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1 Introduction

The idea that in string theory it is possible to calculate from first principles the Bekenstein-
Hawking entropy of black holes (BHs) received the first piece of evidence in [1], where the
BH entropy was calculated for extremal BHs by counting BPS states of Ramond-Ramond-
charged D-branes wrapping internal cycles.

In a parallel line of thought, the idea that strings near the Hagedorn temperature [2]
(see [3, 4], for reviews) are related to BHs and that their entropy is the BH entropy has a
long history. It was suggested by Susskind [5] (see also [6]) that the entropy of fundamental
strings with ends frozen on the BH horizon is equal to the Bekenstein-Hawking entropy
of the BH. Horowitz and Polchinski [7, 8], followed by Damour and Veneziano [9], argued
that a highly excited string near the Hagedorn temperature corresponds to a string scale
BH, observing that the size, temperature and entropy of the string and of the BH scale the
same way. See also [10, 11]. In [12] it was argued that when certain string interactions are
taken into account, the correspondence could be extended to arbitrarily large BHs.

In the current paper we show that the Bekenstein-Hawking entropy of asymptotical
Schwarzschild BHs of arbitrarily large size can be calculated by an effective description
of closed fundamental strings wrapping a shrinking thermal cycle. Near the horizon the
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winding modes become light, condense and source the entropy. A partial list of papers about
the phenomenon of winding modes localization near a vanishing cycle includes [13–24].

Dabholkar [13] considered a winding condensate confined to the tip of an orbifold and
obtained the Bekenstein-Hawking entropy by adding a Gibbons-Hawking-York term [25].
Giveon and Itzhaki [18] obtained an area law for the entropy of winding modes in the
spacetime manifold R2×T 2. Zakharov et al. [24], considered long strings near a BH horizon,
and argued that the first law of thermodynamics leads to the Bekenstein-Hawking entropy
for these strings if the Hagedorn temperature is redshifted to the Hawking temperature.
More recently, Jafferis and Schneider [26] proposed that winding strings on disconnected
spacetimes in a specific entangled state, are dual to the two-sided BH (see also [27]). Chen
and Maldacena discussed the winding-mode condensate in large-D BHs with horizon size
∼ D
√
α′, and mentioned the possibility that the entropy of the condensate equals that of

the BH entropy [28, 29]. Type II stringy α′ corrections to a BH solution and the associated
thermodynamical quantities were computed in [30].

The standard procedure of calculating the entropy in the classical approximation
consists of first computing the on-shell action, which is given by a boundary term. Then
acting with (β∂β − 1) on this action to obtain the entropy, β being the inverse temperature.
In this paper, we calculate the entropy by first acting with (β∂β − 1) on the action and then
setting the fields on shell. In this case, it is not necessary to add the Gibbons-Hawking-York
(GHY) term and the horizon, where the thermal cycle shrinks, is regular, free of a conical
singularity [31].

We show that this procedure leads to a formula for the entropy that can be expressed as
an area integral and that the value of the entropy is exactly equal to the Bekenstein-Hawking
entropy of the asymptotically flat Schwarzschild BH. We then discuss the differences
between our method and the Gibbons-Hawking calculation [25] and to the introduction of a
conical singularity at the horizon. We then proceed to calculate approximately the spatial
distribution of the winding-mode condensate, which, as we show, is indeed confined to an
invariant distance of the order of the string scale in the vicinity of the horizon. Finally, we
apply our method to the “cigar” background [32–34] — an asymptotically linear-dilaton
stringy background.

Using instead the standard procedure for calculating the entropy, we find that the
action depends linearly on β and consequently the entropy vanishes (see below). Thus, if
one wishes to first evaluate the action and then calculate the entropy, one needs to include
another boundary term. A conventional example of the latter is the Gibbons-Hawking-York
(GHY) term at infinity [25]. This is discussed in section 3.1. Another example consists
of introducing a boundary term at the tip, a conical singularity, which is discussed in
section 3.2.

