]qKr+ΓqrK|p] +3Γ|p]Γ∗Kqr−6ΓqΓ∗K|p]r

]
θ
]

+ 1
64(θ̄Γ[mn|Γqrθ)

[
θ̄
[
Γ|p]Kqr+2ΓqK|p]r

]
θ
]
+ 1

8(θ̄Γ[mn|Γqrθ)
[
θ̄RqrD|p]θ

]
+ 1

96(θ̄Γ[mn|ΓqΓ∗θ)
[
θ̄
[
Γ|p]Kq+ΓqK|p]−3Γ∗K|p]q

]
θ
]
+ 1

4(θ̄Γ[mn|ΓqΓ∗θ)(θ̄RqD|p]θ)

− 3
4(θ̄ΓqΓ[mDnθ)(θ̄ΓqDp]θ)−

3
4(θ̄D[mθ)(θ̄ΓnDp]θ)−

3
4(θ̄Γ∗Γ[mDnθ)(θ̄Γ∗Dp]θ)

+ 1
96
[
θ̄Γ[mn|

[
ΓqeφF (4) +ΓqH(3)Γ∗−3eφF (4)

q −3H(3)
q Γ∗

]
θ
][
θ̄ΓqD|p]θ

]
+ 1

96
[
θ̄Γ[mn|

[
2H(3) +Γ∗eφF (4)]θ][θ̄Γ∗D|p]θ].

(5.50)

A few comments are due, as in the above formulae the 10-dimensional quartic fermionic terms
look complicated and have an enormous length. With current understanding, the quartic
fermion expansions of type IIA superfields seem unavoidably lengthy, as also seen in [75].
We will discuss some promising avenues for improving this quality of these results in what
follows. On the other hand, the most prominent feature of these results is their completeness.
The robustness and systematicity of the methods we have employed guarantee that these
are the full and complete quartic fermion terms for the type IIA superfield expansions. This
is the first time that some of these terms have been calculated and our results will serve as
a foundation for future understanding of such expansions.

Avenues to simplification

Our current expressions for the results for the quartic order fermion terms in the type IIA
superfield expansions are unwieldy. It is therefore worthwhile to discuss how they might be
made more manageable.

The first thought that might occur is to try and tidy up the large number of ‘loose’
flux terms in the expansions. One would do this by attempting to package these terms up
using the operators Dm and ∆ (or combinations thereof) just as everything at second order
was packaged neatly. Indeed, this idea is met with some initial success, for example, with a
little effort, one can see that three of the terms appearing above in the dilaton shift come
together to give

1
128(θ̄Γ∗Γmnθ)

(
θ̄Γ∗Kmnθ

)
+ 1

48(θ̄∆θ)2 + 1
576

[
θ̄
[
eφF (4) − 2H(3)Γ∗

]
θ
]
(θ̄∆θ)

= 1
128(θ̄Γ∗Γmnθ)

(
θ̄Γ∗

[
Dm , Dn

]
θ
)

+ 1
72(θ̄∆θ)2.

(5.51)
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However, reorganizations along these lines often require spotting tricks in the calculations, for
example with Γ-matrix identities, with the symmetry properties of bilinears, and potentially
with Fierz identities. It rapidly becomes utterly impractical to hope to significantly
reorganize these shifts as they currently stand in this way. We must try and find a
better strategy.

We can see in the quadratic and quartic cases that the process of dimensional reduc-
tion sharply increases the number and complexity of terms in the expansions. However,
dimensional reduction will not generate the capacity for any significant recombination or
reorganization of terms all by itself. Any game-changing reorganizational principle for the
10-dimensional quartic terms should be identifiable in the simpler quartic terms in the
11-dimensional description. The most promising line, therefore, is not to try and massage
the many terms appearing in ten dimensions, but to return to 11 dimensions and fix them
there. The quartic fermion terms in the expansions of the supermetric and super three-form
in 11-dimensional supergravity are given in (4.21) and (4.22). We saw in our discussion
of the M2-brane that in actuality the only 11-dimensional superfield we need to expand
using NORCOR in order to obtain the expansions required for the brane action is the
supervielbein E A

M (Z). All the components of the expansion of this superfield that we
require to get to quartic fermion order for the M2-brane are given in (4.8) in conjucture
with (4.7). Recall that we also performed significant manipulation of the higher-order
expansions using Bianchi identities until we arrived at (4.9). We can see then that it is the
relative unwieldiness of these expressions for components of the NORCOR expansion of
the 11-dimensional supervielbein where the vastness of the quartic 10-dimensional terms
has its origin. Meaningful rearrangement or simplification of the quartic terms in the type
IIA superfield expansion will be identifiable at the level of improvements of (4.9). These
improvements have the potential to come from a couple of different lines of reasoning.
The most obvious is by improving the application of the Bianchi identities (and litany of
other subtle identities that emerge in their combination) when moving from (4.8) to (4.9).
Another direction might be to improve the NORCOR procedure itself, or making significant
geometrical insight there, such that the left-hand side of (4.9) can be made more and
more amenable.

Crucial to note, however, is that even with these improvements to the treatment of the
11-dimensional supervielbein, the best subsequent method for obtaining the type IIA quartic
terms is still the one we have presented here, when applied to the improved formulation. We
will say some more about how the quartic results might be improved once we have explored
the next step in our procedure and obtained information about both type II supergravities.

6 Superspace T-duality and Dp-brane actions

In this section we complete the task initiated in section 5 and provide a systematic method
to compute fermion couplings on all Dp-branes. The method is based on ideas analogous to
the ones in section 5, and for this reason we will make reference to explanations there when
possible to avoid repetition.
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Let us briefly summarize the approach. Our proposal relies on two facts. First, Dp-
branes are solutions of type II supergravities related by T-dualities. Second, fermion
couplings on Dp-brane actions arise naturally in the superspace formulation of the corre-
sponding supergravity theory. For reasons analogous to the ones in the previous section,
here we combine those two facts and extend the relation between the T-dual geometries
to the superspace level. Using this generalization we find relations between superfields
in curved superspaces that are T-dual to each other. We use those relations to find the
θ-expansions of superfields appearing in Dp-brane actions. We already explained that this
is equivalent to finding fermion couplings on all Dp-brane actions.

6.1 T-duality toolkit

With the general picture in mind, we can move into the details. In type II theories,7 T-duality
represents the equivalence of type IIA strings on a background with an isometry along a
non-trivial circle S1 of size R and type IIB strings compactified on another background
also with an isometric on a non-trivial circle S̃1, this time with size R̃ = l2s/R (in our
conventions, the string length is ls = 2π

√
α′). We are interested in this underlying structure

that connects the two theories. The relations for Neveu-Schwarz fields were first given
by Buscher [76, 77] and expanded to Ramond-Ramond fields in [78], and then they were
extended to fermionic fields in [51–53].

6.1.1 Bosons

Analogously to the dimensional reduction, we begin with a reminder of the standard T-
duality relations for bosonic fields. We take the T-duality S1-direction to be x9. Our notation
will be the following: the indices m,n = 0, . . . , 9 run through all spacetime directions, and
the indices ṁ, ṅ = 0, . . . , 8 through all but the circle S1, that we take to be x9 ∼ x9 + R.
We indicate which fields belong to each theory by introducing a tilde for fields in one theory
and no adornment of symbols for fields in the other one. All fields are independent of the
T-duality direction. We start by providing the well-known Buscher rules8

φ̃ = φ− 1
2 ln g99, (6.1a)

g̃ṁṅ = gṁṅ − g−1
99
(
gṁ9gṅ9 −Bṁ9Bṅ9

)
, (6.1b)

g̃ṁ9 = g−1
99 Bṁ9, (6.1c)

g̃99 = g−1
99 , (6.1d)

B̃ṁṅ = gṁṅ − g−1
99
(
Bṁ9gṅ9 − gṁ9Bṅ9

)
, (6.1e)

B̃ṁ9 = g−1
99 gṁ9. (6.1f)

7T-duality is a more general concept in String Theory and it also relates heterotic strings, but here we
are interested in type II theories only.

8Notice that fields are dimensionless in this setup, e.g. g99 = (R/ls)2. Forms therefore have length
dimension with the string length ls as a reference length. Integrals such as

∫ 1
0 dx9√g99 = R give dimensionful

volumes with the appropriate dimension.
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The Ramond-Ramond gauge potentials are related by the mutually implicative expressions

C̃
(n)
9ṁ2...ṁn = C

(n−1)
ṁ2...ṁn − (n− 1) g−1

99 g9[ṁ2C
(n−1)
|9|ṁ3...ṁn], (6.2a)

C̃
(n)
ṁ1...ṁn = C

(n+1)
9ṁ1...ṁn − nB9[ṁ1C

(n−1)
ṁ2...ṁn] + n(n− 1) g−1

99 g9[ṁ1|B9|ṁ2C
(n−1)
ṁ3...ṁn]. (6.2b)

6.1.2 Spinors, supersymmetry operators, and spinor doublet notation

When fermions are involved, T-duality becomes somewhat more subtle and complicated.
The groundwork for the treatment of fermions under T-duality is represented by the Hassan
rules [51–53].

The intricate world of fermion T-duality begins with making an observation concerning
the T-duality rules for fields in the Neveu-Schwarz sector: there are two different vielbeins
that are dual to the original one. Properly dealing with this fact requires the introduction
of some extra structure. We denote the ‘initial’ vielbein as e m

a , and the two possible ‘final’
dual vielbeins as (ẽ+) m

a and (ẽ−) m
a . Both choices give the correct T-dual metric. The

initial and final vielbeins are related according to the T-duality rules

(ẽ±) n
a = e m

a (Q±) n
m , (6.3a)

(ẽ±) a
m = (Q−1

± ) n
m e a

n , (6.3b)

where we have defined

(Q±) n
m =

(
δ ṅ
ṁ ∓(g9ṁ ±B9ṁ)
0 ∓g99

)
, (6.4a)

(Q−1
± ) n

m =
(
δ ṅ
ṁ −g−1

99 (g9ṁ ±B9ṁ)
0 ∓g−1

99

)
. (6.4b)

Notice that (Q̃−1
± ) n

m = (Q±) n
m . The two vielbeins (ẽ+) a

m and (ẽ−) a
m are related to

one another by a local Lorentz transformation as (ẽ+) a
m = Λa

b(ẽ−) b
m , with Λa

b =
e m
b (Q−) p

m (Q−1
+ ) n

p e
a
n . This is irrelevant for the Lorentz-invariant quantities in the bosonic

analysis, but it plays a vital role when considering fermions. For example there are now
two choices for Γ-matrices in the dual theory, i.e.

(Γ̃±)m = (Q−1
± ) n

m Γn = (ẽ±) a
m Γa. (6.5)

These are naturally related by a spinorial representation Ω of the Lorentz transformation Λ,
defined via Ω Γa Ω−1 = Γb (Λ−1) ba, as

Ω (Γ̃+)m Ω−1 = (Γ̃−)m. (6.6)

It can be determined that this matrix reads (also notice it squares as Ω2 = −1)

Ω = Ω̃ = 1
√
g99

Γ∗Γ9. (6.7)

The extra complication when T-dualizing objects that are sensitive to the difference between
the two choices of vielbein, such as spinors and Γ-matrices, is that for self-consistency it
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is necessary that all Lorentz tensors in the dual theory are computed with respect to the
same vielbein. We will choose (ẽ−) a

n as our reference dual vielbein. Let us point out that
this does not imply that we will write all duality relations using Q−: we will often find it
convenient to transform objects using Q+ and then perform Lorentz transformations.

