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Abstract: Progress in identifying the bulk microstate interpretation of the Ryu-
Takayanagi formula requires understanding how to define entanglement entropy in the
bulk closed string theory. Unfortunately, entanglement and Hilbert space factorization
remains poorly understood in string theory. As a toy model for AdS/CFT, we study
the entanglement entropy of closed strings in the topological A-model in the context of
Gopakumar-Vafa duality. We will present our results in two separate papers. In this work,
we consider the bulk closed string theory on the resolved conifold and give a self-consistent
factorization of the closed string Hilbert space using extended TQFT methods. We incor-
porate our factorization map into a Frobenius algebra describing the fusion and splitting of
Calabi-Yau manifolds, and find string edge modes transforming under a q-deformed surface
symmetry group. We define a string theory analogue of the Hartle-Hawking state and give
a canonical calculation of its entanglement entropy from the reduced density matrix. Our
result matches with the geometrical replica trick calculation on the resolved conifold, as
well as a dual Chern-Simons theory calculation which will appear in our next paper [1].
We find a realization of the Susskind-Uglum proposal identifying the entanglement entropy
of closed strings with the thermal entropy of open strings ending on entanglement branes.
We also comment on the BPS microstate counting of the entanglement entropy. Finally
we relate the nonlocal aspects of our factorization map to analogous phenomenon recently
found in JT gravity.
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1 Introduction

The holographic principle states that the number of degrees of freedom in a spacetime region
scales with the area of its boundary, and is exemplified by the Bekenstein-Hawking (BH)
entropy formula. In the context of the AdS/CFT correspondence [2–4], the Ryu-Takayanagi
(RT) formula [5] generalizes BH entropy to extremal surfaces in AdS which are anchored
to the asymptotic boundary, and identifies the leading area term with the leading O(N2)
contribution to the entanglement entropy of the boundary CFT [6, 7]. Given a factorization
of the CFT Hilbert space,1 this implies that the bulk extremal area is capturing the degrees
of freedom for quantum states of a boundary subregion. However, the bulk micro-state
interpretation of the entropy remains mysterious. One aspect of this puzzle is that the
bulk supergravity only contains O(1) number of fields, while the classical area term is of
O(N2) [9, 10]. Where does this large number of degrees of freedom come from?

We want to understand this question directly in the bulk from the microscopic string
theory. In the case of BH entropy, Susskind and Uglum [11] proposed that the horizon
area measures the entanglement entropy of closed strings across the horizon. In the tree
level replica trick calculation, the entanglement entropy is due to a sphere diagram which
intersects the entangling surface, representing closed strings which are cut into open strings
as depicted in figure 1. What distinguishes string theory from quantum field theory (QFT)
is that this tree level closed string diagram has a one-loop open string interpretation,
suggesting a trace over a quantum Hilbert space. This led Susskind and Uglum to conclude
that the BH entropy counts microstates of open string endpoints anchored on the horizon.
In the language of ref. [12] the horizon is wrapped by entanglement branes, which gives rise
to entanglement edge modes responsible for the large O(1/g2

string) = O(1/GNewton) entropy.
Given the analogy between RT formula and BH entropy, it is tempting to apply this
proposal to give a canonical interpretation of the RT entropy from the bulk string theory.

While the seminal work [13] succeeded in reproducing the BH entropy for five dimen-
sional extremal Reissner-Nordstrom black holes via counting BPS microstates in string
theory, little is known about how to compute entanglement entropy and the associated
Hilbert space factorization in string theory. In field theory, the replica trick as computed
by the Euclidean path integral offers a shortcut that circumvents the factorization prob-
lem. However a naive application to string theory requires putting an n-sheeted cover
in the target space, which requires an off-shell formulation of string theory that is not
well understood.2 Since string theory is well-defined in the presence of conical deficits,
the references [15–17] attempted worldsheet calculations of entanglement entropy using
an “orbifold” replica trick. However these calculations do not capture the sphere contri-
bution to the entanglement entropy and the associated edge modes.3 An attempt at an
off-shell calculation was made in [18] via Witten’s open string field theory. They showed

1Even though it is quite plausible, such a factorization has never been carefully worked out. However for
rational CFT’s, the question of Hilbert space factorization and edge modes was recently addressed in [8].

2For the closed bosonic string, such an off-shell formulation was proposed by Tseytlin [14] and applied
by Susskind and Uglum in their proposal.

3The sphere contribution vanishes at the orbifold point, and hence remains zero when analytically
continued in the replica number.
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Figure 1. The partition function of the A-model on a line bundle over S2 has two interpretations.
In the closed string channel (left), it represents the overlap 〈HH∗|HH〉 between the Hartle-Hawking
state and its orientation reversal. In the open string channel (right), it represents a trace in the
Hilbert space of open strings. Figure borrowed from ref. [12].

that the symplectic structure of the string field theory in a subregion implies that pure
gauge (BRST) modes become dynamical edge modes at the entanglement cut, but did not
go beyond this classical analysis.

Edge modes are boundary degrees of freedom introduced to give a self consistent de-
scription of a subsystem. In string theory they appear due to the need to cut strings at the
point where the string worldsheet intersects the entangling surface, leaving configurations
where the strings end at the entangling surface. A similar phenomenon occurs in Maxwell
theory, where the edge modes can be thought of as configurations of “electric strings”
with their endpoints anchored to the entangling surface [19]. As in string field theory, the
presence of edge modes can be deduced from the symplectic structure of a subregion [20].
These edge modes give an important contribution to the entanglement entropy [21, 22],
in particular reproducing the contact interaction of [23] which may be viewed as a field
theory limit of a string worldsheet intersecting the entangling surface. However, these field
theory calculations can only capture the one-loop correction to the entropy, corresponding
to toroidal worldsheets.

In this work, we initiate a program to realize the Susskind-Uglum proposal for the
topological A-model string in the context of Gopakumar-Vafa duality (GV duality) [24–30],
which can be viewed as a topological version of AdS/CFT. The role of the bulk string theory
is played by the topological A-model closed string on a resolved conifold geometry [31].
This is a six-dimensional Calabi-Yau manifold which is a rank-2 bundle over a sphere of
complexified area t. The boundary CFT is replaced by the large-N limit of U(N) Chern-
Simons theory, with gauge coupling gcs = 2π

k+N and ‘t Hooft parameter igcsN . The closed
string coupling gs and the target space modulus t in the bulk are related to the parameters
of the CS theory by

gs = gcs = 2π
k +N

,

t = 2πiN
N + k

. (1.1)

The advantage of studying the A-model string is that it provides a setting similar to
AdS/CFT where we can give precise accounting of edge modes and their entanglement
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entropy on both sides of the duality. In this paper, we will focus on the closed string
theory and define its Hilbert space via the categorical description of the A-model as a
topological quantum field theory (TQFT) [32–34]. This allows us to apply the framework
developed in [12] to define the factorization of the string theory Hilbert space purely in
terms of the categorical data of an open-closed TQFT. For the A-model, the relevant
TQFT can be viewed as coming from a large N , chiral limit of q-deformed 2D Yang-Mills
theory (2DYM) [33].4 Using the TQFT description, we propose a factorization of the closed
string Hilbert space that is consistent with the entanglement entropy as computed by the
replica trick. For the Hartle-Hawking state of the closed string theory, we find that the
entanglement entropy can be interpreted as the thermal entropy of open strings, with the
aforementioned O(1/g2

s) scaling arising from the counting of Chan-Paton factors.
As in [12], these Chan-Paton factors are the entanglement edge modes of the closed

string theory, which we will interpret as coming from the stacks of entanglement branes at
the entangling surface. Interestingly, the coupling of these branes to the string endpoints
endows them with nontrivial braiding statistics. The corresponding edge modes thus be-
have like anyons and transform under a quantum group symmetry, which plays the role of
the surface symmetry group (cf. [20]) for the topological string theory.

In the follow-up paper [1], we will give a dual Chern-Simons gauge theory description of
the entanglement entropy and the corresponding edge modes, thus giving an independent
check of our closed string calculations. In the closed string theory, we will define a Hartle-
Hawking state obtained by summing over worldsheets ending on a stack of D-branes. By
applying GV duality, we will show that there is a local mapping between these worldsheets
and unknotted Wilson loops in the Chern-Simons theory, so that cutting the worldsheets
correspond to cutting the Wilson loops. In gauge theory, the entanglement entropy δS due
to cutting a Wilson loop WR in a representation R is [35]

δS = (1− n∂n) log 〈WR〉 = 〈Hmod〉WR
+ log 〈WR〉 . (1.2)

This is the entanglement entropy relative to the vacuum state, also referred to as the defect
entropy [36, 37]. Here 〈Hmod〉WR

is the expectation value of the modular Hamiltonian in
the presence of the Wilson loop, which vanishes in Chern-Simons theory. Thus, the defect
entanglement entropy associated with the Wilson loop is just log 〈WR〉. For the unknot,
〈WR〉 is precisely the quantum dimension which captures the topological degeneracy asso-
ciated with the fusion Hilbert space of an anyon. By superposing such Wilson loops in all
possible representations, we will reproduce the string theory Hartle-Hawking state as well
as its entanglement entropy in an appropriate large-N limit of the quantum dimensions.
This limit gives a precise relation between the closed string edge modes and the anyons of
Chern-Simons theory.

Our description of the relation between string worldsheets and Wilson loops has a
direct analogue in AdS/CFT [28, 38, 39]. A Wilson loop in the CFT in the fundamental
representation is dual to a probe string worldsheet in the bulk geometry, and equation (1.2)

4The q-deformed 2D Yang-Mills theory has been proposed as a non-chiral UV completion for the closed
topological string theory, and in the discussion section we will discuss the implications of this completion
and its connection to wormholes and baby universes.
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was used in [35] to compute its entanglement entropy. In this calculation the entanglement
entropy is O(log(1/gs)), which is large at weak coupling but still much smaller than the
O(1/g2

s) RT entropy.
A similar phenomenon was noted in ref. [12] for the string dual to 2DYM — any state

with O(1) number of strings has an entanglement entropy of O(log(1/gs)). However, for the
Hartle-Hawking state, competition between the Chan-Paton factors and the string action
leads to a saddle point with O(1/g2

s) strings. The counting of Chan-Paton factors at this
saddle point leads to an O(1/g2

s) entanglement entropy that is reminiscent of the scaling
of “spacetime” entropy [40].

Similarly, in AdS/CFT, in the presence of Wilson loops corresponding to “large rep-
resentations” with order O(N2) = O(1/g2

s) number of boxes, the dual branes backreact on
the geometry. In this case the defect entropy can be computed using the RT formula in the
new background, and the O(N2) = O(1/g2

s) entropy is recovered [41, 42]. In our computa-
tion, the resolved conifold itself is an emergent geometry arising from the superposition of
a large number of fundamental strings, dual to a large number of Wilson loops in the dual
gauge theory. By accounting for the contributions from the entire superposition of states,
our entropy calculation captures the entanglement which “makes up the spacetime” itself.

Finally, we comment on how our work differs from the recent work [43] which also
studied entanglement in the A-model string theory. The essential difference is twofold: first
our choice of state cuts through the base manifold S2 where the closed string worldsheets
wrap, whereas the state defined in [43] does not. As a result, our entanglement cut will
directly probe the string edge modes that were not revealed by their computation. Second,
rather than relying solely on the dual Chern-Simons field theory, we give a self-consistent
Hilbert space factorization and entropy calculation on the closed string side.

2 Summary, overview of GV duality and the Hartle-Hawking state

Here we give a summary of our paper, starting with an overview of the GV duality and a
description of the closed string state whose factorization and entanglement entropy we will
be studying.

2.1 Summary of the GV duality

Like AdS/CFT, the Gopakumar-Vafa duality is an open-closed string duality. Figure 2
shows the 6D target space geometries for the closed and open strings. These can be conve-
niently presented as two different ways to resolve the singularity of the conifold geometry,
which is a cone over S3 × S2. The closed strings live on the resolved conifold where the
conical tip is resolved into an S2, whereas the open strings live on the deformed conifold,
where the tip is deformed into an S3. The defining equations and details of the geometries
are summarized in appendix B.

An intuitive way to understand the GV duality is via ‘t Hooft’s argument for the
emergence of string theory from gauge theory [44]. ‘t Hooft observed that in the large N
limit, the Feynman diagrams of a U(N) gauge theory can be represented by ribbon graphs
which should be viewed as Riemann surfaces with holes. These are open string worldsheets,
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corresponding to a free energy expansion in which the gauge coupling g2
YM plays the role

of the string coupling gs:

F =
∞∑
g=0

∞∑
h=1

(g2
YM)2g−2+hNhFg,h. (2.1)

Here g is the genus of the worldsheet, h is the number of holes, and N accounts for Chan-
Paton factors of U(N). The dual closed string theory is obtained by summing over holes,
giving

F =
∞∑
g=0

(g2
YM)2g−2Fg(t),

Fg(t) =
∞∑
h=1

Fg,ht
h, t = g2

YMN. (2.2)

Here t is the ‘t Hooft coupling of the gauge theory, which plays the role of a target space
modulus for the closed string.

In the ‘t Hooft paradigm, the gauge theory which is relevant to GV duality is U(N)
Chern-Simons theory on S3. A direct 1/N expansion of the Chern-Simons partition func-
tion leads to the connected amplitudes Fg,h of the open topological string on the deformed
conifold, which is the same as the cotangent bundle T ∗S3 [26]. In this geometry the
open string degenerates into a pointlike object and is restricted to live on the base S3.
These degenerate Riemann surfaces of zero area correspond precisely to the ribbon graphs
of the gauge theory. Chern-Simons theory is thus the string field theory of these open
strings [45]. Closed topological strings wrap minimal volume representative among homol-
ogous 2-cycles [46, 47]; in the resolved conifold, the only such 2-cycle is the S2 at the tip.
Open topological strings end on Lagrangian 3-cycles, and in the GV duality, they end on
the base S3 of the deformed conifold. Similar to AdS/CFT, the open string theory with
a large N number of branes on S3 is dual to a closed string theory where the branes have
been dissolved and replaced by a nontrivial flux t = igSN of the B field through the S2.

The dual closed string theory was derived from the worldsheet by directly summing
over the holes in [28]. The resulting theory is the A-model closed string on the resolved
conifold, which should be viewed as the gravitational dual of Chern-Simons theory on S3.
While the resolved conifold is locally a direct product, globally it has a nontrivial fiber
bundle structure over the base S2. Denote by O(n) the complex line bundle over S2 with
Chern class n. The resolved conifold can then be identified with the rank-2 vector bundle:

O(−1)⊕O(−1)→ S2. (2.3)

More generally we can consider A-model closed strings on geometries of the form

X = L1 ⊕ L2 → S, (2.4)

where S is a general Riemann surface, and L1, L2 are line bundles with Chern classes
(k1, k2).5 It was shown in [34] that the all genus amplitudes on such vector bundles satisfy

5Strictly speaking, when S is contractible, the Chern class c1 ∈ H2(S) is always trivial. Hence, the
Chern class cannot keep track of the bundle data required for the gluing. For a manifold with boundary,
such as a disk, we instead use the euler class e(L) ∈ H2(S, ∂S) which equals to the Chern class upon gluing.
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Open A model string Closed A model string

A Model  TQFT U(N) Chern Simons theory  
onTarget space theory 

Target space geometry

Deformed Conifold Resolved  Conifold

Geometric transition 

N branes

Figure 2. Gopakumar duality relates closed A-model string on the resolved conifold to the open
A-model string on the deformed conifold.

the gluing rules of a TQFT, which can be viewed as the string field theory for the A-
model. Formally, the A-model TQFT is a functor from the category 2 CobL1,L2 of 2-
dimensional cobordisms with line bundles to the category of vector spaces. Physically, it
can be interpreted as an appropriate large N limit of q-deformed 2D Yang Mills on the
base manifold S. Figure 2 gives a summary of the geometries and target space theories on
both sides of the duality.

