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1 Introduction

The conformal bootstrap approach in two-dimensions [1] exploits the infinite-dimensional
Virasoro algebra together with the associativity of the Operator Product Expansion (OPE)
in the attempt to classify all possible Conformal Field Theories (CFTs). In short [2],
the associativity of the conformal algebra leads to functional relations between its special
functions dubbed conformal blocks, which can be solved, under certain assumptions on the
spectrum of the theory, either analytically or numerically.
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In the last thirty years, the bootstrap technique allowed calculating exactly or with great
precision correlation functions of many two-dimensional critical statistical models [1]. It also
led to the solution of two-dimensional quantum gravity, the Liouville theory [3]. Despite
these successes, there are still critical phenomena in two dimensions for which a complete
bootstrap solution is lacking. We can mention for instance geometrical phase transitions
such as percolation [4], recently analyzed in deep in [5, 6], or disordered systems [7, 8]. In
particular, the latter are described by coupling copies of the original pure CFT to a relevant
field, and then flow to a new fixed point whose properties are largely unknown, see [9–11].

Besides their applications to disordered systems, CFTs on a replicated space-time
geometry are familiar also in the context of quantum information. Partition functions of
CFTs on Riemann surfaces with ZN symmetry can be interpreted as powers of reduced
density matrices for subsystems embedded into an extended quantum state, either pure
or mixed [12, 13]. From the reduced density matrix, one extracts entanglement measures
such as Rényi entropies [14–16] or the logarithmic negativity [17–19]. Finally, the study
of CFTs with cyclic or permutational symmetry has provided an explicit verification of
the AdS/CFT correspondence [20]. A possible approach to CFTs defined on a ZN (or
SN ) symmetric space-time exploits their mapping [21] to the orbifold theory CFT⊗N/ZN .
Instead of considering a single theory on a Riemann surface with ZN symmetry and central
charge c, one studies the N -fold tensor product CFT⊗N/ZN with central charge Nc on the
sphere. The multivaluedness of the correlators, when their argument encircles a ramification
point of the Riemann surface, is implemented by local fields called twist fields [22, 23].
Higher genus partition functions are then mapped to multipoint correlators of twist fields.

In this paper, we will analyze the CFT partition function on a one-parameter (0 < x < 1)
family of genus N −1 Riemann surfaces, specified in section 2 and already considered in [24].
Due to the ZN symmetry of the space-time, the CFT partition function can be expressed in
terms of the four-point correlator of the ZN twist field on the sphere. Modular invariance
of the partition function is implemented by the transformation x 7→ 1− x and reduces to
the crossing symmetry of the twist field four-point function, see also [25]. For N = 2 and
N = 3, the study of the crossing symmetry equations restricts respectively the operator
content and the OPE coefficients of the original conformal theory [26–29], with central
charge c, on the sphere.

Already for Z3-symmetric Riemann surfaces with genus two, the determination of
crossing symmetric twist field correlation functions is challenging. For instance, they are
not known explicitly even for the simplest CFTs such as the minimal models [1] with c < 1.
On the one hand, if the seed CFT has a finite number of OPE channels, i.e. is rational,
the twist field correlators expand over a finite number of special functions dubbed orbifold
conformal blocks. On the other hand, differently from what happens on the sphere, the
latter cannot be calculated efficiently through a recursion relation [28, 30]. In practice,
one sets up a combinatorial expansion of the orbifold conformal blocks, which produces
a slowly convergent power series about x = 0. By truncating the power series in x, the
crossing symmetry properties of the twist field correlator, and the modular invariance of
the higher genus partition function, are poorly reproduced. Here, we revisit the problem by
focussing on the minimal models. We propose a systematic expansion of the Z3-orbifold
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conformal blocks that allows building crossing symmetric twist field four-point functions
with significantly better accuracy than previous attempts [31, 32]. An alternative approach
which involves the formulation of differential equations satisfied by the partition functions
has been put forward in [33]. Applications to entanglement measures and the modular
bootstrap will be also investigated.

The outline of the paper is as follows. In section 2, we introduce our notations for a
CFT on a Riemann surface with ZN symmetry and briefly review the orbifold construction.
The orbifold conformal blocks at N = 2, 3 and their small-x expansion, obtained through
the covering map [21] procedure, are discussed in section 3. It will be further presented a
regularization prescription for the singularities in the power series that are produced, for
c < 1, by the states with zero norm. The contribution of the CFT⊗N descendants to the
small-x expansion reorganizes [24] into conformal blocks of primary fields with respect to a
Virasoro algebra with central charge Nc. Once this decomposition is found, we show in
section 4, how the convergence of the orbifold conformal blocks can be improved [31] by
using the elliptic recursion formula [34]. Refs. [31, 32] wrote down analogous expansions in
terms of Virasoro conformal blocks with central charge Nc but they only took into account
the orbifold primary contributions.

We first apply the formalism to entanglement measures in tripartite systems at zero
temperature. In particular, we calculate in section 5 power series representations of the trace
of the third power of the reduced density matrix and its partial transpose for two disjoint
intervals. The two traces are distinguished field theoretically by the presence of fields
with non-zero conformal spins. Prior calculations of the partial transpose of the reduced
density matrix, which enters in the so-called logarithmic negativity, were performed for free
fermions [19, 35–42] or in the large central charge limit [43–45]. Our approach reproduces
the free fermion results [35]. Finally, in section 5, we show that for N = 3, our expansion
of the orbifold conformal blocks can incrementally improve the OPE fusion coefficients
bounds found in [28]. Moreover, we demonstrate that, within our scheme, the numerical
bootstrap approach to the genus two twist field correlation functions converges. These
new results and observations can pave the way to the solution of a long-standing problem:
the determination via a bootstrap approach of the mutual information and logarithmic
negativities in interacting CFTs.

2 CFT partition functions on ZN -symmetric Riemann surfaces

Let us consider a CFT denoted by C, with central charge c, defined on a Riemann surface
Σg(x) of genus g. In the following, we will refer to C as the seed theory. We will restrict
to the family of Riemann surfaces Σg(x) of genus g = N − 1 described by the complex
algebraic curve

wN = z(z − 1)
z − x

, (2.1)

which has branch points of order N at zb = 0, x, 1, and ∞. Although eq. (2.1) can be
extended to complex values of x, in the following, we will always assume x to be a real
variable, x = x̄, with 0 < x < 1. Eq. (2.1) can be interpreted [46] as a N -sheeted cover of the
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compactified complex plane (Riemann sphere) C∪{∞} with coordinate z. Furthermore, the
surfaces Σg(x) posses a ZN symmetry since eq. (2.1) is invariant under the transformation
w 7→ e

2πik
N w, with k = 0, 1, . . . , N − 1. This transformation amounts to a cyclic permutation

of the N sheets of the surface, where each sheet is labelled by the choice of the branch of
the N -th root in eq. (2.1).

The CFT partition function Zg(x) on Σg(x) depends on the choice of the metric within
the same conformal class. We choose then a flat metric. The partition function with a flat
metric everywhere on the surface can be derived from the orbifold C⊗N/ZN [21]. In this
theory, there exist ZN twist and anti-twist fields σN and σ̃N , which are spinless primary
fields of conformal dimension [22, 23]

hσN = h̄σN = c

24

(
N − 1

N

)
. (2.2)

When inserted on the complex plane at the branch points of the algebraic curve in eq. (2.1),
they implement the multivaluedness of correlation functions under the analytic continuation
(z − zb) 7→ (z − zb)e2πi. One then finds that

Zg(x) = ecSanom.(x)〈σN (∞)σ̃N (1)σN (x, x̄)σ̃N (0)〉, (2.3)

where the prefactor ecSanom.(x) in eq. (2.3) is the Weyl anomaly which can be explicitly
calculated [21]. It takes into account that in the orbifold approach the metric employed to
determine the partition function on Σg(x) is a flat metric on each sheet of the surface but
with conical singularities at the location of the twist fields. Consider, for instance, the case
N = 2, for which, under the Abel-Jacobi map [47], Σ1(x) is conformally equivalent to a flat
torus of modulus

τ(x) = i
K(1− x)
K(x) , (2.4)

where K(x) is the complete elliptic integral of first kind [48]. By evaluating the conformal
anomaly in eq. (2.3), one has [21]

Z1(x) = |28x(1− x)|c/12〈σ2(∞)σ̃2(1)σ2(x, x̄)σ̃2(0)〉. (2.5)

The partition function Zg(x) is invariant under modular transformations [26, 49, 50]. For
the class of surfaces Σg(x), the moduli space is one-dimensional and modular invariance
implies the crossing symmetry of the twist field four-point correlation function [27]

〈σN (∞)σ̃N (1)σN (1− x, 1− x̄)σ̃N (0)〉 = 〈σN (∞)σ̃N (1)σN (x, x̄)σ̃N (0)〉. (2.6)

For example, if we consider a torus with modulus τ that of eq. (2.4), then the modular
transformation τ 7→ −1/τ implies x 7→ 1− x. An analogous observation holds for Σ2(x), as
discussed in [27]. Eq. (2.6) can be actually extended analytically to complex values of x,
see for instance section 5.2.
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3 Orbifold conformal blocks

The twist field four-point correlator in eq. (2.3) as a function of x ∈ (0, 1) can be analytically
continued to z ∈ C. In the orbifold C⊗N/ZN , it admits the following decomposition

〈σN (∞)σ̃N (1)σN (z, z̄)σ̃N (0)〉 =
∑
h,h̄

Dh,h̄G
(N)
c,h (z)G(N)

c,h̄
(z̄), (3.1)

where h ≡ {h1, . . . , hN} and hj is the conformal dimension of a primary field of the seed
theory. The functions G(N)

c,h (z), defined below, will be termed orbifold conformal blocks.
They are normalized such that for small |z|

G(N)
c,h (z) = z|h|−2hσN [1 +O(z)] , (3.2)

where |h| = ∑
j hj . In this section and section 4, we will show how to extract systematically,

by means of the orbifold conformal algebra, higher order terms in the expansion about
z = 0 in eq. (3.2). The case N = 3 has been discussed in [28] from which some notations
are borrowed. The structure constants Dh,h̄ in eq. (3.1) are not algebraically determined
and instead characterize the specific bootstrap solution under consideration.

