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1 Introduction

A great deal of non-relativistic systems exhibit dynamical scaling at the fixed points of their
renormalisation group flow

t→ λzt, xi → λxi, r → λ−1r, z > 1, (1.1)

which can be seen as a generalisation of the conformal scaling experienced in relativistic
theories. Following the logic of gauge/gravity duality, one can then look for spacetimes that
are weakly coupled dual descriptions of the strongly coupled field theories enjoying this
anisotropic scale invariance [1–3]. In addition to the scale symmetry, demanding invariance
under space and time translations, spatial rotations will lead to the Lifshitz spacetimes in
the bulk [1]

ds2 = −r2zdt2 + r2(dx2 + dy2) + dr2

r2 , (1.2)
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which has curios geometric properties. For example, unlike AdS spacetimes, where there
is a well-defined boundary in the form of a conformal structure, the Lifshitz spacetimes
do not have a non-degenerate metric at the boundary [4, 5]. Therefore, the usual tools
of holography like the Fefferman-Graham (FG) expansion do not work, and others need
a modification to work in the non-relativistic case. There has been a flurry of activity
on developing notions and tools for non-relativistic holography (see the review [6] and
references therein e.g., [7–13]). In this regard, the non-relativistic stress-energy tensor [7],
inspired by [14] will be our primary tool in this work. To put it briefly, instead of working
with the boundary metric, the stress tensor will be defined by varying the boundary frame
fields and keeping the tangent space components of the of matter fields fixed. While being
more suited to a non-relativistic setting, this approach is also crucial for defining correct
conserved charges for gravity theories with matter fields other than scalars. In section 3 we
will discuss the details of this construction.

Another challenging feature of these spacetimes is that the cosmological Einstein
theory does not admit these as a solution; therefore, some type of matter coupling or
higher curvature terms should be considered [15–19], making the holographic analysis more
intricate. An examplar is the massive vector model [15], which is simpler and includes
all z > 1 as a solution. This system was the testing ground for the non-relativistic stress
tensor, where it was shown to generate finite results for linearised perturbations [7]. Later,
building on this work, a definition of asymptotically locally Lifshitz spacetimes is given, and
the holographic renormalisation of one-point functions is studied in [8]. Another important
model is the z = 2 specific, four-dimensional system which is obtained from the Scherk-
Schwarz reduction of a five-dimensional axion-dilaton gravity living on an asymptotically
locally AdS spacetime [11, 12]. By computing the well-established higher dimensional AdS
sources+VEVs, Ward identities, the corresponding z = 2 Lifshitz holographic dictionary
was identified. A major result of this work was the appearance of torsional Newton-Cartan
(TNC) geometry at the boundary [13, 20].

In an attempt to further extend the Lifshitz holography, understand different matter
couplings better and search for dynamical curiosities, the main focus of this work will be the
four-dimensional Einstein-Yang-Mills (EYM) model. The SU(2) colored Lifshitz background
solutions was first found in [21], later extended to five dimensions in [22]. In fact, the
embedding of four-dimensional EYM in eleven-dimensional supergravity was shown quite a
long time ago [23], where the dynamical exponent for the corresponding Lifshitz solutions
should be fixed to an irrational number z = 1 +

√
6 as a supersymmetry requirement [22].

Our first step towards a holographic stress tensor for the EYM theory will be to
find the boundary terms to have a well-defined variational problem with an extremized
action on four-dimensional Lifshitz background solutions. This is performed in section 2 by
considering the Hawking-Gibbons (HG) term and a counter-term intrinsic to the boundary.
Next, in order to find the perturbative modes that contribute to the stress tensor in the
dual field theory, we solve the linearised field equations and identify the modes that lead to
the Lifshitz background (1.2). The identification of modes will be an important stepping
stone for further analysis, e.g., the holographic renormalisation of the one-point functions.
Through perturbation solutions, we show that the stress tensor stays finite and obeys the
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Ward identities. This is done for both constant and general perturbations in section 4. For
constant perturbations, it is only possible to show that the scaling Ward identity holds,
as there is no dependence on time or boundary coordinates. On the other hand, with
general perturbations, we will show that the rest of the conservation laws are satisfied by
incorporating an expansion in wavenumber k and frequency ω.

Leaving aside the possible applications in non-relativistic holography, the EYM so-
lutions (both particle-like and black holes) are certainly interesting in their own rights.
The asymptotically flat solutions by Bartnik-McKinnon [24] was quite a surprise for the
community since Deser’s proof of no static solutions to the Yang-Mills (YM) equations in
four dimensions [25], and Lichnerowicz theorem of no gravitational solitons [26] suggest
that the EYM system do not admit particle-like solutions. However, the non-linearities
of both the gravity and the gauge system together make the solutions possible. Besides
particle-like solutions, the EYM model also admits colored black holes in asymptotically
flat [27, 28] and AdS cases [29, 30], which are hairy and violates the no-hair theorem.

On the Lifshitz side, the colored numerical black holes, which are parametrised by
the fine-tuned gauge field strength at the horizon, was constructed for different horizon
topologies [21]. The behaviour of solutions differs for black holes that are large or small with
respect to the length scale L, which is fixed by the cosmological constant. In some ways, the
solutions are quite different from their conformal and asymptotically flat cousins, e.g., for a
given horizon radius R0 and dynamical exponent z, there is a unique value of the gauge
field that leads to desired Lifshitz asymptotics. This is in contrast to the solutions with AdS
asymptotics, where the solutions exist for a value of shooting parameter in continuous open
intervals [31]. Apart from their functional behaviour, the physics of these black holes are
not studied. Therefore, the second part of this work is devoted to the conserved quantities
and the thermodynamics of these black holes.

The generalised Smarr relation [32] for Lifshitz black holes that is valid for all horizon
topologies reads

(D − 3)M = (D − 2)TS − 2PV, (1.3)

along with the first law

dM = TdS + V dP, (1.4)

where P, V are thermodynamic pressure and volume, respectively. As we pointed out before,
the Lifshitz asymptotics require matter, which in turn makes the cosmological constant
dependent on the couplings. This obscures the definition of thermodynamic pressure, so
instead, some of the works used alternative Smarr relation paired with the first law as
follows [33–38]

(D + z − 2)M = (D − 2)TS, dM = TdS. (1.5)

Later, the alternative relation (1.5) was shown to be consistent with the original one (1.3)
when the horizon topology is planar [39]. Thus, we will make use of the reduced relation in
the study of the thermodynamics of the planar numerical solutions. One of the important
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results in our study of thermodynamics will be the hairy nature of the solutions. Actually,
the lack of global YM charge was argued by linear analysis of field equations [22]. In
section 5 we will support this result by showing the first law of thermodynamics and the
Smarr relation (1.5) hold without any global YM charge.

The outline of the paper is as follows: in section 2 we set up our model and find out
the boundary terms for a well-defined variational principle. Then in section 3, we review
the holographic stress-energy tensor for non-relativistic theories following the recipe by
Ross-Saremi [7]. We then set the stage for perturbation analysis by choosing a suitable
basis for perturbation of the frame fields and the gauge field components in section 4.1.
The following two sections 4.2, 4.3 will be reserved to the solutions and the stress tensor
computations of constant perturbations and general perturbations, respectively. Section 5
deals with the energy and thermodynamics of the numerical black hole solutions of [21].
Finally we conclude in section 6. Explicit results for the linearisation of some expressions
and the field equations of generalised perturbations are presented in appendix A–B.

Since the number and the type of indices are somewhat involved, let us carefully
display our conventions (along the way there will be several addendeums). Here Fµν is the
gauge field strength Fµν ≡ FΛ

µν TΛ = ∂µAν − ∂νAµ − i[Aµ, Aν ] and we choose generators
TΛ ≡ τΛ/2, Λ = 1, 2, 3 with τΛ denoting Pauli matrices with upper case Greek indices for
the Yang-Mills algebra. The commutation relations and the normalization of generators
are given as [TΛ, TΓ] = iεΛΓ∆T∆ and Tr(TΛTΓ) = δΛΓ/2, respectively. For the signature of
metric we use (−,+,+,+), and the Riemann tensor is taken as Rµ ναβ = ∂αΓµ βν −· · · with
Rµν = Rα µαν . We also use xµ = (t, xi, r) for spacetime (curved) indices and ya = (t, xi)
for boundary coordinate indices. Finally we use i, j = 1, 2 indices for the planar part. The
integration constants of solutions will be displayed in fraktur font e.g. b1, c2, s3, · · · .

2 Boundary counterterms in EYM

We start with the four-dimensional Einstein gravity with a cosmological constant minimally
coupled to SU(2) gauge fields described by the action

SM =
∫
M
d4x
√
−g

(
(R− 2Λ)− 1

2g2
YM

Tr [FµνFµν ]
)
, (2.1)

where Λ is the cosmological and g2
YM is the gauge coupling constant in dimensions of

1/length2. Unlike EYM solutions in AdS, where the background is already a solution to the
cosmological Einstein theory; here, we use matter to support backgrounds with anisotropic
scaling symmetry.

The variation of (2.1) will amount to

δSM =
∫
M
d4x
√
−g(Eµν δgµν + EΛ

µ δA
µ
Λ) + boundary terms, (2.2)

where Eµν is the field equations for the metric

Eµν ≡ Rµν −
1
2Rgµν + Λgµν −

1
g2

YM
Tµν , (2.3)
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with the traceless YM stress energy tensor defined as

Tµν ≡ Tr
(
Fµ

αFνα −
1
4gµνFαβF

αβ
)
. (2.4)

For the matter sector, the field equations are

EΛ
µ ≡ DνFΛ

νµ = 0, (2.5)

where the gauge covariant derivative is Dµ ≡ ∇µ − i [Aµ, ].
We assume a Lifshitz background solution of the form

ds2 = −r2zdt2 + r2(dx2
1 + dx2

2) + dr2

r2 , (2.6)

paired with the planar symmetric SU(2) gauge field ansatz [40]

Aµdx
µ = Q(r)T 3dt+R(r)T 1dx1 +R(r)T 2dx2. (2.7)

Since we look for a background solution, we assume all functions depend on the radial
coordinate r, and for simplicity, we focus on the purely magnetic case, i.e. Q(r) = 0. Then
through field equations (2.3), (2.5), the gauge field solution is found to be

R(r) = ±σr , for all z > 1, σ ≡
√
z + 1, (2.8)

provided the cosmological constant and the gauge coupling are chosen as follows

Λ = −3 + 2z + z2

2 , g2
YM = 1

2
(z + 1)
(z − 1) . (2.9)

The generalization of this solution to five dimensions and the exact black hole solutions
with an extra Maxwell charge is found in [22]. In the conformal limit z → 1, the YM part
decouples from the gravity action, and the decoupled gauge field is a solution to the pure
YM. The sign ambiguity of the gauge field corresponds to a gauge transformation. Hence
in what follows, we will continue with the positive sign gauge field.