2.2 The Hartle Hawking state in string theory

In QFT, quantum states live on a codimension-1 time slice Σ. Geometric states are de-
fined by the Euclidean path integral on a manifold M with ∂M = Σ. In particular, the
Hartle-Hawking state |HH〉 is defined cutting the spacetime geometry at a moment of time
reflection symmetry [48]. Thus the QFT partition function can be expressed as the overlap6

ZQFT = 〈HH|HH〉 . (2.5)

However, in closed string theories the fundamental degrees of freedoms are closed
loops, so the field theory construction of geometric states doesn’t strictly apply. In the
first quantized theory, a single string state is a wavefunctional on the space of loops

Ψ[Xµ(σ)], Xµ(σ) ∈ F . (2.6)

Here, elements of F are closed string configurations specified by the embedding map Xµ(σ),
with σ ∈ S1. By direct analogy with QFT, the operators of the second quantized theory

6Following conventions in TQFT, the geometric dual 〈M | denotes the amplitude on the manifold M

with orientation reversed. The braket is then just a gluing of manifolds, viewed as a natural pairing. In
particular a TQFT does not assume a Hermitian inner product.
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Figure 3. The left figure shows the codimension-1 slice Σ of the resolved conifold where a QFT
state would be defined. In the closed string theory, the analogue of a time slice is a set FΣ of loops
configurations associated with Σ. For the A-model string, we will restrict these loop configurations
to lie in a Lagrangian submanifold L ⊂ Σ. The string wavefunctional assigns an amplitude to each
configuration of such loops.

are obtained by promoting Ψ to a string field

Ψ̂ = Ψ̂[Xµ(σ)], (2.7)

which is an operator-valued function on the loop space F of the target manifold. This is
in contrast to QFT where the second-quantized field operators are functions of spacetime
points Xµ. Thus the degrees of freedom in string theory are labelled by elements of the
loop space F , and the specification of time slices refers to subsets of F .

Similarly, the second quantized string Hilbert space is defined on a time slice of F
rather than on a time slice Σ of spacetime [49–51]. Nevertheless, we can associate a string
Hilbert space HΣ with Σ by a choice of mapping between time slices

Σ→ FΣ ⊂ F . (2.8)

For example, if Σ is given by X0 = 0, we could define a time slice in the loop space by

FΣ = {Xµ(σ) : X0(σ) = 0, σ ∈ S1}. (2.9)

However, as noted in [18], the mapping between Σ and FΣ is not unique; for example, we
can restrict only the center of mass of the string to live in Σ.

To define the A-model Hilbert space, we choose Σ to be the 5-dimensional region
of the resolved conifold which intersects the base S2 along the equator C (see figure 3).
This represents a symmetric cut through the target space geometry, and we would like to
define the string theory analog of the Hartle-Hawking state on Σ. We choose FΣ to consist
of noncontractible string loops living on a Lagrangian submanifold L ⊂ Σ. As shown in
figure 4, this is a three-dimensional manifold with topology C×S1 and its defining equation
is given in (B.10) of appendix B. The topological vertex formalism [52, 53] can then be
applied to define a string wavefunctional on FΣ which gives a string theory analog of the
Hartle-Hawking state.

– 7 –
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The topological vertex encodes the A-model amplitude on C3 with three stacks of D-
branes. It is a basic building block for partition functions on toric Calabi-Yau manifolds,
such as the resolved conifold. To compute the partition functions of more complicated
geometries, one can glue the topological vertices by brane-antibrane annihilation. This
gluing procedure allows us to cut and sew target space geometries as in Euclidean path
integrals. In particular, we will define the Hartle-Hawking state |HH〉 using the topological
vertex with a single stack of nontrivial D-branes on L. Denoting by 〈HH∗| the opposite
vertex with antibranes inserted and opposite orientation, it can be shown that

Z = 〈HH∗|HH〉 , (2.10)

where Z is the partition function on the resolved conifold. Note that Z is not a real norm
of a state as in the QFT definition (2.5). The is due to the holomorphic nature of the A
model partition function, which is analogous to a chiral half of a conformal block. From
the point of view of 2 CobL1,L2 , the HH state is given by a hemisphere with (0,−1) Chern
class, while 〈HH∗| is the oppositely oriented hemisphere with (−1, 0) Chern class:

|HH〉 = (0,-1)
, 〈HH∗| = (-1,0)

. (2.11)

In our next paper we will derive the Chern-Simons dual of the HH state, which lives on
the surface of a torus containing a specific superposition of Wilson loops inside.

2.3 Outline of the paper

Our paper is organized as follows. We start with closed topological A model in section 3
and give a chiral boson description of the Hilbert space. Using the topological vertex
formalism, we obtain the Hartle-Hawking state of topological A model on the resolved
conifold and compute its entanglement entropy using the geometric replica trick preserving
the Calabi-Yau condition. We will also introduce the entanglement brane boundary state
as a coherent state of chiral bosons.

In sections 4–5, we define a factorization of the closed string Hilbert space following
the framework introduced in [54]. We first review the relation between extended Hilbert
space factorization and extensions of closed TQFT. We then present the A-model closed
TQFT [34] and propose an extension compatible with the entanglement brane axiom in-
troduced in [54]. The essential new ingredient in this factorization is the presence of an
emergent quantum group symmetry which acts on the string edge modes. Compatibility
with this symmetry leads us to modify the usual definition of Von Neumann entropy to:

S = − trq(ρ log ρ) = − tr(Dρ log ρ), (2.12)

where the quantum trace trq is defined with the insertion of the operator D, the Drinfeld
element of a quantum group. We find that this definition of the entropy in the factorized
Hilbert space agrees with the replica trick calculation in section 3. This q-deformed notion
of entropy has been studied previously in the context of quantum group invariant spin
chains and non-unitary quantum systems [55, 56]. D is also the direct analogue of the
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defect operator introduced in [57]7 to factorize the Hilbert space of JT gravity and in our
case it is completely determined by the surface symmetry group. In the end of section 5
we will revisit the geometric calculation of the replica trick and show how the preservation
of the Calabi-Yau condition is enforced by the quantum trace. We will also show that the
entanglement entropy has a natural interpretation in terms of the BPS microstate counting.

Finally, in the discussion section, we will comment on the relation between our work
and factorization in JT gravity, particularly as it relates to the quantum group symmetry.

3 The closed string Hilbert space and entanglement entropy from the
replica trick

Topological string theory is a broad subject, so we will not try to give an extensive review in
this paper. Nevertheless we give a short review on topological sigma model in appendix A.
In a similar spirit, we give a very short review on geometric transition between the deformed
conifold and the resolved conifold in appendix B. Curious readers may refer to [58–63].

3.1 The Hartle-Hawking state from the all-genus amplitude

Worldsheet topological string theory comes from applying topological twists to the N =
(2, 2) supersymmetric sigma models, and the two inequivalent twisting procedures give the
topological A-model and the topological B-model [46]. In this paper, we will consider the A-
model, whose target space is a six real dimensional Calabi-Yau manifold X. The theory only
depends on the Kahler modulus of the target space and is invariant under area preserving
diffeomorphisms in the target space. The free energy for the A model is a sum over all
worldsheet instanton sectors corresponding to holomorphic worldsheets. Let [Si] be a basis
of H2(X,Z), so that a generic element β ∈ H2(X,Z) can be expressed as β =

∑
i ni[Si].

Let ti =
∫
Si
ω be the complexified Kahler parameters and denote Qβ =

∏
i e
−niti . The free

energy of the A-model on X then takes the form of a sum over all worldsheet instanton
sectors:

F =
∑
g

g2g−2
s Fg(ti) =

∑
g,β

g2g−2
s Ng,βQ

β . (3.1)

Ng,β is the genus-g Gromov-Witten invariant that “counts” the number of holomorphic
curves of genus g in the two-homology class β in an appropriate sense.

A remarkable fact about the closed A-model string is that we can compute the all-
genus amplitude using localization, connection to M-theory, mirror symmetry, and many
other techniques [26, 45, 52, 53, 64–67]. The free energy of the A-model can be resummed
to be expressed in terms of the BPS index, Gopakumar-Vafa invariants ngβ for a curve β,

F =
∑
g,β,k

ngβ
1
k

(
2 sin kgs2

)2g−2
Qkβ . (3.2)

7ρ is equivalent to ρ̃ in [57].

– 9 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
1

Figure 4. The left figure shows a D-brane on L ⊂ Σ which intersects the base S2 along the equator
and extends in to the fiber directions along a hyperbola. In the right figure, we show the string
loops in the time slice FΣ which lives in L. The state |HH〉 state is defined via worldsheets which
end on these loops and wrap the upper hemisphere, as shown in the left figure. Similarly 〈HH∗|
describes worldsheets on the southern hemisphere which end on anti-branes.

In particular the partition function Z = eF on the resolved conifold is

Z(O(−1)⊕O(−1)→ S2) = exp
( ∞∑
n=1

1
n(2 sin(ngs2 ))2 e

−nt
)
, (3.3)

because ngS2 = 0 for all g > 0 but n0
S2 = 1. In (3.3), we have already summed over all

genera. Note that although the partition function on the resolved conifold is well-defined
for both weak and strong coupling, we presented an asymptotic form (3.3) which is valid
for large values of the string coupling gs. By expanding (3.3) in gs, one can recover the
free energy expression (3.1) in terms of Gromov-Witten invariants, which is valid at weak
string coupling. The e−nt factors correspond to holomorphic worldsheet instantons that
wrap n > 0 times the base manifold S2.

As discussed in section 2, we want to define a Hartle-Hawking state for the resolved
conifold as a wavefunctional of string loops inside the Lagrangian manifold L. To do this we
apply the topological vertex formalism [67] which express the string partition function (3.3)
in terms of the overlap in (2.10) by inserting branes and antibranes on L. These branes
cut through the worldsheets along the equator while extending into the fiber directions as
shown in figure 4.

Due to the coupling between the string endpoints and the branes, the A-model am-
plitude depends on the holonomy U of the world volume gauge field. For the worldsheets
ending on the branes and wrapping the upper hemisphere D+, the amplitude is

Z+(O(0)⊕O(−1)→ D2
+, U), U = P exp

∮
C
A. (3.4)
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For N branes the worldvolume gauge theory is U(N) Chern-Simons theory, and in the large
N limit the amplitude (3.4) corresponds to the topological vertex with a single nontrivial
stack of branes. Similarly we can define another vertex via the amplitude Z− for the
oppositely oriented worldsheets which wrap the lower hemisphere and end on antibranes.
By annihilating the brane-antibrane pairs, these vertices can be glued together to recover
the partition function of the resolved conifold:

Z(O(−1)⊕O(−1)→ S2) =
∫
dU Z+(U)Z−(U−1). (3.5)

Here the gluing is implemented by integration over the gauge group U(N) using the Haar
Measure.

The vertex Z+ can be interpreted as a closed string wavefunctional for the Hartle-
Hawking state:

〈U |HH〉 = Z+(U). (3.6)

|HH〉 is a state in the second-quantized string theory, and the path integral Z+ includes
all disconnected worldsheet configurations winding an arbitrary number of times in one
orientation. Each closed string configuration is defined by the occupation numbers kj which
enumerate how many closed strings wind j times around C, which should be identified with
the non-contractible cycle of L.

In terms of kj , the wavefunctional is of the form

〈U |HH〉 =
∑
~k

C00~k(gs, t)
∏
i=1

(trU i)ki
z~k

, ki > 0

z~k =
∞∏
j=1

jkjkj !, (3.7)

where C00~k(gs, t) are the vertex coefficients derived in [52, 53], and the normalization z~k is a
combinatorial factor associated with redundancy in labelling by ~k. (3.7) can be also derived
by calculating the open Gromov-Witten invariants from the worldsheet theory [53, 68]. In
the large N limit the multi-trace factors form a linearly independent set called the winding
basis |~k〉

lim
N→∞

∏
i=1

tr(U i)ki = 〈U |~k〉 , kj > 0. (3.8)

The overlap between the states |~k〉 is defined via the Haar measure dU :

〈~k|~k′〉 =
∫
dU tr~k(U) tr~k′(U

−1) = δ~k,~k′z~k. (3.9)

This basis defines the chiral closed string Hilbert space HΣ associated with strings winding
around the equator.8

8This Hilbert space can be viewed as a “chiral half” of the space of functions on U(N) in the large N
limit in the following sense. In the large N limit, the Hilbert space of functions on U(N) factorizes into
two sectors consisting of positively oriented strings represented by wavefunctions tr(Uk) and negatively
oriented strings represented by wavefunctions tr(U†

k

) [69]. The Hilbert space we consider consists only of
the positively-oriented strings.
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So far we have expressed the closed strings states as functions of the holonomies U .
Let us interpret these explicitly as wavefunctionals of loops in FΣ. Due to the topological
invariance of the A-model, elements of FΣ fall into equivalence classes labelled by their
winding numbers around C. If Xn(σ) is a string loop winding i times, then each single
trace factor in (3.8) should be treated as a single string functional:

Ψ[Xn(σ)] = tr(Un) = trP
(

exp
∮
X∗nA

)
. (3.10)

Similarly, the Hartle-Hawking state is a multi-string functional obtained by treating multi
loop configuration in FΣ as boundary conditions for the string path integral.

3.2 The chiral boson description of HΣ and D branes

The Hilbert space HΣ has a second quantized description in terms of a chiral boson which
can be viewed as a string field theory for the A-model.9 This is obtained by defining
string creation/annihilation operators α∓n, n > 0 which create and annihilate closed strings
winding n times with positive orientation [52, 66, 70]:

〈U |
∏
n

αkn−n |0〉 =
∏
n

tr(Un)kn . (3.11)

In terms of these oscillators, the D-branes |U〉 are coherent states

|U〉 = exp
( ∞∑
n=1

tr(Un)
n

α−n

)
|0〉 . (3.12)

This gives a more precise definition of |U〉 in the large N limit, as we can apply the mapping

|U〉 → |t〉 = exp
( ∞∑
n=1

tn
n
α−n

)
|0〉 , tn = trUn. (3.13)

In the large N limit, tn can be viewed as formal variables without reference to the
matrix U . In particular, the HH state is given by evolution of such a coherent state [52]

|HH〉 = e−tĤ/2 exp
(∑
n=1

1
n(qn/2 − q−n/2)

α−n

)
|0〉 , (3.14)

Ĥ =
∞∑
n=1

α−nαn, q = exp(igs), (3.15)

where Ĥ is the Hamiltonian of the closed string field theory and e−
t
2 Ĥ is a string field

propagator which evolves the geometry from an infinitesimal disk to a finite hemisphere of
area t/2. The dual state defined by the amplitude Z− with antibranes inserted is given by10

〈HH∗| = 〈0| exp
(∑
n=1

αn
−1

n(qn/2 − q−n/2)

)
e−tĤ/2. (3.16)

9This is the Hilbert space associated with the representations of U(∞). Strictly speaking, this is the
string field theory for the topological B-model on the mirror manifold [52, 66, 70].