With these tools in hand, we are in principle ready to provide all of the rules for fermion
T-dualization introduced by Hassan. Before doing so, however, we introduce a new notation
that allows us to perform computations in a clean and compact way: the spinor doublet
notation. The spinor doublet notation we introduce has differences to the ones found in
the literature, e.g. in [19, 44–46, 79]. These differences will make performing the necessary
T-duality computations cleaner. The motivation for this new notation is the following: in
type II theories spinors come in doublets of Majorana-Weyl spinors. In type IIA theese
have opposite chirality whereas in IIB they have the same chirality, which we take to be
positive for the gravitinos and supersymmetry parameters, and negative for dilatinos. It is
therefore convenient to use spinor doublet in the latter in order to write most combinations,
such as fermion bilinears, in a compact way. We define the IIB doublets

εB =
(
ε1
ε2

)
, ψB

m =
(
ψ1m
ψ2m

)
, λB =

(
λ1
λ2

)
. (6.8)

It is also convenient to do the same in the type IIA theory. In this case, we must bear in
mind that chirality plays a crucial role in organizing fermion bilinears in this theory, and so
we need to use chirality as an organizing principle. Our convention will be to have positive
chirality fermions on the top of type IIA fermion doublets. We can now define

εA =
(
ε+
ε−

)
, ψA

m =
(
ψ+m
ψ−m

)
, λA =

(
λ+
λ−

)
. (6.9)

Given these doublets, the natural matrices that act on them can always be written in terms
of the 2-dimensional identity 12 and the Pauli matrices σ1, σ2, σ3. This also comes with
further implications. For instance, chirality matrices in type IIA theory can always be
replaced by σ3 in our conventions, for instance as in Γ∗εA = σ3εA. Also, to account for the
fact that multiplications by a Γ-matrix flip chiralities, one must introduce a σ1 matrix for
each Γ-matrix when moving to the spinor doublet notation from the one in the previous
section. The appearance of multiple Pauli matrices in this notation change can make fomulae
more complicated to read. In order to make them more readable, we compute the product
of Pauli matrices and just give the resulting one, such that all other operators appearing
in the expressions now come with 12. For example, the type IIA product ΓmΓ∗ε leads
to (σ1 ⊗ Γm)σ3εA = (12 ⊗ Γm)(−iσ2)εA = (−iσ2)⊗ ΓmεA in our doublet notation. We will
omit ‘⊗’ symbols from now on. Hence operators implicitly come with 12. We will also write
Γm = 12 ⊗ Γm. In type IIB strings, chirality cannot be used as an organizing principle,
instead the Pauli-matrix structure is inherited from type IIA.

As clarifying examples, and because they will be useful for later purposes, we provide
here the second-order truncated superfields (5.27)–(5.31) that appeared in the D2-brane
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action with fermion bilinears written in this notation. These are

gmn = gmn − i θ̄Aσ1Γ(mD
A
n)θ

A, (6.10)

φ = φ− i

4 θ̄
A∆AθA, (6.11)

Bmn = Bmn − i θ̄A(iσ2)Γ[mD
A
n]θ

A, (6.12)

Cm = Cm −
i

2 e
−φ θ̄Aσ3

(
DA
m −

1
2σ

1Γm∆
A
)
θA, (6.13)

C ′mnp = Cmnp −
i

2 e
−φ θ̄A

(
3Γ[mnD

A
p] −

1
2σ

1Γmnp∆
A
)
θA − 3i C[m θ̄

A(iσ2)ΓnDA
p]θ

A. (6.14)

In order to write the superfields, we used the operators appearing in the type IIA gravitino
and dilatino supersymmetry variations, that in the spinor doublet notation are

δεψ
A
m = DA

mε
A, (6.15)

δελ
A = ∆AεA, (6.16)

with

DA
m ≡ 12∇m + 1

4 σ
3H(3)

m −
1
8 e

φ [iσ2F (2) + σ1F (4)]Γm, (6.17)

∆A ≡ σ1∂φ+ 1
2 iσ

2H(3) − 1
8 e

φ Γm
[
σ3F (2) + 12F

(4)]Γm. (6.18)

We also need to define the equivalent operators in type IIB. For doing so we first give the
supersymmetry variations in the spinor doublet notation

δεψ
B
m = DB

mε
B, (6.19)

δελ
B = ∆BεB, (6.20)

and this time

DB
m ≡ 12∇m + 1

4 σ
3H(3)

m + 1
8 e

φ
[
iσ2
(
F (1) + F (5)

)
+ σ1F (3)

]
Γm, (6.21)

∆B ≡ σ1∂φ+ 1
2 iσ

2H(3) + 1
8 e

φ Γm
[
σ3
(
F (1) + F (5)

)
+ 12F

(3)
]
Γm. (6.22)

Now we have to express the basic T-duality relations in this spinor doublet notation.
The extensions of Q± and Ω can be simply achieved by defining

(Q±) n
m =

(
(Q±) n

m 0
0 (Q∓) n

m

)
(6.23)

and
Υ =

(
1 0
0 Ω

)
. (6.24)

These definitions allow us to extend the T-duality rules for many objects to the spinor
doublet notation which will be used later on. For instance, once we take (ẽ−) a

m as the
reference frame in the dual theory, the Γ-matrix rule can be manipulated to give

Γ̃m = (Q−1
− ) n

m ΥΓnΥ−1. (6.25)
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Adapting the notation of [44, 45, 51–53] to our conventions, spinors in type IIA and type
IIB theories are related to each other by the T-duality rules

εB = ΥεA, (6.26)
ψB
m = (Q−1

+ ) n
m ΥψA

n , (6.27)
λB = (σ1Υσ1)

[
λA − 2 g−1

99 σ
1Γ9 ψ

A
9
]
. (6.28)

Related to the above formaulae, it is convenient to define the Dirac conjugate doublets
because these appear in fermion bilinears. Based on chirality arguments above this is
ε̄A = (ε̄−, ε̄+) for type IIA and we extend the structure to IIB by defining ε̄B = (ε̄2, ε̄1). The
T-duality relation between them is ε̄B = ε̄Aσ1Υ−1σ1.

A point worth making here is that if we invert the relations above, the outcome is similar
but involves Υ−1, instead of Υ itself, so there is a slight difference between going from type
IIA to type IIB or taking the opposite route. This did not happen for bosonic fields above,
where the relations found worked the same regardless of the direction taken to perform the
duality. To conclude, the T-duality rules between the supersymmetry operators read

DB
m = (Q−1

+ ) n
m ΥDA

nΥ−1, (6.29a)
∆B = σ1Υσ1[∆A − 2 g−1

99 σ
1Γ9D

A
9
]
Υ−1, (6.29b)

The above results are in precise agreement with the existing literature. As should be
apparent, the spinor doublet notation approach we have employed here is highly successful
in compactly capturing the T-duality relationships for the fermions and supersymmetry
variations in type IIA and type IIB supergravity.

6.1.3 T-duality and bosonic Dp-branes

We will now review how bosonic Dp-brane actions are related to each other under T-duality.
This is instrumental in explaining our superspace approach below. In general, the basic
idea is that T-dualising a theory with a Dp-brane produces a theory with a D(p± 1)-brane,
depending on whether the original brane wraps the T-duality circle S1 or not. This is
consistent with the fact that type IIA and type IIB theories are exchanged, as the former
only admits even-p branes and the latter only odd-p ones. Starting from the bosonic
D2-brane action, one can repeatedly T-dualise the theory to infer that the bosonic action
of a generic Dp-brane is

S
(0)
Dp = −TDp

∫
dp+1ζ e−φ

√
− det (g + f) + TDp

∫
C e−f , (6.30)

where the brane tension is TDp = 2π/lp+1
s . All bulk fields are pulled-back onto the brane

worldvolume. The WZ-term contains a formal sum C =
∑
q C

(q) over forms of all degrees
and we let the integral pick out the appropriate forms each time.

In order to show in some detail how the machinery of T-duality works for Dp-branes,
we consider a bosonic Dp-brane wrapping the T-duality circle S1 in the direction x9 and,
with simple manipulations, we integrate its action over the circle S1 to obtain the action of
the dual D(p − 1)-brane that is localized on the dual circle. The initial Dp-brane wraps
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a (p + 1)-cycle Σp+1 that is an S1-fibration over Σp, which is the cycle wrapped by the
final D(p − 1)-brane. Indices k = 0, . . . , p − 1, 9 span the Dp-brane worldvolume and
indices k̇ = 0, . . . , p− 1 are parallel to the D(p− 1)-brane, excluding the direction x9. For
simplicity, we fix the static gauge for the brane embedding, with all fields independent
of the S1-direction. For clarity, we manipulate the DBI- and the WZ-terms of the action
separately. The presentation here is sketchy and we refer the interested reader to [80, 81]
for further details.

First, we deal with the DBI-action. Integrating over the circle S1 goes as

SDBI
Dp = −TDp

∫
Σp+1

dp+1ζ e−φ
√
− det

[
(g + f)kl

]
= −TDp

∫
Σp

dpζ
∫

dζ9 e−φ
√
g99

√
− det

[
(g + f)k̇l̇ − g

−1
99 (g + f)k̇9(g + f)9l̇

]
= −T̃D(p−1)

∫
Σp

dpζ e−φ̃
√
− det

[
(g̃ + f̃)k̇l̇

]
.

(6.31)

To achieve this, we express the determinant of the block matrix singling out the S1-direction.
Organizing the resulting formula as shown, one can identify the combinations appearing in
the Buscher rules (6.1), so that the integrand after this manipulations has the appropriate
shape to be the DBI-part of the D(p− 1)-brane in the dual background to the initial one.
Also, the result of the integration over the circle transforms the Dp-brane tension leading to
the D(p− 1)-brane tension, i.e. TDpls = T̃D(p−1). So the outcome of these manipulations is
the DBI-term in the resulting D(p− 1)-brane action, also in the static gauge, as expected.
For later purposes, we emphasize that this computation provides an alternative derivation
of the Buscher rules (6.1).

We can proceed analogously for the WZ-term. One can observe that the S1-integration
gives

SWZ
Dp = TDp

∫
S1

∫
Σp

dζ9 ∧ dζ l̇1 ∧ · · · ∧ dζ l̇p p+ 1
(p+ 1)!

(
C ∧ e−f

)
9l̇1...l̇p

= T̃D(p−1)

∫
Σp

dζ l̇1 ∧ · · · ∧ dζ l̇p 1
p!
(
C̃ ∧ e−f̃

)
l̇1...l̇p

.
(6.32)

To achieve this, we expand the integrand and upon performing the integral over ζ9 we recog-
nize in it the D(p− 1)-brane WZ-term with the appropriate charge. Similarly to the case of
the Neveu-Schwarz sector, we note that this reduction provides an alternative approach to ob-
tain the T-duality rules for the Ramond sector written as (C̃ e−B̃)(n)

9ṁ2...ṁn = (C e−B)(n−1)
ṁ2...ṁn

and (C̃ e−B̃)(n)
ṁ1...ṁn = (C e−B)(n+1)

9ṁ1...ṁn , that can be manipulated to give (6.2).
This completes our review of the behaviour of the bosonic brane actions under T-

duality. One should notice a fundamental fact: T-duality maps the DBI- and WZ-actions
of a Dp-brane into the DBI- and WZ-actions of a D(p− 1)-brane, respectively, and there is
no mixing among the two in the transformation. A similar calculation to the one above
may be engineered to move from a Dp-brane to a D(p+ 1)-brane.

– 41 –



J
H
E
P
1
0
(
2
0
2
1
)
2
4
3

6.2 A useful rearrangement

We just showed how to obtain all the bosonic Dp-brane actions by T-dualizing the bosonic
D2-brane one. Moreover, in the superspace formulation, the structure of the D2-brane
action is formally the same both at zeroth order and in superspace at any fermionic order.
Therefore, the structure of fermion couplings on all Dp-branes just follows from the D2-brane
one. Because our goal is to compute these fermionic couplings for all Dp-branes, here we
present a useful rearrangement that simplifies the computation of such couplings. In fact,
because the fermion couplings are inherited from the superfield expansions appearing on
the brane, the rearrangement is a smart manipulation of the superfields appearing on
the D2-brane action that will simplify the computation of those appearing in the rest
of Dp-branes.

In section 5, we defined the promoted Ramond-Ramond three-form field in type IIA
with a prime symbol. That is the standard three-form superfield obtained from dimensional
reduction of 11-dimensional supergravity. Rather than working with that superfield, it will
be convenient to work with a related one. We define a new unprimed three-form superfield as

Cmnp = C ′mnp − 3C [m(Bnp] −Bnp]). (6.33)

From here on we will work using this unprimed three-form rather than the standard one.
This new superfield is such that the last term in the superfield C ′mnp in (6.14) is removed,
and at order (θ)2 it reads

Cmnp = Cmnp −
i

2 e
−φ θ̄A

(
3Γ[mnD

A
p] −

1
2σ

1Γmnp∆
A
)
θA. (6.34)

The reason why we defined this rearrangement is easily explained: the super-D2-brane
action now reads

SD2 = −TD2

∫
d3ζ e−φ

√
− det (g + f) + TD2

6

∫
d3ζ εijk(Cijk − 3Cifjk). (6.35)

In other words, we have engineered a superspace action where the Neveu-Schwarz fields
appear as superfields in the DBI-term but only as bosonic fields in the WZ-term. Ramond-
Ramond fields instead appear as superfields in the WZ-term. From the discussion in
section 6.1.3 we conclude that this combination of fields and superfields will hold for any
Dp-brane if we obtain the brane superspace actions by T-dualizing this one.

