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1 Introduction

String theory extends our concepts of space-time geometry and symmetry in various
directions. Besides the well known and widely explored concepts of T-duality, mirror
symmetry and the AdS/CFT correspondence, there is the less explored idea of timelike
T-duality, which has far reaching consequences. Firstly, in Minkowski signature, it relates
the type-II string theories to the so-called type-II* string theories, which realize ‘twisted’
versions of the standard N = 2 supersymmetry algebras [1]. Secondly, together with
standard (i.e. spacelike) T-duality and with S-duality, it creates a web of type-II string
theories which covers all possible space-time signatures (t, s), t+s = 10 in ten dimensions [2].
This type-II network is related to three versions of eleven-dimensional M-theory with space-
time signature (1, 10), (2, 9), (5, 6). While the interpretation of theories with multiple time
dimensions is not obvious, these exotic theories are arguably part of the configuration space
of string theory, and therefore their properties deserve detailed investigation. The effective
field theories of type-* theories contain fields with negative kinetic energy, but are, as full
string theories, equivalent to standard type-II theories, at least as long as the timelike circle
has finite radius. Type-* theories admit de Sitter solutions, and theories with multiple times
may admit interesting brane world models. Both formal and phenomenological aspects
of exotic string theories, by which we refer to type-* as well as non-Minkowksi signature
theories, have been investigated in more detail in [3, 4].
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Supersymmetry and supergravity in Euclidean and other non-Lorentzian signatures
have been studied to some extent in the literature. Supersymmetry algebras in arbitrary
signature have been discussed in [5]. Lower-dimensional supergravity theories in non-
standard signatures have been constructed using dimensional reduction in [6–11]. A
Euclidean version of the special geometry of N = 2 vector and hypermultiplets has been
developed in [12–15], while N = 2 vector multiplets in arbitrary signature were constructed
in [16, 17]. Four-dimensional supersymmetric solutions in neutral signature have been
investigated in [18, 19], brane-like solutions in arbitrary dimension and signature have
been constructed in [20] and supersymmetric solutions of five-dimensional vector multiplets
coupled to supergravity have recently been studied for arbitrary signature in [21].

The concrete form of the supersymmetry algebra varies from dimension to dimension,
and from signature to signature, depending on whether the supercharges are Dirac, Majorana,
Weyl or Majorana-Weyl spinors. The main result of this paper is a universal construction,
which generalizes the idea underlying symplectic Majorana spinors, and applies it to any
dimension and signature. The general idea is to start with a complex, hence signature
independent supersymmetry algebra and then to impose reality conditions which select a
space-time signature and reduce the complex R-symmetry group to one of its real forms. As
we will see the possible reality conditions include, besides standard Majorana and symplectic
Majorana conditions, the ‘twisted’ or O(p, q) Majorana conditions which were used in [2] to
describe the supersymmetry algebras of ten-dimensional type-II string theories in general
signature. Our formalism provides a systematic way of identifying reality conditions that
define real supersymmetry algebras by selecting real forms of the complex R-symmetry
group. Such a uniform approach useful if one wants to explore the web of string dualities
across dimensions and signatures, as we illustrate using type-II string theories and their
compactifications as an example. One advantage of our formalism is that it disentangles the
actions of the spin and R-symmetry groups, making the R-symmetry group manifest. This
allows one to easily distinguish between non-isomorphic supersymmetry algebras which
have the same number of supercharges, and to identify Lorentz signatures where twisted
(type-*) supersymmetry algebras exist. For example the ten-dimensional type-IIB and
type-IIB∗ algebras have R-symmetry groups O(2) and O(1, 1), while the standard and
twisted four-dimensional N = 2 supersymmetry algebra have R-symmetry groups U(2) and
U(1, 1), respectively. We present tables where we classify the possible R-symmetry groups
appearing in our construction up to dimension 12 for all signatures.

1.1 Background

Before we give an overview of our construction, we need to provide some background.
The following section is partly based on [22], whose method, notation and terminology
we have adopted. Given a real vector space V ∼= Rt,s, equipped with a scalar product
(non-degenerate real bilinear form) of signature (t, s), the associated Poincaré Lie algebra is

g0 = so(V ) + V , (1.1)

– 2 –
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where so(V ) ∼= so(t, s) is the ‘Lorentz Lie algebra’ (Lie algebra of infinitesimal isometries of
the scalar product), and where V is the Lie algebra of translations.1 To extend this to a
Poincaré Lie superalgebra g = g0 + g1 one adds a real Spin(V ) module g1, which may be
reducible, and introduces a Z2-grading under which g0 is even, while g1 is odd,

g = g0 + g1 = so(V ) + V + g1 . (1.2)

We will use the terms g-module, G-module, or module for short, for a vector space carrying
a representation of a Lie algebra g or of a Lie group G. The group Spin(V ) = Spin(t, s),
which is a two-fold cover of special orthogonal group SO(V ) = SO(t, s), is contained
in the real Clifford algebra, Spin(V ) ⊂ Cl(V ) = Clt,s. The same applies to its Lie
algebra spin(t, s) ∼= so(t, s).2 The vector space g1 is a finite sum of irreducible real spinor
representations which, depending on signature, can be Dirac spinors, Majorana spinors, Weyl
spinors, or Majorana-Weyl spinors. Note that complex representations can be regarded as
real representations by ‘forgetting the complex structure,’ and that it is this underlying real
representation that is relevant for the construction and classification of real supersymmetry
algebras. In signatures where Majorana spinors do not exist, the elements of the irreducible
real spinor representations are Dirac or Weyl spinors.

While the action of so(V ) on g1 is determined by the spinor representations we have
chosen, it can be shown that the translation algebra V must operate trivially on g1, and
that the only freedom besides the choice of g1 is the choice of a superbracket, that is of a
symmetric bracket

Π : g1 × g1 → V , (λ, χ) 7→ Π(λ, χ) = {λ, χ} , (1.3)

which is covariant with respect to the action of so(V ). Mathematically, such a bracket
corresponds to a real, symmetric, non-degenerate, spin-equivariant, vector-valued bilinear
form Π on the spinor module g1. In the physics literature the superbracket is usually
defined by writing down the anti-commutation relations of the supercharges Qiα, where α
is a spinor index corresponding to an irreducible representation, while i = 1 . . . ,N labels
copies of the irreducible real spinor representation. Let us illustrate this using the case
where the irreducible real spinor representation is given by Majorana spinors. Then the
N -extended supersymmetry algebra3 takes the form

{Qiα , Qjβ} = Mij(γµC−1)αβPµ . (1.4)

Note that we need to include the inverse C−1 of the charge conjugation matrix C in order to
lower one index of the matrix γµ = (γµ β

α ), see appendices A.1–A.3 for our index conventions.
1Depending on context, V ∼= Rt,s denotes either a vector space, or the affine space modelled on this

vector space (interpreted as a flat spacetime), or the Lie algebra of translations acting on the affine space.
2All standard facts about Clifford algebras and their relation to spin groups used in this paper can be

found in [23].
3We use the term ‘supersymmetry algebra’ for the supertranslation algebra V +g1, whose only non-trivial

algebraic relation is the Q-Q anti-commutator. As mentioned before, this is the only ‘moving part’ in our
analysis once g1 has been chosen.
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Since the bracket is symmetric, the right-hand side must be symmetric in the multi-indices
(iα), (jβ).

We will prefer to work with vector-valued bilinear forms on g1, which allows us to
suppress spinor indices. In this language the relation (1.4) is expressed using a bilinear form

β : (S ⊗ RN )× (S ⊗ RN )→ R , β(λ, χ) = (λi)TCχjMji , (1.5)

where we have written out the spinor module g1 in terms of irreducible real Spin(t, s)
modules S, which in our case are Majorana representations:

g1 = S ⊗ RN ∼= S ⊕ · · · ⊕ S (N − times) . (1.6)

Since we take a sum of isomorphic modules, we can rewrite the N -fold sum as a tensor
product with an internal ‘multiplicity space’ RN . Then the spin group only acts on the
first factor but not on the internal space. Our strategy for disentangling the spin group and
R-symmetry group will be to have the R-symmetry group acting only (or almost only) on
the internal space, as we will discuss in more detail below.

The bilinear form β is scalar-valued. Vector-valued bilinear forms, and, more generally,
bilinear forms valued in antisymmetric tensors are obtained by substituting antisymmetrized
products γ(p) = γµ1···µp = γ[µ1 · · · γµp] of γ-matrices into the first argument. In particular,
the vector-valued bilinear form β(1) = β(γµ·, ·) allows us to express the superbracket (1.4) as

β(γµλ, χ) = (γµλi)TCχjMji . (1.7)

To recover the superbracket (1.4) from (1.7) one expands the spinors λ, χ in a basis given
by the supercharges, λ = λiαQiα, χ = χjβQjβ. We refer to appendix A.3 for details. Up
to isomorphism the superbracket only depends on a few invariants of the bilinear forms
defined by the matrices C = (Cαβ) and M = (Mij).

To define a superbracket, the vector-valued bilinear form β(γµ·, ·) must be symmetric
and equivariant (covariant) with respect to the spin group. As shown in [22] this is achieved
by using admissible bilinear forms β which are characterized by having a definite symmetry
σβ ∈ {1,−1} and type τβ ∈ {1,−1}, where4

β(λ, χ) = σββ(χ, λ) , β(γµλ, χ) = τββ(λ, γµχ) . (1.8)

The vector-valued bilinear form β(γµ·, ·) is symmetric if σβτβ = 1. Therefore such brackets
β will be called super-admissible. It can be shown that any super-admissible bracket
β on a spinor module g1 defines a supersymmetry algebra. In particular the vector-
valued bracket is automatically spin-equivariant, and the super-Jacobi identity required
to make so(V ) + V + g1 a Lie superalgebra holds automatically. Conversely, the space of
real, symmetric, spin-equivariant vector-valued bilinear forms, and, hence, the space of

4With regard to the symmetry, note that we work with commuting spinors in this paper. The translation
to a formalism with anti-commuting spinors is straightforward and only introduces an additional sign. Using
anti-commuting spinors is required when discussing properties of spinor bilinears in Lagrangians, a subject
that we will not discuss in this paper. See, however, [16] where our formalism has been used to construct
five-dimensional vector multiplets for arbitrary signature.
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real Poincaré Lie superalgebra structures related to a given spinor module g1 is a finite-
dimensional real vector space which admits a basis given by forms of the type β(γµ·, ·),
where β is super-admissible. In this sense all extended Poincaré Lie superalgebras are
known for all dimensions and signatures. A basis of super-admissible bilinear forms has
been constructed in [22].5 Since any linear combination of super-admissible bilinear forms
defines a Poincaré Lie superalgebra (as long as it is non-degenerate, which is the generic
case), superbrackets form continuous families. This raises the question of classification, that
is to decide which brackets define non-isomorphic Poincaré Lie superalgebras. To address
this question one needs to study the Schur group C∗(g1), which is defined as the subgroup of
automorphism group Aut(g1) = GL(g1) of the real vector space g1 whose action commutes
with the action of spin(V ),

C∗(g1) = {Z ∈ Aut(g1)|[Z, spin(V )] = 0} = ZGL(g1)(spin(V )) (1.9)

that is, the centralizer of spin(V ) ⊂ GL(g1). Any two superbrackets which are in the same
orbit of the action of the Schur group on the space of super-admissible bilinear forms are
isomorphic. For later use we also define the Schur algebra C(g1) = ZEnd(g1)(spin(V )), which
is the centralizer of spin(V ) in the algebra End(g1) of endomorphisms of g1.

C(g1) = {Z ∈ End(g1)|[Z, spin(V )] = 0} = ZGL(g1)(spin(V )) (1.10)

The Schur group is the group of invertible elements of the Schur algebra.
The classification problem for Poincaré Lie superalgebras with odd part g1 is almost,

but not quite, equivalent to the problem of classifying the orbits of the Schur group on the
space of superbrackets on g1.6 The reason is that elements of the pin group Pin(V ) which
are not contained in the spin group Spin(V ) may lead to isomorphisms between brackets
which belong to different orbits. Recall that Pin(V ) is a double cover of the full orthogonal
group O(V ), while Spin(V ) is a double cover of the special orthogonal group SO(V ). Both
groups are contained in the Clifford algebra Cl(V ). A precise criterion for two Poincaré
Lie superalgebras to be isomorphic is given by Theorem 1 of [17]. As illustrated in [17] by
the classification of four-dimensional supersymmetry algebras with eight real supercharges
for arbitrary signature, this classification can be done case by case but requires some work.
However there is a sufficient condition for two supersymmetry algebras to be non-isomorphic
which is easier to check, namely that their R-symmetry groups are different. We define the
R-symmetry group of a superbacket as the subgroup of the Schur group under which this
superbracket invariant (its stabilizer group):

GR = {R ∈ C∗(g1)|β(γµR·, R·) = β(γµ·, ·)} . (1.11)

Note that our definition does not depend on how the R-symmetry group acts on the fields
in particular field theoretic realizations of the algebra. Moreover, with our definition the

5One can also include poly-vector charges (BPS charges), that is additional terms in the supersymmetry
anti-commutator which transform as antisymmetric Lorentz tensors [24]. The inclusion of such charges in
our formalism will be left for future work.

6We will use the terms super-admissible bilinear form and superbracket interchangeably.
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R-symmetry group is not necessarily a connected group. This may lead to slight differences
when comparing our tables to the literature.

We will also need to consider the complexification gC of a Poincaré Lie superalgebra.
In this context one can define complex versions of the Schur algebra, Schur group and
R-symmetry group, which will be denoted CC(gC1 ), C∗C(gC1 ), and GC

R.

1.2 Overview of the construction

To explain the main idea of our construction, recall how supersymmetry can be formulated
in terms of symplectic Majorana spinors. In signature (1, 3) the unique (up to isomorphism)
irreducible real spinor representation is the Majorana representation, and the smallest or
N = 1 supersymmetry algebra is based on supercharges Qα which are Majorana spinors.
The standard N = 2 algebra can be written in terms of two Majorana spinors, or of a single
Dirac spinor, but there also is a third option, namely to take two Dirac spinors Qiα, and
to impose a reality condition. The supersymmetry algebra is then defined by a complex
superbracket, subject to a reality condition:7

{Qiα , Qjβ} = Mij(γµC−1)αβPµ , (Qi)∗ = αBQjLji , i, j = 1, 2 , (1.12)

where in our specific caseMij = Lij = εij , the charge conjugation matrix C is antisymmetric,
and B satisfies BB∗ = −Id, indices i, j are raised and lowered using εij , εij , and α is a
conventional phase. A pair of Dirac spinors λi which satisfies

(λi)∗ = αBλjεji

is called a pair of symplectic Majorana spinors.
The same construction can be applied in signature (1, 4), where Majorana spinors do

not exist and Dirac spinors are irreducible, so that the smallest supersymmetry algebra
has eight real supercharges. As in signature (1,3) one can replace a Dirac spinor by a pair
of symplectic Majorana spinors, with the supersymmetry algebra taking the form (1.12).
While one also can express the supersymmetry algebra in terms of Dirac spinors (see for
example [12]), the formulation using symplectic Majorana spinors is the standard one in
five dimensions. One of its advantages is its manifest R-symmetry: the group which leaves
both the complex superbracket and the reality condition invariant is USp(2,R) ∼= SU(2).

Formuling the supersymmetry algebra in terms of symplectic Majorana spinors can
be interpreted as complexifying the space of Dirac spinors S, and then imposing a reality
condition. The space S of Dirac spinors, which is also called the complex spinor module, is
obtained by restricting an irreducible representation of the complex Clifford algebra Cl(V C),
where V C = V ⊗R C, to the real spin group Spin(V ). The complexification of S, regarded
as a real spin module, is SC = S⊗R C. Since S admits a spin invariant complex structure,
its complexification is self-conjugate, SC = S⊕ S̄, where S̄ is the complex-conjugate module.
Moreover, in any dimension and signature one can find a Spin(t, s) invariant matrix B

7When formulating this algebra using Majorana spinors, one uses a different charge conjugation matrix
C′, which is symmetric, and a different matrix B′, which satisfies B′B′∗ = +Id. See tables 1 and 2 for
information about the properties of the matrices C and B in arbitrary dimension and signature.
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acting on S which satisfies BB∗ = ±Id. Therefore the complex spinor module S always
carries either an invariant real structure or an invariant quaternionic structure, and thus is
self-conjugate, S ∼= S̄ as Spin(t, s) as module. Therefore

SC = S⊗R C = S⊕ S ∼= S⊕ S ∼= S⊗C C2 .

In the last step we have rewritten the sum S⊕ S as a complex tensor product, where the
second factor is an auxiliary multiplicity space which encodes that we have two copies of S.
This corresponds to the expression for the complex superbracket in (1.12) where we use a
pair of Dirac spinors Qiα, with the index i = 1, 2 referring to the multiplicity space C2.

The complex superbracket (1.12) defines a complex Poincaré Lie superalgebra so(V C)⊕
V C ⊕ gC1 , where V C = V ⊗R C is the complexified translation algebra, so(V C) the complex-
ified Lorentz Lie algebra and gC1 = SC the complexified spinor module. By imposing the
reality condition (1.12) we recover the real supersymmetry algebra as a real form of this
complex algebra.

We already mentioned that the multiplicity space CK = C2 is useful in making explicit
the action of the R-symmetry group. In five dimensions, where S is irreducible, the Schur
group acts trivially on the factor S in S⊗C C2 and therefore the complex Schur group is
GL(2,C).8 The R-symmetry group of the complex supersymmetry algebra is the subgroup
which in addition preserves the bilinear form defined by Mij = εij on C2, that is GC

R =
Sp(2,C). The R-symmetry group GR of the real supersymmetry algebra is the real form of
GC
R which also preserves the reality condition in (1.12), that is GR = USp(2,R) ∼= SU(2).

In four dimension, S becomes reducible, which enlarges the R-symmetry group to U(2).9
The observation that we will expand on in this paper is that the construction of real

supersymmetry algebras based on symplectic Majorana spinors can be adapted to arbitrary
dimension and signature. This requires of course to also consider other types of reality
conditions. Extended real supersymmetry algebras are included by enlarging the internal
multiplicity space.

Thus, schematically, the idea is:

Real supersymmetry algebra↔
{
Complex bilinear form (superbracket),
Reality condition. (1.13)

Depending on the signature, there either is a unique (up to isomorphism) irreducible
real spinor representation given by Dirac or Majorana spinors, or there are two inequivalent
ones, given by Weyl spinors or Majorana-Weyl spinors. For simplicity we first explain how
our construction works when the irreducible real spinor module is unique.

1. We start with a complex supersymmetry algebra with spinor module given by K copies
of the complex spinor module, gC1 = S⊗ CK . We will sometimes refer to this as the
K-extended spinor module, or extended spinor module for short. To define a complex

8To be precise, by Schur’s lemma the R-symmetry group acts on S by scalar multiplication, which we
can absorb into its action on C2.

9We will explain how to deal with this in due course. In appendix D we present two methods which allow
to disentangle the spin and R-symmetry groups.
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supersymmetry algebra, we need to specify a complex super-admissible bilinear form
β. Since the Gram matrix of such a bilinear form has precisely the properties of a
charge conjugation matrix C, this amounts to choosing a charge conjugation matrix.
If the bilinear form is super-admissible we can extend it to S ⊗ CK as β = C ⊗ δ,
where δ is the complex bilinear form on CK defined by the unit matrix. If C is not
super-admissible, we can still obtain a super-admissible bilinear form on S⊗CK for K
even, if we extend C as β = C ⊗ ε, where ε defines a non-degenerate anti-symmetric
bilinear form. Charge conjugation matrices are classified by their symmetry σ and
type τ . In odd dimensions charge conjugation matrices are unique up to isomorphism,
while in even dimensions there are two inequivalent ones, denoted C± = C−τ , which
are of opposite type τ , see table 2. We can now write down the possible complex
supersymmetry algebras in any dimension, and for any value of K, and determine
their Schur groups and R-symmetry groups.

2. Then we choose a signature (t, s) and a Spin(t, s) invariant reality condition on
gC1 = S⊗ CK . In odd dimensions S admits either a spin invariant real structure or
a spin invariant quaternionic structure, defined using the matrix B which relates
the γ-matrices to their complex conjugates. In even dimensions there are two non-
equivalent such matrices, B±, and, depending on signature, S admits two inequivalent
real structures or two inequivalent quaternionic structures, or one of each type. We
emphasize that while B± can be constructed out of C±, the choice of a reality condition
is independent of the choice of the bilinear form on S, that is, there are four possible
combinations of C± with B± in our formalism. To define a real supersymmetry
algebra we need a real structure on S ⊗ CK , which can be obtained either as a
product of two real structures or of two quaternionic structures on the factors. The
real or quaternionic structure on CK is chosen such that it defines a real form GR
of the complex R-symmetry group GC

R, that is, we construct it using an involutive
automorphism of the Lie algebra of GC

R. We can then list, for all dimensions and
signatures, the real supersymmetry algebras that result from a consistent pairing
of complex superbrackets with reality conditions, and determine their R-symmetry
groups.

There are two additional issues in even dimensions, where Dirac spinors are reducible and
decompose into Weyl spinors, S ∼= S+ ⊕ S−.

• Firstly, there are signatures with two inequivalent irreducible real spinor representa-
tions, which can be either Weyl spinors or Majorana-Weyl spinors. If this happens
there potentially are supersymmetry algebras based on spinor modules of the form
gC1 = S+⊗CK+ ⊕S−⊗CK− , where K± can be chosen independently.10 The existence
of such chiral supersymmetry algebras requires more than the existence of inequivalent

10As it is clear from context that S+ and CK+ are considered as complex modules, we have written ⊗
rather than ⊗C. Similarly, we will simply write ⊗ in the future when the tensor product is between a
complex spin representation and an auxiliarly complex multiplicity space, which encodes copies of equivalent
representations.
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irreducible real spinor modules. Firstly, there must exist a superbracket which pairs
S+ with S+ and S− with S−, while vanishing between S+ and S−. This can be decided
using an invariant of the charge conjugation matrix C, its isotropy ι. Superbrackets
are either orthogonal, ι = 1, which means that they are non-degenerate on S+ × S+
and S−×S− but vanish on S+×S− and S−×S+, or they are isotropic, ι = −1, which
means that they are non-degenerate on S+ × S− and S− × S+ but vanish on S+ × S+
and S− × S−. The isotropy of a superbracket only depends on the dimension, and we
will see that superbrackets are orthogonal in dimensions 2, 6, 10, . . .. An orthogonal
complex superbracket is necessary, but not sufficient for a chiral supersymmetry
algebra to exist, because in order to obtain a real superbracket we also need to impose
a reality condition. A reality condition can either respect chirality, in which case we
call it ‘Weyl compatible’ or it can flip it, in which case we call it ‘Weyl incompatible’.
Weyl compatibility is a signature dependent property, and therefore the existence of
chiral supersymmetry algebras is signature dependent.

Chiral supersymmetry algebras require both an orthogonal complex bilinear form
and a Weyl compatible reality condition, and therefore Weyl (in-)compatibility is a
signature dependent property.

• Secondly, since S is reducible the R-symmetry acts non-trivially on S. However it acts
irreducibly, and therefore as a multiple of the identity Id on the complex irreducible
Weyl spinor modules S+ and S−. This can be used to determine the R-symmetry group.
The details depend on whether the complex bilinear form is orthogonal or isotropic, and
on whether the reality condition is Weyl compatible or Weyl incompatible. Since there
are four cases to consider, the classification of R-symmetry is somewhat involved in
even dimensions. Using a certain block matrix notation one can manifestly disentangle
the actions of the spin and R-symmetry groups.

1.3 Organisation of the paper

The program described above is carried out as follows in the bulk of this paper.

• In section 2 we provide the necessary background on Clifford and spin representations,
with further details relegated to appendices A, B and C.

• In section 3 we obtain complex supersymmetry algebras by constructing super-
admissible bilinear forms on the complexified extended spinor module gC1 , where
gC1 = S ⊗ CK or gC1 = S+ ⊗ CK+ ⊕ S− ⊗ CK− . To do so we first have to study
admissible bilinear forms on the spaces S and S± of Dirac and Weyl spinors, and
bilinear forms on CK . The resulting complex supersymmetry algebras are classified by
their R-symmetry groups which are listed in table 2. This table contains all relevant
information about the superbrackets that we use in our construction.

• In section 4 we systematically construct spin invariant reality conditions on gC1 . These
are built out of real and quaternionic structures on S, S± and CK . To discuss real and
quaternionic structures in parallel, we use the unifying concept of an ε-quaternionic
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structure. For dimensions up to twelve, and for all signatures, table 1 lists all inequiv-
alent real and quaternionic structures on the complex spinor module S, and their
properties. This table encodes all relevant information about reality conditions used
in our formalism, and, in particular, allows to read off the Schur algebras C(S).

• In section 5 we analyze how reality conditions can be imposed consistently on complex
superbrackets in order to define real supersymmetry algebras.

• In section 6 we classify the real R-symmetry groups which arise in our construction.
Table 3 shows how the real forms of the complex R-symmetry groups listed in table 2
arise from reality conditions. Table 4 lists all possible real R-symmetry groups in odd
dimensions up to 11. In even dimensions the possible supersymmetry algebras and
R-symmetry groups fall into four classes, depending on whether the bilinear form is
orthogonal or isotropic, and whether the reality condition is Weyl-compatible or Weyl-
incompatible. In orthogonal Weyl-incompatible signatures the real R-symmetry group
only depends on the dimension, while the real R-symmetry groups for orthogonal, Weyl-
compatible signatures are listed in table 5 and for isotropic signatures with either reality
condition in table 6. For reference and convenience, we also provide a master table,
table 9, for general even dimensions and a master table, table 10, for all dimensions.

• In section 7 we explain why real supersymmetry algebras constructed by our method
are classified by their R-symmetry group, together with the choice of a relative sign
for chiral supersymmetry algebras. Details about the isomorphisms required to show
this have been relegated to appendix E.

• In section 8 we apply our results to study supersymmetry algebras of type-II string the-
ories in dimensions 10 and 9 and of their Calabi-Yau compactifications to dimensions
4 and 3. We show how our formalism allows one to identify which theories exist in a
given signature, and how to determine their mutual relations by spacelike and timelike
reduction and T-duality. For four-dimensional N = 2 theories and three-dimensional
N = 4 theories we explain how the geometry of the scalar manifold can be read off
from the R-symmetry group. Tables 12, 13 and 14 provide summaries.

• In section 9 we make some concluding remarks and provide an outlook onto open
questions and future work.