2 Effective field theory for winding modes

2.1 Action

We consider type II closed string theory in 10 dimensions and a background containing
D = 10-dimensional asymptotically flat Euclidean BH. The manifold contains a contractible
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thermal cycle that vanishes at the horizon. In the rest of the paper we keep D general (but
D > 31), expecting that by an appropriate compactification of the critical string theory,
the calculation should be valid also for 3 < D < 10 and perhaps also for D > 10 [28].

Near the horizon, the spectrum of string theory contains light modes which wrap around
the thermal cycle once. We describe these winding modes, χ, χ∗, in terms of an effective
field theory. The other light fields in this theory are the dilaton ΦD, the spatial metric
components Gµν and the thermal circle component of the metric Gττ ≡ e2σ. We will also
use the notation Φd for the shifted dilaton, Φd = ΦD − σ

2 .

The action for the winding modes, including the interaction with e2σ, is given by [8],

I1 = β

∫
M
ddx

√
GDe

−2ΦD

(
Gµνd ∂µχ∂νχ

∗ + β2e2σ − β2
H

(2πα′)2 χχ∗
)
, (2.1)

while the standard NS-NS action is given by [35]:

I2 = − β

2κ2
0

∫
M
ddx

√
GDe

−2ΦD (Rd + 4Gµνd ∂µΦd∂νΦd −Gµνd ∂µσ∂νσ
)
. (2.2)

Newton’s constant in the Einstein frame is related to κ0 and the constant dilaton Φ0 in the
string frame,

κ2 ≡ 8πGN = κ2
0e

2Φ0 . (2.3)

The term proportional to e2σ in I1, reproduces a string S-matrix element [36] to leading
order in the string coupling.

2.2 Equations of motion and classical action

In this subsection we list the equations of motion (EOMs) derived from the action I1 + I2.
Then, we express the winding modes action as well as the total action as boundary terms.

2.2.1 Equations of motion

The EOMs for σ and χ is derived by varying the action I1 with respect to σ,

e2ΦD
√
GD

∂µ
(√

GDe
−2ΦDGµνd ∂νσ

)
= β2κ2

0
2π2(α′)2χχ

∗e2σ, (2.4)

and with respect to χ∗,

e2ΦD
√
GD

∂µ
(√

GDe
−2ΦDGµνd ∂νχ

)
= β2e2σ − β2

H

4π2(α′)2 χ. (2.5)

A similar equation is obtained for χ∗. The equation of motion for the dilaton Φd and the
spatial metric are the following,

RD + 4∇2ΦD − 4Gµν∂µΦD∂νΦD = 2κ2
0

[
Gµν∂µχ∂νχ

∗ + β2e2σ − β2
H

(2πα′)2 χχ∗
]
, (2.6)

1Although we have indications that the subsequent calculation of the entropy is valid for 2 and 3
dimensions as well, these cases need additional care.
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and

Rµν + 2∇µ∇νΦD = 2κ2∂µχ∂νχ
∗. (2.7)

We show that the action of the winding modes vanishes on-shell. Integrating by parts the
winding modes action eq. (2.1) and using the winding-mode EOM (2.5), one obtains

I1 = β

∫
∂M

ddx
√
GDe

−2ΦDχ∗nµ∂µχ = 0 (2.8)

for any solution respecting Dirichlet boundary condition (BC) at infinity and Dirich-
let/Neumann BC at the horizon. This agrees with the observation in [18].

2.2.2 Classical action
Next, we express the on-shell action as a boundary term. Taking into account the dilaton
EOM,

I = β

2κ2
0

∫
M
ddx

√
GDe

−2ΦD
(
4∇2ΦD − 8Gµν∂µΦD∂νΦD

)
. (2.9)

Therefore the total on-shell action is given by,

I = −2β
κ2

0

∫
∂M

dd−1x
√
GDn

µ∂µ
(
e−2ΦD

)
. (2.10)

The action therefore vanishes for a constant dilaton background and diverges for a linear
dilaton background.

