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τ also causes the CP violation in the soft SUSY breaking terms. The electron EDM arises
from the CP non-conserved soft SUSY breaking terms. The experimental upper bound of
the electron EDM excludes the SUSY mass scale below 4–6TeV depending on five cases
of the lepton mass matrices. In order to see the effect of CP phase of the modulus τ ,
we examine the correlation between the electron EDM and the decay rate of the µ → eγ

decay, which is also predicted by the soft SUSY breaking terms. The correlations are
clearly predicted in contrast to models of the conventional flavor symmetry. The branching
ratio is approximately proportional to the square of |de/e|. The SUSY mass scale will be
constrained by the future sensitivity of the electron EDM, |de/e| ' 10−30 cm. Indeed, it
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1 Introduction

The non-Abelian discrete groups have been discussed to challenge the flavor problem of
quarks and leptons in the standard model (SM) [1–10]. Indeed, supersymmetric (SUSY)
modular invariant theories give us an attractive framework to address the flavor symmetry
of quarks and leptons with non-Abelian discrete groups [11]. In this approach, the quark
and lepton mass matrices are written in terms of modular forms which are holomorphic
functions of the modulus τ . The arbitrary symmetry breaking sector of the conventional
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models based on flavor symmetries is replaced by the moduli space, and then Yukawa
couplings are given by modular forms.

The well-known finite groups S3, A4, S4, and A5 are isomorphic to the finite modular
groups ΓN for N = 2, 3, 4, 5, respectively [12]. The lepton mass matrices have been given
successfully in terms of A4 modular forms [11]. Modular invariant flavor models have
been also proposed on the Γ2 ' S3 [13], Γ4 ' S4 [14] and Γ5 ' A5 [15]. Based on
these modular forms, flavor mixing of quarks and leptons have been discussed intensively
in these years. Phenomenological studies of the lepton flavors have been done based on
A4 [16–18], S4 [19–21] and A5 [22]. A clear prediction of the neutrino mixing angles and
the Dirac CP phase was given in the simple lepton mass matrices with the A4 modular
symmetry [17]. The Double Covering groups T′ [23, 24] and S′4 [25, 26] were also realized
in the modular symmetry. Furthermore, phenomenological studies have been developed in
many works [27–77] while theoretical investigations have been also proceeded [78–97].

The supersymmetric modular invariant theory of flavors addresses not only the flavor
structure of quarks and leptons, but also the flavor structure of their superpartners and
leads to specific patterns in soft SUSY breaking terms [73, 74]. Soft SUSY breaking terms
were studied in several models with non-Abelian flavor symmetries [98–102]. Such physics
can be observed indirectly in the low energy experiments like lepton flavor violating (LFV)
processes [74].

The vacuum expectation value (VEV) of the modulus τ plays an important role in
modular flavor symmetry, in particular realization of quark and lepton masses and their
mixing angles. The modulus VEV is fixed as the potential minimum of the modulus
potential, so called the modulus stabilization in modular flavor models [80, 86, 88, 89]. At
such a minimum, the F-term of the modulus F τ may be non-vanishing, and leads to SUSY
breaking, that is the moduli-mediated SUSY breaking [103–106]. This specific pattern of
soft SUSY breaking terms has been discussed in the LFV [74].

On the other hand, the modular invariance has been also studied in the framework
of the generalized CP symmetry [107], which is the non-trivial CP transformation in the
non-Abelian discrete flavor symmetry [108–113]. A viable CP invariant lepton model was
proposed in the modular A4 symmetry [68], in which the CP symmetry is broken by fixing
τ , that is, the breaking of the modular symmetry (see also [69]). The phenomenologi-
cal implication of those models were studied by focusing the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing angles [114, 115] and the CP violating Dirac phase of leptons. In
this framework, a fixed τ also causes the CP violation in the soft SUSY breaking terms.
The electric dipole moments (EDMs) of charged leptons arise from the CP non-conserved
soft SUSY breaking terms. The current experimental upper bound of the electron EDM,
|de/e| ≤ 1.1×10−29 cm at 90% confidence level has been reported by the ACME Collabora-
tion [116], and the future sensitivity is expected to reach up to |de/e| ' 10−30 cm [117, 118].
This future sensitivity put forward the theoretical studies of some models [119, 120].

In our work, we discuss the electron EDM in the framework of the supersymmetric
modular invariant theory of flavors. We take the level 3 finite modular groups, Γ3 for the
flavor symmetry since the property of A4 flavor symmetry has been well known [121–127].
Indeed, viable CP invariant lepton models have been investigated linking to the leptogenesis
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recently [128]. In this flavor symmetry, we study the electron EDM by fixing τ in the soft
SUSY breaking term while the observed lepton masses and PMNS mixing angles are com-
pletely reproduced. The SUSY mass scale is also significantly constrained [74] by inputting
the observed upper bound of LFV, that is the µ→ eγ decay [129]. In order to see the effect
of CP phase in the modulus τ , we examine the correlation between the electron EDM and
the decay rate of the µ → eγ decay. The correlation is clearly seen by putting the SUSY
mass parameters. That is contrast to the case of the conventional non-abelian discrete fla-
vor symmetric model [102, 130, 131]. Indeed, our mass insertion parameters are obtained
without uncertainty once the lepton mass matrices and the SUSY mass scale are fixed.

The paper is organized as follows. In section 2, we give a brief review on the CP
transformation in the modular symmetry. In section 3, we present the soft SUSY breaking
terms in the modular flavor models. In section 4, we present the CP invariant lepton mass
matrix in the A4 modular symmetry. In section 5, we present formulae for the electron
EDM and the branching ratio of the µ → eγ decay in terms of the soft SUSY breaking
masses. In section 6, we present the numerical result of the electron EDM as well as the
branching ratio of the µ→ eγ decay. Section 7 is devoted to the summary. In appendices A
and B, we give the tensor product of the A4 group and the modular forms, respectively.
In appendices C and D, we present the relevant renormalization group equations (RGEs)
and loop functions, respectively. In appendix E, we show the charged lepton mass matrix
with only weight 2 modular forms and corresponding slepton mass matrix.

2 CP transformation in modular symmetry

2.1 Generalized CP symmetry

The CP transformation is non-trivial if the non-Abelian discrete flavor symmetry G is set
in the Yukawa sector of a Lagrangian [113, 132]. Let us consider the chiral superfields. The
CP is a discrete symmetry which involves both Hermitian conjugation of a chiral superfield
ψ(x) and inversion of spatial coordinates,

ψ(x)→ Xrψ(xP ) , (2.1)

where xP = (t,−x) and Xr is a unitary transformation of ψ(x) in the irreducible represen-
tation r of the discrete flavor symmetry G. This transformation is called a generalized CP
transformation. If Xr is the unit matrix, the CP transformation is the trivial one. This is
the case for the continuous flavor symmetry [132]. However, in the framework of the non-
Abelian discrete family symmetry, non-trivial choices of Xr are possible. The unbroken
CP transformations of Xr form the group HCP . Then, Xr must be consistent with the
flavor symmetry transformation,

ψ(x)→ ρr(g)ψ(x) , g ∈ G , (2.2)

where ρr(g) is the representation matrix for g in the irreducible representation r.
The condition, which has to be respected for consistent implementation of a generalized

CP symmetry along with a flavor symmetry, is given as follows [133–135]:

Xrρ
∗
r(g)X−1

r = ρr(g′) , g, g′ ∈ G . (2.3)

This is called the consistency condition for Xr.
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2.2 Modular symmetry

The modular group Γ̄ is the group of linear fractional transformations γ acting on the
modulus τ , belonging to the upper-half complex plane as:

τ −→ γτ = aτ + b

cτ + d
, where a, b, c, d ∈ Z and ad− bc = 1, Im[τ ] > 0 , (2.4)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,−I} transformation. This modular trans-
formation is generated by S and T ,

S : τ −→ −1
τ
, T : τ −→ τ + 1 , (2.5)

which satisfy the following algebraic relations,

S2 = 1 , (ST )3 = 1 . (2.6)

We introduce the series of groups Γ(N), called principal congruence subgroups, where
N is the level 1, 2, 3, . . . . These groups are defined by

Γ(N) =


a b
c d

 ∈ SL(2,Z) ,

a b
c d

 =

1 0
0 1

 (modN)

. (2.7)

For N = 2, we define Γ̄(2) ≡ Γ(2)/{I,−I}. Since the element −I does not belong to Γ(N)
for N > 2, we have Γ̄(N) = Γ(N). The quotient groups defined as ΓN ≡ Γ̄/Γ̄(N) are finite
modular groups. In these finite groups ΓN , TN = 1 is imposed. The groups ΓN with
N = 2, 3, 4, 5 are isomorphic to S3, A4, S4 and A5, respectively [12].