Having reviewed the Lifshitz solution, let us construct the appropriate action which
satisfies δS = 0 on-shell. The boundary terms in (2.2) consist of the well known gravitational
part gµνδRµν = ∇µfµ and the matter part

δSM = field equations +
∫
M
d4x
√
−g∇µ

(
fµ −

1
g2

YM
FΛ
µνδA

ν
Λ

)
, (2.10)

where

fµ ≡ gρνδΓµρν − gµνδΓρρν . (2.11)

To cancel out the metric variations with derivatives and have a boundary value problem
with Dirichlet conditions at ∂M, the addition of the trace of extrinsic curvature known as
the Hawking-Gibbons (HG) term is necessary. However, this alone is not sufficient to pose
a well-defined variational problem in holography. We also require boundary counterterms
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to extremize the action on solutions of the equations of motion. Taking these and the gauge
invariance into account, one is naturally led to choose

S = SM + S∂M =
∫
M
d4x
√
−g
(
(R− 2Λ)− 1

2g2
YM

Tr[FµνFµν ]
)

+
∫
∂M

d3y
√
−γ

(
2K + k0 + αTr

[
FabF

ab
])
, (2.12)

where ya denotes the coordinates on the boundary at some constant r, γab is the induced
metric, k0 and α are the constants to be determined. The extrinsic curvature tensor is
given as Kab = ∇(anb) where nµ = (0, 0, 0, r) is an outward-directed unit vector orthogonal
to the boundary. The antisymmetry of Fµν makes it possible to define the following tensor
with a boundary index

nµF
µν
Λ → nµF

µa
Λ ≡ EaΛ, (2.13)

which we use to write down (2.10) as

δSM = field equations +
∫
∂M

d3y
√
−γ

(
nµf

µ − 1
g2

YM
EaΛδA

Λ
a

)
. (2.14)

The boundary contributions from the HG part of S∂M is

δ

[∫
∂M

d3y
√
−γ (2K + k0)

]
=
∫
∂M

d3y
√
−γ

(
−fµnµ +

[
Πab −

k0
2 γab

]
δγab

)
(2.15)

where we defined Πab ≡ Kab −Kγab. The first term in (2.15) handles the variations with
derivatives and for the rest, we need the components of the extrinsic curvature of the
solution (2.6)

Ktt = −zr2z, Kij = r2δij , K = z + 2. (2.16)

Likewise, the matter part of the variation reads

δ

(∫
∂M

d3y
√
−γ αTr

[
FabF

ab
])

= α

∫
∂M

d3y
√
−γ
{(

FΛ
acFb

c
Λ −

1
4F

Λ
cdF

cd
Λ γab

)
δγab

− 2εΛΓ
∆A

b
ΓF

∆
baδA

a
Λ

}
. (2.17)

We also define the following general variation for future convenience

δS =
∫
d3y(sabδγab + sΛ

a δA
a
Λ), (2.18)

where sab and sa are

sab ≡
√
−γ

[
Πab −

k0
2 γab + α

(
FΛ
acFb

c
Λ −

1
4F

Λ
cdF

cd
Λ γab

)]
, (2.19)

sΛ
a ≡ −

√
−γ

[ 1
g2

YM
EΛ
a + 2αεΛΓ

∆A
b
ΓF

∆
ba

]
. (2.20)
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Here the constants k0 and α will be chosen such that sab and sΛ
a will be equal to zero on

solutions making δS = 0 for arbitrary variations around (2.6), (2.8). With this in mind,
evaluating the solution on individual boundary terms we have

1
g2

YM
EΛ
a δA

a
Λ = 1

g2
YM
r
√
z + 1(δAx1

1 + δAx2
2 ), (2.21)[

Πab −
k0
2 γab

]
δγab = 1

2r
2z(4 + k0)δγtt − 1

2r
2(2(z + 1) + k0)δijδγij , (2.22)

α(FΛ
acFb

c
Λ −

1
4F

Λ
cdF

cd
Λ γab)δγab = α

2 r
2z(z + 1)2δγtt + α

2 r
2(z + 1)2δijδγ

ij , (2.23)

2αεΛΓ
∆A

b
ΓF

∆
baδA

a
Λ = −2αr (z + 1)3/2(δAx1

1 + δAx2
2 ). (2.24)

Gathering all these pieces the general variation (2.18) reads

δS =
∫
∂M

d3y
√
−γ
{

1
2r

2z
(
4+k0 +α(z+1)2

)
δγtt+ 1

2r
2
(
(z+1)(α(z+1)−2)−k0

)
δijδγij

+ r
√
z+1
g2

YM

[
2αg2

YM(z+1)−1
]

(δA1
x1 +δA2

x2)
}
.

Provided k0 = −(z + 3) and α = (z − 1)/(z + 1)2, the above expression is zero and we have
a well defined variational problem. Therefore our final action is the following

S =
∫
M
d4x
√
−g

(
(R− 2Λ)− Tr[FµνFµν ]

2g2
YM

)
+
∫
∂M

d3y
√
−γ

(
2K − (z + 3) + Tr[FabF ab]

2g2
YM(z + 1)

)
. (2.25)

Note that in addition to the boundary terms we have considered, one can include
terms involving derivatives of the boundary fields, which we denote as Sderiv. However, the
scalars constructed from the boundary fields are constant for the Lifshitz solution, and
with a planar boundary metric, the derivatives of these scalars do not contribute to the
background (2.6). In the case of general asymptotically Lifshitz spacetimes, the derivative
terms can be considered rendering the components of the stress tensor finite if needed [7].
Furthermore, inspired by the Einstein-Maxwell model, one can be tempted to consider the
following boundary term for the matter part [41]∫

∂M
d3y
√
−γ Tr [nµ FµνAν ] . (2.26)

However, unlike its abelian counterpart, this choice is not gauge invariant on-shell, so our
choice seems to be the only plausible one.

Having determined the boundary counterterms for EYM action with Lifshitz asymp-
totics, we can now review the construction of stress tensor introduced in [7] for non-relativistic
spacetimes.
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3 Stress tensor for non-relativistic theories

This section will recapitulate the procedure given in [7] for calculating a boundary stress
tensor from a bulk action principle in non-relativistic theories. The construction is analogous
to the relativistic case [14] and relies on the definition of a modified stress tensor in the
presence of non-scalar boundary fields. We will first work at a finite cut-off rc, then take
rc →∞ for the final result, as there is no non-degenerate metric at the boundary.

The following definition is sufficient when the metric is the only non-trivial boundary
field in relativistic theory [42]

T abε̂ = −2 δS

δγab
, (3.1)

where ε̂ is the volume form associated with γab. The covariant conservation of (3.1) can
be shown by considering the action of boundary diffeomorphisms on the variation. This
definition was modified by Hollands-Ishibashi-Marolf when the theory in question involves
extra fields other than scalars. Following the recipe in [14], it is convenient to consider the
set of frame fields at the boundary

γab = êMa ê
N
b ηMN , (3.2)

where êMa are the boundary frame fields.1 The frame fields allows us to write any boundary
tensor as a collection of scalar fields, i.e. Xab··· = XMN ···ê

M
a ê

N
b . Taking this into account,

the variation will only act on the boundary frame fields, while the tangent space components
of XMN ··· will be held fixed. In the case of asymptotically AdS spacetime, the choice of
frame fields corresponds to the boundary metric in Fefferman-Graham expansion.

This replacement of boundary metric with the boundary frame fields leads to the
modified boundary stress tensor

T abε̂ = δS

δêMb
êaM . (3.3)

The two definitions (3.1) and (3.3) agree when the nontrivial boundary fields are metric and
some scalars. However, if there are additional boundary fields, then (3.3) will be the correct
one containing the contributions from the extras. In particular, consider the variation of a
model supported by the non-abelian gauge fields with a relativistic conformal field theory
at the boundary

δS =
∫
ε̂
(
T aMδê

M
a + sΛ

MδA
M
Λ

)
, (3.4)

where the covariant divergence of T ab can be shown to satisfy a modified conservation law

∇aT ab = sΛ
M∇bAMΛ + T aM∇bêMa , (3.5)

1We choose I, J = 0, 1, 2, 3 for bulk and M,N, · · · = 0, 1, 2 to denote the tangent space directions on
the boundary.
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which can also be written as

DaT
a
b = sΛ

M∂bA
M
Λ with Daê

M
b = 0. (3.6)

This tensor allows the construction of the counter-term charges, which generate the correct
asymptotic symmetries of the theory [14].

We now turn our attention to the non-relativistic limit of this prescription. In a
non-relativistic field theory, instead of a covariant energy momentum tensor, we have an
energy density E , an energy flux Ei, a momentum density Pi and a symmetric spatial stress
tensor Πij . This stress tensor complex satisfies the following conservation equations, i.e.
diffeomorphism Ward identities

∂tE + ∂iE i = 0, ∂tPj + ∂iΠi
j = 0. (3.7)

In addition to these, we have the dilatation Ward identity for theories with Lifshitz scaling
symmetry

zE = Πi
i. (3.8)

The main idea behind the procedure of [7] is to consider the non-relativistic limit of the
energy-momentum tensor (3.4) since, all of the above identities can be derived as a non-
relativistic limit of a relativistic conservation equation. For a consistent limit, the boundary
frame fields should be related to the bulk frame fields by an appropriate power of r such
that êMb stays finite as r →∞. With the following rescaling

e(0) = rz ê(0), e(i) = rê(i), e(3) = dr

r
, (3.9)

the Lifshitz background solution is then the condition ê(0) → dr, ê(i) → dxi, AΛ
M → σδΛ

M as
r →∞. Now, the scaled frame fields can be considered as the boundary data as follows

δS =
∫
d3y

(
−2sabêbM + saΛA

Λ
M

)
δêMa . (3.10)

Decomposing (3.10) into components of the stress energy complex gives

δS =
∫
d3y

[
−Eδê0

t − E iδê0
i + Piδêit + Πi

jδêij

]
, (3.11)

where

E = 2stt − stΛAΛ
t , E i = 2sit − siΛAΛ

t , (3.12)
Pi = −2sti + stΛA

Λ
i , Πi

j = −2sj i + sjΛA
Λ
i . (3.13)

To be precise, it is clear from the variation (3.10) that the lower indices for Pi and Πi
j are

flat. However, for the sake of simplicity, we converted all of them to the spacetime ones by
multiplying the expressions with their respective frame fields.