6.3 Superspace T-duality and fermions on Dp-branes

We will once again be following the reasoning of the example already laid out with dimen-
sional reduction in section 5. We interpret the bosonic T-duality relations (6.1) and (6.2)
as the zeroth-order terms in the fermionic expansions of superspace T-duality relationships
and extend them to superspace relations. T-duality in the context of full superfields was
also discussed in [82].

Now, since T-duality maps the DBI-action of Dp-branes into the DBI-action of D(p±1)-
branes, and since this mapping allows one to derive the Buscher rules (6.1), one can simply
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conclude that the Buscher rules for the Neveu-Schwarz fields in superspace read

φ̃ = φ− 1
2 ln g99, (6.36a)

g̃ṁṅ = gṁṅ − g−1
99
(
gṁ9gṅ9 −Bṁ9Bṅ9

)
, (6.36b)

g̃ṁ9 = g−1
99 Bṁ9, (6.36c)

g̃99 = g−1
99 , (6.36d)

B̃ṁṅ = gṁṅ − g−1
99
(
Bṁ9gṅ9 − gṁ9Bṅ9

)
, (6.36e)

B̃ṁ9 = g−1
99 gṁ9. (6.36f)

Some of these rules partially appeared in [70], where they found the T-duality relation
between Green-Schwarz superstrings in type IIA and type IIB with fermionic expansions
up to quadratic terms.

Similarly, T-duality maps the WZ-action of Dp-branes into the WZ-action of D(p± 1)-
branes and this mapping allows one to derive the T-duality rules for Ramond-Ramond
fields (6.37). Because in the WZ-action of (6.35) the Neveu-Schwarz field appear only
bosonically and the Ramond-Ramond fields appear as superfields, we conclude that the
Ramond-Ramond T-duality rules we will use are

C̃
(n)
9ṁ2...ṁn = C

(n−1)
ṁ2...ṁn − (n− 1)g−1

99 g9[ṁ2C
(n−1)
|9|ṁ3...ṁn], (6.37a)

C̃
(n)
ṁ1...ṁn = C

(n+1)
9ṁ1...ṁn − nB9[ṁ1C

(n−1)
ṁ2...ṁn] + n(n− 1) g−1

99 g9[ṁ1|B9|ṁ2C
(n−1)
ṁ3...ṁn]. (6.37b)

This mechanism was used in [45] for the quadratic fermionic action and we have extended
that observation to any fermionic order. Note that without our manipulation on the super-
three-form, one would have obtained similar results involving Neveu-Schwarz superfields
rather than fields. Those are the actual superspace T-duality rules for Ramond-Ramond
superfields, but for our purposes it will be more convenient to use (6.37).

6.3.1 Order-(θ)2 terms

In the following, we will use the promoted T-duality relations (6.36) and (6.37) to calculate
the second-order fermionic expansions of all the superfields that appear in type IIA and type
IIB under repeated T-dualizations. Just as in section 5.3.1, we will provide illuminating
examples of the necessary calculations before listing the full results.

Example: type IIB metric

We will now use the simplest superspace T-duality relationships in order to provide an
example of how to obtain the fermionic expansions of type IIB operators from type
IIA description by using the conventional T-duality rules applied to quadratic fermionic
quantities. We will focus on the supermetric.

Consider the superspace T-duality rule (6.36d), i.e. g̃99 = g−1
99 . Starting from the

type IIA supermetric gmn, in order to determine an expression for the quadratic fermionic
expansion of the type IIB supermetric g̃mn, we Taylor-expand both sides, concentrating on
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the components of interest. On the type IIB left-hand side, we set the ansatz g̃99 = g̃99 + γ̃99,
whereas on the type IIA right-hand side we use the result of the dimensional reduction (6.10).
Using the spinor doublet notation and keeping only the second-order fermion terms from
both sides (as the zeroth-order terms just reproduce the bosonic identities), one determines
an expression for the type IIB shift γ̃99 in terms of type IIA quantities, i.e.

γ̃99 = ig−2
99 θ̄

Aσ1Γ9D
A
9 θ

A. (6.38)

We are now required to perform conventional T-duality on the term on the right-hand side
in order to determine an expression for the expansion ansatz of the type IIB metric in terms
of type IIB quantities. We can use the basic T-duality rules in spinor doublet notation in
subsection 6.1.2 to write

γ̃99 = ig̃2
99 (θ̄Bσ1Υσ1)σ1[(Q̃−1

− ) p
9 Υ−1Γ̃pΥ

][
(Q̃−1

+ ) q
9 Υ−1DB

q Υ
]
Υ−1θB

= ig̃2
99 θ̄

Bσ1(Q̃−1
− ) p

9 (Q̃−1
+ ) q

9 Γ̃pD
B
q θ

B

= ig̃2
99 θ̄

Bσ1(−g̃−1
99 σ

3)(g̃−1
99 σ

3)Γ̃9D
B
9 θ

B

= −i θ̄Bσ1Γ̃9D
B
9 θ

B.

(6.39)

The result is exactly as expected. The quadratic terms in the expansions of the type IIB
metric take precisely the same form as the type IIA metric, just with all of the operators and
spinors being the type IIB ones and not the type IIA versions. One can proceed analogously
to get the generic second-order shift of the type IIB dilaton and Kalb-Ramond superfields.

Example: Ramond-Ramond two-form

The superspace promotion of the dimensional reduction from 11-dimensional supergravity
to type IIA supergravity allowed us to determine the fermionic expansions for the Ramond-
Ramond superfields of degrees one and three. Now that we are considering T-duality
between type IIA and type IIB, we must confront the requirement that we calculate the
fermionic expansions of Ramond-Ramond superfields of any degree.

Our strategy will be to take the promoted Ramond-Ramond T-duality rule (6.37a),
expand in orders of fermions and keep only the quadratic contribution. Writing C(q) =
C(q) + χ(q), where χ(q) is the corresponding fermion bilinear, we are interested in obtaining
χ(2). Following our standard procedure, from (6.37a) we find

χ̃
(2)
9ṁ = χ

(1)
9ṁ − g

−1
99 g9ṁχ

(1)
9

= − i2 e
−φ θ̄Aσ3

[(
DA
ṁ − g−1

99 g9ṁD
A
9
)
− 1

2
(
Γṁ − g−1

99 g9ṁΓ9
)
σ1∆A

]
θA

(6.40)

where for the one-form shift we have made use of (6.13). We now need to manipulate the
right-hand side in order to obtain an expression for the type IIB Ramond-Ramond two-form
superfield in terms of type IIB operators. We will use identities similar to (6.25)

Υ
(
DA
ṁ − g−1

99 g9ṁD
A
9
)
Υ−1 = DB

ṁ − g̃−1
99 g̃9ṁD

B
9 , (6.41)

Υ
(
Γṁ − g−1

99 g9ṁΓ9
)
Υ−1 = Γ̃ṁ − g̃−1

99 g̃9ṁΓ̃9, (6.42)
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and
√
g̃99 σ

1Υσ1σ3Υ−1 = Γ∗Γ̃9. Splitting the first and the second term in (6.40), using (6.41)
and (6.42), we find

e−φ θ̄Aσ3(DA
ṁ − g−1

99 g9ṁD
A
9
)
θA = e−φ̃ θ̄BΓ∗

(
Γ̃9D

B
ṁ − g̃−1

99 g̃9ṁΓ̃9D
B
9
)
θB, (6.43)

e−φ θ̄Aσ3 σ1(Γṁ − g−1
99 g9ṁΓ9

)
∆AθA = e−φ̃ θ̄BΓ∗

[
σ1Γ̃9ṁ∆

B + 2 g̃−1
99 (Γ̃9g̃ṁ9 − Γ̃ṁg̃99)DB

9

]
θB.

(6.44)

Therefore, putting together the expressions we have

χ̃
(2)
9ṁ = i

2 e
−φ̃ θ̄B

[
2 Γ̃[9D

B
ṁ] −

1
2σ

1Γ̃9ṁ∆
B
]
θB. (6.45)

One can proceed analogously to obtain all the type IIA and type IIB bilinears in Ramond-
Ramond superfields, going up in the degree of the T-dualized form one at a time. Al-
ternatively, a generalised discussion of the Ramond-Ramond superfields in appendix E
demonstrates that all of these expansions can be calculated together.

Full results

To conclude, we list all the relevant superfields up to quadratic order both in the Neveu-
Schwarz and Ramond-Ramond sectors.

The expansions for the Neveu-Schwarz superfields at order (θ)2 look same in both
theories in our spinor doublet notation. They are

gmn = gmn − i θ̄IIσ1Γ(mD
II
n)θ

II, (6.46)

φ = φ− i

4 θ̄
II∆IIθII, (6.47)

Bmn = Bmn − i θ̄II(iσ2)Γ[mD
II
n]θ

II, (6.48)

where the superscript ‘II’ indicates that one must introduce the appropriate object in each
theory. The order-(θ)2 terms in the Ramond-Ramond superfields in type IIA and type IIB
theories can also be written compactly

C(n)
m1...mn = C(n)

m1...mn −
i

2 e
−φ θ̄II

[
(−1)n(σ3)1+bn2c

][
nΓ[m1D

II
...mn] −

1
2 Γm1...mnσ

1∆II
]
θII,

(6.49)
where the parity of n determines whether the spinor doublet and the supersymmetry
operators are the type IIA or type IIB ones.

Dp-branes

Now that we have determined the fermionic expansion of the all the fundamental superfields
in type IIA and type IIB theories, we can turn our attention to the composite superfields of
greatest interest, namely the worldvolume actions of a Dp-brane for arbitrary p.

Since the formal structure of purely bosonic Dp-brane is equivalent to the structure
of the action in superspace, the T-duality mechanism is also the same as the one leading
to the bosonic action (6.30). The only precaution one needs to take regards the fact
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that the starting point, i.e. the superspace D2-brane action (6.35), and consequently the
T-duality rules, are such that the Neveu-Scwharz T-duality rules see all fields in superspace
whereas the Ramond-Ramond ones only contain the Ramond-Ramond fields in superspace,
as exemplified in (6.36) and (6.37). At the end of the day, the action of any Dp-brane in
superspace takes the form

SDp = −TDp

∫
dp+1ζ e−φ

√
− det(g + f) + TDp

∫
C e−f , (6.50)

where gij is the supermetric pullback, f ij = Bij +Fij is the natural superspace combination
of the Kalb-Ramond field with the worldvolume flux term, with fij = Bij + Fij being its
bosonic component, and where we have defined the formal sum C =

∑
qC

(q) over promoted
Ramond-Ramond q-form pulled-back superfields C(q). Once again, this result holds at all
orders in fermions. In order to determine the expansion of the Dp-brane action superfield
to an arbitrary order in fermions, one needs to plug the expansions of the fundamental
superfields from the corresponding type II supergravity into (6.50). The second-order
expansions in spinor doublet notation are in (6.46)–(6.49) for both type II theories.

6.3.2 Order-(θ)4 terms

We have already made some comments in section 5.3.2 regarding the unwieldy size of the
expressions obtained for the quartic fermionic couplings after dimensional reduction. There
we also discussed how these expressions might be improved and simplified going forward,
in order that they become more manageable. In their current formulation the calculation
necessary for their full T-dualization is impractically lengthy. Important to note, however,
is that there is no technical impediment. Just like the quadratic fermionic couplings, the
quartic couplings may in principle be T-dualized using the techniques and results we have
reviewed and developed in this section. Actively pursuing this full calculation is better
delayed until such a time that the possible simplifying procedures for the quartic terms
have been implemented.