10This is a nontrivial adjoint operation which corresponds to changing the Chern class in addition to
changing the orientation of the hemisphere [52, 70, 71]. When t is real, this is equal to the complex
conjugation. When t is complex, due to the holomophicity of the A-model, we shall not use the complex
conjugation and our formula for the dual is correct for a generical complex t.
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It can be verified directly from (3.14), (3.16),and (3.3), that

Z = 〈HH∗|HH〉 . (3.17)

The entanglement brane boundary state. It is useful to identify the holonomy
D ∈ U(∞) corresponding to the state on the infinitesimal disk:

|U = D〉 = exp
(∑
n=1

1
n(qn/2 − q−n/2)

α−n

)
|0〉 . (3.18)

From (3.13), we know D must satisfy

trDn = 1
(qn/2 − q−n/2)

= 1
[n]q

, (3.19)

where we have introduced the q-deformed integer [n]q. A diagonal matrix that satisfies this
equation in the N →∞ limit has components:

Djj = q−j+
1
2 , j = 1, · · ·N. (3.20)

Deriving this holonomy requires a regularization of the trace. Note that

trDn =
N∑
j=1

qn(−j+ 1
2 ) = q−n/2

∑
j=0

(q−n)j = 1− q−n(N+1)

qn/2 − q−n/2
, (3.21)

so we need to give gs = −i log q a small imaginery part for the sum to converge. This ana-
lytic continuation is possible because in topological string theory gs is a formal expansion
variable rather than a physical coupling. In terms of |D〉 we can write Z as a propagation
amplitude

Z = 〈D∗| e−Ĥt |D〉 . (3.22)

We will show in section 5 that the state |D〉 is the analogue of the “entanglement
brane” boundary state described in [12], and the holonomy D determines the corresponding
entanglement boundary condition. We can compute the amplitude (3.22) in the winding
basis using the overlaps:

〈~k|D〉 =
∏
n=1

(trDn)kn =
∏
n=1

( 1
eigsn/2 − e−igsn/2

)kn
, (3.23)

which gives another expression for the partition function:

Z =
∑
~k

(dq(~k, gs))2e−l(k)t, l(~k) =
∑
j

jkj ,

(dq(~k, gs))2 = 1
z~k
| 〈k|D〉 |2 =

∏
n=1

1
z~k

(|[n]−1
q |)2kn . (3.24)
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If we interpret Z as a statistical partition function with Boltzmann factor e−l(k)t, this
expression suggests that (dq(~k, gs))2 is a degeneracy factor. A small gs expansion of (3.23)
then shows that

(dq(~k, gs))2 ∼
∏
n

( 1
gs

)2kn
. (3.25)

We will see that this factor leads to a large O( 1
gs

) number of microstates per open string
endpoint, as alluded to in the introduction. The appearance of the quantum integers [n]q
indicates an emergent quantum group symmetry in the target space. In the next subsection
we will see addition evidence of this symmetry in the structure of the entanglement entropy
as computed by the replica trick.

Boson representation of the topological vertex. As a final remark, we note that in
the chiral boson language, the topological vertex can be viewed as a highly nontrivial choice
of the “pair of pants” amplitude. This is a state |V〉 ∈ HΣ ⊗HΣ ⊗HΣ. It’s wavefunction
in the coherent state basis is defined by

〈U1, U2, U3|V〉 = ZC3 , (3.26)

where ZC3 is the A-model amplitude on C3 with 3 stacks of D-branes with holonomies
Ui, i = 1, 2, 3. It is in this sense that the states |U〉 corresponds to degrees of freedom on
A-branes. In terms of the vertex, the Hartle-Hawking state in (3.7) is

〈U |HH〉 = 〈U | ⊗ 〈0| ⊗ 〈0| |V〉 , (3.27)

where |0〉 corresponds to the state with no strings.

3.3 Entanglement entropy from the replica trick

In string field theories, an entanglement partition corresponds to a cut in the space FΣ
of field configurations. Given a spatial partition Σ = ΣA ∪ ΣB, one can consider string
configurations FΣA and FΣB , define the respective string Hilbert spaces HΣA , HΣB , and
define the factorization map

HΣ → HΣA ⊗HΣB . (3.28)

However, here we will bypass this procedure and apply the replica trick as suggested by
Susskind and Uglum [11]. We choose ΣA to be the subregion fibered over an arc A ⊂ C of
the equator, and ΣB to be region over the complementary arc B. The entangling surface
is a codimension-2 surface fibered over two points on C and separates the Lagrangian
manifold L into two pieces, cutting the closed strings winding around the equator into two
open strings.

To apply the replica trick we have to compute the A-model partition function Z(α)
on the α-fold replicated geometry with opening angle 2πα around ∂ΣA. As we will show
later, the replication can be applied in a way that preserves the bundle structure and
the Calabi-Yau condition. As the topological A-model is invariant under area preserving
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diffeomorphisms, the replicated manifold thus remains O(−1) ⊕ O(−1) → S2 with the
volume rescaled by a factor of α. The replica partition function is thus:

Z(α) =
∑
k

(dq(~k, gs))2e−αl(k)t, (3.29)

which gives the entanglement entropy:

Sreplica = (1− α∂α)|α=1 logZ(α) =
∑
k

p(k)(− ln p(k) + 2 ln dq(~k, gs)),

p(k) = (dq(~k, gs))2e−tl(k)

Z
. (3.30)

This formula is reminiscent of entanglement entropy in gauge theories. To make this
analogy more precise, we compute the amplitude expression (3.22) for Z(α = 1) in the rep-
resentation basis. At finite N , these basis elements |R〉 are defined by characters of U(N).

〈U |R〉 = trR(U),

〈R′|R〉 =
∫
dU trR′(U−1) trR(U) = δRR′ , (3.31)

where R labels irreducible representations(irreps) of U(N). They are related to the winding
basis by the Frobenius relation

|R〉 =
∑
~k⊂Sn

χR(~k)
z~k

|~k〉 . (3.32)

Here each R is identified with a Young diagram with n boxes, and χR(~k) is the character
of the symmetric group Sn associated with the diagram. In the N → ∞ limit we take
the expression on the r.h.s. (which is independent of N) as a definition of |R〉. This limit
captures states |R〉 whose diagrams have columns of arbitrary length.11

In the representation basis we have

〈R|D〉 = trR(D) = (−i)l(R)dq(R)qκR/4, (3.33)

where l(R) is the number of boxes in the Young diagram. The quantity dq(R) is the
quantum dimensions of the symmetric group representation R. In term of the Young
diagram, dq(R) is given by

dq(R) =
∏
�∈R

i

qh(�)/2 − q−h(�)/2 =
∏
�∈R

1
2 sin(h(�)gs

2 )
, (3.34)

with h(�) being the hook length, and the phase qκR/4 is given by

κR = 2
∑
�∈R

(i(�)− j(�)), (3.35)

here i(�), j(�) are the row and column numbers of the box.
11This only captures a chiral half of the Hilbert space because it misses the representations obtained by

tensoring anti-fundamental representations of U(N).
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It will be useful to view these quantities as arising from a particular large N limit of
the quantum dimensions dimq(R) for U(N)q:

lim
N→∞

q−Nl(R)/2 dimq(R) = (−i)l(R)dq(R)qκR/4, (3.36)

where the prefactor q−Nl(R)/2 renormalizes the quantum dimension for U(N)q, rendering
it finite in the large N limit. As we will show later, this is the same regularization used to
determine the matrix D in (3.20).

In the representation basis, the Hartle-Hawking state (3.14) can be written as

|HH〉 =
∑
R

e−tĤ/2 |R〉 〈R|D〉 =
∑
R

dq(R)(−i)l(R)qκR/4e−tl(R)/2 |R〉 , (3.37)

and the partition function on the resolved conifold is

Z =
∑
R

(dq(R))2e−tl(R). (3.38)

Equations (3.37) and (3.38) are direct analogues of formulas for the Hartle-Hawking state
in two dimensional gauge theories as well as in JT gravity. Together with (3.36), they
suggest that (dq(R))2 is a degeneracy factor due to a quantum group symmetry associated
with the large N limit of U(N)q.

Applying the replica trick to (3.38) gives another expression for the entropy (3.30):

Sreplica = (1− α∂α)|α=1 logZ(α),

=
∑
R

p(R)(− ln p(R) + 2 ln dq(R)), p(R) = (dq(R))2e−tl(R)

Z
. (3.39)

This is a direct analogue of the entropy in 2D nonabelian gauge theories [72–74] with R

playing the role of representation labels for a surface symmetry, p(R) a probability factor,
and dq(R) the dimension of each representation. Indeed it can be shown [1] that the
Hartle-Hawking state and its entropy is a large N limit of

|HH〉 =
∑
R

dimq(R)e−tl(R) |R〉 ,

Sreplica(N) =
∑
R

p(R)(− ln p(R) + 2 ln dimq(R)), p(R) = (dimq(R))2e−tl(R)

Z
, (3.40)

which are the Hartle-Hawking state and entropy for q-deformed 2DYM. In the context of
the q-deformed 2d Yang-Mills, the limit (3.36) has a very natural explanation. Rather than
removing the N dependence of dimq(R) by hand, we should view this as a renormalization
procedure in which the divergent term qNl(R)/2 is absorbed into the Boltzmann factor
e−tl(R). The divergence arises due to the analytic continuation of q, and has precisely the
right form so that it can be absorbed into a redefinition of the “coupling” t. In out next
paper [1], we will explain this renormalization from the point of view of the geometric
transition.

Given this limit, we expect that 2 log dq(R) has a state counting interpretation in terms
of edge modes transforming in an irrep of a surface symmetry group. This symmetry group
has been q-deformed, leading to quantum dimensions which do not have to be integers.

– 16 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
1

c
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Figure 5. On the left, we show the splitting of the worldsheet boundary into A and B. On the
right, the brane L on which the closed string configurations X(σ) live is split into subregions by
the entanglement branes. We show an open string configuration Xij(σ) ∈ FΣA

. These end on the
entanglement branes intersecting L along two open disks.

4 The A-model closed TQFT and representation category of quantum
groups

4.1 General comments about factorization, E-brane axiom, and cobordisms

In the following two sections, we give a canonical interpretation of the replica trick entropy
in (3.39) by defining a factorization of the closed string Hilbert space HΣ associated with
the decomposition Σ = ΣA ∪ ΣB into the subregions. The intersection of these subregions
with L are shown in the right of figure 5. We start by defining the spaces FΣA , FΣB
of string configurations associated to these subregions. These spaces contain open string
configurations Xij(σ) inside L∩ΣA which are stretched between entanglement branes (E-
branes) which cut L in two disconnected slices. The E-branes wrap a submanifold12 L′

that intersects the base S2 along a circle orthogonal to C. The indices i, j are Chan-Paton
factors labelling the N � 1 E-branes, which can be identified with the entanglement edge
modes of the closed string. We will give an explicit description of the open string Hilbert
space HΣA ,HΣB and the factorization map

HΣ → HΣA ⊗HΣB . (4.1)

This mapping embeds the Hilbert space of closed strings into an extended Hilbert space of
open strings.

Just as in QFT, the factorization problem is strongly ambiguous in the absence of
locality constraints. For example, as noted in [57], we can always map the physical states
into a maximally entangled state of some arbitrary extended Hilbert space, leading to an

12We expect L′ to be a Lagrangian submanifold. see comments in the discussion section.
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arbitrarily large entanglement entropy. When the locality constraints are available, the
strongest form of such constraints come from using the Euclidean path integral to split a
time slice into subregions. In 2 dimensions, such a factorization of a circle or an interval is
obtained from the Euclidean evolution (read from top to bottom)

: Hcircle → Hinterval. : Hinterval → Hinterval ⊗Hinterval (4.2)

with some appropriate choice of boundary conditions at the entangling surface. In the
previous work [54], we introduced a constraint on these factorization maps called the
entanglement-brane (E-brane) axiom (4.3), which ensures that the factorized state pre-
serves all the correlations of the original state. This requires that all holes traced out by
the entangling surface can be closed up. For example, we require that the cobordisms13

in (4.2) satisfy

= , = . (4.3)

This ensures that splitting the state does not change its correlations, since we can fuse it
back and obtain the identity map by allowing the hole to contract.

The E-brane axiom, generally requires that the factorization involves a sum over edge
modes at the entangling surface. It axiomatizes the state counting interpretation of the
replica trick entropy. The replica trick, in both gravity and QFT, involves a path integral
Z(α) on a background with a contractible circle around the entangling surface. However a
thermal interpretation

Z(α) = trV e−αH (4.4)

requires a path integral in a background with a non-contractible circle. The E-brane axiom
enforces the non-trivial requirement that these two are equal:

= . (4.5)

Previous works in gauge theory have shown that this can be satisfied provided we introduce
appropriate edge modes into the Hilbert space of the subregion V [54].

Unfortunately, demanding a path integral formulation of the target space physics is an
overly restrictive requirement; in particular it is not generally a useful assumption in CFT’s
or in string theory. However there is a categorical reformulation of the path integral in
terms of cobordisms which does not presume a notion of path integration over local fields.
From the categorical point of view, a path integral for a D-dimensional Euclidean theory

13The right diagram of (4.3) was refered to as isometry condition and employed to study factorization in
JT gravity in [57]. It is one of the axioms of a “special” Frobenius algebra.
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is a rule which assigns a number (the partition function) to a D-dimensional manifold, a
Hilbert space to D−1 manifolds, and linear maps to cobordisms, which are D-dimensional
manifolds with “initial” and “final” boundaries. Gluing of cobordisms along initial and
final boundaries corresponds to composition of linear maps. The standard example of
such a cobordism theory is a closed 2D TQFT in which a Hilbert space V ⊗n is assigned
to a disjoint union of n circles, and linear maps are assigned to cobordisms interpolating
between collections of circles. The theory on an arbitrary closed Riemann surface can then
be constructed by gluing the basic cobordisms [75, 76]:

, , , . (4.6)

Consistency of different gluings for the same manifold is enforced by a set of sewing ax-
ioms which provide strong constraints on the cobordism data (4.6). For a 2D TQFT, the
resulting structure is a Frobenius algebra with multiplication defined by the pair of pants
cobordism. A similar formulation can be applied to 2D gauge theories and 2D conformal
field theories [8].

