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1 Introduction

In eleven dimensions there exists a single supergravity theory associated with the low energy
limit of M-theory. When a Kaluza Klein reduction of the eleven dimensional supergravity
is done, it leads to the type IIA maximal supergravity in ten dimensions. It is also possible
to perform a Scherk Schwarz reduction of the eleven dimensional supergravity. This leads
to a ten dimensional gauged supergravity [1]. In ten dimensions there is also a massive
type IIA supergravity found by Romans [2].

In [3] it was shown that it is possible to obtain a non-covariant eleven dimensional
supergravity with a cosmological term as an uplift to eleven dimension of the type IIA
massive Romans supergravity. The resulting action requires the existence of an isometry
in the eleven dimensional space-time, in order to include a non-trivial cosmological massive
term. Although the origin of this isometry remains unknown, the proposal for the massive
11D supergravity is a step forward in understanding the Roman’s supergravity origin.

It was conjectured by Hull that gauged supergravities are effective limits of M-theory
torus bundles with monodromies [4]. At supergravity level, this result was found first
by [5] and later studied in detail in [6, 7]. In particular, according to Hull’s conjecture
Romans massive supergravity would also admit an M-theory origin. The dual of M-theory
compactified on a 2-torus with parabolic monodromy and non-trivially uplifted to ten
dimensions could provide an explicit M-theory origin of Romans supergravity [8]. This
idea was sustained by the fact that Romans’ supergravity, when it is dimensionally reduced,
using the Kaluza Klein approach, coincides with the type IIA gauged supergravity with
parabolic monodromy. Following Hull’s procedure, the authors in [9] proposed a matrix
theory formulation for the massive type IIA supergravity.

On the other hand, in [10] the authors conjectured that the Type IIA string can not
be strongly coupled in a weakly curved region of space-time. Their approach was done in
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the context of supergravity, where the uplift to M-theory is related to the effective field
limit of multiple M2-branes with conformal symmetry described by a U(N)×U(N) Super
Chern-Simons matter theory [11–14].

One way to study the origin of Roman’s supergravity in M-theory is through the
supermembrane theory. We will use interchangeably throughout the work the name su-
permembrane or M2-brane. The supermembrane action was proposed in [15–17] and,
because of its coupling with the 11D supergravity, it was considered a fundamental object
of M-theory. Indeed, through a double dimensional reduction, strings can arise from the
membrane. However, in [18] the authors proved that the theory, in a flat space, is un-
stable at a quantum level. This problem cannot be solved by taking compact dimensions
(see [19]). This led the authors in [20] to consider that the M2-brane could be interpreted
as a second quantized theory and hence, not be able to describe fundamental degrees of
freedom of M-theory. Nevertheless, in [21], the authors found a formulation of the M2-
brane in M9 × T 2 with significantly different properties. This formulation, characterized
by a restriction over the windings of the theory, known as central charge condition, has a
regularized Hamiltonian with discrete supersymmetric spectrum (see [22, 23]). This allows
us to reinterpret the supermembrane as a fundamental object of a M-theory sector. This
condition has been extended to 4D backgrounds, see for example: a N = 1 toroidally
compactified supermembrane with central charges on M4× T 7 done in [24], or on a T 7/Z3

2
with G2 structure orbifold in [25]. Another well-known example of supermembrane with
discrete spectrum [22], is the supermembrane on a pp-wave background [26, 27], whose
regularization corresponds to the BMN matrix model [28].

In contrast, the authors of [29] found that the supermembrane with central charges
formulated on M9×T 2 is the M-theory origin of the type IIB gauged supergravities in 9D.
Its Hamiltonian is U-duality invariant, and hence it is also the M-theory origin of type IIA
gauged supergravities, in particular those associated to the type IIA parabolic sector [30].
Globally, the theory is described in terms of a symplectic torus bundle with monodromy in
SL(2,Z). Hence, this sector of the M2-brane theory is a natural candidate to realize Hull’s
conjecture and model out the M-theory origin of 10D Romans’ massive supergravity.

Recently, it has been identified that there is a one to one correspondence between the
M2-brane with central charge condition and the M2-brane with C± fluxes, where the C±
are the components of the 11D Supergravity three-form in the Light Cone coordinates.
Indeed, the supermembrane with central charges in M9 × T 2 is equivalent to an M2-brane
inM9×T 2 with C− fluxes [31]. Furthermore, the authors showed in [32] that the M2-brane
with C± fluxes on a torus bundle theory can be interpreted as an M2-brane formulated on a
twisted torus bundle with monodromy in SL(2,Z). The M2-brane theory acquires new U(1)
gauge and global symmetries. There exists a 1-form connection associated with the gauge
symmetry U(1), which is dynamical and topologically non-trivial. The supermembrane
with C− fluxes formulated on a parabolic torus bundle on M9×T 2 can be directly obtained
from [32], which is based on previous works [29, 30] and [31].

When a decompactification limit from the M2-brane with C− fluxes formulated on
M9 × T 2 into ten non-compact dimensions is performed, some properties in the uplifted
Hamiltonian must be preserved in order to correspond to the massive supergravity sector
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rather than the massless one. For example, the decompactification limit should preserve
finite couplings as well as the moduli of the toroidal structure. These facts cannot be ob-
tained through an ordinary decompactification limit, as it is the case when a 2-torus decom-
pactifies as a cylinder. Indeed, a 11D supermembrane on a cylinder times 9D Minkowski
target space corresponds to a M2-brane on a circle, i.e. the M2-brane formulated on a triv-
ial circle bundle. Its double dimensional reduction corresponds to the standard N = 2 10D
type IIA superstring whose effective limit is the N = 2 10D type IIA maximal supergravity.

If the Romans massive supergravity has a M2-brane origin, it must arise from a su-
permembrane defined on a non-trivial bundle in 11D. There are very few possibilities for
implementing this idea with a single compact dimension. Following a former idea of [33],
we consider the uplift to ten non-compact dimensions in a nontrivial way, M9×LCD. The
LCD is a Light Cone Diagram, a two dimensional flat strip with identifications and with
prescribed segments whose curvature becomes infinite at some points.