Nevertheless there are some observations that can be made concretely at quadratic
fermion level that we can fully expect to also happen at quartic level. Firstly, the NS
superfield expansions take on the same shape in both type II supergravities. The same
holds for the expansion of the 11-dimensional supermetric, that at order two has the same
structure as the 10-dimensional supermetrics. This is not a coincidence: the supervielbein
expansion looks schematically the same in all these theories (even though in each theory
there is a different notion of what the gravitino or the supercovariant derivative are) and
the outcome of manipulations at quadratic order makes this point manifest. Moreover,
the existing relations go beyond that. The type IIA metric and B2 superfield expansions
came from different 11 dimensional superfields but at quadratic order turned out to be very
similar. If it were not for this, it would have been impossible to find again this structure in
type IIB upon T-duality. This extends to the whole NSNS sector, that allowed us to write
those superfields up to quadratic order at once both for type IIA and type IIB (6.46)–(6.48).
In principle there is no argument against the structure extending to all levels in θ, but
unfortunately, the current form of quartic terms did not quite allow us to make this point
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manifest. For example, the 10 dimensional metric expansion and the 11-dimensional one
do not seem to allow for such comparisons in their order (θ)4 terms. On the other hand,
there are indeed many similarities between the metric and the B2-field order (θ)4 terms
(modulo (anti)symmetry of indices and chirality matrices), which is a positive observation,
but there are also differences on certain terms (that maybe could be manipulated to make
them similar to each other). These ideas could also be used e.g. to obtain quartic terms of
NSNS fields in type IIB by ‘simply’ writing type IIA formulae (5.45), (5.47), and (5.48) in
spinor doublet notation. It would be nice to compare that with the outcome of performing
the computation using the Hassan rules.

Finally, something that might be possible given the current formulation of the quartic
order fermionic couplings for the D2-brane is to identify those parts of the expressions
which would lead to particularly sought-after terms in Dp-brane actions. For example, the
work in [32] posits a particular quartic term in the action of the D7-brane. It could be
possible to hunt for this term via T-dualization without laboriously T-dualizing everything
appearing after dimensional reduction, however we leave this possibility for future study.

7 Conclusions and future work

In String Theory, branes are just as important as the strings themselves. The quantum field
theories living on their worldvolumes teem with rich dynamics that is both mathematically
intriguing and phenomenologically impactful. While the bosonic fields in these theories
have received plentiful attention, the fermionic degrees of freedom are more challenging to
study and are less well understood as a result. We have drawn our primary motivation
from the fact that the current level of knowledge about the fermions living on branes
requires significant improvement. One of the core reasons that fermions on branes are
under-studied is that obtaining their couplings explicitly turns out to be surprisingly difficult.
Higher-order couplings of fermions in brane actions have been invoked recently [25–31],
however the impracticality of the existing methods used to obtain these terms limited their
use. Very recently, a proposal for obtaining specific quartic couplings on D7-branes that
can be pertinent for understanding KKLT has also been put forward [32]. In this work
we have made significant progress in improving both the conceptual understanding and
the practical techniques needed to pursue these terms. Furthermore, the insights we have
had and connections we have made are applicable far beyond the calculation of specific
couplings in brane worldvolume theories. In fact we have presented the calculation of these
terms as a single, if pertinent, example of a place where our more general methods come
into use.

Summary

The structure at the heart of this work is the web of string dualities given in figure 1.
The approaches that we have developed, and used to obtain brane actions, rest upon
the generalizations of the connections in this web. Such connections allowed us to take
advantage of the elegance of techniques applicable to a theory in one part of the web in
order to achieve progress in others. More concretely, the connections we have concentrated
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promotion to
superspace

11d spacetime

11d supergravity

M2-brane

10d spacetime

type IIA supergravity

D(2p)-branes

D2-brane

10d spacetime

type IIB supergravity

D(2p+ 1)-branes

S1 T

(11|32)-superspace

11d supergravity

super-M2-brane

(10|32)-superspace

type IIA supergravity

super-D(2p)-branes

super-D2-brane

(10|32)-superspace

type IIB supergravity

super-D(2p+ 1)-branes

S1 T

fermion expansion fermion expansion fermion expansion
NORCOR

Figure 2. A schematic map of the procedures investigated in this work. We work in superspace,
and in order to do so profitably we generalize the string duality web to superspace. We generalize the
S1 compactification from 11-dimensional supergravity to type IIA, and we generalize the T-duality
procedure connecting type IIA and type IIB to superspace. This allows us to carry the elegant
geometric treatment of the ‘normal coordinate’ (NORCOR) method in 11-dimensional supergravity
over to type II supergravity, circumventing the difficulty in applying that treatment directly in those
theories. This method allows us to calculate the expansion of actions of branes in orders of the
worldvolume fermions. We have presented example calculations up to quartic order in fermions
for the M2-brane and the D2-brane in this work, although the methods we have presented are in
principle applicable to any order in fermions.

on are the circle compactification linking 11-dimensional to type IIA supergravity and the
T-duality relating type IIA and type IIB theories to each other. The generalization we
have explored is the promotion to a superspace formalism for the connections in the web.
Figure 2 presents a map of the concepts used.

The reasons for which this particular generalization has proved to be so useful are
twofold. Firstly, our starting point, 11-dimensional supergravity, has a particularly elegant
formulation in (11|32)-superspace. Secondly, we have access to a systematic, complete,
and manageable geometrical method for determining explicit fermionic expansions of this
theory’s superfields, namely NORCOR. The small number of superfields in 11-dimensional
supergravity in conjuction with NORCOR means we can readily obtain the fermionic
expansions of all the fundamental superfields in the theory. Obtaining the fermionic
expansions for composite superfields built out of these fundamental superfields is then a
simple matter. The example composite superfield we have chosen to concentrate on in this
case is the action for a single M2-brane. This action is constructed using the pullbacks of
the supervielbein and super three-form in 11-dimensional supergravity.
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With our starting point of 11-dimensional supergravity and the M2-brane firmly in
hand, we then pursued the superspace generalization of the S1-compactification to type IIA
supergravity and the D2-brane. Our goal was to use the expansion of the 11-dimensional
superfields together with this connection in the web to determine the expansion of the
type IIA superfields. The regular dimensional reduction ansatz relates the 11-dimensional
vielbein and three-form to the 10-dimensional vielbein, dilaton, Ramond-Ramond one-form,
Kalb-Ramond two-form and Ramond-Ramond three-form. We took the view that these
bosonic relations represented the ‘zeroth-order’ fermionic expansion of the corresponding
superfield relations. As such, we promoted the dimensional reduction ansatz relations to
superfields, taking the fermionic expansions of the 10-dimensional superfields (to some
desired order) as unknowns to be determined. We then used the NORCOR results of
the Taylor expansion of the 11-dimensional fields to determine explicit expressions for
these 10-dimensional unknowns in terms of 11-dimensional fields. Finally we dimensionally
reduced the 11-dimensional fermionic terms and compared the results with the expansion
in terms 10-dimensional unknown fermionic terms in order to read off the desired results.
We demonstrated how known second-order results for fundamental superfield expansions in
type IIA can be recovered painlessly using this method. Furthermore we demonstrated how
labourious manipulations of the D2-brane action can be completed almost trivially in this
superfield paradigm, and how the form for the quadratic fermion terms on the D2-brane
can be recovered, again relatively painlessly. Finally we calculated the fermionic expansion
of the type IIA fields relevant for the D2-brane all the way up to order four in fermions.
Unfortunately these terms, while systematic and complete, are unwieldy in their present
formulation. We discussed some promising lines of research regarding their simplification,
something we will come back to in a moment.

Finally we turned our attention to the second strand on the web of dualities that we
sought to generalize to superspace. This was the T-duality relation between type IIA and
type IIB theories. The structure of the calculation mirrored that of the generalization of
the dimensional reduction just discussed. We first observed what relations the T-duality
demanded of the bosonic fields in either theory. These were the Buscher rules and the
Ramond-Ramond field rules. We once again interpreted these relations as representing the
‘zeroth-order’ fermionic expansion of the corresponding superfield relations, and as such
promoted these T-duality rules to superfields. This required observing that the discussion
of the Ramond-Ramond sector can be substantially simplified by conveniently arranging
the D2-brane action. Then it was the repeated application of these promoted rules which
we used to determine the fermion terms in the superfield expansions for all the superfields
in both type II supergravities. When we performed the T-duality transformations, we had
to become familiar with precisely how fermions behaved. This transpired to be an area of
much subtle complexity, but one which we greatly streamlined by moving to spinor doublet
notation. Once again, we chose as a crucial example case the calculation of the fermionic
expansion of brane actions. In this case repeated T-duality transformations allowed us to
leverage the knowledge we had built about the D2-brane in the previous stage to determine
features of the Dp-brane actions in general. We once again wrote down a form of the
action which will yield the fermion couplings on the Dp-brane to any order if provided with
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the expansions of the fundamental fields of the type II supergravity in which the brane
lives. We noticed that in this formulation Ramond-Ramond fields of every degree are used
implicitly, yet the first dimensional reduction step had furnished us with only degree 1 and
3. This is where the careful study of fermions under T-duality became invaluable as explicit
T-dualization of these two superfield expansions allowed us to determine the expansions
for all the fields we desired to quadratic order. The only remaining impediments to a full
calculation at quartic order for all Dp-branes are then of a practical nature. The expressions
we have obtained, since they represent all couplings of the brane fermions to an arbitrary
bosonic background, have many terms, and the calculation for each term is non-trivial.
There is no technical impediment to T-dualization and we provide all the necessary tools,
however we consider it prudent to first make a proper investigation of how the expressions
we have obtained for type IIA fields and D2-brane might be improved. We discuss this, and
other future lines of work, next.

Future directions

The directions in which this work will progress in the future come in two main classes:
those directions that improve and build upon the work and those that use it.

The most obvious direction in which the present work might be improved is in seeking
to simplify the results at quartic order in fermions. We have already discussed at the end
of section 5.3.2 how significant simplifications of the current formulation of the complete
quartic order terms for the superfield expansions in type II supergravities will have their
roots in a better treatment of the 11-dimensional supervielbein expansion. This might be
achieved via something as simple as a more adroit rearrangement and application of the
constraints imposed by Bianchi identities than we have managed here, or it could require an
improvement at a higher level in the set-up of NORCOR. Pursuing such a better treatment
is an obvious and tantalising direction of future study.

For the brane actions specifically, these results might be improved by getting a firmer
grasp of how to arrange higher order fermionic expansions around a κ-symmetry organiza-
tional principle. As early in our process as our expression for the M2-brane action in (4.23),
we neglected to explicitly organize all our terms around such a principle. When calculating
the quartic terms in the M2 brane, one can interpret all of the different terms as arising
from the variation of different parts of the quadratic fermionic term. Those quartic terms
that came with the same, ‘zeroth-order’ projector as in the quadratic term are interpreted
as arising from varying the supercovariant derivative that appeared in the quadratic term.
The remaining quartic terms (coming with a factor 1

8) can be interpreted as arising from
further variations of the projector, inverse metric, etc, appearing at quadratic order. The
higher-order expansion of the kappa symmetry projector may be calculated directly by
expanding the superfield projector (4.17). Better understanding of the structure here could
then be carried over to type II theories using the duality promotion method we have
presented. At second order the Dp-brane actions were able to be organized into a similar
form as the M2-brane, that is a bilinear containing a kappa projector and some operators.
The expectation would be that whatever further structure is found in the M2-brane should
provide analogous arrangements of the Dp-brane action through the promoted duality web.
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With more agile control over Dp-brane actions, it becomes natural to revisit the D7-
brane quartic gaugino couplings and compare them with the existing literature, among
other things. This would be instrumental in shedding further light on gaugino condensation
in the stabilization of volume moduli à la KKLT. A proposal for the specific quartic gaugino
terms on D7-branes necessary to achieve this was recently put forward in [32], and hunting
for the specific terms which that proposal requires within our results is a promising line
of inquiry. In a different area, a further result that is now in reach is the determination
of the F1-string action at arbitrary fermionic order. In fact, once the M2-brane action is
known at a given order, a circle compactification along a direction wrapped by the brane
(a double dimensional reduction) gives the Green-Schwarz-string action [70] in a similar
way to the compactification along an unwrapped direction, which gave the D2-brane action.
Finally, we have worked in bosonic backgrounds. To do so we simply set to zero those
terms proportional to the gravitino in the expansions of the superfields of 11-dimensional
supergravity. By keeping these terms, however, the methods we employed in this article can
also be used to explore more general backgrounds than purely bosonic ones. In this way,
one would obtain the M2-brane couplings to the 11-dimensional gravitino and hence, upon
dimensional reduction and T-dualization, the Dp-brane couplings to the 10-dimensional
gravitino and dilatino. Finally, we have concentrated in this work on obtaining the fermion
couplings on brane actions in the Abelian case of a single brane. Expanding this work to
the non-Abelian case of multiple branes, or to even more complicated brane set-ups, is yet
another promising line of inquiry.