In the categorical framework [54], the path integral factorization maps (4.2) are viewed
as additional cobordism data that defines an open extension of the closed TQFT. This
extension introduces Hilbert spaces associated with codimension-one manifolds with bound-
aries (i.e. intervals) and additional set of cobordisms

, , , , , , (4.7)

which must be compatible with (4.6) according to the sewing relations

= , = , = , (4.8)

= , = , (4.9)

that defines an open-closed TQFT [77, 78].
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It was shown in [54] that the sewing axioms for an open-closed TQFT can be consis-
tently combined with the E-brane axiom:

=

e

e , (4.10)

to give a complete set of locality constraints that a consistent factorization should satisfy.
As explained in [54], when combined with (4.8) equation (4.10) is powerful enough to ensure
that all holes traced out by the entangling surface can be closed. A solution to all of these
constraints was given for 2DYM and its string theory dual, and led to a factorization
consistent with the replica trick entropy.

In the next 2 sections, we will apply the approach described above to define the fac-
torization of the A-model string theory. It was shown in [33, 34] that the closed string
amplitudes on direct sums of line bundles

X = L1 ⊕ L2 → S, (4.11)

over a Riemann surface S can be determined by a closed TQFT on 2 CobL1,L2 . This means
that the A-model amplitudes on X can be broken up into open string amplitudes by
inserting brane-antibrane pairs as in our construction of the Hartle-Hawking state, and the
gluing of these open string amplitudes satisfies the same rules as the category 2 CobL1,L2 of
2-cobordisms with line bundles. The A-model TQFT [34] is a generalization of 2D TQFT,
with the information about the higher-dimensional geometry captured by Chern classes
(k1, k2) of the line bundles L1, L2. It is generated by cobordisms in (4.6) with (0, 0) Chern
class, together with the following four cobordisms

(-1,0) , (0,-1) , (1,0) , (0,1) . (4.12)

Note that this generates a much larger category than the set 2 Cob of two-dimensional
cobordisms, and the A-model TQFT has a more complicated set of sewing relations than
an ordinary Frobenius algebra. However, in formulating the factorization of the A-model
Hilbert space, we will restrict to target spaces which are Calabi-Yau manifolds. This
requires the Chern classes to satisfy

k1 + k2 = −χ(S), (4.13)

where χ(S) is the Euler characteristic of the base manifold. This is an important restriction
that determines the form of the factorization map which we will propose.

4.2 A model TQFT on Calabi Yau manifolds

The subcategory of 2 CobL1,L2 corresponding to Calabi-Yau manifolds defines a symmetric
Frobenius algebra just like a 2D TQFT. The basic building blocks for this category are the
same as the generators in (4.6), except they are now decorated by Chern class labellings
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satisfying (4.13). Since both the Chern classes and the Euler characteristic of the base
manifolds are additive under gluing, the Calabi-Yau condition (4.13) is preserved under
gluing. The A-model TQFT is a functor which assigns a linear map to each generators [33]:

(0,-1) =
∑
R

(−i)l(R)dq(R)qκR/4e−tl(R) |R〉 (4.14)

(-1,0) =
∑
R

il(R)dq(R)q−κR/4e−tl(R) 〈R| (4.15)

(0,1)

=
∑
R

il(R)

dq(R)q
−κR/4e−tl(R) |R〉 〈R| 〈R| (4.16)

(1,0)

=
∑
R

(−i)l(R)

dq(R) qκR/4e−tl(R) |R〉 |R〉 〈R| (4.17)

(0,0)

= e−tĤ =
∑
R

e−tl(R) |R〉 〈R| (4.18)

Note that each of the cobordisms describes a Riemann surface S with boundaries in
the target space. Each (oriented) circle intersects a stack of Lagrangian branes on which
worldsheets wrapping S ends. Due to the area-dependent Boltzmann factors e−tl(R), the
A-model TQFT is not exactly a Frobenius algbera. However the Frobenius algebra gluing
rules are satisfied provided we keep track of the Kahler modulus t, which just adds upon
gluing [79].

Gluing rules. To see the effect of introducing the Chern classes, we present some of the
gluing rules here in detail. The pair of pants14 (4.16) defines a multiplication on closed
string states and the Hartle Hawking state (4.14), also known as the “Calabi Yau cap” is
the unit element. These satisfy

(0,-1)

(0,1)
=

(0,0)
(4.19)

14Note that the pair of pants amplitude here differs from the one defined by the topological vertex,
because the location of the branes is different in the two cases.
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with the (0, 0) cylinder treated as the identity of the algebra. Gluing the counit (4.15) to
the product (4.16) we obtain a bilinear form we call the closed pairing:

(-1,1)
:=

(-1,0)

(0,1)

=
∑
R

(−1)l(R)q−2κR/4 〈R| 〈R| . (4.20)

Note that the closed pairing has a different Chern class than the cylinder even though both
have the same Euler characteristic. This is required by the Chern class assignments of the
counit and unit, together with the fact that they are adjoint with respect to each other
under the closed pairing.

Applying the closed pairing to the unit gives the counit:

(0,-1)
= (-1,0) . (4.21)

This equation implements the mapping15

|HH〉 → 〈HH∗| (4.22)

taking the Hartle-Hawking state to its adjoint as defined in section 3.
The pairing has an inverse, called the copairing, which is obtained by gluing the unit

to the coproduct

(1,-1)
:=

(0,-1)

(1,0)

(1,-1)

(-1,1)

=

(0,0)

(4.23)

The resolved conifold partition function is obtained by gluing the unit to the counit:

Z =
(0,-1)

(-1,0)
=
∑
R

(dq(R))2e−tl(R). (4.24)

15In general the mapping ∗ which changes orientation while mapping branes to anti branes is given in
the representation basis by |R〉 → (−1)l(R) 〈Rt|. This agrees with the adjoint operation defined by (4.20)
when acting on the unit (4.14) and counit (4.15).
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More generally, by gluing the generators, we can obtain the closed string partition function
for a local Calabi-Yau manifold with base manifold S of genus g and Chern classes (2g −
2 + p, p):

Z =
∑
R

(
1

dq(R)

)2g−2

q(g−1)κR/2e−tl(R) (4.25)

where t is the complexified area of S.

4.3 Quantum traces and q-deformation of the A model TQFT

Following [33], we have expressed the linear maps (4.14) to (4.18) in an orthonormal basis
|R〉 labelled by representations of U(∞). These linear maps should be viewed as string
amplitudes. This becomes manifest when we express the basis |R〉 as wavefunctions on
the group

〈U |R〉 = trR(U), (4.26)

where U = exp
∮
A gives the usual coupling of the worldsheet boundary to the worldvolume

gauge field.
This gives a consistent closed TQFT so long as we restrict to gluing of cobordisms

along circles. However, it was observed in [80] that for finite N the use of the classical
trace in (4.26) leads to inconsistencies when gluing along open edges. This is precisely
the type of gluing which was needed to compute the replica trick entropy (3.30), since
this requires opening the base S2 into a disk D2 and then gluing a sequence of such disks
along half of their boundary ∂D2. The same inconsistency appears if we apply the 2DYM
factorization in [12] to the closed string wavefunction trR(U). This was defined by splitting
the Wilson loop U = UAUB into the product of Wilson lines in region A and B, and then
taking the classical trace:

trR(U)→ trR(UAUB) =
dimR∑
i,j=1

Rij(UA)Rji(UB), (4.27)

where Rij(UA,B) are matrix elements in the R representation, viewed as wavefunctions in
the subregion A,B. The indices i, j label entanglement edge modes transforming under
the gauge group U(∞), and in the case of undeformed 2DYM, led to an entropy consistent
with the replica trick. However, for the A-model, this naive counting of edge modes would
lead to degeneracy factors of dimR, which are incompatible with the quantum dimensions
in the replica trick entropy (3.39). In terms of the sewing relations, the U(∞) edge modes
fail to satisfy the E-brane axiom.

This problem arises because the A-model TQFT restricted to Calabi-Yau manifolds is
really a functor which maps 2 CobL1,L2 to the representation category of a quantum group.
This is suggested by the presence of the q-deformed dimension factor dq(R), which implies
that the surface symmetry acting on the endpoints of the open strings, is q-deformed.
However, the classical trace employed in the wavefunction (4.26) is not invariant under
this quantum group symmetry. We will explain what this quantum group symmetry is
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in subsequent sections. For now we note that [80] observed that gauge invariance under
the quantum group symmetry can be achieved by replacing the classical trace with the
quantum trace:

〈U |R〉 = trq,R(U) := trR(uU), (4.28)

where u is the Drinfeld element of the quantum group. This element is defined abstractly
from quantum group data, and its classical trace gives the associated quantum dimension.

Thus for U(N)q we have

trq,R(1) = trR(u) = dimq(R). (4.29)

This equation remains valid for a general quantum group, with dimq(R) the quantum
dimension defined from its representation category data. For the A-model string, the role
of the Drinfeld element is played by the matrix D defined in (3.20), which may be viewed
as a renormalized version of the Drinfeld element u for U(N)q:16

D = q−N/2u,

lim
N→∞

trR(D) = (−i)l(R)dq(R)qκR/4. (4.30)

This is the analogue of equation (3.36) and will be useful in relating the quantum group
symmetry for the A-model string to U(N)q. Finally note that the wavefunctions (4.28) are
orthonormal ∫

dU trq,R(U) trq,R′(U) = δR,R′ , (4.31)

and span the Hilbert space of class functions on the quantum group, which is isomorphic
to HΣ defined previously in section 3. For this reason, the use of classical traces in [33]
was adequate for the purposes of computing A-model partition functions by sewing along
circles. However, as we will see, the quantum trace and the q-deformed nature of the
holonomy U becomes essential when we perform operations that effectively cut open the
closed string loops.

4.4 String theory origin of the q-deformation

In the previous discussion, we explained the necessity for quantum traces and the associ-
ated q-deformation of the closed string Hilbert space from consistency requirements of the
TQFT. Here we would like to explain how the quantum group symmetry emerges from
the viewpoint of the worldvolume gauge theory on the D-branes.

16In deriving the second line of (4.30), it is important to note that the trace is taken in the representation
R, and it follows from the first line of (4.30) that the matrix elements of D and u are in an irreducible
representation are related by

DR
ab = q−Nl(R)/2uRab,

where l(R) denotes the number of boxes in the Young diagram of the representation R.
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c
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Figure 6. Quantizing the worldvolume gauge theory with time running around the non-contractible
cycle of L, we have to impose Gauss’s law on M . The puncture on M corresponds to the anyon
charge on the Wilson loop which sources Gauss Law.

q-deformed connection in the worldvolume gauge theory. Replacing classical
traces with quantum traces means that the coupling of the worldsheet boundary to the
worldvolume gauge fields have been changed to

tr(uP exp
∮
A). (4.32)

This is because the classical gauge field should be viewed as a q-connection, whose com-
ponents Aaµ(X) (a is a group index) are noncommutative functions on the brane. This
q-deformation is a known property of the worldvolume U(N) Chern Simons theory on a
stack of N branes, and we will give a brief review here. Usually, the gauge fields compo-
nents Aµ(X) are taken to be commutative functions of X. However one can see how a
q-deformed gauge field arises by considering the Gauss law constraint. This is a constraint
applied in canonical quantization along a constant time slice M (see figure 6), which we
can take to be a surface at fixed angle along the non-contractible S1 on the Lagrangian
manifold L (B.10). In the presence of a Wilson loop around this cycle, corresponding to
boundary γ of the string worldsheet ending on the brane, Gauss law reads

k

8πε
ijF aij(X) = δ2(X − P )T a, (4.33)

where i, j are spatial indices on M , P is the location of the puncture where M cuts the
Wilson loop, T a, a = 1 · · · dim U(N) are generators of U(N). It was noted in [81] that
this equation cannot be solved for an ordinary gauge field because F aij is a number while
T a is a non commuting matrix. This mismatch occurs because the Wilson loop is a non-
dynamical defect operator; there is no “matter field” on the loop γ that couples to A. One
solution is to “integrate in” dynamical degrees of freedom on the loop, which will couple to
A and render the objects on both sides of (4.33) commutative [81, 82]. However to see the
quantum group symmetry, we should apply the alternative prescription suggested in [81],
and q-deform the gauge field Aaµ into a non-commutative object, i.e. a matrix in the lie
algebra of U(N). This idea was carried out in [83], where an explicit solution to (4.33)
was derived, giving a noncommutative connection that can be identified with the Knizhnik-
Zamolodchikov connection in conformal field theory. In appendix D, we give a string sigma
model argument for noncommutative world volume gauge fields following [84]
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5 Extension of the A-model closed TQFT

Having formulated the A-model closed TQFT in terms of representation categories of
quantum groups, we now describe its extension to the open sector. We begin by defining
the open string Hilbert space associated to an interval on which the operators of the open
sector act. We give an explicit action of the quantum group symmetry on this Hilbert space
and the associated decomposition into irreducible representations. Next, we derive the
open-closed cobordisms which include diagrams describing the factorization of the closed
string Hilbert space. We then compute the q-deformed entropy from the reduced density
matrix of the Hartle-Hawking state and show that it matches the geometric replica trick
calculation in section 3.3. Finally we will revisit the geometric replica trick calculation and
show that the preservation of the Calabi Yau condition requires the insertion of a “defect”
operator at the entangling surface, which plays the role of the (inverse) Drinfeld element
of the quantum group.

5.1 The open string Hilbert space as the coordinate algebra A(U(∞)q)

The q-deformation of the spacetime gauge field A means that its holonomy U = P exp
∮
A

is an element of the quantum group U(N)q. This can be defined by q-deforming the algebra
A(U(N)) of functions on U(N), refered to as its coordinate algebra. A(U(N)) is generated
by matrix elements Uij satisfying the unitary constraint∑

k

UikU
∗
jk =

∑
k

U∗kiUkj = δij . (5.1)

As a vector space, A(U(N)) is defined over the complex numbers and spanned by the basis

Ui1j1Ui2j2 · · ·Uinjn , n = 1, · · ·∞. (5.2)

In the undeformed algebra, the matrix elements themselves commute:

UijUkl = UklUij . (5.3)

However, in the quantum group U(N)q this multiplication law (distinct from the matrix
multiplication rule) becomes noncommutative. There exists a conjugate linear involution
∗ of the coordinate algebra A(U(N)q) for which the unitary constraint (5.1) still holds.
However, due to the noncommutativity, the placement of the ∗ is now crucial in (5.1). In
particular, it should be noted that for Uij ∈ A(U(N)q)∑

k

U∗ikUjk 6= δij . (5.4)

It is customary to abuse language and refer to both the “quantum space” U(N)q and
the algebra of functions A(U(N)q) as a quantum group. This is done in the spirit of
noncommutative geometry, where the geometry of a noncommutative space X is defined
by the algebra of noncommutative functions on X [85, 86].

The precise nature of the noncommutative product in U(N)q is determined by the
R-matrix of the quantum group. To express the product rule it is useful to consider an
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element U ∈ U(N)q as a matrix acting in the fundamental representation. Thus it acts on
a vector space V according to

U : V → V,

vi 7→
∑
i

Uij ⊗ vj , (5.5)

where the tensor product ⊗ symbol has been used to distinguish this product from the
noncommutative product we wish to define. In the same fashion, the R-matrixR ∈ U(N)q⊗
U(N)q can be regarded as an element R ∈ End(V ⊗ V ), i.e. a matrix operator acting on
two copies of V . If we define matrices

U1 = U ⊗ 1,
U2 = 1⊗ U. (5.6)

Then the multiplication rule for the coordinate algebra on U(N)q is

RU1U2 = U2U1R, (5.7)

where the composition of the operators above is defined with ordinary matrix multiplica-
tion. An explicit example of the R-matrix, ∗ structure, and other quantum group properties
of SLq(2) is presented in appendix C.