In order to keep the bulk of this paper as short as possible, some details have been
relegated to appendices, together with additional background information that is helpful
but would have interrupted the flow of the main narrative. In appendix A we summarize our
conventions and notation, and in particular explain how the (partially) index free notation
based on bilinear forms that we use in the main part of the paper relates to the standard
notation using anti-commutators of supercharges. We also list various formulae which are
used in the main part of this paper. In appendix B we explain the relation between real
spinors and real semi-spinors, as defined in the mathematics literature, to Majorana, Weyl
and Majorana-Weyl spinors, as defined in the physics literature. In appendix C we present
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details on the complexification of spinor modules, which are relevant for understanding
the precise relation between the odd parts g1 and gC1 of real and complex supersymmetry
algebras. In appendix D we review the matrix notation for Weyl spinors introduced in [17],
which is used in the main part to disentangle the actions of the spin and R-symmetry
group in even dimensions by doubling the auxiliary multiplicity space of our construction.
Alternatively one can work without doubling, in which case the R-symmetry group operates
on spinor indices, in a way that we also explain in appendix D. In appendix E we provide
the details of several isomorphisms which are needed to show that the supersymmetry
algebras that we have constructed are classified, essentially, by their R-symmetry groups.
In appendix F we collect formulae which allow one to carry out the spacelike and timelike
dimensional reduction of spinors, superbrackets and reality conditions.

2 Clifford and spinor representations

In this section we review the necessary background on Clifford algebras, spin groups and
their representations for arbitrary signature. Our presentation is partially based on [25],
whose conventions we follow except for some tweaks where we follow [12, 22, 24]. We
will also use certain facts about Clifford algebras and real associative algebras, see for
example [23, 26].

2.1 Clifford and spinor modules

We consider flat space-times V ∼= Rt,s of arbitrary signature (t, s) and dimension D = t+ s.
Our convention for the metric is η = diag(−1, . . . ,−1, 1, . . . , 1) with t entries −1. The
associated Clifford algebras Clt,s are the real algebras with generators γµ, µ = 1, . . . , n and
relations

{γµ, γν} = 2ηµν1 . (2.1)

Clifford algebras are real, associative algebras with a unit, and isomorphic to real,
complex or quaternionic matrix algebras of the form R(n),C(n),H(n), 2R(n), 2H(n), where
K(n) is the algebra of n× n matrices over K = R,C,H, where 2K(n) := K(n)⊕K(n), and
where n = 2[D2 ]. By allowing complex linear combinations of the generators γµ one obtains
the complex Clifford algebras Clt+s = Clt,s⊗RC, which are isomorphic to matrix algebras of
the form C(n) in even dimensions and to matrix algebras of the form 2C(n) = C(n)⊕ C(n)
in odd dimensions.11

Algebras of the form mK(n) have m inequivalent irreducible representations, where
one of the summands K(n) acts on Kn by matrix multiplication, while the other summands
act trivially. Therefore Clifford algebras have either one to two inequivalent irreducible
representations. Clifford representations give rise to spinor representations by restriction,
because the real and complex spin groups are naturally embedded into the real and complex
Clifford algebras. The even subalgebra Cl0t,s ⊂ Clt,s of the real Clifford algebra is the
subalgebra which is generated by even products of the generators γµ. This subalgebra is
itself a Clifford algebra. The spin group Spin(t, s) is the subgroup of (the group of invertible

11See for example tables I and II of [23] for a complete list of Clifford algebras as matrix algebras.
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elements of) Cl0t,s which is generated by unit norm elements. Therefore irreducible Cl0t,s
modules become irreducible Spin(t, s) modules by restriction. The real spinor module S is
the Spin(t, s) module obtained by restricting an irreducible Clt,s module. As a real spin
representation, S is either irreducible, or decomposes into two irreducible real semi-spinor
modules S±, S = S+ + S−. The real semi-spinor modules can be isomorphic to each other,
S+ ∼= S− or non-isomorphic, S+ 6 ∼=S−. One can decide which of these three cases is realised
by comparing the matrix algebras realizing Clt,s and Cl0t,s, and using that K(n) has one,
while 2K(n) has two inequivalent irreducible representations. We can also determine the
Schur algebras C(S) and C(S±) by using corrolaries to Schur’s Lemma, see [26]. For the
case at hand, the relevant statements are:

• If Σ = Kn is an irreducible module of the real spin group Spin(t, s) ⊂ Cl0t,s, then its
Schur algebra is K.12

• If Σ1⊕Σ2 is the sum of two irreducible modules of the real spin group Spin(t, s) ⊂ Cl0t,s,
then the Schur algebra is 2K if Σ1 6∼= Σ2 and K(2) if Σ1 ∼= Σ2.

The complex spin group Spin(t+ s,C) is the subgroup of unit norm elements of the
even subalgebra Cl0t+s ⊂ Clt+s. The complex spinor module S is the Spin(t, s)-module
obtained by restricting an irreducible Clt+s-module. Its elements are the Dirac spinors.
Since Cl0t+s ∼= Clt+s−1, it follows that S is irreducible in odd dimensions, but decomposes
into two irreducible complex semi-spinor modules S± in even dimensions, S = S+ +S−. The
elements of S± are also called Weyl spinors. Note that while S± are non-isomorphic as Cl0t+s
modules, they may or may not be isomorphic as real Spin(t, s)-modules. The decomposition
of S into irreducible Spin(t, s)-modules can be obtained by comparing the matrix algebras
realizing Clt+s, Clt,s and Cl0t,s. This also allows one to determine the complex Schur algebras
CC(S), CC(S±), and the real Schur algebras C(S), C(S±). The complex Schur algebra of an
irreducible representation of Spin(t+ s,C) ⊂ Cl0t+s is C, while the complex Schur algebra
of the sum of two irreducible complex representations is 2C if the representations are not
equivalent and C(2) if they are equivalent.

As an example, consider the case where (t, s) = (1, 3). Then Cl4 = C(4) and Cl04 = 2C(2)
which implies S = C4 and S± = C2 which are the Dirac and Weyl spinors respectively. Since
S± are complex irreducible, their complex Schur algebras are CC(S±) ∼= C, and since they are
inequivalent as complex modules, CC(S) = 2C. Since Cl1,3 = R(4), the real spinor module is
S = R4. This implies that S = S⊗RC and shows that in this case real spinors are Majorana
spinors, that is, they arise by imposing a reality condition on Dirac spinors. The even part
of the real Clifford algebra is Cl01,3 = C(2) and since C2 ∼= R4, real spinors are irreducible.
There are no real semi-spinors (which would be Majorana-Weyl spinors), and Majorana
spinors are equivalent, as real spin representations, to Weyl spinors S ∼= S±.13 The Schur

12The cases where K = R,C,H correspond to what is usually called real, complex and quaternionic
representations, respectively. In all cases we are interested in the underlying real representation. Complex
and quaternionic representations are thus viewed as real representations with additional invariant structures
that are encoded by the Schur algebra.

13This is reflected by the familiar fact that in this case the N = 1 supersymmetry algebra can be
equivalently expressed using Majorana spinor or Weyl spinors.
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algebra of the real spinor module S = C2 is C1,3(S) = C. Since S± are equivalent as real
spin modules, the Schur algebra of S, considered as a real spin module, is C1,3(S) = C(2).

It is instructive to compare this to the case (t, s) = (3, 1) which is Minkowski space
with a mostly minus convention for the metric. In this case the real Clifford algebra is
Cl3,1 = H(2) and therefore the real spinor module is S = H2 ∼= C4 = S. Now real spinors
are Dirac spinors, and because Cl03,1 = C(2) they are reducible and decompose into real
semi-spinors, S = S+ ⊕ S−, where S± = C2 ∼= R4. For dimensional reasons S± ∼= S±. Since
Cl03,1

∼= C(2) only has one inequivalent irreducible representation, S± are isomorphic as real
spin modules. Therefore the Schur algebra of S = S is C3,1(S) = C3,1(S) = C(2). In summary,
real semi-spinors and complex semi-spinors are equivalent to each other and correspond
to Weyl spinors of either chirality, which are equivalent, as real spin representations, to
Majorana spinors.14

For more examples we refer to [16, 17] where the spinor modules and Schur algebras
have been worked for D = 4, 5 for all signatures. This already provides examples of all
possible cases.

2.2 Spinor representations in arbitrary signature

The Clifford generators can be realized explicity as γ-matrices, which like the abstract
generators we denote by γµ. These are complex 2[D2 ]× 2[D2 ] matrices and can be constructed
as tensor products of the Pauli matrices and the 2× 2 identity matrix, see for example [25].
The γ-matrices generate a representation of the real Clifford algebra Clt,s on C[D2 ], which
extends to an irreducible representation of its complexification Clt+s. By restriction to
Spin(t, s), this becomes the complex spinor module S introduced above. Its elements are
the Dirac spinors.

The γ-matrices can be changed by equivalence transformations, which can be used to
select representations which are convenient for performing computations. We impose that
timelike γ-matrices are anti-Hermitian, while spacelike γ-matrices are Hermitian:

(γµ)† =
{
−γµ , µ = 1, . . . , t ,
γµ , µ = t+ 1, . . . t+ s = D .

(2.2)

The remaining freedom of performing unitary transformation will be used later to impose
further conditions. In odd dimensions the product ω = γ1 · · · γD commutes with all
generators γµ and distinguishes between the two inequivalent representations of Clt,s (which
define equivalent spin representations). In even dimensions ω anti-commutes with all
generators, and commutes with the spin generators γµν = 1

2 [γµ, γν ]. Therefore ω can be
used to decompose the complex spinor module S into complex semi-spinor modules S±.
Depending on signature, ω2 = (−1)t1 or ω2 = (−1)t+1

1. Setting γ∗ = ±ω or γ∗ = ±iω one
obtains an operator which satisfies γ2

∗ = 1 and therefore can be used to define projectors
1
2(1± γ∗) onto the complex semi-spinor modules. For Lorentz signature (1, D− 1) (or, using
a ‘mostly minus’ convention (D − 1, 1)) γ∗ is the chirality operator which defines Weyl
spinors. We will therefore refer to complex semi-spinors as Weyl spinors. For computational

14We do not distinguish between Majorana and Pseudo-Majorana spinors, but see for example [2].
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purposes it is convenient to fix the relation between γ∗ and ω. We choose

γ∗ = (−i)
D
2 +tγ1 . . . γD . (2.3)

One can always construct matrices A,B,C which relate the γ-matrices to their Hermi-
tian conjugates, complex conjugates, and transposed, respectively:

(γµ)† = (−1)tAγµA−1 , (2.4)
(γµ)∗ = (−1)tτBγµB−1 , (2.5)
(γµ)T = τCγµC−1 , (2.6)

where τ = ±1, with the allowed values depending on the dimension D.15 One possi-
ble choice for A is the product γ1 · · · γt of all timelike γ-matrices. In Lorentz signature
(1, D − 1), this gives the usual A = γ0, where we have shifted the range of Lorentz indices
to µ = 0, . . . , D − 1.16 We remark that our choice for A is not unique, and for Lorentz
signature there are conventions which differ from ours by a factor −1 or ±i.

The matrix C is the charge conjugation matrix. One can always choose a representation
where C is Hermitian and unitary,

C† = C−1 = C . (2.7)

C is either symmetric or antisymmetric

CT = σC , (2.8)

where σ = ±1.17 Which values of τ and σ are possible depends on the dimension D, and we
have listed these values in table 2. The well known periodicity modulo 8 of the classification
of real Clifford algebras implies that this table is periodic modulo 8, so that it encodes
the values for arbitrary dimension. While in odd dimensions there is only one charge
conjugation matrix up to equivalence, there are two inequivalent choices in even dimensions,
which are distinguished by the corresponding value of τ ,

C± := C−τ . (2.9)

Both charge conjugation matrices are related through multiplication by the chirality
matrix γ∗:

C± = γ∗C∓ . (2.10)
15τ is related to the parameter η in [25] by τ = −η. Note that some authors, for example [2] use a

definition of η which is signature dependent. In our convention and the one of [25], τ = −η is signature
independent, and all signature dependent factors in the relations (2.3) are explicit factors (−1)t. This is
natural, because, as we will see later, τ and another parameter σ are invariants which characterize the
properties of a complex bilinear form with Gram matrix C, for which signature does not have an invariant
meaning.

16In general we use µ = 1, . . . , D, but for signature (1, D − 1) we may shift this to the conventional range.
We also shift the index range when performing a dimensional reduction, see appendix F.

17σ is related to the parameter ε used in [25] by σ = −ε.
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With our choice (2.3) for the chirality matrix γ∗, this implies

C±γ∗ =

±iC∓ , for D = 2, 6, 10, . . .
C∓ , for D = 4, 8, 12, . . .

(2.11)

see appendix A.4 for a collection of useful relations.
Given a choice of A and C, we can take B := (CA−1)T . The matrix B satisfies

BB† = 1 , BB∗ = ε1 , (2.12)

where ε = ±1, depending on signature. B is not completely fixed by our choice of A,C
since αB, where α is a phase factor, has the same properties. The matrix B can be used to
define the (family of) complex-antilinear maps

J : ψ 7→ α∗B∗ψ∗ . (2.13)

Since
J2(ψ) = J(α∗B∗ψ∗) = α∗B∗αBψ = εψ , (2.14)

the matrix B either defines a real structure (ε = 1) or a quaternionic structure (ε = −1) on
S, which is Spin(t, s)-invariant. S carries a natural spin invariant complex structure

I : ψ 7→ iψ .

Since J is complex antilinear, I and J anticommute with each other and with their product
K := IJ . Since in addition

I2 = −Id , J2 = K2 = εId , (2.15)

I, J generate a real four-dimensional algebra, which for ε = −1 is the algebra H of
quaternions. For ε = 1, the resulting algebra H′ is called the algebra of para-quaternions
(or split-quaternions). The algebra H′ is isomorphic to the algebra of real 2× 2 matrices,
H′ ∼= R(2). Compared to the quaternions, the two generators J,K are not complex structures
(which square to minus the identity), but para-complex structures (which square to the
identity and have an equal number of eigenvalues ±1). To be able to discuss both cases in
parallel, we will use the terms ε-complex and ε-quaternionic structure, and use the notation
J (ε) = J (±), if (J (ε))2 = εId. We will also use the notation Hε, where H−1 = H and H1 = H′.

The algebra Hε is a subalgebra of the Schur algebra C(S) of the complex spinor module.
By comparison to the classification of Clifford algebras one can verify that this is in
fact the full Schur algebra in odd dimensions. In even dimensions one has two charge
conjugation matrices C± which can be used to define two B-matrices B±, which satisfy
B±B

∗
± = ε±Id. The corresponding ε-quaternionic structures are denoted J (ε±)

± , where the
lower index encodes the corresponding B-matrix B±, while the upper index encodes whether
the ε±-quaternionic structure is a real or quaternionic structure.

The signs (ε+, ε−) depend on the signature and are listed in table 1, which again is
periodic modulo 8 in dimension. Note that all three inequivalent combinations occur, that is,
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in even dimensions S either carries two spin invariant real structures, or two spin invariant
quaternionic structures, or one structure of each type. The algebras generated by these
structures are 2H′ = H′ ⊕ H′ for (ε+, ε−) = (1, 1) (two real structures), 2H = H ⊕ H for
(ε+, ε−) = (−1,−1) (two quaternionic structures), and the algebra C(2) of complex 2× 2
matrices for (ε+, ε−) = (±1,∓1) (one real and one quaternionic structure). Note that in the
third case H ⊂ C(2) and H′ ⊂ C(2), but C(2) 6∼= H⊕H′. By comparison to the classification
of Clifford algebras one can verify that this is the full Schur algebra C(S) in even dimensions.
We refer to [17] for more details. Note that the entries in table 1 allow one to read off the
Schur algebras C(S) = Ct,s(S) for all signatures (t, s).

In signatures where there exists a B-matrix which defines a real structure one can
impose the reality condition

ψ∗ = αBψ (2.16)

on a Dirac spinor. We will refer to such spinors as Majorana spinors. Note that we do
not require that the γ-matrices have real entries, and that we do not distinguish between
Majorana spinors and pseudo-Majorana spinors.18

Note that Majorana spinors are not the same as real spinors, that is elements of the real
spinor module S. Depending on signature, either S ∼= S, and real spinors are Dirac spinors,
or S ∼= S ⊗R C, and real spinors are Majorana spinors. We remark that if S ∼= S, Majorana
spinors may still exist. In this case real spinors are reducible, S ∼= S+ ⊕ S−, and Majorana
spinors correspond real semi-spinors. Note that in contrast to complex semi-spinors, real
semi-spinors can exist in odd dimensions. The interested reader is referred to appendix B
for details.

2.3 Complexification of spinor modules

The odd part g1 of a Poincaré Lie superalgebra consists of copies of irreducible real
spinor representations. If the real spinor module S is the unique irreducible real spinor
representation, then the only choice we have is the number N of copies, g1 = S⊕N ∼= S⊗RN .
If S is reducible, but the real semi-spinor modules are isomorphic, S+ ∼= S−, we can
take g1 = S⊕N+

∼= S+ ⊗ RN without loss of generality. If the real semi-spinors are not
equivalent S+ 6∼= S−, we can choose their multiplicity independently, g1 = S

⊕N+
+ ⊕ S⊕N−−

∼=
S+ ⊗ RN+ ⊕ S− ⊗ RN− .

The complexification gC1 ⊗R C of g1 takes the form S⊗ CK or S+ ⊗ CK+ ⊕ S− ⊗ CK− ,
where the relation between K,K+,K− and N,N+, N− depends on whether S, S± carry a
Spin(t, s) invariant real structure, or not. Here we summarize these relations, while details
are given in appendix C. There are three cases, depending on the properties of the real
spinor module S:

1. S irreducible:

g1 ⊗R C = S⊕N ⊗R C = S⊗C CK ,
{
K = N , if S ∼= S ⊗R C ,
K = 2N , if S ∼= S .

18This distinction may be relevant for deciding which type of terms, for example mass terms, can appear
in a supersymmetry Langrangian. This is beyond the scope of our paper, see for example [2] for a discussion.
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D (0, D) (1, D − 1) (2, D − 2) (3, D − 3) (4, D − 4) (5, D − 5) (6, D − 6)
1 +1 +1
2 −1+,+1− +1+ + 1− +1+,−1−
3 −1 +1 +1 −1
4 −1+,−1− +1+,−1− +1+,+1− −1+,+1− −1+,−1−
5 −1 −1 +1 +1 −1 −1
6 +1+,−1− −1+,−1− −1+,+1− +1+,+1− +1+,−1− −1+,−1− −1+,+1−
7 +1 −1 −1 +1 +1 −1 −1
8 +1+,+1− −1+,+1− −1+,−1− +1+,−1− +1+,+1− −1+,+1− −1+,−1−
9 +1 +1 −1 −1 +1 +1 −1
10 −1+,+1− +1+,+1− +1+,−1− −1+,−1− −1+,+1− +1+,+1− +1+,−1−
11 −1 +1 +1 −1 −1 +1 +1
12 −1+,−1− +1+,−1− +1+,+1− −1+,+1− −1+,−1− +1+,−1− +1+,+1−

Table 1. This table lists the spin invariant real and quaternionic structures on the complex spinor
module S for all signatures (t, s) in dimensions up to twelve. Note that the table is periodic modulo
8 in dimension and therefore covers all possible dimensions and signatures. It is also invariant
under (t, s) ↔ (s, t), provided that in even dimension one exchanges J (ε)

± with J
(ε)
∓ . The entries

in the table are the values of ε = ±1 which tell us whether the ε-quaternionic structure J (ε) is a
real structure, ε = 1, or a quaternionic structure, ε = −1. In even dimensions the sign subscript
on ±1± indicates whether the corresponding ε-quaternionic structure J (ε)

± has been constructed
using B+ or B−. Majorana spinors exists in signatures where at least one of the entries is +1,
while symplectic Majorana spinors exist whenever at least one entry is −1. In even dimensions, if
both entries are equal to each other, reality conditions are ‘Weyl-compatible,’ that is they respect
chirality, whereas if they are different from each other, reality conditions are ‘Weyl-incompatible’,
that is, they flip chirality. Majorana-Weyl spinors exist when both entries are equal to +1. If both
entries are equal to −1 one has a quaternionic structure compatible with chirality and can define
‘symplectic Majorana-Weyl spinors.’ If the signs are not equal, one has one real and one quaternionic
structures, which both flip chirality. The Schur algebra of the complex spinor module S is Hε in odd
dimensions and either Hε ⊕Hε (for ε+ = ε−) or C(2) (for ε+ = −ε−) in even dimensions. Some of
the above statements will only be proved in later sections.

2. S = S+ + S− and S+ ∼= S−:

g1 ⊗R C = S⊕N+ ⊗R C = S⊗C CK ,

where K = N , since this only occurs when S ∼= S± ⊗R C.

3. S = S+ + S− and S+ 6 ∼=S−:

g1 ⊗R C =
(
S
⊕N+
+ ⊕ S⊕N−−

)
⊗R C

= S+ ⊗C CK+ ⊕ S− ⊗C CK− ,
{
K± = N± , if S± ∼= S± ⊗R C ,
K± = 2N± , if S± ∼= S± .

Note that the relation between K,K± and N,N± is completely determined by the in-
formation whether S, S± admit invariant real structures or not. We remark that N,N±
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do not count supersymmetries in multiples of the minimal supersymmetry algebra in a
given signature. The reason is that the definition of a supersymmetry algebra requires the
existence of a non-degenerate bracket g1×g1 → V , which is not guaranteed. The convention
that we find convenient for labelling supersymmetry algebras in arbitrary signature is that
N = K in cases 1 and 2 and N± = K± in case 3. This means that we count in units
of Majorana and Majorana-Weyl spinors, irrespective of whether these exist in the given
signature. Thus in the non-chiral case the smallest supersymmetry algebra is labeled N = 1
if the supercharges form a single Majorana spinors and N = 2 if they form a Dirac spinor.
In the chiral case algebras based on a single Majorana-Weyl spinor are denoted (1, 0) and
(0, 1) while algebras based on a single Weyl spinor are denoted (2, 0) or (0, 2). We will
illustrate how our conventions compare to standard (1, D − 1) signature conventions using
explicit examples later, see in particular section 6.2.

3 Bilinear forms and complex supersymmetry algebras

The first step in our programme is to construct complex supersymmetry algebras with odd
part gC1 equal to

S⊗ CK or S+ ⊗ CK+ ⊕ S− ⊗ CK− . (3.1)

This requires us to specify a complex superbracket, gC1 × gC1 → V C, where V C = Ct+s ∼=
Rt,s ⊗R C. As explained in the introduction, this is equivalent to defining a complex
symmetric, spin-equivariant vector-valued bilinear form Πβ on gC1 , which in turn can be
defined using a super-admissible complex bilinear form β on gC1 . In this section we show
how such forms are constructed out of bilinear forms on the complex spinor modules S and
S±, and on the auxiliary spaces CK and CK± .

3.1 Bilinear forms on the complex spinor module S

The definitions of symmetry σβ and type τβ of a bilinear form β were given (1.8). Bilinear
forms of definite type and symmetry are called admissible and are automatically spin
invariant. The choice of an admissible complex bilinear form on S is equivalent to the choice
of a charge conjugation matrix C,

C : S× S→ C , C(λ, χ) = λTCχ = λαC
αβχβ . (3.2)

We will refer to such bilinear forms as Majorana bilinear forms. The symmetry σC and
type τC of the bilinear form C are equal to the parameters σ, τ associated with a charge
conjugation matrix, σ = σC , τ = τC . The values of σ, τ are listed in table 2.

Given an admissible bilinear form on S, we can define a spin equivariant vector valued
form

β(1) : S× S→ V C , (s, t) 7→ β(γµs, t)eµ , (3.3)

which is symmetric for στ = 1 and anti-symmetric for στ = −1. Symmetric vector valued
bilinear forms on S define a Poincaré Lie superalgebra with gC1 = S, and the associated scalar
bilinear forms are called super-admissible. Since we are interested in defining supersymmetry
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algebras with gC1 = S⊗ CK , we are not restricted to super-admissible bilinear forms, since
we have the additional freedom of choosing a bilinear form on CK . Therefore all admissible
bilinear forms on S qualify as building blocks for superbrackets.

3.2 Bilinear forms on the Weyl spinor modules S±

In even dimensions the complex spinor module decomposes into the complex semi-spinor
modules S±, and we can define two inequivalent complex bilinear forms C−τ = C± using
the two available charge conjugation matrices. Let us consider the case where one argument
of the bilinear form C−τ is a Weyl spinor, while the other is arbitrary. Using γ∗λ± = ±λ±
and (A.23) we find

C−τ (·, λ±) = C−τ (·,±γ∗λ±) =

iCτ (·, λ±) , D = 2, 6, 10, . . .
±Cτ (·, λ±) , D = 4, 8, 12, . . . .

(3.4)

We observe that the two bilinear forms become proportional when we restrict one argument
to be a Weyl spinor. This shows that the two charge conjugation matrices and bilinear
forms only differ by a relative sign or factor of i between their restrictions to the complex
semi-spinor modules. For any admissible bilinear form β on S = S+ ⊕ S− we can define an
associate admissible bilinear form β′ = β(·, γ∗·) which has opposite type and is proportional
to β when restricted to a definite chirality in one argument.

Admissible bilinear forms on (S+ ⊕ S−)× (S+ ⊕ S−) have a third invariant besides the
symmetry σβ and the type τβ. An admissible bilinear form β has isotropy ιβ,0 = 1 and is
called orthogonal if its restrictions to S+ × S− and S− × S+ are identically zero, and it has
isotropy ιβ,0 = −1 and is called isotropic if its restrictions to S+ × S+ and S− × S− are
identically zero. To determine the isotropy ιβ,0 we use that bilinear forms which differ by
the insertion of γ∗ in one argument are proportional to one another when restricted to a
fixed chirality in one argument. We compute:

C+(λ±, χ±) = kC−(λ±, χ±) , where k =
{
i , D = 2, 6, 10, . . .
1 , D = 4, 8, 12, . . .

⇒ σ+C+(λ±, χ±) = kσ−C−(λ±, χ±) = kk−1σ−C+(λ±, χ±) = σ−C+(λ±, χ±) ,

where σ± = σC± . Therefore either σ+ = σ−, or C+ and C− are completely degenerate when
restricted to semi-spinors of the same chirality. On the other hand

C+(λ±, χ∓) = k′C−(λ±, χ∓) , where k′ =
{
i , D = 2, 6, 10, . . .
−1 , D = 4, 8, 12, . . .

⇒ σ+C+(λ∓, χ±) = kσ−C−(λ∓, χ±) = kk′σ−C+(λ∓, χ±) = −σ−C+(λ∓, χ±) .