Modular forms fi(τ) of weight k are the holomorphic functions of τ and transform as

fi(τ) −→ (cτ + d)kρ(γ)ijfj(τ) , γ ∈ Γ̄ , (2.8)

under the modular symmetry, where ρ(γ)ij is a unitary matrix under ΓN .
Under the modular transformation of eq. (2.4), chiral superfields ψi (i denotes flavors)

with weight −k transform as [136],

ψi −→ (cτ + d)−kρ(γ)ijψj . (2.9)

We study global SUSY models. The superpotential which is built from matter fields
and modular forms is assumed to be modular invariant, i.e., to have a vanishing modular
weight. For given modular forms this can be achieved by assigning appropriate weights to
the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral
matter fields ψi with the modular weight −k is given simply by

1
[i(τ̄ − τ)]k

∑
i

|ψi|2, (2.10)

where the superfield and its scalar component are denoted by the same letter, and τ̄ = τ∗

after taking VEV of τ . The canonical form of the kinetic terms is obtained by changing
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the normalization of parameters [17]. The general Kähler potential consistent with the
modular symmetry possibly contains additional terms [137]. However, we consider only
the simplest form of the Kähler potential.

For Γ3 ' A4, the dimension of the linear spaceMk(Γ(3)) of modular forms of weight k
is k+1 [138–140], i.e., there are three linearly independent modular forms of the lowest non-
trivial weight 2, which form a triplet of the A4 group, Y (2)

3 (τ) = (Y1(τ), Y2(τ), Y3(τ))T .
These modular forms have been explicitly given [11] in the symmetric base of the A4
generators S and T for the triplet representation (see appendix A) in appendix B.

2.3 CP transformation of the modulus τ and modular multiplets

The CP transformation in the modular symmetry was discussed by using the generalized
CP symmetry in ref. [107]. The CP transformation of the modulus τ is well defined as:

τ
CP−−→ −τ∗ . (2.11)

The CP transformation of modular forms were given in ref. [107] as follows. Define
a modular multiplet of the irreducible representation r of ΓN with weight k as Y(k)

r (τ),
which is transformed as:

Y(k)
r (τ) CP−−→ Y(k)

r (−τ∗) , (2.12)

under the CP transformation. The complex conjugated CP transformed modular forms
Y(k)∗

r (−τ∗) transform almost like the original multiplets Y(k)
r (τ) under a modular trans-

formation, namely:

Y(k)∗
r (−τ∗) γ−−→ Y(k)∗

r (−(γτ)∗) = (cτ + d)kρ∗r(u(γ))Y(k)∗
r (−τ∗) , (2.13)

where u(γ) ≡ CPγCP−1.1 Using the consistency condition of eq. (2.3), which gives
XT

r ρ
∗
r(u(γ)) = ρr(γ)XT

r , we obtain

XT
r Y(k)∗

r (−τ∗) γ−−→ (cτ + d)kρr(γ)XT
r Y(k)∗

r (−τ∗) . (2.14)

Therefore, if there exists a unique modular multiplet at a level N , weight k and represen-
tation r, which is satisfied for N = 2–5 with weight 2, we can express the modular form
Y(k)

r (τ) as:
Y(k)

r (τ) = κXT
r Y(k)∗

r (−τ∗) , (2.15)

where κ is a proportional coefficient. Make Y(k)∗
r (−τ∗) by using eq. (2.15) and substitute

it for Y(k)∗
r (−τ∗) in the right hand side of eq. (2.15). Then, one obtains X∗rXr = |κ|21r

since Y(k)
r (−(−τ∗)∗) = Y(k)

r (τ). Therefore, the unitary matrix Xr is symmetric one, and
κ = eiφ is a phase, which can be absorbed in the normalization of modular forms. Thus, the
modular symmetry restricts Xr being symmetric. In conclusion, the CP transformation of
modular forms is given as:

Y(k)
r (τ) CP−−→ Y(k)

r (−τ∗) = XrY(k)∗
r (τ) . (2.16)

1u acts on the generator as u(S) = S and u(T ) = T−1 [107].
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It is also emphasized that Xr = 1r satisfies the consistency condition eq. (2.3) in a basis
that generators of S and T of ΓN are represented by symmetric matrices because of ρ∗r(S) =
ρ†r(S) = ρr(S−1) = ρr(S) and ρ∗r(T ) = ρ†r(T ) = ρr(T−1). Our basis of A4 generators of
eq. (A.1) is symmetric one in appendix A.

The CP transformations of chiral superfields and modular multiplets are summarized
as follows:

τ
CP−−→ −τ∗ , ψ(x) CP−−→ Xrψ(xP ) , Y(k)

r (τ) CP−−→ Y(k)
r (−τ∗) = XrY(k)∗

r (τ) , (2.17)

where Xr = 1r can be taken in the basis of symmetric generators of S and T . We use this
CP transformation of modular forms with Xr = 1r to construct the CP invariant lepton
mass matrices in section 4.

3 Soft SUSY breaking terms

Let us consider the moduli-mediated SUSY breaking [103–106]. We present the soft SUSY
breaking terms due to the modulus F-term, using the unit MP = 1, where MP denotes the
reduced Planck scale. In supergravity theory, the action is given by the Kähler potential
K, the superpotential W and the gauge kinetic function f . The kinetic terms are derived
from a Kähler potential.

The Kähler potential of chiral matter fields ψi with the modular weight −ki is given
simply by

Kmatter = Kīi|ψi|
2 , Kīi = 1

[i(τ̄ − τ)]ki . (3.1)

Then, the full Kähler potential is given as:

K = K0(τ,M) +Kmatter ,

K0(τ,M) = − ln (i(τ̄ − τ)) +K(M, M̄) , (3.2)

where M denotes moduli other than τ .
The superpotential W is given as:

W = Yijk(τ) ΦiΦjΦk +Mij(τ) ΦiΦj · · · . (3.3)

We suppose that the gauge kinetic function is independent of the modulus τ , i.e. f(M)
since the modulus τ does not appear in the gauge kinetic function at tree level.

Let us consider the case that the SUSY breaking occurs by some F-terms of moduli
X, FX (FX 6= 0). The canonical form of the kinetic terms is obtained by changing the
normalization of parameters. In the canonical normalization, the soft masses m̃i and the
A-term are given as [103]:

m̃2
i = m2

3/2 −
∑
X

|FX |2∂X∂X̄ lnKīi , (3.4)

and

Aijk = Ai +Aj +Ak −
∑
X

FX

Yijk
∂XYijk ,

Ai =
∑
X

FX∂X ln e−K0/3Kīi , (3.5)
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where i, j and k denote flavors. Here, Yukawa couplings Ỹijk in global SUSY superpotential
are related with Yukawa couplings Yijk in the supergravity superpotential as follows:

|Ỹijk|2 = eK0 |Yijk|2 . (3.6)

That is, the global SUSY superpotential has vanishing modular weight while the super-
gravity superpotential has the modular weight −1. Our modular flavor model is studied in
global SUSY basis.

Suppose the case of X = τ . The Kähler potential K in eq. (3.2) leads to the soft mass

m̃2
i = m2

3/2 − ki
|F τ |2

(2 Im τ)2 , (3.7)

where m3/2 is the gravitino mass. It is remarked that m̃2
i becomes tachyonic if

ki|F τ |2/(2Imτ)2 is larger than m2
3/2. Since m̃i should be at least larger than O(1)TeV,

eq. (3.7) provides a significant constraint with our phenomenological discussion.
On the other hand, the A-term is written by

Aijk = A0
ijk +A′ijk,

A0
ijk = (1− ki − kj − kk)

F τ

2 Im τ
, A′ijk = F τ

Yijk

dYijk(τ)
dτ

. (3.8)

Then, we have the soft mass term hijk = YijkAijk. Note that in our convention τ is
dimensionless, and F τ has dimension one. Gaugino masses can be generated by F-terms
of other moduli, FM , while F τ has universal contributions on soft masses and A-terms.

If we have common weights for three generations in the modular flavor model, the soft
mass m̃i is flavor blind. Then, the left-handed and right-handed slepton mass matrices
m̃eLi and m̃eRi are universal as:

m̃2
eLi = m̃2

eL0, m̃2
eRi = m̃2

eR0 , (3.9)

that is, they are proportional to the unit matrix, which does not contribute the LFV.
This is the case in the previous study of ref. [74]. However, the condition of the universal
slepton masses is relaxed in our phenomenological discussion by the assignment of different
weights for the three right-handed charged leptons. Non-universal slepton mass matrices
contribute to the LFV.

The first term of Aijk term of eq. (3.8) A0
ijk also contributes to the LFV in addition

to the second term A′ijk in the case of different weights for the three right-handed charged
leptons.