3 Entropy calculation

In this section the entropy of a black hole is computed by first taking the β derivative of
the action and then putting the fields on-shell. We assume the following ansatz for the
line element:

ds2 = e2σ(r)dτ2 + 1
g(r)dr

2 + r2dΩ2
D−2 , τ ∼ τ + 1

T
. (3.1)

The metric is taken to be asymptotically flat and the dilaton tends to a constant value
guaranteeing weak coupling. For a Euclidean asymptotically Schwarzschild BH, and
for r � r0,

e2σ = 1−
(
r0
r

)D−3
(3.2)

and g(r) = e2σ. Such a configuration solves the EOM asymptotically.
The Schwarzschild radius r0 is related to the inverse temperature,

β

4π = r0
D − 3 . (3.3)

Next, the entropy can be calculated by identifying the Euclidean action I1 + I2 in
eqs. (2.1), (2.2) as the product of the inverse temperature and the Helmholtz free en-
ergy I1 + I2 = βF . Using the standard thermodynamic relation between the free energy
and the entropy,

S = (β∂β − 1) I = β

∫
M
ddx

√
GDe

−2ΦD 2β2e2σ

(2πα′)2χχ
∗(x), (3.4)
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we see that the entropy density is, as expected, proportional to the magnitude of the
winding-mode condensate χχ∗. While the authors of [28] considered the entropy of a free
winding condensate, here we are taking into account the leading order interaction in the
string coupling. Substituting eq. (2.4) yields

S = β

κ2
0

∫
M
ddx ∂µ

(√
GDe

−2ΦDGµνd ∂νσ
)
. (3.5)

Using Gauss’ theorem, we find

S = β

κ2
0

∫
∂M

dd−1x nµ
(√

GDe
−2ΦDGµνd ∂νσ

)
. (3.6)

Consequently, S can be expressed as a boundary integral over a sphere of radius
Rc � r0,

S = β

κ2
0

∫
∂M

dd−1Ω nr
√
Gd−1e

−2ΦD(r)∂r(e2σ)
2
√

e2σ

g

. (3.7)

Taking the limit Rc →∞ for an asymptotically flat D-dimensional Euclidean Schwarzschild
BH whose metric is given in eq. (3.2), the expression for the entropy becomes the following,

S = β

κ2
0

∫
∂M

dd−1Ω e−2ΦD(∞) (D − 3)
2 rD−3

0 . (3.8)

Using eq. (3.3) and eq. (2.3), we obtain the final answer,

S = ωD−2r
D−2
0

4GN
, (3.9)

with ωD−2 being the volume of a (D − 2)-unit sphere ωD−2 =
∫
dD−2Ω.

This final value of S in eq. (3.9) is exactly equal to the Bekenstein-Hawking entropy of
the BH. This is the main result of our paper.

3.1 Comparison with the Gibbons-Hawking calculation of the black hole en-
tropy

Let us compare our calculation with the celebrated result of Gibbons and Hawking (GH) [25],
who calculated the Euclidean action for a Schwarzschild BH in an asymptotically flat space
and pure Einstein gravity. The entropy is calculated by adding the Gibbons-Hawking-York
(GHY) boundary term, which makes the variational problem in Einstein’s gravity well-posed
when one wishes to fix the metric variation at the boundary. For a nice review on the
variational problem in gravity, see [37].

The GHY term is equal to the normal derivative of the area of a large constant radius
r = Rc surface:

IGHY = 1
8πGN

∂

∂n

∫
dΣ

= 1
8πGN

√
1−

(
r0
r

)D−3
∂r

ωD−2r
D−2β

√
1−

(
r0
r

)D−3
∣∣∣∣∣Rc

∝ RD−3
c /8πGN . (3.10)
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This result is divergent and has to be regularized by adding a counter term. Apart from
requiring that the regularized expression is finite, we are not familiar with a rule that can
be derived from first principles that dictate which particular counter term needs to be
added. Gibbons and Hawking chose a counter term that would make flat space at finite
temperature have zero action. Therefore, they subtracted the normal derivative of the area
of a constant radius flat-space surface (dΣ = rD−2dD−2Ωdτ), for which the normal and the
temperature are identical to the Schwarzschild normal and temperature.

We point out a situation in which the Einstein-Hilbert action without the GHY term is
well-posed.