Note that compared to the previous case we have obtained a minus sign, because the chirality
of the second argument has changed. In this case either σ+ = −σ−, or the bilinear forms
C± are completely degenerate on semi-spinors of opposite chirality. Thus any admissible
bilinear form is either orthogonal or isotropic, and its isotropy is given by

ιβ,0 = σ+σ− . (3.5)
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If we insert a γ-matrix into the first argument, this flips the isotropy, since γµ anti-commutes
with γ∗ in even dimensions. More generally, if we substitute p-fold anti-symmetrized products
of γ-matrices into β the isotropy is given by

ιβ,p = (−1)pσ+σ− , p = 0, 1, . . . . (3.6)

Since superbrackets are defined by vector-valued bilinear forms, the relevant isotropy is
ιβ,1, which we will therefore denote by ι = ιβ := ιβ,1 in the following. By inspection of
table 2, we see that vector-valued bilinear forms C±(γµ·, ·) are orthogonal in dimension
D = 2, 6, 10, . . . and isotropic in dimension D = 4, 8, 12, . . .. This is important because
‘chiral’ supersymmetry algebras which only involve supersymmetry generators of one chirality
(or which, more generally, have different anti-commutation relations depending on chirality)
can only exist in dimensions where the vector-valued bilinear form is of orthogonal type.

3.3 Bilinear forms on the auxiliary space CK

To define a complex bilinear form on the extended spinor module S⊗ CK , we also need to
choose a bilinear form M on CK ,

M : CK × CK → C , M(w, z) = wizjMji i, j = 1, . . . ,M . (3.7)

Our index convention is chosen to be consistent with the NW − SE convention in the
case where M is antisymmetric. Since the spin group does not act on the multiplicity
space CK , spin-equivariance is not an issue. If the bilinear form β we have chosen on S
is super-admissible, then M needs to be symmetric, if β is not super-admissible, then M
needs to be antisymmetric, in order that β ⊗M defines a superbracket on S⊗ CK . The
symmetry of M is denoted σM ,

M(w, z) = σMM(z, w), Mij = σMMji, σM = ±1. (3.8)

Non-degenerate symmetric and antisymmetric complex bilinear forms on CK are unique up
to isomorphism. In the symmetric case we will use the standard symmetric bilinear form
δ(·, ·) with Gram matrix given by the Kronecker-symbol, Mij = δij . In the anti-symmetric
case the bilinear form is only non-degenerate for K even. Since degenerate superbrackets
effectively involve a smaller spinor module gC1 with a non-degenerate superbracket, we
don’t need to consider them separately.19 For K even, we use the standard non-degenerate
anti-symmetric bilinear form

(JK)ij =
(

0 1k

−1k 0

)
K = 2k . (3.9)

19The vector space of real superbrackets contains degenerate superbrackets, which correspond to higher
co-dimension orbits of the action of the Schur group. In particular, the completely degenerate bracket always
forms a zero-dimensional orbit. If superbrackets exist which are degenerate, but not completely degenerate,
they define smaller supersymmetry algebras with a lower number of supercharges. For example the N = 1
supersymmetry algebras in signatures (1, 3) and (2, 2) correspond to co-dimension one orbits in the space of
N = 2 superbrackets, see [17]. Such real superbrackets can also be obtained directly by imposing a reality
condition on a non-degenerate complex superbracket and the restriction to even K does not restrict the
generality of our method.
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(J2)ij is the Levi-Civita symbol εij . The bilinear form represented by the Gram matrix
(JK)ij will be denoted J(·, ·) or just J . The K subscript will be omitted when the context
is clear.

The groups acting linearly on CK under which these bilinear forms are invariant will be
denoted GCK . Depending on the symmetry of M the invariance group is either the complex
orthogonal group or the complex symplectic group:

GCK =

O(K,C) , for M = δ,

Sp(K,C) , for M = J.
(3.10)

As we will see, the R-symmetry groups of the real supersymmetry algebras will be determined
by the groups GCK , together with isotropy properties of the bilinear form and the reality
conditions.

3.4 Complex supersymmetry algebras

By combining our previous results, we can now define complex superbrackets.

3.4.1 Odd dimensions

In odd dimensions, the complexified spinor module is always of the form S ⊗ CK , and
bilinear forms can be built by taking tensor products of bilinear forms on each factor. We
will use the notation β = C ⊗M , where

β : (S⊗ CK)× (S⊗ CK)→ C , β(λ, χ) = (λi)TCχjMji . (3.11)

It will be useful to display indices referring to the multiplicity space CK explicitly while
suppressing spinor indices.

The symmetry of β is the product of those of C and M , while the type is inherited from
C since the γ-matrices do not act on CK : σβ = σCσM , τβ = τC . To define a superbracket
we need σβτβ = σCτCσM = 1.

3.4.2 Even dimensions

In even dimensions we have to distinguish two cases. If the real spinor module is irreducible
then the extended spinor module has the same form S ⊗ CK as in odd dimensions, and
everything works like there. In signatures where the real spinor module decomposes into
non-isomorphic real semi-spinor modules the extended spinor module is S+ ⊗ CK+ ⊕ S− ⊗
CK− . How we proceed depends on whether the vector-valued Majorana bilinear forms are
orthogonal or isotropic on S = S+ ⊕ S−, which is determined by ι = ιβ,1 = −σ+σ−. This
only depends on the dimension and is unaffected by the CK factor.

For orthogonal vector-valued bilinear forms we can have K+ 6= K−, and the correspond-
ing bilinear forms on CK± will be called M±. We can choose bilinear forms on each Weyl
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spinor module individually:

β
(1)
+ : (S+ ⊗ CK+)× (S+ ⊗ CK+)→ VC , (3.12)
β+(γµλ+, χ+) = (γµλi+)TCχj+M+ji,

β
(1)
− : (S− ⊗ CK−)× (S− ⊗ CK− )→ VC, (3.13)
β−(γµλ−, χ−) = (γµλi−)TCχj−M−ji.

Note that we have suppressed an additional ‘±’ related to the choice of the charge conjugation
matrix C± for notational simplicity. Also note that without loss of generality we can choose
the same Majorana bilinear form on S+ and S−, since choosing different Majorana bilinear
forms only changes the bilinear form on the extended spinor module S± ⊗ CK± by an
overall factor.

For an isotropic vector-valued Majorana bilinear form we necessarily need K+ = K− to
define a non-degenerate bracket. The vector-valued bilinear form is

β(1) : (S± ⊗ CK)× (S∓ ⊗ CK)→ VC, (3.14)
β(γµλ±, χ∓) = (γµλi±)TCχj∓Mji.

The extended spinor module is S+ ⊗ CK ⊕ S− ⊗ CK , and it is natural to combine
the Weyl spinors into Dirac spinors, λi = λi+ + λi−, so that one works with S ⊗ CK . For
even dimensions with isotropic bilinear forms (D = 4, 8, 12, . . .) we will therefore construct
superalgebras with supercharges that are elements of the K-extended spinor modules S⊗CK
regardless of whether the real spinor module is reducible or irreducible.

This completes our construction of complex supersymmetry algebras. The superbracket
is defined by the choice of a charge conjugation matrix. This is unique in odd dimensions,
while in even isotropic dimensions there are two inequivalent choices. In even orthogonal
dimensions we can choose complex superbrackets independently in each chiral sector. The
resulting R-symmetry groups will be determined in section 3.5, and in section 7 we will
show that complex supersymmetry algebras are determined by their R-symmetry group.
See table 2 for a list of superadmissible complex bilinear forms, complex supersymmetry
algebras, and their R-symmetry groups.

3.5 Complex R-symmetry groups

The R-symmetry group is defined as the subgroup of the invariance group of the vector-
valued bilinear form (and hence of the associated superbracket) that commutes with the
Lie algebra of the spin group. Equivalently, it is subgroup of the Schur group (centralizer of
the spin Lie algebra), which leaves the superbracket invariant. The R-symmetry group of
the complex vector-valued form bilinear form on gC1 ,

GC
R = {R ∈ C∗(gC1 )|β(γµR·, R·) = β(γµ·, ·)} , (3.15)

is called the complex R-symmetry group. The complex R-symmetry group only depends on
the dimension. There are three distinct cases: superalgebras in odd dimensions, in even
orthogonal dimensions (D = 2, 6, 10, . . .) and in even isotropic dimensions (D = 4, 8, 12, . . .).
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D σ τ ι M GCK GC
R

1 +1 +1 N/A δ O(K,C) O(K,C)
2 C+ −1 −1 +1 J O(K,C) O(K+,C)×O(K−,C)

C− +1 +1 +1 δ O(K,C)
3 −1 −1 N/A δ O(K,C) O(K,C)
4 C+ −1 −1 −1 δ O(K,C) GL(K,C)

C− −1 +1 −1 J Sp(K,C)
5 −1 + 1 N/A J Sp(K,C) Sp(K,C)
6 C+ +1 −1 +1 J Sp(K,C) Sp(K+,C)× Sp(K−,C)

C− −1 +1 +1 J Sp(K,C)
7 +1 −1 N/A J Sp(K,C) Sp(K,C)
8 C+ +1 −1 −1 J Sp(K,C) GL(K,C)

C− +1 +1 −1 δ O(K,C)
9 +1 +1 N/A δ O(K,C) O(K,C)
10 C+ −1 −1 +1 J O(K,C) O(K+,C)×O(K−,C)

C− +1 +1 +1 δ O(K,C)
11 −1 −1 N/A δ O(K,C) O(K,C)
12 C+ −1 −1 −1 δ O(K,C) GL(K,C)

C− −1 +1 −1 J Sp(K,C)

Table 2. This table provides a list of complex supersymmetry algebras. For each dimension we
list the inequivalent Majorana bilinear forms (charge conjugation matrices) C together with their
invariants σ (symmetry), τ (type), and, where applicable ι (isotropy). For each C we list the
corresponding choice of a bilinear form M on the internal space CK which makes β = C ⊗M
super-admissible, thus defining a complex supersymmetry algebra. GCK is the isometry group of M
and GC

R the resulting complex R-symmetry group. The pattern in this table repeats modulo 8, and
since C+ and C− define isomorphic superbrackets, complex supersymmetry algebras are classified
by their R-symmetry groups.

3.5.1 Odd dimensions
In odd dimensions the extended spinor module is S⊗ CK , and the complex spinor module
S is complex-irreducible. By Schur’s lemma the R-symmetry coincides with the invariance
group GCK of the bilinear form M on CK . The complex bilinear form M is symmetric
(anti-symmetric) if the vector-valued Majorana bilinear form C(γµ·, ·) on S is symmetric
(anti-symmetric). In odd dimensions there is only one inequivalent charge conjugation
matrix C, whose symmetry σ = σC and type τ = τC therefore determines the complex
R-symmetry group:

GC
R =

O(K,C) , D = 1, 3, 9, 11, . . .
Sp(K,C) , D = 5, 7, . . .

(3.16)
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We will use the following notation for R-symmetry transformations, which reflects that R
does not act on spinor indices (which have been suppressed):

λi → Rijλ
j , , i, j = 1, . . .K . (3.17)

The corresponding R-symmetry Lie algebra element is written rij such that Rij = exp(rij ).

3.5.2 Even dimensions, orthogonal bilinear form

In even dimensions the complex spinor module is reducible, S = S+ ⊕ S−, and the complex
semi-spinor modules S± are inequivalent as complex modules. Therefore R-symmetry
transformations act block-diagonally on the associated multiplicity spaces CK± . Further
details depend on whether the bilinear form preserves or flips chirality.

In orthogonal dimensions D = 2, 6, 10, . . ., the vector-valued bilinear form preserves
chirality, and therefore the complex R-symmetry group acts independently on left- and
right-handed spinors. Using the matrix notation explained in appendix D, they take the form

(
λ+
λ−

)
→ R

(
λ+
λ−

)
=
(
A 0
0 B

)(
λ+
λ−

)
=
(
Aij 0
0 B î

ĵ

)(
λj+

λĵ−

)
, (3.18)

with i = 1, . . . ,K+ and î = 1, . . . ,K−. The matrices Aij and B î
ĵ
act only on the internal

spaces CK+ and CK− because S± are complex irreducible and by Schur’s lemma R-symmetry
transformations are inert on the spinor indices.20

Invariance of the vector-valued bilinear form defined by the matrices M,M ′ implies

RT
(
M 0
0 M ′

)
R =

(
M 0
0 M ′

)
, (3.19)

which, after inserting the components of R, becomes
(
ATMA 0

0 BTM ′B

)
=
(
M 0
0 M ′

)
. (3.20)

By inspection of table 2 σ+τ+ = σ−τ− in orthogonal dimensions D = 2, 6, 10, . . ., that
is, M and M ′ are either both symmetric or both anti-symmetric, though they can have
different size. Since σ±τ± = 1 for D = 2, 10, . . . and σ±τ± = −1 for D = 6, . . ., the complex
R-symmetry groups in orthogonal dimensions are:

GC
R =

O(K+,C)×O(K−,C) , D = 2, 10,
Sp(K+,C)× Sp(K−,C) , D = 6.

(3.21)

20To be precise they can act by multiplication with non-zero complex numbers, which we absorb into the
action on the auxiliary space.
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3.5.3 Even dimensions, isotropic bilinear forms

In isotropic dimensions D = 4, 8, 12, . . . R-symmetry transformations still have to act
block-diagonally, but since the vector-valued bilinear form flips chirality, the blocks A and
B must have the same size K+ = K− = K,(

λ+
λ−

)
→ R

(
λ+
λ−

)
=
(
A 0
0 B

)(
λ+
λ−

)
=
(
Aij 0
0 Bi

j

)(
λj+
λj−

)
. (3.22)

Invariance of the vector-valued bilinear form implies

RT
(

0 M

M 0

)
R =

(
0 M

M 0

)
. (3.23)

This leads to (
0 ATMB

BTMA 0

)
=
(

0 M

M 0

)
. (3.24)

This is solved by B = M−1(AT )−1M and therefore

R =
(
A 0
0 M−1(AT )−1M

)
. (3.25)

A must be invertible but is otherwise unconstrained, i.e. A ∈ GL(K,C). We observe

(
M−1(AT )−1M

)(
M−1(A′T )−1M

)
= M−1((AA′)T )−1M. (3.26)

Therefore the complex R-symmetry group in isotropic dimensions is

GC
R = GL(K,C) , D = 4, 8, 12, (3.27)

and acts as the direct sum of the fundamental representation A→ A with the representa-
tion A → M−1(AT )−1M which is equivalent to the dual (contragradient) representation
A→ (AT )−1.

3.5.4 Summary table

Our results for complex R-symmetry groups are summarized in table 2, together with
information about the bilinear form M , the charge conjugation matrices and their invariants.
The invariants were taken from [25], which uses the notation ε = −σ and η = −τ . While the
pattern repeats modulo 8, we have included all dimensions up to 12 for convenience. In even
dimensions there a two different choices C± for the charge conjugation matrix, but we will
show in section 7 that there is a map which relates the superbrackets defined by C± to one an-
other. Therefore complex supersymmetry algebras are classified by their R-symmetry groups.

– 25 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
3

4 Reality conditions and ε-quaternionic structures

So far we have constructed complex Poincaré Lie superalgebras. To obtain real supersym-
metry algebras we need to impose reality conditions, which must be Spin(t, s) equivariant
and compatible with the superbracket. In this section we deal with the first condition, while
the second condition will be the subject of the next section.

Since gC1 is the product of a complex spinor or complex semi-spinor module with an
auxiliary complex vector space, the natural way to obtain reality conditions is to either
take the product of two real structures or of two quaternionic structures. It is therefore
convenient to use the terminology of ε-quaternionic structures introduced in section 2.2.

4.1 ε-quaternionic structures on the complex spinor module S

We have seen in section 2.2 that using the matrices A and C we can define a new matrix B

B = (CA−1)T , (4.1)

which satisfies B∗B = ε1. It can be shown that

B∗B = σ(−τ)t(−1)t(t+1)/2
1 , (4.2)

where σ, τ are the symmetry and type of C, and where t is the number of timelike dimensions.
Through the dependence on t the type of the structure varies with the signature. While in
odd dimensions C and B are unique up to equivalence, there are two inequivalent choices
of C, and hence of B, in even dimensions, denoted B−τ = (C−τA−1)T . Given the matrix B
we can define a one-parameter family of Spin(t, s)-invariant maps

J (ε)(α) : λ→ α∗B∗λ∗, |α| = 1 , (4.3)

which are complex anti-linear and satisfy (J (ε)(α))2 = εId. The presence of the phase α
reflects that while we have conventionally fixed B in terms of A and C, there remains the
freedom of multiplying B by a phase. The freedom of choosing α is important if one wants
to impose that expressions which are obtained by imposing a reality condition on a complex
expression are real-valued, rather than just being restricted to a generic real subspace. We
will use this in section 5 to insure that the vector-valued bilinear form obtained by imposing
a reality condition on the complex vector-valued form is real-valued. See also [16, 17] for
how this freedom is used when constructing supersymmetric theories. To simplify notation,
we will omit the superscript (α) whenever the value of the phase is unimportant.

In even dimensions, we have two possible charge conjugation matrices and two corre-
sponding Spin(t, s)-invariant ε-quaternionic structures

J
(ε)(α)
± : λ→ α∗B∗±λ

∗, |α| = 1. (4.4)

The subscript on J
(ε)(α)
± refers to B± being used to define the structure. Later, we

will admit different numbers of copies of S±, that is, K+ 6= K−, and then the phase α will
also acquire a subscript, α±, since we can use different types of structures on each Weyl
spinor module.
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The values of ε depend on the signature and are listed in table 1 for both odd and
even dimensions up to dimension 12. In even dimensions a subscript ± indicates whether
the value ±1 of ε refers to J+ or J−. As discussed in section 2.2, in even dimensions there
can either be two real structures, or two quaternionic structures, or one of each type. We
have made use of the natural (t, s)↔ (s, t) symmetry, though in even dimensions one must
then also replace J (ε)

−τ with J (ε)
τ . For example, if we have J (−1)

− in signature (t, s), then in
signature (s, t) there will be a quaternionic structure J (−1)

+ . See appendix A.5 for details.
In even dimensions, the matrices C± and hence the matrices B± are related to each

other through multiplication with the chirality operator γ∗, see appendix A.4 for explicit
expressions which involve factors ±1,±i. This means that the difference between C+, B+
and C−, B− lies in how they act on the complex semi-spinor modules S±. We need to
investigate this further in order to fully understand reality conditions on extended spinor
modules of the form S+⊗CK+⊕S−⊗CK− . We start from the observation that the matrices
B± either both commute or both anti-commute with γ∗, depending on the signature.
Combining (A.25) and (A.26) from appendix A.4, we find

B±γ∗ =
{

(−1)t+1γ∗B± , D = 2, 6, 10, . . .
(−1)tγ∗B± , D = 4, 8, 12, . . .

(4.5)

Since γ∗ is real, the ε-quaternionic structure J (ε)
± (anti-)commutes with γ∗ if and only if B±

does. Therefore J (ε)
± either preserves chirality and restricts to an ε-quaternionic structures

on the semi-spinor modules S±, or it flips chirality and maps the two semi-spinor modules
to one another

J
(ε)
± : S± → S± , or J

(ε)
± : S± → S∓ . (4.6)

We will refer to ε-quaternionic structures which preserve chirality as Weyl-compatible and
to those which flip chirality as Weyl-incompatible. Since Weyl compatibility only depends
on the space-time signature, we will also use the terminology of Weyl-compatible signatures
and Weyl-incompatible signatures.

The Weyl (in-)compatibility of J (ε)
± is correlated with J (ε)

+ and J (ε)
− being of the same

or of the opposite type. Using (A.26) and (A.27) from appendix A.4 we obtain

B∗+B+ =
{
iB∗−γ∗B+ , = (−1)t+1B∗−B− D = 2, 6, 10,
B∗−γ∗B+ , = (−1)tB∗−B− D = 4, 8, 12.

(4.7)

which by comparison to (4.5) shows that two ε-complex structures J (ε)
± are either of the

same type and both Weyl-compatible, or of opposite type and both Weyl-incompatible.
These properties alternate with signature, which is due to the fact that the increase of
timelike directions adds one γ-matrix to the matrix A, and hence to B±. The pattern
is shifted between the orthogonal dimensions D = 2, 6, 10 and the isotropic dimensions
D = 4, 8, 12. The values of ε for J (ε)

± have been listed in table 1.
We also note that in Weyl-compatible signatures the Schur algebra of S is semi-simple,

while in Weyl-incompatible signatures it is simple. This reflects that C± and, hence, B±
and J (ε)

± are related through multiplication by γ∗. In the case of semi-simple Schur algebra
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Hε ⊕ Hε, the ε-quaternionic structures in each factor are of the same type which leads
to a Weyl-compatible action of the Schur group which respects the decomposition into
semi-spinor modules. Indeed, using (A.27) we can see explicitly that the Weyl-compatible
ε-complex structures J (ε)

+ and J
(ε)
− become proportional when restricted to Weyl spinor

modules

J
(ε)(α)
+ (λ±) =

α
∗B∗+λ

∗
± = iα∗B∗−λ

∗
± = J

(ε)(iα)
− (λ±) , D = 2, 6, 10

α∗B∗+λ
∗
∓ = ∓α∗B∗−λ∗± = J

(ε)(∓α)
− (λ±) , D = 4, 8, 12

(4.8)

If the Schur algebra is the simple algebra C(2), there are two ε-quaternionic structures of
opposite type, which are related by the generator γ∗, but this time they map the Weyl
spinor modules to each other.

Let us note the implications for the construction of supersymmetry algebras, in particular
for the existence of chiral supersymmetry algebras where supersymmetry acts differently on
left-handed and right-handed supercharges, including the option to have a different number
of left- and right-handed supercharges. In Weyl-compatible signatures the Weyl spinor
modules carry an ε-quaternionic structure and are therefore self-conjugate, i.e S̄± = S±.
Since the Schur algebra is Hε ⊕ Hε, it follows that the real spinor module is reducible
S = S+ + S−, and that the real semi-spinor modules are inequivalent S+ 6∼= S−. Therefore
the extended spinor module is of the form S+ ⊗ CK+ ⊕ S− ⊗ CK− . To be able to define
chiral real supersymmetry algebras, we also need to be in an orthogonal dimension where
the complex bilinear form can be restricted to a fixed chirality S± ⊗ CK± , as discussed in
section 3.2. Thus chiral supersymmetry algebras can be constructed when the dimension
is orthogonal (D = 2, 6, 10, . . .) and the signature is Weyl-compatible, ε+ = ε−, where ε±
is the type of J±. Isotropic bilinear forms require an equal number of spinors of both
chiralities, and these can naturally be combined into Dirac spinors. In this case we will
require, even in Weyl compatible signatures, that the same reality condition is imposed on
both chiralities, so that supercharges and fermions can be combined into Dirac spinors. The
extended spinor module is then S⊗ CK . In Weyl incompatible signatures the real spinor
module is either irreducible, or it is reducible and the real semi-spinors are equivalent, since
in this case the Schur algebra of S is R(2) ⊂ C(2). Therefore the extended spinor module
takes again the form S⊗ CK .

4.2 ε-quaternionic structures on the auxiliary space CK

Next, we need to define ε-quaternionic structures on CK . Given a complex K ×K matrix
L = (Lij) which satisfies L∗L = ε1, we can define an ε-quaternionic structure

j(ε) : zi → (zj)∗Lji , (4.9)

where the indices i, j, . . . comply with the NW-SE convention. Spin invariance is trivially
realized, since the spin group does not act on CK . Since we want to pick a real form of a
complex supersymmetry algebra, we choose reality conditions on CK such that it picks a
real form of the isometry group GCK of the complex bilinear form M . We will see later that
this has the effect of reducing the complex R-symmetry group GC

R to one of its real forms.
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Let x ∈ gC be an element of the Lie algebra of the group GCK which acts on CK in
the fundamental representation. The complex linear action z → Lz of L on CK defines an
involution

φL : x→ LxL−1 , φ2
L = 1 (4.10)

of gC, provided that we require that L is real, L = L∗, so that L∗L = ε1 implies L2 = ε1

and φ2
L = 1. We require in addition that φL is compatible with the Lie algebra structure,

that is an involutive Lie algebra automorphism. Given an involutive automorphism (4.10),
we can define a real structure

τL : x→ Lx̄L−1 (4.11)

on the complex Lie algebra gC. The real points (fixed points) (gC)φL of the action of
φL define a real Lie algebra g with complexification gC, called a real form of gC. It is a
standard result that all real forms of a complex semisimple Lie algebra arise from involutive
automorphisms.21 Moreover, two involutive automorphisms define the same real form if
they are related through conjugation by an automorphism of gC.

We have two cases to consider.

1. The bilinear form M on CK is symmetric, with standard choice M = δ. Then the
Lie algebra of infinitesimal isometries is o(K,C), and up to conjugation all involutive
automorphisms are given by the following choices for L:

1K , Ip,q =
(
1p 0
0 −1q

)
, JK =

(
0 1k

−1k 0

)
, K = p+ q = 2k . (4.12)

L = 1K , Ip,q define a real structure j(ε) = j(+1), while L = JK , where K must be
even, defines a quaternionic structure j(ε) = j(−1).

2. The bilinear form M is antisymmetric, with standard choice M = J , and the Lie
algebra of infinitesimal isometries is sp(K,C). In this case K = 2k is necessarily even,
and we have the following inequivalent possibilities for L:

1K , JK =
(

0 1k

−1k 0

)
, I1,1 =

(
1 0
0 −1

)
(only when K = 2), (4.13)

Ĩ2r,2s =


1r 0 0 0
0 −1s 0 0
0 0 1r 0
0 0 0 −1s

 =
(
Ir,s 0
0 Ir,s

)
, k = r + s.

Note that Ĩ2r,2s cannot be used when K = 2, where I1,1 takes it place, and that in
general conjugation with Ip,q is not an involutive automorphism for sp(K,C). For
L = 1K , I1,1, Ĩ2r,2s we obtain a real structure j(ε) = j(+1), and for L = JK we obtain
a quaternionic structure j(ε) = j(−1).

21See for example [27] for real forms of complex semisimple Lie algebras.
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We will refer to the above choices of representatives for L as ‘standard’ or ‘canonical’ in the
following. The complex R-symmetry group GC

R, that is the invariance group of β = C ⊗M
agrees with GC if the dimension of space-time is odd. In even dimensions GC

R also depends
on whether β is orthogonal or isotropic. Real R-symmetry groups will be discussed in detail
in section 6. The real forms selected by the above automorphisms are listed in table 3.

4.3 Real structures on S⊗ CK and S+ ⊗ CK+ ⊕ S− ⊗ CK−

By combining information about ε-quaternionic structures on S and CK , we obtain Spin(t, s)-
invariant real structures on S⊗ CK , and, in even dimensions on S+ ⊗ CK+ ⊕ S− ⊗ CK− .

4.3.1 Odd dimensions

We can define a real structure ρ on S ⊗ CK either as the product of two real or of two
quaternionic structures.