We focus first on the holomorphic sector of the seed CFT. We denote by φh(z) the
holomorphic primary field with conformal dimension h and by φMh (z) one of its descendants.
The descendants are labelled by the partition M ≡ {m1, . . . ,mq}, 1 ≤ m1 ≤ m2 · · · ≤ mq,
of the positive integer |M | = ∑

jmj . In terms of the Virasoro generators L−m(z), defined
in eq. (A.1), the holomorphic field φMh (z) is then

φMh (z) = L−M (z) φh(z), where L−M (z) = L−m1(z) . . . L−mq(z). (3.3)

The field φMh (z) has conformal dimension h+ |M |.
We will employ the field-state correspondence |φh〉 ≡ limz→0 φ(z)|0〉, with |0〉 the

vacuum in C, and the Virasoro scalar product [51]. The latter can be defined by constructing
the dual Hilbert space through the identification 〈φh| ≡ limz→∞ z

2h〈0|φh(z), where 〈0| is
the dual of the vacuum state. Furthermore, we denote by GhM1,M2

the matrix of scalar
products

GhM1,M2 = 〈φM1
h |φ

M2
h 〉. (3.4)

If not stated otherwise, in what follows we consider irreducible Verma module represen-
tations [2], i.e. there are not descendant states with vanishing norm, referred here as null
vectors. The role of null vectors will be analyzed in more detail in section 3.4. The fields that
enter the correlation functions are specified by gluing the holomorphic and anti-holomorphic
sectors of C and are tensor products of the form

φMh (z)φM̄
h̄

(z̄). (3.5)

In all applications, we will actually restrict ourselves to the case of diagonal seed CFTs,
i.e. theories that have a diagonal partition function on the torus [49]. In this case, in
eq. (3.5), only couplings between holomorphic and antiholomorphic fields with the same
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labels h = h̄ are possible. However, in this section we prefer to maintain the discussion
more general and include the possibility of non-diagonal couplings. In the tensor product
C⊗N , an holomorphic primary φh, labelled by a set h of conformal dimensions, is the tensor
product of holomorphic primary fields of the seed theory

φh(z) = φh1(z)⊗ · · · ⊗ φhN (z), (3.6)

and has conformal dimension |h|. If M ≡ {M1, . . . ,MN} stands for a collection of N
partitions of the positive integers |M1|, . . . , |MN |, then the descendants of φh will be
indicated by φMh (z),

φMh (z) = φM1
h1

(z)⊗ · · · ⊗ φMN
hN

(z). (3.7)

To complete the fields in eq. (3.7) to a basis for a representation of the tensor product of the
Virasoro algebra, we shall allow Mj to be the empty set, with the convention that φ∅hj ≡ φhj .
The corresponding scalar product matrix Gh

MN , of size ∏N
j=1 |Mj |2 ×

∏N
j=1 |Nj |2, is defined

from the scalar product in C as

Gh
MN = 〈φMh |φNh 〉 =

N∏
j=1

G
hj
Mj ,Nj

. (3.8)

The construction of the anti-holomorphic sector is, under the replacement z → z̄, the same
as the one presented above and the fields in C⊗N are then the tensor products φMh (z)φM̄

h̄
(z̄).

The expansion about z = 0 of G(N)
c,h (z) can be determined by inserting the resolution of the

identity in the representation h. By using the basis in eq. (3.7), i.e. including among the
elements of M and N also the empty set, it follows that

G(N)
c,h (z) = z|h|−2hσN

∑
M ,N

z|M | ρ̃hM [Gh
M ,N ]−1 ρhN , (3.9)

where ρhN and ρ̃hM are matrix elements between descendant fields. In terms of the orbifold
structure constants,

Ch,h̄ ≡ 〈φhφh̄|σN (1)|σ̃N 〉, C̃h,h̄ ≡ 〈φhφh̄|σ̃N (1)|σN 〉, (3.10)

one has
ρhM = 〈φ

M
h φh̄|σN (1)|σ̃N 〉

Ch,h̄
, ρ̃hM = 〈φ

M
h φh̄|σ̃N (1)|σN 〉

C̃h,h̄
. (3.11)

The matrix elements ρhM and ρ̃hM are entirely fixed by the holomorphic part of the
orbifold conformal algebra. Even if it is not manifest in their expressions in eq. (3.11), they
are complex rational functions of the dimensions hj and the central charge c. We will show
how to compute them in the next section. Due to the symmetry properties of the cyclic
twist and anti-twist fields, ρ̃hM is the complex conjugate of ρhM .

The structure constants in eq. (3.10), on the other hand, encode the way the holomorphic
and anti-holomorphic sector are glued to build the twist correlation function of the model
under consideration. Plugging eq. (3.9) into eq. (3.1), one concludes that

Dh,h̄ = Ch,h̄C̃h,h̄. (3.12)

– 6 –
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3.1 The computation of the orbifold three-point functions

The computation of the twist field four-point function boils down to determine the orbifold
three-point functions, see eq. (3.11),

ρhM Ch,h̄ = 〈φMh φh̄|σN (1)|σ̃N 〉. (3.13)

These quantities can be calculated by considering a N -to-one conformal map t 7→ z(t) with
branch points at zb = {0, 1} such that, near these points, it behaves as z − zb ∼ (t− tb)N .
That is, the t-surface must be a N -sheeted cover with genus zero, a Riemann sphere, of
the complex plane with a branch cut along z ∈ (0, 1). Moreover, the point z =∞, where
the holomorphic field φMh in eq. (3.13) is inserted, must be mapped to N different points
t∞ = {t1, . . . , tN} in the covering space. Let us denote by φ̂Mj

hj
(tj) the images of the field

φ
Mj

hj
(∞) under the covering map t 7→ z(t), that is

φ̂
Mj

hj
(tj) =

(
dz(t)
dt

)−hj ∣∣∣∣∣
t=tj

L−Mj (tj) φhj (tj), (3.14)

where L−Mj (tj) is the pullback of the Virasoro operator L−Mj (z =∞), see eq. (A.6). The
pullback is a linear combination of Virasoro generators acting at the point tj in the t-plane,
as we discuss in detail in appendix A. The holomorphic part of the three-point function of
the C⊗N/ZN orbifold in eq. (3.13) is then equal to the N -point function of the seed theory
C on a sphere

〈φMh (∞)σN (1)σ̃N (0)〉 = 〈φ̂M1
h1

(t1) · · · φ̂MN
hN

(tN )〉. (3.15)

3.2 Case N = 2: the torus

We now illustrate the method discussed in the previous section when N = 2. In this
case, the orbifold three-point function of eq. (3.13) can be calculated by considering the
two-to-one map

z(t) = (t+ 1)2

4t , (3.16)

which transforms t∞ = {0,∞} into z =∞ and has branch points of order two at zb = {0, 1}.
By applying eq. (3.14) and eq. (3.15), the three-point functions in eq. (3.13) reduce to scalar
products. In particular, one has, see also eq. (3.10),

Ch,h̄ = 〈φ̂h1 φ̂h̄1
|φ̂h2 φ̂h̄2

〉 = δh1,h2δh̄1,h̄2
2−4(h1+h̄1), (3.17)

while ρh1,h2 is the symmetric |M1| × |M1| matrix (descendant fields at different levels are
orthogonal)

ρh1,h2
M1,M2

= 〈L−M1φh1 |L−M2φh2〉δh1,h2 . (3.18)

The explicit expression of the pullback L−n under the map of eq. (3.16) is written in eq. (A.8)
of appendix A. The matrix ρh1,h2 in eq. (3.18) can be easily calculated by exploiting the
Virasoro algebra commutation relations. Moreover, in the case N = 2, the twist and
anti-twist fields are identified (σ2 = σ̃2) and, from eqs. (3.10) and (3.11), we conclude that
C̃h,h̄ = Ch,h̄ and ρ̃h1,h2

M1,M2
= ρh1,h2

M1,M2
.

