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ABSTRACT: A (semiclassical) holographic computation of the deconfinement temperature
at intermediate coupling from (a top-down) .#-theory dual of thermal QCD-like theories,
has been missing in the literature. In the process of filling this gap, we demonstrate a
novel UV-IR connection, (conjecture and provide evidence for) a non-renormalization be-
yond one loop of - chiral perturbation theory [1]-compatible deconfinement T'emperature,
and show equivalence with an Entanglement (as well as Wald) entropy [2] computation, up
to terms Quartic in curvature (R). We demonstrate a Flavor-Memory (FM) effect in the
A -theory uplifts of the gravity duals, wherein the no-braner .#-theory uplift retains the
“memory” of the flavor D7-branes of the parent type IIB dual in the sense that a specific
combination of the aforementioned quartic corrections to the metric components precisely
along the compact part (given by S% as an S!-fibration over the vanishing two-cycle S?) of
the non-compact four-cycle “wrapped” by the flavor D7-branes, is what determines, e.g.,
the Einstein-Hilbert action at O(R*). The aforementioned linear combination of O(R?*)
corrections to the .#Z-theory uplift [3, 4] metric, upon matching the holographic result
from .# xPT [1] with the phenomenological value of the coupling constant of one of the
SU(3) NLO xPT Lagrangian of [5], is required to have a definite sign. Interestingly, in the
decompactification (or “Mgx — 07”) limit of the spatial circle in [1] to recover a QCD-like
theory in four dimensions after integrating out the compact directions, we not only de-
rive this, but in fact obtain the values of the relevant O(R*) metric corrections. Further,
equivalence with Wald entropy for the black hole in the high-temperature .#-theory dual
at O(R*) imposes a linear constraint on a similar linear combination of the abovemen-
tioned metric corrections. Remarkably, when evaluating the deconfinement temperature
from an entanglement entropy computation in the thermal gravity dual, due to a delicate
cancellation between the contributions arising from the metric corrections at O(R*) in the
M theory uplift along the S'-fiber and an S? (which too involves a similar S!-fibration)
resulting in a non-zero contribution only along the vanishing S? surviving, one sees that
there are consequently no corrections to 7T, at quartic order in the curvature supporting
the conjecture made on the basis of a semiclassical computation.
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1 Introduction

AdS/CFT correspondence [7], in its original form, was a duality between strongly coupled
N =4 SU(N) supersymmetric Yang-Mills theory and weakly coupled type IIB string theory
on AdSs x S°. All the theories are not conformal therefore it is better to call this duality as
gauge/gravity duality to include non-conformal theories. Strong coupling dynamics of non-
abelian gauge theories at finite temperature have been studied via gauge/gravity duality.
In later years, this duality has been generalised to many branches of Physics (e.g. Particle
Physics, Condensed Matter Physics, Cosmology etc.). We are interested in thermal QCD,
which is a non-conformal theory because its gauge coupling runs with energy. There are
various proposals to study QCD using gauge/gravity duality (e.g. AdS/QCD) but almost all
involve a conformal AdS background. There are two approaches to construct holographic
duals of thermal QCD-like theories — the bottom-up and the top-down approach. In this
paper we will work with the latter.



Gauge/gravity duality also allows us to compute the corrections to the infinite-’t Hooft-
coupling limit as done in [8], but again working with an AdS background. These authors
included higher-derivative terms on gravity side using terms quartic in the Weyl tensor.
On the gauge theory side one has N’ = 4 SU(NV) supersymmetric Yang-Mills plasma at
intermediate 't Hooft coupling. They explained the transport peak in the small frequency
region of the stress-energy tensor specatral function at zero spatial momentum. Which is
a generic feature of perturbative plasma.

QCD at strong coupling has been studied by various bottom-up models constructed
from gauge/gravity duality (from both, bottom-up and top-down approaches) and at weak
coupling from perturbation theory. A popular top-down holographic type ITA dual, though
catering only to the IR, is the Sakai-Sugimoto model [9]. The only UV-complete (type IIB)
top-down holographic dual of QCD-like theories at strong coupling that we are aware of
is [6], and its .#-theory uplift [3]. Authors in [10] have studied QCD thermodynamic func-
tions at intermediate coupling based on hard-thermal-loop perturbation theory (HTLpt).
One can also study intermediate coupling regime of QCD from gauge/gravity duality. In
this direction, two of the authors (VY and AM) worked out O(lg) corrections to the .-
theory metric in [11]. Starting with .#-theory dual of thermal QCD-like theories in the
‘MQGP’ limit as constructed in [3] and incorporating higher derivative terms in eleven
dimensional supergravity action which are quartic in Riemann curvature tensor i.e. O(R?*),
the corrections to the supergravity background were then worked out in [11] and in fact,
successfully used in [1] in obtaining phenomenologically-compatible values of the NLO
LECs in SU(3) xPT Lagrangian of [5].

Wald proposed a method to calculate black hole entropy in general theories of grav-
ity [12]. He considered classical theory of gravity in n dimensions which arises from
diffeomorphism invariant Lagrangian. In these theories of gravity Noether charge is an
(n —2)-form and black hole entropy will be given by 27 times integral over bifurcate killing
horizon of the (n — 2)-form Noether charge. Therefore entropy is Noether Charge for sta-
tionary black holes with bifurcate killing horizons. For dynamical black holes a proposal
to calculate entropy was given in [13].

Every physical phenomenon is characterised by their energy/distance scale. One goes
from UV to IR via RG group flow. But, e.g., in noncommutative field theories and string
theory, short distance physics becomes related to long distance Physics, which is known
as UV/IR mixing. The consequence of UV/IR mixing [14] is, e.g., that UV divergences
of real ¢* theory defined on commutative space are transformed into infrared poles in the
same theory defined on noncommutative space. There are other more examples explained
nicely in [14].

Gravitational theories are nonlocal. Therefore UV /IR mixing could appear in such
theories. In gauge/gravity duality radial coordinate in gravitational theory corresponds
to energy scale in gauge theory side. In [15], authors have studied “I.R.-U.V.” connection
in the context of AdS/CFT correspondance in which they showed that infrared effects in
bulk theory are transformed into ultravoilet effects in the boundary theory. In particular,
infrared regulator in the bulk theory plays the role of ultraviolet regulator in A/ = 4 super
Yang Mills theory. It is interesting that a certain form of UV-IR connection manifests



itself in our work when matching at the deconfinement temperature, .#-theory actions
dual to the thermal and black-hole backgrounds at the UV-cut-off and obtain a relationship
between the O(R*) metric corrections in the IR

In this paper we have calculated deconfinement temperature of QCD-like theory at
intermediate coupling from gauge/gravity duality using a semiclassical computation as first
discussed in [16]. In our case gravity dual is .#-theory uplift of type IIB string dual [6]
which includes O(R*) corrections [11] to the MQGP background [3]. One can also discuss
confinement deconfinement phase transition in large N, gauge theories from entanglement
entropy point of view based on [2]. In this process one is required to calculate entanglement
entropy between two regions by dividing one of spatial coordinates into segment of length
[ and its complement. There is a prescription to calculate entanglement entropy from
AdS/CFT correspondence given by Ryu and Takayanagi in [17]. As discussed in [2], there
are two surfaces — connected and disconnected. There is a critical value of [ which is
denoted by l.t. If one is below the critical value of [ i.e. [ < 4 then it is the connected
surface that dominates the entanglement entropy and if one is above the critical value of [
i.e. [ > et then it is the disconnected surface that dominates entanglement entropy; | < leit
corresponds to confining phase of large IN. gauge theories whereas [ > [t corresponds to
deconfining phase of the same. So we can interpret this as confinement deconfinement
phase transition in large N, gauge theories.

The rest of the paper is organized as follows. In section 2, we review the basic setup
and results of [3, 6, 11] inclusive of a summary of the results of [18, 19] on the conjectured
SL(2,7Z) completion of the D = 11 supergravity action by studying four-graviton scattering
in a D-instanton background and a non-renormalization beyond one loop at O(R?) in the
zero-instanton sector. Section 3, divided into two subsections 3.1 and 3.2, have to do with
the holographic renormalization of the on-shell action corresponding respectively to the
gravity duals of the black-hole and thermal backgrounds. Section 4 is on the computa-
tion of the deconfinement temperature via a semiclassical computation, as well as on the
comparison of the black hole entropy computed with the Wald entropy up to O(R*). Sec-
tion 5 is on the computation of the deconfinement temperature from entanglement entropy
between an interval along one of the non-compact non-radial spatial coordinates and its
complement, and comparison with the semiclassical computation of the same in section 4.
Section 6 is on the derivation of the sign and the individual values of the contributions that
figure in a linear combination of the same arising from the O(R?) corrections to the .-
theory uplift [3] of [6]. Sections 4 and 6 also include a discussion on the “Flavor Memory”
effect. Section 7 has a summary of the results obtained in the paper. There is a supplemen-
tary appendix on the EOMs and solutions to the O(R*) metric corrections to the MQGP
background of [3, 4], as well as a discussion on taking the decompactification-limit of a
periodic spatial direction in the thermal background .#Z-theory uplift used in [1] to obtain
the .#-theory thermal background in this paper, and deriving the sign of a linear com-
bination of constants of integration in the solutions to the EOMs of the O(R*).#-theory
metric corrections as required from matching of results of [1] with phenomenological values
of the LECs at NLO in the SU(3) xPT Lagrangian of [5].



2 Review of UV complete top-down type IIB string dual of [6], type ITA
mirror of [6] and its .#-theory uplift at intermediate 't Hooft coupling

In this section we will start with a brief review type IIB string dual of large N QCD-
like theory at finite temperature constructed by McGill group [6]. Then we will briefly
discuss type IIA SYZ mirror of [6] and its .#-theory uplift as constructed in [3]. We
will also discuss the origin of O(R*) terms in eleven dimensional supergravity action and
non-renormalization of type IIB action up to O(R*) beyond one loop in the zero-instanton
sector. In the last part of this section we will explain that how the .#Z-theory metric
of [3, 4] will be modified by incorporating higher derivative terms in eleven dimensional
supergravity action.

To the best of our knowledge the only UV-complete type IIB string dual of large
N thermal QCD-like theories from a top-down approach was given in [6] in the infinite-
't Hooft-coupling limit. For strongly coupled systems like QGP, the relavant coupling is
finite/intermediate as explained in [20]. Therefore, it is required to construct string dual(s)
of large N thermal QCD-like theories at finite/intermediate coupling. In this direction
authors in [3, 4] considered a particular limit which they called as ‘MQGP limit’ which
uses finite/intermdiate coupling. One can also study intermediate coupling regime of gauge
theory using gauge/gravity duality. To study thermal QCD at intermediate coupling higher
derivative corrections on the gravity side, need to be incorporated [8, 11].

Brane Setup used in [6]:

e The authors considered N D3-branes placed at tip of the six-dimensional conifold,
M D5-branes wrapping the vanishing S?(61, ¢1), referred to as fractional D3-branes
and M D5-branes distributed along the resolved S2(6, ¢2) placed at antipodal points
relative to the M D5-branes. Let average seperation between D5/D5-branes will be
represented by R - /D5 Then one can characterise the various regions using radial
coordinate on gravity side.

l.rmg<r< RD5/ﬁ5: IR-UV interpolating region with rg < r < RD5/?5 corre-
sponding to the deep IR.
2. r> RD5/E: UV region.

« To introduce quarks in the fundamental representation of the flavor group, Ny D7-
branes were introduced via Ouyang embedding [21] in the resolved conifold geometry,
“smeared” /delocalized along the angular directions #; 2. The flavor D7-branes are
embedded in the UV all the way into the IR up to a certain minimum separation from
the color D3-branes determined by the modulus of the Ouyang embedding parameter
|tOuyang|- To ensure UV conformality in the theory N ¥ D7-branes were introduced in
the UV and the UV-IR interpolaring region but not the IR (to effect chiral symmetry
breaking). The embedding equation for the flavor D7-branes in the resolved conifold
geometry is:

I 0 0
(7“6 + 9a2r4) * €§(w7¢17¢2) sin (;) sin (;) = HOuyang, (2'1)

effected by (3.5) for vanishingly small |pouyang]|-



o In the UV, the color gauge group is SU(N + M) x SU(N + M) and the flavor gauge
group is SU(Ny) x SU(Ny). When one goes RG flows from the UV to the IR, two
things happen,

— The color gauge group SU(N + M) x SU(N + M) is partially Higgsed down
to SU(N + M) x SU(N) because in the IR D5-branes are not present due to
which rank of one of the product gauge groups (SU(N -+number of D5-branes) x
SU(N + number of D5-branes)) decreases to (SU(N + number of D5-branes) x
SU(N)).

— Flavor gauge group SU(N¢) x SU(Ny) breaks to the diagonal subgroup SU(Ny)
because of absense of D7-branes in the IR. This is the analagoue of chiral sym-
metry breaking in this brane setup.

o The pair of couplings corresponding to SU(N + M) and SU(N) gauge groups flow in
opposite directions in the IR.

1 1 1 1 1
4772(2 + — )e¢~7r;47r2<2 - — >e¢’~ // By
9sun+m)  Isu) gsun+my  9su(n) 2mal Js2

(2.2)
From the above equation it is clear that [¢o By is the reason for introduction of non-
conformality. If flux term on r.h.s. vanishes then couplings for the both gauge groups
will be same which is indication of a conformal theory. This is the reason to include
M D5-branes in [6] to cancel the net D5-brane charge in the UV. Therefore we have
a holographic theory which, like QCD, is UV conformal.

o Under the UV-to-IR RG flow, the higher rank gauge group (SU(N + M)) flows
towards strong coupling and lower rank gauge group (SU(N)) flows towards the
weak coupling. Since SU(N + M )strong w SU(N — (M — N¢))weak, after
performing repeated Seiberg-like dualities, in the IR the number of colors N, gets
identified with M, which in the ‘MQGP limit’ can be taken to be 3 (see [22]). ‘MQGP
limit’ have been defined later in this paper.

» Holographic gravity dual of the brane setup of [6]: if one is above the decon-
finement temperature i.e. T > T, then finite temperature on the gauge/brane side
corresponds to a black hole in the gravitational dual and if one is below the decon-
finement temperature i.e. T < T, then finite temperature on the gauge/brane side
corresponds to thermal background in the gravitational dual [16]. Finite tempera-
ture on the brane/gauge side and finite seperation between the M D5-branes and
M D5-branes (which is denoted by R D5 /D75) requires to having a non-zero resolution
parameter of the conifold in gravitational dual side. Similarly, IR confinement on
the gauge theory side corresponds to deformation of the conifold singular a la the
Klebanov-Strassler model. Therefore holographic dual of thermal QCD-like theories
in this model [6] involves a resolved warped deformed conifold; D3-branes and the
D5-branes are replaced by fluzes in the IR, and the back-reactions are included in the
warp factor and fluzes.



¢ Color-Flavor Enhancement of Length Scale in the IR: in the MQGP lim-
it (2.10), there is color-flavor enhancement of length scale as compared to a Planckian
length scale in Klebanov-Strassler (KS)-like model even for O(1) M, in the IR. This is
true when one includes terms higher order in gs/Ny in the RR and NS-NS three-form
fluxes and the NLO terms in IV in the metric. Which indicates suppression quantum
corrections and validity of supergravity calculations. For a detailed discussion of this
issue, see [4, 22]. Now, the effective number of color branes Ng(r) is given by:

sM2 3 SNeff
Neg(r) = N 1*‘ngAff<k%7”+ gzwf Uogrf>]’
%NM S
Meg(r) = M + 22 f logr+ 3 S NPM™ frn(r),
m>1n>1
Nt ()= Np+ > > NP M grn(r). (2.3)

m>1n>0

Type IIB axion is Cy = N}’ﬁ(q/’%;_d’?), Neg(rg € IR) = 0 and writing the ten-
dimensional warp factor A ~ f—z, the length scale L in the IR will be given by the

following equation:

m>0n>0 (>0 p>0

L~ {‘/MNE (Z > NPEM? frun(ro ) (ZZNfMpglp ro ) Lys, (2.4)

Lks ~ VgsM+/o!. Equation (2.4) implies enhancement of color-flavor length scale in
the IR as compared to KS. Hence if we consider number of colors N/} = M = 3 and
number of flavors Ny = 2(u/d) + 1(s), inclusion of n,m > 1 terms in Mg and NJ?H
in (2.3) implies that L > Lxs(~ Lplanck) in the MQGP limit (2.10), which indicates
validity of supergravity calculations.

o Obtaining N. = 3: now based on [22] we will briefly summarize how to identify
number of colors N, with M which in the ‘MQGP limit’ (2.10) can be tuned to
equal 3. One can write NN, as sum of the effective number Neg of D3-branes and the
effective number Mg of D5-branes as:

N¢g = Neﬁ‘(’f’) + Meff(T') (2.5)
where Ng(r) is defined via the following relation,
F5=dCy+ Bo A Fs = F5 + xF5 (2.6)

where, F5 = Neg X Vol(Base of Resolved Warped Deformed Conifold). Similarly,
Mg is defined via the following relation,

Meﬁz/ F3. (2.7)
S3



In the above equation, S® being dual to ey A (sin€1dfy A dpy — By sinbfy A dpo), By
is an ‘asymmetry factor’ defined in [6]; ey, = di) + cos 01 d¢1 + cos 02 dpy and [23]:
Fy(= F3 — TH3) < M(r) = M—t——,a>1.