To sum up, starting from the relativistic counterpart, we have reviewed the procedure
of constructing a non-relativistic boundary stress tensor. Since the theory we consider
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involves non-scalar boundary fields, special attention must be given to their variation.
This is handled by introducing vielbeins, which makes it possible to keep the components
of boundary fields fixed, resulting in a stress tensor that has correct conserved charges.
For the non-relativistic limit, the frame fields in Lifshitz spacetime need to be scaled
appropriately to have finite values at the boundary. This approach is also intrinsically
natural for non-relativistic theories where space and time are scaled differently.

There remains now to perform a perturbation analysis in order to check whether
the stress tensor and the action are finite for a more general class of asymptotically
Lifshitz spacetimes.

4 Perturbation analysis

We now focus on a more general class of asymptotically Lifshitz spacetimes and show both
the action and the stress tensor stays finite. As with most of the EYM solutions, the Lifshitz
black holes are numerical solutions and studied in [21]. We will return to their analysis in
section 5. On the other hand, the exact solutions found in [22] are dressed with an extra
Maxwell field and admit the colored Lifshitz background as a vacuum. We refrain ourselves
studying these exact solutions with extra matter fields and resort to perturbative analysis
with the perturbations that are asymptotic to the Lifshitz background.

In the following, we first introduce the appropriate choice of basis for boundary frame
fields, which allows the decomposition of the gauge field perturbation into scalar and
vector components that respect the symmetry of the background solution. We then solve
the linearised system for constant perturbations and identify the modes that preserve
asymptotically Lifshitz condition. Employing these modes, we compute the on shell value
of the action and components of the stress tensor, showing they are finite and obey Ward
identities. In the final part of this section, we perform a similar analysis for the generalised
perturbations with an extra step of expanding the linearised equations in powers of wave
number and frequency in order to find solutions.

4.1 Perturbation setup

Since we will perform the analysis in the linearised regime, let us carefully put together
all the ingredients. We consider a generic metric as a background and its perturbation
as follows

gµν = ḡµν + hµν , (4.1)

where the deviation hµν should vanish sufficiently rapidly so that the metric approaches
Lifshitz vacuum ḡµν as r → ∞. We will work in Gaussian gauge, i.e. hµr = 0 and the
perturbations are also scaled by an appropriate power of r accordant with the arguments in
the previous section

htt = −r2zĥtt, hti = −r2z v̂1i + r2v̂2i, hij = r2ĥij . (4.2)
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For this choice of perturbation, the orthonormal frames are2

e(0) = rz ê(0) = rz
((

1 + 1
2 ĥtt

)
dt+ v̂1idx

i
)
,

e(i) = rê(i) = r

(
v̂2idt+

(
δij + 1

2 ĥ
i
j

)
dxj

)
,

e(3) = dr

r
, (4.3)

where asymptotically vanishing perturbations will lead to the Lifshitz background (2.6).
The metric determinants for the bulk and the boundary read respectively

√
−g = rz+1

[
1 + 1

2
(
ĥtt + ĥii

)]
,
√
−γ = rz+2

[
1 + 1

2
(
ĥtt + ĥii

)]
. (4.4)

On the matter sector, we define the first order gauge field perturbations as

AΛ
µ = ĀΛ

µ + aΛ
µ , (4.5)

where Āµ is the background solution (2.8)

Ā = σr(T 1dx1 + T 2dx2). (4.6)

In order to decompose the field equations into vector and scalar parts, one must choose
the gauge field perturbation aµ such that it respects the symmetries of the background
solution, i.e. a diagonal combination of the spatial rotation and an internal flavour symmetry
rotating A1

i , A
2
i into each other.3 We will also keep all the components of the perturbation

and let the field equations indicate the ones that are pure gauge, and therefore, can be set
to zero. With these in mind, we make the following choice

aµdx
µ = (rσv̂2iT

i − rzσâ3T
3)dt+ 1

2rσ
(
2 b̂iΛTΛ + ĥijδ

j
kT

k
)
dxi + σ

r
ĉΛT

Λdr, (4.7)

where

b̂iΛ = b̂Λi, for Λ = 1, 2, (4.8)

or equivalently b̂ij = b̂ji which corresponds to mixing of spatial and group indices. The
choice (4.7) might seem quite arbitrary, but when written on flat indices

AIΛT
Λ = σ

(
â3T

3δI0 + δIjT
j + b̂jΛT

ΛδIj + ĉΛT
ΛδI3

)
, (4.9)

the compatibility with the prescription we gave is evident, i.e. for vanishing perturbations,
the only non-zero component is the background solution which is constant on tangent
directions. This choice is also quite tractable in terms of solving the coupled equations.

2The background metric ḡµν is responsible for raising and lowering of the spacetime indices µ, ν · · ·
and defining covariant derivative ∇̄µ. For the sake of simplicity, we also use the following shorthands:
ĥij = δikĥkj , ĥ

i
i = ĥijδ

ij .
3We are grateful to Simon F. Ross for the discussion of several issues in this section.
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Finally, for completeness, we write down the linearized field equations for both the
metric and the gauge field

ELµν = RLµν −
1
2R̄hµν −

1
2 ḡµνR

L + Λhµν −
1
g2

YM
Tr
[
2f(µ

αF̄ν)α − F̄µσF̄ναhσα

− 1
2fαβF̄

αβ ḡµν + 1
2 F̄α

γF̄αβhγβ ḡµν −
1
4 F̄αβF̄

αβhµν

]
, (4.10)

ELν = −∇̄αfνα + ∇̄βF̄ναhαβ −
1
2 F̄ν

α∇̄αh+ F̄ν
α∇̄βhαβ + F̄αβ∇̄βhνα

− i
(
[Āα, fαν ] + [aα, F̄αν ]− [Āα, F̄ γν ]hαγ

)
, (4.11)

where fµν ≡ ∇̄µaν−∇̄νaµ and the remaining expressions for the linearised objects are given
in the appendix A.

Before discussing the solutions to the linearised equations, let us present the action and
stress-energy complex in terms of perturbations. As a result of the background symmetry
and the perturbation ansatz, the only Fourier modes that will contribute to the action after
the integration over the boundary coordinates are the scalar ones

S = −
∫ rc

dr rz+1
{

2z(z + 2) + z(z + 2)(ĥtt + ĥii) + 2(z2 + z − 2)b̂ii + 2(z − 1)r∂r b̂ii

+ (2z + 3)r∂r[ĥtt + ĥii] + r2∂2
r [ĥtt + ĥii]

}
+ r2+z

[
2z + 2(z − 1)b̂ii + z(ĥtt + ĥii) + r∂r[ĥtt + ĥii]

] ∣∣∣
r=rc

. (4.12)

This result also implies that there will be no contribution from a possible Sderiv at linear
order. In the following subsection, we will find the explicit solutions for the perturbations
and show (4.12) is finite.

On the other hand, in contrast to the action, all modes contribute to the stress
tensor complex

E = −rz+2(z − 1)
(

2b̂ii + r∂rĥ
i
i

(z − 1) −
2εij∂j b̂i3
r
√
z + 1

)
+ Ẽ , (4.13)

E i = −rz+2(z − 1)δij
(
r2z+1∂rv̂1j

(z − 1) − r∂rv̂2j
(z − 1) −

2
r2√z + 1

εj
k(rz∂kâ3 + r∂tb̂k3)

)
+ Ẽ i,

(4.14)

Pi = −rz+2(z − 1)
(
r∂rv̂1i
(z − 1) −

(2z − 1)
(z − 1) r

−2z+3∂rv̂2i + 2r1−2z∂tĉi

)
+ P̃i, (4.15)

Πi
j = −rz+2(z − 1)

(
2(−2b̂ij + δij b̂

k
k)− 2

√
z + 1εij ĉ3 + 2

r
∂iĉj − 2r∂r b̂ij

+ r

(z − 1)∂r[δ
i
j(ĥtt + ĥkk)− zĥij ]

)
+ Π̃i

j , (4.16)

where quantities with tilde denote the possible Sderiv contributions.
Several observations are in order here. Firstly, all components of the matter sector of

the perturbation are multiplied by (z − 1), so in the limit z = 1, they are all decoupled,
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and only the metric perturbations survive. The remaining piece should coincide with the
relativistic definition (3.1). Secondly, now it is possible to consider the Sderiv contributions
from the action, which were quite important to make the components of Πi

j finite for
generalised perturbations in [7]. Thirdly, although we discussed the importance of the
modification of conservation equation (3.6), when linearised, the right-hand side of the
equation reads

DaT
a
b = s̄Λ

M (∂bAMΛ )L + (sΛ
M )L∂bĀMΛ . (4.17)

The first term on the right-hand side vanishes on-shell and the second one vanishes from the
constancy of the background gauge field on flat indices. Therefore, the linearisation is blind
to this modification. Also, unlike its relativistic counterpart, the spatial energy-momentum
tensor (4.16) by construction is not symmetric off-shell. However, we expect to have a
symmetric one on-shell, or it can always be improved to be symmetric. Finally, it is worth
repeating the argument of [7] on the applicability of the linearisation. The equations (4.13)–
(4.16) imply that the modes with a fall off r−(z+2) will contribute to the components of
stress-energy tensor at linear order. Then, any possible solution with r−(z+2)/2 fall off will
also contribute to the quadratic order, signalling the insufficiency of the linear regime and a
need for non-linear analysis.