– 7 –



J
H
E
P
1
0
(
2
0
2
1
)
1
7
5

ρ

G−1

ρ ρ

G−1

ρ

G−1

ρ ρ

G−1

G−1

Figure 1. On the left: matrix product representation of the genus one conformal block in eq. (3.19).
On the right: matrix product representation of the genus two conformal block in eq. (3.29).

Finally, by substituting eq. (3.18) in eq. (3.9), we arrive at a power series expansion of
the N = 2 orbifold conformal block

G(2)
c,{h1,h2}(z) = δh1,h2z

h1+h2− c8
∑

M1,M2

∑
N1,N2

z|M1|+|M2| ρh1,h2
M1,M2

2∏
j=1

[
G
hj
Mj ,Nj

]−1
ρh1,h2
N1,N2

. (3.19)

By recalling that the matrices Ghj and ρh1,h2 are symmetric, the coefficients of the combina-
torial expansion in eq. (3.19) can be organized as matrix products, presented in the diagram
of figure 1. This observation helps with the organization of the bookkeeping of the states.

Eq. (3.19) shows that the number of N = 2 orbifold conformal blocks is the same
as the number of conformal families of the seed theory C. This conclusion is of course
consistent with the well known construction of the CFT partition function on a flat torus
as a sesquilinear form of the irreducible Virasoro characters χc,h(τ(x)) [49, 50],

Z1(x) =
∑
h,h̄

nh,h̄ χc,h(τ(x))χc,h̄(τ̄(x)). (3.20)

We can relate the conformal block in eq. (3.19) and the Virasoro character by considering
theories with a diagonal partition function on the torus. In this case, the multiplicities in
eq. (3.20) are nh,h̄ = δh,h̄ and only couplings between holomorphic and anti-holomorphic
fields belonging to the same Virasoro algebra representation are allowed. Eq. (3.17) must
be now supplemented by the constraint h = h̄ and we then derive from eq. (3.12)

Dh,h̄ = δh1,h2 δh̄1,h̄2
δh,h̄ 2−16h1 . (3.21)

By substituting eq. (3.21) into eq. (3.1) and then comparing eq. (2.5) with eq. (3.20), one
eventually identifies [24]

G(2)
c,{h,h}(x) = 28h−c/3[x(1− x)]−c/24χc,h(τ(x)), (3.22)

which we will also use in section 3.4.
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3.3 Case N = 3: Z3-symmetric Riemann surfaces with genus two

For N = 3, the orbifold three-point function in eq. (3.13) can be computed by introducing,
for instance, the three-to-one map [28]

z(t) = (t+ ω)3

3ω(1− ω)t(t− 1) , ω = e
2πi

3 . (3.23)

This transformation has branch points of order three at zb = {0, 1} and maps the points
t∞ = {0, 1,∞} in the t-surface into z = ∞. The t-surface, which has again the topology
of a sphere, is then a triple covering of the complex plane with a cut along z ∈ (0, 1). By
recalling eq. (3.10) and applying eqs. (3.14) and (3.15) one has

Ch,h̄ = 〈φ̂h1 φ̂h̄1
|φ̂h2(1)φ̂h̄2

(1)|φ̂h3 φ̂h̄3
〉 = [3ω(1− ω)]−h1−h2−h3 [3ω2(1− ω2)]−h̄1−h̄2−h̄3Cseed

h,h̄
,

(3.24)
where the structure constants Cseed

h,h̄
are calculated in the seed CFT, namely

Cseed
h,h̄

= 〈φh1φh̄1
|φh2(1)φh̄2

(1)|φh3φh̄3
〉. (3.25)

Analogously from eq. (3.11), it follows

ρh1,h2,h3
M1,M2,M3

= 〈L−M1φh1 |L−M2(1)φh2(1)|L−M3φh3〉
〈φh1 |φh2(1)|φh3〉

. (3.26)

The pullback L−n(t∞) of the Virasoro descendant L−n(z =∞) under the conformal map in
eq. (3.23) are obtained, as in the case N = 2, by using eq. (A.6), see also eq. (A.10). The
elements of eq. (3.26) can be calculated by implementing in a computer algebra system the
Ward identities of appendix A. Finally, the structure constants C̃h,h̄ and matrix elements
ρ̃ h1,h2,h3
M1,M2,M3

, which follow by exchanging twist with anti-twist fields in eqs. (3.10) and (3.11),
are determined by considering the complex conjugate of the map of eq. (3.23). One finds

C̃h,h̄ = [3ω2(1− ω2)]−h1−h2−h3 [3ω(1− ω)]−h̄1−h̄2−h̄3Cseed
h,h̄

, (3.27)

and
ρ̃ h1,h2,h3
M1,M2,M3

= [ρh1,h2,h3
M1,M2,M3

]∗. (3.28)

The resulting expressions for the tensor ρh1,h2,h3
M1,M2,M3

in eq. (3.26) can be then eventually
plugged into eq. (3.9) to get the expansion

G(3)
c,{h1,h2,h3}(z) = z

∑3
j=1 hj−

2c
9

∑
{Mj},{Nj}

z

3∑
j=1
|Mj |

ρh1,h2,h3
M1,M2,M3

3∏
j=1

[
G
hj
Mj ,Nj

]−1 [
ρh1,h2,h3
N1,N2,N3

]∗
,

(3.29)
which is also illustrated pictorially in figure 1. The conformal block G(3)

c,{h1,h2,h3} in eq. (3.29)
is manifestly symmetric under permutations of h1, h2 and h3, consistently with the Z3 (in
fact S3) symmetry of the orbifold CFT. From eq. (3.24), it follows that the N = 3 orbifold
conformal blocks are in one-to-one correspondence [27, 28] with the non-zero structure
constants of C. Indeed, if we insert eqs. (3.24) and (3.27) into eq. (3.12), we conclude that,
see also eq. (3.1),

Dh,h̄ = 27−|h|−|h̄|(Cseed
h,h̄

)2. (3.30)
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3.4 Minimal model orbifold conformal blocks

We consider now a seed theory which is built upon irreducible representations of the Virasoro
algebra, labelled by c and h, constructed by removing all the null vectors [2]. A prominent
example of such CFTs are the minimal models [1] which have central charge

c = cp,q = 1− 6(p− q)2

pq
, (3.31)

being p and q positive coprime integers. The minimal models are rational theories, that is
they contain a finite number of primaries φhp,qr,s with conformal dimensions

hp,qr,s = (pr − qs)2 − (p− q)2

4pq , 1 ≤ r ≤ q − 1, 1 ≤ s ≤ p− 1, (3.32)

whose OPE algebra closes. We will denote by hdeg ≡ {hp,qrj ,sj}
N
j=1 a set of N conformal

dimension as in eq. (3.32), the orbifold conformal block for a minimal model is then the
function G(N)

cp,q ,hdeg
(z).

Due to the chain of resonances hp,qr,s = hp,qq−r,p−s = hp,qq+r,p+s = · · · , the Verma module
labelled by cp,q and hp,qr,s has an infinite series of null vectors at the levels rs, (q − r)(p −
s), (q + r)(p+ s), . . . . As already emphasized, these states are absent from the spectrum of
C. Consequently, when calculating the combinatorial expansion in eq. (3.9) in a minimal
model, one has to choose a basis of descendants for each representation hp,qrj ,sj which is free
of null vectors. Even if there are closed expressions for the null vectors, the construction of
such a basis becomes cumbersome at higher levels, due to the resonances mentioned above.
We refer to [52] where this particular issue is discussed in more detail. Here we will follow
an alternative path, inspired by the AGT approach to the minimal models [53–55], see
also [56].

The analytic properties of G(N)
c,hdeg

(z) for N = 2 and N = 3 as a function of c can be
understood by examining eqs. (3.19) and (3.29) respectively. If there is a null vector at a
certain level in the Verma module with conformal dimension hp,qrj ,sj , the matrix elements of[
G
hp,qrj ,sj

]−1
have a simple pole. More precisely, they are order O((c− cp,q)−1) since the null

vector is orthogonal to all the states belonging to that level. At the same time, each factor
of ρ produces a single zero, namely is order O(c− cp,q). Indeed, for N = 2, the elements
of ρ, see eq. (3.18), are scalar products and therefore vanish when evaluated with a null
vector. For N = 3, the vanishing of the tensor ρhr1,s1 ,hr2,s2 ,hr3,s3 is instead a consequence
of the fusion rules of the minimal model, see eq. (3.26). For eliminating the null vector
contribution from eqs. (3.19) and (3.29), it is enough, if h 6= 0 where 0 ≡ {0, . . . , 0}, to
regularize the central charge differently in the ρ and G factors. In particular, we take

ρhdeg(c)→ ρhdeg(cp,q + ε2), G
hp,qrj ,sj (c)→ G

hp,qrj ,sj (cp,q + ε), (3.33)

with ε > 0, in such a way that the null vectors contributions in eq. (3.9) are now zero in
the limit ε → 0. By recalling eq. (3.22), it is possible to check that at N = 2, the power
series about z = 0 of the regularized conformal block reproduces the analogous expansion
of the character χcp,q ,hp,qr,s (τ(z)) in the minimal model [51].
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The case h = 0 is slightly different since the Verma module of the identity contains a
null vector already at level one for any value of the central charge. Hence, we can follow a
similar strategy but modifying the dependence of the matrices Gh and ρh on the conformal
dimensions rather than the central charge. We replace then

ρh=0(c)→ ρh={δ2,...,δ2}(c), Gh=0(c)→ Gh=δ(c), (3.34)

with δ > 0 in eq. (3.9). The limit δ → 0 defines the regularized conformal block G(N)
c,0 (z)

for N = 2, 3. In particular, it provides, for N = 2 upon using eq. (3.22), the character
of the irreducible representation of the identity. When N = 3, note that, if the identity
representation is present in only one of the replicas, for instance h1 = 0, then, according to
eq. (3.24), we shall have the same conformal family in the other two replicas, i.e. h2 = h3.
In order to find the correct conformal block, in this case, one must identify first h2 = h3,
while keeping h1 6= 0, and then perform the limit h1 → 0.