Progress in an area as central to so many discussions as the fermionic couplings on brane
worldvolumes is necessarily complex. What we have presented here is both an important
step in this long story, and a clear and insightful guide to what is known, and what remains
to be investigated, in this exciting and consequential line of research.
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A Spinor conventions

We summarize the conventions that we use in the main text regarding spinors defined in 11-
and 10-dimensional spacetime. Here we denote terms intrinsically living in 11-dimensional
spacetime with a hat in order to distinguish them from the ones defined in 10-dimensional
spacetime (with no hats). This is also the case in appendix D, which explains the details
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about dimensional reduction. In the main text we often drop hats for the sake of clarity, as
the spacetime dimension is always clear from the context, only using hats for 11-dimensional
objects at the point of performing dimensional reduction.

In the 11-dimensional spacetime, we use real Majorana anticommuting 32-component
spinors denoted as θ̂µ, with µ representing spinor indices in the curved superspace manifold
and α representing spinor indices on the corresponding tangent space. Spinor indices can
generally be suppressed without loss of clarity. Explicitly, Dirac conjugation is defined in
terms of the antisymmetric conjugation matrix C = Cαβ , with Cαβ = −Cβα, as

ˆ̄θβ = θ̂αCαβ . (A.1)

More generally spinor indices are raised and lowered by the conjugation matrix and its
inverse C−1 = Cαβ , with CαβCβγ = δγα, according to the rule

M β
α = CαγM

γ
δC

δβ . (A.2)

In the index-free notation, one can write ˆ̄θ = θ̂TC and ˆ̄θMθ̂ = ˆ̄θαMα
β ξ̂

β = θ̂αMαβ ξ̂
β. We

work with the mostly-plus Minkowksi metric η̂âb̂, with signature (−1, (+1)10) and indices
running as â = 0, . . . , 10, and employ Γ-matrices Γ̂â fulfilling the Clifford algebra

{Γ̂â, Γ̂b̂} = 2η̂âb̂. (A.3)

The antisymmetrized Γ-matrix products are defined as

Γ̂â1â2...ân = Γ̂[â1Γ̂â2 . . . Γ̂ân]. (A.4)

The combinations (Γ̂â1â2...ân)αβ are symmetrical in their spinor indices for n = 1, 2 mod 4
and antisymmetrical otherwise, i.e.

(Γ̂â1â2...ân)αβ = +(Γ̂â1â2...ân)βα, n = 1, 2 mod 4; (A.5a)
(Γ̂â1â2...ân)αβ = −(Γ̂â1â2...ân)βα, n = 0, 3 mod 4. (A.5b)

The Majorana nature of the anticommuting fermions θ̂ means that ˆ̄θ Γ̂â1â2...ân θ̂ = 0 for
n = 1, 2 mod 4. The master equation for practical Γ-matrix manipulation (in any number
of dimensions) is

Γ̂â1...âmΓ̂b̂1...b̂n
=

min(m,n)∑
r=0

r!
(
m

r

)(
n

r

)
δ

[âm
[b̂1

. . . δ
âm+1−r
b̂r

Γ̂â1...âm−r]
b̂r+1...b̂n]. (A.6)

After the dimensional reduction to a 10-dimensional space spanned by indices a =
0, . . . , 9, where the direction x10 is compactified, it is necessary to introduce a chirality matrix.
In tangent spacetime, the first ten Γ-matrices are the same because the Clifford algebra
reads {Γ̂a, Γ̂b} = 2η̂ab = 2ηab = {Γa,Γb}, so Γ̂a = Γa, where ηab = η̂ab is the 10-dimensional
Minkowski metric; the last 11-dimensional Γ-matrix defined to be the 10-dimensional
chirality matrix Γ̂10 ≡ Γ∗. All the other rules on spinor indices are unchanged. Because in
ten dimensions there is a notion of chirality, we split 11-dimensional Majorana spinors into
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pairs of 10-dimensional Majorana-Weyl spinors as θ = θ+ + θ−, where Γ∗θ± = ±θ±. For
type IIB strings, we relate the previous pair of Majorana-Weyl spinors to another pair of
Majorana-Weyl spinors, but this time with equal chirality, i.e. θ1,2 with Γ∗θ1,2 = +θ1,2. In
this case it is convenient to rearrange these fermion pairs into a Pauli matrix-valued spinor

θ =
(
θ1
θ2

)
, (A.7)

which is acted on by the 2-dimensional identity 12 and the three Pauli matrices σ1, σ2 and
σ3. All the Γ-matrices and the chirality matrix that need to act on the spinor θ can be
redefined by means of a tensor product with the 2-dimensional identity 12 in such a way as
to act appropriately on the two spinor components θ1,2.

Note on spinor indices

In dealing with spinor contractions, we often find it useful to rearrange expressions by
moving spinor indices. Given a matrix Mαβ acting on the spinor space, we define its
transpose as the matrix M̌αβ = Mβα. As an example, consider the torsion T̂â and its
transpose ˆ̌

Tâ

T̂â = 1
288

(
Γ̂ b̂ĉd̂ê
â + 8δb̂âΓ̂ĉd̂ê

)
Ĥb̂ĉd̂ê,

ˆ̌
Tâ = 1

288
(
Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂ĉd̂ê

)
Ĥb̂ĉd̂ê.

Notice that it is not the position of the spinor indices that is used to make the distinction
between T̂â and ˆ̌

Tâ: both are defined as in the main text and the position of the indices can
be changed with the charge conjugation matrix Cαβ and its inverse Cαβ. In fact, we can
write for instance (T̂m̂) β

α = −( ˆ̌
Tm̂)βα.

B 11-dimensional supergravity

Here we summarize the set-up and conventions for 11-dimensional supergravity [58–60],
including the field content, the constraints on the torsion which are equivalent to the
equations of motions, and the Bianchi identities [83].

In 11-dimensional supergravity, let us consider the (11|32)-dimensional supermanifold
spanned by coordinates ZM = (xm, θµ), where M is a generalized superspace index, with
m = 0, . . . , 10 representing the original spacetime directions and µ = 1, . . . , 32 representing
the corresponding spinor directions. In this formalism, one defines the supervielbein as

EA(x, θ) = dZME A
M (x, θ), (B.1)

where the index A corresponds to the tangent space, with the possibility to introduce local
coordinates yA = (ya, yα), with a = 0, . . . , 10 and α = 1, . . . , 32. Let us also introduce a
superconnection, i.e. the super-one-form ω B

A , with Lorentzian structure group, in terms of
which we define the superspace covariant derivative,

∇XA1...
B1...

= dXA1...
B1...

+XDA2...
B1...

ECω A1
CD · · ·+XA1...

DB2...
ECω D

B1C . . . . (B.2)
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The superconnection is comnpatible with the structure of the tangent space Lorentz group,
and it is related to the spin connection according to

ω β
a = ω a

β = 0 , ω β
α = 1

4ωab(Γ
ab) β

α (B.3)

We can then define the supertorsion TA and the supercurvature R A
B as

TA = ∇EA = dEA + EBω A
B = 1

2E
CEBT A

CB , (B.4)

R A
B = dω A

B + ω C
B ω A

C = 1
2E

DECR A
DCB . (B.5)

Finally, we define the super-three-form

A = 1
3!E

CEBEAACBA, (B.6)

along with its field-strength, i.e. the super-four-form

H = dA = 1
4!E

AEBECEDHDCBA, (B.7)

whose components explicitly read

HDCBA =
∑

(ABCD)
∇DACBA + T E

DC AEBA, (B.8)

where ∇A = (E−1) M
A ∇M .

In this formulation, 11-dimensional supergravity has only two dynamical superfields,
namely the vielbein E A

M (x, θ) and the super-three-form AMNP (x, θ). The equations of
motion can be shown to be equivalent to constraints placed upon the components of the
supertorsion and the super-four-form [59, 60, 83]. These supergravity constraints read

T a
γβ = −i(Γa)γβ , (B.9a)

T α
γβ = T a

γb = T a
cb = 0, (B.9b)

Hδγβα = Hδγβa = Hδcba = 0, (B.9c)
Hδγba = i(Γba)δγ . (B.9d)

Using this superspace formulation, the physical fields of 11-dimensional supergravity only
appear through their covariant field strengths, namely the top component of the supercur-
vature R d

abc , the supertorsion component T α
ab , and the four-form Habcd. To see exactly

how this is the case, we must use the Bianchi identities.
It is possible to observe that the supertorsion and the supercurvature obey the Bianchi

identities

∇TA = EBR A
B , (B.10a)

∇R A
B = 0. (B.10b)
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These, along with the closure relationship dH = 0, can be expressed more explicitly as∑
(ABC)

(
R D
ABC −∇AT D

BC − T E
AB T D

EC

)
= 0, (B.11a)

∑
(ABCD)

(
∇AR E

BCD + T F
AB R E

FCD

)
= 0, (B.11b)

∑
(ABCDE)

(
∇AHBCDE + T F

AB HFCDE

)
= 0. (B.11c)

Starting from these identities, we can determine expressions concerning the remaining
components of the supertorsion, i.e.

T α
cβ = 1

288
(
Γ dfgh
c + 8δdcΓfgh

) α

β
Hdfgh =

(
T dfgh
c

) α

β
Hdfgh, (B.12a)

T α
ab = i

42(Γcd)αβ∇βHabcd, (B.12b)

(Γabc)αβT β
bc = 0. (B.12c)

and the remaining components of the supercurvature, i.e.

Rδγba = −2i
(
ΓbŤ dfgh

a

)
(δγ)Hdfgh, (B.13a)

Rδcba = i

2
[
(Γc)δεT ε

ba + 2(Γ[a)δεT ε
b]c
]
, (B.13b)

R α
dcβ = 2∇[dT

α
c]β + 2T ε

[d|β T α
|c]ε +∇βT α

dc , . (B.13c)

Note that the Riemann tensor is built from the superconnection and obeys

R β
DCa = R a

DCβ = 0 , R α
DCβ = 1

4RDCba(Γ
ba) α

β . (B.14)

The Γ-matrix combination T is defined in (B.12a) and Ť is its transposition. Finally, the
Bianchi identities also give the expressions

∇αHbcde = −6i(Γ[bc)αβT
β

de] , (B.15a)

∇αRbcde = 2∇[b|Rα|c]de + 2T γ
[b|α Rγ|c]de − T

γ
bc Rβαde. (B.15b)

C Order-4 vielbein manipulations

Expansion of the M2-brane action only requires knowledge of the expansion of the super-
vielbein. Therefore we record the expansion of the frame super-form to quartic order.

C.1 Normal coordinate expansion of frame super-form

Using the expressions for the behaviour of the Lie derivative Ly along the tangent field
y = yM , it can be established that the repeated action on the supervielbein EA gives [49]9

LyE
A =∇yA+yCEBT A

BC , (C.1)
9Note that (C.3) corrects (4.7, [49]), in which there is an erroneous extra term.
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(
Ly
)2
EA =−yBECyDR A

DCB +yCEByD∇DT A
BC +yC

(
∇yB+yEEDT B

DE

)
T A
BC , (C.2)(

Ly
)3
EA =−yD

(
∇yB+yFEGT B

GF

)
yCR A

CBD −yDEByCyF∇FR A
CBD

+2yC
(
∇yB+yFEGT B

GF

)
yD∇DT A

BC +yCEByDyE∇E∇DT A
BC

+yCyG
(
∇yD+yEEFT D

FE

)
T B
DG T A

BC −yCyDEF yER B
EFD T A

BC

+yCyFEDyE
(
∇ET B

DF

)
T A
BC ,

(C.3)

(
Ly
)4
EA = +3yCyF

(
∇yE +yGEHT E

HG

)
T B
EF yD∇DT A

BC

+3yC
(
∇yB+yFEGT B

GF

)
yDyE∇E∇DT A

BC

−yCyD
(
∇yF +yGEHT F

HG

)
yER B

EFD T A
BC

+2yCyF
(
∇yD+yEEGT D

GE

)
yH
(
∇HT B

DF

)
T A
BC

−yDyF
(
∇yE +yHEGT E

GH

)
T B
EF yCR A

CBD

−2yD
(
∇yB+yFEGT B

GF

)
yCyE∇ER A

CBD

+yCyGyE
(
∇yF +yIEHT F

HI

)
T D
FE T B

DG T A
BC

+yDyEEF yGR B
GFE yCR A

CBD −yDyFEGyE
(
∇ET B

GF

)
yCR A

CBD

−yDEByCyEyF∇F∇ER A
CBD +yCEByDyEyF∇F∇E∇DT A

BC

−yCyDEF yEyG
(
∇GR B

EFD

)
T A
BC −3yCyDEF yER B

EFD yG∇GT A
BC

−yCyEyFEGyHR D
HGF T B

DE T A
BC +yCyGyEEF yH

(
∇HT D

FE

)
T B
DG T A

BC

+yCyFEDyEyG
(
∇G∇ET B

DF

)
T A
BC +3yCyFEDyE

(
∇ET B

DF

)
yG∇GT A

BC .