1+e

D5/D5
[l

Let us denote UV and IR values of the resolution parameter “a” as [ayv,arr].
In this notation,

Neg € [N,0] and Mg € [0, M]. (2.8)

From equations (2.5) and (2.8), it is clear that
N. € [M, N]. (2.9)

This implies that in the IR number of colors i.e. N, is M which in the MQGP limit
we have taken to equal 3.

Therefore, we see that after application of repeated Seiberg-like duality N D3-
branes are cascaded away in the IR and we have finite M corresponding to a strongly
coupled IR-confining SU(M) gauge theory; authors in [6] considered finite temper-
ature version this theory. The holographic dual of large N thermal QCD-like theo-
ries constructed in [6] exhibits UV conformality (no Landau poles), IR confinement,
quarks transform in the fundamental representation of flavor and color groups, and
is valid at all temperatures.

o Type ITA Strominger-Yau-Zaslow (SYZ) mirror of [6], .#Z-theory uplift
and the MQGP limit.
Type ITA SYZ mirror of [6] and its .#-theory uplift using Witten’s prescription
at intermediate gauge coupling but large 't Hooft coupling, have been worked out
in [3, 4]. The O(R*) corrections to the MQGP metric for the black hole background
corresponding to intermediate 't Hooft coupling, were worked out by two of the
authors (VY, AM) in [11], and for the thermal background the O(R*) corrections to
the MQGP metric are given in (B.2). Let us discuss how to obtain .#-theory uplift
at intermediate coupling.

— To implement Strominger-Yau-Zaslow (SYZ) mirror symmetry one needs a (de-
localized) special Lagrangian (sLag) T% — which could be identified with the 72-
invariant sLag of [24] with a large base B(r,01,62) (of a T3(¢1, ¢2,)-fibration!
over B(r,61,62)) [4, 25]. SYZ mirror symmetry is triple T duality along three
isometry directions (in our case T-duality along T°(¢1, ¢2,v)). Let us see the
effect of three T-dualities along (¢1, ¢2,1) directions.

* T-duality along : first T-duality along the v direction converts N D3-
branes into N D4-branes wrapping the v circle, M fractional D3(D3)-
branes into M D4(D4)-branes straddling a pair of orthogonal N S5-branes
and Ny flavor D7(D7)-branes into Ny flavor D6(D6)-branes. Worldvolume
coordinates for NS5 branes are NS5;(z%123 01, ¢1) and NS5, (x%1:23 05, ¢5).

L As there is no t-isometry in the warped resolved deformed conifold, we in fact require a delocalized
T3(z,vy, z), where (x,y, z) are given by (3.51).



* T-duality along ¢;: second T-duality along ¢; direction leaves
NS5; (29123 0;, ¢1) invariant but converts NS5y (%123 6,5, ¢2) into a
Taub-NUT space(r, 1), 02, ¢1). Also N D4-branes, M D4(D4)-branes and
Ny flavor D6(D6)-branes will be converted into N D5-branes, M D5(D5)-
branes and Ny flavor D5(D5)-branes.

* T-duality along ¢2: third T-duality along ¢ direction leaves
NS5y (29123 05, ¢2) invariant but converts NS5; (%123 61, 41) into a
Taub-NUT space(r, 1,601, ¢2). Also N D5-branes, M D5(D5)-branes and
Ny flavor D5(D5)-branes will be converted into N D6-branes, M D6(D6)-
branes and N flavor D6(D6)-branes (which are “wrapping” a non-compact
three-cycle X4) (1,01, ¢o)).

Therefore we see that in SYZ type ITA mirror we have N D6-branes, M D6(D6)-
branes and Ny flavor D6(D6)-branes. Keep in mind that in type IIA mirror
ranges for the presence of anti-branes also matter as in [6]. In actual calcula-
tion as done in [3], T-dualities are performed along T3(x,y, z), where (z,y, z)
are toroidal analagoue of (¢1,p2,1). For the convention we have just writ-
ten (¢1, ¢2,1). Upon uplifting the SYZ type ITA mirror as obtained above to
M -theory using Witten’s prescription, D6-branes will be converted into KK
monopoles (variants of Taub-NUT spaces). Hence, all the branes will be con-
verted into geometry and fluxes. One can show that the .# -theory uplift involves
a Ga-structure manifold [4, 11].

~ MQGP Limit.
MQGP limit is defined as [3, 4]
1 gs M?
~—— M N;=0(1 N 1, N>»1 1 2.10
s 0(1)7 s LV f ( )? Js f <1, > ) N < ) ( )

wherein one considers intermediate/finite string coupling. This hence necessi-
tates addressing the MQGP limit from .#-theory.

o In [11], two of the authors (VY and AM) worked out O(IS) corrections to the MQGP
metric for blackhole background by incorporating O(R?*) terms in eleven dimensional
supergravity action. Since in gravitational dual side we have higher derivative correc-
tions which on gauge theory side corresponds to intermediate gauge/’t Hooft coupling.
Therefore using [11] we can explore the intermediate coupling regime of thermal QCD-
like theories. The SU(3)/G2/SU(4)/Spin(7)-structure torsion classes of the relevant
six-, seven- and eight-folds associated with the .#-theory uplift worked out in [11].

There are two ways of understanding the origin of the O(R*)-corrections to the N/ =
1, D = 11 supergravity action. One is in the context of the effects of D-instantons in 1IB
supergravity /string theory via the four-graviton scattering amplitude [18]. The other is
D = 10 supersymmetry [19]. Let us briefly discuss both.

e Let us first look at interactions that are induced at leading order in a D-instanton
(closed-string states of type IIB superstring theory in which the whole string is local-
ized at a single point in superspace) background in both, type IIB supergravity and



the string descriptions, including a one-instanton correction to the tree-level as well
as one-loop R?* terms [18] — both having the same tensorial structure. The bosonic
zero modes are parameterised by the coordinates corresponding to the position of
the D-instanton. The fermionic zero modes are generated by the broken supersym-
metries. The Grassmann parameters are fermionic supermoduli corresponding to
zero modes of the dilatino and must be integrated over together with the bosonic
zero modes. The simplest open-string world-sheet that arises in a D-brane process
is the disk diagram. An instanton carrying some zero modes corresponds, at low-
est order, to a disk world-sheet with open-string states attached to the boundary.
The one-instanton terms in the supergravity effective action can be deduced by con-
sidering on-shell amplitudes in the instanton background. The integration over the
fermionic moduli absorbs the independent fermionic zero modes. Consider now am-
plitudes with four external gravitons. The leading term in supergravity is one in
which each graviton is associated with four fermionic zero modes. Integration over
the bosonic zero modes generates a nonlocal four-graviton interaction. In the cor-
responding string calculation the world-sheet consists of four disconnected disks to
each of which is attached a single closed-string graviton vertex and four fermionic
open-string vertices. Writing the graviton polarization tensor as (trvr = ((rivr),
and evaluating the fermionic integral, it was shown in [18] that the four-graviton
scattering amplitude can be expressed in terms of:

Ce2iﬂ70/d10yeizrkwy

A 1. . ..
21711474 191000404 M1NT PIM2N2 PIM3INS PRM4ANY ,
X (t iy omang — —€ Emany-mans | Ry R RIS R

4
(2.11)

tg symbol defined as:
s — L (72 (GMNsGNNaGNoNTGNoNs . GNINs GNaNoGNsNr GNGNs . NN NN N N G NuNe
16

+8 (GNQN“ GNaNs @No N7 (xNsN1 (NN ;N6 N3 (yNaN7 (xNsN1 (N2 N5 (xNoN7 GNSN;;Gz\uNl)

— (N} 4> Na) — (N3 € Ny) — (N5 ¢ No) — (N Ng)>

(2.12)
(N; being valued in the 8, of SO(8) or covariantized to 10D (or 11D to be used
later in .#-theory)), from [26] the light-cone 8D “zero mode” tensor tg is generalized
to 10D: {g = tg — 1/4Beyg wherein assuming Brcdirections = 1, yields £i171-4j4 —
tidn-iaja _ %eiljl"'i4j4, and the overall factor of e?™  which is characteristic of the

stringy D-instanton, is evaluated at x = R7p = 0 in the stringy calculation.

o In[19], it is shown that the eleven-dimensional O(R*) corrections have an independent
motivation based on supersymmetry in ten dimensions. This was shown to follow from
its relation to the term C'®) A Xg in the .#-theory effective action which is known to
arise from a variety of arguments, e.g. anomaly cancellation [27, 28].2 The expression

*We thank M.J. Duff for bringing [27] to our attention.



Xg is the eight-form in the curvatures that is inherited from the term in type IIA
superstring theory [29] which is given by

1
- /dl%B NXg=—3 /dlom/—gA<10>eloBX8, (2.13)

where
1 1
Xg=—(tr R* - (¢ “). 2.14
s =105 (tr R = S0 B (2.14)
There are two independent ten-dimensional N = 1 super-invariants which contain
an odd-parity term ([26] and previous authors): I3 = tgtr R* — %eloBtr R* and:
Iy = tg(tr R?)? — LeioB(tr R?)2. Using that tstsR? = 24tstr(RY) — 6ts(tr R?)?, it
follows that the particular linear combination,

1 1
I3 — =~ I, = —tgtg R* — 48¢10B X 2.1
3= 414 2488R 8€10 8 (2.15)

contains both the ten-form B A Xg and tgtgR*.

We will now summarize the argument of [18] that an SL(2,Z) completion of the effec-
tive R? interactionleads to an interesting non-renormalization theorem that forbids
perturbative corrections to this term beyond one loop in the zero-instanton sector.
The term in (2.11) bilinear in the tensor  has precisely the same form as terms that
arise in the zero instanton sector that come both from the one-loop four-graviton
amplitude and from an (o/)? effect at tree level [30]. In the Einstein frame one hence
obtains the following expression for the complete effective R* action in the Einstein’s
frame, that can be expressed in the form,

Spi = ()71 [aC(3)7 4 by VP o™ 4| RY = (o) T (, PRY, (216)
where a, b are known numerical constants, R* denotes the contractions ##R* in (2.11)
and --- indicates possible perturbative and nonperturbative corrections to the coef-
ficient of R*; the ‘constant’ ¢ can depend on 7 = Crg + ie~? (type IIB) and 7. The
first term in (2.16) represents the (a’)® tree-level contribution and the second the
one-loop relative to the former.

However, the complete expression for Spa must be invariant under SL(2, Z) trans-
formations: 7 — (ar + b)(er +d)~! (a,b,¢,d € Z : ad — be = 1), which provides very
strong constraints on its structure. As the R* factor is already invariant, f(r,7)
in (2.16) is a scalar under the SL(2,Z) transformations, which hence implies a sum
over all instantons and anti-instantons.

There are some strong constraints which this term must satisfy and are spelt out
in [18], in which there is a simple function proposed by the authors that satisfies all

these criteria, namely,
3/2

— Ty
T, T) = — 2.17
f(r,7) (pﬁn;o,o) e (2.17)

~10 -



where the sum indicates the sum is over all positive and negative values of p, n except
p=n=0. Now:

3/2 0o
f C( )TQ F(B/Z) ngo;p 0 vy € ( )

The sum over p, using the Poisson resummation formula < ioj f(n) = io: FT[f](m);

n——oo m——0oQ

M2 e
FT[e-mAW+2)?] = e i 20

e M = 27rm>, gives,

o2 ) oo 2, 2
flr,7) = 2((3)7’23/2 + %TQ 1/2 + 27’23/2 Z / dy exp (—ﬂ- mn + 2mimnr — yn27'22> ,
0 Y
m,n#0

m

3/2 27T2 -1/2 1/2 2mimnT
=203)ry' "+ ——T19 "+ 87y Z e LK (27|mn|Te)

3 m#0n>1

n

2
st B

vz N > IL'(k—1/2)
3/2 Z m 2 -2 —k
+ 47 <n3> (6 mimnT o 7mmn7') (1 +k§:1(47rmn72) F(—k’ — 1/2) s
(2.19)
where performing a perturbative expansion in % of the non-perturbative instanton
2

m,n>1

contribution of charge mn, one uses the asymptotic expansion for Kj(z) for large z
in (2.18).

The perturbative terms in (2.18) terminate after the one-loop term as suggested
earlier. The non-perturbative terms have the form of a sum over single multiply-
charged instantons and anti-instantons with action proportional to |mn/|. Identifying
p with the discrete momentum (euclidean energy) of a compactified D-particle of
charge n then the Poisson resummation exchanges it with the winding number of
the world-line and the result is what is expected by T-duality from type ITA in nine
dimensions. The terms in parenthesis in (2.18) represent the infinite sequence of per-
turbative corrections around the instantons of charge mn. It is hence evident that in
the zero-instanton sector, there are no perturbative corrections figuring in the action
up to O(R*), i.e., Spa, beyond one loop. This will be important in demonstrating the
“non-renormalization” beyond one-loop of the deconfinement temperature 7T, later in
the paper.

The N = 1, D = 11 supergravity action inclusive of O(I$) terms (promoting the 10D
t to 11D), is hence given by:

1 1 1 1
S = / {R*lll—G4/\*11G4—C/\GAG]+2/ d"xvVhK
M 2 6 oM

— 5.2
2K, K11

1
1 o2\ ® 1 272
NI e /dllxw/_g (Jo — Eg) + () /Cg A Xg, (2.20)
(2m)432213 <n§1> 2 K3

- 11 -



1
JO — 3. 28 (RHMNKRPMNQRHRSPRQRSK + 2RHKMNRPQMNRHRSPRQRSK)

1 ABCM{Ny...MsNy

_ MIN] M)N,
By = e €ABCMN]..MIN; BV A Ny - R
27)819
o _ (21
R11 = 9 3 (221)

k2, being related to the eleven-dimensional Newtonian coupling constant, and G =
dC' with C being the .#-theory three-form potential with the four-form G being the
associated four-form field strength. The EOMS are:

1 1 IMN
Ryn — §QMNR - — (GMPQRG PRR _ GPQRSGPQRS)

— g | (J0‘2E8> + 5 ("“ )]

d+G = %G A G+ 3%21 (27)* B X,
(2.22)

where [31]:
2
21?)3 (k%
§= M 5, (2.23)
(2 ) 32912 P
Rynpg, Run, R in (2.20)/(2.22) being respectively the elven-dimensional Riemann

curvature tensor, Ricci tensor and the Ricci scalar.
Now, one sees that if one makes an ansatz:

Cunp = 01(\9[)va + BClinp (2.24)

then symbolically, one obtains:

80 (V=g0C™M) + B0 [(\ﬁ)( ol ] + Benac®act) = 0(82) ~ 0fup to O(B)).

(2.25)
One can see that one can find a consistent set of solutions to (2.25) wherein C](\i,)N p=0
up to O(B). Assuming that one can do so, henceforth we will define:

Sgarn = Baiy = Gyt fun (r), (2.26)
no summation implied.

Let us discuss how one can controls the higher derivative contributions to the MQGP
limit result of [3]. This was explained in [11] and we review the same here. It is
evident from (A.1) in the ¢ = 2nm,n = 0,1, 2-coordinate patch that in the IR:
r=xrn, x = O(1), and up to O(p):

(log Rp)™

fMN ~ 6W7 m &€ {0, 1,3}, n e {0,2,5,7}, /BN > 0, (227)

- 12 —



where Ry, = r—. Now, |[Rp| < 1. As estimated in , [log Rp| ~ %,imply—
here R . N R 1. A d 38], |[log R N

D5/D5
ing there is a competition between Planckian and large-N suppression and infra-

red enhancement arising from m,n # 0 in (2.27). Choosing a heirarchy: [ ~
e NN g v > 0 0 NN > TN + (% — Bn)log N (ensuring that the IR-
enhancement does not overpower Planckian suppression — we took the O(f) cor-
rection to Gﬁf,
vs,~/Planckian suppression). If yg NV ~ 7N %, then one will be required to go to a

which had the largest IR enhancement, to set a lower bound on

higher order in . This hence answers the question, when one can truncate at O(f).