4 CP invariant lepton model in A4 modular symmetry

4.1 Lepton mass matrices

The CP invariant lepton mass matrices have been proposed in the A4 modular symme-
try [68, 128]. We adopt those ones in order to discuss the soft SUSY breaking terms. The
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L (ec, µc, τ c) N c Hu Hd Y
(k)

3

SU(2) 2 1 1 2 2 1

A4 3 (1, 1′′, 1′) 3 1 1 3

weight 1 (ke, kµ, kτ ) 1 0 0 k

Table 1. Representations and weights for superfields and relevant modular forms of weight k.

three generations of the left-handed lepton doublets are assigned to be an A4 triplet L, and
the right-handed charged leptons ec, µc, and τ c are A4 singlets 1, 1′′ and 1′, respectively.
The three generations of the right-handed Majorana neutrinos are also assigned to be an
A4 triplet N c [128]. The weight of the superfields of left-handed leptons is fixed to be 1 as a
reference value. The weight of right-handed neutrinos is also taken to be 1 in order to give
a Dirac neutrino mass matrix in terms of modular forms of weight 2. On the other hand,
weights of the right-handed charged leptons ec, µc and τ c are put (ke, kµ, kτ ). Weights of
Higgs fields Hu, Hd are fixed to be 0. The representations and weights for MSSM fields
and modular forms of weight k are summarized in table 1.

At first, we present the neutrino mass matrices. In table 1, the A4 invariant superpo-
tential for the neutrino sector, wν , is given as:

wν = wD + wN ,

wD = γνN
cHuY

(2)
3 L+ γ′νN

cHuY
(2)

3 L ,

wN = ΛN cN cY
(2)

3 , (4.1)

where γν and γ′ν are Yukawa couplings, and Λ denotes a right-handed Majorana neutrino
mass scale. By putting vu for VEV of the neutral component of Hu and taking a triplet
(νe, νµ, ντ ) for neutrinos, the Dirac neutrino mass matrix, MD, is obtained as

MD = γνvu


2Y1 (−1 + gD)Y3 (−1− gD)Y2

(−1− gD)Y3 2Y2 (−1 + gD)Y1

(−1 + gD)Y2 (−1− gD)Y1 2Y3


RL

, (4.2)

where gD = γ′ν/γν . On the other hand the right-handed Majorana neutrino mass matrix,
MN is written as follows:

MN = Λ


2Y1 −Y3 −Y2

−Y3 2Y2 −Y1

−Y2 −Y1 2Y3


RR

. (4.3)

By using the type-I seesaw mechanism, the effective neutrino mass matrix, Mν is obtained
as

Mν = MT
DM

−1
N MD . (4.4)
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We propose the charged lepton mass matrices with minimum number of parameters
to reproduce the observed lepton masses and PMNS mixing angles. Indeed, there are
four choices of weights right-handed charged leptons, those are (ke = 1, kµ = 1, kτ = 5),
(ke = 1, kµ = 3, kτ = 5), (ke = 1, kµ = 1, kτ = 7) and (ke = 1, kµ = 3, kτ = 7) labeled as
cases A, B, C and D, respectively in our numerical study, as will be discussed later. Then,
we need modular forms of weight 2, 4, 6 and 8, which are presented in appendix B.

Then, the A4 invariant superpotential of the charged leptons, we, by taking into account
the modular weights is obtained as

we = αee
cHdY

(2)
3 L+ βeµ

cHdY
(kµ+1)

3 L+ γeτ
cHdY

(kτ+1)
3 L+ γ′eτ

cHdY
(kτ+1)

3′ L , (4.5)

where αe, βe, γe, and γ′e are constant parameters. Under CP, the superfields transform as:

ec
CP−−→ X∗1 e

c , µc
CP−−→ X∗1′′ µ

c , τ c
CP−−→ X∗1′ τ

c , L
CP−−→ X3L , Hd

CP−−→ ηdHd ,

(4.6)
and we can take ηd = 1 without loss of generality. Since the representations of S and T

are symmetric (see appendix A), we can choose X3 = 13 and X1 = X1′ = X1′′ = 1 as
discussed in eq. (2.17).

Taking a triplet (eL, µL, τL) in the flavor base, the charged lepton mass matrix ME is
simply written as:

Me(τ) = vd


αe 0 0
0 βe 0
0 0 γe




Y
(2)

1 (τ) Y
(2)

3 (τ) Y
(2)

2 (τ)
Y

(m)
2 (τ) Y

(m)
1 (τ) Y

(m)
3 (τ)

Y
(n)

3 (τ)+geY
′(n)

3 (τ) Y (n)
2 (τ)+geY

′(n)
2 (τ) Y (n)

1 (τ)+geY
′(n)

1 (τ)

 ,
(4.7)

where m = kµ + 1 and n = kτ + 1 for weights of modular forms in our case. The new
parameter ge is defined as ge = γ′e/γe and vd is VEV of the neutral component of Hd.
The coefficients αe, βe and γe are taken to be real without loss of generality. Under CP
transformation, the mass matrix ME is transformed following from eq. (4.7) as:

Me(τ) CP−−→Me(−τ∗) =M∗e (τ) (4.8)

= vd


αe 0 0
0 βe 0
0 0 γe




Y
(2)

1 (τ)∗ Y
(2)

3 (τ)∗ Y
(2)

2 (τ)∗

Y
(m)

2 (τ)∗ Y
(m)

1 (τ)∗ Y
(m)

3 (τ)∗

Y
(n)

3 (τ)∗+g∗eY
′(n)

3 (τ)∗ Y (n)
2 (τ)∗+g∗eY

′(n)
2 (τ)∗ Y (n)

1 (τ)∗+g∗eY
′(n)

1 (τ)∗

 .
In a CP conserving modular invariant theory, both CP and modular symmetries are

broken spontaneously by VEV of the modulus τ . However, there exists certain values of τ
which conserve CP while breaking the modular symmetry. Obviously, this is the case if τ
is left invariant by CP, i.e.

τ
CP−−→ −τ∗ = τ , (4.9)

which indicates τ lies on the imaginary axis, Re[τ ] = 0. In addition to Re[τ ] = 0, CP is
conserved at the boundary of the fundamental domain.
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Due to eq. (2.17), one then has

Mν(τ) = M∗ν (τ) , Me(τ) = M∗e (τ) , (4.10)

if ge and gD are taken to be real. Therefore, the source of the CP violation is only non-
trivial Re[τ ] after breaking the modular symmetry. Numerical results of the CP violation
have been obtained by fixing the modulus τ with real ge and gD.

4.2 Soft masses of sleptons

As presented in section 3, the SUSY breaking due to the modulus F term gives the soft
mass terms of sleptons, m̃2

L, m̃2
R and m̃2

RL as:

(m̃2
eR)ii = m2

3/2 − ki
|F τ |2

(2 Im τ)2 , (m̃2
eL)jj = m2

3/2 − kj
|F τ |2

(2 Im τ)2 ,

(m̃2
eRL)ij ≡ vdhijk = vd(1− ki − kj)

F τ

2 Im τ
Yij + vdF

τ dYij(τ)
dτ

, (4.11)

where i, j denote the right-handed and left-handed flavors and the subscript index k is
omitted in hijk, and the weight of Higgs fields kk in eq. (3.8) is set to be zero without loss
of generality. The subscript indices L and R refer to the chirality of the corresponding SM
leptons. The Yukawa matrix Yij is given by the charged lepton mass matrix in eq. (4.7) of
subsection 4.1 as ME/vd. Slepton mass matrices m̃2

eL and m̃2
eR are diagonal matrices, on

the other hand, m̃2
eRL has off-diagonal entries in the present flavor basis.2 It is noted that

the mass term m̃2
eLR is given by m̃2 †

eRL.
Let take the models in subsection 4.1, where weights of three right-handed charged

leptons are ke, kµ and kτ , respectively. On the other hand, kj of weights for left-handed
leptons are universal as 1, because left-handed leptons are constituents of a A4 triplet.

The soft masses of L and R are given:

m̃2
eL =


m2

3/2 − |mF |2 0 0
0 m2

3/2 − |mF |2 0
0 0 m2

3/2 − |mF |2

 , (4.12)

m̃2
eR =


m2

3/2 − ke|mF |2 0 0
0 m2

3/2 − kµ|mF |2 0
0 0 m2

3/2 − kτ |mF |2

 , (4.13)

where
mF = F τ

2 Im τ
. (4.14)

Thus, m̃2
eL matrix is universal for flavors (proportional to unit matrix), but m̃2

eR one is
not universal in our models. Therefore, after moving to the super-PMNS base (diagonal

2The SUSY sector of neutrinos is neglected since the right-handed Majorana neutrinos decouples at the
high energy scale in our model. The effect of the right-handed neutrinos is discuss in section 6.
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base of the neutrino and charged leptons), the off-diagonal entries of m̃2
eR appear, but the

off-diagonal entries of m̃2
eL are not induced.3

As discussed in eq. (3.7), the slepton masses become tachyonic if ki|F τ |2/(2Imτ)2 is
larger than m2

3/2. Therefore, the magnitude of F τ is significantly constrained for the larger
weight ki in our phenomenological discussion.