(C.4)

Notice that many terms can be rearranged in terms of the supercovariant derivative.
However, while the order-1 variation can be written entirely in terms of this (in a bosonic
bacgkround, one has ∇myα + yβe c

m T α
cβ = Dmy

α), higher orders contain components of
the super-Riemann tensor and operators involving the torsion that are difficult to rearrange
in compact ways.

C.2 Rearranging the expanded supervielbein using Bianchi identities

Starting from the order-4 term in (4.8) and using (B.14) to perform some straightforward
rearrangement while making use of Γ-matrix symmetries, we may write

(
Ly
)4
E a
m = i

4(yδRδεbcDmyε)(ȳΓabcy) + (ȳΓbDmy)(ȳΓaŤ dfgh
b y)Hdfgh

+ i

4yδyχe e
m yδyξ∇ξ

(
Rδebc(Γbc) β

χ − 4∇δT β
eχ

)
(Γa)βγ .

Now we will use (B.13a) in the first term and (B.12a), (B.13b), (B.15a) in the third term,
and we also split the third term. We also use the spinor index symmetry properties of
Γ-matrices to write

(ΓbŤ dfgh
c )(δε) = 1

288
(
ΓbcΓdfgh − 8δ[d

[cΓb]Γfgh] − 12δ[d
[c δ

f
b]Γ

gh]
)
δε
Hdfgh ≡ 2R dfgh

bc Hdfgh,
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so we eventually arrive at(
Ly
)4
E a
m =

[
ȳ(R dfgh

bc HdfghDmy
]
(ȳΓabcy) + (ȳHdfghΓbDmy)(ȳΓaŤ dfgh

b y)

+ 1
8(ȳΓabcy)e e

m yδ
[
(Γe)δσyξ∇ξT σ

bc + 2(Γb)δσyξ∇ξT σ
ec

]
− 6 (ȳΓaŤ dfgh

b y)e b
m yδ(Γdf )δσyξ∇ξT σ

gh .

We see that a number of previously nasty-looking curvature and torsion terms are all reducible
to expressions involving gamma matrices and the spinor derivative of the supercovariantized
gravitino fields strength ∇ξT σ

gh .
To assess this we step back to superspace momentarily. Using the superspace covariant

derivative
∇Mv B

A = ∂Mv
B

A + v C
A ω B

MC − ω C
MA v B

C ,

we have
[
∇M ,∇N

]
vA = −R B

MNA vB, and so[
E M
A ∇M , E N

B ∇N
]
vC =

(
E M
A E N

B

[
∇M ,∇N

]
− 2E M

[A E N
B] (∇ME D

N )∇D
)
vC

= −R D
ABC vD − T D

AB ∇DvC .

This means that we have R δ
abγ = −[∇a,∇b] δ

γ − T
µ

ab (∇µ) δ
γ , which in bosonic backgrounds

is R δ
abγ = −[∇a,∇b] δ

γ . Using Bianchi identity results, we have in bosonic backgrounds,

∇γT δ
ab = R δ

abγ − 2∇[aT
δ

b]γ − 2T σ
[a|γ T δ

σ|b] = −
[
∇a + Ta,∇b + Tb

] δ

γ
.

In terms of the supercovariant derivative Dm we can eventually write ∇γT δ
ab =

e m
a e n

b

[
Dm, Dn

]δ
γ
. Applying this result we see that the two objects defined in (4.9) arise

naturally by combining terms, as we have

(
Ly
)4
E a
m = (ȳΓabcy)

[
ȳ
(
R dfgh
bc HdfghDm + 1

8Γee e
m e p

b e
q
c [Dp, Dq] + 1

4Γbe q
c [Dm, Dq]

)
y
]

+ (ȳΓaŤ dfgh
b y

)[
ȳ
(
HdfghΓbDm − 6e b

m Γdfe p
g e

q
h [Dp, Dq]

)
y
]
,

which means (
Ly
)4
E a
m = (ȳΓabcy)(ȳWmbcy) + (ȳΓaŤ dfgh

b y)(ȳHbmdfghy). (C.5)

D Catalogue of dimensional reductions

In this appendix we catalogue the details of the dimensional reductions of all the terms
appearing in the main text.

Notation

In the M-theory formulation, we consider the 11-dimensional spacetime to be spanned
by the coordinates xm̂. This is reduced to a 10-dimensional string background via the
split xm̂ = (xm, x10). Unless differently stated, 11-dimensional indices are hatted whereas
10-dimensional indices are not; 11-dimensional objects are also hatted and 10-dimensional
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objects are not. So vectors in the 11- and 10-dimensional spacetimes read ω̂ = ω̂m̂ dxm̂ and
ω = ωm dxm, respectively, and similarly for tensors of arbitrary rank. Indices â, b̂ and a, b
are 11- and 10-dimensional tangent spacetime indices, respectively, with explicit number
indices being underlined for tangent space and unadorned for spacetime. Background fields
are always independent of the extra M-theory coordinate x10.

The M2- and D2-brane 3-dimensional worldvolumes are spanned by the coordinates
ξi. Pulling an object back from eleven dimensions and pulling an object back from ten
dimensions are different manoeuvres: for ease of notation, instead of writing these pullbacks
explicitly, we shall keep track of which is being used by noting whether the object itself it
hatted or not. For instance, denoting for a moment the pullback from the 11-dimensional
spacetime to the 3-dimensional M2-brane worldvolume with ϕ? and the pullback from the
10-dimensional spacetime to the 3-dimensional D2-brane worldvolume with φ?, for two
vectors ω̂m̂ and ωm we will write ω̂i = (ϕ?ω̂)i = ∂ix

m̂ω̂m̂ and ωi = (φ?ω)i = ∂ix
mωm.

The n-dimensional Levi-Civita symbol εµ1...µn is normalized as ε1...n = +1 and the
Levi-Civita tensor is defined as εµ1...µn = (−det g)1/2 εµ1...µn , where gµ1µ2 is the associated
n-dimensional metric. Similarly, we define the symbol εµ1...µn ≡ −εµ1...µn and εµ1...µn =
(−det g)−1/2 εµ1...µn .

Antisymmetric and symmetric combinations of a number n of indices are denoted by
square brackets and parentheses, respectively, and include a normalization factor 1/n!.
For instance, we have Γ[1 . . .Γn] =

∑
σ∈Sn sgn(σ) Γσ(1) . . .Γσ(n)/n!, where σ ∈ Sn are the

permutations of n elements.

D.1 Basic dimensional reductions

We report details about the dimensional reductions of the essential quantities that are
needed in the analysis of M2- and D2-branes.

Metric

In terms of 10-dimensional quantities, the 11-dimensional vielbein splits according to the
standard ansatz

ê â
m̂ =

e−φ3 e a
m e

2φ
3 Cm

0 e
2φ
3

 , (D.1)

where e a
m is the 10-dimensional string frame vielbein, φ is the dilaton, and C(1) = dxmCm

is the Ramond-Ramond one-form. The vielbein is invertible and its inverse reads

ê m̂
â =

eφ3 e m
a −e

φ
3Ca

0 e−
2φ
3

 . (D.2)

The 11-dimensional metric is defined in terms of the vielbein as ĝm̂n̂ = ê â
m̂ ê b̂

n̂ η̂âb̂, where
η̂âb̂ is the 11-dimensional Minkowski metric, so it reads

ĝm̂n̂ =

e− 2φ
3 gmn + e

4φ
3 CmCn e

4φ
3 Cm

e
4φ
3 Cn e

4φ
3

 ,
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where the 10-dimensional metric is defined as gmn = e a
m e b

n ηab, with ηab the 10-dimensional
Minkowski metric.

Three-form field

We describe the dimensional reduction of the 11-dimensional three-form Â = dxm̂ ∧ dxn̂ ∧
dxp̂Âp̂n̂m̂/3! in terms of two 10-dimensional form fields C(3) = dxm ∧ dxn ∧ dxpCpnm/3! and
B(2) = dxm ∧ dxnBnm/2! defined as

Âmnp = Cmnp, (D.3a)
Âmn 10 = Bmn, (D.3b)

The 11-dimensional flux is defined as Ĥ = dÂ, while in the 10-dimensional formulation
we have F (4) = dC(3) and H(3) = dB(2), so the 10-dimensional form field strengths are
such that

Ĥmnpq = Fmnpq, (D.4a)
Ĥmnp 10 = Hmnp. (D.4b)

An analysis of the dimensional-reduction ansatz shows that the tangent-space 11-
dimensional flux is related to the 10-dimensional field-strength tensors as

Ĥabc10 = e
φ
3 e m

a e n
b e

p
c Hmnp, (D.5a)

Ĥabcd = e
4φ
3 e m

a e n
b e

p
c e

q
d (Fmnpq − 4H[mnpCq]) = e

4φ
3 e m

a e n
b e

p
c e

q
d F

(4)
mnpq, (D.5b)

where we defined the combination F (4) = dC(3) − C(1) ∧H(3).

Γ̂-matrices

In tangent spacetime, the first ten Γ̂-matrices are the same, i.e. Γ̂a = Γa, since the Clifford
algebra is the same as a consequence of the equality η̂ab = ηab; the last Γ̂-matrix defined
as the chirality matrix Γ̂10 ≡ Γ∗. In curved spacetime, the 11-dimensional Γ̂-matrices and
10-dimensional Γ-matrices are then related as

Γ̂m = e−
φ
3
(
Γm + eφCmΓ∗

)
, (D.6)

Γ̂10 = e
2φ
3 Γ∗. (D.7)

One also finds,

Γ̂mn = e−
2φ
3
(
Γmn − 2 eφC[mΓn]Γ∗

)
, (D.8)

Γ̂mnp = e−φ
(
Γmnp + 3 eφC[mΓnp]Γ∗

)
. (D.9)

For contractions of the components of a form field ωp with a number n of 10-dimensional
curved-spacetime Γ-matrices Γm, we employ the underlined notation

ωq1 q2...qm = 1
n!ωq1...qmp1...pnΓp1...pn . (D.10)
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D.2 Supercovariant derivatives

Spin connection

The 11-dimensional spin connection is defined in terms of the anhomology coefficients as

ω̂ ĉ
âb̂

= 1
2
(
Ω̂ ĉ
âb̂
− Ω̂ ê

âd̂
η̂ĉd̂η̂b̂ê − Ω̂ ê

b̂d̂
η̂ĉd̂η̂âê

)
, (D.11)

where the latter read
Ω̂ ĉ
âb̂

= ê m̂
â ê n̂

b̂

(
∂̂m̂ê

ĉ
n̂ − ∂̂n̂ê ĉ

m̂

)
.

These allow us to express the 11-dimensional spin connection in terms of 10-dimensional
operators as

ω̂ c
ab = e

φ
3

[
ω c
ab + 1

3∂bφδ
c
a −

1
3∂

cφηba

]
, (D.12a)

ω̂
10

ab = 1
2e

4φ
3 Fab, (D.12b)

ω̂ c
10 a = ω̂ c

a10 = −1
2e

4φ
3 F c

a , (D.12c)

ω̂
10

10 a = −2
3e

φ
3 ∂aφ, (D.12d)

ω̂ c
10 10 = 2

3e
φ
3 ∂cφ, (D.12e)

where all the remaining combinations are vanishing, i.e. ω̂ 10
a10 = ω̂

10
10 10 = 0.