ρ = J (ε) ⊗ j(ε) : λi → αB∗(λj)∗Lji. (4.14)

Which option is available depends on the signature. In odd dimensions we have only
one Spin(t, s)-invariant structure at our disposition, which is either a real structure or a
quaternionic structure. The restriction of any tensor-valued bilinear forms to this subspace
is either real or purely imaginary (and therefore real after multiplication by i). We choose
the phase α so that the vector-valued bilinear form is real.

When K is odd, we cannot define quaternionic structures on CK because a quaternionic
structure requires an even number of complex dimensions. This does not impede defining a
real structure on S⊗CK , because K is only odd if S has a real structure, so that we need a
real structure on CK in order to impose a reality condition on extended spinors. Similarly,
in cases where we only have access to a quaternionic structure on S the extended spinor
modules are always of the form S⊗C2K so once again we can always define a real structure
on the product space because there is no impediment to defining a quaternionic structure
on C2K . A corollary is that in signatures without a real structure on S we cannot have
theories with an odd number of supersymmetries.

4.3.2 Even dimensions

In even dimensions we have two Spin(t, s)-invariant structures for each signature. There
are two cases to be distinguished. Either the two structures are Weyl-compatible, then they
are of the same type and map S± to S±. Or they are Weyl-incompatible, then they are of
opposite type and map S± to S∓.

Weyl-compatible ε-quaternionic structures work in the same way as ε-quaternionic
structures in odd dimensions, except that we replace the Dirac spinor module with either
Weyl-spinor module. Real structures can be defined on each Weyl spinor module individually:

ρ(±)(λi±) = αB∗(±)(λi±)∗Lji , (4.15)

where B∗B = L2 = ε. The canonical choices of L were listed above. The total real structure
is then ρ = ρ+ + ρ−. For superalgebras with both chiralities present, we can have different
real structures defined on each chirality.
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Weyl-incompatible signatures link the two Weyl spinor modules. In terms of Weyl
spinors, the real structure is of the form

ρ(λi±) = αB∗(±)(λi∓)∗Lji. (4.16)

Which choice we make for B makes a difference, as B∗+B+ = −B∗−B−, and therefore the
choice of L depends on the choice of B. The reality condition can be written as a reality
condition on S⊗ CK :

ρ(λi) = ρ(λi+) + ρ(λi−) = αB∗(±)(λ
j
−)∗Lji + αB∗(±)(λ

j
+)∗Lji = αB∗(±)(λj)∗Lji. (4.17)

5 Real supersymmetry algebras

At this point we have all the elements in place that we need to define a real supersymmetry
algebra.

1. The odd part gC1 of the complex supersymmetry algebra takes the form S⊗CK for odd
dimensions and in even-dimensional signatures with isotropic bilinear forms or with
Weyl-incompatible reality conditions, while it takes the form S+ ⊗ CK+ ⊕ S− ⊗ CK−
in even-dimensional signatures with orthogonal vector-valued bilinear forms and
Weyl-compatible reality conditions.

2. On gC1 we have shown how to construct a super-admissible complex bilinear form β

(that is, forms with σβτβ = 1). The associated complex vector-valued bilinear form

β(1) = β(γµ·, ·) , : gC1 × gC1 → VC (5.1)

is symmetric and Spin(t+s,C)-equivariant and defines a complex superbracket, which
gives so(VC)⊕ VC ⊕ gC1 the structure of a complex Poincaré Lie superalgebra.

3. On gC1 we have constructed Spin(t, s) invariant real structures ρ, which allow us to
impose a spin-invariant reality condition and thus to obtain real forms g1 of gC1 , that
is Spin(t, s)-modules whose complexification is gC1 .

The data that we have to specify in order to define a real supersymmetry algebra are the
complex form gC1 of its odd part, a super-admissible complex bilinear form C ⊗M to define
the complex superbracket, and the matrices B and L defining a real structure ρ on gC1 ,
which then selects a real form g1 = (gC1 )ρ of gC1 . The final step to be taken in this section is
to verify that if we restrict the complex vector-valued bilinear form β(1) to spinors satisfying
the reality condition ρ, this defines a real, symmetric, Spin(t, s)-equivariant vector-valued
bilinear form

β(1) = β(γµ·, ·) : g1 × g1 → V (5.2)

on g1 = (gC1 )ρ. The only property that we need to verify is that β(1) becomes real-valued
when restricted to spinors which satisfy the reality condition, as the other properties hold
by construction.
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5.1 Reality conditions and superbrackets

Let us start with the simpler case where gC1 = S⊗ CK , equipped with the complex super-
admissible bilinear form β. The real structure ρ defines the real subspace g1 by

ρ(λi) = λi ⇔ (λi)∗ = αBλjLji. (5.3)

From section 2.3 we know that

g1 = (S⊗ CK)ρ ∼= S⊕N , (5.4)

where S is the unique irreducible real spinor module.
We need to verify that the vector-valued bilinear form becomes real-valued when

restricted to g1,

([C ⊗M ](γµλ, χ))∗ = [C ⊗M ](γµλ, χ) , for λ, χ ∈ (gC1 )ρ ∼= g1 . (5.5)

At this point it is important to take into account that our reality conditions contain an
arbitrary phase factor α. We compute

([C ⊗M ](γµλ, χ))∗ = [(γµλi)TCχjMji]∗

= α2(γµBλkLki)TC∗BχlLljMji (5.6)
= α2τB(−1)t(γµλi)TBTC∗Bχj(LMLT )ji.

Note that in even dimensions we can choose the matrix B = B±, which defines the reality
condition, independently from our choice of C = C±, which defines the bilinear form.
Therefore we have written τB to indicate that we refer to the sign in (2.3). To further
evaluate the right hand side requires to fix the signature. However, it is clear that we
can always choose α such that the bilinear form is real-valued, since, for all signatures,
BTC∗B = ±C and LTML = ±M ,22 so that α2 = ±1 is sufficient to make the bilinear form
real. This fixes α up to a sign, so that either α = ±1 or α = ±i. The sign is conventional,
since changing the overall sign of the superbracket is an isomorphism of Poincaré Lie
superalgebras, see for example [17].

The second case is where gC1 = S+ ⊗CK+ ⊕ S− ⊗CK− . Here the bilinear form and real
structure are sums of two terms, β = β+ + β− and ρ = ρ+ + ρ−, respectively. According to
section 2.3 the real form of gC1 is

(S+ ⊗ CK+)ρ+ ⊕ (S− ⊗ CK−)ρ− ∼= S
⊕N+
+ ⊕ S⊕N−− , (5.7)

where S+ 6∼= S− are the real semi-spinor modules. Since we have two inequivalent spin
representations and an orthogonal superbracket, we must require that the restrictions of the
vector-valued bilinear form to S+×S+ and S−×S− are both real valued. This fixes the phases
α± of ρ± up to sign. While the overall sign of the superbracket is conventional, the relative
sign between α+ and α− is not and distinguishes non-isomorphic supersymmetry algebras.

22Here we use the properties of the canonicial choices for L specified in section 4.2. Note that M is real
and either symmetric or antisymmetric.
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In particular, we will see in section 8.1 that this distinguishes between the type-IIA and type-
IIA* algebras in ten dimensions, which both have the same (discrete) R-symmetry group.

Our convention is to fix a complex superbracket and then to determine the phase α by
imposing that the superbracket is real-valued on fixed points of the chosen real structure.
While we find this convenient, there are other conventions in the literature, where the phase
α is fixed but arbitrary, and the reality of the superbracket is achieved by changing the
bilinear form M by a phase factor if necessary. This is for example done in [2]. In section 8.1
we will see in an example how the two conventions are mapped to one another.

5.2 Real supersymmetry algebras with gC
1 = S⊗ CK

In this section we take a closer look a supersymmetry algebras with gC1
∼= S⊗CK . All these

algebras are defined by specifying a complex vector-valued bilinear form β = C ⊗M ,

β(γµλ, χ) = (γµλi)TCχj ⊗Mji (5.8)

and a reality condition
(λi)∗ = αBλjLji . (5.9)

As mentioned in the introduction and explained in detail in appendix A.3 this is equivalent
to the anti-commutation relations

{Qiα, Q
j
β} = M ij(γµC−1)αβPµ, (5.10)

with supercharges Qi = (Qiα) that satisfy the reality condition ρ(Qi) = Qi, i.e.

(Qi)∗ = αBQjLji. (5.11)

In odd dimensions the superbracket is unique, as there is a single choice for C and this
fixes the choice of M . Real supersymmetry algebras are then determined by the choice of
L, subject to the condition that B and L together define a real structure. Note that if C
is not super-admissible, M is antisymmetric so that the range of i, j is necessarily even,
preventing the existence of supersymmetry algebras based on a single irreducible spinor of
supercharges.

In even dimensions we have to distinguish between orthogonal dimensions where the
vector-valued bilinear form preserves chirality, and isotropic dimensions where chirality is
flipped. In the orthogonal case the bilinear forms C± are either both super-admissible, or
both are not, and therefore require the same M to define a super-admissible C± ⊗M . One
can write the superbracket in terms of chiral supercharges if desired,

{Qiα, Q
j
β} = {Qi+α, Q

j
+β}+ {Qi−α, Q

j
−β} , (5.12)

but note that we are currently considering the case where the real semi-spinor modules are
equivalent.

In isotropic dimensions one Majorana bilinear form is super-admissible, and one is
anti-super-admissible. Let us denote the super-admissible bilinear form C, and the anti-
super-admissible bilinear form C ′ (either could be C± depending on dimension). There are
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two potentially non-equivalent superbrackets:

{Qiα, Q
j
β} = δij(γµC)−1

αβPµ , (5.13)

{Qiα, Q
j
β} = J ij(γµC ′)−1

αβPµ . (5.14)

In section 7.4 we will show that the two bilinear forms in fact define isomorphic real
supersymmetry algebras if (any) Weyl-compatible reality condition is imposed. The rela-
tions between real algebras with Weyl-incompatible reality conditions will be discussed in
section 7.5. If desired these algebras can be written in terms of chiral supercharges

{Qiα, Q
j
β} = {Qi+α, Q

j
−β}+ {Qi−α, Q

j
+β} = 2{Qi+α, Q

j
−β}. (5.15)

5.3 Real supersymmetry algebras with gC
1 = S+ ⊗ CK+ ⊕ S− ⊗ CK−

Orthogonal Weyl-compatible signatures are special, since we can restrict the superbracket
to real semi-spinor modules which are not isomorphic to each other. This allows to define
chiral supersymmetry algebras where the positive and negative chirality supercharges are
neither related by the superbracket nor by the reality condition and thus are completely
independent.

The supersymmetry anti-commutators take the form

{Qi+,α, Q
j
+,β} = M ij(γµC)αβPµ , {Qi

′
−,α, Q

j′

−,β} = M i′j′(γµC ′)αβPµ , (5.16)

where i, j = 1, . . .N+ and i′, j′ = 1, . . .N−, and where C,C ′ are the restrictions of the
charge conjugation matrix to S±.

If the Majorana bilinear forms on the semi-spinor modules are super-admissible, then
M ij ,M ′ij are symmetric and we can define a supersymmetry algebra using a single Weyl
spinor module. Since N± counts supercharges in multiples of Majorana-Weyl spinors,
the smallest chiral supersymmetry algebras have the form (N+,N−) = (1, 0), (0, 1) if the
supercharges are Majorana-Weyl spinors and (2, 0), (0, 2) if they are Weyl spinors. If the
restrictions of the Majorana bilinear form to S± are not super-admissible, we need to choose
an antisymmetric bilinear form on CK which is only non-degenerate if K is even. In this
case the minimal chiral superalgebras involve two semi-spinor modules and take the form
(2, 0), (0, 2).23

6 R-symmetry groups

So far we have shown that we can construct, in a uniform way across dimensions and
signatures, real supersymmetry algebras with given odd part g1 using the data (C,M,B,L)
defined on its complexification gC1 . These data are not independent, and, moreover, different
sets may define isomorphic supersymmetry algebras. As a first step towards classification,

23Note that since in Weyl compatible signatures S± carries either a real or a quaternionic structure,
we can always impose a reality condition S± ⊗C C2 to define a (2, 0) or (0, 2) algebra, that is, (4, 0) and
(0, 4) algebras are never minimal. In other words, whenever Majorana-Weyl spinors do not exist, we define
‘symplectic Majorana-Weyl spinors’.
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we will construct and classify the R-symmetry groups that can occur in our construction.
Supersymmetry algebras with different R-symmetry groups are clearly not isomorphic. In
section 7 we will show that all supersymmetry algebras which arise from our construction
are indeed classified up to isomorphism by their R-symmetry groups, together with a choice
of the relative sign between α+ and α− for chiral supersymmetry algebras.

6.1 Determination of R-symmetry groups

We now turn to the determination of the real R-symmetry groups, that is the R-symmetry
groups of the real supersymmetry algebras that we obtain by imposing Spin(t, s)-invariant
reality conditions,

GR =
{
R ∈ GC

R , |ρ(R·) = Rρ(·)
}
. (6.1)

The R-symmetry groups for all signatures with dimension ≤ 12 will be calculated in
the following sections. As we now have to include reality conditions into our considerations,
we have to distinguish between Weyl-compatible and Weyl-incompatible signatures. As a
result there are five cases in total: odd dimensions, and the four cases in even dimensions:
Weyl-compatible orthogonal, Weyl-compatible isotropic, Weyl-incompatible orthogonal and
Weyl-incompatible isotropic. The results will be summarized in various tables.

6.1.1 Odd dimensions

In odd dimensions the extended spinor module is S ⊗ CK and the complex R-symmetry
group is O(K,C) or Sp(K,C). We impose a reality condition of the form

(λi)∗ = αBλjLji , (6.2)

where B defines an ε-quaternionic structure on S and where (Lji) ∈ GL(K,C) is an involutive
automorphism of GC

R.
Invariance under an R-symmetry transformation leads to

(Rij)∗Lkj = RjkLji ⇔ R∗LT = LTR. (6.3)

All canonical choices for L have a definite symmetry, i.e. LT = ±L, such that the above
equation can be written

R∗L = LR. (6.4)

Lie algebra elements rij obey the same equation

r∗L = Lr =⇒ r = L−1r∗L. (6.5)

This is indeed the type of equation that defines a real form of the complex Lie algebra
O(K,C) or Sp(K,C). To determine which real forms can occur as a real R-symmetry in a
given signature, we need to know whether L defines a real or a quaternionic structure on
CK . This information is summarized in table 3. By imposing that ε must have the same
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GC
R GR ε L

O(K,C) O(K) +1 δ

O(p, q) +1 Ip,q

SO∗(K) −1 JK

Sp(K,C) Sp(K,R) +1 δ

USp(2r, 2s) +1 Ĩ2r,2s

USp(K) −1 JK

Table 3. In this table we list the real forms of the complex Lie groups O(K,C) and Sp(K,C), which
are the building blocks of the complex R-symmetry groups. Note that p+ q = K and 2r + 2s = K.
The third column specifies whether the reality condition which defines the real form provides the
auxiliary space CK with a real structure (ε = 1) or with a quaternionic structure (ε = −1). This
decides which reality conditions are available to define a real structure on gC1

∼= S ⊗ CK . In the
fourth column we list the standard or ‘canonical’ choices for the matrix L which defines the reality
condition.

D (0, D) (1, D − 1) (2, D − 2) (3, D − 3) (4, D − 4) (5, D − 5) (6, D − 6)

1 O(p, q) O(p, q)
3 SO∗(K) O(p, q) O(p, q) SO∗(K)
5 USp(K) USp(K) Sp(K,R), USp(2r, 2s) Sp(K,R), USp(2r, 2s) USp(K) USp(K)
7 Sp(K,R), USp(2r, 2s) USp(K) USp(K) Sp(K,R), USp(2r, 2s) Sp(K,R), USp(2r, 2s) USp(K) USp(K)
9 O(p, q) O(p, q) SO∗(K) SO∗(K) O(p, q) O(p, q) SO∗(K)
11 SO∗(K) O(p, q) O(p, q) SO∗(K) SO∗(K) O(p, q) O(p, q)

Table 4. This table lists the real R-symmetry groups which can occur in odd dimension with any
signature, p+ q = K.

value as for the ε-quaternionic structure on S, we arrive at the table 4 of real forms in odd
dimensions up to D = 11.

These two tables make manifest how the R-symmetry groups of real supersymmetry
algebras vary across dimensions and signatures. Firstly, in signatures where S carries a
real structure, in other words where Majorana spinors exist, there is a broader range of
R-symmetry groups since apart from O(K) or Sp(K,R) there are further real forms O(p, q)
or Sp(2r, 2s) which preserve real bilinear forms with indefinite signature. These correspond
to ‘twisted’ Majorana conditions which introduce relative signs between the Majorana
conditions imposed on different spinors. This phenomenon is known for Lorentz signature
from Hull’s type-* supersymmetry algebras and we will relate our formalism to the slightly
different formalism used in [2] later when looking into specific examples. In signatures
where S carries a quaternionic structure the R-symmetry group is fixed to be SO∗(K) if
the Majorana bilinear form is super-admissible or USp(K) if it is not. The latter case
corresponds, for K = 2, to symplectic Majorana spinors. For K = 1 the only possible group
is O(1) ∼= Z2, which is discrete. According to our counting conventions for supersymmetries,
where N = K, so that we count in multiples of Majorana spinors, such algebras are N = 1
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GC
R GR ε

O(K+,C)×O(K−,C) O(p+, q+)×O(p−, q−) +1
SO∗(K+)× SO∗(K−) −1

Sp(K+,C)× Sp(K−,C) (Sp(K+,R) or USp(2r+, 2s+)) × (Sp(K−,R) or USp(2r−, 2s−)) +1
USp(K+)×USp(K−) −1

Table 5. Here we list the real R-symmetry groups which can occur in orthogonal Weyl-compatible
signatures. Note that p± + q± = K± and 2r± + 2s± = K±. The last column shows which type of
ε-quaternionic structure on S is correlated with a given real form of the complex R-symmetry group.

algebras. N = 1 algebras only exist in signatures where the entry in our table 4 is O(p, q).
In all other cases the minimal value of N = K for a non-degenerate supersymmetry algebra
is N = 2, that is, the supercharges form a Dirac spinor. For example, in five dimensions
the smallest supersymmetry algebra is the N = 2 algebra, for all signatures. Note that
while Majorana spinors exist in signatures (t, s) = (2, 3), (3, 2), there is no non-degenerate
superbracket which would allow to define an N = 1 supersymmetry algebra, as already
observed in [16].

In 11 dimensions (and as well in 3 dimensions) the R-symmetry group alternates
between O(p, q) and SO∗(K). The latter requires K even and is related to quaternionic
structures on S and CK . According to table 1, Majorana spinors, and, hence, N = K = 1
algebras exist in 11 dimensions for signature (1,10), (2,9) and (5,6). These algebras are
realized in M-, M*- and M’-theory, respectively [2]. In some cases R-symmetry groups can
be rewritten using accidental isomorphism between Lie groups. In particular, for K = 2 we
note that SO∗(2) ∼= SO(2), Sp(2,R) ∼= SU(1, 1) and USp(2) ∼= SU(2).

6.1.2 Orthogonal Weyl-compatible signatures

In orthogonal Weyl-compatible signatures we can define superbrackets independently for
the two Weyl spinor modules, and for each of them the situation is the same as for the
spinor module in odd dimensions. The complex R-symmetry groups were found to be

GC
R =

O(K+,C)×O(K−,C) D = 2, 10,
Sp(K+,C)× Sp(K−,C) D = 6.

(6.6)

We can also impose reality conditions independently for each chirality. But since Weyl-
compatibility implies that J (ε)

+ and J (ε)
− are either both real structures or both quaternionic

structures, the allowed combinations are quite restricted. In table 5 we have listed the
possible R-symmetry groups for orthogonal Weyl-compatible signatures.

6.1.3 Orthogonal Weyl-incompatible signatures

For orthogonal Weyl-incompatible signatures the complex vector-valued bilinear form
preserves chirality while the reality condition flips it. Therefore the extended spinor module
is of the form S⊗CK , but R-symmetry transformations can still act differently on the Weyl
spinor modules.
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In matrix notation, invariance of the real superbracket requires

ρ

(
R

(
λj+
λj−

))
= Rρ

(
λj+
λj−

)
. (6.7)

Since the ε-quaternionic structure flips chirality,

R∗
(

0 L

L 0

)
=
(

0 L

L 0

)
R. (6.8)

Using that the complex R-symmetry group acts diagonally, we obtain(
0 A∗L

B∗L 0

)
=
(

0 LB

LA 0

)
, (6.9)

which leads to

B = L−1A∗L. (6.10)

Thus, we see that

R =
(
A 0
0 L−1A∗L

)
, (6.11)

where A ∈ O(K,C) or Sp(K,C).
This is a reducible representation of O(K,C) or Sp(K,C), given by the direct sum of the

fundamental representation with a representation that is equivalent to the anti-fundamental
representation (complex conjugate of the fundamental representation). Using table 2, it
follows that the real R-symmetry group for orthogonal Weyl-incompatible signatures is,
O(K,C) ⊂ O(K,C)×O(K,C) in dimensions D = 2, 10, . . . (where both Majorana bilinear
forms are super-admissible) and Sp(K,C) ⊂ Sp(K,C)× Sp(K,C), in dimensions D = 6, . . .
(where both Majorana bilinear forms are anti-super-admissible). Note that due to the
Weyl-incompatible reality condition we are restricted to the case K+ = K− = K, and
that the complexifications of O(K,C) and Sp(K,C), considered as a real Lie groups, are
O(K,C)×O(K,C) and Sp(K,C)× Sp(K,C), respectively.

6.1.4 Isotropic Weyl-compatible signature

Previously we found that for isotropic signatures R-symmetry transformations take the form

R =
(
A 0
0 M−1(AT )−1M

)
. (6.12)

To simplify the following calculations we pass to the Lie algebra by setting A = ea and
R = er, so that (6.12) takes the form

r =
(
a 0
0 −M−1aTM

)
. (6.13)
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In isotropic signatures, the two Majorana bilinear forms have opposite superadmissibility
so that we need to consider both M = δ and M = J . We remark that we will see below
that the R-symmetry group only depends on whether the ε-quaternionic structure on CK is
a real or quaternionic structure, but is insensitive otherwise to the choice of M and L.

We now specialise to Weyl-compatible signatures, where the reality condition preserves
chirality, so that r must satisfy

r∗
(
L 0
0 L

)
=
(
L 0
0 L

)
r. (6.14)

For r given in (6.13) this implies

a = L−1a∗L, M−1aTM = L−1(M−1aTM)∗L. (6.15)

Rearranging the final equation in (6.15) we get

a = (MLM−1)−1a∗(MLM−1). (6.16)

For M = δ we obviously have MLM−1 = L, and the same is true for M = J for all possible
choices Id, Ĩ2r,2s, J for L. Therefore the only condition is

a = L−1a∗L. (6.17)

In Weyl-compatible signatures the possible choices for L are further restricted by the fact
that both ε-quaternionic structures on S have the same type.

Real structures on S. We first consider the case where S carries two real structures.
Then for M = δ we can have L = Id, Ip,q and for M = J we can have L = Id, Ĩ2r,2s.

For L = Id equation (6.17) directly tells us that a ∈ gl(K,R), and we will now show
that we obtain the same Lie algebra in all other cases. For L = Ip,q we see that

a = I−1
p,q a

∗Ip,q =⇒ a =
(
w ix

iy z

)
, (6.18)

where w is a p × p real matrix, z is q × q, x is p × q and y is q × p. We see that a is a
K × K matrix depending on K2 real numbers. Since the form of a is preserved under
matrix multiplication and hence under commutators, matrices of the form a define a
K2-dimensional real Lie subalgebra of gl(K,C) which on dimensional grounds must be
isomorphic to gl(K,R). As already mentioned we will give explicit maps between different
reality conditions later.

If M = J we need to consider L = Id and L = Ĩ2r,2s. For L = Id we see directly that
a ∈ gl(K,R). For L = Ĩ2r,2s we find that a must have the form

a =
(
W X

Y Z

)
, (6.19)
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whereW,X, Y, Z are K
2 ×

K
2 matrices that obey V = Ir,sV

∗Ir,s for V = W,X, Y, Z. Therefore
all four blocks are of the form

V =
(
V1 iV2
iV3 V4

)
. (6.20)

By the same reasoning as in the previous case, matrices of this structure form a real Lie
subalgebra of gl(K,C) which is isomorphic to gl(K,R) for dimensional reasons. This means
that r ∈ gl(K,R) in isotropic Weyl-compatible signatures with real structures, regardless of
the choice of M and L. The R-symmetry group is GL(K,R).

Quaternionic structures on S. In signatures where S has two quaternionic structures
the only choice for L is L = J . Matrices a ∈ gl(K,C) which satisfy (6.17) have the form

a =
(

x y

−y∗ x∗

)
, x, y ∈MK

2
(C). (6.21)

This defines the Lie subalgebra u∗(K) ∼= gl(K2 ,H) of gl(K,C).
Upon exponentiation these matrices retain their form,

A = ea =
(
X Y

−Y ∗ X∗

)
, X, Y ∈ GL

(
K

2 ,C
)
. (6.22)

The matrix r is determined by a and provides a reducible representation of u∗(K). The
R-symmetry group is U∗(K).

6.1.5 Isotropic Weyl-incompatible signatures

The last case are signatures where both the complex bilinear form and the reality condition
pair opposite chiralities. Computations are conveniently carried out at the group level. To
commute with the reality condition, R must obey

R∗
(

0 L

L 0

)
=
(

0 L

L 0

)
R. (6.23)

Substituting in the form (6.12) that R takes in isotropic dimensions, this becomes(
0 A∗L

M−1(A†)−1ML

)
=
(

0 LM−1(AT )−1M

LA 0

)
. (6.24)

This is two copies of the equation

A†(ML)A = (ML) , (6.25)

which defines the pseudo-unitary group U(p, q) where (p, q) is the signature of the matrix
ML. For some choices of M and L their product ML will not be diagonal, so that matrices
of the form A provide a non-standard matrix realization of this group. Let us consider all
possible combinations in turn. For M = δ the signature depends entirely on L and is (K, 0)
for L = Id, (p, q) for L = Ip,q and (k, k) for L = J (where K = 2k). If either M = J or
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M L GR

WC δ δ GL(K,R)
δ Ip,q GL(K,R)
δ J U∗(K)
J δ GL(K,R)
J Ĩ2r,2s GL(K,R)
J J U∗(K)

M L GR

WI δ δ U(K)
δ Ip,q U(p, q)
δ J U(k, k)
J δ U(k, k)
J Ĩ2r,2s U(k, k)
J J U(K)

Table 6. In isotropic dimensions the R-symmetry groups are real forms of GL(K,C). Depending
on whether the signature is Weyl-compatible (WC) or Weyl incompatible (WI), this table lists the
R-symmetry groups for all possible combinations of a bilinear form M with a reality condition L.
Note that K = 2k = 2r + 2s = p+ q.