The m̃2
eRL matrix has a different flavor structure, which is shown as:

m̃2
eRL ' vd

×

mF


−keαe 0 0

0 −kµβe 0
0 0 −kτγe




Y
(2)

1 Y
(2)

3 Y
(2)

2

Y
(m)

2 Y
(m)

1 Y
(m)

3

Y
(n)

3 + geY
′(n)

3 Y
(n)

2 + geY
′(n)

2 Y
(n)

1 + geY
′(n)

1



+ F τ


αe 0 0
0 βe 0
0 0 γe

 d

dτ


Y

(2)
1 Y

(2)
3 Y

(2)
2

Y
(m)

2 Y
(m)

1 Y
(m)

3

Y
(n)

3 + geY
′(n)

3 Y
(n)

2 + geY
′(n)

2 Y
(n)

1 + geY
′(n)

1


 , (4.15)

where m = 2 or 4, and n = 6 or 8 for weights of modular forms in our models. The second
term of right-hand side in eq. (4.15) is the derivative of the modular forms with respect to
the modulus τ .

The parameters in these slepton mass matrices, m3/2 and F τ are taken to be real to
give the CP conserving modular invariant model. The CP violation is caused by fixing τ in
the soft mass terms as well as in the lepton mass matrices. We also suppose real gaugino
masses.

In order to study the phenomenological implications of the soft SUSY breaking sector,
we rotate these slepton mass matrices into the physical basis where the Yukawa matrices
are real diagonal and positive, i.e. the super-PMNS basis. Any misalignment between the
lepton and slepton flavor matrices gives a source of CP violation and LFV in the low-energy
phenomena.

With these soft masses, the amount of flavor violation can be addressed in terms of
the dimensionless mass insertion parameters. We adopt the definition in ref. [102] for
mass insertion parameters because slepton masses are not universal for flavors. The (i, j)
elements of mass insertion parameters are given as:

(δeLL)ij = (m̃2
eL)ij

〈m̃e〉2LL
, (δeRR)ij = (m̃2

eR)ij
〈m̃e〉2RR

, (δeLR)ij = (m̃2
eLR)ij
〈m̃e〉2LR

, (δeRL)ij = (m̃2
eRL)ij
〈m̃e〉2RL

,

(4.16)
where the averaged masses in the denominators are defined by

〈m̃e〉2AB =
√

(m̃2
eA)ii (m̃2

eB)jj . (4.17)

By using these parameters, we discuss the phenomenological implication of our modular
invariant models.

3We neglect RGE effects from Yukawa couplings of leptons since they are very small at tan β ' 5, which
is used in the numerical calculations of section 6.
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4.3 RGEs effect of sleptons

Our model of leptons are set at the high energy Q0. Therefore, we take into account the
running effects of slepton mass matrices at the low energy scale Q. The renormalization
group equations (RGEs) are shown in appendix C. Since Yukawa couplings of charged
leptons are small, the evolutions of off-diagonal elements are dominated by the gauge
couplings. Thus, the largest contributions of the RGEs evolution for off-diagonal elements
of A-term is flavor independent. Then, we can estimate the running effects by [101, 141, 142]

Aeij (Q) ' exp
[
−1

16π2

∫ Q

Q0
dt

(9
5g

2
1 + 3g2

2

)]
Aeij (mGUT) ≈ 1.4×Aeij (Q0), (4.18)

where g1,2 are the gauge couplings of SU(2)L × U(1)Y and t = lnQ/Q0. Numerical coeffi-
cient 1.4 is obtained by taking Q0 = 1016 GeV and Q = 1TeV for a reference.

Therefore, the mass term m̃2
eRL is given as

m̃2
eRL ' 1.4 vd

×

mF


−keαe 0 0

0 −kµβe 0
0 0 −kτγe




Y
(2)

1 Y
(2)

3 Y
(2)

2

Y
(m)

2 Y
(m)

1 Y
(m)

3

Y
(n)

3 + geY
′(n)

3 Y
(n)

2 + geY
′(n)

2 Y
(n)

1 + geY
′(n)

1



+ F τ


αe 0 0
0 βe 0
0 0 γe

 d

dτ


Y

(2)
1 Y

(2)
3 Y

(2)
2

Y
(m)

2 Y
(m)

1 Y
(m)

3

Y
(n)

3 + geY
′(n)

3 Y
(n)

2 + geY
′(n)

2 Y
(n)

1 + geY
′(n)

1


 , (4.19)

where m = 2 or 4, and n = 6 or 8 for weights of modular forms.
In the supergravity framework, soft masses for all scalar particles have the common

scale denoted by m0, and gauginos also have the common scale M1/2. Therefore, at Q0,
we take real masses as:

M1(Q0) = M2(Q0) = M1/2 , (4.20)

where M1 and M2 are the bino and wino masses, respectively. The effects of RGEs lead at
the low energy scale Q to following masses for gauginos [141, 142]

M1(Q) ' α1(Q)
α1(Q0)M1(Q0), M2(Q) ' α2(Q)

α2(Q0)M2(Q0), (4.21)

where αi = g2
i /4π (i = 1, 2) and according to the gauge coupling unification at Q0,

α1(Q0) = α2(Q0) ' 1/25. Then, the low energy gaugino masses

M1 ≈ 0.49M1/2 , M2 ≈ 0.86M1/2 , (4.22)

by taking Q0 = 1016 GeV and Q = 1TeV.
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On the other hand, taking into account the RGEs effect on the average mass scale in
m̃2
eL and m̃2

eR, we have [141, 142]

m̃2
eL(Q) ' m̃2

eL(Q0) +K2(Q) + 1
4K1(Q) ,

m̃2
eR(Q) ' m̃2

eR(Q0) +K1(Q) ,
(4.23)

where

K1(Q) = 3
5

1
2π2

∫ lnQ0

lnQ
dt g2

1(t)M1(t)2 , K2(Q) = 3
4

1
2π2

∫ lnQ0

lnQ
dt g2

2(t)M2(t)2 . (4.24)

We neglect the hyperfine splitting O(M2
Z) in the slepton mass spectrum produced by elec-

troweak symmetry breaking because of M1/2 �MZ . We obtain numerically

(K1, K2) ' (0.14M2
1/2 , 0.40M2

1/2) , (4.25)

which are flavor independent. The soft masses of L and R are given as:

m̃2
eL '


m2

0 −m2
F 0 0

0 m2
0 −m2

F 0
0 0 m2

0 −m2
F

+
(

0.40 + 0.14
4

)
M2

1/2


1 0 0
0 1 0
0 0 1

 ,

m̃2
eR '


m2

0 − kem2
F 0 0

0 m2
0 − kµm2

F 0
0 0 m2

0 − kτm2
F

+ 0.14M2
1/2


1 0 0
0 1 0
0 0 1

 , (4.26)

where m3/2 = m0 is put.
The parameter µ is given through the requirement of the correct electroweak symmetry

breaking [102, 130, 141, 142]:

|µ|2 =
m̃2
Hd
− m̃2

Hu
tan2 β

tan2 β − 1
− 1

2m
2
Z . (4.27)

At the low energy, |µ|2 turns to [130]

|µ|2 ' −m
2
Z

2 +m2
0
1 + 0.5 tan2 β

tan2 β − 1
+M2

1/2
0.5 + 3.5 tan2 β

tan2 β − 1
, (4.28)

which is determined by fixing m0, M1/2 and tan β. We also take µ to be real positive.
Our predictions of the electron EDM and the branching ratio of µ → eγ are given at

the 1TeV mass scale. The RGE effects of them below 1TeV are induced by the Yukawa
couplings of charged leptons and gauge couplings g1 and g2. We can neglect these RGE
effects since the Yukawa couplings of charged leptons are small in our model and there is
no QCD couplings in the one-loop level. The gauge coupling contributions below 1TeV are
O(1)%. This contribution does not affect our numerical results.
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5 Electron EDM and µ → eγ decay

5.1 Electron EDM

The current experimental limit for the electric dipole moment of the electron is given by
ACME collaboration [116]:

|de| . 1.1× 10−29 e cm , (5.1)

at 90% confidence level. Precise measurements of the electron EDM are rapidly being
updated. The future sensitivity is expected to reach up to |de/e| ' 10−30 cm [117, 118].
This bound and future sensitivity can test the framework of the supersymmetric modular
invariant theory of flavors. The corresponding EDM formula of leptons is given as [102]:

de
e

= α1
8π

M1
m̃4
e

m̃eL Im
[
− (δeLR)11CB(x̄) m̃eR

+
{

(δeLL)1i(δeLR)i1C ′B,L(x̄) + (δeLR)1i(δeRR)i1C ′B,R(x̄)
}
m̃eRii (5.2)

−
{

(δeLL)1i(δeLR)ij(δeRR)j1 + (δeLR)1j(δeRL)ji(δeLR)i1
}
C ′′B(x̄) m̃eRjj

]
,

where m̃eL and m̃eR are first mass eigenvalues of m̃2
eL and m̃2

eR, respectively, and m̃e is
the averaged mass of L and R as m̃e =

√
m̃eLm̃eR. Moreover m̃eRii denotes the i-th mass

eigenvalue of m̃2
eR. The expression of eq. (5.2) is proportional to the bino mass M1. The

dimensionless loop functions CB(x̄) etc. are presented in appendix D. Since our slepton
masses of L and R are not so different each other, we adopt the approximate formulae for
CB(x̄), C ′′B(x̄) and C ′B,L(x̄) [102] by using x̄ = (M1/m̃e)2.