Let us see how the regularization procedure in eqs. (3.33), (3.34) works in a particular
example: the Ising CFT, which corresponds to p = 4 and q = 3, namely c4,3 = 1/2 in
eq. (3.31). For instance, for h1,2 = 1/16, the first few terms of the regularized expansion of
eq. (3.19) about z = 0 are

G(2)
1
2 ,{

1
16 ,

1
16}

(z) = z1/16
[
1 + z

16 + 17z2

512 + 187z3

8192 + 9163z4

524288 +O(z5)
]
. (3.35)

The coefficient of the O(z4) term would be different if the regularization scheme in eq. (3.33)
was not implemented. Indeed the Verma module with conformal dimension h = 1/16 at
c = 1/2 possesses a null vector at level two. If this vector appeared on both replicas of the
seed theory, i.e. in the sector |M1| = |M2| = 2 of eq. (3.19), it would modify the coefficient
of the O(z4) term in the conformal block. After implementing the regularization scheme in
eq. (3.33), its contribution is instead of order O(ε2) and drops in the limit ε→ 0.

As a second example, we analyze the regularized N = 3 orbifold conformal block for
c = 1/2, h1 = h2 = 1/16 and h3 = 0; the result of the expansion in eq. (3.29) is

G(3)
1
2 ,{

1
16 ,

1
16 ,0}

(z) = z1/72
[
1 + 7

108z
+ 1595

46656z
2 + 118405

5038848z
3 + 26160455

1451188224z
4 +O(z5)

]
.

(3.36)
Again, when the null vector at level two in the Verma module with c = 1/2 and h = 1/16
pops up in the sum of eq. (3.29) simultaneously in two replicas, it alters the coefficient
of the O(z4) term. This spurious contribution is again of order O(ε2) once we apply the
regularization of eq. (3.33), and it is therefore removed in the limit ε→ 0.

4 Orbifold conformal blocks in terms of sphere conformal blocks

Eq. (3.9) provides a small |z| expansion of the orbifold conformal block of the type

G(N)
c,h (z) = z|h|−2hσN

∞∑
j=0

aj z
j . (4.1)
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However, the computation of the coefficients aj quickly becomes impossible to accomplish
and one has to approximate G(N)

c,h (z) by truncating the previous series at some value L,

G(N)
c,h (z) ∼ z|h|−2hσN

L∑
j=0

aj z
j . (4.2)

In the case N = 3, for instance, we are able to reach L = 6.
A crucial point here is that the convergence of the series in eq. (3.9) is slow close to

|z| = 1. This, in turn, implies that, if the conformal block G(N)
c,h (z) is approximated by the

truncated sum of eq. (4.2), one misses the global properties of the twist field four-point
function and, in particular, the crossing symmetry of eq. (2.6). In [28], this problem was
tackled for N = 3 by using a transformation from the z-plane to the pillow frame introduced
in [57]. Ref. [28] derived then a series expansion in terms of the elliptic nome q(z) = eiπτ(z),
with τ(z) defined in eq. (2.4), of the form

G(N)
c,h (z) ∼ Λ(q(z))

L∑
l=0

Al q(z)l. (4.3)

The explicit expressions of the function Λ(q) and of the coefficient Al are given in section 5.2,
see eq. (5.20). This expansion drastically improves the convergence properties of the twist
field correlation function near |z| = 1.

In this section, we will reobtain the expansion in eq. (4.3) from a different perspective
and show how it could be further improved. As we discuss in detail in appendix B, the
orbifold algebra admits as a sub-algebra a Virasoro algebra with central charge Nc [58],
generated by the symmetric stress energy tensor in eq. (B.1). Then it is natural to expand
the orbifold conformal blocks G(N)

c,h (z) as a linear combination of Virasoro sphere conformal
blocks with central charge Nc. More specifically,

G(N)
c,h (z) =

∞∑
l=0

αhl FNc,|h|+l(z), (4.4)

where we have denoted by FNc,h(z) the Virasoro sphere conformal blocks with the four
external dimensions fixed to hσN and with internal channel of dimension h. The conformal
block FNc,|h|+l(z) resums the contribution of the conformal family generated by a field
with conformal dimension |h|+ l, primary with respect to the orbifold Virasoro sub-algebra
of eq. (B.4). The coefficients αhl can be thought as Clebsch-Gordan coefficients for a
decomposition of a N -fold tensor product of Virasoro algebra representations into a direct
sum of irreducible representations with central charge Nc. A more detailed discussion
concerning the meaning of eq. (4.4) as well as the algebraic nature of the coefficients αhl
can be found in section 4.1.

Now observe that, if we truncate eq. (4.4)

G(N)
c,h (z) ∼

L∑
l=0

αhl FNc,|h|+l(z), (4.5)
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then the coefficients αhl can be easily derived by expanding FNc,|h|+l(z) in power series and
identifying order by order the sums of eqs. (4.2) and (4.5). Eq. (4.5) is already a better
approximation than eq. (4.2), as each FNc,|h|+l(z) can be computed until orders much larger
than z|h|−2hσN+L. In other words, this means that we can take into account the contribution
of certain very low descendants of the orbifold algebra that were previously unaccessible.

The second step is to express the FNc,h(z) as an expansion in terms of the elliptic nome
q(z) by using the elliptic Zamolodchikov recursion relation [34],

FNc,h(z) = f(h,Nc, z) H(h,Nc, q(z)), (4.6)

where

f(h,Nc, z) = [16q(z)]h−
Nc−1

24 [z(1− z)]
Nc−1

24 −2hσN ϑ3(q(z))
Nc−1

2 −16hσN , (4.7)

H(h,Nc, q) = 1 +
∞∑
j=1

aj(h,Nc) q2j . (4.8)

The coefficients aj(h,Nc) can be computed recursively to very large values of j, see ref. [34].
Finally, if the elliptic recursion is truncated at level L′ > L and then combined with

eq. (4.5), we get the following approximation for G(N)
c,h (z),

G(N)
c,h (z) ∼ Λ(q)

 L∑
l=0

Al q(z)l +
L+L′∑
l=L+1

A′l q(z)l
 , (4.9)

that provides sub-leading corrections to eq. (4.3). We distinguish between coefficients Al and
A′l because the former take into account the contribution from all the states at level l < L.
The ql terms with l > L come from the contribution of the descendants of the primaries at
the levels l < L in the orbifold sub-algebra. Therefore, although both eqs. (4.3) and (4.9)
approximate the conformal block G(N)

c,h (z) with an error o(q(z)L), eq. (4.9) gives a better
approximation than eq. (4.3).