Torsion

The 11-dimensional torsion term that appears in the M2-brane action is the Γ-matrix valued
term

ˆ̌
Tâ = 1

288
(
Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂ĉd̂ê

)
Ĥb̂ĉd̂ê. (D.13)

In terms of 10-dimensional operators, the 11-dimensional torsion components can be seen
to split as

ˆ̌
Ta = 1

12e
φ
3
[
Γa(eφF (4) +H(3)Γ∗)− 3 e m

a (eφF (4)
m +H(3)

m Γ∗)
]
, (D.14a)

ˆ̌
T10 = 1

12e
φ
3
[
Γ∗(eφF (4) − 2H(3)Γ∗)

]
. (D.14b)

Supercovariant derivative

In dealing with the M2-brane action, the spinor kinetic term contains the worldvolume
pullback of the 11-dimensional spacetime operator

D̂m̂ = ∇̂m̂ − ˆ̌
Tm̂, (D.15)

where ∇̂m̂ is the 11-dimensional spinor covariant derivative and ˆ̌
Tm̂ is the 11-dimensional

torsion, which are defined in the tangent spacetime as

∇â = ∂â + 1
4 ω̂

b̂ĉ
â Γ̂ĉd̂, (D.16a)

ˆ̌
Tâ = 1

288
(
Γ̂ b̂ĉd̂ê
â − 8δb̂âΓ̂ĉd̂ê

)
Ĥb̂ĉd̂ê. (D.16b)
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Using the above relations one can dimensionally reduce the 11 dimensional supercovari-
ant derivative and write it in terms of 10 dimensional operators (5.7), recovering the
relations (5.8).

D.3 Pullbacks

We report details about the relationships between pullbacks onto M2- and D2-brane
worldvolumes.

Metric

Defining the combination
pi = ∂ix

10 + ∂ix
mCm, (D.17)

which is the dual to the world volume flux on the D2-brane, we can express the metric
pullback as

ĝij = e−
2φ
3 gij + e

4φ
3 pipj . (D.18)

Equivalently, the pullback of the vielbein is

ê ai = e−
φ
3 e ai , (D.19a)

ê
10
i = e

2φ
3 pi. (D.19b)

Since the pulled-back metrics are 3-dimensional, using the shorthand gijpipj = p2, we
get the exact relationship

det(ĝij) = e−2φ det(gij)
(
1 + e2φp2

)
. (D.20)

To conclude, the relationship between the inverses of the pulled-back metrics can be seen
to be

ĝij = e
2φ
3

(
gij − e2φpipj

1 + e2φp2

)
. (D.21)

Three-form field

For the three-form field, we can write

Âijk = Cijk − 3C[iBjk] + 3 p[iBjk]. (D.22)

Γ̂-matrices

The relationship between the 11-dimensional Γ̂-matrix pullbacks and 10-dimensional Γ-
matrix pullbacks is

Γ̂i = e−
φ
3
(
Γi + eφpiΓ∗

)
. (D.23)

Starting from this, we can then express the antisymmetric combinations of Γ̂-matrices as

Γ̂ij = e−
2φ
3
(
Γij − 2 eφ p[iΓj]Γ∗

)
, (D.24)

Γ̂ijk = e−φ
(
Γijk + 3 eφ p[iΓjk]Γ∗

)
. (D.25)

Matrices with upper indices are defined by use of the metric pullback inverse, i.e. Γ̂i = ĝijΓ̂j
and Γi = gijΓj , and they are related as

Γ̂i = e
φ
3

[
Γi + eφpi

1 + e2φp2

(
Γ∗ − eφΓkpk

)]
. (D.26)
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Supercovariant derivative pullback

The operator that appears in the M2-brane action is the 11-dimensional spinor covariant
derivative pullback D̂iθ̂. By making use of the results above, we can determine that in
terms of the D2-brane operators this reads

D̂iθ̂ = e−
φ
6

[
Di −

1
6Γi∆ + 1

3e
φpiΓ∗∆

]
θ. (D.27)

D.4 Order-4 combinations

In the order-4 fermion expansions we find combinations of the operators that appear at
second order. These are discussed in detail below.

Γ̂-matrices and fluxes

We now treat the term

R̂b̂ĉ = 1
576

(
Γ̂b̂ĉΓ̂

d̂f̂ ĝĥ − 8δd̂[ĉΓ̂b̂]Γ̂
f̂ ĝĥ − 12δd̂[ĉδ

f̂

b̂]Γ̂
ĝĥ)Ĥd̂f̂ ĝĥ. (D.28)

Upon dimensional reduction, this allows us to define

Rbc ≡ e−
φ
3 R̂bc = 1

24
[
Γbc
(
eφF (4)+H(3)Γ∗

)
− 2Γ[b

(
eφF

(4)
c] +H

(3)
c] Γ∗

)
+
(
eφF

(4)
bc +H

(3)
bc Γ∗

)]
,

(D.29a)

Rb ≡ e−
φ
3 R̂b 10 = − 1

24 e
φΓ∗

[
ΓbF (4)− F (4)

b

]
. (D.29b)

Supercovariant derivative commutator

An operator appearing frequently in the order-4 fermionic expansion is the commutator of
supercovariant derivatives on which we must perform dimensional reduction. First of all,
we have [

D̂p, D̂10
]
ŷ = 1

3 e
−φ6 eφKpθ,

where we have defined the operator

Kp ≡
[
Dp −

1
6Γp∆,Γ∗∆

]
+ (∂pφ)Γ∗∆. (D.30)

The other non-zero commutator reads[
D̂p, D̂q

]
ŷ = e−

φ
6Kpqθ −

2
3e
−φ6 eφC[pKq],

where we have defined the operator

Kpq =
[
Dp −

1
6Γp∆, Dq −

1
6Γq∆

]
+ 1

3e
φF (2)

pq Γ∗∆. (D.31)

To conclude, we notice that ê p̂
10 ê

q̂
10
[
D̂p̂, D̂q̂

]
ŷ = ê 10

10 ê 10
10

[
D̂10, D̂10

]
ŷ = 0. From these

results, one can immediately derive

[D̂a, D̂b]θ̂ = e
φ
2 e p
a e

q
b Kpqθ, (D.32a)

[D̂a, D̂10]θ̂ = 1
3e

φ
2 e p
a Kpθ. (D.32b)
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D.5 Dimensional reduction of the quartic 11-dimensional shifted fields for the
dilaton

In this appendix we provide an example of the dimensional reduction calculation for the
quartic fermionic terms. We will concentrate on the dilaton as these terms are the least
formidable, however the approach is fundamentally the same for the dimensional reduction
for all the quartic fermonic terms in 11 dimensions. We will make heavy use of the results
in appendix D.

The relationship between the quartic fermionic expansion of the 11-dimensional metric
ĝm̂n̂ and the quartic fermionic expansions of the 10-dimensional metric gmn, Ramond-
Ramond one-form C(1)

m , and dilaton φ is (5.14). The expansion of the 11-dimensional
metric is (4.21). Plugging in (4.10) we can write the 11-dimensional shifted metric as

γ̂m̂n̂ =− 1
4
( ˆ̄θΓ̂âD̂(m̂θ̂

)( ˆ̄θΓ̂âD̂n̂)θ̂
)

+ 1
12
( ˆ̄θΓ̂(m̂|

ˆ̌
Tâ θ̂

)( ˆ̄θΓ̂âD̂|n̂)θ̂
)

− 1
576 ĝm̂n̂

( ˆ̄θΓ̂âb̂ĉd̂θ̂)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂
)

+ 1
96
( ˆ̄θΓ̂(m̂Γ̂âb̂ĉθ̂

)( ˆ̄θΓ̂n̂)â[D̂b̂, D̂ĉ]θ̂
)

+ 1
96
( ˆ̄θΓ̂(m̂Γ̂âb̂ĉ]θ̂

)( ˆ̄θΓ̂âb̂[D̂|n̂), D̂ĉ]θ̂
)

+ 1
12
( ˆ̄θΓ̂(m̂|Γ̂âb̂θ̂

)( ˆ̄θR̂
âb̂
D̂|n̂)θ̂

)
+ 1

96
( ˆ̄θΓ̂(m̂|Γ̂âb̂θ̂

)( ˆ̄θΓ̂n̂)[D̂â, D̂b̂]θ̂
)

+ 1
48
( ˆ̄θΓ̂(m̂|Γ̂âb̂θ̂

)( ˆ̄θΓ̂â[D̂|n̂), D̂b̂]θ̂
)
.

(D.33)

Plugging this into (5.38) allows us to write the dilaton quartic shift as

ρ(4)=− 1
768
( ˆ̄θΓ̂âb̂ĉd̂θ̂)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂

)
+ 1

128 e
− 4φ

3
( ˆ̄θΓ̂10Γ̂âb̂ĉθ̂

)( ˆ̄θ
(
Γ̂10â[D̂b̂, D̂ĉ]+Γ̂âb̂[D̂10, D̂ĉ]

)
θ̂
)

+ 1
128 e

− 4φ
3
( ˆ̄θΓ̂10Γ̂âb̂θ̂

)( ˆ̄θ
(
Γ̂10[D̂â, D̂b̂]+2Γ̂â[D̂10, D̂b̂]

)
θ̂
)
− 3

16 e
− 4φ

3
( ˆ̄θΓ̂âD̂10θ̂

)( ˆ̄θΓ̂âD̂10θ̂
)

+ 1
16 e
− 4φ

3
( ˆ̄θΓ̂10

ˆ̌
Tâ θ̂

)( ˆ̄θΓ̂âD̂10θ̂
)
+ 1

16 e
− 4φ

3
( ˆ̄θΓ̂10Γ̂âb̂θ̂

)( ˆ̄θR̂
âb̂
D̂10θ̂

)
+ 1

24
(
θ̄∆θ

)2
.

We will demonstrate the dimensional reduction of these terms in detail. The dimensional
reduction of the terms involved in the quartic shifts of the other type IIA fields follows in a
very similar way, so we will forgo spelling these out. Let us tackle the dilaton shift one term
at a time. We will variously require, (D.7), (D.14a), (D.14b), (D.29a), (D.29b), (D.32a),
and (D.32b), at different stages of the calculations. In the order in which the terms appear,
we have from the first term

− 1
768(ˆ̄θΓ̂âb̂ĉd̂θ̂)(ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂)

= − 1
768(ˆ̄θΓabcdθ̂)(ˆ̄θΓab[D̂c, D̂d]θ̂)−

1
192(ˆ̄θΓ10bcdθ̂)(ˆ̄θΓ[10b[D̂c, D̂d]]θ̂)

= − 1
768(θ̄Γmnpqθ)(θ̄ΓmnKpqθ)−

1
1152(θ̄Γ∗Γmnpθ)

[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]
.

In moving to the final line we used many of the results derived previously, and we move
vielbeins around in order to write everything with spacetime indices rather than tangent
space. In the second term, we have

1
128 e

− 4φ
3 (ˆ̄θΓ̂10Γ̂âb̂ĉθ̂)(ˆ̄θ

(
Γ̂10â[D̂b̂, D̂ĉ] + Γ̂âb̂[D̂10, D̂ĉ]

)
θ̂)

= 1
384(θ̄Γ∗Γmnpθ)

[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]
,
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where the term with âb̂ĉ→ 10bc vanishes by symmetry of the first bilinear. Next, we have

1
128 e

− 4φ
3 (ˆ̄θΓ̂10Γ̂âb̂θ̂)(ˆ̄θ

(
Γ̂10[D̂â, D̂b̂] + 2Γ̂â[D̂10, D̂b̂]

)
θ̂)

= 1
384(θ̄Γ∗Γmnθ)

[
θ̄
[
3Γ∗Kmn − 2ΓmKn

]
θ
]
,

where symmetry considerations of the first bilinear causes the âb̂→ 10b terms to vanish.
Moving to the fourth term, we have

− 3
16 e

− 4φ
3 (ˆ̄θΓ̂âD̂10θ̂)(ˆ̄θΓ̂âD̂10θ̂) = − 1

48(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1
48(θ̄∆θ)2.

The fifth term gives us

1
16 e

− 4φ
3 (ˆ̄θΓ̂10

ˆ̌
Tâ θ̂)(

ˆ̄θΓ̂âD̂10θ̂)

= − 1
576

[
θ̄
[
2Γ∗eφF (4)

m − ΓmH(3)]θ](θ̄ΓmΓ∗∆θ) + 1
576

[
θ̄
[
eφF (4) − 2H(3)Γ∗

]
θ
]
(θ̄∆θ),

where we have once again been able to use the symmetries of the Γ-matrices to combine
some terms together. Finally, we have

1
16 e

− 4φ
3 (ˆ̄θΓ̂10Γ̂âb̂θ̂)(ˆ̄θR̂

âb̂
D̂10θ̂) = 1

48(θ̄Γ∗Γmnθ)(θ̄RmnΓ∗∆θ).