Definition of the open string Hilbert space. We now define the open string Hilbert
space HΣA assigned to the subregion string configurations in FΣA as the large N limit of
the coordinate algebra on U(N)q:

HΣA = A(U(∞)q),
q = eigs . (5.8)

This a q-deformation of the open string Hilbert space defined in [12] for the string theory
dual to 2DYM. In particular the subspace of n open strings is spanned by the states |IJ〉
with wavefunctions

〈U |I, J〉 = Ui1j1Ui2j2 · · ·Uinjn ,

Uiaja = P exp
∫
X∗iajaA, (5.9)

where in the second equation we have emphasized that these wavefunctions live on the
space of subregion open string configurations Xij(σ) ∈ FΣA . Due to the topological in-
variance, they are completely specified by the multi-index Chan-Paton factors I, J labeling
the entanglement branes as depicted in figure 7. In the undeformed case where q = 1, the
commutativity of the matrix elements Uij implies these open string are bosonic [12], so
that the n string Hilbert space is

Hn = (V ⊗ V ∗)⊗n/Sn. (5.10)
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i1 j1

i2 j2
...

in jn

Figure 7. The state |IJ〉 represents a configuration of n open strings with Chan-Paton factors
(i1, j1) . . . (in, jn).

Here V ∗ denotes the dual of the fundamental representation, giving the strings an ori-
entation. Open string indistinguishability is enforced by the quotient of the permuta-
tions group Sn, which permutes the open strings by acting simultaneously on both end-
points |I, J〉 → |σ(I), σ(J)〉 for σ ∈ Sn. In the presence of nontrivial string interactions,
gs > 0, q 6= 1, the open string endpoints become anyons [38]. This change in statistics is
implemented by the equivalence relation (5.7), which tells us that the exchange of open
strings must be accompanied by an Rmatrix transformation. The operation of permutating
strings is therefore replaced by braiding, and the open string Hilbert space is

HΣA =
∞⊕
n=1
Hn(q),

Hn(q) = (V ∗ ⊗ V )⊗n/(RU1U2 ∼ U2U1R). (5.11)

For q ∈ R, the inner product on HΣA is defined by the quantum group Haar measure and
is given in terms of the representation basis in (5.25).

5.2 Quantum group symmetry on the open string Hilbert space

Each open string in the state |I, J〉 transforms in the adjoint representation of the quantum
group symmetry, which is the surface symmetry of the A-model string.

To describe the action of this symmetry and the associated decomposition of A(U(∞)q),
we need to introduce an operation called the antipode. A more thorough presentation of
the algebraic structure of a quantum group is given in appendix C. Below we will work
with A(U(N)q) and then consider the N →∞ limit later.

The antipode and the conjugate representation. Given a quantum group A the
antipode is an anti-homomorphism

S : A → A, (5.12)
S(UV ) = S(V )S(U), U, V ∈ A. (5.13)

It acts on single string elements fij(U) = Uij ∈ A(U(N)q) by giving the analogue of the
matrix inverse: ∑

j

UijS(U)jk = S(U)ijUjk = δik. (5.14)

Note that due to the noncommutativity of Uij , S(U)ij is different from the usual inverse
U−1
ij , which is defined with respect to a commutative multiplication rule. The definition of

S can be extended to the rest of the algebra recursively using the property (5.13).
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Figure 8. The figure shows a state of two open strings. Antisymmetrization of the right and left
indices can be expressed by fixing the Chan-Paton factors while changing the pattern of connection
between them. In the figure we have put string number 1 on top of string number 2. When the open
strings have bosonic statistics as imposed by the Sn quotient in (5.10), the antisymmetrization of the
left or the right endpoints give the same state, since the two operations are relating by commuting
string number 1 and 2. However, the A-model open string has anyonic statistics, so the two orderings
are not equal. This corresponds a nontrivial braiding structure in the diagrams above.

Given a representation R of A, the antipode defines the conjugate (“anti-particle”)
representation R̄ by

R̄(U) = (R ◦ S(U))t, (5.15)

where t denotes the transpose.

The adjoint action, Drinfeld element, and the quantum trace. We can now define
how the quantum group acts on the open string Hilbert space via the adjoint action of the
quantum group on itself. For an element g ∈ A(U(N)q), the adjoint action is defined using
a combination of the coproduct and antipode:

Uij → (Adg(U))ij =
∑
k,l

Ukl ⊗ gikS(g)lj , (5.16)

where we have used ⊗ in the same manner (5.5) to distinguish the objects Uij in the
representation space V ∗ ⊗ V with the quantum group elements acting on that space. It
is important to note that Uij commutes with gik and S(g)lj but gik and S(g)lj do not
commute among themselves.

As observed earlier, the ordinary trace trR(U) in any representation R is not invariant
under this transformation law. However, there exists an invariant “quantum” trace func-
tion which can be defined purely in terms of quantum group data. One first defines the
“Drinfeld” element u in terms of the R matrix

R =
∑
i

ai ⊗ bi ∈ U(N)q ⊗U(N)q (5.17)

and the antipode S according to

u =
∑
i

S(bi)ai. (5.18)

The quantum trace of an element U ∈ A in any representation R can then be defined as:

trq,R(U) =
∑
ij

uRijRji(U), (5.19)
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where Rij(U) are the representation matrices for U and we defined uRij = Rij(u). The
properties

S2(V ) = uV u−1

S(UV ) = S(V )S(U), U, V ∈ A, (5.20)

of u and S then imply that the quantum trace is invariant under the adjoint action (5.16)
of the quantum group. An explicit proof is given in eq. (5.8) of [80], and it gives a nice
illustration of subtleties arising from the q deformed multipication rule. For U(N)q the
Drinfeld element is a diagonal matrix of complex phases17 given explicitly by [28, 80]

uii = q
N
2 q−i+

1
2 . (5.21)

Finally, we note that the quantum trace is multiplicative under tensor products:

trq(A⊗B) = trq(A) trq(B). (5.22)

The representation basis and Schur-Weyl duality. Let us now consider how the
open string Hilbert space is organized into irreducible representations of the quantum group
symmetry. Compact quantum groups such as U(N)q satisfy a Peter-Weyl theorem [87],
which states that its space of functions is spanned by the matrix elements in all irreducible
representations18 of the quantum group. These (noncommutative) matrix elements form
an un-normalized basis of wavefunctions on A(U(N)q):

〈U |Rij〉 = Rij(U) i, j = 1, · · · dimR, U ∈ U(N)q, (5.23)

where dimR, distinct from dimq(R), is the integer dimension of the representation R. Note
that |Rij〉 labels a basis in VR ⊗ V ∗R, which is a vector space with an integer dimension.
There is also a q-analogue of the translation-invariant Haar measure,

h : A → C, (5.24)

which can be used to define the inner product on A(U(N)q)

(Rij(U), R′kl(U)) := h(R∗ij(U), R′kl(U)) = δRR′
(uR)−1

jk δil

dimq R
. (5.25)

We now relate the representation (5.23) and the open string basis (5.9) by applying a
q-deformed version of Schur-Weyl duality to the n-open string states Hn(q). This relation
will be necessary to define the representation basis in the N → ∞ limit. We first recall
the undeformed Schur-Weyl duality. The vector space V ⊗n carries a representation of Sn
which permutes the factors as well as a diagonal action of U(N). The Schur-Weyl duality
states that V ⊗n decomposes into irreducible representations of these two groups as:

V ⊗n =
⊕
R∈Yn

V
U(N)
R ⊗ V Sn

R , (5.26)

17The quantum group is an associative algebra over the complex numbers, so u is a nongeneric element
that consists of scalar elements of the algebra.

18A precise description of the representation theory for quantum groups is described in chapter 11 of [88].
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where Yn denotes the set of Young diagrams with n boxes which label irreducible represen-
tations of both U(N) and Sn. Equation (5.26) is the formal way of saying that irreducible
representations of U(N) are obtained by symmetrizing/antisymmetrizing fundamental rep-
resentations according to a Young diagram R. To obtain the decomposition of the Hilbert
space of n strings, we apply the Schur-Weyl duality twice:

Hn = (V n ⊗ V ∗n)/Sn,

=
(
⊕R∈YnV

U(N)
R ⊗ V Sn

R

)
⊗
(
⊕R′∈YnV

U(N)
R′ ⊗ V Sn

R′

)∗
/Sn,

= ⊕R∈YnVR ⊗ V ∗R, (5.27)

VR := V
U(N)
R ⊗ V Sn

R , (5.28)

where the vector space VR ⊗ V ∗R is spanned by the representation basis |Rab〉 where
a, b = 1, . . . , dimR are indices in the irreducible representation R. Since the irreducible rep-
resentations of U(N) are obtained as symmetric/antisymmetric tensor products of the fun-
damental representation, we can express each state |Rab〉 as symmetrized/antisymmetrized
linear combinations of the states |I, J〉. As a simple example, the projection onto the an-
tisymmetric representation R for n = 2 is given by:

U1
ijU

2
kl → U1

ijU
2
kl − U1

ilU
2
kj ∈ VR ⊗ V ∗R, (5.29)

where the superscripts label the strings. The right hand side of (5.29) is antisymmetric
under i ↔ k and j ↔ l and so belongs to VR ⊗ V ∗R where R is the antisymmetric irrep.
This decomposition (5.27) holds in the large N limit, and leads to a dimension formula

dimHn =
∑
R∈Yn

(dimR)2, (5.30)

which relates the counting of Chan-Paton factors to degeneracy factors of U(N).
In the q-deformed case, the vector space V ⊗n is a tensor product of U(N)q funda-

mentals, so it can be organized into quantum group representations in a similar way. The
operations which commute with the action of U(N)q belong to a q-deformed version of
the symmetric group called the Hecke algebra Sqn, which combines the permutation of the
tensor factors with applications of the R matrix. Given a transposition τ12 ∈ Sn which
acts on a basis of V1 ⊗ V2 by

τ(e1 ⊗ e2) = e2 ⊗ e1. (5.31)

We define an element h(τ) ∈ Sqn in the Hecke algebra by

h(τ) = τ ◦R. (5.32)

The q-deformed Schur-Weyl duality states that the space V ⊗n decomposes under the
commuting action of (U(N)q)⊗n and Sqn as:[80]

V ⊗n = ⊕R∈YnV
U(N)q
R ⊗ V Sqn

R . (5.33)
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The q-deformed Hilbert space for n strings decomposes into

Hn(q) = (V n ⊗ V ∗n)/ ∼,

=
(
⊕R∈YnV

U(N)q
R ⊗ V Sqn

R

)
⊗
(
⊕R′∈YnV

U(N)q
R′ ⊗ V Sqn

R′

)∗
/ ∼,

= ⊕R∈YnV
q
R ⊗ V

q∗
R , (5.34)

V q
R := V

U(N)q
R ⊗ V Sqn

R , (5.35)

where ∼ refers to the equivalence relation

RU1U2 = U2U1R, (5.36)

which determines the braiding structure of the open strings. In direct analogy with the
undeformed case, we should view |Rij〉 as a basis for the subspace V q

R ⊗ V
q∗
R , obtained by

symmetrizing/antisymmetrizing the Chan-Paton factors |IJ〉 using the Hecke algebra ele-
ments. The corresponding projectors labelled by Young diagrams R ∈ Yn were constructed
in [80]. In contrast to the permutation group, the action of the Hecke algebra provides a
representation of the braid group (see figure 8). This is because the endpoints of the open
strings behave as anyons due to their coupling to the worldvolume Chern-Simons theory of
the A-model branes [38]. The quantum dimension of Hn(q) is the computed from the trace
of the Drinfeld element in the representations given in the Hilbert space decompositions of
eq. (5.34):

dimqHn(q) := trHn(u) =
∑
R∈Yn

(dimq R)2, (5.37)

which is the q-deformed version of equation (5.30). In the large N limit, this formula
will give a canonical interpretation to the total degeneracy factors in the resolved conifold
partition function (3.38) and the replica trick entanglement entropy (3.39).

The large N limit of Schur-Weyl duality and the Drinfeld element. Schur-Weyl
duality continues to hold in the large N limit of U(N). As N →∞, we continue to identify
the representation basis |Rij〉 with Young diagrams describing the (anti)symmetrizations
of Chan-Paton factors of the open string states |IJ〉. This basis spans the extended Hilbert
space for the string theory dual to 2DYM with gauge group U(∞) [12]. At large N the
2DYM partition function is determined by symmetric group data, which captures the
wrapping of string worldsheets on the target space.

In a similar fashion, the q-deformed Schur-Weyl duality also survives the large N limit
of U(N)q and the corresponding basis |Rij〉 is once again determined by the symmetriza-
tion of the Chan-Paton factors by elements of the Hecke algebra [80]. This basis spans
the extended Hilbert space of q-deformed 2DYM with gauge group U(∞)q. As in the
undeformed case, we wish to identify these states with the extended Hilbert space of the
A-model TQFT, which is also determined by q-deformed symmetric group data.

Moreover in order for the counting of states in q2DYM to match with the A-model,
we must identify the correct large N limit of the Drinfeld element u given in (5.21). Since
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u determines the trace function (5.19) on the extended Hilbert space, it can be viewed as
determining the choice of measure on the open string states.

We will define the large N limit of u according to (4.30) in terms of the holonomy
matrix D of (3.20). As explained in the derivation of (3.20) this limit requires an analytic
continuation of q which regularizes the trace over the large N Hilbert space. As a result,
even though the dimension

trR(u) = trR(u−1) = dimq R, (5.38)

is always a real quantity, in the large N limit D has a complex trace:

trR(D) = (−i)l(R)dq(R)qκR/4 ∈ C,

trR(D−1) = (trR(D))∗ = il(R)dq(R)q−κR/4. (5.39)

Accordingly, we define the quantum trace for the large N limit

trq(U) = tr(DU). (5.40)

This feature is related to the holomorphic nature of the A model and essential to the
emergence of the line bundle structure of the Calabi-Yau manifold.

With this definition of the large N Drinfeld element, the quantum dimension of the
n-string Hilbert space becomes

dimqHn := trHn(D) =
∑
R∈Yn

trR⊗R̄(D)

=
∑
R∈Yn

trR(D) (trR(D))∗ =
∑
R∈Yn

(dq(R))2, (5.41)

where in the second to last equality we have used the multiplicative property of the quantum
trace (5.22) and the unitarity of the representations.

5.3 A-model open-closed TQFT and factorization maps

We have now assembled all the ingredients necessary to describe the extension of the A-
model TQFT into a q-deformed open-closed theory which incorporates the factorization of
the closed and open string states.

We begin by defining the factorization maps in (4.2) and then extend these into an
interwoven set of open-closed cobordisms.