The variation of the Einstein-Hilbert action δSEH includes varying the Ricci tensor δRαβ .
The Palatini identity, GαβδRαβ = ∇µ

[
GαβδΓµαβ −GαµδΓ

β
αβ

]
, gives rise to a boundary term

in δSEH . Now, instead of the conventional Dirichlet boundary condition for metric variations,
one could impose the condition that this boundary term vanishes:

nµ
(
GαβδΓµαβ −G

αµδΓβαβ
)
|∂M = 0. (3.11)

This is a single boundary condition for metrics satisfying the second-order Einstein’s
equations and so should allow for a family of well-behaved solutions. It combines the
variation of the metric and its derivatives. In asymptotically Schwarzschild spacetime, this
boundary condition is approximately a Neumann boundary condition, because ∂rGrrδGrr �
Grr∂rδGrr. In [38], the same boundary condition as in eq. (3.11) was chosen for the
metric variations.

For example, in 4D, the following (asymptotic) variations about the Schwarzschild
solution, δGττ = A

r4 while δGµν = 0 for µ, ν 6= τ , satisfy eq. (3.11) for any constant A
such that A

R4
c
� r0

Rc
. More generally, there exists a linear combination of metric variations

and their first derivatives about Schwarzschild, obeying eq. (3.11). These variations do not
modify the size of the Euclidean circle at infinity, a property that was emphasized in [30].

Similarly to GH, we assumed that the horizon does not contribute to the entropy.
This will be justified in section 4.3 by calculating explicitly the entropy of the winding-
mode condensate.

3.2 Conical singularity

It is possible to consider the Euclidean gravitational path integral over a family of asymptotic
periodicities β [31]. For any β such that β 6= βh, where βh is the Hawking inverse temper-
ature, one finds a conical singularity at the tip. The near-horizon geometry, suppressing
angular directions, is given by

ds2 = ρ2

β2
h

dτ2 + dρ2 , τ ∼ τ + β. (3.12)

As proposed in [31], in taking β-derivatives of the action, one has to consider this family
and at the end of the calculation set the periodicity to the Hawking periodicity. The Ricci
scalar is given by:

R = 2(βh − β)
β

δ(ρ). (3.13)
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This produces a boundary term for the Einstein-Hilbert action

I = − 2π
κ2

0e
2ΦH

AH
(

1− β

βh

)
. (3.14)

The horizon has area AH and the value of dilaton there is ΦH . Therefore,

S = (β∂β − 1) I|β=βh = AH
4GN

. (3.15)

We would like to point out that introducing a conical singularity at the tip is optional.
Instead of including geometries with a conical singularity as discussed above, one can
choose the Euclidean gravitational path integral to be exclusively over smooth geometries.
When calculating the β-derivative of the action, one should then use two neighboring
configurations, each of which with its own Hawking inverse temperature.

4 Some properties of the winding-mode condensate profile

It would be interesting to find the profile for the winding-mode condensate. While we
stop short of actually finding an exact expression for the profile, we can discuss some
general approximate properties of the condensate profile which can be deduced from the
EFT. We also perform a calculation of the entropy associated with a winding condensate
in an asymptotically linear-dilaton background and find agreement with the Bekenstein-
Hawking entropy.

As discussed in the introduction, we expect that the winding-modes condensate is
localized in the near-horizon region near the “tip”, where the thermal cycle shrinks and the
winding modes become light.

Here, due to the approximate nature of the discussion, we restrict our attention to
backgrounds for which Grr = e2σ and ΦD = const. In this case, the tip region has three
significant radii. These radii as well as the value of e2σ at these radii are listed in the
following equation,

r0, e2σ(r0) = 0, Euclidean horizon,

rχ, e2σ(rχ) = β2
H

β2 � 1, vanishing winding-mode mass,

rV , e2σ(rV ) = 1− rD−3
0
rD−3
V

, vanishing winding-mode condensate.

(4.1)

In the region r0 < r < rV the mass-squared of the winding modes is negative according
to eq. (2.1). Based on the analysis in [36], we expect that when interactions are taken into
account, the mass-squared of the winding modes in this region is actually small and positive.