4.1 Orbifold conformal algebra and the coefficients αh
l

To illustrate the main idea behind eq. (4.4), it is sufficient to consider the first level
contribution to G(N)

c,h (z) for the case N = 3. If we explicitly calculate the first order term in
the expansion of eq. (3.29), we have that

G(3)
c,h(z) = z|h|−2hσN

[
1+
(
|h|
2 + 1

54

(
(h1−h2)2

h3
+ (h1−h3)2

h2
+ (h2−h3)2

h1

))
z+O(z2)

]
,

(4.10)

where we recall that here h = {h1, h2, h3} and |h| = h1 + h2 + h3. The conformal block
G(3)
c,h(z) is associated with the field φh = φh1 ⊗ φh2 ⊗ φh3 and its descendants. In particular,

the coefficient of the z|h|−2hσN+1 term comes from the contribution of three descendants,

|v1〉 = L−1φh1⊗φh2⊗φh3 , |v2〉 = φh1⊗L−1φh2⊗φh3 , |v3〉 = φh1⊗φh2⊗L−1φh3 . (4.11)
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The symmetric linear combination of the three states above corresponds to the descen-
dant of the orbifold Virasoro sub-algebra of eq. (B.4)

L−1φh = |v1〉+ |v2〉+ |v3〉. (4.12)

This descendant contributes with the term with coefficient |h|/2 to the expansion of eq. (4.9).
This contribution is taken into account by the first Virasoro sphere conformal block in the
expansion of eq. (4.4), that is

F3c,|h|(z) = z|h|−2hσN
[
1 + |h|2 z +O(z2)

]
. (4.13)

Let us consider now the orthogonal complement to the span of the vector L−1φh in
eq. (B.4). This is a two dimensional real vector space that contains the states

|Ψ〉 = µ|v1〉+ λ|v2〉 −
µh1 + λh2

h3
|v3〉, (4.14)

for λ, µ ∈ R. One can check that any vector in the orthogonal complement is a primary
of the 3c Virasoro sub-algebra of eq. (B.4), i.e. Ln|Ψ〉 = 0 for all n > 0 and L0|Ψ〉 =
(h1 + h2 + h3 + 1)|Ψ〉. The contribution of these states and their symmetric descendants
L−M |Ψ〉 to the conformal block G(3)

c,h(z) is given by

αh1 F3c,|h|+1(z), (4.15)

where

αh1 = 1
54

[
(h1 − h2)2

h3
+ (h1 − h3)2

h2
+ (h2 − h3)2

h1

]
. (4.16)

The coefficient αh1 can be determined by choosing an orthogonal basis {|Ψ1〉, |Ψ2〉} for the
subspace in eq. (4.14). Then one can find the result in eq. (4.16) from the expression

αh1 = 1
Dh,h̄

[〈Ψ1φh̄|σ3(1)|σ̃3〉 〈Ψ1φh̄|σ̃3(1)|σ3〉
〈Ψ1|Ψ1〉

+ 〈Ψ2φh̄|σ3(1)|σ̃3〉 〈Ψ2φh̄|σ̃3(1)|σ3〉
〈Ψ2|Ψ2〉

]
(4.17)

where Dh,h̄ is related to the structure constant as in eq. (3.12). As we already pointed out
for the matrix elements ρ and ρ̃, defined in eq. (3.11), the coefficients αh1 are algebraic in
nature, despite the holomorphic and anti-holomorphic fields appear in the equation above.
This can be seen from the fact that they are rational functions of the central charge c and
of the holomorphic dimensions hj .

The states L−Mφh and L−M |Ψ1,2〉 do not span the full space of descendants of φh for
levels larger than one. This is the reason why other Virasoro conformal blocks appear and
one finally gets the expansion of eq. (4.4). In fact, the previous analysis may be extended to
higher levels and generalized to any number of copies N . If we denote by p(l) the number
of partitions of the integer l, then there are p(l) symmetric descendants L−Mφh at level l.
However, for an arbitrary number of replicas N and assuming that there are no null vectors,
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it is easy to check that at level l the total number NN,l of linearly independent descendants
of φh is

NN,l =
∑

Y,|Y |=l
|jY |≤N

N !
(N − |jY |)!

∏|iY |
i=1 dY (i)!

|jY |∏
j=1

p(iY (j)), (4.18)

where Y denotes a partition of l. If we consider the Young tableau associated to Y , then
|iY | and |jY | denote its number of columns and rows respectively, iY (j) is the number of
columns in the row j and dY (i) is the number of rows with i columns.

Therefore, at level l, we shall find a set ofMN,l fields |Ψj〉, j = 1, . . . ,MN,l, orthogonal
to all the p(l) symmetric descendants at level l and such that L0|Ψj〉 = (|h| + l)|Ψj〉
Ln|Ψj〉 = 0 for all n > 0. If there are no null vectors, the numbersMN,l are defined by the
recursion relation

MN,l = NN,l −
l−1∑
m=0
MN,mp(l −m). (4.19)

The contribution of these new primaries fields, which all have conformal dimension |h|+ l,
and their descendants L−M |Ψj〉 is included into the sphere conformal block FNc,|h|+l(z) in
the expansion of the orbifold conformal block, see eq. (4.4). The corresponding structure
constant αhl is given by

αhl = 1
Dh,h̄

MN,l∑
j=1

〈Ψjφh̄|σN (1)|σ̃N 〉 〈Ψjφh̄|σ̃N (1)|σN 〉
〈Ψj |Ψj〉

, (4.20)

and can be checked explicitly. The primary fields at different levels, as well as their
descendants, are orthogonal since they belong to different representations of the Virasoro
sub-algebra of eq. (B.4).

5 Applications

We now pass to discuss applications of the formalism developed in section 3 and section 4.
In section 5.1, we will focus on the determination of the Rényi entropies and the third
power of the partial transpose of the reduced density matrix for two disjoint intervals in a
minimal CFT. We further discuss how the expansion in eq. (4.9) can be used to improve
the bounds on the CFT structure constants analyzed in [28], see section 5.2 and section 5.3.

5.1 Entanglement of two disjoint intervals: Rényi entropies and the partially
transposed density matrix

Consider a critical one-dimensional quantum model in the ground state. Let us suppose
that the system is divided into two spatial regions A and B. The entanglement between
these two subsystems can be characterized by the moments Tr ρNA of the reduced density
matrix ρA, defined in eq. (C.1) of appendix C. We will further assume that the subsystem
A consists of two disjoint regions A1 and A2, i.e. A = A1 ∪ A2. Then one can also study
the entanglement between A1 and A2, which can be quantified by the moments Tr(ρT2

A )N
of the partial transpose of ρA, which we will denote by ρT2

A and defined in eq. (C.5).
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Now we suppose that the universal properties of the quantum model at the critical
point are determined by the CFT C. Without loss of generality, we can take as regions
A1 and A2 the intervals A1 = (0, x) and A2 = (1,∞), with 0 < x < 1. Then the moments
Tr ρNA and Tr(ρT2

A )N are equal to [15, 16]

Tr ρNA = KN 〈σN (∞)σ̃N (1)σN (x)σ̃N (0)〉, (5.1)

and [18, 19]
Tr(ρT2

A )N = KN 〈σ̃N (∞)σN (1)σN (x)σ̃N (0)〉, (5.2)

where KN is a non-universal constant. Note that the partial transposition crucially ex-
changes the twist and anti-twist operators at the points z = 1 and ∞. The crossing
transformation z 7→ 1 − z maps subsystem A = (0, x) ∪ (1,∞) into its complement
B = (−∞, 0)∪ (1−x, 1). Thus the crossing invariance of the four-point correlation function
〈σN (∞)σ̃N (1)σN (x)σ̃N (0)〉 implies that Tr ρNA = Tr ρNB and, therefore, the well-known prop-
erty that for a pure state the entanglement entropies of a subsystem and its complementary
are equal. This conclusion is no longer true in general for the moments Tr(ρT2

A )N and, in
fact, the four-point function 〈σ̃N (∞)σN (1)σN (x)σ̃N (0)〉 is not crossing invariant. The case
N = 2 is peculiar, since the twist and anti-twist fields are identified, σ2 = σ̃2, and therefore
Tr ρ2

A = Tr(ρT2
A )2.

The correlation functions of eqs. (5.1) and (5.2) are related by the conformal transfor-
mation

y(z) = z

z − 1 , (5.3)

which maps the points (0, x, 1,∞) into (0, x/(x− 1),∞, 1). We can rewrite then

〈σ̃N (∞)σN (1)σN (x)σ̃N (0)〉 = (1− x)−4hσN 〈σN (∞)σ̃N (1)σN (x/(x− 1))σ̃N (0)〉, (5.4)

and therefore eq. (5.2) can be recast in the form

Tr(ρT2
A )N = KN (1− x)−4hσN 〈σN (∞)σ̃N (1)σN (x/(x− 1))σ̃N (0)〉. (5.5)

Thus, while for determining Tr ρNA it is enough to calculate the twist field four-point
correlator in the interval 0 < x < 1, the computation of Tr(ρT2

A )N requires to extend this
function to the domain x/(x− 1) < 0. The moments of the reduced density matrix can be
calculated directly from eqs. (3.1) and (4.4), and we have

Tr ρNA = KN

∑
h,h̄

∑
l,l′

D̃l,l′

h,h̄
FNc,|h|+l(x)FNc,|h̄|+l′(x) (5.6)

with D̃l,l′

h,h̄
= Dh,h̄α

h
l α

h̄
l′ . As previously emphasized, in order to obtain an analogous

expansion for the moments of the partially transposed density matrix one must determine
the analytic continuation of the twist field four-point function along the negative real axis.
Such analytic continuation can be straightforwardly calculated from the expression of the
orbifold conformal blocks in terms of the elliptic nome q(x) = eiπτ(x), see eq. (4.9). Indeed,
one can easily prove that

τ

(
x

x− 1

)
= τ(x) + 1, and q

(
x

x− 1

)
= eiπq(x). (5.7)
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In other words, Tr(ρT2
A )N can be again computed from eqs. (3.1) and (4.4) but evaluating

now the Virasoro conformal blocks at eiπq(x),

Tr(ρT2
A )N = KN (1− x)−4hσN

∑
h,h̄

∑
l,l′

D̃l,l′

h,h̄
FNc,|h|+l(eiπq)FNc,|h̄|+l′(e

−iπq). (5.8)

Note that, for convenience, in eq. (5.8) and some more equations below, we have traded x for
the elliptic nome q in the argument of FNc,h. Observe that, for N = 2, eq. (5.7) corresponds
to perform the modular transformation τ(x) 7→ τ(x) + 1 on the modulus of the torus Σ1(x).
Then Z1(x) and Z1(x/(x − 1)) are the partition functions of C on a flat torus of moduli
τ(x) and τ(x) + 1 respectively. Taking into account eqs. (5.1) and (5.5), the invariance of
the partition function on the torus under modular transformations, Z1(x) = Z1(x/(x− 1)),
implies the identity Tr ρ2

A = Tr(ρT2
A )2 anticipated earlier.