Any punctured Riemann surface is equivalent to a LCD diagram. In string theory, the
LCD is described by the Euclidean time and a space-like coordinate, the two coordinates
of a string, while in our approach it is described by two space-like coordinates. The fields
are then functions of three coordinates, the two coordinates of the LCD and the time.
So, in the present formulation, the discussion is not in terms of incoming and outgoing
strings. It is a more general construction than the interaction string diagrams, as expected
since the fundamental objects are now supermembranes. The structure we obtain for the
M2-brane on the M9 × LCD fulfills all of the prescribed requirements: it corresponds to
the decompactification limit of a torus bundle times a 9D Minkowski target space into a
twice punctured torus bundle times 9D Minkowski space-time, which is effectively a non-
trivial compactification with only one compact dimension. Furthermore, it is re-expressed
in terms of the LCD, making explicit the tenth noncompact dimension. The connection
between the Riemann Surface with punctures and the Mandelstam map describing the LCD
plays an essential role in our construction. At supergravity level, the punctures in Riemann
surfaces lead to delta function singularities in the equations of motion. In particular, the
space-time curvature is singular at the punctures. These singularities can be associated
to the existence of Dp-brane sources [34], where p depends on the dimension of the delta
function. In the case of the massive Roman supergravity in ten dimensions and its uplift
to eleven dimensions, it has been related to the coupling with D8-branes and M9-branes,
respectively [35, 36]. There are other examples in the literature of compactifications on
Riemann surfaces with punctures in the context of massive type IIA supergravity, see [37–
40] where the punctures are interpreted as the presence of sources generated by Dp-branes
or M2-branes stacks.

Indeed, as we will show, our construction corresponds to a massive supermembrane in
eleven dimensions, ten of which are non-compact. On top of the massive terms, there is
one associated with the punctures that can be understood as a non-vanishing cosmological
constant term at the level of supergravity. We expect that the double dimensional reduction
of the massive M2-brane naturally leads to the worldsheet action of a type IIA superstring
theory with a cosmological term in ten dimensions. This property is expected for the type
IIA massive superstring associated to Romans supergravity. We hope to report about this
topic elsewhere.
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On the other hand, from the work [41], it is known that there is a relationship between
the (1, 1)− knots and the mapping class group of the twice punctured torus. We will show
that the monodromies over the twice punctured torus can be associated with two subgroups
of the punctured torus mapping class group, one related to the non-trivial (1, 1) − knots
and other to trivial knots, being the latter associated to the monodromies of the compact
closed torus ( without punctures). We will show that the main properties of the massive
M2-brane are identified by the (1, 1)− knots.

The paper is structured as follows: in section 2, we review the toroidal compactification
of the M2-brane on M9 × T 2 with C− fluxes, or equivalently with central charge, and
with a monodromy in SL(2,Z). In section 3, we review some results of the punctured
Riemann surfaces that we will extensively use in the next section. In section 4 we obtain
the formulation of the supermembrane on a knot, or equivalently on M9×LCD. We show
that the Hamiltonian corresponds to a massive supermembrane with a cosmological mass
term. We discuss the amount of supersymmetry preserved by the theory in this set-up, as
well as its global formulation and its relationship to knot theory. In section 5, we present
our discussions and conclusions.

2 The M2-brane with C− fluxes and monodromy in SL(2,Z)

The M2-brane compactified on a torus bundle with SL(2,Z) monodromy is in correspon-
dence, at effective level, with the eight inequivalent classes of nine dimensions type II
gauged supergravities with a monodromy contained in SL(2, R) [29]. The M2-brane with
C± fluxes compactified on M9 × T 2 has the same properties. In [33] it was shown that
only M2-brane torus bundles with parabolic monodromy (linearly or non-linearly realized)
can be non-trivially uplift to M2-brane bundles on ten non-compact dimensions. The
non-triviality of the M2-brane bundle is completely necessary to guarantee that the low
energy limit of the decompactified M2-brane corresponds to any of the two massive type
IIA supergravities in 10D (Romans and Howe-Lambert-West supergravity) and not to the
massless case.

This is consistent with Hull’s conjecture, which stipulated that type IIA massive su-
pergravity can be obtained as the low energy limit of the decompactification of M-theory in
a torus bundle with monodromies to ten non-compact dimensions. With this motivation,
it will be useful for the next sections to comment on some of the main results of the torus
bundle formulation of the M2-brane with non-trivial monodromies. We will use some of
them to formulate the massive M2-brane on the Light Cone diagram.

The maps of the M2-brane (in the light cone gauge L.C.G.) from the base manifold to
the target’s space torus satisfy the following winding conditions∮

Cr

(dX1 + idX2) = 2πR(ls +msτ)δsr , (2.1)

where r, s = 1, 2. The 2-torus is parametrized in terms of the moduli (R, τ) and (ls,ms) are
the winding numbers of the maps onto the torus in the target space. The winding numbers

are organized in the winding matrixW =
(
l1 l2
m1 m2

)
. X1, X2 denote the embedding maps of
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the worldvolume of the supermembrane into the 2-torus T 2. The complex closed one-form
is denoted by dX = dX1 + idX2. The supermembrane we are interested in, corresponds
to an M2-brane with nontrivial central charges i.e. the maps from Σ to T 2 are restricted
by the irreducible wrapping condition∫

Σ
dXr ∧ dXs = nεrsArea(Σ), n 6= 0 and n ∈ Z (2.2)

where Σ represents the worldvolume of the M2-brane. This is a topological condition that
implies the existence of a non-trivial U(1) principal torus bundle with first Chern class
c1 = n over the worldvolume of the membrane. On the other hand, this condition implies
det(W) = n, which is a condition over the winding numbers. The 1-form associated with
the embedding maps over the torus can be decomposed in the following way

dX = dX1 + idX2 = 2πR(lr +mrτ)dX̂r + dA, (2.3)

where dX̂r denote the set of normalized harmonic forms over Σ, that is∮
Cs

dX̂r = δrs , (2.4)

and dA = dA1 + idA2 is an exact 1-form that transform as a symplectic connection under
area preserving diffeomorphisms (APD) connected with the identity. It is possible to define
the determinant worldvolume metric

√
W as the pull-back of the symplectic 2-form of the

target torus
1
2εijdX̂

i ∧ dX̂j = 1
2εijε

ab∂aX̂
i∂bX̂

jdσ1 ∧ dσ2 =
√
Wdσ1 ∧ dσ2 (2.5)

being (σ1, σ2) local coordinates on Σ. We label them by a, b = 1, 2. The central charge
condition (2.2) ensures that

√
W is always different from zero. Then the Lie bracket is

defined as
{A,B} = eab√

W
∂aA∂bB, (2.6)

is also well-defined.
The Hamiltonian whose compactification on a torus bundle has parabolic monodromy

(in the type IIB sector) expressed in complex coordinates, corresponds to,

H =
∫
σ
d2σ

√
W (σ)

[
1
2( Pm√

W
)2 + 1

2(PP
W

) + T 2
M

4 {X
m, Xn}2 + T 2

M

2 DX
mDXm + T 2

M

8 FF
]

−
∫

Σ
T

2/3
M

√
W (σ)