We further assume that in the tip region,

∂re
2σ = 4π

β
, (4.2)

which is the value of ∂re2σ in the region where the condensate vanishes. This assumption
will be shown to be self-consistent later, by showing that the EOMs admit such solutions.
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It essentially means that in the tip region e2σ is approximately constant, meaning that α′

corrections in the gravity sector are negligible. It also allows us to estimate the width of
the tip region,

4π
β

(rV − r0) = β2
H

β2 . (4.3)

So,

rV − r0 = β2
H

4πβ , (4.4)

which corresponds to an invariant distance of the order of the string length,

√
grr(rV − r0)2 = β

βH

β2
H

4πβ =

√
α′

2 . (4.5)

As a first step, we can parameterize the profile as follows:

χχ∗(r) = Aδ(r − rχ). (4.6)

The Dirac δ-function should be thought of as a limiting version of some regular function
which is highly peaked near the tip with a width of the order of the string length. Substituting

this form into eq. (3.4) and approximating e2σ ≈ β2
H/β

2, we find that A = πα′

2βκ2
0

(
r0
rχ

)D−2
'

πα′

2βκ2
0
, reproduces the BH entropy.

In [19], for a different background (See section (4.3)), the profile was found to be
a Gaussian in the radial Rindler coordinate, which corresponds to an exponential in
Schwarzschild coordinates. This function belongs to the set of regularized delta-functions,
so its limit as α′ → 0 is consistent with eq. (4.6). In [24], similarly, the profile was found to
be a Gaussian multiplied by a Laguerre polynomial.

To resolve the profile in more detail we need to solve the winding mode equation of
motion, which we do next.

4.1 Approximate solution of the winding-mode equation of motion

Eq. (2.5) and the assumptions of spherical symmetry, constant dilaton, g(r) = e2σ, is
given by

1
rD−2∂r

(
rD−2e2σ∂rχ(r)

)
= β2e2σ(r) − β2

H

(2πα′)2 χ(r). (4.7)

In the vicinity of rχ, e2σ(r) ≈ aβ
2
H
β2 where a is a dimensionless number of order unity. Using

eqs. (4.1), (4.2), the EOM of χ can be approximated as,

a
β2
H

β2 ∂
2
rχ+

(
D − 2
rχ

+ 4π
β

)
∂rχ = β

πα′2
(r − rχ)χ. (4.8)

Since rχ − r0 � r0, it follows that rχ ≈ (D−3)β
4π . Then, the equation simplifies,

a∂2
rχ+ 2D − 5

D − 3
β

2πα′∂rχ =
(

β

2πα′
)3

(r − rχ)χ. (4.9)
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The solution is approximately constant for r − rχ . 2πα′
β , which, as we recall, corresponds

to string length invariant distance and decreases exponentially for r − rχ � 2πα′
β . This

indicates that rV − rχ ' 2πα′
β .

The decreasing solution of eq. (4.9) can be expressed in terms of the Airy function

χ(r) ∝ e−
2D−5

2(D−3)
β(r−rχ)

2πaα′ Ai

(
β(r − rχ)

2πaα′ +
( 2D − 5

2a(D − 3)

)2
)
. (4.10)

The Airy function decays slower than the exponential factor. It follows that χ decreases by
a factor 1/e from its value at rχ for

r − rχ = 2(D − 3)
2D − 5

2πaα′

β
. (4.11)

This amounts to an invariant distance 2(D−3)
2D−5

√
aα′

2 , which is of order of the string scale.
In summary, we found that the condensate decays, roughly, over an invariant distance

of order of a few string lengths away from the horizon. The relation to the delta-function
in eq. (4.6) is established if one normalizes the profile and considers the width of the profile
to be parametrically small

√
α′

r0
→ 0.

4.2 Weakly-curved near-horizon region

We wish to point out that even though we discussed string length invariant distances, the
EFT remains valid in the near-horizon region r > rχ. The reason is that, as explained
below, curvatures and the derivatives of the condensate are small is string units.