We can recast eq. (5.8) in a simpler and instructive form. By recalling the Zamolodchikov
recursion for the sphere conformal blocks and applying the identities of the elliptic functions

ϑ2(e±iπq) = e±iπ/4ϑ2(q), ϑ3(e±iπq) = ϑ4(q), ϑ4(e±iπq) = ϑ3(q), (5.9)

and
x =

(
ϑ2(q)
ϑ3(q)

)4
, 1− x =

(
ϑ4(q)
ϑ3(q)

)4
, (5.10)

one can show that

FNc,h(e±iπq) = e±iπ(h−2hσN )(1− x)2hσNFNc,h(q). (5.11)

By plugging the last equality into eq. (5.8), the conformal block expansion of the moments
Tr(ρT2

A )N can be eventually rewritten as

Tr(ρT2
A )N = KN

∑
h,h̄

∑
l,l′

eiπ(|h|−|h̄|+l−l′)D̃l,l′

h,h̄
FNc,|h|+l(x)FNc,|h̄|+l′(x). (5.12)

By comparing eq. (5.12) above with eq. (5.6), we conclude that the moments Tr(ρT2
A )N

admit the same Virasoro conformal block decomposition as Tr ρNA , but with the structure
constants multiplied by a spin dependent phase. We can then state the main result of this
section as

TrρNA−Tr(ρT2
A )N = sum over the channels with conformal spin |h|−|h̄|+l−l′ 6= 2k, k ∈Z.

(5.13)
Note that, in the case N = 2, due to the identity Tr ρ2

A = Tr(ρT2
A )2, the channels indicated

above cannot appear in the conformal block decompositions of Tr ρ2
A and Tr(ρT2

A )2.
To the best of our knowledge, for c ≤ 1, analytic expressions of Tr ρNA and Tr(ρT2

A )N
have only been calculated for free theories; namely the compactified massless boson, the
massless Dirac and Majorana fermions [15, 16, 18, 19, 35, 59–61]. The latter corresponds
to the Ising CFT, which is a minimal model with c = 1/2, and we shall focus on it first.
For comparing with the previous literature, let us rewrite the moments Tr ρNA and Tr(ρT2

A )N
in the form [15]

Tr ρNA = KNx
−4hσN (1− x)−4hσNRN (x) (5.14)
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Figure 2. Analysis of the moments Tr ρN
A and Tr(ρT2

A )N for N = 3 in the free Majorana fermion
(Ising CFT). In the left panel, we consider the function R3(x) defined in eq. (5.14). The dots
correspond to the exact values calculated using eq. (E.7). The continuous line has been obtained
by approximating, in eq. (5.14), Tr ρ3

A with its expansion in sphere conformal blocks, see eq. (5.6)
and appendix E, truncated at level L = 6. The dashed curve has been determined instead by
decomposing Tr ρ3

A in terms of N = 3 orbifold conformal blocks, see eqs. (5.1) and (E.1), and
approximating these functions with their power series about x = 0 in eq. (3.29) up to L = 6. In
the right panel, we study the ratio Tr(ρT2

A )3/Tr ρ3
A. The dots are the exact values computed from

eqs. (5.14) and (5.15) by substituting eq. (E.7) for the function R3. The continuous line is the result
if we approximate Tr ρ3

A and Tr(ρT2
A )3 with their expansions in terms of sphere conformal blocks up

to level L = 6. In all the cases, the sphere conformal blocks have been calculated using the elliptic
recursion of eq. (4.6), truncated at level L′ = 8.

and [19]

Tr(ρT2
A )N = KNx

−4hσN (1− x)4hσNRN
(

x

x− 1

)
. (5.15)

In refs. [16, 35], an exact expression for the function RN (z), z ∈ C, was found in the Ising
CFT, which is also reported in eq. (E.7) of appendix E. We have checked that, for N = 2, 3,
eq. (E.7) is exactly reproduced in the intervals 0 < x < 1 and x/(x−1) < 0 by the conformal
block expansions of eqs. (5.6) and (5.12) respectively. In appendix E, we report the explicit
conformal block decomposition, with the values of the structure constants, of the twist field
four-point function in the Ising CFT for N = 3 up to fifth order.

In figure 2 left, we plot the function RIsing
3 (x), see eq. (5.14). The continuous line has

been drawn by employing the regularized conformal block expansion of eq. (5.6) for Tr ρ3
A

and the dots are the exact values given by eq. (E.7). The agreement between both results
is excellent. Note that, due to the crossing symmetry of the twist field four-point function
and, therefore, of Tr ρNA , RN (x) must satisfy in general that RN (x) = RN (1− x). On the
other hand, if we decompose Tr ρ3

A in N = 3 orbifold conformal blocks and we expand
them using the small x representation given in eq. (3.29), then the result is the dashed
curve, which clearly does not display this symmetry for x close to one. In figure 2 right,
we plot the quotient Tr(ρT2

A )3/Tr ρ3
A. The solid curve has been obtained by calculating the

conformal block expansions of eq. (5.6) and (5.12) for Tr ρ3
A and Tr(ρT2

A )3 while the dots
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Figure 3. Analysis of the moments Tr ρN
A and Tr(ρT2

A )N for N = 3 in the Tricritical Ising CFT.
In the left panel, we plot the function R3(x), introduced in eq. (5.14), by replacing Tr ρ3

A with
its expansion in sphere conformal blocks, eq. (5.6), which we truncate at level L = 6. On the
other hand, the dashed line has been computed by decomposing Tr ρ3

A in N = 3 orbifold conformal
blocks and substituting their small x representation in eq. (3.29). In the inset of left panel, we
check the crossing symmetry of the continuous blue line. In the right panel, we study the ratio
Tr(ρT2

A )3/Tr ρ3
A. The curve has been obtained by applying the sphere conformal block expansions

for Tr ρ3
A and Tr(ρT2

A )3 of eqs. (5.6) and (5.12), up to level L = 6. As a comparison, we also plot the
result presented in figure 2 for the Ising CFT. The sphere conformal blocks have been computed
until level L′ = 8 using the elliptic recursion of eq. (4.6).

represents the ratio of eqs. (5.14) and (5.15), computed by applying eq. (E.7). Again the
conformal block expansion matches with the previously known results.

In refs. [31, 32], the function R3(x) for the Ising CFT was already studied by expanding
the twist field four-point function in sphere conformal blocks and employing the Zamolod-
chikov elliptic recursion to speed up its convergence rate. However, in our formalism, the
mentioned works only took into account in eq. (5.6) contributions from the Virasoro sub-
algebra primaries at the level l = 0. As explained in section 4, the inclusion of the orbifold
descendants in eq. (3.29) permits to keep track instead of all the Virasoro sub-algebra
primaries up to level l = 6 in eq. (4.5). By reaching higher levels in the conformal block
expansion, one obviously gets a much better cross-symmetric approximation for the twist
field correlator, cf. figure 2 of ref. [32]. Moreover, a complete understanding of the confor-
mal block expansion of the twist field four-point function allowed us to characterize field
theoretically, see eq. (5.12), the difference between the two partial traces Tr(ρT2

A )3 and Tr ρ3
A.

Finally, as a further application, in figure 3, we plot the results for the moments Tr ρ3
A

and Tr(ρT2
A )3 in the Tricritical Ising CFT with c = 7/10 (see [62]). The Tricritical Ising CFT

appears at the quantum critical point of a device for quantum computation known as the
golden chain [63]. It is an interacting CFT for which, especially concerning entanglement of
disjoint intervals, there are no previous results available in the literature. In figure 3 left, we
plot the function R3(x) for this theory, extracted from the corresponding conformal block
decomposition of Tr ρ3

A. In appendix F, one can find the explicit conformal block expansion,
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as well as the values of the structure constants, of the twist field four-point function for
the Tricritical Ising CFT when N = 3 up to fifth order. In the inset, we check the crossing
invariance of RTric.

3 (x) using the sphere conformal block expansion. We observe that the
function is symmetric under x 7→ 1− x for almost all x ∈ (0, 1). In the same plot, we also
included the curve (the dashed line) that one determines by decomposing Tr ρ3

A in N = 3
orbifold conformal blocks and employing the small x representation of eq. (3.29). As it is
clear from the plot, the result fails to be cross-symmetric. In figure 3 right, we plot the
ratio of moments Tr(ρT2

A )3/Tr ρ3
A determined from the conformal block decomposition of

eqs. (5.6) and (5.12). Here we also compare with the results found for the Ising CFT, the
green line.