L = J (but not both), the matrix ML is antisymmetric and therefore has purely imaginary
eigenvalues. It can be diagonalized by a unitary transformation, and after pulling out a
factor i it defines a Hermitian form. The signature of this Hermitian form is (k, k) for
L = Id and L = Ĩ2r,2s, and (K, 0) when L = J . In the last two cases we have made a choice
of overall sign, which is conventional since U(p, q) ∼= U(q, p). Table 6 lists the R-symmetry
groups for isotropic signatures.

6.2 Real supersymmetry algebras and their R-symmetry groups

In even dimensions R-symmetry groups vary much more than in odd dimensions, since
we have to distinguish between orthogonal and isotropic dimensions, and between Weyl-
compatible and Weyl-incompatible signatures. In this section we provide tables for easy
access, which expose patterns and provide information that one needs in applications.
The first set of tables collects the supersymmetry algebras with a minimal number of
supercharges. Recall that our convention is that N , and N± count supersymmetries in
multiples of Majorana and Majorana-Weyl spinors, irrespective of whether such spinors, or a
supersymmetry algebra based on such spinors, exist in the signature under consideration. In
the next section we will show that the supersymmetry algebras constructed by our method
are classified, up to the relative sign between α+ and α− for orthogonal Weyl-compatible
algebras, by their R-symmetry group. Therefore our tables provide a classification of
supersymmetry algebras and not only of R-symmetry groups.

6.2.1 (1, 0) or (0, 1) algebras

In table 7 we list those signatures in even dimensions where the minimal superalgebras have
dS/2 real supercharges, where dS is the complex dimension of the complex spinor module S.
In this case the supercharges form a single Majorana-Weyl spinor. This is only possible in
orthogonal Weyl-compatible signatures, which can be read off from table 2, which in addition
must admit Majorana-Weyl spinors, that is t − s must be 0 modulo 8, or, equivalently
(ε+, ε−) = (1, 1) in table 1. We denote these algebras as (N+,N−) = (1, 0), (0, 1). The real
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D (0, D) (1, D − 1) (2, D − 2) (3, D − 3) (4, D − 4) (5, D − 5) (6, D − 6)
2 — Z2 —
4 — — — — —
6 — — — — — — —
8 — — — — — — —
10 — Z2 — — — Z2 —
12 — — — — — — —

Table 7. In this table we list chiral (N+,N−) = (1, 0), (0, 1) supersymmetry algebras, where the
supercharges form a single Majorana-Weyl spinor (dS/2 real supercharges, where dS = dimC S). Where
such algebras exist, they are represented by their discrete R-symmetry group O(1) ∼= Z2. A dash
means no such algebra can be defined.

R-symmetry group is the discrete group O(1) = Z2, the same as for algebras based on a
single Majorana spinor in odd dimensions.

In 10 dimensions the only signatures that allow a supersymmetry algebra with a single
Majorana-Weyl supercharge are (1,9) and (5,5) (as well as (9,1)). In Lorentz signature these
algebras are realized by type-I and heterotic string theories and the corresponding super-
gravity theories (which are usually denoted N = 1). Note that in many signatures which
admit Majorana-Weyl spinors, no algebra based on a single Majorana-Weyl spinor exists.
In particular, there are no (1, 0) and (0, 1) algebras in isotropic dimensions D = 4, 8, 12, . . ..
Moreover, even in orthogonal dimensions, signatures where Majorana-Weyl spinors exist,
such as (t, s) = (3, 3), may not admit (1, 0) and (0, 1) algebras, because none of the two
Majorana bilinear forms are super-admissible. In this case the bilinear form on CK± is anti-
symmetric, which forces K± to be even and prevents one to define supersymmetry algebras
based on a single irreducible spinor module. The corresponding orthogonal dimensions are
D = 6, 14, . . ., with complex R-symmetry groups Sp(K+,C)× Sp(K−,C) in table 2.

6.2.2 (0, 2), (1, 1), (2, 0) and N = 1 algebras

We now turn to even-dimensional signatures which admit supersymmetry algebras with
dS real supercharges, which form a Majorana spinor or a Weyl spinor. The possible R-
symmetry groups are listed in table 8. Chiral (2, 0) or (1, 1) supersymmetry algebras only
exist in orthogonal dimensions D = 2, 6, 10, . . ., while supersymmetry algebras in isotropic
dimension D = 4, 8, 12, . . . are necessarily non-chiral and thus denoted N = 1.

In orthogonal dimensions, the Majorana bilinear forms are either both super-admissible
(D = 2, 10, . . .) or both are anti-super-admissible (D = 6, . . .). In Weyl-compatible signatures
the ε-quaternionic structures J (ε)

± on S± are either both real or both quaternionic. For
orthogonal Weyl-compatible signatures with a super-admissible Majorana bilinear forms
and J (ε)

± both giving real structures we can define a (1, 1) superalgebra with R-symmetry
Z2 × Z2 or (2, 0) superalgebras with R-symmetry group O(1, 1) or O(2). If, however, we
have super-admissible Majorana bilinear forms, but J (ε)

± are quaternionic structures on

– 42 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
3

D (0, D) (1, D − 1) (2, D − 2) (3, D − 3) (4, D − 4) (5, D − 5) (6, D − 6)

2 Z2 O(1, 1),O(2),Z2 × Z2 Z2

4 — U(1) SO(1, 1) U(1) —
6 — SU(2) — SU(1, 1) — SU(2) —
8 SO(1, 1) U(1) — U(1) SO(1, 1) U(1) —
10 Z2 O(1, 1),O(2),Z2 × Z2 Z2 SO(2) Z2 O(1, 1),O(2),Z2 × Z2 Z2

12 — U(1) SO(1, 1) U(1) — U(1) SO(1, 1)

Table 8. R-symmetry groups for N = 1 and (N+,N−) = (2, 0), (1, 1), (0, 1) supersymmetry
algebras with dS real supercharges in even dimensions. A dash indicates signatures where no such
supersymmetry algebra exists.

S±, then we can only define a (2, 0) superalgebra with SO(2) R-symmetry.24 When the
Majorana bilinear forms are anti-super-admissible we can only define a (2, 0) algebra, with
R-symmetry group given by SU(2) if J (ε)± are quaternionic structures or SU(1, 1) if they
are real structures.

Orthogonal Weyl-incompatible signatures can only have a (1, 1) superalgebra which
therefore needs a super-admissible Majorana bilinear form. The result is a Z2 R-symmetry
group because the reality condition links the R-symmetry transformations on the two Weyl
spinor modules.

Consider finally the non-chiral N = 1 algebras in isotropic dimensions. Here the
R-symmetry group is SO(1, 1) in isotropic Weyl-compatible signatures, and U(1) in isotropic
Weyl-incompatible signatures.

Let us consider a few examples for illustration. In signature (1,9) the supersymmetry
algebra with Z2 × Z2 R-symmetry is that of Type IIA or IIA* theories. These have the
same R-symmetry group but opposite relative signs α+ = ±α−, as is further discussed in
section 8.1. The supersymmetry algebra with O(2) R-symmetry is realized in type-IIB
supergravity and string theory, and that with O(1, 1) R-symmetry in type-IIB*.

In signature (1, 5), which is orthogonal and Weyl compatible, the entry SU(2) represents
the minimal supersymmetry algebra, which is a chiral (2, 0) algebra based on a single Weyl
spinor, which for this signature is the same as a real semi-spinor (S± ∼= S±, S+ 6∼= S−). This
algebra is usually denoted (1, 0) in the literature, but with our conventions the notation
(1, 0) is reserved for algebras based on Majorana-Weyl spinors, which do not exist in this
signature. In four dimensions we see the standard minimal supersymmetry algebra in
Lorentz signature (1, 3) or (3, 1) with R-symmetry group U(1). The minimal supersymmetry
algebra in neutral signature (2, 2) has R-symmetry group SO(1, 1). All these algebras are
based on Majorana spinors. Note that while Majorana-Weyl spinors exist in signature (2, 2),
there is no (N+,N−) = (1, 0) supersymmetry algebra, since four is an isotropic dimension
and the restriction of the N = 1 superbracket to Majorana-Weyl spinors is degenerate, as
already observed in [17].

24The quaternionic structure fixes the orientiation of the auxiliary space, which reduces the R-symmetry
group from O(2) to SO(2).
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D (0, D) (1, D − 1) (2, D − 2) (3, D − 3) (4, D − 4) (5, D − 5) (6, D − 6)

2 O(N ,C) O(p+, q+)×O(p−, q−) O(N ,C)
4 U∗(N ) U(p, q) GL(NR) U(p, q) U∗(N )
6 Sp(N ,C) USp(N+)×USp(N−) Sp(N ,C) X Sp(N ,C) USp(N+)×USp(N−) Sp(N ,C)
8 GL(N ,R) U(p, q) U∗(N ) U(p, q) GL(N ,R) U(p, q) U∗(N )
10 O(N ,C) O(p+, q+)×O(p−, q−) O(N ,C) SO∗(N+)× SO∗(N−) O(N ,C) O(p+, q+)×O(p−, q−) O(N ,C)
12 U∗(N ) U(p, q) GL(N ,R) U(p, q) U∗(N ) U(p, q) GL(N ,R)

Table 9. R-symmetry groups possible in even dimension with any signature. Note that p++q+ = N+,
p− + q− = N− and N+ + N− = 2N . X = (Sp(N+,R) or USp(2r+, 2s+)) × (Sp(N−,R) or
USp(2r−, 2s−)).

Any signatures without an entry in this table have a minimal superalgebra with 2dS real
supercharges, that is the supercharges form a Dirac spinor. With our convention these are
(2,2) superalgebras in orthogonal dimensions, and N = 2 algebras in isotropic dimensions.
For example, in spacetime signature (t, s) = (0, 4) the minimal supersymmetry algebra is
the N = 2 algebra.

6.2.3 General (N+,N−)

We conclude this section by providing further tables for reference. Table 9 lists the R-
symmetry groups for general extended supersymmetry algebras in even dimensions and
arbitrary signature. This is followed by a master table, table 10, which combines our results
on R-symmetry groups in even and odd dimensions.

7 Isomorphisms and classification

So far we have shown that we can construct a real supersymmetry algebra given the
following data: a complex bilinear form C ⊗M on the complex extended spinor module
gC1 = S⊗ CK , a real structure ρ on this space, which is determined by an ε-quaternionic
structure B on the complex spinor module S, and a map L on the auxiliary space CK , which
determines a real form of the complex R-symmetry group. In orthgonal Weyl-compatible
signatures we can choose these data independently for the chiral sectors. While algebras
with distinct R-symmetry groups cannot be isomorphic, there is, to our knowledge, no
rigorous statement asserting the converse, that is, that supersymmetry algebras are classified
by their R-symmetry groups. Still, by inspection of our classification tables, we observe
that different sets of data (C,M,B,L) on gC1 often lead to the same R-symmetry group,
and previous experience tells one that in such cases one can often construct isomorphisms
between the corresponding supersymmetry algebras. See in particular [17] on which we
will now elaborate to show that, with one qualification applying to the orthogonal Weyl-
compatible case, the supersymmetry algebras which we have constructed in this paper are
classified by their R-symmetry groups. We proceed by discussing each of the five cases in
turn, and investigate which isomorphisms need to exist in order to relate all supersymmetry
algebras with the same R-symmetry group to each other. Details of these isomorphisms are
given in appendix E.
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7.1 Odd dimensions

In odd dimensions there is only one inequivalent choice for C, which fixes M . Thus complex
supersymmetry algebras with a given odd part gC1 are unique, and in particular classified
by their R-symmetry group. For real supersymmetry algebras we have to pick a reality
condition, which is defined by a choice of L which is compatible with our choice of B. Since
B is unique, real supersymmetry algebras are classified by the choice of L, that is by their
R-symmetry group.

7.2 Orthogonal, Weyl-compatible signatures

In orthogonal dimensions, C± are either both super-admissible or both are not, which
means that M is fixed by the dimension. It remains to be seen whether the choice of
C± has an effect. As far as complex supersymmetry algebras are concerned, showing
that C± lead to isomorphic supersymmetry algebras implies that these are classified by
their R-symmetry group. For real supersymmetry algebras we have to choose a B-matrix.
In Weyl-compatible signatures B± are either both real structures or both quaternionic
structures, and therefore they combine with the same set of L’s to define a real structure.
To show that real supersymmetry algebras are classified by the choice of L, we need to
show that we can replace B± by B∓ in the reality condition without changing the complex
bilinear form. We also need to show that we can replace C± by C∓ without changing the
reality condition.

To be precise, an additional complication arises because there are two independent
phase factors α± in the reality conditions for the two chiral sectors. As we discussed before,
imposing reality of the superbracket fixes these factors to be either ±1 or ±i. While the
overall sign of the pair α± corresponds to an isomorphism of supersymmetry algebras, the
relative sign distinguishes non-isomorphic supersymmetry algebras, in particular the IIA
and IIA∗ algebras in ten dimensions, compare section 8.1. This is a particular feature of the
orthogonal Weyl-compatible case, where both the superbracket and the reality condition
are compatible with chirality. Therefore the best statement we can aim for is that real
supersymmetry algebras are classified by their R-symmetry group together with a choice of
the relative sign between α+ and α−.

As shown in appendix E the R-transformation (E.1) maps the orthogonal bilinear forms
C± ⊗M to one another, while preserving the reality condition up to an irrelevant overall
phase factor. Moreover, (A.25) implies that in orthogonal dimensions B±γ∗ = ∓iB∓ and
therefore the reality condition (λi±)∗ = α±B−λ

j
±Lji is equivalent to the reality condition

(λi±)∗ = ±iα±B+λ
j
±Lji. This shows that the choice of B± only matters to the extent

that it is correlated with the relative sign between α+ and α−. In other words the real
supersymmetry algebra only depends on the choice of L, that is on its real R-symmetry
group, and on the relative sign between α+ and α−. For complex supersymmetry algebras
the choice of reality conditions and thus of relative signs is irrelevant, and we note as a
corrolary that complex supersymmetry algebras in orthogonal dimensions are classified by
their R-symmetry groups.
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7.3 Orthogonal, Weyl-incompatible signatures

Here we again have two options C± for C, while M is fixed by dimension. Concerning
reality conditions, one of B± defines a real, the other a quaternionic structure and therefore
the choice of B is determined by L being a real or quaternionic structure. We have shown
in section 6.1.3 that the R-symmetry group is O(K,C) if C± are super-admissible, and M
is symmetric, while it is Sp(K,C) if C± are not super-admissible and M is antisymmetric.
Since the R-symmetry group is determined by the dimension, we need to show that all pos-
sible choices of C,L are equivalent. In appendix E we show that the R-transformation (E.1)
exchanges the orthogonal bilinear forms, while preserving Weyl-incompatible reality condi-
tions. Moreover, we show in appendix E that we can use the transformation SL−1 defined
in (E.11) to map any reality condition to the one with L = Id. For a given M , the canonical
choices for L were specified in section 4.2. For these L-matrices, the bilinear form is invariant
under SL−1 , or, in the case M = J , L = I1,1 anti-invariant, which can be compensated by
an overall phase in the reality condition.

7.4 Isotropic, Weyl-compatible signatures

In isotropic dimensions C± have opposite super-admissibility properties. The choice of C
determines the choice of M , which for complex superalgebras implies that they are classified
by their R-symmetry group. If the signature is Weyl-compatible, then B± either both define
a real or both define a quaternionic structure, and are thus compatible with the same set
of L’s. According to our classification, there are two possible R-symmetry groups: if L
(and thus B±) defines a real structure, the R-symmetry group is GL(K,R), if L defines a
quaternionic structure, then the R-symmetry group is U∗(K). Thus the R-symmetry group
is determined by the signature. According to table 6 there are four combinations of (M,L)
with R-symmetry group GL(K,R) and two combinations of (M,L) with R-symmetry group
U∗(K). To show that real supersymmetry algebras are classified by their R-symmetry
groups the following statements are sufficient:

1. For L = δ and L = J the bilinear forms C ⊗ δ and C ′ ⊗ J , define isomorphic
supersymmetry algebras, where C denotes the super-admissible C-matrix and C ′

the non-super admissible C-matrix. This can be done using the transformation SJ
defined in appendix E.2, which exchanges the bilinear forms while preserving L = δ

and L = J .

2. For C ⊗ δ, the reality conditions with L = δ and L = Ip,q define isomorphic super-
symmetry algebras, while for C ′ ⊗ J the reality conditions with L = δ and L = Ĩ2r,2s
define isomorphic supersymmetry algebras. This can be done using the transformation
T , defined in appendix E.3 which maps the L’s as required, while preserving the
corresponding bilinear forms.

3. The R-transformation, defined in appendix E.1 exchanges B± without changing the
bilinear form. Therefore it does not matter which B we use in the reality condition.
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7.5 Isotropic, Weyl-incompatible signatures

In this case C± have opposite super-admissibility and B± have opposite ε-type. Therefore
(C,B) are determined by (M,L). By inspection of table 6 there are seven distinct combina-
tions of (M,L) which correspond to only three distinct types of R-symmetry groups, U(K),
U(p, q), with p 6= q, and U(k, k). To show that real supersymmetry algebras are classified
by their R-symmetry groups, we need to show that

1. R-symmetry group U(K): real supersymmetry algebras defined using (M,L) =
(δ, δ), (J, J) are isomorphic.

2. R-symmetry group U(k, k): real supersymmetry algebas defined using (M,L) =
(δ, J), (δ, Ik,k), (J, δ), (J, Ĩ2r,2s) are isomorphic.

These statements can be proved using the transformations SJ , F,G as indicated in the
following diagram:

(δ, δ) (δ, J) (δ, Ik,k) (δ, Ip,q), p 6= q

(J, J) (J, δ) (J, Ĩ2r,2s)

U(K) U(k, k) U(p, q), p 6= q

SJ SJ

F

G (7.1)

Details are given in appendix E.4.

7.6 Remarks on the general classification problem

In this paper we have constructed Poincaré Lie superalgebras with odd part g1 by specifying
a discrete set (C,M,B,L) of data, which is subject to certain consistency conditions. Within
this construction we have shown that the resulting supersymmetry algebras are classified
by their R-symmetry groups, together with a choice of the relative sign between α+ and
α− for orthogonal Weyl-compatible algebras. However, this does not necessarily provide
a classification of N -extended Poincaré Lie superalgebras in arbitrary signature up to
isomorphism. The general classification problem can be stated as follows. Firstly, for a
given g1 one needs to find the space of all superbrackets, that is of symmetric, vector-valued
Spin(t, s)-equivariant bilinear forms. This problem was solved in [22], where explicit bases
in terms of super-admissible bilinear forms have been constructed. Secondly, one needs a
criterion which allows one to decide when two symmetric, vector-valued Spin(t, s)-equivariant
bilinear forms define isomorphic Poincaré Lie superalgebras. This question is answered
by Theorem 1 of [17], which specifies necessary and sufficient conditions for two Poincaré
Lie superalgebras to be isomorphic. Up to checking certain discrete transformations, the
classification up to isomorphism amounts to identifying the orbits of the Schur group on the
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space of symmetric vector-valued Spin(t, s)-equivariant bilinear forms. The third step is the
classification of Schur group orbits for the spaces of superbrackets known from [22] (together
with checking for additional identifications by elements of Pin(t, s)\Spin(t, s), see [17] for
details). Due to the mod 8 periodicity of the table of Clifford algebras, which imprints itself
on the data defining supersymmetry algebras, this is a finite problem. The classification
was carried out for algebras based on the complex spinor module S (N = 2) in five and
four space-time dimensions in [16, 17]. In this case the algebras in a given signature are
indeed classified by their R-symmetry groups, which is encouraging, and this may well be
true in general. However, there are potential subtleties which make the full classification
problem somewhat involved. Non-degenerate superbrackets correspond to open orbits of
the Schur group on the space of superbrackets, and the R-symmetry group is the stabilizer
group of the orbit. It may happen that two connected open orbits have the same stabilizer,
in which case one needs to carefully check whether there exists a discrete transformation
relating these two orbits which provides an isomorphism. Comparing to the work presented
in the paper this relates to the question whether the discrete data we use samples all orbits
of the Schur group. A priori, there could be open orbits with no representatives within our
construction, though we have no evidence that this is the case.

8 Applications to type-II string theories in D = 10, 9, 4, 3

8.1 N = 2 supersymmetry in signature (1, 9) and type-II string theories

We start in signature (1, 9) which is orthogonal Weyl-compatible, with two super-admissible
bilinear forms C± and two real structures B± on S. This signature admits two (1, 1) algebras
with R-symmetry Z2 × Z2, which are distinguished by the relative sign α− = ±α+. We can
choose either of the C± to define the Majorana bilinear form and, independently, either of
the B± to define a reality condition, but all choices lead to equivalent real superbrackets.
For definiteness we choose C+, B+ in the following. The complex vector-valued bilinear
form is

(Γµλ)TC+χ = (Γµλ+)TC+χ+ + (Γµλ−)TC+χ− , (8.1)

where λ±, χ± ∈ S±. Following the conventions of appendix F we denote the ten-dimensional
Dirac matrices by Γµ. To select the type-IIA or type-IIA∗ algebra, we impose the reality
conditions

(λ+)∗ = αB+λ+, (λ−)∗ = ±αB+λ− . (8.2)

The + sign is the standard Majorana condition, while the − sign corresponds to a twisted
Majorana condition which selects the type-IIA∗ algebra. We remark that with our conven-
tions the complex bilinear form is fixed, and type-IIA and type-IIA∗ are distinguished by
their reality conditions. One could equivalently impose the same reality condition, but define
the type-IIA∗ theory using a modified complex superbracket. This amounts to λ− → iλ−,
and we will come back to this option below. For reference, let us also write down how the
vector-valued bilinear form (8.1) translates into anti-commutators of supercharges:

{Q+,α, Q+,β} = (ΓµC+)αβPµ , {Q−,α′ , Q−,β′} = (ΓµC+)α′β′Pµ , (8.3)
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where the spinor indices α, β, . . . and α′, β′, . . . refer to S±. In the following we will prefer
to work with vector-valued bilinear forms as this allows us to suppress spinor indices.

Signature (1, 9) also admits chiral N = 2 algebras, and for definiteness we take
(N+,N−) = (2, 0). The complex superbracket takes the form

(Γµλi+)TC+χ
j
+Mji, Mij = δij ,

and the reality conditions are

(λi+)∗ = αB+λ
j
+Lji, Lij =

(
1 0
0 ±1

)
. (8.4)

Depending on the choice of the sign in Lij , we obtain the type-IIB algebra with R-symmetry
group O(2) or the type-IIB∗ algebra with R-symmetry group O(1, 1).

As is well known, the type-IIA/IIB algebras are realized in the type-IIA/IIB string
theories, whose massless sectors are described by type-IIA/IIB supergravity, and these two
string theories are related by T-duality. Moreover, it was shown in [1] that timelike T-duality
maps type-IIA/IIB string theory to type-IIB∗/IIA∗ string theory. The corresponding type-
II∗ supergravity theories differ from their type-II counter parts by a sign flip of the kinetic
terms for all Ramond-Ramond fields, as well as by factors of i in their fermionic terms.

Apart from showing immediately the (potential) existence of type-II∗ theories, our
formalism also makes it straightforward to show how these algebras are related to one
another by T-duality. Two superstring theories are related by T-duality if theory A on
the background Rt′,s′ × S1

R is identical to theory B on the background Rt′,s′ × S1
1/R, where

the radius R of the circle is measured in string units, and t′ + s′ = 9. To include timelike
T-duality, we allow the circle to be timelike. The ten-dimensional theories A,B which arise
in the two decompactification limits R→∞ and R′ = 1/R→∞ are then also said to be
T-dual to each other. Note that this does not imply that they are equivalent as theories on
Rt,s, t+s = 10. In particular, type-IIA and type-IIB string theory are distinct as theories on
R1,9, and in particular have supersymmetry algebras which are not isomorphic to each other.
Thus at the level of supersymmetry algebras T-duality is a map between supersymmetry
algebras, but in general is not an isomorphism. It relates ten-dimensional supersymmetry
algebra which upon dimensional reduction ‘contract’ to the same nine-dimensional algebra,
a fact that we will explore further in section 8.3.

In the following we use that in theories of closed strings T-duality can be viewed as
a ‘chiral reflection,’ which only acts on the (say) the right-moving degrees of freedom. In
particular, on a ten-dimensional spinor λ, T-duality acts by

T : λ+ → λ̃+ = λ+ , λ− → λ̃− = Tλ−, T = βΓ∗Γ9/0, |β| = 1, (8.5)

with Γ9 for spacelike and Γ0 for timelike T-duality. We have introduced an arbitrary phase
β which will be used later to interpolate between different conventions for supersymmetry
algebras.

We start from the type-IIA/IIA∗ algebras which are based on a spinor λ subject to the
reality condition (8.2). We note that T-duality maps S+ ⊕ S− → S+ ⊕ S+, and therefore
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the image of a non-chiral type-IIA/IIA∗ supersymmetry algebra will be a chiral (2, 0)
supersymmetry algebra.

The matrix T is unitary for both the spacelike and the timelike case. To verify that it
acts as a reflection in the 9-direction and in the 0-direction, respectively, we compute

TΓµT−1 =
{
−Γµ , for µ = 9/0 ,

Γµ , for µ 6= 9/0 ,

}
= Γ̃µ . (8.6)

Since T-duality maps the matrices Γµ to a new set Γ̃µ, this gives rise to new matrices A
and C:25

A→ Ã = T †,−1AT−1 = TAT † , C+ → C̃+ = T T,−1C+T
−1 . (8.7)

We compute:26

spacelike T-duality: C̃+ = 1
β2C+ , Ã = A , B̃+ = (C̃+Ã

−1)T = 1
β2B+ ,

timelike T-duality: C̃+ = − 1
β2C+ , Ã = −A , B̃+ = (C̃+Ã

−1)T = 1
β2B+ .

(8.8)

Thus the difference between spacelike and timelike T-duality is a relative sign between the
transformation behaviour of C+ and B+, which induces a corresponding sign in the relation
between the complex bilinear form and the reality condition.

To see this explicitly, we express λ−, χ− in terms of the transformed spinors λ̃−, χ̃− in
the bilinear form

(Γµλ−)TC+χ− = (ΓµT−1λ̃−)TC+T
−1χ̃− = (Γ̃µλ̃−)TT−1,TC+T

−1χ̃−

= (Γ̃µλ̃−)T C̃+χ̃− = ± 1
β2 (Γ̃µλ̃−)TC+χ̃− .