We are now in a position to find the solutions to the perturbations and explicitly compute
the components of the stress-energy complex, and show it satisfies the Ward identities.

4.2 Constant perturbations and solutions

Let us first consider the perturbations that are constant in the boundary directions. With
the help of the symmetry of mixing the spatial and the flavour indices, we can decompose
the constant perturbations into scalar f(r), j(r), k(r), vector v̂1i(r), v̂2i(r) and tensor modes
td(r), to(r), bd(r), bo(r) as follows

htt = −r2zf(r), hti = −r2z v̂1i(r) + r2v̂2i(r),
hij = r2k(r)δij + r2kij , b̂ij = δijj(r) + Jij ,

(4.18)

where

kij =
(
td(r) to(r)
to(r) −td(r)

)
, Jij =

(
bd(r) bo(r)
bo(r) −bd(r)

)
. (4.19)

In addition to the vector modes analogous to [7], we also have tensor modes for the gauge
field perturbation.

4.2.1 Scalar modes

The field equations for the constant scalar perturbations read

2r2j′′(r) = −8rj′(r)− rf ′(r) + 2z(z + 3)j(r), (4.20)

r2f ′′(r) = −2(z + 1)rf ′(r) + 2(z − 1)rj′(r) + 2
(
3z2 + z − 4

)
j(r), (4.21)

2rk′(r) = −rf ′(r) + 2(z − 1)rj′(r)− 2z(z − 1)j(r). (4.22)
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For z ≥ 1, the solutions are

j(r) = c1r
−(z+2) + c2r

− 1
2 (z+2+βz) + c3r

− 1
2 (z+2−βz), (4.23)

f(r) = −4c1(z + 1)
z + 2 r−(z+2) + 2c2(z − 1)(−2 + 3z + βz)

2 + z + βz
r−

1
2 (z+2+βz)

+ 2c3(z − 1)(−2 + 3z − βz)
2 + z − βz

r−
1
2 (z+2−βz) + c4, (4.24)

k(r) = 2c1z(1 + z)
2 + z

r−(z+2) + 4c2(z − 1)
2 + z + βz

r−
1
2 (z+2+βz) + 4c3(z − 1)

2 + z − βz
r−

1
2 (z+2−βz) + c5, (4.25)

where βz ≡
√

9z2 + 4z + 12. In order to satisfy the asymptotically Lifshitz boundary
conditions we should set constants c4 = c5 = 0, which is merely a redefinition of coordinates.
Moreover, c3 should set to be zero since it is a growing mode as r →∞. Therefore, we are
left with two free parameters c1, c2 for the constant scalar sector. With the scalar mode
solutions in hand, we can now calculate the on-shell value of the action (4.12)

S = −4c1(z − 1)z
z + 2 . (4.26)

Energy (4.13) is also composed of only scalar modes

E = −2rz+2 (2(z − 1)j + rk′
)

= 4c1(z2 + 1). (4.27)

As a side note, even we let all the modes in the solution (4.23)–(4.25) the on-shell action
and the energy stays the same.

Before moving on to the vector and tensor modes, let us present the results on the
ĉΛ(r) and b̂i3(r) components of the gauge field perturbation. The field equations for these
components are

(z + 2)ĉi(r) + rĉ′i(r) + rεi
j

√
z + 1

[
(z + 3)b̂′j3(r) + rb̂′′j3(r)

]
= 0, (4.28)

ĉi(r) +
rεi

j b̂′j3(r)
√
z + 1

= 0. (4.29)

This system of equations is underdetermined, signalling the perturbations ĉi and b̂i3 are
pure gauge. In stress-energy tensor (4.13)–(4.16), these functions appear with time and
spatial derivatives, therefore, do not contribute to the constant perturbations, maintaining
the gauge independence of conserved quantities. Finally, ĉ3(r) is fixed to zero by its field
equation, ensuring a symmetric spatial stress tensor.

4.2.2 Vector modes

We next consider the contribution from the vector modes. The perturbations v̂1i(r), v̂2i(r)
are coupled

r2v̂′′1i − r4−2z v̂′′2i + (3z + 1)rv̂′1i − (z + 3)r3−2z v̂′2i = 0, (4.30)
r2v̂′′2i + r2z−1v̂′1i − (z − 4)rv̂′2i = 0, (4.31)

– 14 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
2

and â3(r) has its own decoupled equation

r2â′′3(r) + (z + 3)râ′3(r)− 2â3(r) = 0. (4.32)

The solutions of v̂1i, v̂2i has two branches, for z 6= 4

v̂1i(r) = − c1i
z + 2 r

−(z+2) + (1− 2z)c2i
3z r−3z + c3i, (4.33)

v̂2i(r) = c1i
z − 4r

−(4−z) − c2i
z + 2r

−(z+2) + c4i, (4.34)

and z = 4

v̂1i(r) = − c1i
6r6 −

7c2i
12r12 + c3i, (4.35)

v̂2i(r) = c1i log r − c2i
6r6 + c4i. (4.36)

Finally the solutions for â3(r) reads

â3(r) = a31 r
−(2
√

2+
√

2z+
√

24+8z+2z2)
2
√

2 + a32 r
−(2
√

2+
√

2z−
√

24+8z+2z2)
2
√

2 . (4.37)

From the solutions we compute the energy flux and the momentum density as follows

E i = −2c2jδij(z − 1), (4.38)
Pi = 2c1i(z − 1). (4.39)

The solutions are similar to the ones in [7] so their analysis is the same. The coefficient c3i
represents the shifting of the coordinate t→ t+ c3ix

i, and the coefficient c4i represents the
shift xi → xi+ c4it, therefore they are a pure gauge and can be set to zero. The linearisation
is adequate for c1i in v̂2i only for 2 > z > 1 and at z ≥ 4, we need to set it to zero since it
becomes a growing mode, spoiling the boundary conditions.

Finally, the solution â3(r) corresponds to the perturbations in the electric charge. Since
the background solution is purely magnetic, this mode does not contribute to the stress-
energy complex as it appears with a boundary coordinate derivative in (4.14). Therefore,
we will ignore this solution in constant perturbations.

4.2.3 Tensor modes

There are two coupled systems of equations for tensor modes. The first one involves the
diagonal components

2r2b′′d(r) + r2t′′d(r) + r(z + 1)t′d(r) + 2r(z + 3)b′d(r) + 4(z + 1)bd(r) = 0, (4.40)
r2t′′d(r) + r(3z + 1)t′d(r) + 4r(z − 1)b′d(r) + 4(z − 1)bd(r) = 0, (4.41)

with the solutions

td(r) = td1 r
−(z+2) + td2 r

− 1
2 (z+2+ξz) + td3 r

− 1
2 (z+2−ξz) + td4, (4.42)

bd(r) = − td1(z + 2)
2(z + 1) r

−(z+2) + td2(2− 3z + ξz)
4(z − 1) r−

1
2 (z+2+ξz) + td3(2− 3z − ξz)

4(z − 1) r−
1
2 (z+2−ξz),

(4.43)
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where ξz ≡
√
z2 − 12z + 4. The parameter ξz is real for z ≥ 2(3 + 2

√
2). In this region it is

possible to include the mode td2. However, its sister mode td1 falls slower than r−(z+2)/2 so
again linear analysis is insufficient to understand this mode clearly. The constant term td4
corresponds to the relative scaling of the x, y coordinates and can be ignored.

The second system is for the off-diagonal tensor modes which have the same structure

2r2b′′o(r) + r2t′′o(r) + r(z + 1)t′o(r) + 2r(z + 3)b′o(r) + 4(z + 1)bo(r) = 0, (4.44)
r2t′′o(r) + r(3z + 1)t′o(r) + 4r(z − 1)b′o(r) + 4(z − 1)bo(r) = 0, (4.45)

where the solutions read

to(r) = to1 r
−(z+2) + to2 r

− 1
2 (z+2+ξz) + to3 r

− 1
2 (z+2−ξz) + to4, (4.46)

bo(r) = − to1(z + 2)
2(z + 1) r

−(z+2) + to2(2− 3z + ξz)
4(z − 1) r−

1
2 (z+2+ξz) + to3(2− 3z − ξz)

4(z − 1) r−
1
2 (z+2−ξz).

(4.47)

The z bound on to2 and the fall rate argument of to3 is identical. This time, the pure gauge
mode to4 is related to the rotation of x, y coordinates.

Now, armed with the tensor solutions, we can finally work out the spatial stress tensor
and check the scaling Ward identity. The components of Πi

j in terms of decomposition
functions are as follows

Π1
1 = −rz+2

(
4(z − 1)bd + r

d

dr
[2(z − 1)bd − f + 2(z − 1)j + (z − 2)k + ztd]

)
, (4.48)

Π2
2 = rz+2

(
4(z − 1)bd + r

d

dr
[2(z − 1)bd + f − 2(z − 1)j − (z − 2)k + ztd]

)
, (4.49)

Π1
2 = −rz+2

(
2r(z − 1)b′o + 4(z − 1)bo + rzt′o

)
. (4.50)

Plugging in the solutions we have

Π1
1 = 2c1z

(
z2 + 1

)
+ 2td1z(z + 2)

z + 1 , (4.51)

Π2
2 = 2c1z

(
z2 + 1

)
− 2td1z(z + 2)

z + 1 , (4.52)

Π1
2 = Π2

1 = 2to1z(z + 2)
z + 1 . (4.53)

Taking these components and the energy (4.27) into account, we see the relation zE = Πi
i

is satisfied. However, a non-trivial check for the conservation equations (3.7) is not possible
here since all the components of the stress-energy complex are constant, leading to a trivial
result. Therefore, we postpone that check to the next section, where we study generalised
perturbations. Finally, as we have checked all the solutions, it is now easy to see that a
smarter choice for the perturbative part of the gauge field is

aµdx
µ = rσv̂2iT

idt+ 1
2rσ

(
2 b̂ijT j + ĥijδ

j
kT

k
)
dxi, (4.54)

or in flat indices

AIΛT
Λ = σ

(
δIi + b̂ijδ

Ij
)
T i. (4.55)
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4.3 General perturbations and solutions

Having dealt with the constant perturbations, let us switch the gears and continue with
the perturbations that depend on time and boundary coordinates in the form of plane
waves along x direction. Again, exploiting the background symmetry, we will group the
perturbations as scalar and vector parts. We also introduce factors of k and ω to ensure that
the field equations will involve even powers of k, ω so that we can perform an expansion, as
the system of equations will get quite complicated to solve in full form.