5.2 Constraints on the CFT structure constants

In ref. [28], the crossing symmetry of the twist field four-point function for the case N = 3
was employed to extract some non-trivial constraints on the structure constants of the seed
theory C. For this purpose, the authors mapped the orbifold conformal block G(3)

c,h(z) from
the z-plane to the 3-fold pillow frame, which makes apparent some positivity properties of
the block for unitary theories. As we already mentioned in section 4, this transformation
produces a series for the orbifold conformal block in terms of the elliptic nome q(z) of
the form of eq. (4.3). In this section, we will see how to rederive such constraints on the
structure constants from the expansion of the orbifold conformal blocks in terms of the ones
on the sphere, studied in section 4. This expansion results in a power series in q(z) of the
form of eq. (4.9) Therefore, as we will see, it provides slightly tighter constraints on the
structure constants than the expansion used in ref. [28].

First, as in ref. [28], we must recast the Zamolodchikov recursion relation, eq. (4.6),
for the Virasoro conformal blocks FNc,h(z) in order to make manifest certain positivity
properties that we will need later. In ref. [57], the conformal block FNc,h(z), which is
defined on the sphere, is mapped to the pillow (the quotient of a flat torus by Z2, which is
topologically equivalent to a sphere with four conical singularities). The important result
for us is that the transformed blocks F̃Nc,h(z) read

F̃Nc,h(q) = ϑ3(q)16hσN−
Nc
2 [z(1− z)]2hσN−

Nc
24 FNc,h(z). (5.16)

If F̃Nc,h(z) is interpreted as a sum over the states on the pillow, then it admits the expansion

F̃Nc,h(q) = qh−
Nc
24

∞∑
n=0

ãn(h,Nc)qn, (5.17)

where the coefficients ãn(h,Nc) are sums of scalar products between the descendant states
at level n. Consequently, they are non-negative, ãn(h,Nc) ≥ 0, for unitary theories. On the
other hand, if the elliptic recursion of eq. (4.6) is applied in eq. (5.16), one concludes that

F̃Nc,h(q) = (16q)h−
Nc
24

∞∏
k=1

(
1− q2k

)− 1
2 H(h,Nc, q). (5.18)

This identity implies that the coefficients ãn(h,Nc) are strictly related to the coefficients
aj(h,Nc), which in general are not positive definite, of the expansion of H(h,Nc, q), see
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eq. (4.8). In conclusion, we can rewrite the Virasoro conformal blocks in terms of the
(positive definite) coefficients ãn(h,Nc),

FNc,h(z) = qh−
Nc
24 [z(1− z)]

Nc
24 −2hσN ϑ3(q)

Nc
2 −16hσN

∞∑
n=0

ãn(h,Nc)qn. (5.19)

If we now truncate at order L′ > L the power series of eq. (5.19) and insert it into the
truncated expansion of Gc,h(z) in terms of FNc,|h|+l(z) of eq. (4.5), we get the following
approximation for the orbifold conformal blocks, cf. eqs. (4.3) and (4.9),

G(N)
c,h (z) ∼ q|h|−

Nc
24 [z(1− z)]

Nc
24 −2hσN ϑ3(q)

Nc
2 −16hσN

 L∑
l=0

Alq
l +

L+L′∑
l=L+1

A′lq
l

 . (5.20)

The coefficients Al and A′l are sums of terms of the form αhmãn(|h|+m,Nc), as one can
easily conclude from the combination of eqs. (4.5) and (5.19). The structure constants αhm
are, by their definition in eq. (4.20), non-negative in unitary theories. This implies that both
Al and A′l are also non-negative for any l. If we only consider the term with coefficients Al,
the approximation of eq. (5.20) reduces to the one used in ref. [28] for the case N = 3. As
we already remarked in section 4, the expansion in Virasoro conformal blocks of eq. (4.5),
together with the elliptic recursion of eq. (4.6), allows to further incorporate the contribution
of some of the descendant states at higher levels, the term with coefficients A′l in eq. (5.20),
improving the approximation of ref. [28].

We can now apply the result of eq. (5.20) to derive some constraints on the structure
constants of the seed theory C. Using the decomposition of eq. (3.1) of the twist field
correlation function in terms of orbifold conformal blocks, we can rewrite the crossing
symmetry condition of eq. (2.6) in the form∑

h,h̄

Dh,h̄

[
G(N)
c,h (z)G(N)

c,h̄
(z̄)− G(N)

c,h (1− z)G(N)
c,h̄

(1− z̄)
]

= 0. (5.21)

In the rest of this section, we will restrict to the case N = 3, for which the coefficients Dh,h̄
are, according to eq. (3.30), proportional to the square of the structure constants Cseed

h,h̄

of the seed theory C. If, as in the usual numerical bootstrap approach [64, 65], we act on
eq. (5.21) with a linear functional

γ(f) =
∑
n,m

γn,m∂
n
z ∂

m
z̄ f(z, z̄)

∣∣∣
z=z̄= 1

2

, (5.22)

where γn,m are real coefficients and f(z, z̄) an arbitrary function, then we can derive a set
of linear equations for (Cseed

h,h̄
)2. To compare with the results of ref. [28], let us take the

linear functional that only contains the first derivative, γ ≡ ∂z|z=z̄= 1
2
. If we apply it to

eq. (5.21) for N = 3, we find the condition
∑
h,h̄

27−|h|−|h̄|(Cseed
h,h̄

)2 G(3)
h̄

(1/2) ∂zG(3)
h (z)

∣∣∣
z= 1

2

= 0. (5.23)
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For unitary theories, (Cseed
h,h̄

)2 are positive and, in order eq. (5.23) to be satisfied, the factor
G(3)
h̄

(z)∂zG(3)
h (z)

∣∣
z=1/2 must be negative on a domain D of the space of triplets of conformal

dimensions {(h1, h2, h3) ∈ R3 | h1, h2, h3 ≥ 0}, and non-negative otherwise. The points
(h1, h2, h3) where this factor vanishes are the boundary of the domain D and typically form
a compact surface. Thus eq. (5.23) implies that the structure constants corresponding to
points outside D are bounded by those associated to points inside it.

The condition of being a point in the boundary of the domain D can be rewritten as

Wc(h1, h2, h3) = 0, with Wc(h1, h2, h3) ≡ ∂z log G(3)
h (z)

∣∣∣
z= 1

2

. (5.24)

If we now apply the approximation found in eq. (5.20) for G(3)
h (z), then we find

W (L,L′)
c (h1, h2, h3) = π2

K(1
2)2

[
h1 + h2 + h3 −

(1
8 + 5

72π

)
c

+
∑L
l=1 lAle

−πl +∑L+L′
l=L+1 lA

′
le
−πl∑L

l=0Ale
−πl +∑L+L′

l=L+1A
′
le
−πl

]
. (5.25)

Observe that it is at this point that the positivity of the coefficients Al and A′l for unitary
theories previously discussed plays the crucial role, since it implies that the last term in
eq. (5.25) is positive too. This means that the domain DL,L′ of points (h1, h2, h3) for which
W

(L,L′)
c (h1, h2, h3) < 0 shrinks as L and L′ increase and it converges to the domain D ,

DL,L′ → D , in the limit L,L′ →∞. If in the last term we only include the sum over the
coefficients Al, we recover the approximation considered in ref. [28] (cf. eq. (3.8) of that
reference). By including the contribution of some of the descendants of the sub-algebra
primary fields at the levels l = 1, . . . , L, we improve the convergence of eq. (5.25) and
produce a slightly smaller domain DL,L′ , as figure 4 shows. In any case, the convergence
with the domain D is very fast due to the exponential decay of those terms in eq. (5.25).

5.3 Bootstrapping genus two partition functions

In this final section, we implement a numerical bootstrap approach based on Virasoro
sphere conformal blocks to determine numerically the structure constants Dh,h̄ of eq. (3.1)
for N = 2 and N = 3. For minimal seed theories and N = 2, 3, these constants are known,
see eq. (3.21) and eq. (3.30). However, the motivation of this section is twofold. First, we
show that, even in the simplest case, the stability of the numerical procedure is greatly
sensitive to the symmetry x 7→ 1− x of the orbifold conformal blocks. As a matter of fact,
the numerical outcomes start to converge only if one uses the approximation of eq. (4.9).
Secondly, we hope that the results in this section could serve as a guide to set up a numerical
bootstrap scheme for higher genus (N > 3) or non-minimal theories.