The dominant contribution to the electron EDM comes from the first term of the
right-hand side, which is the single chirality flipping diagonal mass insertion (δeLR)11,
so called flavor-conserving EDM. Its imaginary part is non-zero due to the VEV of the
modulus τ , which allows a non-trivial CP phase in m̃2

eRL to be different from the phases
of the charged lepton mass matrix. The next-to-leading order term is so called flavored
EDM [143], which is related with the FCNC of leptons. We will examine both contribution
to the electron EDM.

5.2 Branching ratio of µ → eγ

Once non-vanishing off-diagonal elements in the slepton mass matrices are generated, LFV
rare decays like µ→ eγ are naturally induced by the one-loop diagrams with the exchange
of gauginos and sleptons [144–146]. The branching ratio of µ→ eγ is given as [102]:

BR(µ→ eγ) = αem
3

2π tan4 θW M4
W x̄

µ2 tan2 β

m̃6
e

×

×
( ∣∣∣∣∣(δeLL)12

(
−(δeLR)22

m̃eLm̃eR

µ tan β mµ
C ′B,L + 1

2C
′
L + C ′2

)
+ (δeLR)12

m̃eLm̃eR

µ tan β mµ
CB

∣∣∣∣∣
2

+
∣∣∣∣∣(δeRR)12

(
−(δeLR)∗22

meLmeR

µ tan β mµ
C ′B,R − C ′R

)
+ (δeLR)∗21

m̃eLmeR

µ tan β mµ
CB

∣∣∣∣∣
2)

, (5.3)
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Current bounds Future prospects

|de/e| cm 1.1× 10−29 [116] ∼ 10−30 [117, 118]

BR(µ→ eγ) 4.2× 10−13 [129, 157] 6× 10−14 [152]

BR(µ→ eeē) 1.0× 10−12 [157] ∼ 10−16 [153–155]

CR(µN → eN) 7.0× 10−13 [157] ∼ 10−16 [153–155]

Table 2. Current experimental bounds and future prospects of relevant processes.

where we put sin2 θW = 0.231. The dimensionless loop functions are presented in ap-
pendix D. In our model, the leading terms come from (δeLR)12 and (δeLR)∗21 due to the
chiral enhancement. The next-to-leading ones arise from (δeRR)12. The off-diagonal com-
ponent (δeLL)12 does not come out in our model.

In SUSY models, the branching ratio of `i → `j`k ¯̀
k and the conversion rate of µN →

eN are related simply as [146]:

BR(`i → `j`k ¯̀
k)

BR(`i → `jγ) = αem
3π

(
2 log m`i

m`k

− 3
)
,

CR(µN → eN)
BR(`i → `jγ) = αem , (5.4)

where αem is the electromagnetic fine-structure constant.
Current experimental bounds and future prospects of EDM, µ → eγ and relevant

processes are summarized in table 2.

6 Numerical results

As discussed in subsection 4.1, the CP invariant lepton mass matrices have been given in
the A4 modular symmetry [128]. The tiny neutrino masses are obtained by type-I seesaw.
The CP symmetry is broken spontaneously by the VEV of the modulus τ . Thus, the fixed
value of τ breaks the CP symmetry as well as the modular invariance. The source of the CP
phase is the real part of τ . Lepton mass matrices of four cases of weights (ke, kµ, kτ ) are
completely consistent with observed lepton masses and PMNS mixing angles. Then, the
CP violating Dirac phase is predicted clearly at the fixed value of τ [128]. The predicted
CP phases of five cases are different as seen in table 3.

By using those successful charged lepton mass matrices, we calculate the electron EDM
and the branching ratio of µ→ eγ. In our numerical analyses, we take four cases A, B, C
and D with weights of right-handed charged leptons (ke, kµ, kτ ):

(ke, kµ, kτ ) : A (1, 1, 5) , B (1, 3, 5) , C (1, 1, 7) , D (1, 3, 7) .

We also discuss the alternative case E, where the charged lepton mass matrix is written
with only weight 2 modular forms, (ke, kµ, kτ ) = (1, 1, 1) (see appendix E), in which the
branching ratio of µ → eγ was studied in ref. [74]. In the case of E, the neutrino mass
matrix is given by the dimension-five Weinberg operator instead of type-I seesaw.4

4In the case of the charged lepton mass matrix with only weight 2 modular forms, a simple neutrino
seesaw mass matrix is not obtained for the model of spontaneously CP violation.
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(ke, kµ, kτ ) A (1, 1, 5) B (1, 3, 5) C (1, 1, 7) D (1, 3, 7)

τ −0.1912+1.1194 i 0.1931+1.1240 i 0.0901+1.0047 i -0.1027 + 1.0050 i

gD −0.800 −0.800 −0.660 0.685

ge −0.905 −0.900 −0.530 −0.573

βe/αe 3.70×10−3 4.73×10−3 5.94×10−3 6.30×10−3

γe/αe 9.71 10.1 17.6 16.0

sin2 θ12 0.305 0.309 0.324 0.326

sin2 θ23 0.569 0.574 0.441 0.479

sin2 θ13 0.0222 0.0225 0.0222 0.0223

δ`CP 172◦ 187◦ 183◦ 176◦∑
mi 62.5meV 62.8meV 60.5meV 60.7meV√
χ2 1.08 1.43 2.16 2.38

Table 3. Numerical values of parameters τ , gD, ge, βe/αe, γe/αe and output of best fitting three
mixing angles. The CP violating Dirac phase δ`CP and the sum of three neutrino masses

∑
mi are

predicted. The square root of the sum of χ2 are also shown.

In table 3, we show five parameters of models, out put of three mixing angles and
predicted the CP violating Dirac phase and the sum of neutrino masses at the best-fit
values for cases A, B, C and D in the normal hierarchy of neutrino masses (NH),5 where
neutrino data of NuFit 5.0 are put [149]. The charged lepton masses are fitted at the
high energy scale 2 × 1016 GeV with tan β ≡ vu/vd = 5 [150, 151]. The parameter gD
appears in the neutrino Dirac mass matrix in eq.˙ (4.2) and is real as seen in eq. (4.10).
Since we discuss sleptons, which are the superpartner of the charged lepton sector, gD does
not affect our numerical results of the electron EDM and the LFV. On the other hand,
real parameters ge, βe/αe, γe/αe in addition to complex value of τ determine the charged
lepton mass matrix. By using those four real parameters gD, ge, βe/αe, γe/αe and one
complex parameters (Re [τ ] and Im [τ ]), we performed χ2-fit, where we adopted the sum of
one-dimensional χ2 function for four accurately known dimensionless observables, the ratio
of two neutrino mass squared differences ∆m2

atm/∆m2
sol, sin2 θ12, sin2 θ23 and sin2 θ13 in

NuFit 5.0 [149]. In addition, we employed Gaussian approximations for fitting the charged
lepton mass ratios, me/mτ and mµ/mτ . Since free six parameters fit six observables, we
can predict the CP violating Dirac phase δ`CP and the sum of neutrino masses

∑
mi.

Parameters of the case E are shown in appendix E.
We fix the charged lepton mass matrices by using βe/αe, γe/αe and ge in addition

to the modulus τ in table 3 apart from the normalization of the mass matrix. Then, the
mass insertion parameters are determined including CP phases if the SUSY parameters

5There are no allowed parameter set within 3σ confidence level for the inverted hierarchy of neutrino
masses.
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Figure 1. The predicted |de/e| versus m0 with
putting F τ = m0/2 in case A. The grey region is
excluded by the experimental upper bound.
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Figure 2. The predicted BR(µ → eγ) versus
m0 with putting F τ = m0/2 in case A. The
grey region is excluded by the experimental up-
per bound.

m3/2 = m0, M1/2 and F τ are put. In order to calculate the electron EDM and the
branching ratio of µ→ eγ, the slepton mass matrices of eqs. (4.19) and (4.26) are rotated
into the physical basis where the charged lepton mass matrix is real diagonal and positive.