With this in mind, the scalar perturbations for the metric side read

ĥtt = f(r)ei(ωt+kx), v̂11 = k ωs1(r)ei(ωt+kx), (4.56)
ĥxx = (kL(r) + k2kT (r))ei(ωt+kx), ĥyy = (kL(r)− k2kT (r))ei(ωt+kx), (4.57)

and on the matter side we have

b̂11 = (bL(r) + k2bT (r))ei(ωt+kx), b̂22 = (bL(r)− k2bT (r))ei(ωt+kx), (4.58)
v̂21 = k ωs2(r)ei(ωt+kx), b̂23 = iks3(r)ei(ωt+kx), (4.59)
ĉ1 = iks4(r)ei(ωt+kx). (4.60)

On the other hand, the vector perturbations for the metric are as follows

v̂12 = k ωv1(r)ei(ωt+kx), (4.61)
ĥ12 = v2(r)ei(ωt+kx), (4.62)

and finally the matter perturbations are chosen as

v̂22 = k ωv3(r)ei(ωt+kx), b̂13 = ikv6(r)ei(ωt+kx), (4.63)
â3 = iωv4(r)ei(ωt+kx), ĉ2 = ikv7(r)ei(ωt+kx), (4.64)
b̂12 = v5(r)ei(ωt+kx), ĉ3 = v8(r)ei(ωt+kx). (4.65)

In the coming sections, we will find solutions to these perturbations starting from the scalar
modes and prove that the conservation laws are satisfied.

4.3.1 Scalar modes

Let us start with the scalar mode functions that contribute to the stress energy tensor
complex in the following way

E = −2rz+2
[
2(z − 1)bL + rk′L −

k2(z − 1)s3

r
√
z + 1

]
ei(ωt+kx), (4.66)

Ex = −kωrz+2
[
r2z−1s′1 − rs′2 + 2(z − 1)s3

r
√
z + 1

]
ei(ωt+kx), (4.67)

Px = −kωrz+2
[
rs′1 − (2z − 1)r−2z+3s′2 − 2(z − 1)r1−2zs4

]
ei(ωt+kx) (4.68)

Πx
x = −rz+2

[
k2
{

4(z − 1)bT + 2(z − 1)rb′T + zrk′T + 2(z − 1)s4
r

}

+ r(2(z − 1)b′L − f ′ + (z − 2)k′L)
]
ei(ωt+kx), (4.69)
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Πy
y = −rz+2

[
− k2 {4(z − 1)bT + 2(z − 1)rb′T + zrk′T

}
+ r(2(z − 1)b′L − f ′ + (z − 2)k′L)

]
ei(ωt+kx). (4.70)

Plugging in the plane wave ansatz, the conservation equations (3.7) will yield

ωE + kEx = 0, ωPx + kΠx
x = 0, zE = Πi

i. (4.71)

It can be shown that the first conservation equation is equal to tr component of the linearized
Einstein equations (4.10), i.e. Etr, and the second one is a combination of the Ex1r and E1

r ,
therefore the conservation laws are guaranteed to be satisfied on-shell.

In this system of equations, there are nine functions to solve, and there are twelve
equations in total, so three of the equations can be written as a linear combination of
others. In appendix B, we give all the field equations and the relations in detail. The main
difference from the constant perturbations is that we lose the Euler type equation structure.
Thus, we are not able to solve the system in its full form, and our line of attack will be
expanding the perturbation functions in even powers of k, ω, i.e. F = ∑

m,n k
2mω2nF (m,n)

where m,n = 0, 1, 2 · · · . Then, the components of the stress energy tensor can be written as

E =
∑
m,n

k2mω2n(E(m,n)
1 + k2E(m,n)

2 )ei(ωt+kx), (4.72)

Ex =
∑
m,n

k2m+1ω2n+1Ex(m,n)ei(ωt+kx), (4.73)

Px =
∑
m,n

k2m+1ω2n+1P(m,n)
x ei(ωt+kx) (4.74)

Πx
x =

∑
m,n

k2mω2n(Π(m,n)
L + k2Π(m,n)

S + k2Π(m,n)
T )ei(ωt+kx), (4.75)

Πy
y =

∑
m,n

k2mω2n(Π(m,n)
L − k2Π(m,n)

T )ei(ωt+kx), (4.76)

where the following are defined to evaluate (4.71) in a more organized way

E(m,n)
1 = −2rz+2

[
2(z − 1)b(m,n)

L + rk
(m,n)′
L

]
, (4.77)

E(m,n)
2 = −2rz+2

[
−(z − 1)s(m,n)

3
r
√
z + 1

]
, (4.78)

Ex(m,n) = −rz+2
[
r2z−1s

(m,n)′
1 − rs(m,n)′

2 + 2(z − 1)s(m,n)
3

r
√
z + 1

]
, (4.79)

P(m,n)
x = −rz+2

[
rs

(m,n)′
1 − (2z − 1)r−2z+3s

(m,n)′
2 − 2(z − 1)r1−2zs

(m,n)
4

]
, (4.80)

Π(m,n)
L = −rz+2

[
2(z − 1)rb(m,n)′

L − rf (m,n)′ + (z − 2)rk(m,n)′
L

]
, (4.81)

Π(m,n)
T = −rz+2

[
4(z − 1)b(m,n)

T + 2(z − 1)rb(m,n)′
T + zrk

(m,n)′
T

]
, (4.82)

Π(m,n)
S = −rz+2

[
2(z − 1)s(m,n)

4
r

]
. (4.83)
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Before moving on to the solutions, let us impose conservation equations (4.71)
to (4.73)–(4.76) and infer at which order we would get non-zero contribution for the
components (4.77)–(4.82).

E(m+1,n)
1 + E(m,n)

2 + Ex(m,n) = 0, (4.84)

P(m+1,n)
x + Π(m+1,n+1)

L + Π(m,n+1)
T + Π(m,n+1)

S = 0, (4.85)

z(E(m+1,n)
1 + E(m,n)

2 )− 2Π(m+1,n)
L −Π(m,n)

L = 0. (4.86)

From the first equation it follows that E(0,n)
1 = 0. Then, using second and third relations, it

is easy to see Π(0,n)
L = P(0,n)

x = 0.
Close scrutiny of the expanded field equations will reveal the following structure:

at every order (m,n) there will be a part of field equations that will correspond to the
homogeneous solutions which are the same with constant perturbations. Then through the
expansion, these homogeneous solutions are sourced by lower-order expansion ones, leading
to the particular integrals. However, the particular integrals are always suppressed by powers
of r, therefore not contributing to the stress energy tensor. As a simple represantative of
this structure, consider the following (0, 0) and (1, 0) order expansions of the equation (B.1)

r2
(
k

(0,0)′′
L + f (0,0)′′

)
+ r

[
(z + 3)k(0,0)′

L + 2(z + 1)f (0,0)′
]
− 4(z2 − 1)b(0,0)

L = 0 (4.87)

r2
(
k

(1,0)′′
L + f (1,0)′′

)
+ r

[
(z + 3)k(1,0)′

L + 2(z + 1)f (1,0)′
]
− 4(z2 − 1)b(1,0)

L

= f (0,0)

2r2 −
2(z2 − 1)√
z + 1

s
(0,0)
3
r

. (4.88)

Therefore, once the zeroth-order equations are solved, the first order homogenous solutions
are identical with extra particular solutions sourced by the zeroth-order ones. Moreover,
unlike constant perturbations, the solutions now have extra constraints which will relate
different modes to ensure the conservation equations are satisfied.

Taking all these into account, we have the following solution structure at the order
(m,n) for the equations.4

For b(m,n)
L , k

(m,n)
L , f (m,n)

b
(m,n)
L (r) = bmn1

L r−(z+2) + bmn2
L r−

1
2 (z+2+βz) +O(rp) (4.89)

f (m,n)(r) = f mn1 r−(z+2) + f mn2 r−
1
2 (z+2+βz) +O(rp) (4.90)

k
(m,n)
L (r) = kmn1

L r−(z+2) + kmn2
L r−

1
2 (z+2+βz) +O(rp) (4.91)

for k(m,n)
T , b

(m,n)
T

k
(m,n)
T (r) = kmn1

T r−(z+2) + kmn2
T r−

1
2 (z+2−ξz) + kmn3

T r−
1
2 (z+2+ξz) +O(rp), (4.92)

b
(m,n)
T (r) = bmn1

T r−(z+2) + bmn2
T r−

1
2 (z+2−ξz) + bmn3

T r−
1
2 (z+2+ξz) +O(rp), (4.93)

4In this and the following section, we are going to use the boldfaced characters for labelling modes,
e.g. k103

T where first two upper indices tags the corresponding expansion parameter for wavenumber k and
frequency ω respectively, i.e. k = 1 and ω = 0 in this case. The last index is the mode number.
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for s(m,n)
2 (r), s(m,n)

1 (r)

s
(m,n)
1 (r) = smn1

1 r−(z+2) + smn2
1 r−3z +O(rp) (4.94)

s
(m,n)
2 (r) = smn1

2 r−(z+2) + smn2
2 r−(4−z) +O(rp) (4.95)

for s(m,n)
3 (r), s(m,n)

4 (r)

s
(m,n)
3 (r) = smn1

3 r−(z+1) +O(rp) (4.96)

s
(m,n)
4 (r) = smn1

4 r−(z+1) +O(rp) (4.97)

where O(rp) corresponds to particular integrals that do not contribute to the stress energy
tensor. Actually we will only track down and solve the modes which contribute to the
stress energy complex when evaluated at infinity. To that end, “solving” here will mean
finding out the relation between the contributing modes. After meticulousy working out
the expanded field equations, we have the following solutions

f 0n1 = 0, n ≥ 0,

f mn1 = −4(z + 1)bmn1
L

z + 2 , m > 0, n ≥ 0,

k0n1
L = 0, n ≥ 0,

kmn1
L = 2z(z + 1)bmn1

L

z + 2 , m > 0, n ≥ 0,

b0n1
L = 0, n ≥ 0,

bm01
T = 1

2(z2 + 1)b(m+1)01
L , m ≥ 0,

km01
T = −(z + 1)(z2 + 1)b(m+1)01

L

z + 2 , m ≥ 0,

kmn1
T = −2(z + 1)bmn1

T

z + 2 , m ≥ 0, n > 0,

s0n1
1 = 0, n ≥ 0,

smn1
1 =

z
(
(z2 + 1)bm(n+1)1

L − 2b(m-1)(n+1)1
T

)
(z + 2)(z − 1) , m > 0, n ≥ 0,

smn2
1 = −2(2z − 1)(z2 + 1)b(m+1)n1

L

3z(z − 1) , m ≥ 0, n ≥ 0,

smn1
2 = −2(z2 + 1)b(m+1)n1

L

(z + 2)(z − 1) , m ≥ 0, n ≥ 0,

s0n2
2 = 0, n ≥ 0,

smn2
2 = −

z
(
(z2 + 1)bm(n+1)1

L − b(m-1)(n+1)1
T

)
(z + 1)(z − 4) , m > 0, n ≥ 0.