[
ΨΓ−Γm{Xm,Ψ}+ 1

2ΨΓ−Γ{X,Ψ}+ 1
2ΨΓ−Γ{X,Ψ}

]
+
∫

Σ

√
Wλ

[
1
2D( P√

W
) + 1

2D( P√
W

) + {Xm,
Pm√
W
} − {ΨΓ−,Ψ}

]
,

(2.7)
where TM2 is the M2-brane tension. The first class constraint associated with area pre-
serving diffeomorphisms has been incorporated into the Hamiltonian through a Lagrange
multiplier λ. The symplectic covariant derivative is defined as,

D• = D •+{A, •}, F = DA−DA+ {A,A} (2.8)
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with D = D1 + iD2 and Dr defined as follows,

Dr• = εab√
W

2πR(lr +mrτ)θsr∂aX̂s∂b•, (2.9)

and with θ ∈ SL(2,Z) a matrix defined in terms of the monodromy matrix ρ.
The effect of imposing the central charge condition on the toroidally compactified

supermembrane changes qualitatively the behaviour of the mass spectrum. It becomes
purely discrete [22, 23, 42] in contrast with the general case, not restricted by the topological
condition (2.2), where the spectrum is continuous from [0,∞) . Equivalently, the same
result holds if we consider a supermembrane compactified on the same background but
now subject to the effect of C− fluxes described by∫

T 2
C− = n (2.10)

acting on the target space 2-torus, and n representing the units of flux. As shown in [31], the
condition (2.10) is a quantization condition over the components of the 3-form background
C. Moreover, the pull-back of eq. (2.10) to the base manifold implies the central charge
condition over the worldvolume surface.

It is important to mention that under the equivalent conditions (2.2) or (2.10) the
torus embedding becomes irreducible and it cannot degenerate. The theory contains pure
supermembrane excitations - the fields depend on the three worldvolume coordinates- as
well as string-like configurations which carry non-trivial energy as in string theory, in
distinction to the zero energy string spikes which are present in the 11D supermembrane
as discussed in [19]. A string theory is obtained after a double-dimensional reduction. To
do so, one has to freeze part of the supermembrane degrees of freedom, in the sense that the
configurations depend only on one spacelike coordinate. In this work we will not consider
its double dimensional reduction.

Globally, the M2-brane in any of the two cases discussed above, corresponds to a
supermembrane realized on symplectic torus bundle with monodromy whose inequivalent
classes are specified by the second cohomological class H2(Σ,Zρp) [29, 43].

On the worldvolume base manifold Σ, there are two non-trivial bundles: the non-trivial
U(1) principal bundle, characterized by the first Chern class c1 = n, and the symplectic
torus bundle with monodromy. Both bundles define together a twisted torus bundle over
the base Σ on which the M2-brane maps are defined as sections [32]. This condition restricts
the type of M2-brane torus bundles that can be defined inM9×T 2. They lie in two different
classes: eight characterized by the non-vanishing topological numbers (n, ρ) associated to
the M2-brane sector with central charge with discrete spectrum, and another one with
no topological charges (0, 0) associated to a trivially wrapped M2-brane with continuous
spectrum. At low energies, they are associated with the eight inequivalent classes of type
IIA gauged supergravities and with the type IIA maximal supergravity in 9D, respectively.

The Hamiltonian of the Supermembrane considered here is locally and globally U-
duality invariant as shown in the paper [30]. It also possesses a residual global symmetry
ρp × ρ∗p contained in SLΣ2(2,Z) × SLT 2(2,Z) associated with the monodromy class of
matrices of the fiber and on the base manifold.
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The parabolic monodromy, in contrast with other monodromies contained in SL(2,Z),
allows a decompactification procedure to ten non-compact dimensions while keeping a non-
trivial topology. In 10D there are only two massive deformations of type IIA supergravity
(HLW and Romans supergravities). Under reduction to nine dimensions, they generate a
gauged supergravity with parabolic and a gauged trombone monodromy, respectively. In
the M2-brane torus bundle classifications among others, there are also two inequivalent
class of bundles with parabolic monodromies, one linearly and another nonlinearly real-
ized. The second one is associated to a “trombone” monodromy in correlation with its
low energy description. Under decompactification, the formerly M2-brane with a parabolic
monodromy linearly realized will be formulated on a twice punctured torus target space
with monodromy. The formulation on a punctured surface will lead to an eleven dimen-
sional theory with only one compact dimension. In section 4. we will show a realization of
this idea.

3 Parametrization of the twice punctured torus

A previous step to obtain the formulation of the M2-brane on a punctured torus is to
define the parametrization of the space and embedding maps on this Riemann surface.
We will first review some basic results about the Riemann surfaces with punctures. It is
known from [44–47] that the N punctured Riemann surfaces of genus g are conformally
equivalent to a g loop Light Cone Diagrams (LCD) -string interaction-. Specifically, given
an abelian differential dF on an arbitrary Riemann surface with punctures, Σg,N , it is
always possible to define a flat metric with isolated singularities representing the punctures
-incoming/outgoing states (strings)-. This equivalence has been exploited in a different
context to compute scattering amplitudes in string theory, see for example [48–50]. As
already explained in the introduction, our construction is more general than the interaction
string diagrams, as expected since the fundamental objects are now supermembranes.

Defining a complex coordinate system z over Σg,N the conformal map (Mandelstam
map) can be written as

F (z) =
∫ z

z0
dF =

∑
r

αr

[
lnE(z, Zr)− 2πi

∫ z

z0
w

1
ImΩIm

∫ Zr

z0
w

]
, (3.1)

where z0 is an arbitrary point on Σg,N , Zr with (r = 0 . . . N) denote the positions of the
punctures on Σg,N . On the LCD, αr are the weights associated to the punctures, which
satisfy

∑
αr = 0 and w = (w)j with (j = 1, . . . , g) is the basis of holomorphic 1-forms, on

the compact without punctures Riemann surface, normalized as∫
aj

wi = δij ,

∫
bj

wi = Ωij . (3.2)

where aj ,bj are the basis of the Riemann surface’s homology cycles, and Ωij is the period
matrix. Finally, E(z, Zr) it is a prime form defined for an odd spin structure and in terms
of the theta functions with characteristic [s] as

E(z, Zr) =
Θ[s](

∫ z
Zr
w,Ω)

hs(z)hs(Zr)
, (3.3)
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with

hs(z) =

√√√√∑
j

∂Θ[s]
∂ξj

(0,Ω)wj(z), (3.4)

where the notation [s] is used to represent, in general, a point [s] =
[
u

v

]
∈ Cg with

u, v ∈ Rg. Now, if u, v ∈ (Z/2Z)g, [s] receive the name of spin structure and it is said to
be odd or even if uv is odd or even (see for example [51, 52]).