3 #-theory duals at low (T < T, on the gauge theory side) and high
(T > T, on the gauge theory side) temperatures

In this section we will explain how to calculate deconfinement temperature in QCD-like
theory via gauge/gravity duality and holographic renormalization of the eleven dimensional
supergravity action using a semiclassical computation as advocated by Witten [16]. We
have partitioned the calculation in two subsections. In subsection 3.1, we will calculate
various terms appearing in on-shell supergravity action for blackhole background and dis-
cuss holographic renormalization of the same. We do the same thing in subsection 3.2 for
the thermal background.

The .#-theory dual corresponding to high temperatures, i.e., T' > T, will involve a
black hole with the metric given by

ds%l =e M;IA {h(l <g(7‘)dt2 + (dazl)2 + (dx2)2 + (dm3>2>

r,012)
dr? 9 I8 1 FIIB 4 GIIB | 1B 2
+ h(r,¢9172) M+d811A(T791,2,¢1,2,¢) Jre 3 (d$ +AHA > )
(3.1)

FIIB

where AIfA1 %% are the type ITA RR 1-forms obtained from the triple T/SYZ-dual of the

4
type IIB F{'$’; fluxes in the type IIB holographic dual of [6], and g(r) = 1 — 2. For low
temperatures, i.e., T' < T, is given by the thermal gravitational dual:

) <_dt2 n (dgvl)g + (dm2)2 +g(r) (d$3)2)

[ h(r, 012

_2¢HA
dsi = e 3

d2
g(r)

SIA FIIB+FIIB+FIIB

2
+4/h(r, 912)( +dsira(r, 912,¢123¢)> +e (dx11+AIIA > ,

(3.2)

4
where g(r) = 1 — :ﬂ. One notes that t — 3, 2° — ¢ in (3.1) following by a Double
Wick rotation in the new z®,t coordinates obtains (3.2); h(r,6;2) is the ten-dimensional

~13 -



warp factor [3, 6]. This amounts to: —gii(r, — r0) = gpags L 2™(rg), Bl (r, —

7o) = —gu 1Ml (rg) in the results of [11, 33] (See [34] in the context of Euclidean/black
D4-branes in type IIA).

n (3.2), we will assume the spatial part of the solitonic M3 brane (which, locally,
could be interpreted as solitonic M 5-brane wrapped around a homologous sum of two-
spheres [35]) world volume to be given by R?(x12) x S!(23) where the period of S1(z3)
)}, ro being
the very small IR cut-off in the thermal background (see also [36]) and L = (4wgsN )i
So, lim 0 R2(z1?) x S1(23) = R3(2123), thereby recovering 4D Physics. The working
metric used in this section and section 4 for the thermal background corresponding to

is given by a very large: MQ” where the very small Mk = 2ﬂ [1 + 0 (

T < T, will involve setting §(r) to unity in (3.2).

Now, if Bgu,Th are respectively the periodicities of the thermal circle in the black
and thermal ./#-theory backgrounds then at r = Ruyy, Beuy/GhY = Brny/GAL". Now at
T =T, [16],

»3BH/MH (EEH + L3y d(r — Ruv) +£g}(IR4)) = Brh f My (EEH + L&ty o (r = Ruv) +£g(lR4)) )

(3.3)
where / excludes the coordinate integral with respect to 2%, implying:
-1
1-— T;LL / (E —|—£ 5(7“—RU\/)—|—£BH4>
R, My \EH GHY O(RY)
= | (Bl + L8O = Ruv) + L ) - (3.4)

Mo

3.1 Black hole background uplift (relevant to T' > T.) and holographic renor-
malization of on-shell D = 11 action

The O(f)-corrected .#-theory metric of [3] in the MQGP limit near the ¢ = 2nm,n =
0,1,2-branches (whereat there is a decoupling of Mj(¢, 21?3 7) and Mg(61.9,2,9, 2, x'1))
up to O((r — r4)?) [and up to O((r — r3,)3) for some of the off-diagonal components along
the delocalized T3(z,y, z)] — the components which do not receive an O(f) corrections,
are not listed in (A.1) — was worked out in [11] and is given in (A.1).

Restricting to the Ouyang embedding of the flavor D7-branes in type IIB can, for
an extremely small (modulus of the) Ouyang embedding parameter, may be effected by
working near [4]:

&%) 87
0, = "0 gy = 02 3.5
1 e 2 Y (3.5)
Einstein-Hilbert term in the IR will be given by the following expression:
IR
v —G2R
Ouyang

b2 g3 log N3 M N ¢3r),* log ( =l ) log ( Rbh) (1—p(chr —2ch, +3Cp™))

D5/D5
~

NiRbh 3 (r —rp,) sin® 07 sin? 6,

(3.6)

— 14 —



Now performing angular integration of the above equation,

1 _1 2 (00) _ 2 (%) _ o (0 2}
//d@ldﬁgm =3 cot () (csc < 5 ) sec < 5 ) 4log (sm ( 5 )) +4log (cos ( 5 )))
(3.7)
implying:

_1 _3
/ﬂaglN S/wagzN 10 d6,db- N%
0

3
~ O(N1). 3.8
Or=ag, N~ 10 sin®f1sin® 0y aj ap, + ( ) (3.8)

_1

1=ag N5
Using equation (3.8) and performing radial integration of equation (3.6), we obtained the
following expression for the action density (for Einstein-Hilbert term) in the IR:

Rbh

_1 _3
D5_D5 T—Qg N5 m—ay, N 10
r:r; 2 f 1 1 f 2 3 V _GK”R

G1=ap, N~ 5 "b3=ctg, N 10

V4

Ouyang ~

b2953/410g N3MNf3?“h4 log (Rbgh > log <1 - Rbgh ) (1— /B(CE? - 2Cglhz + 3Cglh~’0))

D5/D5 D5/D5

11 4
bh 2
N20R ol o

D5/D5 0,402

(3.9)

bh _ bh bh _ (1 bh gs M? . :
where RD5—E = /3aP?, aP? = <\/§ 4+ + 0 ( N )) rp, being the resolution parameter

of the blown up S? [11]. Further, there is one more term appearing in on-shell action as
given in equation (3.33), simplified form of that term is:

Rbh 1 3

D5—D5 7770591 N5 ﬂfaegNiﬁ _G(l)R(O)
frh f91:a91N7% 9210492]\[7% 4
Vi
3
b2g4 log® NMN?T?L log (Rbﬁh> log (1 - 72b£h>
~ BB, e e (3.10)

bh  4ardd 2
RD5/EN g, 0,

Similarly, Einstein-Hilbert term in the UV is:

ey uv 4 (34log r? 4 14logr — 1) Myyr?
Ouyang 9\/§\‘777959/4N% sin3 1 sin? 0y
1
X

(—gSN}jV@log Nlogr +1log N + 3(1 — 6logr)logr) 4 2gs(2log r + 1)N}JV log (iagl 0492) + 8rlog r)

4Myyr? (34 log?(r) + 14 log(r) — 1)
- 9\/§{‘/%g513/4N}WN% sin® 6y sin2 03 log N(2log(r) + 1)

(3.11)
where, for simplification of the computation, we have dropped the O (@)—correction

3 2(r r)— i(4 log(r
terms. As [ <3410g2f0;$;i1fg( 1) » (W + r4(681og(r) — 23)) + constant.
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Hence, one obtains:

1 3 UV —Finite
R T—ag, N5 m—ay, N 10

. Ruvif 1 _Lf 2 s 1/_G///R
(1 + ’["h ) D5—D5 91:a91N 5 02:a92N 10

2Ry \Z
Ouyang
Muyvyry*log (REPV >
D5/D5
~ . 12
13/4 Nz RPh A NUV,2 log N (3.12)
9s ps/D5 1V 6,402 108

The UV-divergent contribution of the EH action is:

MUVRUV log <Rbh - )

D5/D5

SUV div ™ (313)

13/4 i} :
gyv /R%hs/m logNN}JVNmaglag2

Now for the boundary metric:

L 7/3M RE1 A
TI'—aglN_% 7r—o¢92N_T30 (gyiv) uv/iryy log Rt]é)hs/Ds
/9 /9 3 Vh ~ : . . (3.14)

_1 _3 3
1=ag, N~ 5 JOa=ay, N~ 10 N 1o a31 o, R%h5/D5

r=Ruv

and counter term to cancel the UV divergence appearing in Einstein-Hilbert term is,

<g )2/3 MUVRUV log (Rbh - )

D5/D5
~ ) 3.15)

vd/2 1/5bh 4 9 (
V4 N1/ RD5/D5 ag, o,

3

fﬂ’faglN7% fﬂ'foé92N7170 \/th

_1 _3
91:()!91N 5 92:0!92N 10

o

r=rA

The UV-finite boundary Gibbons-Hawking-York contribution up to O() turns to be:

3 r=Ruv

_1
m—ag, N 5 m—ap, N 10

_1 s V—h"K
7“% 9110491]\[ 5 92—0492]\[ 10
1+

Ouyang

2rd Vy

Muyvyry*log (Rﬁw )

D5/D5
9/473%}15/— Nz a01a92
(3.16)
The UV-divergent contribution to the GHY term is:
1Og< PR )MUVRUV
ST ~ e (3.17)

9/4 11 :
(gs ) / R%}%/D5 N20a51a92
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One can further show that up to O(8%) contribution from higher derivative term will be:

_1 _3
f:jm/ﬁ fw—ocalN f;fﬂ—aezN 1;’ V=G GMN _8J

O1=cp, N~ 5 O2=cg, N 10 oGMHN Ouyang
\Z
3 2
MNyry, (1 — Rb£h> (Rb£h> <logN -9 <Rb£h>> llogN -3 (Rb£h>]
D5/D5 D5/D5 D5/D5 D5/D5
€5 g, N39/20 10g2 (N)
_1 _3

y /ﬂaolN 5 /ﬂae2N 1 19683/6 sin® 6; + 6642 sin? 6 sin® 6 — 40v/6 sin? 65

elzaglN‘% 92:a92N—T30 sin? 6y sin? 0, ’

(3.18)

using:
r3log(r)
a / dr (21og(r) +1)7

1 <r4 (256 log®(r) 4+ 704 1og*(r) 4 800 log® () + 488 log?(r) + 184 log(r) + 19) 16Ei(41log(r) + 2))

)

= 360 (2log(r) + 1) 2

rlog(r) (4 log?(r) + 15log(r) + 9)
7/d7. (2log(r)+1)7

2r? (7504 log®(r) +22512log™ () 4 30016 log3(r) + 23384 log? (1) 4 8799 log(r) + 833) 469Bi(2 log(r) + 1)

2880(21log(r) + 1)0 B 5760¢ ’
log() (45a4 (64 log3(r) + 208 log?(r) + 212 log(r) + 57) — 8rpt(21og(r) + 5))
- d
/ " r(2log(r) + 1)7

_ 15(3915a* — 4ry*) log?(r) + 12 (1620a* — 11r,*) log(r) + 21600a* log* (r) + 61200a* log®(r) + 1620a* — 11r,*

B 30(2log(r)+1)6 ’

(3.19)

one can show that UV finite part coming from higher derivative term will be:

1 3 UV —finite
m—ag, N~ 5 m—ag, N~ 10
3

. f _lf . ngv \/_GWGMN 5Jo
<1+ > 91:a91N 5 92:a92N 10

i D5/ 5% SOMN
Q’R%V \Z

Ouyang

1 _ 3 UV —finite
m—ag, N 5 m—ap, N 10

X fRUV WGMN 5Jo

1 p— MN
Glza(.)lN_g egzagzN_ﬁ 7?'D5/D5 oG

V4

Ouyang

2
MUV Th

gUV*310g N11/3Ni"’9/20]\7}N8/3 R%h{)/m

2+1

_1 _3
y /W—%N 5 /W—%N 10 19683v/6sin® 61 + 6642 sin? Oy sin® §; — 40v/6 sin’ 65
01 =g, N7% 02:()492]\[7% Sin7 91 Sin4 02 ’

(3.20)
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Use has been made of the following. The most dominant term in v —G-#GMN 3Jq

SGMN
8Muyv 3 log(r) 19683+/6 sin® 61 +6642 sin? 05 sin® 61 —40+/6 sin? 65 As:
uv4 7 N39/20 NUVZ 7 3 07 0: sint 0 - As: [dr
1771477Tg (2log r+1)"N Ny ¥ log®(N) sin’ 01 sin™ 02
rBlog(r)  _ 2Ei(4log(r)+2) 74 (256 log® (r)+704log” (r)+800 log® (r) +488 log? (r)+184 log(r)+19)
Clog(r)+1)7 — I5e2 360(2log(r )+1) ; One

therefore notes that the UV-finite contribution to: <1 + 2R4 )\/—G/// GMN 6(‘;}{‘}]\, is:

_ Muyv T;t 7"h +1 19683+/6 sin® 61+6642 sin? 65 sin® 91 —40+/6 sin* 92
guv 14/31Og N11/3N39/20N}JV8/3 < = Rbh 2 sin? 07 sin? 0
s log thV D5/D5
R

D5/D5

r4

which turns out to be O | ——£2——~ |-suppressed as compared to the UV-finite contri-
10g< Ryy )

rPH
D5/D5
UV —finite

bution from fRUV V=G GMN g

Da/DS SGMN

Also UV divergent contribution from higher derivative term will be:

PG
V4

‘UV—diV

_1 _3
/W—%N 5 /ﬂ—%N 0 196831/6 sin® 0; + 6642 sin? fs sin® #; — 40+/6 sin* 6,
01 =g, N5 92:0492 N~ % Sin7 91 Sin4 02

MyyRuv?

Rbb 4gyvl4/3N39/20NUV8/3a9 g, log?l(N) log (RRUV )

D5/D5 i

(3.21)

We further note that at constant r surface counter term to cancel UV divergence appearing
from higher derivative term will be given by the following expression:

mn _90Jo 2/3
8 J V=R S UV—div -3 (g ) MyyRuv*
V4 6
r=constant g£v13/4R%h5/D5 log N3 {log (RﬁUV ) } N11/5N}jv2
D5/D5

_1 _3
y /w—aelN 5 /w—aezN 1019683+/6 sin® 61 + 6642 sin? 0 sin® 1 — 401/6 sin* O, o).
0 4

1 3 . .
1=ag, N™5 Jor=ay, N~ 10 sin” 6; sin? #y

(3.22)

From:

6, 196831/6sin® 0, +6642sin2 05 sin 61 —40v/6sin? 6
sin7 01 sin 65

Z
N5

1 0 0
:NO [ 2214cot (61)cot(62)+2214c0t(91)(2csc (91)+1)cot(92)+m{206205(:6 (?1)4,-12002%‘(;4 (?1)

+6000 csc? (0 )+59 sec (62 ) ( 150log (sm(e2 )) +15cos(361)log (cos(92 ))+15010g (Cos(egl))
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+9cos(61) ( 25log (sm (92 )) +25log (COS (921 )) —8) +15co0s(261) (—Glog (si (%)) +6log (cos (021 )) —1)
—15cos(361)log (sin (%)) —61) —1259712(cos(202) —2) cot (A2) csc? (02) (10g (C (%)) —log (sin (%) )) }} ’

(3.23)

one notes that the dominant contribution arises from small values of 61 o, i.e., along Ouyang
embedding for small Ouyang embedding paramter(’s modulus). Hence,

_1 _3
/ﬂaolN 5 /ﬂ%N 10 196831/6 sin® A1 + 6642 sin? f5 sin® #; — 40+/6 sin? 6,
0 [Z]

1 3 . .
1=ag, N7 5 Jlr=cg, N 10 sin” 6 sin? 6,

3.2 6
wh (664200, %ap,? + 19683v/60, *log (57 ) — 20v/6ay, ) logN
304916(1923 0432
(3.24)
Therefore simplified form of the counter term is:
mn 2/3
5 JV/=hhmn e UV—div 5 (g%) MuyyRuv*log N
Vi ~ 6 '
r=constant le3/4Rbh — 10 N3 lo % N13/10NUv2043
D5/D5 g g Z‘sws f 02
(3.25)
Also,
f Jr=Ryy ¥V "0 JO
Vi
4 _1 _3
Muyvy Ruv o Ruv /”aelN 5 /”aezN 0 d6,db,
Vlogs N3NUV R%h5/D5 & R%h5/D—5 elzaglN‘% 02:a92N‘% sin® 6 sin? 0y
4
MUV RUV RUV
log? N“’N D5/D5 D5/D5
By comparing (3.21) with (3.22), one imposes:
5
R
log” ¥ {log (Rbhw) } N2 o NPV 10 (W), (3.27)
D5/D5
implying:
15
2
NPV ~ "o 75 . 3.28
! log N ( )