As discussed in eqs. (3.7) and (4.14), the magnitude of F τ should be significantly
constrained for the larger weight ki to prevent the tachyonic slepton. Since the largest
weight is kτ = 7, we take |F τ | = m0/2 in the following numerical analyses. We will discuss
later if |F τ | is set to be larger than = m0/2 with keeping the slepton mass of O(1)TeV.

At first, we present our numerical results of the electron EDM, |de/e| for case A. The
SUSY mass parameters are variable in M1/2 = 6–18TeV and m0 = 1–20TeV, which are
allowed in the slepton, bino and wino searches of the LHC experiments [147, 148]. We plot
|de/e| versus m0 in figure 1, where F τ = m0/2 is put. Three curved lines correspond to
M1/2 = 6, 12, 18 TeV, respectively. As seen in figure 1, the predicted electron EDM is
lower than the experimental upper bound as far as the SUSY mass scale is larger than a
few TeV for F τ = m0/2. Indeed, the predicted value is consistent with the experimental
upper bound if the gaugino mass scale M1/2 is larger than 4TeV.

It would be helpful to comment on the behavior of the predicted curves. The maximum
values are apparently found at the low m0 region. The predicted values increase at m0 close
to 1TeV. This behavior is due to taking F τ = m0/2 in order to reduce the number of free
parameters, although m̃2

eRL (A-term) is proportional to F τ and independent m0 as seen in
eq. (4.19). If F τ is fixed to, for example, 1TeV, the prediction becomes a monotonically
decreasing function against m0.

The SUSY mass scale is also significantly constrained by the experimental upper bound
of the branching ratio for the µ→ eγ decay [74] . We plot BR(µ→ eγ) versusm0 in figure 2,
where we put F τ = m0/2 again. It is found that the predicted BR(µ→ eγ) is lower than
the experimental upper bound as far as the gaugino mass scale M1/2 is larger than 6TeV.
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Figure 3. The predicted |de/e| versus m0 with
putting F τ = m0/2 in case B. The grey region is
excluded by the experimental upper bound.
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Figure 4. The predicted BR(µ → eγ) versus
m0 with putting F τ = m0/2 in case B. The
grey region is excluded by the experimental up-
per bound.

Thus, the µ → eγ process constrains more severely the SUSY mass scale compared with
the electron EDM for case A.

In contrast to case A, the electron EDM constrains tightly the SUSY mass scale in
case B. We present our numerical results of the electron EDM, |de/e| and BR(µ→ eγ) for
case B. We plot |de/e| versus m0 in figure 3, where F τ = m0/2 is put. It is found that
the predicted electron EDM exceeds the experimental upper bound at m0 ≤ 5TeV if the
gaugino mass scale M1/2 is 6TeV.

We show BR(µ → eγ) versus m0 with putting F τ = m0/2 in figure 4. The predicted
BR(µ→ eγ) is almost same as the one in case A of figure 2.

Thus, the constraints of the SUSY mass scale from the upper bounds |de/e| and
BR(µ→ eγ) depend on the model of the charged leptons.

In order to see the importance of CP phases via the modulus τ , we examine the
correlation between the electron EDM and the decay rate of the µ → eγ decay for both
cases A and B. The correlation is clearly seen in figures 5 and 6. We plot them in the range
of m0 = 1–20TeV with fixing M1/2 = 6 and 18TeV in figure 5, on the other hand, in the
range of M1/2 = 6–18TeV with fixing m0 = 1, 10 and 20TeV in figure 6.

We find the linear correspondence between BR(µ→ eγ) and |de/e| in the logarithmic
coordinates for both cases A and B. The branching ratio is approximately proportional
to the square of |de/e|. The slope of the line is independent of the value of F τ , although
F τ = m0/2 is taken in these figures. Similar correlations are also found in other cases B–E.
This provides a crucial test for our predictions in future. It is also seen that the predicted
decay rate of µ→ eγ is almost same for both cases A and B while the predicted |de/e| of
case B is larger than the one of case A in factor 5. Thus, the magnitude of the predicted
electron EDM depends on the charged lepton mass matrix considerably.
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Figure 5. Plot of |de/e| and BR(µ → eγ)
for cases A and B with F τ = m0/2, where
m0 = 1–20TeV for fixed M1/2 = 6 and 18TeV.
The blue curves denotes the predictions at fixed
gaugino mass M1/2 for case A, and the pink one
for case B. The grey regions are excluded by
the experimental upper bounds, and the vertical
and horizontal dashed grey lines indicate the
future sensitivity.

Figure 6. Plot of |de/e| and BR(µ → eγ) for
cases A and B with F τ = m0/2, where M1/2 =
6–18TeV for fixed m0 = 1 , 10 and 20TeV. The
blue curves denotes the predictions at fixed m0
for case A, and the pink one for case B. The grey
regions are excluded by the experimental upper
bounds, and the vertical and horizontal dashed
grey lines indicate the future sensitivity.

Figure 7. Plot of |de/e| and BR(µ→ eγ) for all
cases with F τ = m0/2, where m0 = 1–20TeV for
fixed M1/2 = 6 and 18TeV. The blue curves de-
notes the predictions at fixed gaugino mass M1/2
for case A, and the same for other cases. The
grey regions are excluded by the experimental
upper bounds, and the vertical and horizontal
dashed grey lines indicate the future sensitivity.

Figure 8. Plot of |de/e| and BR(µ→ eγ) for all
cases with F τ = m0/2, where M1/2 = 6–18TeV
for fixed m0 = 1 , 10 and 20TeV. The blue curves
denotes the predictions at fixed m0 for case A,
and the same for other cases. The grey regions
are excluded by the experimental upper bounds,
and the vertical and horizontal dashed grey lines
indicate the future sensitivity.
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Although the bound of the electron EDM is |de/e| ≤ 1.1 × 10−29 cm [116], the future
sensitivity is expected to reach up to |de/e| ' 10−30 cm [117, 118], which is denoted by the
vertical dashed grey line. For case A, their sensitive mass scale is much below 10TeV for
m0 and M1/2 as seen in figures 5 and 6. On the other hand, for case B, the electron EDM
can probe the mass scale m0 of 10–20TeV as seen in figures 5 and 6. The future sensitivity
of the branching ratio BR(µ → eγ) is 6 × 10−14 [152], which is shown by the horizontal
dashed grey line, excludes only the SUSY mass region much below 10TeV.

Let us discuss the model dependence among A–E. We show the correlations between
|de/e| and BR(µ→ eγ) for all cases A–E in figures 7 and 8. We plot them in the range of
m0 = 1–20TeV with fixingM1/2 = 6 and 18TeV in figure 7, on the other hand, in the range
of M1/2 = 6–18TeV with fixing m0 = 1, 10 and 20TeV in figure 8. The predicted |de/e|
and BR(µ→ eγ) of case A and case C are similar each other, and those of case B and case
D are also similar each other as seen in figures 7 and 8. The prediction of case E overlaps
somewhat with the one of case A, but its region of case E extends upward considerably. The
µ → eγ process of case E constrains most severely the SUSY mass scale among A–E. On
the other hand, the electron EDM of case D constrains most severely the SUSY mass scale.

The future sensitivity of the electron EDM, |de/e| ' 10−30 cm [117, 118] will probe the
SUSY mass scale of 10–20TeV for B, D and E. On the other hand, the future sensitivity
of the branching ratio BR(µ → eγ), 6× 10−14 [152] can probe the SUSY mass scale close
to 10TeV only for case E. For cases A–D, their sensitive mass scale is much below 10TeV.

It is noted that the branching ratio of µ→ 3e and the conversion rate of µN → eN will
be sensitive for proving the SUSY mass scale of higher than 10TeV although the predicted
branching ratio and conversion rate are significantly below the current experimental upper
bounds as discussed later [153–155].

We have listed predicted mass insertion parameters and de/e, BR(µ → eγ), BR(µ →
eeē) and CR(µN → eN) at M1/2 = 6TeV, m0 = 10TeV and F τ = 5TeV in table 4. In
this setup, the gaugino masses are given as M1 = 2.9TeV and M2 = 5.2TeV at Q = 1TeV,
respectively.

The dominant contribution to the electron EDM comes from the imaginary part of the
single chirality flipping diagonal mass insertion (δeLR)11 (flavor-conserving EDM) as seen
in eq. (5.2). Therefore, the flavor-conserving EDM is almost proportional to Im(δeLR)11
up to its sign. The small differences of m̃eR among five cases cause the slight dispersion
of the proportionality. The largest flavor-conserving EDM is obtained in case D. The
next-to-leading term is the flavored EDM, which arises mainly from the non-vanishing
(δeRR)ij . Therefore, it is considerably suppressed in case E since (δeRR)ij vanish. The
largest magnitude of the flavored EDM is obtained in case C. The sum of flavor-conserving
EDM and flavored one is in the range of (0.62–7.2) × 10−30 cm for all cases. The future
experiment can reach up to this range.