The 1-form dF has poles at the punctures and also have zeros at Pa with a = 0, . . . , 2g−
2+N , whose position can be computed in terms of the moduli of the Riemann surface (see
for example [47]). The set of parameters that characterize the Riemann Surface Σg,N are
the Teichmüller parameter τ and the positions of the punctures Zr. On the other hand, the
set of parameters that describe the LCD are the external weights αr, the internal weights
βj , the internal lengths Tu, with (u = 1, . . . , 2g − 3 + N), and the twist angles θv with
(v = 1, . . . , 3g + N − 3). However, not all these parameters are independent. In fact, the
following relationship between the moduli of both surfaces can be found (see [46] for more
details) ∫

bj

dF −
g∑
i

Ωij

∫
aj

dF = 2πi
∫ Z1

Z2
wj . (3.5)

The case of interest for us corresponds to a Riemann surface with g = 1. The associated
basis of the holomorphic differential has only one element,

dz = w, (3.6)

that satisfies ∮
a
w = 1,

∮
b
w = τ, (3.7)

being τ the Teichmuller parameter of the 2-torus. Thus F (z), for N = 2 punctures with
residues αr = (−1)r+1α can be written as

F (z) = α ln
[Θ1(z − Z1|τ)

Θ1(z − Z2|τ)

]
− 2πiαIm(Z1 − Z2)

Imτ
(z − z0). (3.8)

Now, we map the torus with two punctures on the one loop light cone diagram. Apart
from the definition of the map F (z), the following identification holds (3.5)

2πi(Z1 − Z2) = (θ1 + θ2)β1 − θ2 − 2πiβ1τ (3.9)

where the moduli of the twice punctured torus are characterized by the four parameters
(τ, Z1, Z2) and the moduli of the one loop light cone diagram are described by (α, β1, θ1, θ2),
see figure (1). These quantities can be defined in terms of integrals of dF as

∫
a
dF = 2πiβ1,

∫
b
dF = i

2π (β1θ1 − β2θ2),
∫
Cr

dF = (−1)r2πiα, T =
∫ P2

P1
dF.

(3.10)

– 8 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
2

Figure 1. The torus with two punctures and the corresponding LCD. The Mandelstam map send
the punctures over the torus to ±∞ in the LCD.

with Cr curves around each of the two punctures and β2 = α−β1. Finally, it will be useful
for the following sections to express the map F (z) as

F = G+ iH (3.11)

where G = Re(F ) corresponds to the Green function, with G single-valued, that is ,∫
a
dG =

∫
b
dG = 0 (3.12)

At the same time, the associated 1-form dG is harmonic since it has poles at the punctures
such that the sum of the residues over the compact manifold is zero. Around the punctures,
the function G satisfies,

G ∼ (−1)r+1α ln |z − Zr|, (3.13)

H = Im(F ) is multivalued and dH is harmonic. Usually the function G is interpreted as
the light cone time in the context of strings interaction and H behaves locally, near each
puncture as an angle

dH = (−1)r+1αdϕ, with ϕ ∈ (0, 2π) (r = 1, 2). (3.14)

On the other hand, close to the zeros of dF denoted as Pa, the functions G and H can be
written as

G(z)−G(Pa) ∼
1
2Re(D(Pa)(z − Pa)2), (3.15)

H(z)−H(Pa) ∼
1
2Im(D(Pa)(z − Pa)2), (3.16)

where

D(Pa) =
2∑
r=1

(−1)r+1
[
∂2
zΘ1(Pa − zr, τ)
Θ1(Pa − zr, τ) −

(
∂zΘ1(Pa − zr, τ)
Θ1(Pa − zr, τ)

)2]
. (3.17)

The behavior of the functions G and H become clearer if the Riemann surface is
modeled as a polygon and we plot the curves G = const and H = const, see figures (2)
and (3). In these graphics, it turns out that the curves G = const start as closed curves
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Figure 2. Curves G = const with τ = i, Z1 = 0.2(1 + i), Z2 = 0.4 + 0.6i, P1 = 0.643 + 0.129i and
P2 = 0.956 + 0.662i. The big and small white circles represent the positions of the punctures and
the zeros of dF , respectively.

around one of the punctures until they reach one of the zeros of dF where the curve breaks
into two closed curves (each one homotopically equivalent to the curve a). Then, in the
second zero of dF , the curves come together again and form a closed curve around the
second puncture.

On the other hand, the curves H = const are curves that go from one puncture to
the other. The lines of H = const shown in the diagrams that seem not to connect the
two punctures are curves defined outside the fundamental domain of the Riemann surface
that equally end in punctures shifted by the periodicity of the lattice, equivalent to those
defined inside the fundamental domain.

4 The M2-brane action on a twice punctured torus

In this section, we will study the decompactification limit of the M2-brane with fluxes
presented in section (2) to a M2-brane formulated on an eleven dimensional target space
with ten non-compact dimensions. To that end, we propose to formulate the M2-brane on a
background which is given locally by M9×LCD, where LCD represents a more convenient
surface for modeling out the twice punctured torus. Every punctured Riemann surface is
conformally equivalent to a string L.C interaction diagram.

The metric over LCD that we use corresponds to

ds2 = T 2

cosh4 Ĝ
dĜ2 + dH2, (4.1)
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Figure 3. Curves H = const with τ = i, with τ = i, Z1 = 0.2(1 + i), Z2 = 0.4 + 0.6i P1 =
0.643 + 0.129i and P2 = 0.956 + 0.662i.

where Ĝ ≡ G/α ∈ (−∞,∞) and T ≡ G(P2)−G(P2) represents the internal length of the
LCD, see figure 1. Now, it will be useful to define the variable K ≡ T 2 tanh Ĝ which maps
the real line into the interval [−T, T ]. Then the metric can be rewritten as the following
almost flat metric

ds2 = dK2 + dH2. (4.2)

It is important to mention that this metric has a curvature different from zero at the zeros
and poles of dF . A comment is in order, Xm, G,H with m = 1, . . . , 7 are the transverse
LC target space coordinates. On the LCD, the punctures associated with G are mapped
to ±∞. They are arbitrarily located over the Riemann surface. The area preserving
diffeomorphisms on the Riemann surface are restricted to the ones which preserve the
punctures and hence the zeros of the holomorphic 1-form dF.