In x%; = l-units, the D = 11 supergravity action inclusive of O(R*) terms is given by:

Sp-11 :;[/MllJ—CJﬁ(R—ijLB(JO—iS))

1
+ 2 V—hK — = C3 A Gy A Gy + 4r? Cs A Xg
8M11 M11 M11

o (3.29)
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which yields as an EOM:

G G
Ryn — MR — (GMPQRG PR _ Ag” G4>

e N

Taking the trace of (3.30) one obtains:

9, GE 1L, s MN__0 ( _ESH
R+32— ,3|: (J() 2)+G SGMN Jo

- [ +GMY 52}{3” (3.31)

where the approximation is justified in [11]. Writing R = R + R, K = KO + 8K, C5 =
(0) + 8C3, ete., in [11] it is also shown that one can self consistently set C3 = 0. One thus

notes.
G2 = 9RO,
9 2 0
~ 2 p)_ 2N _09J0 9
Jo llR 11G SCMN- (3.32)
Therefore, the on-shell action up to O(f) using Xg(Mi1) = 0 [3], becomes:
1 117 0J
SPC lslhell 2{ 25( )—O-QSéIZIY ( SEH—f/M1 \V - R0>+QSGHY—* S, V-G GMN GJ‘;)N)}
(3.33)

To see the holographic renormalization of (3.33), its UV-divergent portion is:

1
S]%n 1§1hcllUV divergent __ 5 ( 2 g]lzl( Uuv N MUVva a912) +2“{(GI){Y( N MUV,Nf 0401)2))

4
4 Ruv
Ruv Ruv (0) uv UV, (R%};/DS )
X | bR log | —ph +h 11/<“'f wn i (95 N, Myv, Ny »0‘01,2)7
RDS/Dis RD5/D75 3gMN Ruvy
log | Zpi¥—
R
D5/D5
(3.34)

Therefore, the counter terms required to cancel the UV-divergent terms are:

(0)
1 I
BH __ EH+GHY
Scr = CE O S V—=hR
FEfGQRyY 77 VOV
2,0 (gVV, Muv, N¥V;aq, ,)
11 \/jggMN 5Jg 9s MUV, INg s, 5 5
i — 7 . mn 0
+ON (0) V—hg™ s
8Jg r=Ruv dg
vV— g 5 mn @RUV Ruy oy %
log | Zn (Nf log N) T
D5/D5

(3.35)
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3.2 Thermal background uplift (relevant to T' < T.) and holographic renor-
malization of on-shell D = 11 action

In the large- NV limit and in the IR, the fj;ny EOMs for the thermal background are algebraic.
Writing below only those components which pick up a non-trivial O(/3) corrections, here is
the O(R*)-corrected MQGP metric for thermal background in the IR in the ¢ = 2n7,n =
0, 1, 2-coordinate patches:

. 99\/§ﬁgs3/2M 5 J{,Nfroaglfxmmm(ro)10g2(r0))

M _ ~MQGP
GTT‘ - GT‘T ( 27'('3/2052
2

G = GNP (1= Bfarog10(r))

x4 61

G = GNOST (14 Bfayy(10)),

Y61 yo1
Gﬁ _ GIZ\/éQGP 14 539773ﬁN2/50532f$10§10 (’/‘0)
! ! 1728953 M2 N7 log™(ro)

G% = GMQGP (1 - 2fo1°x1“ (TO)) )

Y62 yb2

_ gMacr (4 w3/2BN?/P 0, a0z (ro) (1617V/37%/ 2ro0f, — 32v/29,* M Nyay,)
vy 2592\/§gs3M2N]%r0a§] log? (1) 7

o = guace (| TINIPAG, fapi (o)
" 81693/ 2M Nyroa, log® (ro)

G//[ _ GMQGP 14 539773ﬁN2/50432f$10$10 (’/‘0)
= = 86493 M2N?log®(ro)

Gloio = GMISE (14 Bfrr0510(r0)) - (3.36)

Working in the IR and near (3.5), Einstein-Hilbert term for thermal background is:

g+*/*log N*log <Rt{° )MNfS 2

V—-G“R ~ — DS/DG K o3 ™ (r—mro)™
Ouvang R%%/D?SN 7 sin? g sin2 0y mz::o B IR
log N (243v/65sin® 6, — 8sin? 6y ) f10,10(r0) 2.
—p ( ) Z ’ngﬂ,nIR ro® ™ (r — o)™,
1
N sin® 6, RM /ﬁ3g89/4 log ( Rtﬁo) M (log NN;)5/3 m=0
D5,/D5
(3.37)
where R%lg)/ﬁ =/3a'h, ath = (% +e+ 0O (95]1\\,/[2 )) o [11] being the resolution parameter

for the blown up S? in the thermal background, and /igganR are the numerical prefactors
— which we have worked out but have not given here as they are not particularly illu-
minating in the ™ (r — ro)" terms in v —G-? R restricted to the Ouyang embedding of
the flavor D7-branes in the type IIB dual and in the IR. From (3.37), one can evaluate
[ Pe V=GR

i Ouvane where Vy is the coordinate volume of S*(z%) x R3(x1%3).
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Also additional term that appear in on-shell action (3.32) at O(f3) is:

thl)Dh57ﬁ Ty N8 W*a‘)zN—l% _G(l)R(O)
Th _1 -3 M
91:a91N 5 02:a92N 10
Vi
11/20
Bgs*og N*M (%) Ny*rofzr0,10(ro) (1 - R) log (R>
D5/D5 D5/D5b
~ th 2
RD5/D7501910¢92
(3.38)
Similarly Einstein-Hilbert term in the UV is:
[11 —8log (Rtﬁﬂ MuyN{Vre!
uv 0 D5/D5
A/ _G%R = K,B 70 G
Ouyang EH, UV Rchs/msgf“rN% sin® 6 sin? 6y
dlog | =mt— | — 1| MyyNPVrrg?
+ 01 |: (Rgg/m) :| ! 592 MUVN}IVTP’
KEH, UV 3 5 3. . KEH, UV 3 5 ’
ngﬁ gs?/4 N1 sin? 6, sin? 6, 1?.?>\/§7r9/473t[];‘5/ﬁ gs5/4N 7 sin3 6, sin? 0o
(3.39)
implying:
UV —Finite

_1 _3
Jrentt et U RY e/ =GR

-1 _3
O1=cg, N™5 "fa=cg, N~ 10 D5-D5

Ouyang
Vi

uv 121rg* 6702

1 3 MyyN — . 2

0 m—ag N5 pr—ag,N"10 = OV'S ( R T g 2T
~ _KgH,O oV / / D5/D5 D5,/D5
1 3 5
’ O1=ag, N5 JO2=cp, N~ 10 .QEVS/Zl]\fZ sin® 01 sin? )

(3.40)

Therefore, after performing radial as well as angular integral of the above equation UV
finite Einstein-Hilbert term is:

1 3 UV —Finite
T—ag, N5 m—apg, N 10 .p
/ ) ¥ s fR;VD—dTV_G‘%R
01:0491]\[ 5 92:a92N 10 5—D5 Ouyang
Vy
(3.41)
4 2
M, NUV __ 121rg 1 . 610 9
2.0 UVaYy 16R' /ﬁ‘* ag g, R?;S/EQ +
~ ~KEH, UV 5/4 nr 1L 2 g,
; guv /AN 3% Q, (g,
UV divergent Einstein-Hilbert term for thermal background is:
UV—divergent 89,2 UVp4
SEH—thermal ~ REH7 uv MUVNf RUV 1 (3 42)
11 ° °
V, 4 Rth 49UV5/4A]\72—0 0‘310‘92

D5/D5 s
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The UV-finite part of the boundary Gibbons-Hawking-York term for the thermal back-
ground up to O(S) turns to be:

JV-hTK

r=Ruyyv UV—finite

Ouyang
Vi
3 2 Ruv
i 9:° Muv? log |zt (3.43)
7,04 ﬁﬁ ,UV—finite D5/D5 1
GHY NI g, e,
~J
th 21/4
Ros /5% 9214 My

Further UV divergent part of the Gibbons-Hawking-York term for the thermal back-
ground is:

Ruv 4
GUV—divergent log (Rth ) MuvRuv
GHY B9, UV—div D5/D5
S = ey e (3.44)
20
D505 Is @y, 05

One can further show that up to O(8°) contribution from higher derivative term in
the IR is:

n 0do [ (19683/6sin® 0 + 6642 sin? 0 sin® 1 — 40/G sin’ 6
SGMN Ouyang - 2/3
€89,9/1log N2N'5 sin® 6 sin? 0,N 2 | Ny { log N — 3log [ —0—
g sin® 01 sin” 0, N 19 log 3log Rth
D5/D5
(3.45)
implying:
f:jDs/ﬁ V=G GMN Sy Ousane
Vs -
2
2 T T
o TN <1_Rg':/m> log (Rgl:/D0> (— 664200, %0, + 19683v/Gag,  log () —207/6a,*)
GMN b Sglog NAN2/2RE 2 3ag,5ag,?
2
X {logNQIOg (RHTO) } [logN3log (tho )} .
D5/D5 D5/D5
(3.46)
Further, near (3.5) contribution from higher derivative term in the UV is:
amn_0Jo v OV Ao g (19683 sin® ) + 1107/6 sin” 6, sin® 6, — 40sin* 6
- uv
SGMN Ouyang gt V17/410g N3(2log 7+ 1)7N39/20N}W2f sin” 0y sin* 6,
x ( KO0 sy a" (6410g 7 +208log 7 +212log 7+ 57)
SGMN
0
—KD it ss 807 (4logf2+15logf+9)f—ng 2 f3>,
SGMN SGMN
(3.47)
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where 7 = R“‘%’ thus after performing angular and radial integration of the above

D5/D5

equation the UV-finite part will be:

1 3 .
m—og, N~ 5 m—ag, N 10 . MN 6J UV —finite
f ! _1 f ? _3 fT\’,UV— \ G G 5G1\?N
br=ap, N5 Or=cp, N 10 D5/D5 Ouyang
V4
8%, UV—finite Muyv

5
GMN Soatw gUV log ]\73]\721/20NUV2

( 5 H) (( 664209, 30192 + 196831/6 a916log( ) — 20/6ag, ))
X — 3 .

th 3. 6
R ps/D5 a0, ag,”
(3.48)
Further, UV-divergent part from equation (3.47) will be:
1 3 .
T—ag N™5 m—ag,N" 10 R\ %—G‘/fl GMN 5Jo UV —divergent
91 0491 N_% f02:a92N_1% fRD5/F5 JGAJN ‘Ouyang
Vi
,80 UV—div gyV MUVRUV
- RQMN 5Jg /
SGMN - sh 4 UV9I/2 \r21/20 NFUVS/3 4 UV
RD5/D5 g5 N2t/ Ny logs (N)log (Rg,5/D5>
(664200, %ap,? + 19683v/6a, *log (74 ) — 20V/6ay, )
X — = : (3.49)
3ap, Yap,

We note that:

7/3
tv ) MyyRuv* log (ZU/\;S )
- K\/Th Rth 4
r=Ruv D5/D5

1 _3
m—ap N5  rm—ap, N~ 10 d91d(92
0

_1 _3 o 3p T
1=ag, N~5 JOy=ag, N~ 10 sin3 0y sin? Oy

[V
Vi

7/3
50 (5v> MUVRUV410g<RUV>

. s D5/D5
=kl — I

v N1 agl A6, RchE)/Ds

4

) Ruv log Ruv
= Fy/Thaonn, | pin th

Vo . RD5/D5 RDs/DTs

e 2/3
[V—hR UV—div ( gs> MUVN}NRUV 50 -
~ i =K /Thraeon, "YUV
2 r=Ruv NlO R%5/D5 R /gsUVOéé’1 g, vV—h 11
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R 4
UV—div log (RthUv ) MuyvRuv
B0, UV—div

f\/—hK . D5/D5
. = —KgHyaesMm 1 1v9/4 L
Vy =Ry H Rch5/ﬁ Uv N3 aglagz
Ouyang
8
] JVERGm S| MuvRuvis (—19683\/6)
Vi T 6
th 4 UV47/12 2 Ruy 13/10 yUVZ 3
RD5/D5 s log N {10g (Rgs/m>} N1/ Ny ag,
4
(222
— P ERGmn @o My 550 sl = '
log RthUL
D5/D5

(3.50)

One should note that in (3.9), (3.10), (3.12), (3.14), (3.15), (3.16), (3.18), (3.20), (3.21),
(3.22), (3.25), (3.26) (as well as (4.3) and (4.7)) for the supergravity dual with a BH
corresponding to T' > T, and similarly (3.38), (3.40), (3.41), (3.43), (3.46), (3.48), (3.49)
and (3.50) for the supergravity dual with a thermal background corresponding to 7' < T,
given that the delocalized toroidal coordinates (x,y, z) are defined as [3]:

1 ) 1 ) 1
x ~ hi(rg,610,20)70 sin 61001, y ~ hi(rg,010,20)70 sinbaopa, z ~ hi(rg,0i020)r0t, (3.51)
where the 10-D warp factor is given by: h(r,6;2) = [1—1— 39: My logr{l—l— (logr +3)+

log (sin & sin 2) H, upon promoting to global coordinates, and noting that all the

g N§T
iy

aforementioned equations already have an N~¢, ¢ > 0 suppression implying that up to
O (%), one can approximate h = f—:, one sees that one will generate a sin 61 sin s contri-
bution upon integration w.r.t. x,y, 2. As this is not accompanied with an r-dependence,
it will only provide a common multiplicative N-suppressed contribution to all the above-
mentioned integrals. We have hence not considered the same.

Also, note there is a multiplicative factor of Sty ~ \/g;T in all terms in the action cor-
responding to the thermal background, e.g., (3.38), (3.40), (3.43), (3.46), (3.49) and (3.50).

With reference to (3.49) and the fourth equation in (3.50), let us assume:

6
{log (RUV)] N5 = log (RUV) NéTlJ, (3.52)
LA RO
D5/D5 D5/D5
or
R v
log (‘“’) = N5, (3.53)
Rth -
D5/D5
Further assuming v = i + €,
Ruv €
log (Rth ) ~1+ 5log N. (3.54)
D5/D5
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From (3.27), assuming,

1
J A — : 1 .
f logN+€1 O<e K1, (3 55)
R P
log (thUV) ~14 D og N. (3.56)
R 15
D5/D5

From (3.54) and (3.56), e; = 2e.

One hence sees that the UV-divergent contribution of % (—;Sé%+25ééy> is given by:

4 4
2801 Ruv 302 Ruv Ruv
Kuv—div (Rth ) + [BJV div (Rth ) log (’R,th . (357)
D5/D5 D5/D5 D5/D5

From (3.50), one notices the following:

Rth
D5/D5

4
. /?;%0\, div <RUV> is canceled off by the counter term: fT:RUV vV —hO RO

4
. RI,BNQ i ( Rﬁuv ) log <RUV> is canceled off by the counter term [, _p V—h.

D5/D5 D5/D5b

4 T, inclusive of O(R*) corrections

In this section using the results from 3.1, 3.2, we will calculate deconfinement temperature
by equating on-shell actions for blackhole and thermal backgrounds. In the same process
we will explain a version of UV-IR connection which is arising from the O(R*) terms. We
will also calculate entropy of the black hole and discuss its consistentency with the Wald
entropy up to O(R*).

The O(8%!) term in (3.33) <1+ s )ngifo;-shen Uvfinite and  similarly

thermal, 591 .
SD=11, on-shell UV-finite a1 NOW be easily computed.

of the aforementioned

One can show that the LO terms in NV, log ( Ruy ) and %

D5/D5 D5/D5
BH and thermal actions are given as under:

bh 4 R
2’<5C4HY]MUV7"h log (RthV )

1+ Tn GBH o D5/D5
ZR%V D=11, on-shell UV-finite 989/4N11/20a2 g,
bh IR
7CH AR 20 (—CBE 20kt — 3CRh ) iy 1)
+ .
22 11
b2933/4MNf3rh410g3(N) log (R Th) log (1 - = rh)

% D5 D5/D5 ﬁ

1 .
Ny s 0,
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Writing RD5/D5 = (1+\/§6> ry, and using (4.5), log (1—7.&”1) = log(RQZ)

D5/D5
2
— |log <MUV (N}Jv) 15>
Let us show the consistency of the BH entropy calculated via (4.1) and the Wald’s
method. One notes from (4.1) that up to O(8°), the BH entropy Spy is given by:

VN Myyry? log (R&UV >

oSE D5/D5
S — BH -8 ~
Bit = bl S8 Y T TN o,

~ —loglog N.