Factorization maps. The factorization map which embedds closed string states into
open string states in the extended Hilbert space as shown in the left of figure (4.2) is called
the zipper i∗. Our definition of the closed string wavefunction 〈U |R〉 as a quantum trace
suggests that

i∗ = : |R〉 →
∑
i,j

(D−1)Rji |Rij〉 . (5.42)
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Compatibility with the E-brane axiom then requires the co-zipper to be

i∗ = : |Rij〉 → (−i)l(R) δij
dq(R)q−κR/4

|R〉 , (5.43)

so that

= : |R〉 → |R〉 , (5.44)

as can be shown by noting that
∑
i(D−1)Rii = il(R)dq(R)q−κR/4.

Next we consider the cobordism on the right of figure (4.2), which embeds open string
states of one subregion into the open string Hilbert space of two subregions.19 We identify
this factorization map with the coproduct in the open sector of the A-model TQFT:

∆ = : |Rij〉 →
∑
k

|Rik〉 |Rkj〉 . (5.45)

To see that this satisfies the E-brane axiom, we have to first define the open product

µO = , (5.46)

which fuses two subregions together. This is the A-model version of the “entangling prod-
uct” [20], and we propose that it is given by

µO = : |Rij〉 |R′kl〉 → (i)l(R) DR
jk

dq(R)qκR/4
|Ril〉 . (5.47)

This satisfies the E-brane axiom which requires that splitting followed by fusion gives the
identity map:

= : |Rij〉 → |Rij〉 , (5.48)

19The intervals in the cobordism diagrams really correspond to subregions of a time slice FΣ in the space
of string loops.
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which follows from
∑
iD

R
ii = (−i)l(R)dq(R)qκR/4. Finally, combining the zipper and co-

product gives the factorization map as promised in (4.1):

ΣA ΣB

Σ

: HΣ → HΣA ⊗HΣB ,

|R〉 →
∑
ij

(D−1)Rij |Rji〉 →
∑
ijk

(D−1)Rij |Rjk〉 |Rki〉 . (5.49)

We have seen from previous sections that open string Hilbert spaces HΣA ,HΣB transform
nontrivially under the quantum group symmetry U(∞)q. However, by the invariance of
the quantum trace, we know that the factorized state for |R〉 is invariant. Thus the factor-
ization map (5.49) into the extended Hilbert space respects the quantum group symmetry
as promised.

Notice that even though we have imposed the hole-closing conditions (5.48), (5.44), this
does not uniquely determine the factorization map. In particular these conditions would
have been satisfied with a factorization with respect to an un-deformed surface symmetry
group,20 which does not involve the Drinfeld element. As we show in section 5.5, the
necessity for the q-deformed edge mode symmetry and the insertion of the Drinfeld element
can only be seen when we enforce the E-brane axiom with a choice of a geometric state
such as the closed unit (4.14).

5.4 The open A-model TQFT and sewing relations

As discussed in the beginning of section 4, our choice of factorization maps (5.42), (5.45)
satisfies a set of sewing relations in addition to the E-brane axiom. Here we work out some
of these relations explicitly in the open sector. As in 2D extended TQFT, we find that the
A-model open TQFT forms a Frobenius algebra under the product µO. We will taking the
generating set for this algebra to be

, , , , . (5.50)

We have already defined the product and coproduct, which satisfy the Frobenius condition:

= = , (5.51)

20In this case, the more natural undeformed surface symmetry group would be Sn in each sector with n
strings, since the A model partition function depends on dimensions of the symmetry group.
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and are associative and co-associative. Next we can determine the open unit 1O and counit
ε from the product and coproduct using the defining relations

= = . (5.52)

We find that

1O = =
∑
R,i,j

(−i)l(R)dq(R)qκR/4(D−1)Rij |Rji〉 ,

ε = : |Rij〉 → δij . (5.53)

The open pairing, adjoint operation and the quantum trace. Our open string
Frobenius algebra also possesses a nondegenerate bilinear form (the Frobenius form) ξ,
which defines an adjoint operation on the open string Hilbert space. This is called the
open pairing and can be obtained by gluing the counit ε to the product µO

ξ = = : |Rij〉 |R′kl〉 → (i)l(R)δRR′
DR
jkδil

dq(R)qκR/4
. (5.54)

Notice that our definition of ξ coincides precisely with the large N limit of the bilinear
form (5.25) and should therefore be related to the large N limit of the q-deformed Haar
measure. Its inverse, called the copairing, can be obtained by gluing the unit to the product,

ξ−1 = = : 1→
∑
R,i,j,k

(−i)l(R)dq(R)qκR/4 (D−1)Rij |Rik〉 |Rkj〉 ,

(5.55)
and satisfies the zigzag identity

= = : |Rij〉 → |Rij〉 . (5.56)

The pairing and copairing define an adjoint operation by turning the input Hilbert space
to output Hilbert space and vice versa. For example they relate the unit and product to
the counit and coproduct:

= , = . (5.57)
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They also define a canonical trace operation on open cobordisms by connecting the input
Hilbert spaces to output Hilbert space:

, . (5.58)

Notice that we have drawn the partial trace to avoid braiding, so the trace on the left/right
side has to closed on the left/right side. If we violate this rule, we would have to account
for the nontrivial braiding that occurs when the strips cross. Most importantly, this cat-
egorical definition of the trace coincides with the quantum trace A(U(∞)q) as defined
in (5.40), (5.41).

Using the pairing and copairing we can calculate the annulus:

=
∑
R

trR(D) trR(D−1),

=
∑
R

trR⊗R̄(D) = trq(1), (5.59)

where we used the multiplicative property of the trace and unitarity of the representations.
The final expression above is just the quantum trace of the identity operator on the total
open string Hilbert space.

The final generator of our open Frobenius algebra is the braiding operator

B = τ ◦ Rstring = : A⊗A → A⊗A, (5.60)

where τ is the operation that exchanges two copies of the open string Hilbert space. The
operation Rstring refers to the R matrix which describes the braiding of the open strings.
This is nontrivial, in contrast with the usual 2D open-closed TQFT [78], since the left/right
string endpoints themselves have nontrivial braiding. However, since we will not require
the braiding operation in our calculation of entanglement entropy, we will leave this for
future work.

5.5 The open closed sewing axioms and factorization of the Hartle-Hawking
state

We have seen that the factorization map ∆ extends consistently to a Frobenius algebra
describing the open sector of the A-model TQFT. We now consider the open-closed sewing
axioms [78] which enforce the compatibility of the open string algebra with the closed string
algebra defined by (4.14)–(4.18). We will pay particularly close attention to the consistency
of the Chern class labelings, which places additional constraints on the factorization. This
is because one could obtain factorization maps that satisfy (5.44) and (5.48), and extend
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to a consistent open Frobenius algebra, but is nevertheless incompatible with the A-model
TQFT restricted to Calabi-Yau manifolds.21 As an application of this machinery, we give
a simple factorization of the Hartle-Hawking state.

The relation between the closed and open sector is given by the zipper and cozipper,
which are algebra/coalgebra homomorphisms between the respective Frobenius algebras.
Keeping track of the Chern class on the closed cobordisms, the homomorphism property
is equivalent to the sewing relations

(0,-1)
= ,

(0,1)

= , (5.61)

(0,-1)
= ,

(1,0)

= , (5.62)

which is satisfied by our open-closed cobordisms. The left diagrams above express the fact
that the unit/counit is preserved by the zipper/cozipper.

Compatibility of E-brane and Calabi-Yau condition. The E-brane axiom for the
A model restricted to Calabi-Yau manifolds is

(0,-1) =

e

. (5.63)

The Chern class labelling on the left, as defined by the Calabi-Yau condition, places a
strong and non local constraint on the edge modes and factorization map. We have seen in
section 3 that the A-model amplitude on the “Calabi-Yau cap” on the l.h.s. of (5.63) gives
the entanglement boundary state

|D〉 =
∑
R

(−i)l(R)dq(R)qκR/4 |R〉 , (5.64)

with a prescribed holonomy matrix D. The nonlocality of the Calabi-Yau condition is
expressed by the fact that D is not the identity, so it cannot be equivalent to a local
boundary condition at the entangling surface. This nonlocality requires that the extension

21For example, since the (0, 0) sector of the A model TQFT is a closed algebra which is isomorphic to the
Frobenius algebra of an ordinary 2D TQFT, we could simply use the factorization maps with respect to an
undeformed Sn surface symmetry. The E-brane condition would then be defined with the (0, 0) cap, giving
a factorization that is compatible with the (0, 0) sector of the A-model TQFT, but incompatible with the
Calabi-Yau condition.

– 38 –



J
H
E
P
1
0
(
2
0
2
1
)
2
0
1

of the A-model closed TQFT be compatible with a q-deformed surface symmetry group
U(∞)q. In particular, the quantum trace defined in (5.40) automatically incorporates the
entanglement boundary condition by insertion of the Drinfeld element.

When viewed from the open string channel, the boundary state (5.64) inserts a large N
number of E-branes at the entangling surface, giving a geometric realization of the string
edge modes. The |D〉 is therefore the E-brane boundary state which realizes Susskind and
Uglum’s proposal in the A-model target space.

Factorization of the HH state. We now apply our factorization map to the Hartle-
Hawking state and its dual at t = 0:

|HH〉→

(0,-1)

= = =
∑
R,i,j,k

(−i)l(R)dq(R)qκR/4(D−1)Rij |Rik〉 |Rkj〉 ,

〈HH∗|→

(-1,0)

= = : |Rij〉 |R′kl〉→ (i)l(R)δRR′
DR
jkδil

dq(R)qκR/4
.

(5.65)

Using this factorization map the A-model partition function on the resolved conifold
can be given a canonical open string interpretation:

Z = 〈HH∗|HH〉 → = trq(e−tHopen),

=
∑
R

(dq(R))2e−tl(R) =
(0,-1)

(-1,0)
, (5.66)

where we have defined the open string modular Hamiltonian

Hopen |Rij〉 = l(R) |Rij〉 . (5.67)

Even though we have drawn the same diagram as in the t = 0 case, we have included an
open string propagator e−tHopen which introduces an explicit t dependence. Equation (5.66)
gives an explicit realization of the Susskind-Uglum proposal to interpret the closed string
amplitude as a trace over an open strings which end on the entangling surface.

Compatibility of open and closed string pairings. The closed pairing (4.20) defines
the adjoint operation in our closed string TQFT which maps the Hartle-Hawking state to
its dual. Having defined an extension to the open TQFT with an adjoint operation given by
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the open pairing (5.54), we should check that these two adjoint operations are compatible.
This is a consequence of the E-brane axiom together with the right diagrams in (5.61) (5.62),
which states that zipper/cozipper respects the multiplication/comultiplication. Explicitly,
we can glue the counit to both sides of the right diagram in (5.61):

(0,1)

= . (5.68)

On the left diagram, we apply the E-brane axiom in the form:

= (-1,0)
, (5.69)

which then implies

(-1,1)
= . (5.70)

This expresses the compatibility of the open and closed pairing, with analogous relations
holding for the copairing. Note that in both (5.69) and (5.70), the E-brane axiom is satisfied
only for a specific Chern class labelling compatible with the Calabi-Yau constraint defining
our closed string algebra.

Finally note that the zipper and cozipper are adjoint operations, which is implied by
the third sewing axiom in (4.8):

=

(-1,1)

. (5.71)

By gluing the copairing to the right input of this relation and applying the zigzag identity,
we find that the cozipper is the adjoint of the zipper

= . (5.72)
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5.6 The reduced density matrix for the Hartle-Hawking state and a canonical
calculation of entanglement entropy

The reduced density matrix for the Hartle-Hawking state is easily derived from the factor-
ization map (5.65). First note that unnormalized density matrix22 ρ̃ for the Hartle Hawking
state factorizes as

ρ̃ = |HH〉 〈HH∗| =

(-1,0)

(0,-1)

→ . (5.73)

The corresponding reduced density matrix is given by the (quantum) partial trace,
which is defined by (5.58), over the subregion ΣB:

ρ̃A = trB ρ̃ = = =
∑
R

e−tl(R)1R =
∑
R,i,j

e−tl(R)|Rij〉 〈Rij| ,

(5.74)

where we have applied the zigzag identity and absorbed the area dependence into the
propagator represented by the strip. Note that we have applied a quantum partial trace
defined by the pairing and copairing. This operation cancels the insertions of D and D−1 in
the density matrix which would have led to non local boundary conditions for the modular
Hamiltonian. We will comment more on this in the next section.

As in the case of undeformed gauge theory, the form of the reduced density ma-
trix (5.74) is dictated by symmetry. The action of U(∞)q must commute with ρ̃A, since
our factorization map (5.49) respects the quantum group symmetry. Schur’s lemma then
requires the reduced density matrix to act as the identity in each irreducible representation
R, leading to the block-diagonal form of (5.74). Note that while the degeneracy associated
with each irreducible representation R is generic (it holds for any gauge-invariant state in
the theory), the modular Hamiltonian (5.67) actually has a much larger degeneracy, since
all representations with the same number of boxes has the same modular energy.

Tracing over ΣA gives the expected normalization

Z = trq(ρ̃A) =
∑
R

(dq(R))2e−tl(R). (5.75)

22ρ̃ is defined by tr(ρ̃O) = 〈HH∗|O|HH〉 for any operator O with the trace defined by the closed
pairing/copairing. This has the same structure as density matrices in non-Hermitian systems [55].
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It is useful to express the normalized reduced density matrix ρA = ρ̃A/Z as a direct sum
over normalized23 operators 1R

(dqR)2 in each superselection sector labelled by R:

ρA = ⊕Rp(R) 1R
(dqR)2 ,

p(R) = (dq(R))2e−tl(R)

Z
. (5.76)

The q-deformed entanglement entropy can be directly evaluated from

S = − trq(ρA log ρA) = − tr(DρA log ρA). (5.77)

This type of q-deformed entropy has been studied previously in the context of quantum
group invariant spin chains [55, 56]. Here we have seen that the use of the quantum
trace arises naturally from the requirement of quantum group symmetry as dictated by the
cobordisms of the open-closed TQFT.

Since the spectrum of the ρA can be read off from (5.76), we can compute the entan-
glement entropy without appealing to the replica trick:

S = −
∑
R

trq

(
p(R)1R
(dqR)2 log p(R)1R

(dqR)2

)
= −

∑
R

trq(1R) p(R)
(dqR)2 log p(R)

(dqR)2 ,

=
∑
R

(−p(R) log p(R) + 2p(R) log dqR) . (5.78)

This gives the sought after canonical calculation of entanglement entropy which agrees with
the replica trick answer in section 3.3

5.7 Revisiting the replica trick on the resolved conifold

As discussed previously, the resolved conifold is a nontrivial vector bundle O(−1)⊕O(−1)
→ S2. In section 3.3 we gave a prescription for the replication of this geometry in which
the volume of the base manifold is replicated without affecting the bundle structure. Here
we explain this prescription, first in terms of the our categorical formulation of the reduced
density matrix, and then by appealing to a direct geometric construction of the replica
manifold.

Replica trick in terms of cobordisms. Using the reduced density matrix (5.74) for
|HH〉, we can apply the replica trick in the form

S = ∂n trq(ρnA)|n=1 = ∂n tr(DρnA)|n=1. (5.79)

Note that we did not replicate D because it is merely part of the definition of the quantum
trace. In terms of cobordisms, the nth power of ρA is simply a long strip, and trq(ρnA) is a
large annulus with one insertion of D and D−1 as in the n = 1 case.