Now, we consider the decompactification limit to ten non-compact dimensions of the
supermembrane with central charges (or equivalently with C− fluxes) [31], formulated on a
torus bundle with parabolic monodromy [31, 43]). It is convenient to define the punctured
Riemann surface, where the associated zeros have also been extracted. We define the
Riemann surface has having neighbourhoods U1, U2 around the poles of F(z) and U3, U4
around the zeros of F(z), as well and their homeomorphisms, that are compatible with the
Riemann surface’s holomorphic structure, which maps each neighborhood into a punctured
disk on R2. We define the determinant of the worldvolume metric

√
W on Σ1,2 as the pull-

back of the volume 2-form on LCD,
√
W = εab∂aK∂bH. (4.3)
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In this way the Lie bracket of the maps K and H is well-defined,

{K,H} = 1. (4.4)

Notice that this bracket can be extended to the zeros of dF .
In order to write the decompactified Hamiltonian we compare the construction with

the one in [31]. In the reference there is a flat 2-torus T 2 on the target, a torus Σ as a base
manifold with a symplectic structure induced from the canonical one on the target. The
one-to-one maps from Σ to the target T 2 are built using harmonic 1-forms on Σ defined as
the real and imaginary parts of the holomorphic 1-form defined on Σ. They are closed forms
whose harmonic parts are the ones defined previously, plus an exact 1-form which carries
the physical degrees of freedom. The above construction is restricted by the topological
central charge or flux condition, which is associated with the existence of a rich structure
of connections in non-trivial bundles.

Once decompactified, there exists new closed non-trivial 1-forms

dXK = dK + dAK , dXH = mdH + dAH ,

where m is an integer that near the puncture can be interpreted as a winding number.
Assuming that the fields Xm, AK , AH and Ψ are well defined on the compact surface,
including the points at which dF has poles or zeros, then the Lagrangian density can be
written as

L = TM

√
W

2

[
(Ẋm)2 + (ẊK)2 + (ẊH)2 + Ψ̄Γ−Ψ̇ + 1

2{X
m, Xn}2 + {XK , Xn}2

+{XH , Xn}2 + {XK , XH}2 + 2Ψ̄Γ−Γm{Xm,Ψ}+ 2Ψ̄Γ−ΓK{XK ,Ψ}

+2Ψ̄Γ−ΓH{XH ,Ψ}
]
. (4.5)

The conjugate momenta are given by

Pm = ∂L
∂Ẋm

= TM
√
WẊm, (4.6)

PK = ∂L
∂ẊK

= TM
√
WẊK , (4.7)

PH = ∂L
∂ẊH

= TM
√
WẊH , (4.8)

S = ∂L
∂ ˙̄Ψ

= −TM
√
WΓ−Ψ, (4.9)

where it is clear that Pm/
√
W,PK/

√
W,PH/

√
W and S

√
W are also well defined over the

compact surface.
In the definition of the maps from Σ1,2 to the target space, we introduce the harmonic

one-form d(G + iH) rather than the harmonic one-form dX̂. Locally, dG and dH, both
contribute to the local constraint at the same level,

{PK , XK}+ {PH , XH}+ {Pm, Xm} = 0 (4.10)
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but globally, they have very different properties. On Σ1,2, G is a single-valued function
whereas H behaves like an angle coordinate around the punctures. They define a well-
behaved coordinate system on the surface, away from the punctures and the zeros of F (z).

Since XK and K are scalars on Σ1,2 then necessarily AK is also a scalar. Hence, AK

does not transform as the component of a symplectic connection under symplectomorphism
transformations, as it happens in the original theory before the uplifting, that is, in the
M2-brane with central charges on M9 × T 2 analyzed in [32, 53]. Consequently, (AK , AH)
cannot be interpreted as the components of a connection. The reason of this difference lies
in the target space geometry considered, since there is only a single compact dimension.

The moduli of Σ1,2 as well as the parabolic monodromy are introduced in the uplifted
Hamiltonian through the Mandelstam map. The functions G and H depend only on the
Riemann surface and the punctures on it, they are not physical degrees of freedom. The
maps defining the Supermembrane take value on a eleven dimensional space with ten non-
compact dimensions. The image of the map G from the Riemann surface on the real line
R1 is the 10th non-compact coordinate. G on the Riemann surface is a height function
with values ranging from −∞ on one puncture to +∞ on the other puncture. The 11th
coordinate takes values on the compact sector of the target space. Indeed, its global
description represents a fibration of the compact dimension described by H on R.

In order to write the Hamiltonian of the M2-brane, we need to define how to perform
the integration over Σ1,2. This is necessary since the metric over the base manifold is defined
in terms of the real and imaginary parts of the Mandelstam map and consequently it may
exhibit problems at the singular points, this is, the punctures and zeros of dF . Firstly
let us notice that the set of zeros associated to dF , S ≡ (P1, P2), it has null measure.
Therefore, by assuming that the Hamiltonian density is well-defined on S, we have

H =
∫

Σ1,2
H =

∫
Σ1,2/S

H, (4.11)

which indicate that, at least from the Hamiltonian point of view, the only problematic
points are the punctures. Then, to define the integral taking into account these points
(see [54]), first consider the region Σ1,2 as the fundamental domain of the 2-torus Σ1,2,
defined as the quotient of R2/Γ were Γ is a discrete group with generators 1 and τ .
To extract the punctures in such a way that the resulting region will be simply connected,
we will cut the fundamental region from a point O ∈ ∂Σ1,2 to one of the punctures to
return again to O and then go to the second puncture to finally go back to O. As a result,
the resulting region Σ′ does not contain any puncture and is simply connected, see figure 4.

Now the Hamiltonian of the M2-brane in the L.C.G formulated on the LC diagram
corresponds to

H = 1
2TM

lim
ε→0

∫
Σ′
d2σ
√
W

[(
Pm√
W

)2
+
(
PK√
W

)2
+
(
PH√
W

)2
+ T 2

M

2 {X
m, Xn}2

+T 2
M{K +AK , Xn}2 + T 2

M{mH +AH , Xn}2 + T 2
M{K +AK ,mH +AH}2

+2T 2
M Ψ̄Γ−Γm{Xm,Ψ}+ 2T 2

M Ψ̄Γ−ΓK{XK ,Ψ}+ 2T 2
M Ψ̄Γ−ΓH{XH ,Ψ}

]
, (4.12)
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Figure 4. The region Σ′ obtained by cutting Σ through the curves C1,C2 and I. The path obtained
by the union of the curves C1,I,C2 and I−1 is denoted by c

which is subject to the following local constraint associated to the Area Preserving Diffeo-
morphims (APD)

φ1 = d

[(
PK√
W

)
dXK +

(
PH√
W

)
dXH +

(
Pm√
W

)
dXm + Ψ̄Γ−dΨ

]
= 0 (4.13)

and three global constraints

ζr =
∫
Cr

[(
PK√
W

)
dXK +

(
PH√
W

)
dXH +

(
Pm√
W

)
dXm + Ψ̄Γ−dΨ

]
= 0, r = 1, 2

(4.14)

ζ3 =
∫
C1

[(
PK√
W

)
dXK +

(
PH√
W

)
dXH +

(
Pm√
W

)
dXm + Ψ̄Γ−dΨ

]
= 0, (4.15)

where the first two constraints are the usual ones, Cr, r = 1, 2 is the basis of homology
cycles on Σ (we are using C1 = a and C2 = b) and the extra constraint appears due to the
presence of singularities associated with the punctures. There is no need to introduce a
fourth constraint associated with the other puncture since it is not an independent one.
It can be shown that it corresponds to a linear combination of the preceding three global
constraints (see [54]).