3
Muyy (NUV log N) E
~ i . (4.2)
N 20

Note, there is a multiplicative factor of Sy ~ \/f}STN in all terms in the action corrsponding
to the BH gravity dual, e.g., (3.9), (3.9), (3.10), (3.12), (3.16), (3.17), (3.18), (3.21), (3.22),
(3.25) and (3.26).

Interestingly, the Wald entropy density arising from the O(3Y) action is given by:

SWald B 7{ OR
V3 Mg (01,2,2,y,2,210) aRmnpq

(362 — 1) (962 + 1) g>/* M N~V N1, 3 log ( ) <logN 9log ( ))
D5/D5 D5/D5

(662 4 1) o, g,

2/3
Th
D5/D5

where V3 is the R? (2123 coordinate volume). Upon substituting b = % +e,e~ (]log rh|)%
. N—1o—o yields:

€™ (G125 g, oz 001 dOadrdydzda'

~ —

X

(4.3)

g85/4MNfrh3Nf%*ae (“Ogth% <logN 9log (Rbh>>

D5/D5

2
0491 a02

2/3
X [Nf (logN — 3log (ﬁ))} . (4.4)
RD5/E

Both methods yield that the BH entropy goes like r,?;. The results match exactly for (for
simplicity, we have disregarded in (4.5) numerical factors and M, Ny which in the MQGP

limit are O(1)):
2 2
uv) B uv) B
9 log(MUV<Nf ) )‘ 211 log log N 1°g<MUV<Nf ) )‘ 9

) - 2w
T log N T e N log N o (49

2

ae > 0 if Myy (]\7}’“/>ﬁ < N_%.
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At O(R*Y), one can show that to calculate one needs to evaluate the following four class

0Jo .

of terms while calculating 3 Tt

. 1
(i) (@) (G")? (Rm@ + QRPQW) R, "SPRO b,

N(G’I’T)2 (Grr)2 Rtrrt (Rt 291th z01r+Rt Glzth elzr)

2
(logN—9log (M)) i’/Nf <10gN—310g (Rbf’l))
D5/D5 D5/D5

5 )
gs3/2N3/2N P (logN —3log ( —— ) )

D5/D5

~ —

1 . . " 2t oy
(Zl) RHrtKRHRSth rox + §RHKtrRHRStRQRSKNRtMt (Rt GltR +Rt61 tR 6’127‘)

20171

(log N —9log (Rbﬁh> )?

D5/D5

14/3°
953/2N3/2Nf14/3 (logN—?)log (Rb:h ))

D5/D5

~ —

9522 M®1og®(r1,) (log N —121og (Rb:h> )3

D5/D5

14/3
No/3 <1ogN— 3log (Wh))

D5/D5

)

L. rr 1
(i) (GG <RP7~tQ + 2RPQtr) R, "SPRY RSr"™

VGsM?log (7@?’)

. INr 1 r r D5
(ZU) Gtt (RH]WN RPMNt+§RH MNRPtMN> RH tPN D5/D5 e
N3 (logN—3log (W))
D5/D5

X <logN— 12log <Rb£h>> .
D5/D5

One hence sees that it is the contribution (iii) which dominates in the MQGP limit, and
obtains:

(4.6)

SO }{ aJy
VS 01,2,2,y,2,210) athrt

3 3
9523/4M8Nf4/3 (Rbgh> log* (Rb£h> <logN —12log (Rb£h>>
D5/D5 D5/D5 D5/D5

8/3
VNao} aq, <logN — 3log <Rb§h>>

D5/D5

V—Godb,dbrdzdydzdx'®

(4.7)

One notes the identical 73 and N ~30 dependence in (4.7) and the corresponding semiclas-
sical result at O(3). For the latter and the Wald entropy result to match exactly at O(/5)
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imposes the following constraint:

bh 8, IR
117C91x \/TR(O) n ( C + 2C912 369133) HEH log3 (N)
22 11

10g <MUV (N}JV) 125) ’

3
log® (M) (logN —12log ())
D5/D5 D5/D5
~ 573 . (4.8)
log N — 3log
D5/D5

Hence, one sees that consistency with the Wald entropy computation up to (’)(R4), imposes

a linear constraint on the constants of integration appearing in the solutions to the EOMs
of the metric corrections at O(R*) along the directions that encode the “memory” of the
compact part of the non-compact four-cycle “wrapped” by the flavor D7-branes in the type
IIB dual [3] of the large-N thermal QCD-like theories. This “Flavor Memory”-effect is also
displayed by the .#-theory uplift of the corresponding thermal background, as seen in 3.2.

After that brief detour, returning back to the computation of T, the on-shell action
corresponding to the thermal background uplift is given below:

2“GH€ Muyvyro*log (RRUV )

Sthermal D5/D5

D=11, on-shell UV-finite ™~

V9/4 11/20pth 4 2
N1/ R Ds/D5 %990

7933/4,‘6%}11_’1 ?;MNfSTOQ log? (N) log
’ D5/D5

11/20pth 29
2N RD5/D5 ag, 0,

_|_

2OﬂmEH th70 (20422 — 729\/604310492) frr0z10(r0)

(4.9)

D5/D5 Rth

B
11959/4MN7/20N 5/3Rth agl log%( )log ( )
D5/D5

Now, equality at O(3°) in (3.4) requires the following equation to be solved:

2HGHYMUVT’h log (RRUV ) QmGHg Myvre? log (RRUV )

D5/D5 D5/D5

9/4 o Uv9/ dth 4
Js RDS/DS

0
7953/4/<c]t§11’{?RMNf3r0210g (N )10g<

+ ES D5> . (4.10)

th 2
2RD5/D5

~ 10, and hence, one

Qg ag wi 8°
Now, one can show that near, e.g., (01,02) ~ ( 1 ! >, —GHY__
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can drop the ”Eﬁ ?R term. Therefore,

4 “g]ﬁéo
bh, B0
GHY
= (4.11)
Identifying 7% with m [37] and using T, = ry,/7L? [4], deconfinement temperature
will be given by the followmg expression:
th, g0
mOt T Rbh
ShHX%O RD5/D5
GHY
T. = 5 (4.12)
AR s 55
Using (4.1) and (4.9), the matching at O(3) yields:
bh B, IR
RN (R S N 20 (—CB! + 205" — 3CPh,) milyy
22 11
2 3/4 3.4 3 Th o Th
><b 95> *M N ¢°rp* log® (V) log <RD5/DS> log <1 RDs/Ds)
Nll/QORD5/D7540‘310492
_ QOHEH 70 (2049 — 729\fa9 a92> frr0z10(r0) | (4.13)
2
AN, 1l o ) o
which yields:
fIIOIIO (TO)
4
2
bzgngszM/z% (M) 0‘51 log3 (N) log <Rth> log <Rbh) log (1 - 'Rb£h>
D5/D5 D5/D5 D5/D5 D5/D5
~ 3
By VN (wh ) o3, (729v/603, —203,)
D5/D5 (4.11)
x (M7rt e s ) 10g? (V) — 40k ™ log? () (—CEE -+ 252 — 3¢5%, ) )
(4.14)

We thus see that by matching the thermal and black-hole .#-theory background ac-
tions at the UV cut-off, respectively dual to large-N QCD-like theories at low and high
temperatures, (4.14) gives a relationship between the constants of integration in the IR
in the respective metric perturbations as (’)(lg) corrections to the .Z-theory uplift worked
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out in [3] along respectively the .#-theory circle (for thermal background dual to T < T)
and the S3-portion of the four cycle (locally) Y =Ry x S3 “wrapped” by the flavor D7-
branes of the type IIB conifold geometry of [6] (for black hole background dual to 7" > T¢)!!
The equations (4.14) along with (4.12), are what we refer to as UV-IR connection in this
context. We also note that the contributions arising from the O(R*) corrections to the
BH background metric retains the “Flavor Memory”, referred to earlier, of the compact
three-cycle which is part of the non-compact four-cycle “wrapped” by the parent type IIB
flavor D7-branes.

5 Deconfinement from entanglement entropy

In this section we will discuss confinement-deconfinement phase transition in QCDo1-like
theory from entanglement entropy point of view based on [2]. We will calculate entangle-
ment entropy for “connected” and “disconnected” regions — suitably defined. We will show
that at a critical value of [ of a spatial interval which we are denoting here by I.., phase
transition will occur from confined phase to the deconfined phase. Contact with results of
the previous section is made by looking at the Mgx — 0- or equivalently rg — 0-limit,
i.e., the 4D-limit of results of this section.

Authors in [2] have investigated entanglement entropy between an interval and its
complement in the gravity dual of large N, gauge theories and they found that there are
two RT surfaces — disconnected and connected. Below a critical value of [ connected
surface dominates while above that critical value of [ disconnected surface dominates. This
is analogous to finite temperature deconfinement transition in dual theories.

For AdS4.2/CFTy.1 correspondence, quantum entanglement entropy between the re-
gions A = R4 ! x [ and B =R9! x (R —1), | being an interval of length I, is given by the

1 [ (d
SA = W / ddO' Gl(nf)i (51)
N ol

where, G%H) is Newton constant in (d + 2) dimensions and Gi(i)i is the determinant of the

following expression [17],

induced string frame metric on co-dimension 2 minimal surface . Equation (5.1) can be
generalised to non-conformal theories as below [2]:

1 _ d)
Sy = 7/ddae 20\/G\Y. (5.2)
4G§$+2) g ¢

where ¢ is the dilaton profile. In an .#-theory dual since there is no dilaton, therefore
equation (5.2) will be assumed to be replaced by the following expression,

1 9
Sy = W/de/Gi(n}j. (5.3)
4Gy Iy

Now, consider gravity dual’s string frame metric (3.2), which can written as:

ds* = a(r)[o(r)dr? + dv,dz"] + gmpdz™dz™, (5.4)
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where z,(n = 0,1,2) represents (2 + 1) Minkowskian coordinates, r is the radial co-
ordinate and z™(m = 3,5,6,7,8,9,10) corresponds to z* and six angular coordinates
(01,2, ¢1.2,,2'0). Noting g,s,3(r = ro) = 0, (23,7) form a cigar-like geometry. The vol-
ume of the seven-fold is given by:

Vit = / I d="a. (5.5)

Here we have (2 4 1) dimensional QFT defined on IR**!. Let us define two regions A and
B in two dimensions as below,

A=TRxI, (5.6)
B=Rx(R-1). (5.7)

Now, we are going to calculate enganglement entropy between A and B for the metric (5.4)
using equation (5.3). Induced metric on 7 is given below (here we have represented x1 by z):

2
ds?|, = a(r) [(O’(T) + (?) > dr?® 4 dz3| + gmpdz™dz". (5.8)
r
Therefore,
Sa _ 1 2
%= o / dry/H(r)\Jo(r) + (9,(r))?, (5.9)
N
where,
H(r) = V3.a(r)?. (5.10)
As in [2], H(r = 1r9) = 0. Equation of motion for z(r) can be obtained from equa-
tion (5.9) as,
de _ | volr)VH(r) (5.11)

dr H(r)— H(ry)’

where, 7, is the value of radial coordinate at which dr/dx vanishes. Integrating above

I(r,) = 2\/H(7’*)/:O dr H(r)”_(r;{(r*). (5.12)

From Equations (5.9) and (5.11), entanglement entropy can be simplified as,

Sa 1 Too i Vo(r)H(r)

equation we obtain,

—_— = r . 5.13
Vo™ . VHE) - H () (5:13)

Here, ro is the UV cutoff.
For the disconnected surface we have r, = 1y as explained in [2], when | > lyax

entanglement entropy for the disconnected surface will be given by the following expression,

Sa _ 1 Too
= 2@5&1)/7@ drJo(r)H(r). (5.14)
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For | < lpax, difference of entanglement entropy for connected and disconnected surface
have the following form,

205\171) (S(Aconn) . SA(Adisconn)) 0o
Vi _/ dar \/—r* Ve / dryjolr

(5. 15)

e Connected solution with large r, has the lower entropy when [ is small.

e When [ starts increasing, two things can happen. First, connected solution can still
remain the lower untill [ reaches it’s maximum value i.e. ljh.x. Second, there could be
a critical value of [ which is denoted by [t and It < lmax above which disconnected

solution becomes dominant one.

e There will be a phase transition at [ = [,,x in the first case and at [ = It < lpax in
the second case.

From equations (3.2) and (5.4) we have,

_oplIA
e 3
a(r) = ——— (5.16)
h(T, 9172)
and
2¢IIA
e 3
o(r) = ——, (5.17)
g(r)
where ¢4 is type IIA dilaton profile, which can be read off from .#-theory metric com-
ponent as,
Y 4¢IIA
Gl =e . (5.18)

From the equation (5.5), simplified form of the Vi for the metric given in equation (3.2) is

3/ADMIN9/20, /1 — 1ol (N log (9a2rt +16) 4 16z 4 2)4/3
g og (Ja"r T 1
i T4( d ( ) g0 gs) (25(0““ 2C91z) )

3 2
rog, O,

Vint ~
[gs log NNy (3@ —r ) (2log(r) + 1) + log(r)
X (4gst (7“2 —3a ) log (4a91a92> — 2ma® + 7"2(87r - 3gSNf)>

1
+2gsNy (7“2 - 3a2> log (4@910492) +18g, Ny (r2 —3a?(6r + 1)) logz(r)] , (5.19)

(strictly speaking the periodicity of 3, MQ;K where Mgk = QLLQO {1 + 0O (‘%Nﬂ)}, but this

does not influence the computation of lax and le) where Q = (93(2 log N + 3)Ny —
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4gsNylog (%0@10@2) - 877), a(r) and o(r) have been obtained from equation (5.18) and

h(r,612) given in [3, 6], simplified form of the same are given below:
32/3 ( Ny log (9a?r* +1°) + 1;: + g%) 2/3
8r7/6,/ ;—iv
2/3110 (12 1 1\ 1)3/4 6 2 3 4
27 32310 (902 1) BM (%) r (19683v/6af, + 664203, af, —40v/Gag, ) (6a +702) (r — 2rg)
16713/6 (362 —1)° (662 +1)* log N4\/>Nf'r04oz9 (9a% +1¢2) |/ %

1 Q
X <1og3(ro) <—Nf log (9a2r4 +r6) + om + —) 2/3>

a(r) =

9s 9s
(5.20)
and
™)2/3 32ma®gs M2 Ny (c1+cz log(ro))
4 (3) (N(9a2+r2)( Nf ]og(9a2r4+746)Jr 167 | Q) + 1)
o(r) = 6r 1 O

( — r—) ( Nylog (9a?r + r6) + 1;—: + g—s> 2/3

5/4
18/ 2010 (962 +1)* M () s (19683v/6a, + 664203, a3, — 40v/Gag, )
- (362 — 1)° (662 + 1)* log N*Nyrotad, (92 + o) (ro* — i)

(6a® + ro?) (r — 2ro) log®(ro)

(= Ny log (9a2rt + 1) + 10 4 2)2/57

(5.21)

c1,2 appearing as the O ( #)—correc‘ciom (9“’ ]]\‘,/‘[ 2) (c1+c2logrg)rp in the a—1( relationship

(inspired by [25, 38]). From equations (5.19) and (5.20) we obtained,

H(r) = Viga(r)? = ho(r) + Bha(r), (5.22)
where,
A, ( ) \/@M27’2 1 7"04 )\2)\4 (5 23)
P~ Y (1 — ’ )
’ 1Wa31a§2 I
and
3/2 2\9/10 (1 _ mo? 4/3
i) ~ MENY 1 ;]4)/\2>\8/3 x
1 2a6a (9a2+702) 172\ 64710/3 (362 — 1) (612 4 AN3/2 4.3
0, 0 w1073 (302 —1)° (6b* +1)" gs log N*N3/2Nyrotag,
3V3ri(C: - 2y).) 8/2110 (12 4 1) LV 5 2., 2 3
x ( 6477/3g, N —81V/3b (9b +1) M <N> T3 (6& + 19 )(r—2r0)log (ro) |,

(5.24)
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where we have defined \; and Ay as below:

A = |gslog NNy (3@2 - r2) (2log(r) +1)
1
+ log(r) (4gSNf (r2 - 3a2> log <4a91 a92> — 247a® + (87 — 3gst))
+2g,Ny (r? = 3a?) 1 E 18¢s Ny (12 — 3a%(6r + 1)) log? 5.25
gsNyg |7 a” ) log 404910492+gsf7“ a”(6r +1))log*(r)|,  (5.25)
81 Qg Ol
Ay = (—N log (9ar* +7%) + — —4N;1lo ( L 2)) 5.26
2 7 log ( ) o slos \ 7% (5.26)