The Ricci scalar is given by

RD = − 1
rD−2∂

2
r

(
rD−2e2σ

)
+ (D − 2)(D − 3)

r2 . (4.12)

The non-vanishing components of the Ricci tensor, Rττ = Rrr and Rαα, α 6= r, τ are the
following,

Rrr = −1
2

1
rD−2∂r

(
rD−2∂re

2σ
)
, (4.13)

Rαα = D − 3
r2 − 1

rD−2∂r
(
rD−3e2σ

)
. (4.14)

Recalling eqs. (4.1), (4.2), it follows that in the near-horizon region all curvatures
are of the order of 1

r2
0
. In this case, it is justified to neglect such low curvatures in the

near-horizon region.
Another quantity which has to be small for the background to be weakly-curved is

Grr(r−rχ)∂rχ
χ (also higher derivatives should be small.) Indeed, eq. (4.1) and (4.10) imply

that it is of order β2
H
β2 � 1.
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4.3 Cigar background

Until now we discussed asymptotically constant dilaton BHs. Here we show that our
methods can also be applied successfully to calculate the entropy of the BH background
associated with the near-horizon limit of k near-extremal NS5 branes [39]. This is specified
by the following line element, dilaton and asymptotic inverse temperature,

ds2 = tanh2
(

ρ√
α′k

)
dτ2 + dρ2 + α′kdΩ2

3 + (dy2
1 + . . .+ dy2

5), (4.15)

e−2ΦD = 1
g2

0
cosh2

(
ρ√
kα′

)
, (4.16)

β = 2π
√
kα′. (4.17)

For k � 1, the background is weakly curved.
The winding profile for this background for large k was found by Giveon and Itzhaki [19]

by observing that the effective mass-squared of the winding modes near the tip in Rindler
coordinates behaves like a harmonic oscillator potential. In this case, the condensate ground
state wavefunction is a Gaussian in the radial Rindler coordinate. The profile, normalized
by 1

κ0
, is given by

χ(ρ) = 1
κ0
e−

ρ2

2α′ . (4.18)

Substituting eqs. (4.15), (4.16) and (4.17) into eq. (3.4) yields

S = 2(2π
√
kα′)3

(2πα′)2g2
0κ

2
0

∫ ∞
0

dρ e−
ρ2
α′ tanh3

(
ρ√
kα′

)
cosh2

(
ρ√
kα′

)
×Vol(T 5)(α′k)

3
2ω3. (4.19)

For k � 1, tanh( ρ√
kα′

) ≈ ρ√
kα′

. As a result, in this limit,

S = 2(2π
√
α′k)3

(2πα′)2g2
0κ

2
0

∫ ∞
0

ρ3

(
√
kα′)3

e−
ρ2
α′ dρ×Vol(T 5)(α′k)

3
2ω3

= 2π
g2

0κ
2
0
×Vol(T 5)(α′k)

3
2ω3 = AH

4GN
, (4.20)

with AH being the horizon area of the BH.
As another check, the background equations eqs. (4.15), (4.16) and (4.17), can be

substituted into eq. (3.7), resulting in exactly the same Bekenstein-Hawking entropy.
To summarize, the cigar background with the Gaussian profile in eq. (4.18) does lead

to the correct Bekenstein-Hawking entropy of the BH.

5 Summary and outlook

We demonstrated that the BH entropy can be reproduced by an effective description of
winding modes living near the horizon of a Euclidean BH. Our calculation appears similar in
spirit to the Gibbons-Hawking calculation because it involves a boundary term. However, it

– 10 –
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is distinct from the Gibbons-Hawking result in that it does not require invoking a particular
regularization scheme. We then proceeded to calculate approximately the profile of the
winding modes in the near-horizon region and found that, as expected, the condensate
decays within a few invariant string lengths.

Some interesting future improvement of our analysis would be to prove that there is
a string background, similar in form to the approximate background that we found, by
solving all the EOMs, taking into account the back-reaction of the non-trivial profile of the
winding strings.

An even more interesting improvement would consist of finding a microscopic description
of the winding strings, which may allow a precise counting of microscopic stringy degrees of
freedom, for instance, by counting the number of string bits in a long winding string.

Extending the present calculation to asymptotically AdS BHs is interesting too; in
this case we expect that one would need to subtract appropriate counter terms to get the
Bekenstein-Hawking entropy. The dual conformal field theory degrees of freedom of the
winding modes may help in microscopically counting the entropy.
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