4.1 A Massive M2-brane formulated on ten non-compact dimensions

We want to prove that the 11D supermembrane compactified on a target space locally given
M9 × LCD with the metric (4.2) is a massive M2-brane formulated on ten non-compact
dimensions. In order to do this we will show that the quadratic contribution present in the
bosonic potential of the Hamiltonian is non-vanishing. The bosonic potential is given by,

VB = {K +AK , Xm}2 + {mH +AH , Xm}2 + {Xm, Xn}2 + {K +AK ,mH +AH}2.
(4.16)
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Thus, the quadratic terms of the dynamics field contained in the potential are

V = {K,Xm}2 +m2{H,Xm}2 + {K,AH}2 +m2{H,AK}2 +m{K,AH}{AK , H} (4.17)

It may seem that they do not generate mass terms for every field. Nevertheless, the mass
terms become manifest if we impose the following gauge fixing, which is analogue to the
Coulomb gauge,

{K,AK}+m{H,AH} = 0. (4.18)

Indeed, since this expression is identically zero, we can square it and add it to V and obtain
the following result for the quadratic terms

V = {K,Xm}2 +m2{H,Xm}2 + {K,AK}2 +m2{H,AK}2

+{K,AH}2 +m2{H,AH}2 (4.19)

We can observe that, besides the quartic potential, there have also been generated quadratic
terms for all the fields. The final step is to prove that the quadratic terms associated with
the non-trivial forms dK, dH of the target space, are always different from zero in Σ/S as
long as the dynamic fields Xm, AK , AH are not-trivial and T 6= 0,m 6= 0, i.e.

{K,Xm}2 +m2{H,Xm}2 6= 0, (4.20)
{K,AK}2 +m2{H,AK}2 6= 0, (4.21)
{K,AH}2 +m2{H,AH}2 6= 0. (4.22)

Proof. In the membrane theory, trivial fields imply that they are constant on the punc-
tured Riemann surface. In fact, the field always appears in the Hamiltonian as one forms
on the surface, hence they are defined modulo constants on the surface. We thus assume
that the fields are not constant on the Riemann surface. We will prove by contradiction.
Let us begin considering the eq. (4.20). Suppose that for each point in Σ′/S

{K,Xm}2 +m2{H,Xm}2 = 0⇒ {K,Xm} = {H,Xm} = 0, (4.23)

which can be rewritten as

∂1K∂2X
n − ∂2K∂2X

n = 0, (4.24)
∂1H∂2X

n − ∂2H∂2X
n = 0. (4.25)

By assumption Xm is not constant on the Riemann surface. On the surface, there
exists then some open set where at least one derivative of Xm is not zero. On that set we
have

∂1G

∂2G
= ∂1X

m

∂2Xm
,

∂1H

∂2H
= ∂1X

m

∂2Xm
, (4.26)

which implies
∂1G

∂2G
= ∂1H

∂2H
, (4.27)
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but F = G+ iH is a holomorphic function in Σ′ and consequently

∂2G = −∂1H, ∂1G = ∂2H, (4.28)

so (∂2G)2 +(∂1G)2 = 0 which is a contradiction since G and H are not constant. It easy to
see that this statement also holds for (4.21), (4.22) and consequently all of the mass terms
must be different from zero.

Another interesting feature that is only present in this formulation comes from the last
term of the bosonic potential (4.16), specifically

lim
ε→0

∫
Σ′
d2σ
√
W{K,H}

(
m{K,AH}+m2{H,AK}+ m2

2 {K,H}
)

= lim
ε→0

∫
Σ′

(
mdK ∧ dAH +m2dAK ∧ dH + m2

2 dK ∧ dH
)
.

(4.29)

The first integral can be written as

lim
ε→0

∫
Σ′
dK ∧ dAH = − lim

ε→0

∫
∂Σ′

AHdK = − lim
ε→0

[∫
C1

+
∫
C2

+
∫
I

+
∫
I−1

]
AHdK = 0,

(4.30)

while the second integral

lim
ε→0

∫
Σ′
dAK ∧ dH = lim

ε→0

[∫
C1

+
∫
C2

+
∫
I

+
∫
I−1

]
AKdH

= 1
2i lim

ε→0

∑
r

∫
Cr

AK(dF − dF̄ ) = −α lim
ε→0

∑
r

∫ 2π

0
(−1)rAK(Zr + εe−iθ)dθ

= 2πα[AK(Z2)−AK(Z1)]. (4.31)

Finally the last integral leads to

1
2 lim
ε→0

∫
Σ′
dK ∧ dH = 1

2 lim
ε→0

[∫
C1

+
∫
C2

+
∫
I

+
∫
I−1

]
KdH = lim

ε→0
Kr

∑
r

∫
Cr

dH,

where we use the fact that Cr are curves K = const, specifically

K(Zr) = (−1)r+1T

(
ε2α − 1
ε2α + 1

)
. (4.32)

Then, using (3.14), we get

1
2 lim
ε→0

∫
Σ′
dK ∧ dH = 2παT. (4.33)

Now, using the definition the canonical momenta zero modes,

P0H =
∫

Σ′
dσ2PH , P0K =

∫
Σ′
dσ2PK , P0m =

∫
Σ′
dσ2Pm. (4.34)

– 16 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
2

we obtain

Pm = P0m
√
W + Πm, PK = P0K

√
W + ΠK , PH = P0H

√
W + ΠH . (4.35)

Thus, it is possible to write the massive supermembrane Hamiltonian as

H = 2πm2TαTM + 2π αT
TM

[
P 2

0m + P 2
0K + P 2

0H

]
+ 2παm2TM

[
AK(Z2)−AK(Z1)