Thus, we find that the scalar modes are parametrised by two coefficients bmn1
L for m >

0, n ≥ 0 and bmn1
T for m ≥ 0, n > 0. The solution smn2

2 has a singularity at z = 4, but that
do not “leak” into the conserved quantities computed below, so we avoid going over the
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same analysis for z = 4. Moreover, at z ≥ 4 that mode is already constant or growing so it
should be discarded. The modes smn1

3 and smn1
4 do not contribute to the stress energy tensor.

As a matter of fact, these correspond to the pure gauge components that are discussed in
constant pertubations so they also seem to stay as pure gauge in this case.

Plugging the solutions (4.89)–(4.97) in (4.77)–(4.83) yield the following results for the
components of the stress energy tensor

E(0,n)
1 = 0, n ≥ 0,

E(m,n)
1 = 4(z2 + 1)bmn1

L , m > 0, n ≥ 0,

E(m,n)
2 = 0, m ≥ 0, n ≥ 0,
Ex(m,n) = −4(z2 + 1)b(m+1)n1

L , m ≥ 0, n ≥ 0,
P(0,n)
x = 0, n ≥ 0,

P(m,n)
x = −2z

[
(z2 + 1)bm(n+1)1

L − 2b(m-1)(n+1)1
T

]
, m > 0, n ≥ 0,

Π(0,n)
L = 0, n ≥ 0,

Π(m,n)
L = 2z(z2 + 1)bmn1

L , m > 0, n ≥ 0,

Π(m,0)
T = −2z(z2 + 1)b(m+1)01

L , m ≥ 0,

Π(m,n)
T = −4zbmn1

T , m ≥ 0, n > 0,

Π(m,n)
S = 0, m ≥, n ≥ 0,

which are all evaluated at infinity. It is now straightforward to verify that the conserva-
tion (4.84), (4.85) and scaling (4.86) equations are satisfied.

4.3.2 Vector modes

The next and final step in general perturbations is the vector mode solutions. The relevant
components of the energy momentum complex read

Ey = −kωrz+2
[
r2z−1v′1 − rv′3 −

2(z − 1)√
z + 1

(v6
r

+ rz−2v4

)]
ei(ωt+kx), (4.98)

Py = −kωrz+2
[
rv′1 − (2z − 1)r3−2zv′3 − 2(z − 1)r1−2zv8

]
ei(ωt+kx), (4.99)

Πx
y = −rz+2

[
zrv′2 + 2(z − 1)

(
rv′5 + 2v5 +

√
z + 1v7 + k2v8

r

)]
ei(ωt+kx). (4.100)

This time, the only conservation law needed to be fullfilled is the conservation of momenta
along y direction

ωPy + kΠx
y = 0, (4.101)

which can be written as a combination of E2
r and Ex2r. On the other hand, Ey is not

constrained. We take the expansions of (4.98)–(4.100) in the form

Ey =
∑
m,n

k2mω2nEy(m,n), (4.102)

– 21 –



J
H
E
P
1
0
(
2
0
2
1
)
2
2
2

Py =
∑
m,n

k2m+1ω2n+1P(m,n)
y , (4.103)

Πx
y =

∑
m,n

k2mω2nΠx(m,n)
y , (4.104)

which amount to the conservation equation

P(m,n)
y + Πx(m,n+1)

y = 0. (4.105)

The structure of expanded field equations remains similar so, following the same strategy
as before we write down the contributing solutions

v(m,n)
1 (r) = vmn1

1 r−(z+2) + vmn2
1 r−3z +O(rp), (4.106)

v(m,n)
2 (r) = vmn1

2 r−(z+2) +O(rp), (4.107)

v(m,n)
3 (r) = vmn1

3 r−(z+2) + vmn2
3 r−(4−z) +O(rp), (4.108)

v(m,n)
4 (r) = vmn1

4 r−2z +O(rp), (4.109)

v(m,n)
5 (r) = vmn1

5 r−(z+2) +O(rp), (4.110)

v(m,n)
6 (r) = vmn1

6 r−(z+1) +O(rp), (4.111)

v(m,n)
7 (r) = vmn1

7 r−(z+2) +O(rp) (4.112)

v(m,n)
8 (r) = vmn1

8 r−(z+1) + vmn2
8 r−(3−z) +O(rp). (4.113)

In addition to the vmn2
3 which is growing for z ≥ 4, we need to keep an eye on vmn2

8 mode for
z ≥ 3. Feeding these into field equations and grinding through several orders we arrive at

v0n1
1 = vm02

1 = 0, m ≥ 0, n ≥ 0,

vmn2
1 = − z(z2 + z + 1)(2z2 + 9z + 13)

(z + 2)(2z4 + 2z3 − z2 + 3z − 2)v(m+1)(n-1)1
1 , m ≥ 0, n > 0,

vm01
2 = v0n1

2 = 0, m ≥ 0, n ≥ 0,

vmn1
2 = − z(z − 1)(4z + 11)(z + 1)2

(z + 2)(2z4 + 2z3 − z2 + 3z − 2)vm(n-1)1
1 , m > 0, n > 0,

v0n1
3 = vm02

3 = 0, m ≥ 0, n ≥ 0,

vmn1
3 = −(z2 + z + 1)(4z2 + 7z − 3)

(2z4 + 2z3 − z2 + 3z − 2) v(m+1)(n-1)1
1 , m ≥ 0, n > 0,

vmn2
3 = −z + 2

z − 4vmn1
1 , m > 0, n ≥ 0,

vmn1
4 = 0, m ≥ 0, n ≥ 0,

vm01
5 = v0n1

5 = 0, m ≥ 0, n ≥ 0,

vmn1
5 = − 3(z4 + 8z3 + 17z2 + 12z − 2)

2(z + 2)(2z4 + 2z3 − z2 + 3z − 2)vm(n-1)1
1 , m > 0, n > 0,

vm01
6 = 0, m ≥ 0,

vmn1
6 = 2

√
z + 1(z2 + z + 1)(2z3 + 9z2 + 10z − 3)

(z + 2)(2z4 + 2z3 − z2 + 3z + 2) v(m+1)(n-1)1
1 , m ≥ 0, n > 0,
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vm01
7 = v0n1

7 = 0, m ≥ 0, n ≥ 0,

vmn1
7 = (z + 1)3/2(z2 + z + 1)

(2z4 + 2z3 − z2 + 3z − 2)vm(n-1)1
1 , m > 0, n > 0,

vm01
8 = 0, m ≥ 0,

vmn1
8 = −2(z + 1)(z2 + z + 1)(2z3 + 9z2 + 10z − 3)

(2z5 + 6z4 + 3z3 + z2 + 4z − 4) v(m+1)(n-1)1
1 , m ≥ 0, n > 0,

vmn2
8 = 0, m ≥ 0, n ≥ 0.

In this case the solutions are parametrized by only vmn1
1 for m > 0, n ≥ 0. Similar to

the constant perturbations, the mode vmn1
4 corresponding to the electric charge does not

contribute here. Moreover, the mode vmn2
8 which we mentioned before has no nontrivial

solution. Gathering all the solutions, we compute the vector components of stress tensor

P(0,n)
y = 0, n ≥ 0, (4.114)
P(m,n)
y = −2(z + 2)(z − 1)vmn1

1 , m > 0, n ≥ 0, (4.115)
Πx(m,0)

y = Πx(0,n)
y = 0, m ≥ 0, n ≥ 0, (4.116)

Πx(m,n)
y = 2(z + 2)(z − 1)vm(n-1)1

1 , m > 0, n > 0, (4.117)
Ey(m,0) = 0, m ≥ 0, (4.118)

Ey(m,n) = 6z(z − 1)(z + 3)(z2 + z + 1)
2z4 + 2z3 − z2 + 3z − 2 v(m+1)(n-1)1

1 , m ≥ 0, n > 0. (4.119)

It is now evident that (4.105) is satisfied.
In summary, the preceding two sections showed that the conservation laws are satisfied

on-shell. We perform this by first verifying that the conservation equations are a combination
of full field equations. Then, we solve the expanded field equations for the modes that
contribute to the stress-energy tensor and compute the values of components explicitly. It is
worth emphasizing that we argued only from the structure of the expanded field equations
that the particular solutions would be suppressed. We did not solve the equations explicitly
since the number of terms and complications of the equations proliferate as we go on higher
orders in (n,m). It is possible (especially for the vector modes) that some of the particular
solutions may grow large and spoil the behavior of stress-energy tensor at infinity. In any
case, as demonstrated in [7], it is possible to kill these divergences by adding Sderiv to the
action and adjust the free parameters accordingly.