Similarly, by replacing r with 7*, we obtained ho(r*) and hq(r*). Therefore,
H(r") = ho(r*) + Bha(r"). (5.27)

Now rewritting o(r) as,
a(r) = oo(r) + Boi(r). (5.28)

From equations (5.22), (5.27) and (5.28), the integrand appearing in equation (5.12) can
be written as,

¢ o) _ ﬁ()(r%(r) +/3<o—1<r><ho<r>—lm(r*))—ao<v~><h1<r§—m<r*>>>

H(r) — H(r*) ) — ho(r*) 2/70(r) (ho(r) — ho(r*))
(5.29)
where,
ho(r) ~ M (7’*4 - 7’04) (gst log (9a2r*4 + r*6) -Q- 167r) 4

7/2 W/ N #2064
gs7/2 YW/ Nr ap, g,

1
X {bg(r*) (Gaz(gs log NNy —4m) +4g,Ny (T*2 - 3a2> log (Zaglagz) +7*2(87 — gs(2log N + 3)Nf))

1
+95Nf (30,2 _ 1“*2> <1QgN —2log (fagla(%)) + 1895Nf <T*2 _ 3042(67"* + 1)> 10g2(7“*):| )

4
(5.30)
o In H(r*) if
) \/72932Nf2 (log N —2log (Lag,ap,)) + 02 +Q
logr™ — 369, N7
95NNy (long 2log (%04910492)) N gSZNf2 (74log (%04910492) +210gN+3)
B 8 642
1 gs>Ng? (log N —2log (%ag, a,))
X <logN—2log (4@910492)) + 53 2
2 (1 2 1
x | 161og 706100, +4log N* —4(4log N — 3) log 100100, | — 6log N+9
+0 (Ng*), (5.31)
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S aMoyN}¥1* /[log N — 2log (an,ae,) +log(16)] (NFV?)
) = :
0 246719, Y N o, f

(5.32)

WNoj of

sB/AMN10/343 log(r)(log N—3 log(r))7/3| log N—9 log(r)|

Now, the integral in [(r*) is proportional to
3 2 1 10/3
91 Y6y (105(1\’))
g55/41VIN‘f 10/3,3 log(r)

o((%f)z—m One hence obtains:

+0((10§N)13/3)- Given that [ =Fi(—2log(r))=—20 (DHos(r)=1 4

r3logr 4r2log3 (1)

10/3
CLMUVN}Jv (log%NQ \/—2 log (avg, v, ) + log(IN) + log(16)
gs2MNf10/3r* log(r*)

*
'I’—}OO\O

1(r*) ~

9

(5.33)
asin [2]. As r* was assumed to be in the UV and as [(r*) is a monotonically dereasing

function in the UV, one sees that [(r*) attains a maximum at r* = R%ls) D5 One can
a =t~ 1078 —2log(ap, a lo log
invert (5.33) by solving: I(r*) = — locgr* where C ~ (mstm) \/;5;\,971/392)+ B Noe(®)
Hence,
C
rt = (5.34)

=
1 )W ()
e Even though we will not use this in the rest of the paper, but as an academic curiosity,

given that * < Ryy < (47rgsN)i, if we do not require therefore [(r* — Ryy) — 0,
and expand first w.r.t. log N > log(r*) (continuing to assume: r* > v/3a), then:

MU\/N}IVT*S log(r*)|21log N — 18log(r*)|(gs log NN}JV - 3gsN}JV log(r*) + 4m)?
gs3/4 QWagl 0432 .

Vo ~

(5.35)
One can similarly show that I(r*) ~ 7*(log(N) — 9log(r*))(log(N) — 3log(r*))? and
that [ ,.x corresponds to:

1
Ty = exp (18 (—\/4 log?(N) — 361og(N) + 729 + 4log(N) — 27))

_ log(N) 9 81 1 \?
exp( 9 _1_log(N)_210g2(N)+O<<log(N)> ))

__ 8 9

~ \'Q/Ne 2log2 (V) logg()N) i (5.36)

As a numerical example, for N = 100, the figure 1 has been obtained.
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r* (log(100) - 9 log(r*)) (log(100) - 3 Iog(r*))2
350 F

300

250 |
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Figure 1. Plot of 7*(log(N) — 9log(r*))(log(N) — 3log(r*))2-versus-r*.

Entropy. The connected region entropy catering to small [ and large r is:

fRUV Vo(r)H(r) dr

S r H(r)—H(r*)
v 2G (1D (5.37)
SUV-nite, 8 log NYAMyy NV o, (ro*r log? () 4 r*C log? (1)
2V 12/q ZWT*2QSI log(r*)
log N4/3MUVN}JV4/37**404§2 log(r*)
~ 12 s 2\O/Nagl 7
17/3
— fini 1 #4 (th h 1
Sg)}l/nefz?;ge’ﬁ N 5 Y ngUVr (ng - 2cg1z) (log(N)) (5 38)
= 0.7/ NNV o o,
From (B.14), noting the extremely non-trivial cancelation of O(R*) corrections CtI —
2C§?Z = 0, we note that there are no O (R4)—corrections to the connected region (and

similarly disconnected region) entanglement entropy.
The disconnected region entropy will be given by the following expression:

Sdisconnected . { foUV \% U(T)H(T) dr }

2V1 - QGN(]-]-)

<f77§Ds/D5+f§51J/\]/:)E)> Vo(r)H(r)dr

QGNH

1 33 2 2 2 3
=5 g;*N; [log RDS/ERD5/ﬁ5 (—6a +RD5/D—5) (lOgN_BIOgRD5/ﬁ5>3

g, Xg,
4/3
cih—acth, Muy /% N§Y /
L+ =25+ — ol o
1 2

— log2 7“07“(2) (—6@2 + r%) (log N — 3log 7’0)g
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X lRUVA‘ log(Ruv)(log N — 310g(72UV))4/3

_R4D5/ﬁ log(R 5 p5) (log N — 3 10g(RD5/D5))4/3‘| -

(5.39)
Writing a = (% + e) ro, the contribution in r € {ro, RDs/ﬁ} is given by:
€gs®/ M X £ N A Prd(B(Ch — 2¢8h) + 2)
— 30 . (5.40)
0102
Noting that all radial distances are measured in units of Rchs /55 ie., logR . /D5 = 0,

one obtains:

Sdisconnected - S%i\s/connected 955/4M &Y %Nfg/?)’ré IOgZ (TO)(log N -3 IOg(TD))5/3 .
2V 64 w35/6ﬂ-41/12a21 0‘32 3
4/3 4 N “ X .
Sconnected - Sﬁo\r/mected MUVNJ[CJV / agz 10g3 (N) (7’37‘ ? 10g3 (T ) -r 0 10g2 (T ))
2V 79 92/335/6 125/12 1\2/% Q\O/NT*20421 log(r*)
My NPV 10g3 (V) log(r*)
~ - , (5.41)
79 22/335/6,25/12 1\2/9? 2\0/N
where,
Muy N9V 3R (log N — 3log Ryv)? log R
Sdisconnected -~ UViVy uv ( 0g IV — o log UV) og KXuv
uv L 3 3 ’
N 20 ay, o,
UV 2554 4 2
S%O\r/mected N Muyvy Ny 3Ry (log N)3 logRUVoon‘ (5.42)

1
N%ag
1

1
One notes that in the large-N limit, recalling Ruy < (4mgsN)* and setting agl = o/éz, one
sees that S%i\S/COHHGCted = S&O{;ﬂected'

As [ increases, i.e., r* decreases and reaches R

D5/D5’
negative to vanishing and Sgisconnected Stays negative implying disconnected region has

Sconnected changes from being

* - .
lesser entl"Opy- At r* = Tcriticial s Sconnected - Sdisconnected and one sees that Tcritical 1S the

54/3MN 8/343 log2 1 N)—31 5/3
solution of the equation: (r*)410g r* =, where y ~ J S0, log (o) (log(W) 3 l08(ro)) .

774/3MUVN}Iv4/3a§2 log% (N)

The solution is r* = eiW®) ~ 3am. F tion 3, setting Myy, N; ~ i and
e solution is 7* = e ~ V- From section 3, setting Myv, Ny ~ 5 an

log rg = _fTTO log N (and setting f,, ~ 1 [1]), one obtains:

7
6

3/4
. ,3/gSMNf2/3a01/ log
critical =
\4/5\3/771’0492

(V)

To- (5.43)
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-0.000030

Figure 2. Plot Sconnected (blue) and Syisconnected (Orange) versus I(r*).

Mw

For M = Ny = 3,95 = 0.1 — 1 (5.43) yields O(1 )ﬂ From (4.11), one thus obtains by
D)
taking the 4D-limit effected via Mgk — 0, or equivalently rqg — 0:

0(1)% 4D—limit
Qy,

: (5.44)

corresponding to the deconfinement temperature. As mentioned below, one would require
a21a§2 = 2, which would for N = 100, M = Ny = 3,95 = 1 would yield I(reritical) = 3850
(as obtained numerically below) for ag, ~ O(10).

Numerically, choosing N = 100, Myy = N}W =0.01,M = Ny =3,a9,, : agla§2 =2,
and rg = NﬁfrTO, fro &= 1 [1], one obtains the plots in figure 2.

Let us also discuss the possibility of r* € [ro, R 5 /ﬁ}, i.e., IR-valued r* and splitting

R J—
[RUV into <fr* po/ps —I—IRU"), one obtains:

r D5/D5

/ boms o)

H(r)—H(r)

R e 55 4
N2¢91M2Nf13/3/ 70 1= S1o0g? () (log N — 3log(r)) /2 dr
* r

T

R o5 é 0
:/ e <2\/!TslogN11/3M2Nf13/37”6ﬂlog (r)+0 ((10g N) 8/3)>dr

5 1
ré

R P
T 7T 1.3 371§ 7T 7T 7T 1.3 3 3713 po/bs
B DR N L 0 2, F L fr_z._2_2_°20
3 2( 43 47 2a 47 4 >>+ 4 3( 4 47 47 27 47 47 4’T4>>] )

2
= [W@IOgN11/3M2Nf13/3r7 <7log(r) <7log( )oYy ( _,; 77
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@logN11/3M2Nf13/3>
27RD5/D5

4 11/3 7 72 a7 13/3 27‘()( 5
:%@IOgN M Nf — +O(TO)

2
—% (@logN11/3M2Nf13/3r* 7log2(r*)) + 5@logN11/3M2N 13/37“47“* 3log?(r*) 4+ 0O (rg) ,
(5.45)

and similarly,

A GG

R — H(r)—H(r*)

D5/D5

+o((NY)?)

_/RUV \/>\/>MUVNUV /3, a92@10g( Y(log N — 3log(r))%/3

= 18 22/335/6,25/12 log N4/3 2\/>a

D5/D5

Rov  log NY3MuyNYVr302 \/1 - " log(r) ,
—/ dr +(’)(\3/logN)

a ra— 18 22/335/625/12 1\2/575 2\(7Noz§’

D5/D5

Ruv p log N4/3MUVN}N4/ST3O<32 log(r)
/72 _ " 18 22/335/6,25/12 1\2/%2%(3[21

D5/D5

+o(()")

log N4/3]\4UV]\TUV4/37“404§2 (4log(r)—1) oy
= 288 22/335/6125/12 1@ 2\(7NOZ§’1 .

D5/D5

log N*3Muy NPV R 0 402 log N3 Muy NIV Ri a2, log(Ruv)

(5.46)
288 22/335/6,25/12 1\2/975 Z*O/Nagl 72 22/335/67r25/12 1\2/9* YN ao
. . T*E[R 77RUV] *_

e One hence notes that the “UV-divergent” terms in Sconnecfe‘z/;s s S ey cteds
r*€lro,R . 5z log N4/3 My vNPY 724 v log(Ruv)
connectedD5/ P5" are the same, denoted by Syy ~ 1\ﬁ W .

7 €lro.R ps ] 11/3 772 n7,13/3
o Further, S_ . ted — Suv ~ /gslog N11/3 )1 Ny,
o One therefore obtains (similar to some of the examples in [2]):
7 €lro,R ps 53l T*E[RDs/ﬁ’RUV] r¥=r *
connected - SUV > Sconnected 5’dlscor(inected SUV’ l(’l’ ) > l(rcritica1)7
T*E[TO/RDS/DO] [ Do/Do’RUV] = *
connected S uv > Sconnected - SUV < Sdlscoromected SUV’ Z(T‘ ) < Z<TCritiCal)‘

6 A xPT compatibility

In [1], we worked out one-loop renormalised LECs of SU(3) chiral perturbation theory
Lagrangian up to O(p*) from type IIA string dual of large-N thermal QCD like-theory
inclusive of O(R*) corrections. We constrained ourselves to the chiral limit due to which
some terms were absent in SU(3) chiral perturbation theory Lagrangian of Gasser and
Leutwyler [5]. Therefore we were able to calculate Lf 5319, Fr and gya. We match our
results with phenomenological values of one-loop renormalised LECs as given in [32]. Let
us discuss this in some detail.
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The meson sector in the type ITA dual background of top-down holographic type I1B
setup is given by the flavor D6-branes action. Restricting to the Ouyang embedding (2.1)
for a vanishingly small |(.0uyang|, one will assume that the embedding of the flavor D6-

branes will be given by ¢ : 1.6 <R1’3, a9§,y> s M9 effected by: z = z(r). As
10

obtained in [39] one sees that z=constant is a solution and by choosing z = £C7, one can

choose the D6/D6-branes to be at “antipodal” points along the z coordinate. As in [39],
we will be working with redefined (r, z) in terms of new variables (Y, Z):

VY2422

T =Tp€

Z
= Carctan —.
z arctan -

Vector mesons are obtained by considering gauge fluctuations of a background gauge field
along the world volume of the embedded flavor D6-branes (with world volume 7 (2123, Z,
02,7) = La(0a,7) x L5(z%123, Z)). Turning on a gauge field fluctuation F about a small
background gauge field Fjy and the backround i*(g + B)[i : 37 < Mjo, Mjp being the ten-
dimensional ambient space-time]. Y = 0 is the SYZ mirror of the Ouyang embedding [39].
Picking up terms quadratic in F' in the DBI action:

Tp,(2ra/)? (wL?
s = 2ot < > ) Str/Hdw dZdOzdy5<

N > 41)\/ detg,y (v (g+B))\/detR1v3,Z(L*g)gﬂ];pﬁ/}gﬁﬁp&ﬂv

(6.1)

where ﬂ = i(= 0,1,2,3),Z. Expanding five dimensional gauge fields as: A,(z",Z) =

oo 1Pu ( YVipo(Z) and Ag(x¥, Z) = 320 7™ (2*)¢pn(Z). After a gauge transformation
given below:

i) = P+ M) ™.

m

Action simplified as given below:
2
/d3ZL‘ tr [ 9, O orr© Z <4F(" Fmm W;”p,([‘)p(")“ﬂ . (6.2)
n>1

Working in the Az (x#, Z) = 0-gauge, integrating out all higher order vector and axial
vector meson fields except keeping only the lowest vector meson field [40] Vu(l)(x“) =

%(1)2*‘“#) P Kt
gpu(xt) = on ~J5(ph—wu) Ki° | and lightest pseudo-scalar meson field ie. m =
K.~ K;P Pu
50+ Jenst =m0 ot Kt
7 ™ — 5+t 50 K° meson, the gauge field A, (2", Z) u
K- KO *%Tis+%ﬁo
to O(m) is given by:
o,m
A7) = 2 () = Ve Y (2), (6.3

where go(2) = [ dZ'¢0(2), Vit (a*) = pjt” = =0, V.
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To introduce external vector V,, and axial vector fields A, one could use the Hidden
Local Symmetry (HLS) formalism of [40] and references therein, wherein F%(?,ﬂr — &y =
Fiwa,erAu - F%[V,“ 7]+ -+, and one also works with &, = —V,+V, — ﬁ[@,ﬂr, T+
Mode expansion of the gauge field contains infinite number of vector meson fields Vén) (xH)
and axial vector meson fields ALn) (), therefore to obtain the low energy effective theory
of QCD, we need to truncate the KK spectrum in such a way that we are left with lowest
vector meson field (V,fl) = gp,) and lightest psuedo-scalar meson field (7 meson) [40],

Au(@,2) = Gyt (2" )0P0(2) + (g (2#) + VD (@) + by (211 (2), (6.4)

therefore,
Fuy = =Viut1 + v (14 91) + autbo — ildy,, duylton (1 + 1) + iy, dur (1 + by — ¥5)
—i([Gpr, Q)] + [Gy), uL])1tb0. (6.5)

Based on [41], as regards a chiral power counting, one notes that M, = O(p) implying Q|| =

O@®)
M?2

p . .
(B FF)™ is of O(p*™), m € Z*. Defining parity as 2° — —z?, i indexing the conformally
Minkowskian spatial directions and Z — —Z, given that A,(x, Z) will be odd, o, will be
even, | will be odd and V), will be odd implies ¢o(Z) will be odd and ¢1(Z) will be even.