The upper sign refers to spacelike, the lower sign to timelike T-duality.
Since the transformed spinors both have positive chirality, we prefer to use the notation

(λ1
+, λ

2
+) instead of (λ̃+, λ̃−), and we also relabel Γ̃µ → Γµ, though this change needs to

be taken into account in the reality condition satisfied by λ2
+, see below. Combining both

chiral sectors, the new complex vector-valued bilinear form is

(Γµλ1
+)TC+χ

1
+ ±

1
β2 (Γµλ2

+)TC+χ
2
+ = (Γµλi+)TC+χ

j
+Mji, Mij =

(
1 0
0 ± 1

β2

)
,

with +/− for spacelike/timelike T-duality. The reality condition (8.2) is mapped to the
new reality condition

(λ̃i+)∗ = α(i)B̃+λ̃
i
+ = αB+λ̃

j
+Lji, Lij =

(
1 0
0 ε 1

β2

)
, (8.9)

25A is the matrix defining the Dirac Hermitian sesquilinear form. In signature (1, D − 1) we take A = Γ0.
26The sign in the relation for C+ depends on that we have chosen C+ rather than C−, since we need to

make use of the relation τ+ = −1.
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where we used that B̃+ = B+ when acting on λ1
+ = λ̃+, while B̃+ = 1

β2B+ when acting
on λ2

+ = λ̃−. To account for the phases in the original reality condition (8.2) we have set
α(1) = α+ = α, α(2) = α− = εα, with ε = 1 if we start with type-IIA and with ε = −1 if we
start with type-IIA∗.

There are two natural choices for the phase β.

1. We can choose β such that the complex bilinear form has the canonical form Mij = δij ,
which is the convention used in this paper. This requires β = ±1 for spacelike and
β = ±i for timelike T-duality. In this case the real supersymmetry algebras are
distinguished by their reality conditions:

(Mij) =
(

1 0
0 1

)
, (Lij) =

(
1 0
0 ±ε

)
. (8.10)

This shows that the type-IIA algebra, ε = 1, is mapped by spacelike T-duality to
the type-IIB algebra with R-symmetry group O(2), and by timelike T-duality to the
type-IIB∗ algebra with R-symmetry group O(1, 1). Similarly, the type-IIA∗ algebra,
ε = −1, is mapped to the type-IIB∗ algebra by spacelike T-duality and to the type-IIB
algebra under timelike T-duality. In this convention it is manifest that the four real
algebras are different real forms of two complex algebras, because we have imposed
that the complex superbrackets assume a standard form, that is Mij = δij .

2. We can choose β such that the reality conditions is a standard Majorana condition,
Lij = δij , which requires β2 = ε. In this case the real supersymmetry algebras are
distinguished by their bilinear form, and for the IIB∗ theories the bilinear form is
twisted by a relative minus sign:

(Mij) =
(

1 0
0 ±ε

)
, (Lij) =

(
1 0
0 1

)
(8.11)

This convention was used when the type-IIB* algebra was originally introduced as a
twisted version of the IIB algebra [1].

8.2 N = 2 supersymmetry in general ten-dimensional signatures

By inspection of table 8, there are three types of signature for ten-dimensional N = 2
algebras.

• In signatures (1, 9), (5, 5) and (9, 1) there are three possible R-symmetry groups
Z2 × Z2,O(2),O(1, 1). These are orthogonal Weyl-compatible signatures with two
real structures on S. We have discussed the case (1, 9) before. Signature (9, 1) can
be viewed as signature (1, 9) with a mostly minus convention for the metric.27 Our
classification shows that in neutral signature (5, 5) algebras of type IIA/IIA∗/IIB/IIB∗
exist and are related by T-duality. The existence of the corresponding string theories
is known from [2].

27While the Clifford algebras are not the same, the resulting spin representations are isomorphic and we
have not found any indication that signatures (1, 9) and (9, 1) give rise to different physics.
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• In signature (0, 10), (2, 8), (4, 6), (6, 4), (8, 2), (10, 0) the unique R-symmetry group is
Z2. These are orthogonal Weyl incompatible signatures which only admit (1, 1) alge-
bras. The existence of type-IIA string theories in these signatures was established in [2].

• In signature (3, 7) and (7, 3) the unique R-symmetry group is SO(2). These are
orthogonal, Weyl-compatible signatures with two quaternionic structures on S. This
implies that the only N = 2 algebras are chiral (2, 0) (or (0, 2)) algebras. The existence
of type-IIB string theories in these signatures was established in [2].

In summary, the network of ten-dimensional type-II string theories described in [2] exhausts
all ten-dimensional N = 2 supersymmetry algebras. To relate type-II string theories across
signatures, one needs to combine spacelike and timelike T-duality with S-duality. T-duality
changes the space-time signature if the string world-sheet has Euclidean signature. S-duality
is needed to map type-IIB∗ string theory to type-IIB’ string theory. This exchanges the
fundamental string with the E2-brane, thus providing a fundamental string with Euclidean
world-sheet. Since we only consider the supersymmetry algebras, which do not distinguish be-
tween type-IIB∗ and type-IIB’, we can establish the relation between ten-dimensional N = 2
algebras in different signatures by relating them to the same nine-dimensional N = 2 algebra.

8.3 N = 2 supersymmetry in nine dimensions

‘Pure’, that is spacelike and timelike T-dualities, arise whenever after compactification
over space or over time, the limit R→ 0 corresponds to an alternative decompactification
limit R′ = 1/R → ∞. At the level of the supersymmetry algebras this requires that the
two ten-dimensional supersymmetry algebras give rise, by compactification, to the same
nine-dimensional supersymmetry algebra. Since ten-dimensional theories in signatures (t, s)
and (t− 1, s+ 1) can reduce to the same theory in signature (t− 1, s) by applying timelike
and spacelike reduction, respectively, this opens up the possibility of ‘mixed’ T-dualities,
where one reduces over time and decompactifies over space, or vice versa. Our formalism
gives a uniform description of superymmetry algebras across dimensions and signatures,
and allows to work out universal formulae for the spacelike and timelike reduction of these
algebras. We have collected the relevant formulae in appendix F. Using this machinery it is
straightforward to work out which of the ten-dimensional N = 2 algebras reduce to the
same nine-dimensional algebra, and are thus related by a pure (signature preserving) or
mixed (signature changing) T-duality.

8.3.1 Nine-dimensional N = 2 supersymmetry algebras

We start by surveying nine-dimensional N = 2 supersymmetry algebras. In nine dimensions
the Majorana bilinear form on S is super-admissible, so we use a symmetric bilinear form on
CK , thus leading to R-symmetry groups that are real forms of O(K,C). The two Majorana
bilinears in ten dimensions are based on the two ten-dimensional charge conjugation matrices
C

(10)
± , which have invariants (σ, τ) = (∓1,∓1). The nine-dimensional charge conjugation

matrix C(9) has invariants (σ, τ) = (+1,+1). In 10D we will use C(10)
− in this section

as this turns out to be convenient, and we know that both choices define the same real
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Signature (0, 9) (1, 8) (2, 7) (3, 6) (4, 5)
R-sym. Group O(1, 1) or O(2) O(1, 1) or O(2) SO(2) SO(2) O(1, 1) or O(2)

Table 11. N = 2 R-symmetry groups in nine dimensions, the R-symmetry group for (s, t) is the
same as (t, s).

supersymmetry algebra. The nine-dimensional N = 2 algebras and their R-symmetry
groups are listed in table 11.

There are two types of nine-dimensional signatures.

• In signatures (0, 9), (1, 8), (4, 5), and those signatures obtained by flipping t↔ s, the
complex spinor module S has an invariant real structure, which allows one to impose
a standard Majorana condition with R-symmetry group O(2) or a twisted Majorana
condition with R-symmetry group O(1, 1).

• In signatures (2, 7), (3, 6) and those signatures obtained by flipping t↔ s, the complex
spinor module S carries an invariant quaternionic structure, which allows one to impose
a symplectic Majorana condition. In this case the R-symmetry group is SO(2).

Explicitly, the reality conditions are:

(λi)∗ = αB(t,s)λi =⇒ GR = O(2), (8.12)
(λi)∗ = αB(t,s)λjηji =⇒ GR = O(1, 1), (8.13)
(λi)∗ = αB(t,s)λjεji =⇒ GR = SO(2). (8.14)

8.3.2 Reduction of Clifford algebras

Next, we give the explicit relations between ten- and nine-dimensional quantities. We
suppress most details, which are straightforward to work out using appendix F. The basis
for the ten-dimensional Clifford algebra is Γµ within which we embed the nine-dimensional
gamma matrices, γµ, according to

Γµ = γµ ⊗ σ1, Γ10 = Id⊗ σ2 or Γ0 = iId⊗ σ2 . (8.15)

The Majorana bilinear forms on the respective complex spinor modules are related by

C
(10)
− = C(9) ⊗ σ1. (8.16)

The 10D chiral projection matrix Γ∗ = (−i)t+D
2 Γ1 . . .Γ10 decomposes as

Γ∗ = 1⊗ σ3. (8.17)

In non-chiral type-IIA theories we have two spinors of opposite chirality, denoted λ±,
which decompose into nine-dimensional spinors ψ1 and ψ2 as

λ+ = ψ1 ⊗
(

1
0

)
, (8.18)

λ− = ψ2 ⊗
(

0
1

)
. (8.19)
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In chiral type-IIB theories we have two spinors of the same chirality, λ1
+ and λ2

+, which
decompose into nine dimensional spinors, again denoted ψ1 and ψ2, as

λ1
+ = ψ1 ⊗

(
1
0

)
, (8.20)

λ2
+ = ψ2 ⊗

(
1
0

)
. (8.21)

8.3.3 Reduction of reality conditions

Next, we dimensionally reduce ten-dimensional reality conditions. For simplicity and without
loss of generality we will only consider B(p,q)

− (with p+ q = 10). A spacelike reduction gives

B
(t,s+1)
− = B(t,s) ⊗ σt+1

1 =

B(t,s) ⊗ σ1 for t even,
B(t,s) ⊗ 1 for t odd,

(8.22)

while a timelike reduction gives

B
(t+1,s)
− = B(t,s) ⊗ iσ3σ

t
1 =

iB(t,s) ⊗ σ3 for t even,
−B(t,s) ⊗ σ2 for t odd.

(8.23)

The second factor in the tensor products captures the Weyl-compatibility of the ten-
dimensional signature; we observe that when the ten-dimensional signature has an even
number of timelike directions we have a factor σ1 or σ2 that exchanges chiralities, as in
these signatures the reality condition is Weyl-incompatible. When the ten-dimensional
theory has an odd number of timelike directions the reality condition is Weyl-compatible,
so we get Id or σ3 which do not mix the two chiralities.

As an example we reduce the type-IIA algebra in signature (0, 10) (this is the unique
(N+,N−) = (1, 1) algebra in this signature) to (0, 9). The (0, 10) parent theory involves a sin-
gle Majorana spinor that can be written in terms of a Weyl-incompatible reality condition as

(λ±)∗ = αB
(0,10)
− λ∓. (8.24)

Decomposing into nine-dimensional quantities, we see this reads

(ψ1)∗ ⊗
(

1
0

)
= α(B(0,9) ⊗ σ1)

(
ψ2 ⊗

(
0
1

))
= αB(0,9)ψ2 ⊗

(
1
0

)
, (8.25)

(ψ2)∗ ⊗
(

0
1

)
= α(B(0,9) ⊗ σ1)

(
ψ1 ⊗

(
1
0

))
= αB(0,9)ψ1 ⊗

(
1
0

)
. (8.26)

Dropping the vector
(

1
0

)
we can simply write

(ψi)∗ = αB(0,9)ψjηji. (8.27)

This leads to a (0, 9) N = 2 superalgebra with an O(1, 1) R-symmetry group.
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8.3.4 Reduction of vector-valued bilinear forms

Next, we need to reduce the vector-valued bilinear form. A non-chiral, type-IIA vector-valued
bilinear form reduces as

(Γµλ+)TC(10)
− χ++(Γµλ−)TC(10)

− χ−= (γµψi)TC(9)φjδji⊗1−i(ψi)TC(9)φjηji⊗1 . (8.28)

The second term is a scalar under the nine-dimensional Poincaré Lie algebra and therefore
gives rise to a central extension of the nine-dimensional supersymmetry algebra. This
term is only relevant for states which have momentum along the direction we reduce over,
as this momentum component corresponds to the central charge. We remark that the
ten-dimensional algebra also admits BPS extensions (poly-vector extensions) corresponding
to terms on the r.h.s. which transform as antisymmetric tensors under the Lorentz group.
While such terms are important since they encode the possible BPS branes of a theory,
we have decided to leave the inclusion of BPS extensions to future work. Neglecting the
central term, non-chiral, type IIA vector-valued forms therefore reduce as

(Γµλ+)TC(10)
− χ+ + (Γµλ−)TC(10)

− χ− → (γµψi)TC(9)φjδji . (8.29)

Similarly, chiral, type IIB vector valued forms reduce as

(Γµλi+)TC(10)
− χj+δji → (γµψi)TC(9)φjδji . (8.30)

8.3.5 Summary of relations between ten-dimensional and nine-dimensional
N = 2 supersymmetry algebras

We will not include further details of computations, as the principle is by now clear and the
various signatures only differ by sign factors. The results are summarized in the diagram
in table 12. This diagram shows in particular that by a sequence of timelike reductions
and spacelike oxidations, that is by mixed T-dualities, one can connect all signatures to
one another. While in generic ten-dimensional signatures there is a unique N = 2 algebra
which is chiral or non-chiral, there are two chiral and two non-chiral algebras in Lorentz
and in neutral signature, which then are mutually related by pure T-dualities.

8.4 Four-dimensional N = 2 supersymmetry algebras and type-II/II∗

Calabi-Yau compactifications

The compactification of type-IIA/IIB string theory in signature (1, 9) on a Calabi-Yau
three-fold with Hodge numbers h1,1, h2,1 leads to an N = 2 supergravity theory in signature
(1,3) with nV vector multiplets and nH hypermultiplets, where (nV , nH) = (h1,1, h2,1 + 1)
for type-IIA and (nV , nH) = (h2,1, h1,1 + 1) for type-IIB [28–30]. The four-dimensional
supersymmetry algebra is the standard N = 2 supersymmetry algebra with R-symmetry
group GR = U(2) ∼= U(1)×SU(2). The target space geometries of vector and hypermultiplets
are projective special Kähler and quaternionic-Kähler, see [31] for a review. As already
shown in [17], there is a second, inequivalent N = 2 algebra in signature (1, 3), where the
supercharges obey a twisted Majorana condition and the R-symmetry group is U(1, 1) ∼=
U(1) × SU(1, 1). The corresponding theory of rigid vector multiplets was constructed
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explicitly in [17], where it was shown that while the scalar geometry of the vector multiplets
is still special Kähler, the modified supersymmetry transformations imply a relative sign
between the scalar and vector kinetic terms. While hypermultiplets for the supersymmetry
with U(1, 1) R-symmetry have not yet been constructed, sign flips between the kinetic terms
of the hypermultiplet scalars are expected, and the factor SU(1, 1) suggests that the scalar
geometry is para-quaternionic Kähler rather than quaternionic Kähler. The reason is as
follow: for the standard algebra with R-symmetry U(2) ∼= U(1)×SU(2) the vector multiplet
and hypermultiplet scalars transform under U(1) and SU(2), respectively. The factor U(1)
acts on the vector multiplet scalar manifold as multiplication by the complex structure,
that is, as ‘multiplication by i’. Similarly, the factor SU(2) acts on the hypermultiplet
scalar manifold as multiplication by the unit quaternions SU(2) ⊂ H∗. A change of the
R-symmetry group therefore indicates a change of the scalar geometry. For example, in
signature (0, 4) the R-symmetry group is U∗(2) ∼= SO(1, 1)×SU(2), and the geometry of the
vector multiplet scalars is para-Kähler, which differs from Kähler by replacing the complex
structure I, I2 = −Id by a para-complex structure E 6= Id, E2 = Id. The action of the
factor SO(1, 1) ⊂ U∗(2) on the vector multiplet scalar manifold is generated by the action
of the para-complex structure, see [12] for details. Similarly, the replacement of the factor
SU(2) ⊂ U(2) by SU(1, 1) ⊂ U(1, 1) indicates that the scalar geometry of hypermultiplets in
the twisted N = 2 theory in signature (1,3) is para-hyper-Kähler for rigid supersymmetry
and para-quaternion-Kähler for local supersymmetry. By inspection of the four-dimensional
R-symmetry groups we can determine the scalar geometries of vector and hypermultiplets
for all signatures and inequivalent algebras, see table 13.

For some of these cases the scalar geometry has been verified by explicit construction,
while other cases will be the subject of future work. N = 2 supergravity in signature (0,4)
arises from the compactification of the Euclidean (signature (0,10)) type-IIA theory on
a Calabi-Yau threefold. The R-symmetry group U∗(2) ∼= SO(1, 1)× SU(2) indicates that
the vector multiplet geometry is special para-Kähler while the hypermultiplet geometry is
quaternionic-Kähler, which was indeed found in [10] by explicit dimensional reduction. In [32]
it will be shown that theories realizing the twisted N = 2 algebra in signature (1,3) arise
from the compactification of type-IIA∗/IIB∗ string theory on Calabi-Yau three-folds, and
that their hypermultiplet geometry is indeed para-quaternion Kähler. N = 2 supergravity
in signature (2,2) arises from the compactification of the signature (2, 8) type-IIA theory on
a Calabi-Yau threefold. The R-symmetry group GL(2,R) ∼= R>0 × SL±(2,R) indicates that
the vector multiplet geometry is special para-Kähler while the hypermultiplet geometry
is para-quaternionic-Kähler.28 This will be verified by dimensional reduction in [32].

8.5 Three-dimensional N = 4 supersymmetry algebras and their
hypermultiplet geometries

Three-dimensional N = 4 supergravity theories can be realized by spacelike and timelike
reductions of four-dimensional N = 2 supergravity. In three dimensions vector multiplets
can be dualized into hypermultiplets so that the scalar manifold is the product of two

28SL±(2,R) ⊂ GL(2,R) is the group of real 2× 2 matrices with determinant ±1.
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Signature R-symmetry VM geometry HM geometry
(0, 4) U(2)∗ ∼= SO(1, 1)× SU(2) SPK QK
(1, 3) U(2) ∼= U(1)× SU(2) SK QK

U(1, 1) ∼= U(1)× SU(1, 1) SK PQK
(2, 2) GL(2,R) ∼= SO(1, 1)× SL±(2,R) SPK PQK

Table 13. Four-dimensional N = 2 supersymmetry algebras, their R-symmetry groups and the
scalar geometries of vector multiplets (VM) and hypermultiplets (HM). SK = special Kähler, SPK
= special para-Kähler, QK = quaternionic Kähler, PQK = para-quaternionic Kähler.

Signature R-symmetry HM1 geometry HM2 geometry
(0, 3) SO∗(4) ∼= SL(2,R)× SU(2) PQK QK
(1, 2) O(4) ∼= SU(2)× SU(2) QK QK

O(1, 3) − −
O(2, 2) ∼= SL(2,R)× SL(2,R) PQK PQK

Table 14. Three-dimensional N = 4 supersymmetry algebras, their R-symmetry groups and the
scalar geometries of the two hypermultiplet manifolds.

hypermultiplet manifolds. The R-symmetry groups in three dimensions are SO∗(4) ∼=
SL(2,R)× SU(2) in Euclidean signature (0,3) and O(p, q), p+ q = 4 in Lorentz signature
(1,2). For all cases with the exception of O(1, 3) this allows us to identify the hypermultiplet
geometries, see table 14. The case O(1, 3) is special in that it is the only one which does not
arise by dimensional reduction. For the other cases we note the embeddings U∗(2) ⊂ SO∗(4),
U(2) ⊂ O(4), and U(1, 1) ⊂ O(2, 2) of the respective R-symmetry groups.

For some of these cases the scalar geometry has been verified by explicit construction,
while others will be subject to future work. Dimensional reduction of vector multiplets from
signatures (0,4) or (1,3) to signature (0,3) leads to hypermultiplets with a para-quaternionic
Kähler target space [15]. By comparing to table 12 we see that the resulting pattern of
spacelike and timelike reductions replicates the one for ten- and nine-dimensional type-II
theories, with the exception that in signature (1, 3) there are only two rather than four
non-isomorphic supersymmetry algebras. However, compactifications of type-IIA and type-
IIB on the same Calabi-Yau threefolds lead to different theories since, as reviewed above,
the roles of vector and hypermultiplets are reversed. The resulting pattern of dimensional
reductions and oxidations, and the induced T-dualities between the four-dimensional theories
will be studied in detail in [32].

9 Conclusion and outlook

In this paper we have provided a construction of extended supersymmetry algebras which
works uniformly across dimensions and signatures. We have classified the resulting R-
symmetry groups, which ultimately leads to table 10. The resulting pattern of R-symmetry

– 59 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
3

groups is modulated by the properties of the complex bilinear form and of the reality
conditions. In some signatures multiple real forms lead to several non-isomorphic algebras
based on the same spinor module. This includes ‘type-*’ Lorentzian signature algebras with
non-compact R-symmetry groups such as O(p, q) in signatures (1,9) and (1,2), and U(k, l) in
signature (1,3) which correspond to non-standard, ‘twisted’ Majorana conditions imposed on
complex supercharges. Our formalism always starts with a standard complex superbracket,
so that the ‘twisting’ is encoded in the reality condition. This has the advantage that the
twisting is tied to selecting a real form of the complex R-symmetry group, which allows
us to see ‘twisting’ as part of the larger pattern of variation of R-symmetry group across
dimensions and signatures.

While we have provided evidence that supersymmetry algebras are classified by their
R-symmetry groups, together with the choice of one relative sign for chiral algebras, solving
the classification problem completely has been left to future work. The most promising
approach is to combine the formalism applied in this paper with the methods and results
of [22], as has been done for the special case of D = 4,N = 2 supersymmetry in [17].
BPS-charges can be included along the lines of [24], which will also allow to discuss the
tensor-valued bilinear forms needed to describe fermionic terms in the action [2, 16]. Our
formalism, which encodes the signature dependence completely in the reality condition,
while the superbracket is fixed in a given dimension allows to obtain the supersymmetry
transformations and actions in a given signature by imposing reality conditions on their
complex versions [16].

Apart from ab initio construction, dimensional reduction can be used to obtain su-
persymmetry transformations and actions. In section 8 we have discussed Calabi-Yau
compactifications of type-II superstring theories to theories in signatures (0,4), (1,3) and
(2,2) using their supersymmetry algebras and R-symmetry groups. The corresponding
bosonic actions which will be constructed explicitly in [32]. This will not only allow us
to verify the claims we have made regarding the target space geometries of four- and
three-dimensional hypermultiplets in arbitrary signature, but also prepare the ground for
studying solutions of ‘exotic’ supergravity and string theories in dimension 4 and 10. It was
observed in [33] that there is a correspondence between the planar cosmological solutions
of standard D = 4,N = 2 supergravity with vector multiplets constructed in [34], and
planar black hole solutions of its twisted variant (with R-symmetry U(1, 1)). As these
include solutions of the STU-model (and its twisted version), they can be lifted to 10 and 11
dimensions to solutions of type-II string theory and M-theory. In fact, in the untwisted case,
this leads to the same higher-dimensional brane configuration as the STU black hole [34].
The solutions of the twisted four-dimensional theory lift to brane configurations in type-II∗
theories, which strongly suggests that the duality between black hole and cosmological
solutions can be understood as a combination of time-like and space-like T-dualities. As
shown in [33] the horizons of the dual cosmological/black hole solutions satisfy the first
law of thermodynamics and have the same semi-classical Euclidean partition function.
Investigating this from the ten-dimensional point of view is likely to provide new insights
into the solutions of type-II∗ theories. This is but one example how one can further explore
the network of type-II string theories described in [1, 2]. The work of [3, 4] shows that there

– 60 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
3

are many field-theoretical as well as phenomenological aspects to be explored, including
signature change, de Sitter solutions, and brane world scenarios.

Another direction to explore is what can be learned about the symmetries underlying
string theories. Dimensional reduction exhibits hidden symmetry, and maximal symmetry
is reached when all directions, including time, are compactified [35]. However, if string
theories in general signature are part of the full configuration space of string/M-theory, then
dimensional reduction is not enough to exhibit the full symmetry of string theory. In order
to cover all possible spacetime signatures one can use complexification followed by exploring
all possible reality conditions. For example in [36, 37] a uniform description ofM -theory and
type-II theory was given based on the complex form of the ortho-symplectic Lie superalgebra
osp(32). The formalism presented in this paper may offer certain advantages, because it
does not rely on obtaining Poincaré Lie superalgebras as contractions, but instead works
directly with complex and real Poincaré Lie superalgebras. Another strategy to explore the
hidden symmetries of string theory is to use an extended spacetime, as is done in doubled
and exceptional field theory. In these formalisms exotic versions of type-II string theory
appear naturally, see for example [38], and the formalism presented in this paper should be
useful to investigate this further.
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A Conventions, notation and some useful formulae

In this appendix we collect information about our notations and conventions. In particular,
we explain our conventions for spinor indices, which we suppress where possible in the
paper. We also explain in detail how to relate the formulation of supersymmetry algebras
in terms of vector-valued bilinear forms to the usual one in terms of anti-commutators of
supercharges.

A.1 Spinor index conventions

For spinor indices we use the same conventions as [12]. Dirac spinors ψ ∈ S have lower
indices, ψ = (ψα). Since γ-matrices represent endomorphisms on the spinor module S, their
index structure is γµ = (γ β

µα ).
The matrices A and C relate the γ-matrices to their Hermitian conjugate and to

the transposed matrices, respectively (2.4), (2.6). They have two upper spinor indices,
A = (Aαβ) and C = (Cαβ), and define a sesquilinear form (the Dirac bilinear form) and a
complex bilinear form (the Majorana bilinear form) on S, respectively:

A(λ, χ) = λ∗αA
αβχβ , C(λ, χ) = λαC

αβχβ . (A.1)

The inverse matrices are A−1 = (A−1
αβ) and C−1 = (C−1

αβ ).
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When using Dirac spinors with a sesquilinear form A, spinor indices are raised and
lowered using A and A−1, i.e. λα = Aαβλβ and λα = A−1

αβλ
β . Upper index spinors defined

this way are elements of complex-conjugate dual (transposed) Dirac spinor module, which
we can identify with S using the spin equivariant isomorphism provided by A. Similarly,
we can raise and lower Dirac spinor indices using C and its inverse: λα = Cαβλβ and
λα = C−1

αβ λ
β. If upper index spinors are defined this way, they are elements of the dual

(transposed) Dirac spinor module, which we can identify with S using the spin equivariant
isomorphism provided by C. In this paper we exclusively use C and C−1 to raise and lower
Dirac spinor indices. We use a convention where the matrix C is equal to its inverse, so that
we can denote the components of C−1 simply by Cαβ . The matrix C is either symmetric or
antisymmetric. This is encoded by the invariant σ = σC , which also is the symmetry of the
Majorana bilinear form,

Cβα = σCαβ . (A.2)

In the antisymmetric case some care is required when raising and lowering indices. For
example

CαβCαγCβδ = σCγαC
αβCβδ = σCγδ . (A.3)

Note that the convention we use for spinor indices is not of the ‘NW-SE type.’ This is
different from our convention for ‘internal’ indices on spinors, see below. In the bulk
of this paper we work with expressions where spinor indices are contracted and can be
omitted. However, index conventions are relevant when comparing our results to the
literature. In particular, they are relevant for translating between vector-valued forms and
anti-commutators of supercharges, see below.