We can also calculate the leading contribution of the muon EDM by using (δeLR)22 of
table 4. It is predicted as:

|dµ/e| ' 5× 10−27 cm , (6.1)

for case A. This predicted value is significantly below its observed upper bound, 2× 10−19

at BNL-E821 [118]. The improvement up to 2× 10−21 is expected at FNAL [118].

– 20 –



J
H
E
P
1
0
(
2
0
2
1
)
1
8
3

Cases A B C D E

(δeLR)11×108 0.46−0.56 i 1.8+3.0 i −12−1.0 i −28−5.6 i −56−2.2 i

(δeLR)22×105 −1.74+0.42 i 1.0+0.42 i −1.3−0.39 i 0.62−0.37 i −0.15−0.95 i

(δeLR)12×106 0.91−4.42 i −0.83−4.2 i 11−0.60 i −11−1.0 i 7.4+18 i

(δeLR)13×104 0.46+0.54 i −0.45+0.55 i 1.5+4.3 i 1.4−3.8 i 0.15−1.9 i

(δeLR)21×107 −0.21+0.04 i −1.7−0.12 i 0.70−0.13 i 1.0+0.2 i 0.28−0.87 i

(δeLR)23×105 0.65−18 i −0.53−17 i −12−30 i −11+27 i 34.3+2.4 i

(δeLR)31×107 −0.22+0.14 i −0.10+0.49 i 0.62−0.97 i −0.10+1.8 i 0.087+0.54 i

(δeRR)21×105 −0.04−0.23 i −48+21 i 0.19−0.009 i 26+1.4 i 0

(δeRR)31×105 −2.99+2.41 i −0.82+9.2 i 2.2−9.2 i 4.5+14 i 0

(δeRR)32×102 0.72+1.3 i 0.7−1.2 i −0.38+1.2 i 0.39+1.3 i 0

flavor-conserving de/e cm 7.2×10−31 −3.7×10−30 1.3×10−30 7.6×10−30 2.9×10−30

flavored de/e cm −5.1×10−32 −2.4×10−31 −3.9×10−31 2.5×10−31 −1.9×10−37

|
∑
de/e| cm 6.7×10−31 3.9×10−30 9.1×10−31 7.9×10−30 2.9×10−30

BR(µ→ eγ) 7.8×10−15 6.6×10−15 4.5×10−14 4.8×10−14 1.4×10−13

BR(µ→ eeē) 4.6×10−17 3.9×10−17 2.7×10−16 2.8×10−16 8.3×10−16

CR(µN→ eN) 5.7×10−17 4.8×10−17 3.3×10−16 3.5×10−16 1.0×10−15

Table 4. Mass insertion parameters and predicted de/e (flavor-conserving EDM, flavored one and
those sum), BR(µ → eγ), BR(µ → eeē) and CR(µN → eN) at M1/2 = 6TeV, m0 = 10TeV and
F τ = 5TeV.

The leading terms of the branching ratio BR(µ → eγ) are given in terms of (δeLR)12
and (δeLR)∗12 as seen in eq. (5.3) due to the chiral enhancement. The next-to-leading ones
arise from (δeRR)ij . However, the contribution of the next-to-leading terms are suppressed
enough compared with the leading ones in all cases. The branching ratio is predicted in
rather broad range 6.6 × 10−15–9.4 × 10−14 for all cases. Case E will be tested since the
future sensitivity is expected to be 6× 10−14 [152].

In SUSY models, the branching ratio of µ→ 3e and the conversion rate of µN → eN

are simply related to BR(µ → eγ) as seen in eq. (5.4). The five branching ratio and
conversion rate are enough below the current experimental upper bounds 1.0× 10−12 and
7.0 × 10−13 [157], respectively, as seen in table 4. Since future experiments will explore
these predictions at the level of 10−16 for µ → 3e and µN → eN [153–155], it will probe
the SUSY mass scale of m0 ' 10TeV.

We can also calculate the branching ratios of tauon decays, τ → eγ and τ → µγ. Both
branching ratios are at most O(10−13), which are much below the current experimental
upper bounds 3.3× 10−8 and 4.4× 10−8, respectively [157].
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As well known, large flavor-violating trilinear coupling may generate instabilities of
the electroweak vacuum, which constrains the magnitudes of mass insertion parameters
δeLR [156]. It is noted that our predicted ones do not spoil the vacuum stability.

We also comment on the effect of neutrino Yukawa matrix in the type-I seesaw to the
µ→ eγ decay. If there are right-handed neutrinos which couple to the left-handed neutrinos
via Yukawa couplings, the RGEs effects, which is the running from the high scale Q0 to
the right-handed Majorana mass scale MR, can also induce off-diagonal elements in the
slepton mass matrix as follows [158, 159]:

(δeLL)12 ' −
6m2

0
16π2m2

slepton
(Y †DYD)12 ln Q0

MR
, (6.2)

where YD is Dirac neutrino Yukawa matrix in the diagonal base of the charged lepton.
One should check its effect to the µ → eγ decay since our models use type-I seesaw. In
conclusion, the effect of neutrino Yukawa couplings is still at the next-to-leading order of
our prediction as far as we take MR ≤ 1013 GeV. For example, in case A, we have

(δeLL)12 ' 4.9× 10−3 ( 6.6× 10−4 ) , BR(µ→ eγ) ' 4.8× 10−16 ( 8.5× 10−18 ) , (6.3)

for MR = 1013 (1012)GeV, where we take M1 = 2.9TeV, M2 = 5.2TeV and mslepton =
m0 = 10TeV, and the branching ratio includes only the contribution of neutrino Yukawa
couplings.

In our numerical results, we take F τ = m0/2 to prevent the tachyonic slepton since
the largest weight is kτ = 7 in our lepton mass matrix. Our predicted electron EDM is
almost proportional to the magnitude of F τ , and the branching ratio of µ→ eγ is roughly
proportional to |F τ |2 in the following numerical analyses. We have checked the numerical
results in the case of F τ = m0 for case E, where tachyonic sleptons are prevented due to
small weight 1. Indeed, the calculated |de/e| is approximately two times lager than the one
for F τ = m0/2, while BR(µ→ eγ) is four times lager. Thus, we can estimate roughly |F τ |
dependence of our numerical results.

7 Summary

We have studied the electron EDM in the supersymmetric A4 modular invariant theory
of flavors with CP invariance. The CP symmetry of the lepton sector is broken by fixing
modulus τ . In this framework, a fixed τ also causes the CP violation in the soft SUSY
breaking terms. The electron EDM arises from this CP non-conserved soft SUSY breaking
terms. We have examined the electron EDM in the five cases A–E of charged lepton mass
matrices, which are completely consistent with observed lepton masses and PMNS mixing
angles. It is found that the present upper bound of |de/e| ≤ 1.1×10−29 excludes the SUSY
mass scale, m0 and M1/2 below 4–6TeV depending on cases A–E.

The SUSY mass scale is also significantly constrained by considering the experimental
upper bound of the branching ratio of the µ→ eγ decay.

In order to see the effect of CP phase in the modulus τ , we examine the correlation
between the electron EDM and the decay rate of the µ → eγ decay. The correlations are
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clearly seen in contrast to models of the conventional flavor symmetry. We have found
the linear correspondence BR(µ → eγ) between |de/e| in the logarithmic coordinates for
cases A–E. The branching ratio is approximately proportional to the square of |de/e|. The
slope of the line is independent of the value of F τ although F τ = m0/2 is taken in our
calculations.

The predicted de/e and BR(µ→ eγ) of case A and case C are similar each other, and
those of case B and case D are also similar each other. The µ→ eγ decay constrains most
severely the SUSY mass scale in case E compared with other cases. On the other hand, the
electron EDM constrains most severely the SUSY mass scale in case D among five cases.

Although the current experimental upper bound of the electron EDM is |de/e| ≤
1.1 × 10−29 cm, the future sensitivity of the electron EDM is expected to reach up to
|de/e| ' 10−30 cm. Then, the SUSY mass scale will be significantly constrained by |de/e|.
Indeed, it will probe the SUSY mass scale of 10–20TeV.

On the other hand, the future sensitivity of the branching ratio BR(µ→ eγ), 6×10−14

probes at most the SUSY mass scale of 10TeV. It is also remarked that the branching ratio
of µ → 3e and the conversion rate of µN → eN will be sensitive for probing the SUSY
mass scale of higher than 10TeV.