As coupling constants are assumed to be scalars and they are given by Z-integrals, the Z-

= O(p), a1 = O(p). Further, V,,,a,, and vy, are of O(p?). Hence, using (6.5),

dependent terms in the action must be separately of even-Z parity. As 1 has odd Z-parity
and v has even Z-parity, therefore at O(p*), terms with (3dy s, 1a,1 or 3&,.1s, 14,)),
are dropped as they involve coefficients of the type 1/)3"”11#%”(2 ) for appropriate postive
integral values of n,m. Similarly, at O(p?), tr(é, l@ﬁ ) accompanied by 11 ( C= %) of
odd-Z parity, is dropped. At O(p*), one hence obtains [40]:

=
jo
=

£(4) >UY1 tr[OAdMJ_OAéidVJ_CAki] + Y2 tr[&/u_dw_@idi] +vy3 tr[dund OAJV‘] + Y4 tr[OAéMHOAéVHCAkﬁdV‘]

oAy

A A A AU A A A A A A A
+ys tr[auLaJ_auHaH] +Ye tI‘[OzMLal,LCMHOé‘ ] +y7 tr[aHLal,La

A AU A A
+ys {tr[aﬂlaua,,lau

4ty 6y Ldﬁ]} +yotr[dy, L, ak ol
+21 tr[v "]+ 2o tr[a,, a4 23 trv VIV +iza tr[V,, 64 6
+izs tr[Vuy&ﬁdr] +izgtr[v,, & &4 | +izr tr[vwdﬁdﬁ] —izgtr [aw (d’j_dl" —|—dﬁdi)} (6.6)
where:
1 1
Vppy = 5 (gRRuug}L{ + fL[',uugz) and Auy = 5 (gRRuug}L{ - £L£uugz) ) (67)
Ly = 0Ly —i[Ly, L] and Ry = ?[NR,,] —i[R,,Ry)) and L, =V, — A, where R, =
Vit Ay, and €] (a) = Ep(a") = ¢ =
given as radial integrals involving ¢o(Z) and ¥ (Z) (as reviewed in [1]).
In the chiral limit, the O(p*) SU(3) xPT Lagrangian is given by [5]:

; also, Vi, = 9,V — i[Vy, Vo], and y;s and z;s are

Ly (VU 0)) 4 Ly (TH(V,010,0)) + LyTr (VU1 V40)

—iLoTr (Lo VUV U + Ry VUV UY) 4 LigTr (UL, URM ) + Hn T (L2, +RE, )
(6.8)
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where V,U = 0,U —iL,U +iUR,, U = eFr . SU(3) chiral perturbation theory La-
grangian (6.8) can be obtained from the HLS Lagrangian (6.6) by integrating out the p
mesons as done in [41]. One hence obtains, relationships between the LECs y;, z; of (6.6)
and the L;s of (6.8). Using these relations we have calculated LECs of SU(3) xPT La-
grangian via gauge-gravity duality in [1].

The parameters L; and H; are renormalized at one-loop level with all vertices in one-
loop diagrams arising from the O(p?) terms. Using dimensional regularization and per-
forming renormalizations of the parameters via [5]:

Li=Li(p) + TiX(n),  Hi = Hj (1) + AiX(p) (6.9)

where p is the renormalization point, and I'; and A; are certain numbers given later; ()
is the divergent part given by:

M) = —2(41702 E —Inp? + 1] , (6.10)

where

2
= —— —yg +1n4dr, (6.11)

1
€ 4-—d

d being the non-radial non-compact space-time dimensionality to be set to four. The
constants I'; and A; for SU(3) xPT theory were worked out in [5]:

3 3 1 3
Pi= > Ty= = Ty=0, Ta=-, Ty=>
1 327 2 167 3 Oa 4 87 5 87
11 5 1 1
I'e = — = I's=—, T9g=-, T'o=—-; 6.12
6 1447 7 ) 8 487 9 47 10 47 ( )
1 5)
A= -2, Apg=—>
1 87 2 24

The analog of the 1-loop renormalization in xyPT can be understood on the gravity dual
side by noting that the latter requires holographic renormalization as discussed in section 3.

In [1], we had shown how, in five steps, it is possible to match the phenomenological
values of the O(p*) SU(3) xPT Lagrangian [5] one-loop renormalized LECs LY 910 as well
as F2, gym(Aqep = 0.4GeV, A = 1.1Gev, p = M) exactly, where A is the “HLS-QCD”
matching scale [41] and p is the renormalization scale, as well as the order of magnitude
and signs of L} ;.

On matching LECs computed holographically with their phenomenological/experimen-
tal values, it turns out that a particular combination of integration constants, (C! —CiP_+

012
2C§£1z), is appearing in all the LECs of SU(3) chiral perturbation theory Lagrangian up to
O(p*). Here, Ci,, are integration constants appearing in solutions to O(R*) corrections
as worked out in [1] to the MQGP metric for the thermal gravitational dual correpsonding
to (3.2). This combination, (C! — CB?Z + QCB?I), encodes information about the compact
part of non-compact four cycle around which flavor D7-branes are wrapping in type I1IB

setup.
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Now, as we are working up to O(f) and further due to the smallness of € assuming
working up to O(e?), where ¢ is defined via the relation a = (% + e) 19, simplified form
of L] 55, as worked out in [1], are given below:

Ly oy 1

r

1= Qa5 = —F = — 24+ Y2
2 6 g3um
9 4778
N 1 3 (fr + 1)]\77/5 3gs° logroM Ny
frogs® log NM4N]§0431 0 (fro +1)2

9 47782 8 Antiar8 5
0 3 0
frogs® log NM Nfae1 576 fr,9s° log NM*N Nfozl (8))} (6.13)

fro + 1 s Q
where:
Q=78 (C - 2048, + 2041, ) fr,27%9, (log N)* M + 3456€* (fr, + 1IN?. (6.14)

Further, as the logrg in (6.13) is in fact log RTO)‘RDE)/Ds > 1o being the D5 — D5

D5/D5
separation — one sees from (6.13) that in order to obtain a positive value (as required

from phenomenological value of L), © < 0. Note, as shown in [1], matching with the
experimental value of the pion decay constant F; requires an N-suppression in oy, , implying
the N enhancement in the last term in (6.13) is artificial. So, to ensure one does not
pick up an O (%) contribution in L; from % in (6.13) and also to ensure that the third
term in (6.13) required to partly compensate the first two negative terms in the same (as
explained above) to produce a positive term, is not vanishingly small, from (6.14), one

VB

needs to set:

Finally, combining the above observations with the requirement to match the experimental
value LT = 0.64 x 1073, as shown in [1], one therefore requires to implement the following

constraint (which follows from the discussion above):

493700 + 1)(fro + A2
Fro®72g5% (log N)? M+

(cth - 2cgh, +2cft,) =

012 01x

_%_1

3
5 — 0.053aj N~ 73
s
We hence see from (6.15) that € provides an expansion parameter connecting the % and
B expansions. Also, together with (6.16), as was noted in [1], this was the first connection

(6.16)

between large-N and higher derivative corrections in the context of M-theory dual of large-
N thermal QCD-like theories.
Similarly, it was showin in [1] that:

1 2
Lg = g <92—2Z3—Z4—Zﬁ> .
YM
2frg

~0.0031(f, — 1)gsN 3
(fTO + 1)@21 ’

+4

(6.17)
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where,

fro =1—waj, (6.18)
and o
46N-3" 75
w= P2 (6.19)
9s

One sees one gets a match with the phenomenological/experimental value Ly™ = 6.9 1073,
Substituting (6.18)-(6.19) into (6.16), one obtains:

087.4\
(cth — 205, + 24t G

~— <0. 6.20
i+ 208) 7295 (log N )? M* (620

From equation (6.20), it is clear that combination of constants of integration required
to have definite sign which is negative. In appendix A, we have obtained values of these
integration constants explicitly by taking the decompactification limit (i.e. Mgg — 0 limit)
of the spatial circle S*(z3) appearing as part of the .#-theory metric used in [1], i.e., in
St(zY) x R? x St (ﬁm) to recover 4D QCD-like theory. In fact, using those values we
derived that the abovementioned combination of integration constants which appears in all
the LECs of SU(3) xPT Lagrangian up to O(p*), indeed can be made to have a negative sign
as required by matching with the phenomenological /experimental values of the one-loop
renormalised LECs of SU(3) xPT Lagrangian as discussed above. In particular from (B.14),
we see that close to the Ouyang embedding of the flavor D7-branes in the parent type
IIB dual, there occurs a delicate cancelation between the contributions arising from the
metric corrections at O(R*) in the .# theory uplift along the S!(v/z)-fiber (considering
the S3(61,¢1/x,7/2) as an Sl-fibration over the vanishing two-cycle S?(61,¢;1/z)) and

S2(61,1 /%) resulting in a non-zero contribution only along S%(6, ¢1/x) surviving: CI —
1\7/6
th th _ 9oth N) > C : :
2Cq,, +2Cy ), = 2Cy, ~ T, logNN4Nf3r05Oég o which is negative for 31 < 0. Once again,

the above discussion too is a manifestation of the “Flavor Memory” effect discussed in

section 4.

7 Summary

Let us summarise our main results. In this paper, in the context of a top-down holographic
evaluation of the deconfinement temperature 7T, in QCD at intermediate coupling, we obtain
T, from the .#-theory dual of large-N thermal QCD-like theories (belonging to the class
of theories that display IR confinement, UV conformality with quarks in the fundamental
representation of the flavor and color symmetry groups) inclusive of the O(R*) corrections.
In this process, there are the following conclusions that are arrived upon.

« UV-IR Mixing and Flavor Memory: performing a semiclassical computation
as advocated in [16], by matching the actions at the deconfinement temperature of
the .#-theory uplifts of the thermal and black-hole backgrounds at the UV cut-off,
one sees that one obtains a relationship in the IR between the O(R*) corrections to
the .#-theory metric along the .#-theory circle in the thermal background and the
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O(R*Y) correction to a specific combination of the .#-theory metric components along
the compact part of the four-cycle “wrapped” by the flavor D7-branes of the parent
type IIB (warped resolved deformed) conifold geometry — the latter referred to as
“Flavor Memory” in the M-theory uplift.

e« Non-Renormalization of T:

— Semiclassical computation: we further show that the LO result for T, also
holds even after inclusion of the O(R?*) corrections. The dominant contribu-
tion from the O(R?) terms in the large-N limit arises from the tgtg R terms
(along with the sub-dominant €117 R* term), which from a type IIB perspec-
tive in the zero-instanton sector, correspond to the tree-level contribution at
O ((«')?) as well as one-loop contribution to four-graviton scattering amplitude
and obtained from integration of the fermionic zero modes. As from the type
IIB perspective, the SL(2,Z) completion of these R* terms [18] suggests that
they are not renormalized perturbatively beyond one loop in the zero-instanton
sector, this therefore suggests the non-renormalization of T, at all loops in .-
theory at O(R?).

— T, from Entanglement entropy: with an obvious generalization of [2] to
M -theory, we calculated the entanglement entropy between two regions by di-
viding one of the spatial coordinates of the thermal .#-theory background into
a segment of finite length [ and its complement. Like [2], there are two RT
surfaces — connected and disconnected. There is a critical value of | which is
denoted by I such that if one is below the critical value I then it is the
connected surface that dominates the entanglement entropy, and if one is above
the critical value I then it is the disconnected surface that dominates the en-
tanglement entropy; [ < lqit corresponds to confining phase of large N, gauge
theories whereas [ > [ corresponds to deconfining phase of the same. This
is interpreted as confinement-deconfinement phase transition in large N, gauge
theories.

Remarkably, when evaluating the deconfinement temperature from an en-
tanglement entropy computation in the thermal gravity dual, due to an exact
and delicate cancelation between the O(R*) corrections from a subset of the
abovementioned metric components, one sees that there are consequently no
corrections to T, at quartic order in the curvature supporting the conjecture
made in section 4 — and summarized above — on the basis of a semiclassical

computation.

o Deriving #xPT-Phenomenology compatibility: as shown in [1], matching the
phenomenological value of the 1-loop renormalized coupling constant correspond-
ing to the O(p*) SU(3) xPT Lagrangian term “ (VHUTV“U)Z” with the value ob-
tained from the type ITA dual of thermal QCD-like theories inclusive of the aforemen-
tioned O(R?) corrections, required the O(R*) corrections arising from contributions
due to the very same abovementioned combination of .Z-theory metric components
evaluated at the IR cut-off, to have a definite sign (negative). The thermal su-
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pergravity background dual to type IIB (solitonic) D3-branes at low temperatures,
includes R? x S* (ﬁm . By taking the Mgk — 0 limit (to recover a boundary
four-dimensional QCD-like theory after compactifying on the base of a Ga-structure
cone), remarkably, we obtain the values of the aforementioned O(R*) corrections to
the .#-theory uplift’s metric and therefore derive the MyPT requirement of the sign
of their specific relevant combination evaluated at the IR cut-off. Close to the Ouyang
embedding of the flavor D7-branes in the parent type IIB dual, there occurs a delicate
cancellation between the contributions arising from the metric corrections at O(R*)
in the .# theory uplift along the S'(3/z)-fiber (considering the S3(61,¢1/x,/z2),
the compact part of the four-cycle S® x Rsq “wrapped” by the flavor D7-branes
in the parent type IIB dual of [6], as an S!(¢)/z)-fibration over the vanishing two-
cycle S%(01, ¢1/x)) and S%(01,1/2) resulting in a non-zero contribution only along
S%(0, ¢1/x) surviving. This further reinforces the “Flavor Memory” discussed earlier.

« Wald Entropy at O(R*): equivalence with Wald entropy for the black hole in the
high-temperature .#-theory dual at O(R*) imposes a linear constraint on the same
linear combination of the abovementioned metric corrections.
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A O(R*) corrections to the .#-theory metric of [3] in the MQGP limit
near the ¥ = 2nm,n = 0,1, 2-branches

The O(p)-corrected .#-theory metric of [3] in the MQGP limit near the ¢ = 2nm,n =
0,1,2-branches up to O((r — r)?) [and up to O((r — r)?) for some of the off-diagonal
components along the delocalized T3(x,vy, 2)] — the components which do not receive an
O(p) corrections, are not listed in (A.1) — was worked out in [11] and is given below:

S |:1+1 408 (9b2+1)3 (43740° +1035b* + 9% 1) BM (%)9/421 (602 +712) log(rn) Trh)2:|

277 (18b* —3b2 — 1)510gN2Nfrh2a22 (9a2+rp2)

4 9/4
1 46% (962 41) " (3962 —4) M (%) / B (6a2+74?)log(ra) 1 ,
4 977(3b271)5(6b2+1)4logN2Nfrh2(9a2+rh,2)ag r=Th)

_ ~MQGP
G11,2,311,2=3 *Gm1,2,3m1,2,3 |:1

2

4
. 2(9624+1) 610 M (602 +1,2) ((r—rn)?+74%) S
Grr=GMQCP 14 [

! 3m(—18b%+3b2+1)*log NN8/15 N (—27a4+6a2rh2+rh4)a22

bh bh bh
+C.2 —2Cy) . +26911> 5]

Go,z=GC

4
- (9b2+1) b1OM (6a2+rh2) ((r—rh)2+rh2)21 o
I +
o1 371'(—18b4+3b2+1)4logNN8/15Nf(—27a4+6a2rh2+7’h4)a‘22 o | P
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Gy, . =GMQCP
1

- 4 (r—rp)®
16 (9b2+1) »123 (%H) (19683\/§a21 +3321v2a3, af, —40\/304‘;2)
1+ ’ +cpr
3 612

1= 2437r3(173b2)10(6b2+1)8959/410gN4N7/6Nf3(727a4rh,+6a2rh3+rh5)a510462
- 16(9b2+1)4b12 rorp? 4y (19683v/3a§, +3321v2a3, af, —40v3a}
—3 a91+3321 2a82a91 40 3a92
Geo —_GMQGP 14 h +Cbh 8
2% 22 243#3(1—3172)10(6b2+1)8g59/410gN4N7/5Nf3(—27a4rh+6a2r;13+rh5)ozzla22 O2
4 T—1r 2
- 3b1°(9b2+1) 1\/[[3(6(12+rh2) (1—%)1%(“)21
Gy :GMQGP + o
2¥ oy (302 —1)° (662 +1)*log N2NT/5 N (9a +71,%) af,