5 Numerical black holes and thermodynamics

The final task we undertake will be to study the conserved quantities and thermodynamics
of the numerical black hole solutions found in [21]. The solutions admit Lifshitz spacetime
as a background and for a fixed horizon radius, depend on one parameter, the gauge field
strength at the horizon. The behavior of solutions differs among horizon topologies; that
being said, in this work we will restrict our attention to the planar ones, as the stress-energy
complex is constructed for the planar boundary. In [22], it was discussed (through linear
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analysis) that unlike their AdS counterparts in other models [43] which can have non-zero
YM charges, the Lifshitz black holes are analogous to the Minkowski family [27], i.e., they
do not possess a global YM charge. In this section, our first aim is to compute the numerical
value of the energy of the solutions and show they are finite, obeying scale relations. Then,
employing the energies for different horizon radius, we will demonstrate that the alternative
Smarr relation and the first law of thermodynamics hold without any YM hair modification,
extending the result of [22] into the non-linear regime.

Let us start with the redefinitions of metric and gauge field functions which will help
us to cast them in more convenient forms for numerical purposes. The metric is chosen in
the following way

ds2 = −r2zf(r)2dt2 + r2(dx2 + dy2) + g(r)2dr2

r2 , (5.1)

and the gauge field (2.7) redefinitions are as follows

R(r) = σrh(r), R(r)′ = σj(r). (5.2)

The function j(r) is defined to reduce the boundary value problem to an initial value
problem and employ the shooting method for numerical solution of field equations. Thus,
as r → ∞, all functions will asymptote to unity to have Lifshitz background. The first
order field equations for these choices read5

rf (r)′ =−f (r)
(

(z−1)− j (r)2

2 (z−1)+ g (r)2 h (r)4

4
(
z2−1

)
− g (r)2

4
(
3+2z+z2

)
+ 3

2

)
,

(5.3)

rj (r)′ = j (r)+g (r)2 h (r)3 (z+1)− g (r)2 j (r)
2

(
z2 +2z+3

)
+ g (r)2 h (r)4 j (r)

2
(
z2−1

)
,

(5.4)

rg (r)′ = g (r) j (r)2

2 (z−1)+ g (r)3 h (r)4

4
(
z2−1

)
−g (r)3

(
3+2z+z2

)
+ 3g (r)

2 , (5.5)

rh (r)′ = j(r)−h(r). (5.6)

Here, the equation (5.3) is linear in function f(r) so the overall normalization of f is not
fixed. Thus, the numerical value of f(r)→ f∞ will be normalized to unity at infinity by
dividing f∞, which corresponds to rescaling of the time coordinate. In numerical integration,
we will set the initial value at the horizon, i.e., f(R0) = 1 then deal with the normalization
at the end.

Before moving on to numerical solutions, let us shortly mention about the horizon
expansions which will shed light on the initial values of functions and shooting parameter.
Provided gtt and grr components of (5.1) have a simple zero and a simple pole, the black

5The reader is referred to [21] for details of the numerical solutions.
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Figure 1. The figure plots the gauge field functions h(r) and j(r) as a function of radial distance r.
This is an example of a large black hole with R0 = 10 for different values of z.

hole will be non-extremal. This argument leads to the following expansions at the horizon

f(r) =
√
r −R0

∞∑
n=0

fn(r −R0)n, (5.7)

g(r) = 1√
r −R0

∞∑
n=0

gn(r −R0)n. (5.8)

Incorporating these into field equations, one can study the series solutions [21] and extract
info on initial values.

The next step is to numerically integrate the system of equations (5.3)–(5.6) by fixing
one of the free parameters, i.e. the event horizon radius R0 and make the functions g, h, j
converge to unity asymptotically, by fine-tuning the initial value of h(R0) = h0. Setting
R0 = 10 we find solutions for z = 2, 3, 4 and represented them in figures 1, 2. The value of
the shooting parameter h0 varies with different z but stays the same for large and small
planar black holes. On the other hand, for other topologies, the shooting parameter and
the behavior of functions vary for small and large black holes with respect to the length
scale L (which should appear in (5.1) but fixed to L = 1 in our discussion).

Having solutions in hand, we now appeal to the stress tensor definitions (3.12), (3.13)
and compute the non-zero components

E= rz+2f

(
z+3−(z−1)h4− 4

g

)
, (5.9)

Πx
x = Πy

y = rz+2

g

[
2rf ′+f

(
g
(
(z−1)h4−z−3

)
+2
(
z+1−r(z−1)hh′−(z−1)h2

))]
.

(5.10)
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Figure 2. The figure shows the metric functions f(r) and g(r) as a function of radius r with R0 = 10.

z = 2 z = 3 z = 4
zE 3.940× 104 5.923× 105 7.921× 106

Πi
i 3.952× 104 5.927× 105 7.923× 106

Table 1. The numerical values of zE and Πi
i at r →∞.

As in the case of field equation (5.3) the energy and diagonal components of the spatial stress
tensor are linear in f and will be normalised with f∞ of the corresponding z value. After
evaluating the numerical solutions on (5.9) and (5.10), we plot the results in figures 3, 4.

First relation we check is whether the presence of a black hole breaks the scale invariance
or not. It is evident from the values in the table 1 that the scaling Ward identity zE = Πi

i

still holds within the bounds of numerical errors.
As a second and final check, we verify the thermodynamic relations of these solutions.

The energy E defined here is shown to agree with the thermodynamic energy density
obtained by the Euclidean version of the black holes [7]. The proof is quite general so, it is
possible to extend and apply it to our case. For the planar Lifshitz black holes, i.e. k = 0,
it was also shown that [39] the thermodynamic quantities are consistent with an alternative
Smarr relation

(D + z − 2)E = (D − 2)TS, (5.11)

and an accompanying first law

dE = TdS. (5.12)
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Figure 3. The energy of a black holes with R0 = 10. Figure shows the energy for different cases
with z = 2, 3, 4.

    

×

×

×

×

×

    

×

×

×

×
×

Figure 4. The figure illustrates the Πx
x = Πy

y components of the black holes with R0 = 10. The
smaller figure is a close up to demonstrate the behaviour for z = 2.
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Figure 5. The circle, square, and triangle points are numerical values generated from (5.9)
for different horizon values, while solid, dashed, dotted curves are quartic, quintic and sextic
polynomials, respectively. As demonstrated, the numerical values fit nicely to their corresponding
polynomial curves.

These two equalities have the extended versions when the solutions admit global charges,
but as we discussed before, in [22] by studying the linearized solutions, it was argued that
the exclusion of the c3 mode (as it diverges for r →∞) implies the lack of global YM charge.
In accordance with this reasoning (5.11), (5.12) should hold in their simplest form. In order
to check this claim, we first compute the Hawking temperature through Wick rotation with
an assumption of regularity at the horizon

T = rz+1

4π

√
f(r)′g(r)′

∣∣∣∣∣
r=R0

, (5.13)

and the entropy is S = πR2
0 where we suppose suitable identifications and volume renor-

malizations. From near horizon expansions (5.7), (5.8) it is easy to see T ∼ Rz0. Then
the first law (5.12) implies the energy should scale as E ∼ Rz+2

0 , which is in agreement
with the LD+z−2 scaling that can be obtained from the Euler’s relation in (5.11). This is
different from LD−3 scaling in AdS as alluded in [39]. On the numerical side, we verify this
feature by plotting the energy of the black holes with respect to their horizon radius having
different dynamical exponents in figure 5.

It remains to verify the Smarr relation; to that end, we opted to compute the left and
right-hand side of (5.11) numerically and represent them in the table 2. For the sake of
clarity, we also calculate the ratio 2TS/(z + 2)E (which is not unity, as we did not include
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z = 2 z = 3 z = 4
(z + 2)E 7.425× 108 9.188× 109 1.105× 1011

2TS 9.296× 1013 1.149× 1015 1.381× 1016

2TS/(z+2)E 1.251× 105 1.250× 105 1.250× 105

Table 2. The numerical values of (z + 2)E and 2TS for z = 2, 3, 4. The final row of the table
contains the ratio 2TS/(z + 2)E. Here we did not divide the first two rows with f∞ as their ratio
will be the same.

the physical constants in our numerical computations) to show that the Smarr relation
holds (5.11).

With this final result, we demonstrated that the thermodynamic relations hold without
an additional YM charge. As advertised earlier in [22], this makes the numerical black holes
of [21] hairy solutions. The stability of these black holes is another important question that
can save the no-hair theorem.

In short, the energy definition is shown to work well in the non-linear regime, producing
finite results with the scaling properties left intact. Moreover, the thermodynamical energy
is in agreement with the Smarr formula and the first law, confirming the SU(2) hair of the
black holes.

6 Conclusions

In this work, we have computed the holographic stress-energy tensor of the EYM model
with Lifshitz backgrounds as a solution. After setting the stage for a properly defined
tensor, the main results can be outlined as follows.

First, we study the linearised field equations to show that the action and the stress-
energy tensor stay finite for a more general class of asymptotically Lifshitz spacetimes. The
choice for the form of perturbation plays an essential role in decomposing field equations
into scalar, vector, and tensor modes. For constant perturbations, we were able to solve the
linearised equations in their full forms and choose the modes that asymptote to the Lifshitz
backgrounds. We can summarise the modes as:

• The modes c1, td1, to1 have fall rate (z + 2) and contribute to the E ,Πi
j components

of the stress tensor.

• The mode c1i have the fall rates (z + 2), (4− z) and contribute to Pi.

• The mode c2i have the fall rates (z + 2), 3z and contribute to E i.

• The mode c2 has a fall rate (z + 2 + βz) for z > 1, and the modes td2, to2 decay as
(z + 2 + ξz) for z ≥ 2(3 + 2

√
2). These do not contribute to the stress tensor and

related to the expectation value of the operator associated with the SU(2) gauge field.

On the other hand, in general perturbations, the complicated structure does not allow for
an exact solution. Nevertheless, it was possible to solve the system through an expansion
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in k and ω. In both instances (constant and generalised), the conservation and scaling laws
are shown to be satisfied on-shell.

In the second part of the work, we turned our attention to the numerical black hole
solutions of [21]. Focusing on the planar ones, we find the energy and the spatial stress
tensor for different z values and show that they are finite while satisfying the scaling identity
zE = Πi

i. The results prove that the stress tensor definition is reliable in the non-linear
regime. A more non-trivial check was the thermodynamic equalities satisfied by these black
holes. The Smarr relation and the first law hold without the YM parameter so that the
solutions are hairy, like their asymptotically flat and AdS counterparts.