We also must not forget the final term (θ̄∆θ)2/24 in the dilaton shift, which was already
built out of 10-dimensional fields. If we combine everything together, we obtain the dilaton
quartic order shift

ρ(4) =− 1
768(θ̄Γmnpqθ)(θ̄ΓmnKpqθ) + 1

576(θ̄Γ∗Γmnpθ)
[
θ̄
[
3Γ∗ΓmKnp − ΓmnKp

]
θ
]

+ 1
384(θ̄Γ∗Γmnθ)

[
θ̄
[
3Γ∗Kmn − 2ΓmKn

]
θ
]

+ 1
48(θ̄Γ∗Γmnθ)(θ̄RmnΓ∗∆θ)

− 1
48(θ̄ΓmΓ∗∆θ)(θ̄ΓmΓ∗∆θ)− 1

576
[
θ̄
[
2Γ∗eφF (4)

m − ΓmH(3)]θ](θ̄ΓmΓ∗∆θ)

+ 1
48(θ̄∆θ)2 + 1

576
[
θ̄
[
eφF (4) − 2H(3)Γ∗

]
θ
]
(θ̄∆θ).

(D.34)

This is the shift given in the main text for the dilaton.
For the sake of completion, let us also note here that the expanded expression for the

quartic terms in the expansion of the three-form superfield, obtained by plugging (4.10)
into (4.22), is

α̂m̂n̂p̂ =− 3
4
( ˆ̄θΓ̂â[m̂D̂n̂θ̂

)( ˆ̄θΓ̂âD̂p̂])θ̂
)

+ 1
8
( ˆ̄θΓ̂[m̂n̂|

ˆ̌
Tâ θ̂

)( ˆ̄θΓ̂âD̂|p̂]θ̂)
− 1

384
( ˆ̄θΓ̂m̂n̂p̂Γ̂âb̂ĉd̂θ̂)( ˆ̄θΓ̂âb̂[D̂ĉ, D̂d̂]θ̂

)
+ 1

64
( ˆ̄θΓ̂[m̂n̂Γ̂âb̂ĉθ̂

)( ˆ̄θΓ̂p̂]â[D̂b̂, D̂ĉ]θ̂
)

+ 1
64
( ˆ̄θΓ̂[m̂n̂|Γ̂âb̂ĉ]θ̂

)( ˆ̄θΓ̂âb̂[D̂|p̂], D̂ĉ]θ̂
)

+ 1
8
( ˆ̄θΓ̂[m̂n̂|Γ̂âb̂θ̂

)( ˆ̄θR̂
âb̂
D̂|p̂]θ̂

)
+ 1

64
( ˆ̄θΓ̂[m̂n̂Γ̂âb̂θ̂

)( ˆ̄θΓ̂p̂][D̂â, D̂b̂]θ̂
)

+ 1
32
( ˆ̄θΓ̂[m̂n̂|Γ̂âb̂θ̂

)( ˆ̄θΓ̂â[D̂|p̂], D̂b̂]θ̂
)
.

(D.35)
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E Further comments on T-duality

Here we discuss the T-duality calculation for the general Ramond-Ramond superfield
expansions at second order in fermions. Notice that all three of the quadratic shifts so far
calculated have been of the form

C(n)
m1...mn =C(n)

m1...mn−


i

2 e
−φ θ̄Aan

[
nΓ[m1...mn−1D

A
mn]−

1
2Γm1...mnσ

1∆A
]
θA, n= 2p−1,

i

2 e
−φ̃ θ̄Bbn

[
n Γ̃[m1...mn−1D

B
mn]−

1
2 Γ̃m1...mnσ

1∆B
]
θB, n= 2p,

where the an and bn are some Pauli matrix combinations that need to be determined.
We will show that this is the form for all the quadratic RR shifts, and determine an
and bn for all n, starting from the known results for n = 1, 3. The key equations to
T-dualize these superfields into each other is the Ramond-Ramond superfield T-duality
rule (6.37). In particular, defining the quadratic Ramond-Ramond superfield expansions as
C(n) = C(n) + χ(n), one can write

χ̃
(n+1)
9ṁ2...ṁn+1 = χ

(n)
ṁ2...ṁn+1 − n g

−1
99 g9[ṁ2χ

(n)
|9|ṁ3...ṁn+1]. (E.1)

Let us first concentrate on the terms outside of the square brackets. For now we will
neglect to write what appears inside the square brackets after applying (E.1), instead we
shall just label it [IIA] or [IIB] to keep track of whether it has yet been T-dualized. Under
T-dualization, moving from type IIA to type IIB we can write,

− i2 e
−φ θ̄Aa2p−1[IIA]θA = − i2 e

−φ̃√g̃99 (θ̄Bσ1Υσ1)a2p−1Υ−1Υ[IIA]Υ−1θB

= − i2 e
−φ̃ θ̄Bb2pΓ̃9Υ[IIA]Υ−1θB.

We will see shortly that we will require Γ̃9 when T-dualizing the terms inside the square
brackets, so write it separately in line two and treat that part in a moment. Moving from
type IIB to type IIA, instead, we can write

i

2 e
−φ̃ θ̄Bb2p[IIB]θB = − i2 e

−φ√g99 (θ̄Aσ1Υ−1σ1)b2pΥΥ−1[IIB]ΥθA

= − i2 e
−φ θ̄Aa2p+1Γ9Υ−1[IIB]ΥθA.

We know from the expansions in (6.49) that a1 =σ3 and a3 = 12. We also know from the
definitions of the T-duality operators in section 6 that

√
g̃99σ

1Υσ1σ3Υ−1 = Γ∗Γ̃9, which
allows to conclude that θ̄Bb2Γ̃9 = θ̄BΓ∗Γ̃9, meaning that b2 =−12. Similarly, from the series of
conditions θ̄Aa3Γ9 =√g99 θ̄

Aσ1Υ−1σ1b2Υ =−√g99 θ̄
Aσ1Υ−1σ1Υ = θ̄AΓ9, we recover a3 = 12.

Going on, from θ̄Bb4Γ̃9 =
√
g̃99 θ̄

Bσ1Υσ1a3Υ−1 =−σ3θ̄BΓ9, we find b4 =−σ3. Finally, from
the chain of relationships θ̄Aa5Γ9 =√g99 θ̄

Aσ1Υ−1σ1b4Υ =−√g99 θ̄
Aσ1Υ−1σ1σ3Υ =σ3θ̄AΓ9,

we obtain a5 =σ3. In conclusion we have

a1 = σ3, b2 = −12, a3 = 12, b4 = −σ3, a5 = σ3. (E.2)
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The pattern continues, multiplying by −12 when moving from IIB to IIA and by −σ3 when
moving from IIA to IIB.

Now let us concentrate on the expressions [IIA] and [IIB] inside the square brackets.
Here we will look at moving from type IIA to type IIB, however moving from type IIB to
type IIA employs an essentially identical structure. More specifically, when we use (E.1) to
determine the shift on C(n+1)

m1...mn+1 from the shift on C(n)
m1...mn to move from IIA to IIB, we

have to consider Γ̃9Υ[IIB]Υ−1, and vice versa. The explicit terms are

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1 = Γ̃9Υ
[
nΓ[ṁ2...ṁnD

A
ṁn+1] − n(n− 1)g−1

99 g9[ṁ2Γ|9|ṁ3...ṁnD
A
ṁn+1]

− (−1)n−1ng−1
99 g9[ṁ2Γṁ3...ṁn+1]D

A
9

− 1
2
(
Γṁ2...ṁn+1 − ng−1

99 g9[ṁ2Γ|9|ṁ3...mn+1]
)
σ1∆A

]
Υ−1.

After a little work and using (−1)n−1ng−1
99 g9[ṁ2Γṁ3...ṁn+1]D9 = ng−1

99 g9[ṁn+1Γṁ2...ṁn]D9,
this can be written as

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1

= Γ̃9Υ
[
n
(
Γ[ṁ2 − g

−1
99 g9[ṁ2|Γ9

)
. . .
(
Γṁn − g−1

99 g9|ṁn|Γ9
)(

DA
ṁn+1] − g

−1
99 g9|ṁn+1]D

A
9

)
− 1

2
(
Γ[ṁ2 − g

−1
99 g9[ṁ2|Γ9

)
. . .
(
Γṁn+1] − g−1

99 g9|ṁn+1]Γ9
)
σ1∆A

]
Υ−1.

At this point, we can use (6.41) and (6.42) to T-dualize almost everything immediately,
obtaining

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1 = Γ̃9

[
n
(
Γ̃[ṁ2−g̃

−1
99 g̃9[ṁ2|Γ̃9

)
. . .
(
Γ̃ṁn−g̃−1

99 g̃9|ṁn|Γ̃9
)(

DB
ṁn+1]−g̃

−1
99 g̃9|ṁn+1]D

B
9

)
− 1

2
(
Γ̃[ṁ2−g̃

−1
99 g̃9[ṁ2|Γ̃9

)
. . .
(
Γ̃ṁn+1]−g̃−1

99 g̃9|ṁn+1]Γ̃9
)(
σ1∆B−2g̃−1

99 Γ̃9D
B
9

)]
=
[
n Γ̃9Γ̃[ṁ2...ṁn

(
DB
ṁn+1]−g̃

−1
99 g̃9|ṁn+1]D

B
9

)
−n(n−1)g̃9[ṁ2Γ̃ṁ3...ṁnD

B
ṁn+1]

− 1
2 Γ̃9Γ̃ṁ2...ṁn+1

(
σ1∆B−2g̃−1

99 Γ̃9D
B
9

)
+n

2 g̃9[ṁ2Γ̃ṁ3...ṁn+1]
(
σ1∆B−2g̃−1

99 Γ̃9D
B
9

)]
=
[
n Γ̃9[ṁ2...ṁnD

B
ṁn+1]−n Γ̃9[ṁ2...ṁn|g̃

−1
99 g̃9|ṁn+1]D

B
9

+(−1)nΓ̃ṁ2...ṁn+19g̃
−1
99 Γ̃9D

B
9 −

1
2 Γ̃9ṁ2...ṁn+1σ

1∆B
]
,

where in the final step we combined some Γ-matrices, distributed the final term and
eventually rearranged some indices. A further use of useful Γ-matrix identities and a little
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further massaging results in some more cancellations, to give

[IIA][χ̃
(n+1)]

ṁ2...ṁn+1 =
[
n Γ̃9[ṁ2...ṁnD

B
ṁn+1]−n Γ̃9[ṁ2...ṁn|g̃

−1
99 g̃9|ṁn+1]D

B
9

+(−1)n
(
Γ̃ṁ2...ṁn+1Γ̃9−n Γ̃[ṁ2...ṁn g̃|9|ṁn+1]

)
g̃−1

99 Γ̃9D
B
9 −

1
2 Γ̃9ṁ2...ṁn+1σ

1∆B
]

=
[
n Γ̃9[ṁ2...ṁnD

B
ṁn+1]+(−1)nΓ̃ṁ2...ṁn+1Γ̃9g̃

−1
99 Γ̃9D

B
9 −

1
2 Γ̃9ṁ2...ṁn+1σ

1∆B

−n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9 −(−1)nn Γ̃[ṁ2...ṁn g̃|9|ṁn+1]g̃

−1
99 Γ̃9D

B
9

]
=
[
n Γ̃9[ṁ2...ṁnD

B
ṁn+1]+(−1)nΓ̃ṁ2...ṁn+1D

B
9 −

1
2 Γ̃9ṁ2...ṁn+1σ

1∆B

−n Γ̃9[ṁ2...ṁn|g̃
−1
99 g̃9|ṁn+1]D

B
9 −(−1)2n−1n Γ̃9[ṁ2...ṁn g̃|9|ṁn+1]g̃

−1
99 D

B
9

]
=
[
n Γ̃9[ṁ2...ṁnD

B
ṁn+1]+(−1)nΓ̃ṁ2...ṁn+1D

B
9 −

1
2 Γ̃9ṁ2...ṁn+1σ

1∆B
]

=
[
(n+1)Γ̃[9ṁ2...ṁnD

B
ṁn+1]−

1
2 Γ̃9ṁ2...ṁn+1σ

1∆B
]
,

which is exactly the desired result. Note that while powers of (−1) depending on n appeared,
nowhere did we rely on n being odd for the specific case of moving from type IIA to type
IIB, and indeed the derivation moving the other way has precisely the same structure.
Thanks to this procedure, one can verify the general second-order Ramond-Ramond shifts
in (6.49).
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