G92Z :G92z

+Cé’;> B}

Gy =G 9CT [14 (

_ 4 (r=rp)?
e (3(9b2+1) b1OM (602 +71,2) (17%) log(rn,) (19683v/60}, +6642a3, o, —40vGaj, )
1+

m(3b2—1)°(6b2+1)*logN2N7/6 N (9a2+rh2)a32

zy

. 2
3(9b2+1)4b10M(6a2+7’h2) (%+1)10g(rh)a2221
Lcbh

Tr(3b2—1)5(6b2+1)410gN2N21/20Nf(9a2+rh2)o¢221 wv | B

G =GMACP |14

4 )2
- 18p10 (9b2+1) Mﬁ(6a2+rh2) ((”g)+1>1og3(rh,)zl}

(362 —1)°(6b2+1)*log N4 N5/4 N (9a? +ra?) g,

G, —GMQGP |1 D5/D5
vy vy 7r(3b2—1)5(6b2+1)4logN2Nfr;12(9a2+rh2)o¢22

—

3p10 (9b2+1)4M (%)7/4[3 (6a2+m2)10g (Rb;h, > N ((T:‘gh,ﬂ +1>
—]

D5/D5

2774 (362 —1)1° (602 +1)12 g9/41og N6 N s 47y, 3 (11,2 73a2)(9a2+rh2)2a51 ag2

_ ~MQGP
Gy.=G)

) ( 64(9b2+1)8b22M(%)29/12(6a2+rh2) (WH)log(Rbgh)

12 2 9 4 6 6 3 8 bh
x (387420489\/5(191 +87156324v/3aj, oy, +5778054v 20, ag, —177120V30, g, +1600\/§a92) +Cy;> 6]

)3 »
pto (9b2+1)4M<Th,27(T 7.hh,) )lOg<Rbhh)El
G =GO0T {1+ (C‘“‘ e >ﬁ}

= 27w3/2(3b2—1)5(6b24+1)* /g5 logN2N23/20Nfo¢22

2761 (962 +1) " 0 (£) " 8 (6% 472 (1—7(7‘77‘;")2)10%3(7“}1,)21
Goro,10=GMICT |1 SRl S 2] ) ) : (A.1)
e ztPe 7r(3l72—1)5(6b2—&-1)410g;N4Nfr;L2(9(12—i-7'h2)0432
where X1 is defined as:
¥ = 19683V60af, + 664203, af — 4060, (A.2)

and GJ\M/[?VGP are the .#-theory metric components in the MQGP limit at O(3°) [33]. The
explicit dependence on 61 20 of the .#-theory metric components up to O(f), using (3.5),
is effected by the replacemements: oy, — N% sin 010, ap, — N6 sin 90 in (A.1).

B Thermal fy;ny EOMs, their solutions in the IR, 4D-limit and .#Z xPT
compatibility

In this appendix, we discuss the independent EOMs for the metric perturbations fasn
of (3.2) close to the IR cut-off ro up to LO in N, their solutions and constraints and values
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of the same in the decompactification-limit of a spatial direction (that plays a crucial role
in providing evidence of an all-loop non-renormalization of T, at O(R%)). In this way, we
are able to obtain the values of the metric perturbations (in the deep IR) along the three-
cycle S3(01, x, z) — the delocalized version of S3(61, ¢1, %)) -strictly speaking along the fiber
SY(z) (the S3(01,z, 2) is an S1(z) fibration over the vanishing two-cycle S?(6, z)) and along
another two-cycle S?(61, z) (which is also an S*(z)-fibration). A specific linear combination

of the contributions from fasy| 3 near the Ouyang embedding in the parent type I1B

01,r,2)°
dual, appears ubiquitously in com;l)uta)tions of T, in this work and the LECs of SU(3) xPT
Lagrangian at O(p*) from .# xPT in [1]. We will prove that the negative sign of this
combination, as required by matching with the phenomenological values of the LECs in
the YPT Lagrangian at O(p*) in [1], can hence be derived; the bonus is the actual values
of the contributions appearing in the aforementioned linear combination which further
demonstrates a delicate cancellation with the contribution along the vanishing two-cycle
S2(61,x) being the only one surviving. These are manifestations of the “Flavor Memory”
as discussed in sections 4, 6.

The EOMs are given below:

EOMttZ

5 (%)9/4 (19683v/60, +664205, o, —40v/6a;, ) log(ro)
1567283281927 9,5 log N*M N2el0p,

x <_ 087° (2 (10) =3/ s10410 (10) ~4fo,=(r0) =5 Josy (o)) _ 17289.°M” (zlv)Q/stz(fyy(ro)2fyz(7‘o))>

log? (1) ag,

EOMpy, 0, :

3 2 L 2/5 2 O; 2 T « 2z (T — i PARA « T 9
81(131 (115295 M2 (%) Ny2log? (ro) ejsf (r0)—2ag,, fy=(ro)+ea, fyy(ro)) _98(132(2fw1%10(r0)+f92y(7.0))>

10240,

BM (%)""° (~19683v/60§, —664203, i, +40V/6aj,) 0
+ 478296975/ {/gslog N2 Nyro2e" ag, B

EOMy, 6, :
B 441\/37"00421 (2fp10510(10)+ fo,u (o)) B 64v/2g:3/2 M Ny fr(ro) _0
0422 w3/2Y N
EOMg,0, :
fz2(10) = fr0g10(ro) —2f9, 2 (r0) = fr(ro) 9v/6g,™* M Nyrolog® (ro) (fory (ro) = fu=(ro)) _
9log N2ajg, 73/2log N2N2/5aj,
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EOMg,:

49\/§Tr3a32 (Tfz2(ro)—15f 10,10 (T0)—14f, » (T0)+5F0,y (T0))
B log2(ro)

2/5
—864v/2g,° M*? (%) Nf2(2a92fy2(7"0)_a92fyy(7”0))

10368 \4/7?9513/410gN2M2Nf262a310432

328 (%)3/2 (1968360, +6642a3, v, —40v/60,)
3486784401g,21og N2 N> €30 ap, N

EOMg.:
10247%/29.3a (f== (r0) =2, = (r0)+2/68(r0) —fr(r0)) 119077%/2(4)/%a3 (31,1010 (70)+5f9, (70))
- ol log NZMZN;2log2 (rg)
01
27993672957/ 22 g,
23/20
648 (%)

43046721 /g% log N3N, €70 al
EOMyy:

180%2f91y(fo)

497°/? (16fzz(7“0)+3fzwzw (ro)+4 012 (ro) + —F5 5 +5024(r0) =36fy=(ro) +18fyy (T0)>

1152g57/2log N2 M2 N¢%€2log? (7o)
253 (19683a§, +1107v/603, of, — 40, )

387420489 /mgs/*log N3 N3/2N;? e af,

The solutions to (B.1) are given as under:

ft(T) = ft(To),
f(r) = f(ro),

99\/389:%/2M {3 Nyroad, farozio(ro) log? (ro)
- 273/20, ’

fr(r) =

f9101 (7’) = f9191 (7’0),
f9192(7’) - f9192 (7’0),

_ 99\/§g53/2M {’/%Nfroagl fxloxlo (7"0) log2 (7“0)
fGlx(T) = - 3200 — [z10410 (TO)a
02

f91y(r) = f@w(”]):

539m N?/Pag, fr10510(r0) 185 f,10,10 (ro)
172853 M2N ;2 log? (o) 108 ’

f9292(7') = f@g@z (TO)v
fo22(1) = fo,2(r0),
352g,° M* (%)2/5 N2 fr10410(ro) log?(10)

4973 ag
2

f@lz =

f92y(r) =

— 2f 10,10 (7’0),
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N5 f0g10(r0) (32V/6m/29,3/2M Nyag, — 4851m°1004,03, ) 55 f,10,10(r0)

fyy(r) = 777693 M2 Ny*rooy log®(ro) 27
+fc91y(r0)v
o) = T NPal fawato(ro) | fowy(ro)
yz 81\/6953/2MNfT0a31 logz(To) 2 ’
) = 539 N?/Paf fri0,00(r0) TTfz0s0(ro)
2 864953 M2 N log? (o) o4 07
fr10410(r) = frio,10(r0). -

We will now show consistency between the solutions to the EOMs for O(R*) metric
perturbations as given in (B.2) and the ones obtained by taking g(r) — 1-limit of the
O(R*) corrections to (3.2) as obtained in [1]. In the Mgk — 0 limit yielding 4D gauge
theory after dimensional reduction to Mjs(r,t,2%?3), consistency of the aforementioned
pair of solutions fy;n-wise requires:

145 (962 +1)* (39 —4) M (%) B (60> +70%) log(ro) 51
4 97 (3b2—1)° (662 +1)*log N2 N702 (9a+702) 03, "

fe(r)=fi(ro)=—

=f(r)=f(r0)=fa323

1 4b°(96%+1)" (4374°+1035b* +95° —4) BM ()" 81 (6a° +102) log(ro)

4 27w (18b*—3b2—1)"log N> Nyro2aj, (9a2+702)

7"—7"0)2

=70

B 99@6933/2M Y/ %Nfroaglfxmwm (ro)log?(ro)
27r3/2a22

fr(r)=

2(9674+1) " b'0M (64 +70%) 7o® s
3m(—18b*+3b2+1) log NN®/15 N (—27a* +6a’r0> +ro*) o,

+cih—ach . ra2cih,
foy0, (r):f9191 (TO):O»
fo105(r)=fo,0,(r0)=0,

99@953/2]\/[ J/ %Nfroaglfacloxlo (r0)log?(r0)
- 5 *fmmmm (7‘0)
47r3/2o¢92

f9190(7"):

- (96%+1)"51°M (64 +70%) 70>S1 Lo
3 (—18b*+3b2 1) log NN/ 15Ny (—27a* +6a2ro® +rot)af,
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f91y(r):f91y(T0):07

5397F3N2/5()é32f110z10(7"0) 185fz10110 (7‘0)

Jor== 1728gs3M2N;%log?(ro) B 108
16 (96°+1) “5'2 5 (19683v/304, +3321v/2a3, a3, —40v/3a,) Lo
_2437r3(1—3172)10(6b2—0—1)8gs9/410gN4]\f7/6Nf3(—27@41"0—|—6(121"03—|—1"05)ozglozg2 h=
f9292(7'):f9292(7'0):07
fo22(r)= fos2(r0)
16 (9% +1) 512 (19683v/304, +3321v/203, a8, —40v/304, ) L
_24371'3(1—31)2)10(6b2+1)8959/410gN4N7/6Nf3(—27a4T0+6a27'03+7'05)06510[g2 o2
352953]\42 (%)2/5]\/}2](1100510(To)logz(To) 9
Ozy( 497’(’30652 - leozlo(ro)
3610 (962 +1) " MB (6% +70°) log(ro) 1
(362 —1)° (6b2+1)"log N2N7/5 Ny (9a2+70?) |
o) o (r0) 3(96°+1) “b'°M (6a°+r0?) log(ro)
2\T)= 2\To)=
o2 P2z l0 71'(31)2—1)5(Gb2+1)410gN2N7/6Nf(9a2+7"02)a22
x (19683v/60ig, +664203, a5, —40V 60, ) +Cos.,
Jaz (1) = fax(10)=0,
Lo ()= fau(r0) 3(9b2+1)4b10]\/[(6a2+ro2)log(ro)a‘3221 Lot
zy\T")=Jazy(T0)= xY)
v T (362~ 1)° (60 + 1) Tog N2 N?V/2 Ny (9a2 + ro%)ay
(o) 18610 (962 +1) " M (602 +70%) log® (r0) %1
z2\T")= Jz2(T0)= 5
0 7r(362—1)5(6172—|—1)410gN4N5/4Nf(9a2—|—7‘02)0432
- N?/5 f10,410(r0) (32V67%/2 g%/ > M Ny oy, — 48517 roag, o, ) 55f11%10(,«0)+ (7o)
Fo(r)= 777693 M2N;?roag, log?(ro) 27 Jory(ro
3010 (9% +1) " M (&)™ B (6> +70%) log(ro) 1
© m(3b2—1)°(6b2+1) log N2 Nyro2 (9a2+702) 0l
o) = N0l aroolr)__ fory(ro)

81\/6953/2MNI-7“00431 log? (7o) 2

64 (9b2 +1)8b22M (%)29/12 (6a2—|—ro2) log(ro)
27wt (362 — 1) (662 +1)"2 g 9/41og N6 N s 4703 (ro? — 3a2) (9a2+ro2)2agla22

x (387420489v/20g; +87156324V/ 3, v, +5778054+/ 2ag, af, — 177120V 30, g, +1600V/ 20, )
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53978 N2/a3, fo10410 (r0) b1 (967 4+1) " Mro?log(ro) S
864g,3M>Ny*log*(ro) — 27m3/2(3b2—1)%(6b2+1)"/galog N2N23/20N a3

fez(r)=

+cth

Ser0510 (1) =fz10,10(70)

om0 (1) M (L) B (60 +ro?) log? (ro) 1. (B.3)
7(362—1)° (66 + 1) log N4 Ny792 (9a% +10) o,
From (B.3), near r = rp, one sees one can set:
fe=1f= fo,0, = fo,y = fax =0, (B.4)
and for ro-dependent values of C92 - C92 Z,Ctg determined by (B.3),
Jooe = fo2. = foy = 0. (B.5)

which is what has been used in our calculations. By matching near r = ¢ of f-(r), fo,x,
fo,z» fzz, one can solve for Cekllx, Cg?z, Cth. fr10,10(r0).
The function f,10,10 can independently be determined from:

 matching fg,,: substituting b = % + e [1, 11] this yields

le(agl,agz) log ro
N% log? NNfe5oz(92

fxloxlo (TO)
e matching fy,: this yields

3
f (7’ ) o g M? log3 roagl 21(0491 , 0492) (B 7)
210,10 (T S logN 5 Nﬁ . .
g roag, N2

One can show that (B.6) and (B.7) are mutually consistent provided the IR cut-off ro:

41og? (— log(a))

ro = <2f> ~ae @ log?(a), (B.8)

81V6g,3/2M (L )** Nyad
W being the Lambert’s product log function and a = J . /g Ng) 1%,
s Ote

e matching f,i0,10: this yields

M log3 roX1 (g, , g,)
512 logN Nfag’2N%

furog10(ro) ~ — (B.9)

Numerically, e.g., for M = Ny = 3, N = 10%,gs = 0.1 and O(1) ag, ,, one can show
that (B.9) is consistent with (B.6) and (B.7).
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o matching fi(r)

B 2 (962 + 1) b10Mr®%, (602 + 70?)
3m (—18b% + 302 4 1)* log NN/ Npa (6a2ro? —2Tat +rot)

994/30532M {E Nyroa§, frogio(ro) log?(ro)

+C - 203, +2C50

01z 01

21320, '
(B.10)
o matching fo,»
o b10 (962 + 1)* Mr2%; (6a2 + ro?)
hr3p (—18b% 4 3b2 + 1)* log NN8®/BNag (6a?ro? — 27a* + o)
99,/2 932 M 3/ L Nroal feiozi0(ro)log?(ro)
- \@ i NS00, Je e — fa10510(r0). (B.11)
4m3/2a,
o matching fy,-
8v/2 (962 +1)" 125, .

- +C
24373 (1 — 3()2)10 (602 + 1)8 g:9/41og N4N7/6Nf3ag1 0/52 (6a2ry® — 27a*rg + 19°) b1z
. 5397T3N2/50432 f$10$10 (To)

1728¢,3M2N? log?(r)
(B.12)
e matching f,.
b b0 (962 4 1)* Mr25; log(ro) _ 53975 N?/%a, f10,10(ro)
o 27ad/2 (362 —1)° (662 +1)* \/gs log N2N23/20N a3 - 86493 M2Ny? log?(ro)
(B.13)
e One can solve (B.11)—(B.13) to obtain:
3/4
Cth (ﬁ) 7’0221
= €g,/2]og NQMNf?’ag’2 log(ro)
3/4
1 2
Cth ~ (N) "o 21
iz 7 954, 7/2 log NZMNf3a22 log(ro)
7/6
1
1 N
i (%) (B.14)

01z ™ :
! ellg9/4log N4Nf3r05agla32

This thus confirms that C!! — 2¢ih 4+ 2¢ih = 2C8 < 0 (as ¥ < 0), which in [1]

012 (2% 0z
was argued by requiring compatibility with phenomenological value of the 1-loop

2
renormalized LEC appearing in the O(p*) SU(3) xPT (VHUTVMU) .
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