Equations like A = Πτγτ (where τ runs over all timelike Lorentz indices), which equate
the matrix of a bilinear form (two upper indices) to a matrix representing an endomorphism
(one lower, one upper index) are equations between matrices, not between maps. Put
differently, once we have fixed a set of γ-matrices, we can make a choice for the matrix A,
but this choice is tied to our choice of γ-matrices.

A.2 Index conventions for internal indices

For indices on the auxiliary space CK we will usually29 use the NW-SE convention. This
reflects that our formalism generalizes symplectic Majorana spinors, where the R-symmetry
group SU(2) acts on these indices. Adopting this as the universal convention, bilinear forms
on CK take the form

M(z, w) = ziwjMji, i, j = 1, . . . ,K.

Raising and lowering the indices is done using Mij and its contragradient (transposed of
inverse) M ij such that

zi = M ijzj , zi = zjMji.

29The only exception is the ‘matrix notation’ which we use when doubling the dimension of the auxiliary
space to completely disentangle the spin and R-symmetry groups for even-dimensional space-times, see
appendix D.
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Note that the NW-SE convention then implies

M ijMkj = δik , (A.4)

so that for anti-symmetric bilinear forms the matrices (M ij) and (Mij) are not each others
inverse, but the inverse multiplied by −1.

Our construction requires the choice of a non-degenerate complex bilinear form, which
is either symmetric or antisymmetric. Our preferred choices are the symmetric bilinear
form δ and antisymmetric bilinear form J , with Gram matrices

δ = 1N , J =

 0 1K
2

−1K
2

0

 .
We refer to these bilinears and matrices as ‘canonical.’

A.3 Poincaré Lie superalgebras with and without indices

In this section we explain how the standard, index-based notation for supersymmetry is
related to the index-free description (or sometimes only partly index-free description) used
in [22] and in this paper.

A Poincaré Lie superalgebra, g, is a Z2-graded Lie algebra

g = g0 + g1 , g0 = so(V ) + V , (A.5)

where the even part g0 is the Poincaré Lie algebra based on the vector space V = Rt,s, that
is Rt+s equipped with a real symmetric bilinear form with signature (t, s). The Lie bracket
on g0 is

[A,B] = AB −BA, [A, v] = Av, [v1, v2] = 0, (A.6)

where A,B ∈ so(V ) and v, v1, v2 ∈ V .
The odd part g1 of g is an arbitrary sum of irreducible spinor modules, that is of

spin(V ) ∼= so(V ) modules obtained by decomposing irreducible modules of the real Clifford
algebra Cl(V ) ∼= Clt,s into irreducible modules of spin(V ) ⊂ Clt,s. The Lie algebra structure
on g0 is extended to a Lie superalgebra structure by the spinorial action ρS of so(V ) on g1
together with a trivial action of V on g1, and a symmetric vector-valued bracket g1×g1 → V ,
which is so(V ) equivariant (covariant). The additional non-trivial relations are:

[A, λ] = ρS(A)λ, [λ, χ] = Π(λ, χ) ∈ V , A ∈ so(V ), λ, χ ∈ g1 , (A.7)

where Π : g1 × g1 → V is a real, symmetric, Spin(t, s)-equivariant vector-valued bilinear
form.30

It was shown in [22] that the real, symmetric, Spin(t, s)-equivariant vector-valued
bilinear forms on a spinor module form a vector space, which is spanned by vector-valued
bilinear forms which can be constructed out of so called super-admissible scalar-valued

30Note that the required super-Jacobi identity is implied by these conditions.
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bilinear forms using Clifford multiplication. Given a bilinear form β, the associated vector-
valued bilinear form Πβ is defined by

〈Πβ(λ, χ), v〉 = β(γ(v)λ, χ) , λ, χ ∈ g1, v ∈ V . (A.8)

Here 〈·, ·〉 is the bilinear form on V = Rt,s and γ(v)λ is the Clifford multiplication of the
vector v with the spinor λ.

If we denote the generators of V and so(V ) by Pµ and Mµν , respectively, the relations
of the Poincaré Lie algebra are [40]

[Pµ, Pν ] = 0, [Mµν , Pρ] = i(ηµρPν − ηνρPµ), (A.9)
[Mµν ,Mρσ] = i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ),

where ηµν is the Gram matrix of the bilinear form 〈·, ·〉 on Rt,s. The generators of the
odd part g1 are the supercharges Qα. To translate (A.8) into anti-commutation relations
beween supercharges, we expand the spinors and vectors in their respective bases

λ = λαQα , χ = χβQβ , v = vµPµ . (A.10)

Clifford multiplication is an operation of V on the spinor module which in terms of
components is given by the action of γ-matrices on spinors,

PµQα = γµ β
α Qβ . (A.11)

Therefore
γ : V × g1 → g1 , (v, λ) 7→ γvλ = vµP

µλ = vµγ
µα

βλ
βQα , (A.12)

where (γµαβ) = (γµ)T = τCγµC−1 is the transposed of γµ.31 Therefore

β(γ(v)λ, χ) = vµγ
µα

γλ
γχββ(Qα, Qβ) . (A.13)

A non-degenerate bilinear form can be used to identify a module with its dual (also called
transposed module). Since β is required to be an admissible bilinear form this isomorphism
is spin-equivariant, and induces a map which maps the γ-matrices to their transposed [12].
In other words the Gram matrix β(Qα, Qβ) of the bilinear form β can be interpreted as a
charge conjugation matrix C. With our index conventions the Gram matrix β(Qα, Qβ) is
the inverse charge conjugation matrix C−1 = (Cαβ). Comparing to (A.8) we conclude that

Πβ(λ, χ) = [λβχγ(γµ)αγCαβ ]Pµ = σC [λβχγCβα(γµ)αγ ]Pµ = σCτC [λβχγ(γµ) α
β Cαγ ]Pµ .

(A.14)
Here we used CT = σC and (γµ)T = τCγµC−1. Defining the superbracket using the
vector-valued bilinear form, {λ, χ} = Πβ(λ, χ), we obtain

{Qβ , Qγ} = στ(γµC−1)βγPµ . (A.15)
31Note that for τ = −1 the matrices γµ and (γµ)T are not related by raising/lowering indices using C

(extra sign).
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For this to be a symmetric bracket we need that

(γµC−1)T = C−1,T (γµ)T = σC−1τCγµC−1 = στγµC−1 = γµC−1 , (A.16)

that is στ = 1. This shows explicitly how the symmetry of the superbracket is related to
the super-admissibility of the bilinear form β.

While we are ultimately interested in real supersymmetry algebras, all the above
concepts and statement naturally extend to complex Poincaré Lie superalgebras. Of course,
for complex bilinear forms the concept of signature loses its invariant meaning. We can use
this to pass from a real algebra to its complexification, and from there to other real forms.

In general, the spinorial module g1 can be reducible. For sums of inequivalent modules
the contributions to the supersymmetry anti-commutator just add up ‘incoherently’, while
for sums of equivalent modules they can ‘mix.’ This is what gives rise to the larger R-
symmetry groups of extended supersymmetry algebras. Let us consider the case of N copies
of an irreducible module S, where g1 = S ⊕ · · · ⊕ S = NS = S ⊗K KN , where K is R or C,
depending on whether S is a real or complex module. Denoting irreducible spinor indices by
α, β, . . . and labeling copies by i, j = 1, . . .N , the supercharges are Qiα and spinors expand
as λ = λiαQiα. The bilinear form on S ⊗K KN is β = C ⊗M , where C is the bilinear form
defined by the charge conjugation matrix on the irreducible module S, and where M is
a symmetric or antisymmetric bilinear form on the multiplicity space KN . By a similar
computation to the one above we find

β(γµλ, χ) = στλiαχjβγµ γ
α CγβMji = στσMλ

iαχjβ(γµC−1)αβMij , (A.17)

where σM is the symmetry of M , that is MT = σMM . Therefore

{Qiα, Qjβ} = στσM (γµC−1)αβMijPµ . (A.18)

The bracket is symmetric if

(γµC−1)αβMij = (γµC−1)βαMji , (A.19)

which requires στσM = 1. Since the γ-matrices do not act on KN , it follows that στσM =
σβτβ , that is the bracket is symmetric if the bilinear form β = C ⊗M is super-admissible.

To summarize, given a super-admissible bilinear form β = C ⊗M ,

β(λ, χ) = λiαCαβχ
jβMji (A.20)

the corresponding anti-commutation relations are

{Qiα, Qjβ} = (γµC−1)αβMijPµ . (A.21)

For a given charge conjugation matrix C one has either στ = 1 or στ = −1. Therefore a
charge conjugation matrix does not always define a supersymmetry algebra. However, by
taking an even number of copies and pairing C with an antisymmetric bilinear form on the
multiplicity space we can obtain a super-admissible bilinear form on the extended spinor
module. Our approach is to always double the spinor module and to use a super-admissible
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bilinear form on the doubled space to define a complex algebra with relations (A.21). This
uses that the doubling can be interpreted as a complexification. Real algebras are obtained
by choosing a real form through imposing a reality condition of the form

(λi)∗ = αBλjLji (A.22)

where α is a phase and where B ⊗ L defines a real structure ρ on g1 ⊕ g1 ∼= g1 ⊗R C ∼= gC1 .

A.4 Useful formulae relating to chirality

The following formula are used extensively throughout this paper and are provided here for
easy reference. They can be found in, or straightforwardly obtained from [17, 25].

C±γ∗ =

±iC∓ , D = 2, 6, 10 ,
C∓ , D = 4, 8, 12 ,

(A.23)

γ∗C± =

±iC∓ , D = 2, 6, 10 ,
−C∓ , D = 4, 8, 12 ,

(A.24)

B±γ∗ =

±iσ+σ−B∓ = ∓iB∓ , D = 2, 6, 10 ,
σ+σ−B∓ = B∓ , D = 4, 8, 12 ,

(A.25)

γ∗B± =

(−1)t ∓ iσ+σ−B∓ = ±(−1)tiB∓ , D = 2, 6, 10 ,
(−1)tσ+σ−B∓ = (−1)tB∓ , D = 4, 8, 12 ,

(A.26)

B∗±γ∗ =

±iB∗∓ , D = 2, 6, 10 ,
B∗∓ , D = 4, 8, 12 .

(A.27)

For completeness we note that, as shown in the main text, the symmetry σ± of C± satisfies
σ+ = −σ− in the Weyl compatible dimensions D = 2, 6, 10, and σ+ = σ− in the Weyl
incompatible dimensions D = 4, 8, 12.

A.5 Proof that a signature flip (t, s)↔ (s, t) exchanges B+ ↔ B−

This is the proof of a statement that we used in the main part of this paper. Consider the
(t, s) signature γ-matrices, which obey

(γi)2 =

−1 , i ≤ t ,
+1 , i > t .

(A.28)

We define the (s, t) signature γ-matrices as γ′m = iγ(D−m+1) (where D = t+ s) such
that they correctly obey

(γ′i)2 =

−1 , i ≤ s ,
+1 , i > s .

(A.29)

Both theories have the same charge conjugation matrices, C+ and C− and A-matrices

A(t,s) = γ1 . . . γt , (A.30)
A(s,t) = γ′1 . . . γ

′
s = isγD . . . γt+1 .
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We then see that, using C+ = kC−γ∗ (k is the constant from (A.23))

B
(t,s)
+ = (C+(A(t,s))−1)T (A.31)

= (kC−γ∗(A(t,s))−1)T .

Using our definitions for A(t,s) we find

γ∗(A(t,s))−1 = (−i)tγ1 . . . γD(−1)tγt . . . γ1

= (−1)st(−i)tγt+1 . . . γD (A.32)
= (−1)st(−i)t(−i)sγ′s . . . γ′1
= (−1)st(−i)D(A(s,t))−1 = (−1)st+

D
2 (A(s,t))−1 ,

such that

B
(t,s)
+ =

(
kC−(−1)st+

D
2 (A(s,t))−1

)
= k(−1)st+

D
2 B

(s,t)
− (A.33)

=⇒ (B(t,s)
+ )∗B(t,s)

+ = (B(s,t)
− )∗B(s,t)

− .

B Real (semi-)spinors and Majorana spinors

In this appendix we summarize the relation between complex and real spinors and semi-
spinors as defined in the mathematics literature and Dirac, Weyl, Majorana and Majorana-
Weyl spinors as defined in the physics literature. The complex and real spinor module S
and S are defined by restricting irreducible representations of the complex and real Clifford
algebras ClD and Clt,s to the real spin group Spin(t, s). As Spin(t, s)-modules S and S

can be isomorphic or non-isomorphic. Complex spinors ψ ∈ S are Dirac spinors, while real
spinors ψ ∈ S are not always Majorana spinors. The following cases can occur, depending
on dimension and signature.

1. S 6∼= S, the complex and real spinor module are not isomorphic. Then S is the
complexification of S, S = S ⊗R C and S is a real subset of S fixed under the action
of an invariant real structure ρ, S = Sρ. The elements of S are Majorana spinors. S
can be irreducible or reducible.

(a) S is irreducible. Then Majorana spinors are the unique irreducible spinor
representation. If, in addition, the dimension is even, Majorana spinors are
equivalent (as real Spin(t, s) representations) to Weyl spinors: S ∼= S+ ∼= S−.
This is, for example, the case in signature (1, 3).

(b) S is reducible. Then real spinors decompose into real semi-spinors, S = S+ +S−.
Given that S = S ⊗R C, the real semi-spinor modules must be non-isomorphic,
since otherwise their complexifications S± ⊗R C would be isomorphic as complex
modules, which is not true. The real semi-spinors S+ 6∼= S− are Majorana-Weyl
spinors. As is well known, Majorana-Weyl spinors exist if and only if t− s is 0
modulo 8. In table 1 these are the entries where (ε+, ε−) = (1, 1).
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2. S ∼= S, the complex and real spinor module are isomorphic. Here we have three
subcases:

(a) S is irreducible. Then Majorana spinors don’t exist (S does not admit an invariant
real structure) and Dirac spinors are the unique irreducible spinor representation.
This is realized in signature (1, 4).

(b) S = S+ + S−, S+ 6∼= S−. S is reducible and decomposes into non-isomorphic
semi-spinor modules. In this case real semi-spinors are the same as complex
semi-spinors, that is Weyl spinors, S± ∼= S±. This happens in even dimensions
in those signatures where no invariant real structures, and hence no Majorana
spinors exist, for example in signature (4, 0) or (0, 4).

(c) S = S+ + S−, S+ ∼= S−. S is reducible, and decomposes into isomorphic semi-
spinor modules. In this case S ∼= S ∼= S± ⊗ C carries an invariant real structure.
The elements of S± are Majorana spinors, and we are in a signature where no
Majorana-Weyl spinors exist. There are two subcases:
i. If the dimension is even, then complex and real semi-spinors coincide and

all types semi-spinor modules are isomorphic as real modules: S+ ∼= S− ∼=
S+ ∼= S−. This happens, for example, in signature (3, 1).

ii. If the dimension is odd, no Weyl spinors exist, and we have S = S = S±⊗RC.
This is realized, for example, in signature (3, 2).

More details for the explicit examples we have mentioned can be found in [16, 17].

C Details on the complexification of spinor modules

In this appendix we provide details on the complexification of the odd parts g1 = S⊕N ∼=
S ⊗ RN , g1 = S⊕N+

∼= S+ ⊗ RN and g1 = S
⊕N+
+ ⊕ S⊕N−−

∼= S+ ⊗ RN+ ⊕ S− ⊗ RN− of real
supersymmetry algebras.

We start with the simpler case where D is odd and no Weyl spinors exist. The unique
real irreducible spinor representation is either S or S+ ∼= S−. There are two cases.

1. S is irreducible. Then

g1 ⊗R C = (S ⊗R C)⊕N ∼= (S ⊗R C)⊗C CN .

There are two subcases.

(a) S ∼= S. The smallest spinor representation is given by Dirac spinors, and

g1 ⊗R C = (S⊗R C)⊕N ∼= (S⊗R C)⊗C CN ∼= S⊗C C2N .

This case is characterized by S not admitting an invariant real structure.
(b) S ⊗R C ∼= S. The smallest spinor representation is given by Majorana spinors,

and
g1 ⊗R C = (S ⊗R C)⊕N ∼= S⊗C CN .

This case is characterized by S admitting an invariant real structure.
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2. S is reducible and S+ ∼= S−. Then S ∼= S ∼= S± ⊗R C. The unique irreducible spinor
representation given by Majorana spinors S+ ∼= S−, and

g1 ⊗R C = (S+ ⊗R C)⊕N ∼= S⊗C CN .

In this case S admits an invariant real structure.

If D is even, then there is one additional case to consider, namely when S is reducible and the
real semi-spinor modules are non-isomorphic, S+ 6 ∼=S−. In this case the minimal spinors are
either Weyl spinors or Majorana-Weyl spinors. Since there are two inequivalent irreducible
real spinor representations, the general form of the odd part of the supersymmetry algebra
is g1 = S

⊕N+
+ ⊕ S⊕N−− . The additional third case is

3. S = S+ + S−, S+ 6 ∼=S−. There are two sub-cases:

1. S± ∼= S±. In this case S± do not admit invariant real structures and the
inequivalent minimal spinors are Weyl spinors.

2. S± ∼= S± ⊗R C. In this case S± admit invariant real strucutures, and the
inequivalent minimal spinors are Majorana-Weyl spinors.

In both cases the complexification procedes analogous to case 1, with S replaced by
S+ and S−.

D Matrix notation for Weyl spinors

D.1 Explanation of the matrix notation

In this section, we will describe a notation which was introduced in [17], and makes
calculations easier when dealing with Weyl spinors in even dimensions. Using the natural
embedding S± ⊂ S we combine the two Weyl spinor modules into a single ‘doubled-again’
spinor module

(λI) =
(
λi+,λ

î
−

)
=
(
λ1

+, . . . ,λ
K+
+ ,λ1

−, . . . ,λ
K−
−

)
∈ S⊕K+

+ ⊕S⊕K−− ⊂ S⊕(K++K−) = S⊗CK++K−

(D.1)

Using a mixture of matrix notation and index notation, orthogonal and isotropic bilinear
forms take the form

(
λ̄i+, λ̄

î
−

)(Mji 0
0 M ′

ĵî

)(
χj+

χĵ−

)
(Orthogonal), (D.2)

(
λ̄i+, λ̄

i
−

)( 0 Mji

Mji 0

)(
χj+
χj−

)
(Isotropic). (D.3)

In the orthogonal case M is the bilinear form on the CK+ factor, M ′ the one on the CK−
factor, i, j = 1, . . . ,K+ and î, ĵ = 1, . . . ,K−. For isotropic signatures, necessarily M = M ′

and K+ = K−.
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In addition, we have a real structure, ρ, which is either Weyl-compatible or Weyl-
incompatible. For a Weyl-compatible reality condition, we write this as

ρ(λi+) = α∗B∗(λj+)∗Lji, ρ(λî−) = β∗B′∗(λĵ−)∗L′
ĵî

(D.4)

→ ρ

(
λi+
λî−

)
=
(
α∗B∗Lji 0

0 β∗B′∗L′
ĵî

)(
λj+

λĵ−

)∗
. (D.5)

Here B and B′ can refer to either B±.
Weyl-incompatible reality conditions are written as

ρ(λi±) = α∗B∗(λj∓)∗Lji → ρ

(
λi+
λi−

)
= α∗B∗

(
0 Lji
Lji 0

)(
λj+
λj−

)∗
. (D.6)

Often it is possible and convenient to suppress the indices i, j, and write expressions in
terms of vectors-of-vectors and block matrices

(
λ̄+, λ̄−

)(M 0
0 M ′

)(
χ+
χ−

)
(Orthogonal), (D.7)

(
λ̄+, λ̄−

)( 0 M

M 0

)(
χ+
χ−

)
(Isotropic). (D.8)

When we do this, we will change the indices such that normal matrix multiplication
makes sense for the resulting expressions. This induces a sign if M = J is the anti-symmetric
bilinear form with components Jij = −Jji:

(
λ̄i+, λ̄

i
−

)( 0 Jji
Jji 0

)(
χj+
χj−

)
=
(
λ̄+, λ̄−

)( 0 −J
−J 0

)(
χ+
χ−

)
. (D.9)

For a final example, (D.5) is rewritten as

ρ

(
λ+
λ−

)
= B∗

(
α∗L 0

0 β∗L′

)(
λ+
λ−

)
. (D.10)

When using this notation the Schur group and consequently the R-symmetry group
acts by linear transformations on the expanded internal space CK++K− , but not on the
spinor indices. This disentangling of spinor and internal indices with respect to the action
of the Schur group is the main advantage of this notation. Without the additional doubling,
the Schur group can act non-trivially on spinors indices in even dimensions by acting
differently on spinors depending on their chirality. For example, in signature (1, 3) positive
and negative chirality spinors carry opposite charge under U(1) ⊂ GR = U(2), see [12]. By
doubling the auxiliary space, any chiral action of the Schur group is encoded in the larger
matrix acting on the doubled space. Afterwards, the effects on each Weyl spinor module can
be reconstructed and rewritten in terms of Id and γ∗ acting on the original spinor module.
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D.2 Action of R-symmetry transformations on the complex spinor module S

In even dimensions R-symmetry transformations act non-trivially on the complex spinor
module S, though only through a relative sign between complex semi-spinors, since R-
symmetry transformations by definition commute with the Lie algebra of the spin group.
We have shown that the actions of the spin group and R-symmetry group can still be
disentangled by doubling the internal space. In the following section we briefly describe how
our results translate to a more conventional notation, where we employ Dirac spinors and
do not double the internal space. R-symmetry transformations are then given by products
of actions on the internal space with an action of 1, γ∗ on Dirac spinors.

The chirality matrix γ∗ acts on the Weyl spinors λ± ∈ S± as γ∗λ± = ±λ±. We choose
a basis of S where

γ∗ =
(
1 0
0 −1 ,

)
, (D.11)

where 1 is the identity matrix acting on complex semi-spinors S±. In matrix notation,
γ∗λ

i
± = ±λi± acts on (λi+, λi−) as the matrix(

1K 0
0 −1K

)
= γ∗ ⊗ 1K (D.12)

D.2.1 Orthogonal bilinear forms

In orthogonal Weyl-compatible signatures the R-symmetry transformations act indepen-
dently on each Weyl spinor module and are specified by the action on the internal CK±
factor. This is because the Weyl spinor modules are complex irreducible modules (so we can
apply Schur’s lemma exactly like in odd dimensions) and the reality condition is defined on a
Weyl spinor module alone. If K+ 6= K− we cannot combine Weyl spinors into Dirac spinors.

WhenK+ = K−, we can combine the Weyl spinors into Dirac spinors. Then R-symmetry
transformations act as follows. We know that a general element of the R-symmetry Lie
algebra has the form

r =
(
a 0
0 b

)
, (D.13)

where a, b are Lie algebra elements for the factor of the R-symmetry which acts on spinors
of given chirality. We can rewrite this as

r =
(
c 0
0 c

)
+
(
d 0
0 −d

)
= (Id⊗ c) + (γ∗ ⊗ d) , (D.14)

for c = 1
2(a+ b) and d = 1

2(a− b).
We can see that, at most, R-symmetry generators act as identity or γ∗ on the S factor.

In this case, the re-writing is somewhat artificial since the Lie algebra elements a, b are
independent. But in the remaining cases, where we will do something similar, the two
transformations will depend on one another.
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For a Weyl-incompatible orthogonal signature, the reality condition links the two
chiralities, and we found that they take the form

r =
(
a 0
0 La∗L−1

)
, (D.15)

where a acts entirely on S+ while the corresponding transformation on S− is La∗L−1.This
can be recast into transformations that act on the entire spinor module S = S+ + S−.
Using that conjugation by L and complex conjugation are involutions, we can rewrite a
and La∗L−1 in terms of

a± = 1
2(a± La∗L−1) , (D.16)

so that

r =
(
a+ 0
0 a+

)
+
(
a− 0
0 −a−

)
= (1⊗ a+) + (γ∗ ⊗ a−). (D.17)

This is slightly different from the previous case with Weyl-compatible signatures because
a+ and a− are functions of a alone. However we see that similarly the generators of the
R-symmetry group can be written in a way where they act either as Id or γ∗ on S.

D.2.2 Isotropic bilinear forms

For an isotropic vector-valued bilinear form, γ∗ generates a real one-parameter subgroup of
the R-symmetry group. Consider the transformation

λi → eωγ∗λi = eωλi+ + e−ωλi− , (D.18)

where ω ∈ C. A complex vector-valued bilinear form is invariant under this transformation:

β(γµλ, χ) = (γµλi+)TCχj−Mji + (γµλi−)TCχj+Mji

→ (γµeωλi+)TCe−ωχj−Mji + (γµeωλi−)TCe−ωχj+Mji = β(γµλ, χ). (D.19)

In matrix notation the transformation in (D.18) is(
λ+
λ−

)
→ exp(ωγ∗ ⊗ 1K)

(
λ+
λ−

)
. (D.20)

Imposing that (D.18) commutes with the reality condition in isotropic dimensions forces
ω to be real in Weyl-compatible signatures and to be imaginary in Weyl-incompatible
signatures. The corresponding one-dimensional subgroups SO(1, 1) and U(1) of the R-
symmetry group are often generated when performing a dimensional reduction from odd
to even dimensions. For example, the reduction of a supersymmetry algebra based on a
single Dirac spinor from five to four dimensions increases the R-symmetry group from SU(2)
to U(2) ∼=local SU(2) × U(1) for the reduction (t, s) = (1, 4) → (1, 3) and to U∗(2) ∼=local
SU(2)×SO(1, 1) for the reduction (t, s) = (1, 4)→ (0, 4) [12]. General R-symmetry elements
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act simultaneously as Id or γ∗ on S and by a non-trivial transformation on the CK factor,
therefore the R-symmetry groups are only locally isomorphic to direct products.