Thus, the electron EDM provides a severe test of the CP violation via the modulus τ
in the supersymmetric modular invariant theory of flavors.
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A Tensor product of A4 group

We take the generators of A4 group for the triplet as follows:

S = 1
3


−1 2 2
2 −1 2
2 2 −1

 , T =


1 0 0
0 ω 0
0 0 ω2

 , (A.1)

where ω = ei
2
3π for a triplet. In this base, the multiplication rule is
a1

a2

a3


3

⊗


b1

b2

b3


3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′

⊕ (a2b2 + a1b3 + a3b1)1′′

⊕ 1
3


2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1

2a2b2 − a1b3 − a3b1


3

⊕ 1
2


a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3


3

,

1⊗ 1 = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 , (A.2)
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where

T (1′) = ω , T (1′′) = ω2. (A.3)

More details are shown in the review [2, 3].

B Modular forms with weight 2, 4, 6, 8 in Γ3 group

We present modular forms with weight 2, 4, 6, 8 in A4 modular group. The triplet modular
forms can be written in terms of η(τ) and its derivative [11]:

Y1 = i

2π

(
η′(τ/3)
η(τ/3) + η′((τ + 1)/3)

η((τ + 1)/3) + η′((τ + 2)/3)
η((τ + 2)/3) −

27η′(3τ)
η(3τ)

)
,

Y2 = −i
π

(
η′(τ/3)
η(τ/3) + ω2 η

′((τ + 1)/3)
η((τ + 1)/3) + ω

η′((τ + 2)/3)
η((τ + 2)/3)

)
, (B.1)

Y3 = −i
π

(
η′(τ/3)
η(τ/3) + ω

η′((τ + 1)/3)
η((τ + 1)/3) + ω2 η

′((τ + 2)/3)
η((τ + 2)/3)

)
.

They are also expressed in the q expansions, where q = ei2πτ , as follows:

Y(2)
3 (τ) =


Y1

Y2

Y3

 =


1 + 12q + 36q2 + 12q3 + . . .

−6q1/3(1 + 7q + 8q2 + . . . )
−18q2/3(1 + 2q + 5q2 + . . . )

 . (B.2)

For weight 4, there are five modular forms by the tensor product of 3⊗ 3 as:

Y(4)
1 (τ) = Y 2

1 + 2Y2Y3 , Y(4)
1′ (τ) = Y 2

3 + 2Y1Y2 ,

Y(4)
3 (τ) =


Y

(4)
1

Y
(4)

2

Y
(4)

3

 =


Y 2

1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3

 . (B.3)

For k = 6, there are seven modular forms by the tensor products of A4 as:

Y(6)
1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3 , (B.4)

Y(6)
3 ≡


Y

(6)
1

Y
(6)

2

Y
(6)

3

 = (Y 2
1 + 2Y2Y3)


Y1

Y2

Y3

 , Y(6)
3′ ≡


Y
′(6)

1

Y
′(6)

2

Y
′(6)

3

 = (Y 2
3 + 2Y1Y2)


Y3

Y1

Y2

 .
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For k = 8, there are 9 modular forms by the tensor products of A4 as:

Y(8)
1 = (Y 2

1 + 2Y2Y3)2 , Y(8)
1′ = (Y 2

1 + 2Y2Y3)(Y 2
3 + 2Y1Y2) ,

Y(8)
1” = (Y 2

3 + 2Y1Y2)2 ,

Y(8)
3 ≡


Y

(8)
1

Y
(8)

2

Y
(8)

3

 = (Y 3
1 + Y 3

2 + Y 3
3 − 3Y1Y2Y3)


Y1

Y2

Y3

 ,

Y(8)
3′ ≡


Y
′(8)

1

Y
′(8)

2

Y
′(8)

3

 = (Y 2
3 + 2Y1Y2)


Y 2

2 − Y1Y3

Y 2
1 − Y2Y3

Y 2
3 − Y1Y2

 .

C RGEs of leptons and slepton

The relevant RGEs are given by [141, 142];

16π2 d

dt

(
m̃2
eL

)
ij

= −
(6

5g
2
1 |M1|2 + 6g2

2 |M2|2
)
δij −

3
5g

2
1 S δij

+
(
(m̃2

eL)Y †e Ye + Y †e Ye(m̃2
eL)K

)
ij

+ 2
(
Y †e (m̃2

eR)KYe + m̃2
Hd
Y †e Ye +A†eAe

)
ij
,

16π2 d

dt

(
m̃2
eR

)
ij

= −24
5 g

2
1 |M1|2 δij + 6

5g
2
1 S δij

+ 2
(
(m̃2

eR)KYeY †e + YeY
†
e (m̃2

eR)K
)
ij

+ 4
(
Ye(m̃2

eL)KY †e +m2
Hd
YeY

†
e +AeA

†
e

)
ij
,

16π2 d

dt
(Ae)ij =

(
−9

5g
2
1 − 3g2

2 + 3Tr(Y †d Yd) + Tr(Y †e Ye)
)

(Ae)ij

+ 2
(9

5g
2
1M1 + 3g2

2M2 + 3Tr(Y †dAd) + Tr(Y †e Ae)
)
Yeij

+ 4
(
YeY

†
e Ae

)
ij

+ 5
(
AeY

†
e Ye

)
ij
,

16π2 d

dt
Yeij =

(
−9

5g
2
1 − 3g2

2 + 3 Tr(YdY †d ) + Tr(YeY †e )
)
Yeij + 3

(
YeY

†
e Ye

)
ij
.

(C.1)

In these expressions, g1,2 are the gauge couplings of SU(2)L × U(1)Y , M1,2 are the corre-
sponding gaugino mass terms, Ye,d are the Yukawa couplings for charged leptons and down
quarks, Ae = (m̃2

eLR)/vd, and

S = Tr(m̃2
qL + m̃2

dR − 2m̃2
uR − m̃2

eL + m̃2
eR)− m̃2

Hd
+ m̃2

Hu ,

where m̃2
qL, m̃2

dL, m̃2
uR are mass matrices of squarks and m̃Hu and m̃Hd are the Higgs

masses. The parameter t is t = lnQ/Q0, where Q is the renormalization scale and Q0 is a
reference scale.
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D Loop functions

The dimensionless functions CB, C ′B,R, C ′B,L and C ′′B are given approximately as [102]:

CB ' h1(x̄) , (D.1)

C ′B,R ' C ′B,L '
1
2 [h1(x̄) + k1(x̄)] , (D.2)

C ′′B '
1
3 [h1(x̄) + 2 k1(x̄)] , (D.3)

where we take m̃e =
√
m̃eLm̃eR as the average slepton mass and put x̄ = (M1/m̃e)2.

On the other hand, functions C ′L, C ′R and C ′2 are exactly given as:

C ′L = C0
1

m2
eL

yL
yL − xL

[h1 (xL)− h1 (yL)] , (D.4)

C ′R = C0
1

m2
eR

yR
yR − xR

[h1 (xR)− h1 (yR)] , (D.5)

C ′2 = C0
M2 cot2 θW
M1m2

eL

yL
yL − x′L

[
h2
(
x′L
)
− h2 (yL)

]
, (D.6)

with

xL = M2
1

m2
eL

, xR = M2
1

m2
eR

, x′L = M2
2

m2
eL

, yL = µ2

m2
eL

, yR = µ2

m2
eR

, (D.7)

where C0 = m4
0/µ

2. Functions h1(x), h2(x) and k1(x) are defined as:

h1(x) = 1 + 4x− 5x2 + (2x2 + 4x) ln x
(1− x)4 , (D.8)

h2(x) = 7x2 + 4x− 11− 2(x2 + 6x+ 2) ln x
2(x− 1)4 , (D.9)

k1(x) = d

dx
[xh1(x)] . (D.10)

Note that Mi and µ2 are real positive values.

E Mass matrix Me with only weight 2 modular forms

We present the charged lepton mass matrix in terms of only weight 2 modular forms, in
which BR(µ→ eγ) was discussed in ref. [74]. The mass matrix is given as:

Me = vd


αe 0 0
0 βe 0
0 0 γe



Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1

 , (E.1)

where Yi’s are given in eq. (B.1). The neutrino mass matrix is given by the dimension five
Weinberg operator. We present the best fit parameter set for the observed lepton masses
and flavor mixing angles [68] as follows:

E : τ = −0.0796 + 1.0065 i , αe/γe = 6.82× 10−2 , βe/γe = 1.02× 10−3 , (E.2)

which is referred as the case E in the text.
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The slepton mass matrix m̃2
eRL including RGE effect is written as:

m̃2
eRL ' 1.4 vd

−mF


αe 0 0
0 βe 0
0 0 γe



Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1

+ F τ


αe 0 0
0 βe 0
0 0 γe

 d

dτ


Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1


 .
(E.3)

Since the first term of the right-hand side is proportional to Me, it does not contributes to
|de/e| and BR(µ→ eγ). On the other hand, m̃2

eLL and m̃2
eRR are proportional to the unit

matrix. Then, these mass terms do not contribute to |de/e| and BR(µ→ eγ).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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