There are several directions for further exploration in this model. First, on the
holography side, using the results of the mode analysis as a starting point, it is now
possible to look for the divergences in the one-point functions and perform holographic
renormalisation. It will also be interesting to see the structure of TNC geometry that
will be conjured on the boundary. Along these lines, it can be helpful to investigate the
eleven-dimensional model [23], which might help to extract information about the sources
and VeVs.

Finally, hairy black holes of AdS are used in modelling the second-order transitions [44],
where an abelian gauge symmetry is spontaneously broken near a black hole horizon in
ADS using a condensate of SU(2) gauge fields. A similar setup where the AdS solution is
replaced with a hairy Lifshitz black hole can now be considered by turning on the electric
part Q(r) in the gauge field ansatz. We plan to return these issues in the future.

Acknowledgments

I am grateful to Simon F. Ross for the detailed explanation of his work, comments and
suggestions. I also thank Gökhan Alkaç, Özgür Sarıoğlu for discussions. Finally I thank
Gökhan Alkaç for his critical reading of the manuscript. This work was supported by the
National Natural Science Foundation of China under Grant No. 11875136 and the Major
Program of the National Natural Science Foundation of China under Grant No. 11690021.

A Linearized quantities

Here we present some of the linearized objects that are used to compute the perturbative
action and the field equations.

K = K̄+KL = (z+2)+ r

2∂r[ĥtt+ ĥii], (A.1)

R= R̄+RL =−2(3+z(2+z))−r
(
(3+2z)∂rĥtt+(4+z)∂rĥii+r∂2

r [ĥtt+ ĥii]
)
, (A.2)

FΛ
µνF

µν
Λ = F̄Λ

µνF̄
µν
Λ +(FΛ

µνF
µν
Λ )L = 2(z+1)

(
3+z+2(2+z)b̂ii+r∂r[ĥii+2b̂ii]

)
, (A.3)

FΛ
abF

ab
Λ = 4(z+1)2(1+2b̂ii). (A.4)
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B Field equations for generalised perturbations

2.1 Field equations for the scalar modes

In this section we provide the scalar mode field equations for the generalised perturbations.
First, let us call the linearized equations for the gravity sector as Eµν and for the matter
sector EΛ

µ . The field equations for the scalar modes read

r2 (f ′′+k′′L)+2(z+1)rf ′+(z+3)rk′L−4
(
z2−1

)
bL = k2

2r2 f−
2k2(z2−1)s3

r
√
z+1

− ω
2

r2z kL−
k2ω2

r2 s1

(B.1)

r2(2b′′L+k′′L)+r(z+3)(2b′L+k′L)+rf ′−4(z+1)bL =− k
2

r

(
rs′4+zs4+3

√
z+1s3

)
+ k2

2r2 (2bL+kL)− ω
2

r2z (2bL+kL)+ k2ω2

r2z s2−
k4

r2 (bT +kT ) (B.2)

2rk′L+rf ′−2(z−1)b′L+2(z−1)bL = k2

2r2 (f+kL)− ω
2

r2z kL+ k2(z−1)
r

(
√
z+1s3+s4)

− k4

2r2kT +k2ω2
(
s2
r2z −

s1
r2

)
(B.3)

r2k′′T +4r(z−1)b′T +(3z+1)rk′T +4(z−1)bT−
f

2r2 + 2(z−1)s4
r

=−ω2
(
kT
r2z + s1

r2−
s2
r2z

)
(B.4)

r2(2b′′T +k′′T )+(z+1)rk′T +2(z+3)rb′T +4(z+1)bT +s′4+ zs4
r
−
√
z+1s3
r

+ bL
r2 + kL

2r2

=− ω
2

r2z (2bT +kT−s2)+ k2

2r2 (2bT +kT ) (B.5)

r3−zs′′2−r1−zs′4−(z−4)r2−zs′2−rzs′1+ (z−2)s4
rz

−
√
z+1s3
rz

− 1
2rz+1 (2bL+kL)

= k2
(
bT
rz+1 + kT

2rz+1 + s2
r2

)
(B.6)

r2zs′′1−r2s′′2−(z+3)rs′2+r2z−1(3z+1)s′1−
2(z−1)s4

r
+ 2(z2−1)s3

r
√
z+1

+ kL
r2 = k2kT

r2 (B.7)

2r2(z2−1)s′3√
z+1

+r(f ′+k′L+2(z2−1)s4)+(z−1)(2bL+f+kL)

= k2 (2(z−1)bT +(z−1)kT +rk′T
)
+ω2

(
2(z−1)s1+rs′1−r3−2zs′2

)
(B.8)

2r√
z+1

(
rs′′3 +(z+3)s′3

)
+2
(
rs′4+(z+3)s′3

)
= k2

r2

(
2rbT +rkT + 2s3√

z+1

)
+ω2

(2s1
r
− 2s2
rz
− 2s3

r2z√z+1

)
(B.9)

rk′L+2(z−1)bL =−k2
(
r2z−1s′1

2 − 1
2r

2s′2

)
(B.10)

2r2√z+1s′3+r(2b′L+k′L)+2(z+1)rs4+2bL+f+kL

=−k
2

r
(r(2bT−kT )+2s4+r2(2b′T +k′T ))+2ω2(s1+r1−2z(s4+r2s′2)) (B.11)
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rk′′L+r(z+3)k′L+2(z−1)rb′L+2(z2+z−2)bL = k2
(
kL
2r2 + (z2−1)s3

r
√
z+1

− (z−1)s4
r

)
− k4

2r2kT

(B.12)

In terms of components (B.1)–(B.12) corresponds to (Ex1x1 + Ex2x2), (E1
x1 + E2

x2), Err,
(Ex1x1−Ex2x2), (E1

x1−E
2
x2), E1

t , Etx1 , Ex1r, E3
x2 , Etr, E

1
r , Ett in their order of appearance. Note

that, there are twelve equations and nine functions. Therefore three relations constraint
this system as follows

∂r[(B.10)]−(B.12)+
z+1
r

(B.10)+ k2

2 (B.7)= 0, (B.13)

r∂r[(B.8)]−(z2−1)r (B.9)+(B.1)+(z+2)(B.8)+(z−1)(B.11)+k2(B.4)+ω2 (B.7)
r2z−2 = 0,

(B.14)

r∂r[(B.3)]+(z−1)(B.2)−(B.1)−z (B.12)+(z+2)(B.3)− k2

2r2 (B.8)−
ω2

r2z+1 (B.10)= 0.
(B.15)

We approach the system of equations by first solving (B.8) for s4 algebraically. Then, feeding
this solution into (B.1)–(B.9) we expand the equations in k, ω and solve the homogeneous
parts order by order.

2.2 Field equations for the vector modes

The equations for the vector modes are as follows

r2v′′2 +4(z−1)rv′5+(3z+1)rv′2+4(z−1)v5 =−2k2

r
(z−1)v7−

ω2

r2z v2−k2ω2
(v1
r2−

v3
r2z

)
(B.16)

2r2v′′5 +r2v′′2−2
√
z+1rv′8+2(z+3)rv′5+(z+1)rv′2−2

√
z+1(z+2)v8+4(z+1)v5

= k2
(

v2
r2 + 2v5

r2 −
2
√
z+1v6
r

)
−ω2

(
v2
r2z + 2

√
z+1v4
rz

+ 2v5
r2z

)
(B.17)

r3−zv′′3−r1−zv′7−(z−4)r2−zv′3−rzv′1+(z−2)r−zv7+r−z
√
z+1v6−r−(z+1)v5+ 2

√
z+1
r

v4

+(z−1)v3−
v2

2rz+1 = k2v3
rz+1 (B.18)

2
√
z+1

(
rv′8+(z+2)v8

)
= k2

(√
z+1v6
r

− v2
2r2−

v5
r2−

zv7
r
−v′7

)
+ω2 2

√
z+1v4
rz

+k2ω2 v3
r2z

(B.19)
√
z+1rv′6−v′5−

v′2
2 −

2
√
z+1v8
r

−(z+1)v7−
v5
r

+ v2
2r = k2 v7

r2 +ω2
( v′3
r2z−2−

v1
r
− v7
r2z

)
(B.20)

r2v′′4 +r1−zv′8+r (z+3)v′4−(z−2)r−zv8−2v4 = k2
(√

z+1v1
r2−z + v4

r2 + v6
rz+1 +

√
z+1v3
rz

)
(B.21)
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r2v′′1−r4−2zv′′3−(z+3)r3−2zv′3−(z−1)
(
2r1−2zv7+2r1−2z√z+1v6+2r−z

√
z+1v4

)
+r (3z+1)v′1−r−2zv2 = k2

(v1
r2−

v3
r2z

)
(B.22)

√
z+1(z−1)

(
rv′6−

v8
r
−
√
z+1v7+ v5

r
√
z+1

+ v2

2r
√
z+1

)
+ v′2

2

=ω2
((1−z)v1

r
− v′1

2 −
v′3

2r2z−2

)
(B.23)

r2v′′6−v′8−
√
z+1rv′7+(z+3)rv′6−(z+2)

√
z+1v7−

zv8
r

+
√
z+1v5
r

+
√
z+1v2
2r

=ω2
(
−
√
z+1v1
r

− v4
rz+1 + v6

r2z

)
(B.24)

2(z+1)rv8 = k2
(

v6+rv′6−2
√
z+1v7−

v8
r

)
+ω2

(
r1−2zv8+r2−zv′4+r1−zzv4

)
(B.25)

where the corresponding components are Ex1x2 , E1
x2 , E

2
t , (E1

x2 − E
2
x1), E2

r , E3
t , Etx2 , Ex2r, E3

x1 ,
E3
r . This time there are two constraint equations

∂r[(B.25)]−
√
z+1(B.19)+ z+1

r
(B.25)+ k2

r
(B.24)−ω

2

rz
(B.21)= 0, (B.26)

r∂r[(B.23)]−(z−1)
√
z+1(B.24)−(z−1)(B.20)+(z+3)(B.23)− (B.16)

2r +ω2

2r (B.22)= 0,
(B.27)

as the system is now composed of ten equations and eight functions. After we determine v4
algebraically from (B.23), we expand and solve the system (B.16)–(B.23).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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