]
+ 1
TM

lim
ε→0

∫
Σ′
dK ∧ dH 1

2

[
(Πm)2 + (ΠK)2 + (ΠH)2

+T 2
M

2 {X
m, Xn}2 + T 2

M (∂HXm + {AK , Xm})2 + T 2
M (m2∂KX

m − {AH , Xm})2

+T 2
M (∂HAH + {AK , AH})2 + T 2

M (m∂KAK + {AK , AH})2

+m2T 2
M (∂KAH)2 + T 2

M T (∂HAK)2 − T 2
M{AK , AH}2

+2T 2
M Ψ̄Γ−Γm{Xm,Ψ}+ 2T 2

M Ψ̄Γ−ΓK{AK ,Ψ}+ 2T 2
M Ψ̄Γ−ΓH{AH ,Ψ}

+2T 2
M T Ψ̄Γ−ΓK∂HΨ− 2T 2

MmΨ̄Γ−ΓH∂KΨ
]
, (4.36)

where the temporal dependence of the momenta zero modes and AK have been omitted for
simplicity. This Hamiltonian possesses several distinctive features: first, it contains a mass
term associated with the non-trivial topology of the target LCD given by eq. (4.33). This
term represents the uplift of the central charge condition into this target space. It can be
interpreted as a cosmological constant term associated with the presence of a non-trivial
(1, 1)− knot in the target space M9 × LCD.

Secondly, it also presents a new characteristic term associated with the value of the
single-valued tenth dynamical field, AK , evaluated on the punctures.

Thirdly, it possesses non-vanishing mass terms for each of the dynamical fields, as
already discussed. This last effect is responsible for not having, at a classical level, string-
like spikes with zero energy. The spectral analysis of the theory requires a proper SU(N)
regularization. In our analysis, we assumed that the fields are functions of G and H (any
function of G can be expressed as a function of K). On the punctures G→ ±∞⇒ K → ±1
and the dynamic fields are well defined and take a constant value. The theory is invariant
under area preserving diffeomorphims of the surface which preserve the punctures. Under
these conditions, we can always express the fields in terms of a basis of functions, vanishing
at the punctures, on a compact surface which is the product of the closed interval −1 ≤ K ≤
1 and a compact space at each K. There always exists a measurable set of functions, the
Lagrangian’s eigenfunctions, which is a basis of the L2 space on that compact surface. We
can then implement a regularization procedure by expressing the fields in terms of the basis
with coefficients depending on t. We may then integrate the space-like dependence and end
up with a regularized version of our model. In fact, since the quadratic terms gives mass to
every field Xm,AK and AH , and cubic contributions are bounded above by the quartic ones
the spectrum associated with the bosonic Hamiltonian is expected to be purely discrete.
Moreover the fermionic potential would be dominated by the bosonic potential due to the
non-vanishing quadratic contribution. The Hamiltonian should then satisfy the sufficient
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condition found in [22] and the spectrum of the supersymmetric Hamiltonian should be
discrete. We expect to provide the explicit construction of this argument elsewhere.

4.2 Unbroken supersymmetry

Here we will analyze the unbroken supersymmetry of the massive M2-brane on M9×LCD.
In order to preserve the non-trivial cosmological term in eq. (4.33), we need to preserve a
minimal configuration characterized by

Ψ = Xm = AK = AH = Pm = PK = PH = 0, XH = H, XK = K. (4.37)

Thus, this will be a supersymmetric configuration if δΨ = δXM = 0 (with M = m,H,K).
That is

δXM = −ε̄ΓMΨ = 0, (4.38)

δΨ = 1
2Γ+((

√
W )−1PMΓM + Γ−)ε+ 1

4{X
M , XN}Γ+ΓMN ε = 0, (4.39)

where ε is a constant spinor (see [55]). Now, introducing eq. (4.37) into the infinitesimal
transformations, it is not difficult to show that

Γ+
(

Γ− + 1
2ΓKH

)
ε = 0, (4.40)

which implies that half of the supersymmetry is broken.

4.3 Monodromies on punctured torus bundles

Let us analyze the M2-brane on the Σ1,2, the twice punctured torus bundle. A knot is
an embedding of the topological circle S1 in a 3-dimensional manifold up to continuous
deformations. We consider in particular a 3-dimensional lens space L(p, q) where p and
q are relatively prime integers. These are 3-dimensional manifolds that can be built by
gluing together two solid torus by a homeomorphisms of its boundary (Σ). The attach-
ing homeomorphism wraps a meridian p-times latitudinally on one boundary and q-times
meridionally on the other boundary. In particular, S3 is a lens space L(1, 0). Let H denote
the solid torus with boundary Σ and consider a trivial arc A in its interior with end points
the two points Z1 and Z2 on Σ. We consider a copy of the solid torus H with the arc
A, denoted (H∗, A∗) and an orientation reversing homeomorphism h on Σ preserving Z1
and Z2. The gluing of the two tori by the homeomorphism h defines a 3-manifold with
a closed knot in it. This is a (1, 1) − knot. The construction depends only on Σ1,2 and
the homeomorphism h. The obtained closed, orientable 3-dimensional manifold is denoted
H ∪h H∗.

Now, we denote by U ≡ (Z1, Z2) the set of punctures, MCG(Σ1,2) the mapping class
group of isotopic homeomorphisms Y : Σ1,2 → Σ1,2 with Y (U) = U , and by PMCG(Σ1,2)
the mapping class group of isotopic homeomorphisms which preserve each puncture. There
is a natural epimorphism Ω from the PMCG(Σ1,2) or MCG(Σ1,2) to the mapping class
group of Σ which is isomorphic to SL(2,Z)

Ω : PMCG(Σ1,2)→MCG(Σ) ∼= SL(2,Z) (4.41)
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The Dehn twists ha and hb around the curves a and b associated with the basis of
homology of Σ, together with the Dehn twist hp around the curve p associated with the
punctures are the generators of PMCG(Σ1,2). The image of ha and hb under Ω are the
generators of MCG(Σ) (see figure 5 (a)) while hp has the same image as ha since the
homeomorphisms they generate on Σ are on the same isotopy class. Every (1, 1) − knot
(non-trivial knots) in a lens space L(p, q) can be represented by the composition of an
element in the kernel of Ω and an element depending only on the lens space (see [41]). The
Dehn twists hδ and hρ along the curves δ and ρ in Σ, respectively (see figure 5 (b)) can
be used to construct the generators of the ker Ω. Specifically, the generator of ker Ω are
hm = hah

−1
p and hl = hρh

−1
δ where hρ = h−1

m hδhm. In fact, since Ω(ha) = Ω(hp) then
Ω(hm) is the identity and so is Ω(hl). The subgroup generated by ha and hb generates
trivial knots. There is then a surjective map between PMCG(Σ1,2) and the (1, 1)− knots.