ρnA = ⊕R
dq(R)2e−ntHopen

Zn1

1R
dq(R)2 ,

trq ρnA =
∑
R dq(R)2e−ntHopen

Zn1
, (5.80)

23Normalized according to the quantum trace.
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Figure 9. The reduced density matrix ρC
A defined using a noncanonical trace operation fails to

satisfy the E-brane axiom when it is replicated. It also does not commute with the edge mode
symmetry group.

and the only effect of the replication is to rescale the area factor t by a factor of n. This
replicated partition function agrees with the prescription given in (3.29) and is propor-
tional to the resolved conifold partition function, indicating that Calabi-Yau condition
is preserved.

The main reason that the Calabi-Yau condition is preserved is the use of the quantum
partial trace in (5.74). To see this, consider an alternative replication in which we use a
naive trace, corresponding to simply gluing the Hartle-Hawking state and its dual along
region ΣB without the application of state-channel map as in (5.74).

ρCA = : |Rij〉 → DR
lj(D−1)Rike−tl(R) |Rkl〉 . (5.81)

As shown in figure 9, ρCA differs from ρA because of the nontrivial braiding of the open
string, so that when we “straighten” the cobordism for ρCA we get a nontrivial double twist
diagram instead of a strip. ρCA also does not commute with the quantum group symmetry
that permutes the edge modes. When we replicate ρCA, the Wilson lines D and D−1 do not
cancel. As a result we find that

tr(ρCnA ) =
∑
R

trR(Dn) trR(D−n), (5.82)

which does not satisfy the Calabi-Yau condition and gives an entropy inconsistent with the
replica prescription of section 3.3. The problem is that the entanglement boundary condi-
tion is violated each time we replicate this density matrix. A simple way to compensate
for this is to insert a factor of D−1 each time we replicate ρCA. The replica entropy (5.79)
can then by expressed as

S = ∂n tr(DρnA)|n=1 = ∂n log tr(D1−n(ρCA)n)|n=1, (5.83)

where we have introduced the log to account for normalizaton. These are the direct ana-
logue of the replica entropy in [57], with D playing the role of the “defect” operator.
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Geometric replication of the resolved conifold geometry. Rather than appealing
to the categorical formulation of the density matrix, we can also try to replicate the resolved
conifold geometry directly by appealing to the usual multi-sheeted construction of the
replica manifold. This will show more explicitly the geometrical role played by the defect
operator as a topological twisting.

In [33, 34], it was shown that one can compute topological A-model partition function
on L1 ⊕ L2 → Σg, for a 2 dimensional surface Σg with genus g. It was then further shown
that one can glue L1 ⊕L2 → Σ1 and L′1 ⊕L′2 → Σ2, given a gluing map i : ∂Σ1 → ∂Σ2, to
compute the topological A-model partition function on (L1 + L′1)⊕ (L2 + L′2)→ Σ1 ∪ Σ2.

We define the Hartle-Hawking state to be the topological A-model partition function
on O1 ⊕O2(−1)→ D2

1

|HH〉 = A1 B1 , (5.84)

where the black dot in (5.84) represents a pole of a local section in O2(−1). For later use,
we split ∂D2

1 = A1 ∪B1. In the similar way, we define a dual of the Hartle-Hawking state
to be topological A-model partition function on O1(−1)⊕O2 → D2

2

〈HH∗| = B2 A2 , (5.85)

where the blue dot in (5.85) represents a pole of a local section in O1(−1).
To construct |HH〉〈HH∗|, we prepare O1 ⊕O(−1)→ D2

1 and O1(−1)⊕O2 → D2
2.

|HH〉〈HH∗| = A1 B1 ⊗ B2 A2 . (5.86)

Now we can obtain a reduced density matrix ρred = trB1∼B2(|HH〉〈HH∗|) by identifying
B1 ∈ ∂D2

1 and B2 ∈ ∂D2
2. We expect that ρred is equivalent to ρA, but we have not

explicitly verified this claim.

ρred = A1 A2 . (5.87)

One can check, under the identification A1 ∼ A2, trA1∼A2(ρred) computes topological A-
model partition function of O1(−1)⊕O2(−1)→ S2.
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Let us consider a replicated geometry of (5.87). First we prepare two copies of (5.87)

ρred ⊗ ρred = A1 A2 ⊗ A3 A4 . (5.88)

In order to compute ρ2
red, we then identify A2 ∼ A3

ρ2
red = A1 A4 . (5.89)

Note that as a result of the replication, volume of the base manifold is doubled. This naïve
replica trick (5.89) has a problem. To illustrate the problem, let us compute trA1∼A4(ρ2

red).
Because there are two poles for each section of line bundles L1 and L2, one can deduce
that L1 = O(−2) and L2 = O(−2) whereas topology of the base manifold is still of S2.
Then the manifest problem occurs as O1(−2)⊕O2(−2)→ S2 is not a Calabi-Yau manifold.
To ensure that the replicated geometry is Calabi-Yau, we apply a topological twisting by
O1(1)⊕O2(1), which we will represent by Otwist ≡ D−1

Otwistρ
2
red = A1 A4 . (5.90)

As a result, trA1∼A4(Otwistρ
2
red) computes the topological A-model partition function of

O1(−1)⊕O2(−1)→ S2, where the volume of the base manifold is doubled,

Z2 = trA1∼A4(Otwistρ
2
red) =

∑
R

(dqR(gs))2e−2l(R)t. (5.91)

One can easily generalize (5.91) to

Zn = tr(On−1
twistρ

n
red) =

∑
R

(dqR(gs))2e−nl(R)t. (5.92)

As a result, we obtain the entanglement entropy

S = ∂

∂n

Zn
Zn1

∣∣∣∣
n=1

= −
∑
R

p(R)(log(p(R))− 2 log(dqR)), (5.93)

where

p(R) = (dqR)2e−l(R)t∑
R(dqR)2e−l(R)t . (5.94)
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Finally, we want to express the entanglement entropy in terms of the BPS index. First,
we rewrite the n-sheeted partition function in terms of the BPS index.

Zn = exp
(∑

k

n0
S2

1
k

(
2 sin kgs2

)−2
e−nkt

)
, (5.95)

where n0
S2 = 1 is the only non-vanishing GV invariant of the resolved conifold. As a result,

the entanglement entropy is expressed as

S =
∑
k

n0
S2

(1
k

+ t

)(
2 sin kgs2

)−2
e−kt. (5.96)

It is very interesting to observe that (5.96) is proportional to the number of BPS states,
including the multi-particle states. In fact, the linear dependence of the EE on the BPS
index is not a special feature of the resolved conifold. For a general non-compact Calabi-
Yau of the form

L1 ⊕ L2 → S, (5.97)

the linear dependence continues to hold

S =
∑
β,g,k

ngβ

(1
k

+ tβ

)(
2 sin kgs2

)2g−2
Qkβ , (5.98)

if one replicates the geometry while fixing the topology of the replicated Calabi-Yau.

6 Discussion

In this work we have given a factorization of the A-model closed string Hilbert space
and a canonical calculation of the entanglement entropy for the Hartle-Hawking state on
the resolved conifold. The factorization maps (5.48), (5.44) and associated string edge
modes are determined by solving the sewing relations of the A-model extended TQFT.
These sewing relations, particularly the E-brane axiom, were chosen to be compatible with
the Calabi-Yau condition. This constraint imposes a nontrivial holonomy D (3.20) along
the entangling surface, which is captured by the entanglement boundary state |D〉. This
boundary condition is local in the sense that it can be introduced without affecting the
state, but is nonlocal with respect to the “modular time” going around the entangling
surface. We then interpret this as an E-brane boundary state by showing that in the open
string channel it corresponds to the insertion of a large N number of E-branes at the
entangling surface. We view this as a realization of Susskind and Uglum’s proposal [11] in
the target space of the A-model string theory. Finally we found that the compatibility of
the E-brane axiom with the Calabi-Yau condition requires edge modes to transform in a
q-deformed edge mode symmetry group. This q-deformation changes the statistics of the
open strings: they are no longer bosonic strings but obey anyonic statistics. Invariance
under the quantum group symmetry requires the introduction of the Drinfeld element
into the factorization map, and leads to the appearance of quantum dimensions in the
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Figure 10. D-branes on L′ intersect with D-branes on L.

entanglement entropy. In a follow-up paper, we will relate this calculation to the dual
Chern-Simons description of the A-model, where quantum dimensions also appear.

The use of extended TQFT techniques was crucial in making our closed string fac-
torization maps self-consistent. However our proposed extension of the A-model TQFT
is not yet complete, since we did not consider sewing relations which involve the braiding
operator (5.60). We also worked entirely in the target space theory, whereas D-branes are
usually formulated in the first-quantized, worldsheet point of view and we do not know how
to formulate the E-brane boundary condition on the worldsheet. A direct check along this
direction would be to quantize open strings stretched between intersecting D-branes on L
and L′ as shown in figure 10 and check whether this description agrees with the E-brane
calculation we present in this paper. We leave these problems to future work.

Analogy to JT gravity. The Drinfeld element D can be viewed as an operator on the
open string Hilbert space. It is incorporated into the definition of the quantum trace (4.28),
which agrees with the categorical trace defined by elements of the open string Frobenius
Algebra. However, as shown in section 5.6, we can also interpret D as a “defect” oper-
ator whose insertion at the entangling surface enforces a topological constraint, which is
equivalent to filling in the hole with a Calabi-Yau cap.

An analogous defect operator was found in the factorization of JT gravity [57].24 In
that work, the topological constraint analogous to the Calabi Yau condition in the A-model
is the gravitational constraint imposed on the BF gauge theory description of JT gravity.
This constraint is needed because while the variables of JT gravity can be mapped to the
BF gauge theory, there are gauge theory configurations such as those with trivial Chern
class which are not allowed in the JT gravity path integral. In particular, the analogue of
the E-brane condition for JT gravity requires that the hole can be filled in such a way to
reproduce the Einstein-Hilbert term on a disk, which is a topological invariant that can

24[89] considered a statistical mechanical model for JT gravity which also gave rise to the analogue of this
defect operator when attempting to write the partition function on the disk as a trace over a Hilbert space.
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only be captured with nontrivial holonomy of the BF gauge field around the hole. The
defect operator in JT gravity implements this nontrivial holonomy around the entangling
surface, just like the Drinfeld element in the A-model. These similarities suggest that the
defect operator in JT gravity might also be viewed as a limit of the Drinfeld element of a
quantum group surface symmetry.

There are other indications that quantum groups play an important role in JT gravity
as well. In [90], it was proposed that the edge mode symmetry of JT gravity is given by
the semi-group SL+(2,R) as a q → 1 limit of SL+

q (2,R), based on the fact that JT gravity
can be obtained from the extremal limit of the dimensional reduction of 3D gravity, whose
dynamics is connected to the representation theory of the quantum group SL+

q (2,R) [90–
95]. In [93], it was also observed that the Bekenstein-Hawking entropy for 3d BTZ black
holes can be reproduced in the large charge limit by the topological entanglement entropy
related to the quantum dimensions in Liouville theory. It will be very interesting to see if
there is a canonical way to directly justify the origin of the above observation.

One way to see quantum group symmetry appearing in JT gravity is via the Sachdev-
Ye-Kitaev model, for which JT gravity can be viewed as an infrared effective theory. Specif-
ically, ref. [96] studied correlation functions in a “double-scaling” limit of SYK and found
evidence of quantum group symmetry such as q-deformed 6j symbols. This suggests that
the bulk dual of the double-scaled SYK model could be identified as a TQFT with quantum
group symmetry like the one described here for the A-model string. Such a TQFT would
be a q-deformation of JT gravity which might elucidate the appearance of q → 1 limits of
quantum group structures in JT gravity.

In this work, we have calculated entanglement entropy of topological A-model on a
fixed geometry: the resolved conifold. We have made use of a TQFT formalism in which
the topology of spacetime is fixed rather than summed over. This is analogous to the en-
tanglement entropy on the hyperbolic disk in JT gravity [57, 90, 97]. However, JT gravity
can be UV completed by a random matrix model by summing over all different topologies,
which is interpreted as being dual to an ensemble average of theories [98]. Recently, it has
also been shown in the context of models related to JT gravity that topology-changing pro-
cesses play an important role in understanding the black hole information paradox when we
calculate the entropy using the replica trick [99, 100]. There is an analogue UV completion
of topological string theory by including topology-changing processes via nonperturbative
effects in the context of q-deformed 2d Yang-Mills theory [33, 67]. In [101, 102], it was
further shown that the inclusion of baby universes doesn’t lead to naive loss of quantum
coherence, in accordance with earlier arguments from [103–105]. On the other hand, the
ensemble average interpretation and the lack of factorization in JT gravity is clearly in
tension with the standard AdS/CFT correspondence. In [106, 107], another perspective
is given, interpreting the ensemble average as coming from gravitational constraints and
different superselection sectors of the baby universe Hilbert space. Based on this obser-
vation, it was further conjectured in [108] based on [109] that the constraint is so strong
in d > 3 that the baby universe Hilbert space is always one-dimensional in a consistent
theory of quantum gravity, thus resolving the contradiction. As we have a UV completion
for a theory of quantum gravity involving topology changes [33, 67, 101, 102], we find it
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appealing that we might be able to test all these ideas in this context, and may directly
identify an “information paradox” in string theory where calculations of entropy without
the inclusion of topology-changing procedures leads to violation of unitarity.

Comment on the BPS formula for the EE. At strong string coupling, fundamental
degrees of freedom are no longer string states rather D-brane particle states. Furthermore,
the degeneracy of the BPS states is typically expected to be exponential in the number of
the BPS states [110]. This exponential scaling of the degeneracy equates well with (5.98) as
is proportional to the BPS index ngβ . Hence, (5.98) implies that the entanglement entropy
counts how many BPS states (including the multi particle states) there are across the en-
tangling surface. Interestingly enough, in [13] the Bekenstein-Hawking entropy computed
via the BPS microstate counting is also polynomial in the BPS index due to the exponen-
tial scaling of the degeneracy. It will be therefore interesting to explictly show that the
degeneracy of the Calabi-Yau manifold is exponential in the number of the M2-brane BPS
states in M-theory on CY3 × S1.
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A Topological twist and topological sigma model on the worldsheet

Let us briefly review N = 2 supersymmetric non-linear sigma model defined on a Rie-
mann surface Σ with a Kahler manifold X as a target space. This theory consists of the
following data: holomorphic map/coordinate function Φ : Σ → TX, superpartners of Φ.
Because of the complex structure of X, the complexified tangent bundle TX decomposes
into holomorphic and anti-holomorphic tangent bundle

TX = T 1,0X ⊕ T 0,1X. (A.1)

Respective to the decomposition of the complexified tangent bundle, we denote the holo-
morphic components of Φ by φi ∈ T 1,0X and similarly for the anti-holomorphic compo-
nents. With this holomorphic decomposition, we can think of φi as a holomorphic tangent
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vector, of the target space, valued scalar field on the worldsheet. A superpartner of such
field then should live in holomorphic tangent vector valued spin bundle, which reads√

KΣ ⊗ (OΣ ⊕ Ω0,1
Σ )⊗ Φ∗(TX1,0), (A.2)

where
√
KΣ is an algebraic square root of canonical bundle of Σ, OΣ is structure sheaf of Σ,

and Ω0,1
Σ ≡ KΣ is anti-holomorphic cotangent bundle of Σ. As anti-holomorphic canonical

bundle is dual of canonical bundle, the corresponding spinor bundle can be written as

(K1/2
Σ ⊕KΣ

1/2)⊗ Φ∗(TX1,0). (A.3)

We will then denote the fermions living in K1/2
Σ ⊗Φ∗(TX1,0) and K1/2

Σ ⊗Φ∗(TX1,0) by ψi+
and ψi−, respectively. We will use the similar convention for ψī+ and ψī−. Given the field
contents, the worldsheet action is

S = 2t
∫

Σ

(1
2gIJ∂zφ

I∂z̄φ
J + igīiψ

ī
−Dzψ

i
− + igīiψ

ī
+Dz̄ψ

i
+ +Rīijj̄ψ

i
+ψ

ī
+ψ

j
−ψ

j̄
−

)
, (A.4)

where g is the hermitian metric of the target space.
Topological string model is then obtained by a topological twist to the bundle [47], in

which fermionic fields live in, that preserves the form of kinetic terms of fermionic fields.
The topological twist of A model can be understood as moving the non-trivial bundle

√
KΣ

from K
1/2
Σ ⊗ Φ∗(TX1,0) to K1/2

Σ ⊗ Φ∗(TX0,1) and similarly for K1/2
Σ . As a result of this

topological twist, ψi+ and ψi− becomes (anti)-holomorphic tangent vector valued scalar field
on the worldsheet. Then we can focus on transformation that transforms φi into ψi+ and φī

into ψī−, as those transformations can be represented by a globally well defined functions
and others not in general.