The general form of an R-symmetry transformation in isotropic signatures is

r =
(
a 0
0 −M−1aTM

)
. (D.21)

Since conjugation by M and transposition are both involutions, that we can split a into
eigen-matrices under the combination of these two operations

a = a+ + a−, with a± = 1
2(a±M−1aTM). (D.22)

Therefore we can write

r =
(
a+ 0
0 −a+

)
+
(
a− 0
0 a−

)
= (γ∗ ⊗ a+) + (1⊗ a−). (D.23)

From this, we conclude that in isotropic signatures the only possible non-trivial action
of the R-symmetry generators on S is through multiplication by γ∗.

E Details of isomorphisms

In this appendix we provide the details of the proof that real supersymmetry algebras
constructed using the data (C,M,B,L) on gC1 are classified by their R-symmetry group
(together with a choice of the relative sign between α+ and α− for orthogonal Weyl-
compatible signatures). This involves showing that certain sets of data can be swapped
without changing the complex superbracket and the reality condition. For this purpose it is
useful to introduce certain transformations, denoted R,SL, T which allow one to establish
the required isomorphisms for orthogonal and isotropic Weyl-compatible signatures. The
isotropic Weyl incompatible case is a bit more involved and is therefore treated separately.

E.1 The R-transformation

We define an invertible map on gC1 by

R : λi 7→ Ψi = 1√
2

(1 + iγ∗)λi. (E.1)

For reference, the inverse is given by

λi = 1√
2

(1− iγ∗)Ψi .

E.1.1 Orthogonal dimensions

We claim that in orthogonal dimensions the R-transformation exchanges the bilinear forms
C+ ⊗M and C− ⊗M and preserves the reality condition up to an overall phase factor.

To show this consider the chiral projections of the spinors,

Ψi
± = 1√

2
(1 + iγ∗)λi± = 1√

2
(1± i)λi± . (E.2)
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Recall that for an orthogonal bilinear form, if C+⊗M is super-admissible then so is C−⊗M .
Using (A.23) and (A.25) we find these two super-admissible bilinear forms are related by

(C+ ⊗M)(γµλ±, χ±) = ±i(C− ⊗M)(γµλ±, χ±). (E.3)

The R-transformation removes this factor of ±i:

(C+ ⊗M)(γµλ±, χ±) = (C− ⊗M)(γµΨ±,Ω±). (E.4)

Additionally, we find that the R-transformation does not change the reality condition
(up to modifying α by a factor of i). For definiteness, we take the reality condition to be
defined using B−. First let us consider Weyl-compatible reality conditions. Given λi with
reality condition

(λi±)∗ = α±B−λ
j
±Lji, (E.5)

we find

(Ψi
±)∗ = −iα±B−Ψj

±Lji, (E.6)

and we see the reality condition is unchanged, up to an overall phase.
Next we look at orthogonal Weyl-incompatible signatures, where we find that the reality

condition is invariant.

(λi±)∗ = αB−λ
j
∓Lji =⇒ (Ψi

±)∗ = αB−Ψj
∓Lji (E.7)

E.1.2 Isotropic dimensions

In isotropic dimensions, we work with Dirac spinors, called λi and Ψi. For a reality condition
of the form (λi)∗ = αBλjLji we find, using (A.25) and (A.26):

(λi)∗ = αB−λ
jLji =⇒ (Ψi)∗ = (−1)t+1iαB+ΨjLji. (E.8)

Since the overall phase can be absorbed in α, the R-transformation can be used in isotropic
dimensions to exchange B− and B+. In Weyl-incompatible signatures this is not a useful
transformation, because B± have opposite ε-type and the result is not one of our reality
conditions. However in the Weyl-compatible case the R-transformation can be used to show
that reality conditions are independent of the choice B±. For this to be an isomorphism of
supersymmetry algebras, we also need that the bilinear form is invariant. Using that in
isotropic dimensions γ∗C± = C±γ∗, we see that an isotropic vector-valued bilinear form is
unchanged by this transformation

(γµλi)TC±χjMji →
1
2(γµ(1 + iγ∗)Ψi)TC±(1 + iγ∗)ΩjMji (E.9)

= (γµΨi)TC±ΩjMji.

In section 7.4 the R-transformation is used (together with the S-transformation introduced
in the next subsection) to show that isotropic Weyl-compatible supersymmetry algebras are
classified by their R-symmetry group.
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E.2 The S-transformations

We define a family of invertible maps S = Ss by

Ss : λi+ → λi+, λi− → λj−sji , (E.10)

where (sji) is an invertible matrix. In matrix notation this reads(
λ+
λ−

)
→ Ss

(
λ+
λ−

)
=
(
1 0
0 sT

)(
λ+
λ−

)
. (E.11)

For further analysis we need to distinguish between orthogonal and isotropic dimensions.

E.2.1 S-transformations and orthogonal bilinear forms

In orthogonal dimensions the bilinear forms are entirely chiral, and the S-transformation
leaves the vector-valued bilinear form (C ⊗M)(γµλ+, χ+) on positive chirality spinors
invariant by definition. On the negative chirality spinors S acts as follows:

(γµλi−)TCχj−Mji = (γµΨk
−)TCΩl

−Mjiskislj . (E.12)

To preserve M , that is Mjiskislj = Mlk, the matrix s needs to be orthogonal for M = δ

and symplectic for M = J . This is the case in particular if s ∈ {δ, I, J} for M = δ and
s ∈ {δ, Ĩ, J} for M = J . Note that these are the standard forms of L which are used to
impose reality conditions for a given M ∈ {δ, J} to select real forms of O(K,C) or Sp(K,C),
respectively.32 Since in orthogonal dimensions M is fixed by the dimension, it is useful to
note that the S-map does not change the bilinear form on CK . It does, however, change
the reality condition, see below for the case s = L which is relevant for the classification of
orthogonal Weyl-incompatible supersymmetry algebras.

E.2.2 S-transformations and isotropic bilinear forms

In the isotropic case the choice s = J is the only one which preserves the standard form
M ∈ {δ, J} for the bilinear form on CK . The map sJ allows one to map C± ⊗ δ to
C∓ ⊗ J , where we choose the upper or lower sign depending on which choice leads to a
super-admissible bilinear form.

Writing out the isotropic vector-valued bilinear form (C± ⊗ J)(γµ·, ·) explicitly gives:

(γµλi+)C±χj−Jji + (γµλi−)TC±χj+Jji. (E.13)

Using (A.23) we can re-write this in terms of the other charge conjugation matrix

(γµλi+)TC±χj−Jji+(γµλi−)TC±χj+Jji =−(γµλi+)TC∓χj−Jji+(γµλi−)TC∓χj+Jji. (E.14)

32L = I1,1 acts anti-isometrically for M = J . This case needs to be treated separately when constructing
isomorphisms in the orthogonal Weyl-incompatible case, see appendix E.2.3. We don’t need to use S-
transformations for the orthogonal Weyl-compatible case.
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In our matrix notation, this equation is

(
(γµλi+)T , (γµλi−)T

)
C±

(
0 Jji
Jji 0

)(
χj+
χj−

)
=
(
(γµλi+)T , (γµλi−)T

)
C∓

(
0 −Jji
Jji 0

)(
χj+
χj−

)
.

(E.15)

The other super-admissible bilinear form (C∓ ⊗ δ)(γµ·, ·) is

(γµΨi
+)TC∓Ωj

−δij + (γµΨi
−)TC∓Ωj

+δij =
(
(γµΨi

+)T , (γµΨi
−)T

)
C∓

(
0 δji
δji 0

)(
Ωj

+
Ωj
−

)
.

(E.16)

We look for a transformation of the form(
λ+
λ−

)
= S

(
Ψ+
Ψ−

)
, (E.17)

which maps (E.15) and (E.16) to on another. Then S must satisfy

ST
(

0 J

−J 0

)
S =

(
0 1

1 0

)
, (E.18)

which is solved by

S =
(
1 0
0 −J

)
. (E.19)

Note that this map is an isomorphism between the complex supersymmetry algebras based
on the bilinear forms C± ⊗ J and C∓ ⊗ δ in isotropic signatures. When using it for real
supersymmetry algebras we need to take into account how it acts on reality conditions.
This requires us to distinguish between Weyl-compatible and Weyl-incompatible signatures,
and is done below.

E.2.3 SL transformations and Weyl-incompatible reality conditions

Consider the Weyl-incompatible reality condition

(λi±)∗ = αBλj∓Lji (E.20)

We can apply an Ss-transformation with s = L−1 to change the reality condition. Given
that

Ψi
+ = λi+, Ψi

− = λj−L
−1
ji , (E.21)

it is easy to see that

(Ψi
+)∗ = (λi+)∗ = αBλj−Lji = αBΨi

−, (E.22)
(Ψi
−)∗ = (λj−)∗L−1

ji = αBλk+LkjL
−1
ji = αBΨi

+. (E.23)
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Thus we can map a reality condition defined by any L to a reality condition with L = δ,
and by using the inverse transformations we can map any choice of L to any other choice
L′. In order to have isomorphic supersymmetry algebras, we need that the superbracket
is invariant. As mentioned above, this is the case if L is one of the canonical choices for
the given M listed in section 4.2, except for the combination M = J , L = I1,1 where
LTML = −M . In this case we use siI1,1 which preserves the superbracket and modifies the
reality condition by an irrelevant overall phase factor. In section 7.3 S-transformations are
used to show that for orthogonal, Weyl-incompatible signatures supersymmetry algebras
are classified by their R-symmetry group.

E.2.4 SJ transformations in the isotropic Weyl-compatible signatures

Consider spinors λi± that obey a generic Weyl-compatible reality condition

(λi±)∗ = αB(±)λ
j
±Lji, (E.24)

where the choice of B(±) is independent of the chirality of the spinor. Under SJ λi is related to

Ψi
+ = λi+, Ψi

− = −λj−Jji. (E.25)

Obviously Ψi
+ obeys the same reality condition as λi+

(Ψi
+)∗ = αB(±)Ψj

+Lji. (E.26)

Calculating the reality condition for Ψi
− is not so trivial:

(Ψi
−)∗ = −(αB(±)λ

k
−Lkj)Jji (E.27)

= −αB(±)Ψl
−JlkLkjJji.

For the two choices L ∈ {δ, J} we find that λi± and Ψi
± obey the same reality condition:

JlkLkjJji =

−δli, Lij = δij ,

−Jli, Lij = Jij .
(E.28)

This shows that SJ exchanges the two bilinear forms C⊗δ and C ′⊗J , while preserving reality
conditions based on L = δ and L = J . This is used in section 7.4 to show that isotropic
Weyl-compatible supersymmetry algebras are classified by their R-symmetry group. To
complete the argument, one also needs the T -transformation introduced in the next section.

E.3 The T-transformation

This transformation is only used in isotropic, Weyl compatible signatures, where it maps
certain choices of L to one another, while preserving the bilinear form. There are two cases.
In the first case the bilinear form is C ⊗ δ and the reality condition is

(λi±)∗ = αBλj±(Ip,q)ji . (E.29)
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In matrix notation this is (
λ+
λ−

)∗
= αB

(
Ip,q 0
0 Ip,q

)(
λ+
λ−

)
. (E.30)

One can show that if

(
Ψ+
Ψ−

)
=


1p 0 0 0
0 i1q 0 0
0 0 1p 0
0 0 0 −i1q


(
λ+
λ−,

)
(E.31)

then Ψ± obey the reality condition(
Ψ+
Ψ−

)∗
= αB

(
Ψ+
Ψ−

)
(E.32)

where L = Ip,q has been replaced by L = δ. We remark that this transformation is not
particularly useful in orthogonal dimensions, because it changes the bilinear form, and the
result takes a non-standard form. However we only need to use T in isotropic dimensions,
where these reality conditions are paired with the bilinear form C ⊗ δ which is unchanged:

[C ⊗ δ](λ, χ) = [C ⊗ δ](Ψ,Ω) (E.33)

In the second case the bilinear form is C ′ ⊗ J , and the reality conditions involve
L = Ĩ2r,2s and L = δ. These can be mapped using the T -transformation

T =



1r 0 0 0 0 0 0 0
0 i1s 0 0 0 0 0 0
0 0 1r 0 0 0 0 0
0 0 0 i1s 0 0 0 0
0 0 0 0 1r 0 0 0
0 0 0 0 0 −i1s 0 0
0 0 0 0 0 0 1r 0
0 0 0 0 0 0 0 −i1s


, (E.34)

which leaves invariant the bilinear form C ′ ⊗ J . Together with the SJ -transformation, the
T -transformation allows to show that isotropic Weyl-compatible supersymmetry algebras
are classified by their R-symmetry group, see section 7.4.

E.4 Relations between isotropic Weyl-incompatible supersymmetry algebras

We start with a generic Weyl-incompatible reality condition

(λi±)∗ = αB(±)λ
j
∓Lji. (E.35)

In Weyl-incompatible signatures B± have opposite ε-type, and therefore the choice of B
is not free, but fixed by L. Here B(±) refers to the choice which satisfies B∗B = L2 and
therefore in combination with L defines a real structure. B(∓) refers to the other B-matrix.
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E.4.1 SJ -transformation: (δ, δ)→ (J, J) and (δ, J)→ (J, δ)

Under the SJ -transformation the transformed spinors, Ψi
± obey

(Ψi
+)∗ = (λi+)∗ = αB(±)λ

j
−Lji = αB(±)Ψk

−JkjLji = −αB(∓)Ψk
−JkjLji , (E.36)

(Ψi
−)∗ = −(λi−)∗Jji = −αB(±)λ

j
+LkjJji = −αB(±)Ψk

+LkjJji = −αB(∓)Ψk
+LkjJji , (E.37)

where in the last step we used (A.25) to re-write the reality condition in terms of the other
B-matrix. This is needed because L = δ and L = J have opposite ε-type. Using that

Jkjδji = Jki, δkjJji = Jki, (E.38)
JkjJji = −δki, JkjJji = −δki (E.39)

we find

(λi)∗ = αB(±)λ
i ⇒ (Ψi)∗ = −αB(∓)ΨjJji, (E.40)

(λi)∗ = αB(±)λ
jJji ⇒ (Ψi)∗ = αB(∓)Ψi.

This shows that the algebras defined by the data (M,L) = (δ, δ) and (J, J), are related
by the sJ transformation. These are in fact the standard Majorana and the symplectic
Majorana condition, both with R-symmetry group U(K). This shows that the two ways of
realizing this R-symmetry group lead to isomorphic supersymmetry algebras, see section 7.5
and the diagram in (7.1). For the same reasons, the pairs (M,L) = (δ, J) and (J, δ) which
have R-symmetry group U(k, k) are also related to one another by SJ . There are two other
ways of obtaining a U(k, k) R-symmetry group: with (M,L) = (δ, Ik,k) and (J, Ĩ2r,2s), which
will now be discussed.

E.4.2 F -transformation: (δ, J)→ (δ, Ik,k)

We start with an algebra with (M,L) = (δ, J), so the initial spinors have reality condition

(λi±)∗ = αB(±)λ
j
∓Jji. (E.41)

To transform this to an algebra with (M,L) = (δ, Ik,k), we apply the transformation
(using the ‘doubled again’ matrix notation) ΨI = λJFJI where

F = 1 + i

2


−i1k 1k 0 0
1k −i1k 0 0
0 0 1k −i1k
0 0 −i1k 1k

 . (E.42)

The transformed spinors obey the reality condition

(Ψi)∗ = iαB(∓)Ψj(Ik,k)ji. (E.43)

Since J and Ik,k have opposite ε-type we have used (A.25) to change the B-matrix
accordingly.
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E.4.3 G-transformation: (J, Ĩ2r,2s)→ (J, δ)

Let λi be the spinors from a supersymmetry algebra with (M,L) = (J, Ĩ2r,2s) with reality
condition

(λi)∗ = αB(±)λ
j(Ĩ2r,2s)ji. (E.44)

We define Ψi = λjGji where

G =


1r 0 0 0
0 i1s 0 0
0 0 1r 0
0 0 0 −i1s

 . (E.45)

Note that this matrix has size (2r + 2s)× (2r + 2s), that is, we are not using the matrix
notation.

One can show that

(Ψi)∗ = αB(±)Ψi, (E.46)

so that G maps a reality condition with L = Ĩ2r,2s to a standard Majorana condition
with L = δ. Moreover, one can show that the vector-valued bilinear form (C ⊗ J)(γµ·, ·)
is invariant. Therefore G defines an isomorphism between isotropic Weyl-incompatible
algebras with (M,L) = (J, Ĩ2r,2s) and (J, δ), as indicated in the diagram (7.1) in section 7.5.
This almost completes the classification of isotropic Weyl incompatible supersymmetry
algebras, except for one special case that is not covered by the G-transformation.

E.4.4 Remaining case (J, I1,1)→ (J, δ)

The reality conditions L = Ĩ2r,2s only cover R-symmetry groups U(k, k) = U(r+s, r+s) with
k > 1, since r, s ≥ 1. For k = 1 we have a different canonical representative, namely L = I1,1.
However, this case was already covered in [17], where the isomorphisms between the isotropic,
Weyl-incompatible supersymmetry algebras in signature (1, 3) with R-symmetry groups
U(2) and U(1, 1) have been worked out. If one performs the same computation in any
other signature, the only detail which can change is which of the two matrices B± defines a
real, and which defines a quaternionic structures. Since this does not change whether an
isomorphism exists or not, the results of [17] imply that all isotropic Weyl incompatible
supersymmetry algebras with R-symmetry group U(1, 1) are isomorphic.33 This completes
proving that isotropic, Weyl-incompatible supersymmetry algebra are classified by their R-
symmetry group, and as well all statements about classification of supersymmetry algebras
made in section 7.

F Dimensional reduction

In this section we derive the general formulas which allow one to perform spacelike and
timelike dimensional reductions starting in an arbitrary signature.

33The relevant transformation is called V in [17]. Note that there is a typo in the diagram which represents
the isomorphisms. Also note that the off-diagonal matrix η used in [17] is related to I1,1 by an additional
basis transformation.

– 80 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
3

F.1 Odd to even dimensions

In this section we describe how the reduction from odd to even dimensions works in general.
We use the following conventions: the space-time indices of the higher dimensional theory
are M = 0, . . . , D. When performing a spacelike reduction we remove the final direction
(when going from (D+ 1) to D dimensions this is the D-th direction) and when performing
a timelike reduction we remove the 0-th direction. Therefore the lower dimensional space-
time indices are µ = 1, . . . , D for a timelike reduction or µ = 0, . . . , D − 1 for a spacelike
reduction.

When we reduce from an odd to an even space-time dimension, the dimension of the
Dirac spinor module does not decrease, which makes reductions from odd to even dimensions
simpler than the second case. We relate the higher-dimensional spinors and γ-matrices to
the lower ones as follows:

λi(D+1) = λi(D), ΓM =

{γµ, γ(D+1) = γ∗} , for spacelike reduction,
{γ0 = iγ∗, γµ} , for timelike reduction.

(F.1)

The ‘extra’ γ-matrix of the higher-dimensional theory is proportional to the chirality
operator γ∗ of the lower-dimensional one. We choose representations such that for a spacelike
reduction Γ(D+1) = γ∗ and for a timelike reduction Γ0 = iγ∗. This is always possible.

The charge conjugation matrix of the (D+ 1)-dimensional theory is equal to one of the
two charge conjugation matrices in the even D dimensions. From table 2 we can infer that
under reduction it becomes C+, if the lower-dimensional theory is orthogonal, and C− if it
is isotropic. The corresponding bilinear form of the reduced theory is C+ ⊗M or C− ⊗M
with the bilinear form M inherited from the parent theory.

The reality condition is likewise inherited from the higher dimensional theory, though
one needs to rewrite the B-matrix in terms of the lower dimensional B matrices. When going
from odd to even dimensions the dimensionally reduced B matrices satisfy, for orthogonal
dimensions

B(t,s) = (C(A(t,s))−1)T = (C−(A(t,s−1))−1)T = B
(t,s−1)
+ , (F.2)

B(t,s) = (−1)t(−iC−(A(t−1,s))−1)T = (−1)tB(t−1,s)
− ,

and for isotropic dimensions

B(t,s) = (C(A(t,s))−1)T = (C−(A(t,s−1))−1)T = B
(t,s−1)
− , (F.3)

B(t,s) = (−1)t(−iC+(A(t−1,s))−1)T = (−1)t+1iB
(t−1,s)
+ .

At least one of the ε-quaternionic structures in the reduced signature has the same ε as the
ε-quaternionic structure in the parent signature when going from odd dimensions to even
dimensions, so that the daughter theories can have the same L. More details which allow
to derive the above relations can be found in [17].

F.2 Even to odd dimensions

This case is a bit more complicated since the dimensionality of Dirac spinors halves as
we dimensionally reduce. Morally speaking we can equate the Weyl spinors of the parent
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theory with the Dirac spinors of the daughter theory. The charge conjugation matrices
and γ-matrices reduce in size, too. Relating the two theories requires some care, though
fortunately there are not too many possibilities.

In the odd-dimensional daughter signature, we only have a single C, but it will always
be related to the C-matrix of one of its two even-dimensional parents. By inspection of our
tables, C has the same invariants as C− if the parent theory is orthogonal, while it has the
same invariants as C+ if the parent theory is isotropic. This explains why we can embed C
into the higher dimensional C± by

C
(D+1)
− = C(D) ⊗ σ1, D = 5, 9 or C

(D+1)
+ = C(D) ⊗ 1, D = 3, 7, 11. (F.4)

The bilinear form on the extended spinor module of the parent theory is C(D+1) ⊗M
with whatever C(D+1) is in the above formula and where M = {δ, J} is the correct choice to
make the bilinear form super-admissible. If the standard bilinear form in the parent theory
is different from what is obtained this way, we can use the maps constructed in appendix E
to bring the bilinear form to its canonical form.

Finally we have to choose an embedding of the γ-matrices. Those in the parent theory
will be called ΓM , with M = 1, . . . , D + 1 if we are reducing along a spacelike direction and
M = 0, . . . , D if we are reducing along a timelike direction. The γ-matrices of the daughter
theory are γµ, with µ = 1, . . . , D always. We embed the γ-matrices as follows:

Γµ = γµ ⊗ σ1, Γ(D+1) = 1⊗ σ2 or Γ0 = i1⊗ σ2. (F.5)

We remove either Γ(D+1) or Γ0 depending on whether we reduce along a spacelike or
timelike direction. We define Γ∗ according to the conventional

Γ∗ = (−i)D/2+t∏
µ

Γµ (F.6)

and choose the γµ such that

Γ∗ = 1⊗ σ3. (F.7)

Note that it is always possible, as the daughter theory is in odd dimensions. Therefore
there are two inequivalent representations of the Clifford algebra that are distinguished by the
sign of γ(D). We can therefore choose the representation such that the above relation holds.

For completeness we then have the other charge conjugation matrix, from (A.23) given as

C
(D+1)
+ = C(D) ⊗ σ2 D = 5, 9 or C

(D+1)
− = C(D) ⊗ σ3 D = 3, 7, 11. (F.8)

We can therefore decompose the D + 1 dimensional spinors into D-dimensional spinors
according to

λi+ = ψi ⊗
(

1
0

)
, λî− = ψi+K+ ⊗

(
0
1

)
, (F.9)

where λi+ and λî− are the spinors in D + 1 dimensions, of which we have K+ and K−
respectively, and ψi the spinors in d dimensions, of which we now have K+ + K−. We
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may need to transform the ψi quantities to put the bilinear form and reality condition into
canonical forms.

We are now able to dimensionally reduce the vector-valued bilinear form. We have
two cases, namely orthogonal and isotropic vector-valued bilinear forms. We begin with an
orthogonal vector-valued bilinear form with K+ positive and K− negative chirality spinors

(ΓMλi+)TC(D+1)χj+Mji + (ΓMλî−)TC(D+1)χĵ−M
′
ĵî

= (γµψi)TC(D)φjMji ⊗
(
σ1

(
1
0

))T
σ1

(
1
0

)
+ (γµψĩ)TC(D)φj̃M ′

j̃ĩ
⊗
(
σ1

(
0
1

))T
σ1

(
0
1

)

=
(

(γµψi)TC(D)φjMji + (γµψĩ)TC(D)φj̃M ′
j̃ĩ

)
⊗ 1

= (γµψi)C(D)φj
(
M 0
0 M ′

)
ji

⊗ 1. (F.10)

Here i, j = 1, . . . ,K and ĩ, j̃ = K+ + 1, . . . ,K+ +K− until the final line where we have
combined the indices so that i, j = 1, . . . ,K+ +K−. M and M ′ will be of the same form,
either δ or J , but are K+ ×K+ and K− ×K− matrices in the reduced theory, respectively.

Note if M = δ this is already correctly lined up so that the D-dimensional theory has
the vector-valued bilinear form

(γµψi)C(d)φjδji, i = 1, . . . ,K+ +K−. (F.11)

However, if M = J we are not in the canonical form, in that(
JK+ 0

0 JK−

)
6= JK++K− . (F.12)

We then need a change of basis for ψi to realign the spinors into a canonical form (this will
also affect the reality condition).

For isotropic dimensions, where K+ = K− and M = M ′, we find the following

(ΓMλi+)TC(D+1)χj−Mji+(ΓMλi−)TC(D+1)χj+Mji

= (γµψi)TC(D)φj̃Mj̃i⊗
(
σ1

(
1
0

))T (1
0

)
+(γµψĩ)TC(D)φjMjĩ⊗

(
σ1

(
0
1

))T (0
1

)

= (γµψi)TC(D)φj
(

0 M

M 0

)
⊗1. (F.13)

Here i, j = 1, . . . ,K and ĩ, j̃ = K + 1, . . . , 2K until the final line where we have combined
the indices so that i, j = 1, . . . , 2K. In the final expression M represent the original K ×K
Gram matrices inherited from the parent theory. We will then need a basis transformation
to obtain the canonical form.

Next we consider the reduction of reality conditions. Due to different embeddings of
C into the parent theory, we have different factorisations of the B matrices depending on
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whether the parent is orthogonal or isotropic. For a spacelike dimension from (t, s+ 1) to
(t, s) we find

B
(t,s+1)
+ =

−B(t,s) ⊗ σt1σ2 for orthogonal parent,
B(t,s) ⊗ σt1 for isotropic parent,

(F.14)

B
(t,s+1)
− =

B(t,s) ⊗ σt+1
1 for orthogonal parent,

B(t,s) ⊗ σt1σ3 for isotropic parent.
(F.15)

Along a timelike direction, from (t+ 1, s) to (t, s) we find

B
(t+1,s)
+ =

(−1)t+1iB(t,s) ⊗ σt1 for orthogonal parent,
iB(t,s) ⊗ σ2σ

t
1 for isotropic parent,

(F.16)

B
(t+1,s)
− =

iB(t,s) ⊗ σ2σ
t+1
1 for orthogonal parent,

(−1)t+1B(t,s) ⊗ σt+1
1 for isotropic parent.

(F.17)

Note the presence of powers of σ1 resulting from the decomposition of the matrix A, which
is the product of all timelike γ-matrices.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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