On the torus, each isotopy class of homeomorphisms is in one to one correspondence
with the isotopy classes of diffeomorphisms. Furthermore, for any dimension the full group
of diffeomorphisms of a smooth manifold is homotopy equivalent to the group of volume
preserving diffeomorphisms. But on a closed surface, two homotopic diffeomorphisms are
also isotopic. Hence on the torus, the isotopy classes of homeomorphisms are in one to
one correspondence with the isotopy classes of area preserving diffeomorphisms, the local
symmetry of the supermembrane.

The supermembrane with a punctured torus on the target space (LCD), we are propos-
ing, can be formulated on a symplectic torus bundle with monodromy, as it was stated for
the supermembrane without punctures in [43]. We are interested in a torus bundle arising
from a parabolic monodromy. This is essential to be able to prove Hull’s conjecture con-
cerning the origin in supermembrane theory of Roman’s supergravity. Hence, if we started
with a M2- brane with a parabolic monodromy, the (p, q) KK charges belong to a parabolic
coinvariant class. Any element of the class defines an equivalent torus bundle and the Mass
operator is invariant on the class. The (p, q) pair defines an element of the homology of
the torus on the target space. Given (p, q) we consider the associated lens space L(p, q)
and (1, 1)−knots on it. A relevant aspect of our construction is the effect of the punctures
on the new supermembrane model. In particular, the monodromies around the punctures.
However, every (1, 1)-knot in L(p, q) admits a representation consisting in the composition
of an element of the group generated by the Ker(Ω) and an element which only depends
on L(p, q), i.e. in the original parabolic monodromy. The (1, 1) − knot then characterizes
the monodromy construction on the punctured M2-brane we are proposing.

5 Discussion and conclusions

We have obtained the description of a massive D = 11 supermembrane formulated on a
target space locally described by M9×LCD with monodromies, hence the theory contains
ten non-compact dimensions. Because of the non-trivial topology associated with the
target space, there is an induced quantization condition, reminiscent of the central charge
condition. This condition has a different geometrical interpretation from the one found
in [21]. It does not imply the existence of a non-trivial U(1) fiber bundle associated
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Figure 5. (a) The curves defining the Dehn twists of the generator of PMCG(Σ1,2). (b) The
curves associated with the generators of the ker Ω.

with worldvolume fluxes. Furthermore, since this condition is a direct consequence of the
punctures, we expect it to be related to the existence of brane sources at a supergravity
level, specifically to the presence of M9-branes.

The topological term, given by eq. (4.33), is a direct consequence of the non-trivial
target space structure, and it explicitly depends on the genus one twice punctured Rie-
mann surface. Thus, we conjecture that the topological term in our formulation is related,
in the low energy description, with the mass term of Roman’s supergravity. This is in
agreement with [15, 36] where it was established a relationship between M9-branes and the
cosmological constant term of massive type IIA supergravity. The topological term is pre-
served only by half of the total supersymmetry. Consequently, our proposal for a massive
supermembrane is invariant under half of the supersymmetric generators. This is similar
to what happens in the supermembrane with central charges, in which the irreducible con-
dition (see [21]) breaks half of the supersymmetry. Indeed, the proof is analogous to the
one presented by the authors in [56]. However, as we mentioned before, the interpretation
is quite different.

The geometric structure of our proposal induces mass terms different from zero asso-
ciated with all degrees of freedom of the theory. If a supersymmetric regularization of the
Hamiltonian is provided, for example on the lines argued in this paper, then the presence
of mass terms in the bosonic potential together with the structure of the supersymmetric
potential should ensure a discrete spectrum. It would represent a new sector of M-theory
with well-defined quantum properties. The other known cases of the supermembrane with
a purely discrete spectrum correspond to: the supermembrane with central charges, the
supermembrane with C± fluxes and the supermembrane on a pp-wave. Each of these cases
is characterized by different topologies in the target space.

The theory is globally and locally invariant under area preserving diffeomorphisms
that fix the punctures. The image of the real part of Mandelstam’s map is the whole real
line R. The punctures are mapped to ±∞. In addition, there is a new global independent
constraint around one puncture, signalling the presence of a non-trivial monodromy around
it. If the punctured torus becomes a compact torus, through a surgery procedure, this new
constraint disappears.

We started with the Hamiltonian of a 11D supermembrane obtained from the com-
pactification on a symplectic torus bundle with C− fluxes and non-trivial monodromy.

– 20 –



J
H
E
P
1
0
(
2
0
2
1
)
2
1
2

In [29, 30] it was shown that this theory, at low energies, is described by a type II gauged
supergravity with monodromies contained in SL(2,Z). Further evidence was supported
in [32] by showing that the preceding theory corresponds in fact to a twisted bundle (with
fluxes) formulation of the supermembrane. The theory is also U-duality invariant, and it
describes a U(1) Hamiltonian. It generates a 11D massive supermembrane in ten non-
compact dimensions by decompatifiying the theory on a twice punctured Riemann surface
and mapping it into a Light Cone Diagram LCD. We obtained its Hamiltonian and dis-
cussed its properties. The theory may be formulated on a bundle whose fiber is a punctured
torus and whose structure group, the area preserving diffeomorphisms as suggested in [33].
By using the relationship between PMCG(Σ1,2) and the (1, 1) − knots theory, we show
that the monodromies associated with the twice punctured torus bundle are much richer
than the ones associated with torus bundles without punctures. This is because there are
new monodromies characterized by the (1, 1) − knots constructed with the generator of
PMCG(Σ1,2) while the generator of MCG(Σ) only leads to trivial knots. Our massive su-
permembrane formulation is characterized by the composition of the parabolic monodromy,
required for the decompactification procedure, and the monodromy around the punctures
which generate the non-trivial topology contributions to the theory.

As a final comment we would like to remark that the M2-brane contains much more
degrees of freedom than the low energy effective field limit with conformal symmetries.
Moreover, it does not have conformal symmetry and it is manifestly invariant under diffeo-
morphims. Consequently, depending on the monodromy structure of the M2-brane theory
one may arrive to different low energy corners of the theory. It is also possible to consider
a conformal deformations of the theory described at low energy by the Super Chern Si-
mons matter theory. A different explicit construction in terms of multiple M2- branes with
central charges was presented in [57]. Furthermore, in our construction, the relevant con-
tributions arise from the monodromies around the punctures, where curvature is infinite,
hence it does not satisfy the weak curvature hypothesis of [10].

It would be interesting to see whether there is a relationship with the analysis per-
formed in [3] at the level of supergravity. In that study, Romans supergravity is uplifted to
11D, mainly through the existence of a 11D mass term which depends on a killing vector
present in the 11D formulation. We believe that the results presented in this work represent
a concrete realization of Hull’s proposal in M-theory.
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