Given the topological twist, let us rename the fermionic fields as χi = ψi+ and χī = ψī−.
Supersymmetry transformation is concisely repackaged as

{Q,Φ} = χ,

{Q,χ} = 0,
{Q,ψI−} = i∂z̄ΦI − χJΓIJKψK− ,

{Q,ψĪ+} = i∂z̄ΦĪ − χJ̄ΓĪ
J̄K̄
ψK̄+ , (A.5)

where Q2 = 0 on-shell thus supersymmetry becomes BRST symmetry. The action is

S = 2t
∫

Σ

(1
2gIJ∂zφ

I∂z̄φ
J + igīiψ

i
−Dzχ

ī
− + igīiψ

ī
+Dz̄χ

i −Rīijj̄ψ
i
−ψ

ī
+χ

jχj̄

)
. (A.6)

A very important observation is that this action is a sum of a Q-exact term and a topological
term

S = it

∫
Σ
d2z{Q,V }+ t

∫
Σ

Φ∗(J), (A.7)

where V = gij̄(ψī+∂zφj + ∂zφ
īψj−) and Φ∗(J) is pullback of the Kähler form defined on X.

One can add pullback of two-form tensor B to the action to complexfy the Kähler form.
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We have not specified yet if Σ has boundaries or not. If Σ does not attain a boundary,
then the worldsheet theory is a closed string theory. Similarly, if Σ has boundaries, then
the worldsheet theory is an open string theory.

Topological strings wrap volume minimizer, which is energetically stable, among ho-
mologous 2 cycles in X. This means that for closed string theory, worldsheet instanton is
classfied by homology class

Φ∗([Σ]) ∈ H2(X,Z). (A.8)

This classification can be generalized to open string theory directly. Open string worl-
sheet can be regarded as a Riemann surface with h holes due to the conformal invariance.
As there are h boundaries of the Riemann surface, one should impose boundary conditions.
Let us denote h boundaries of Σ by Ci, where i = 1, . . . , h. In [45], Witten showed that
the physical boundary condition is given by

Φ(Ci) ⊂ L (A.9)

for some L which is a Lagrangian submanifold of X. Note that a submanifold L is La-
grangian if J |L = 0. This condition implies that supersymmetric D-branes in topological A
model wrap Lagrangian three-cycles in X.25 Therefore, open string worldsheet instanton
is naturally classified by relative homology class

Φ∗(Σ) ∈ H2(X,L). (A.10)

One important class of observable in closed A model is a three points function which
has various interpretations in physical string theory. Let us consider a non-trivial 2 form
[Di] ∈ H2(X). Then one can consider an operator

ODi = (Di)i1,i2χi1χi2 . (A.11)

If we assume that X is a Calabi-Yau threefolds, when computed on string worlsheet P1,
the three points function of O(Di) is [111]

〈OD1OD2OD3〉 = KD1D2D3 +
∑
β

N0,β(D1, D2, D3)
∏
i

∫
β
[Di]Qβ , (A.12)

where KD1D2D3 is an intersection number and N0,β(D1, D2, D3) is a genus 0 Gromov-Witten
invariant for an integral curve β ∈ H2(X), and Q = e

−
∫
β
J . Note that this three points

function can be obtained from the third derivative of the genus 0 prepotential, which is
free energy of genus 0 worldsheet theory,

∂t1∂t2∂t3F0(t) = 〈OD1OD2OD3〉, (A.13)

where ti =
∫
Di J . Genus 0 prepotential receives classical and instanton contributions

F0 = F cl0 + F inst0 , (A.14)
25In this work, we do not focus on torsion one or five cycles.
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where (to add prepotential at LCS). Coupling to gravity [45], genus g free energy can be
computed as well which reads

Fg(t) =
∑
β

Ng,βQ
β , (A.15)

where Ng,β is a genus g Gromov-Witten invariant. Combining all genera prepotential, we
get a generating functional the all genera free energy

F (gs, t) =
∑
g

Fg(t)g2g−2
s . (A.16)

B Topological string on conifolds and geometric transition

In this appendix, we briefly the geometric transition of interest. Let us consider A-model
open topological string theory on the deformed conifold T ∗S3. We wrap N D-branes on S3,
whose low energy effective theory is U(N) Chern-Simons theory [45]. Wilson lines can be
introduced, if M D-branes wrap on a lagrangian submanifold26 L of T ∗S3 which intersects
S3 at S1. This corresponds to U(N) Chern-Simons theory on S3 with M knots on S1.
Under the geometric transition at large N, we obtain A-model topological string theory on
the resolved conifold O(−1) ⊕ O(−1) → P1, in which the N D-branes are desolved into
B-flux and M D-branes are still wrapped on the same special lagrangian L [28].

Let us first study the deformed conifold. Cotangent bundle of S3 can be embedded
into C4 by an equation

y2
1 + y2

2 + y2
3 + y2

4 = a2, (B.1)

yi’s∈ C. We assume that a is a real number. The bundle structure is more vivid when we
write yi = xi + ipi, then the embedding equation is written as

∑
i

x2
i = a2 +

∑
i

p2
i ,

∑
i

xipi = 0. (B.2)

It is then clear when pi = 0, for all i, then the equations are reduced to

∑
i

x2
i = a2. (B.3)

Thus a describes radius of S3. When a is sent to 0, the deformed conifold in the limit
described by

y2
1 + y2

2 + y2
3 + y2

4 = 0. (B.4)

As Jacobian of the defining equation vanishes at the origin y1 = y2 = y3 = y4 = 0, the
conifold at the origin is singular.

26In topological string theory. Unlike physical string theory, Lagrangian is good enough to ensure super-
symmetry. Note that in the conifold, Lagrangian submanifolds we consider are in fact special Lagrangian.
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B.1 Blow up of the resolved conifold

To fix the singularity at the origin, we blow up the origin such that y1 = y2 = y3 = y4 = 0
is replaced with a smooth manifold. If we reparametrize the coordinates as

zij =
∑
n

σnijyn, (B.5)

then (B.4) is written as
det zij = 0. (B.6)

In this presentation, the singularity occurs when the matrix coordinates zij are trivial. It
is important to note that we can view (B.6) as a condition for the following equation to
have a non-trivial solution (

z11 z12
z21 z22

)(
λ1
λ2

)
= 0, (B.7)

for some complex variable λ1 and λ2 which cannot be simultaneously zero, because λ1 =
λ2 = 0 results in no constraints on zij matrix. Furthermore, (B.7) provides a resolution of
the singularity because when zij is non trivial λ1 and λ2 are fixed up to rescaling and zij = 0
is replaced with coordinates (λ1, λ2). This implies that equation (B.7) is an embedding
of the resolved conifold into C4 × P1 in which zij is a coordinate of C4 and [λ1, λ2] is
a homogeneous coordinate of P1. Note that, when det(zij) = 0 the non-homogeneous
coordinate z of P1 is related to the rest of the coordinates by

z := λ1
λ2

= −y1 + iy2
y3 + y4

= y3 − y4
y1 + iy2

. (B.8)

B.2 Lagrangian submanifolds

Lagrangian submanifolds can be easily found by finding symmetric locus of an anti-holomor-
phic involution. We consider an anti-holomorphic involution

y1,2 = y1,2, y3,4 = −y3,4. (B.9)

In the deformed conifold, the invariant locus of (B.9), a lagrangian submanifold L, is

p1,2 = 0, x3,4 = 0. (B.10)

At the symmetric locus of (B.9), the embedding equation becomes

x2
1 + x2

2 = a2 + p2
3 + p2

4. (B.11)

Hence L intersects S3 at
x2

1 + x2
2 = a2, (B.12)

which is a S1.
Similarly, in the resolved conifold, the lagrangian submanifold is defined by(

ip3 + ip4 x1 − ix2
x1 + ix2 ip4 − ip3

)(
λ1
λ2

)
= 0. (B.13)
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C Quantum groups and their representations

C.1 Hopf algebra structure

The quantum group A(U(N)q) is a quasi-triangular Hopf algebra. To explain what this is,
we start with the simpler structure of a bi-algebra A, which is an algebra endowed with 4
operations

product ∇ : A⊗A → A
unit η : C→ A

coproduct ∆ : A → A⊗A
counit ε : A → C (C.1)

These operations satisfy various sewing relations [88]; in particular the product and co-
product are associative and co-associative respectively. A basic example is the set of A(G)
of C valued-functions on a group G, where ∇ is pointwise multiplication, η = 1, and the
coproduct and counit are defined to act on f ∈ A(G) as

∆(f)(U, V ) = f(UV ), U, V ∈ G
ε(f) = f(1G) (C.2)

Here UV denotes the group multiplication of U and V , and 1G is the identity element of
G. The formulas (C.2) show that the coproduct and counit are dual to the product and
unit on the group G. For G = U(N), this describes the algebraic structure of the Hilbert
space for 2DYM and its string theory dual.

In the coordinate algebra A(U(N)q), ∇ is q-deformed into a non-commutative product,
while UV remains the same as the ordinary matrix multiplication and 1G is still the identity
matrix. In particular, the actions of the coproduct and counit on single string wavefunctions
fij(U) = Uij are given by

∆(Uij) =
∑
k

Uik ⊗ Ukj

ε(Uij) = δij (C.3)

Meanwhile the counit defines the trivial, or “vacuum” representation.
This bi-algebra structure is upgraded into a Hopf algebra by the introduction of a

mapping called the antipode

antipode S : A → A (C.4)

which acts as an inverse on the quantum group:∑
k

S(U)ikUkj =
∑
k

UikS(U)kj = δij (C.5)
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The final element that makes a Hopf Algebra into a quantum group is the R matrix,
which makes it a quasi-triangular Hopf algebra. This can be viewed as an element

R ∈ U(N)q ⊗U(N)q
R =

∑
i

ai ⊗ bi (C.6)

We can also interpret this as a linear operator on V ⊗V , as we saw in the previous section.
It satisfies the Yang-Baxter equation.

C.2 R matrix and antipode for SLq(2)

To illustrate this definition, consider the quantum group SLq(2). Its coordinate algebra is
generated by 4 elements (a, b, c, d) of a matrix

U =
(
a b

c d

)
. (C.7)

The commutation relations of the matrix elements are encoded in the R-matrix,

R =


q 0 0 0
0 q1/2 0 0
0 q − 1 q1/2 0
0 0 0 q

 . (C.8)

Then the multiplication rule (5.7) is equivalent to the commutation relations

ab = q1/2ba, ac = q1/2ca, bd = q1/2db, cd = q1/2dc

bc = cb, ad− da = (q1/2 − q−1/2)bc. (C.9)

Additionally we impose the condition

ad− q1/2bc = 1 (C.10)

which is the q-deformed version of the condition detU = 1. The antipode is given by

S(U) =
(

d −q−1/2b

−q1/2c a

)
. (C.11)

Using the relations (C.9) and (C.10) we see that the antipode satisfies S(U)U=US(U)=1.
To find the form of the Drinfeld element, we express R =

∑
i ai ⊗ bi as in (5.17). This

can be done explicitly as:

R = q

(
1 0
0 0

)
⊗
(

1 0
0 0

)
+√q

(
1 0
0 0

)
⊗
(

0 0
0 1

)

+ (q − 1)
(

0 0
1 0

)
⊗
(

0 1
0 0

)
+√q

(
0 0
0 1

)
⊗
(

1 0
0 0

)
+ q

(
0 0
0 1

)
⊗
(

0 0
0 1

)
. (C.12)

The corresponding Drinfeld element is then given by (5.18):

u =
∑
i

S(bi)ai =
(
q−1/2 0

0 q1/2

)
(C.13)

which agrees with the general formula (5.21). We can further verify that the Drinfeld
element satisfies S2(U) = uUu−1 as required by (5.20).
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C.3 ∗ structure and unitary representations

∗ on the coordinate algebra. we define an involution of the SL(2)q algebra which plays
the role of complex conjugation by

a∗ = d, b∗ = −qc, c∗ = −q−1b, d∗ = a (C.14)

From the antipode (C.11) we find the relation

U t∗ = S(U) (C.15)

where t stands for transpose. SU(2)q refers to SL(2)q equipped with the above star
structure.

D Spacetime non-commutativity from B fields

Here we show how s non commutative worldvolume gauge field in arises from the string
sigma model due to the coupling to a nontrivial B field flux in the base S2. For the physical
string, it is known [84] that the presence of the B field alters the boundary conditions for
the open string, and leads to an anti-symmetric part to the worldsheet propagator. This
in turn leads to nontrivial commutation relations of the open string endpoint,resulting in
a non-commutative worldvolume gauge theory on the D branes.

For the A model, we can see how this phenomenon arises from the bosonic part of the
sigma model action in the presence of the B field:

S =
∫
W

1
2gIJδ

ab∂aX
I∂bX

J + iBIJε
ab∂aX

I∂bX
jd2σ (D.1)

where W denotes the 2 dimensional worldsheet. For a constant B field BIJ = BεIJ , the
second term is a total derivative that can be written as a boundary term:

S =
∫
W

1
2gIJδ

ab∂aX
I∂bX

J + i

∫
∂W

BεIJX
Iεab∂sX

jds (D.2)

where s is the “time” coordinate along the boundary. We can treat the boundary term as
the integral of the canonical one-form

∫
pdq for a quantum mechanical particle correspond-

ing to the open string endpoint. This implies that the BεIJXI is the canonical momentum
conjugate to XJ , and therefore the equal time commutation relations in gij → 0 limit are

[XI , XJ ] = i
εIJ

B
(D.3)

for the open string endpoints.
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