As we already discussed in section 5.2, the combination of the decomposition of eq. (3.1)
and the crossing symmetry condition in eq. (2.6) leads to eq. (5.21). If we now normalize to
one the structure constant of the channel h1 = h2 = · · · = hN = 0, that is D0,0 = 1, then
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Figure 4. The continuous lines represent the points in the (h2, h3) plane that satisfy the equation
W

(L,L′)
c (h1, h2, h3) = 0 for c = 4 and h1 = 0.1 and several values of the truncation levels L,L′,

see eq. (5.25). The dashed lines are the points that satisfy the same equation but removing from
W

(L,L′)
c (h1, h2, h3) the sums with coefficients A′

l. This is the approximation considered in ref. [28].
The colouring of the dashed lines corresponds to take different upper bounds L in the sums with
coefficients Al. The panels b and c are the magnification of the regions indicated by a box in the plot a.

eq. (5.21) can be rewritten as∑
h,h̄

(h,h̄) 6=(0,0)

Dh,h̄

[
G(N)
c,h (z)G(N)

c,h̄
(z̄)− G(N)

c,h (1− z)G(N)
c,h̄

(1− z̄)
]

= G(N)
c,0 (1− z)G(N)

c,0 (1− z̄)− G(N)
c,0 (z)G(N)

c,0 (z̄). (5.26)

For the minimal models introduced in section 3.4, the number of channels in eq. (5.26) is
finite. For instance, for N = 2, it corresponds to the number of conformal families of C and
for N = 3, is the number of non-zero structure constants. Therefore, for a given point z,
the crossing symmetry relation is a linear equation in Nc (the number of channels except
(0,0)) unknowns Dh,h̄. Note that this procedure boils down to choose a different linear
functional to be applied to the crossing equation than the one used in eq. (5.22).
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h
Dh,h

numerical bootstrap exact (eq. (3.21))
σ 0.65975046 (8.8× 10−5) 0.65975396
σ′ 0.00781211 (8.0× 10−4) 0.00781250
ε 0.32987828 (6.4× 10−5) 0.32987698
ε′ 0.00128874 (1.9× 10−3) 0.00128858
ε′′ 5.92566× 10−8 (2.7× 10−1) 5.96046× 10−8

Table 1. Results of the numerical bootstrap for the Tricritical Ising CFT on the torus (N = 2). The
first column indicates the channel labelled by the corresponding primary field, see eq. (D.4). The
second column corresponds to the mean value for each structure constant calculated after considering
100 different sets of random points with κ = 0.22. We have truncated the expansion in sphere
conformal blocks and the elliptic recursion at level L,L′ = 6. In brackets, the coefficient of variation.

As done in [66], we can draw uniformly Nc random points {zj} in the square [1/2−
κ, 1/2 + κ]× [−iκ, iκ]. Let us also require that each point is separated from the real axis
and each other point by a distance

δ = κ√
Nc

(5.27)

where κ is an arbitrary positive number (which we will fix later). By imposing eq. (5.26)
at each z = zj , one obtains a linear system with Nc unknowns and Nc equations. By
truncating the expansion in eq. (4.9) of the conformal blocks G(N)

c,h (z) at given L,L′, it is
possible to calculate a set of structure constants Dh,h̄(L,L′) for any random realization of
the points {zj}. If the bootstrap converges, we expect that the variance of the solutions
Dh,h̄(L,L′) will be small and that Dh,h̄(L,L′)→ Dh,h̄, for L,L′ →∞.

As a first benchmark of the method, we have considered the Tricritical Ising CFT with
c = 7/10 on a torus (N = 2). In appendix D, we gather the operator content of this model.
It belongs to the diagonal series of the minimal models, namely its partition function Z1 on
the torus, see eq. (3.20), is

Z1(x) =
∑
h

|χc,h(τ(x))|2, (5.28)

for c = 7/10 and the sum running over the conformal dimensions in eq. (D.4). We first
used the regularization prescription explained in section 3.4 to compute the combinatorial
expansion of eq. (3.19) until level L = 6. From it, we obtained the approximation for the
N = 2 orbifold conformal blocks of eq. (4.9), truncated at L,L′ = 6. In table 1, we have
considered 100 different sets of random points {zj} and we have calculated the mean and
the coefficient of variance (the standard deviation divided by the mean) of the values for
the structure constants derived by solving eq. (5.26) for each sample of random points. One
can see that the numerical bootstrap converges.

We have then applied the numerical bootstrap to determine the N = 3 twist field
correlation function for the following models: The Ising CFT (c = 1/2), the Lee-Yang
CFT (c = −22/5), and the Gaffnian CFT (c = −3/5) [67, 68]. Note that the last two
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Figure 5. We plot the values obtained for the N = 3 structure constants Dh,h (rescaled by a factor
for representation purposes) in the Ising CFT by solving the cross-symmetry eq. (5.26) for 100
different sets of random points, choosing κ = 0.22, and considering two different approximations for
the orbifold conformal blocks. On the left, we have taken the small z expansion derived for them in
eq. (3.29), truncated at order L = 6. On the right, we have expanded them in sphere conformal blocks,
as in eq. (4.5), until L = 6 and we have applied the elliptic recursion of eq. (4.6) to compute the latter
up to level L′ = 6. The solid lines correspond to the values expected for the structure constants.

theories are non-unitary, see refs. [33, 69] for related studies. All of them belong to the
diagonal series of minimal models and, therefore, only pairings between holomorphic and
antiholomorphic primaries with the same conformal dimensions (h = h̄) are possible. From
eq. (3.30) and eq. (5.26) we can extract numerically the seed CFT structure constant as
(Cseed
h,h )2 = 272|h| Dh,h. In appendix D, we remind the field content and the fusion rules of

the minimal models under consideration.
Table 2 shows the results of the N = 3 numerical bootstrap for these three CFTs: Ising

(top), Lee-Yang (center) and the Gaffnian (bottom). We consider again 100 different sets
{zj} of random points. In the second column of each chart, we write the mean and the
coefficient of variance computed for (Cseed

h,h )2 after solving eq. (5.26) with each set of random
points. The third column collects the exact results for the square of the seed structure
constants [70]. The agreement between the two values is excellent.

Finally, in figure 5, we compare the numerical solutions of eq. (5.26) obtained by first
replacing the orbifold conformal blocks with their power series expansion about z = 0 (on
the left) and then by their representation in terms of sphere conformal blocks (on the right).
The results are shown for the Ising CFT. One can see that in the first case the bootstrap
approach cannot predict the correct structure constants. This ultimately can be traced
back to the z 7→ 1− z asymmetry that is visible in figure 2.

6 Conclusions

In this paper we analyzed conformal four-point twist field correlation functions in the ZN
orbifold. Such correlators can be also interpreted as CFT partition functions on Riemann
surfaces of genus N − 1, with a cyclic symmetry. We focused in particular on seed theories
C which belong to the series of the minimal models with c < 1. From a CFT perspective, we
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c = 1/2

(h1, h2, h3)
(Cseed
h,h )2

numerical bootstrap exact
(σ, σ, I) 1.00001359 (9.7× 10−5) 1
(ε, ε, I) 1.00032363 (2.8× 10−3) 1
(σ, σ, ε) 0.24993371 (2.0× 10−3) 0.25

c = −22/5

(h1, h2, h3)
(Cseed
h,h )2

numerical bootstrap exact
(ϕ,ϕ, I) 0.99999804 (8.9× 10−6) 1
(ϕ,ϕ, ϕ) −3.65310941 (8.5× 10−6) −3.65311624

c = −3/5

(h1, h2, h3)
(Cseed
h,h )2

numerical bootstrap exact
(σ, σ, I) 0.99981087 (4.1× 10−4) 1
(ε, ε, I) 0.99983570 (1.0× 10−3) 1
(ψ,ψ, I) 0.99629757 (2.1× 10−2) 1
(σ, σ, ε) −0.27381762 (4.1× 10−4) −0.27373889
(ε, ε, ε) −4.37665844 (2.2× 10−3) −4.37982231
(σ, ε, ψ) 0.24859929 (1.1× 10−2) 0.25

Table 2. Results of the numerical bootstrap for the Ising (top), Lee-Yang (center), and the Gaffnian
(bottom) CFTs on a genus two Z3-symmetric Riemann surface (N = 3). For each minimal model,
the second column collects the mean value determined for each structure constant after performing
the bootstrap with 100 different sets of random points {zj}, fixing κ = 0.22. The sphere conformal
block expansion and the elliptic recursion were truncated at level L,L′ = 6. In the brackets we write
the coefficient of variation. The third column contains the exact value of (Cseed

h,h )2, calculated in [70]
for the minimal models.

extended the results in [28] in two directions. Firstly, we provided a regularization scheme
for the combinatorial expansion of the orbifold conformal blocks that gets rid of all the
null vectors when c < 1. Then, we proposed a method to systematically expand the genus
N − 1 conformal blocks into sphere conformal blocks of central charge Nc. The latter are
more suitable for applications, since they can be calculated, by the recursion formula [34],
as power series in the elliptic variable q.
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The sphere conformal blocks, which appear in the decomposition, can be identified
order by order in q only by comparison with the combinatorial expansion of the orbifold
conformal blocks that incorporates the descendant states in the replicated theory C⊗N . The
inclusion of the descendant contributions, and their evaluation through conformal mappings,
represents a substantial improvement to the previous power series in q of the twist field
correlators [31, 32].

We examined in detail the case N = 3, i.e. genus two Riemann surfaces, and discussed
extensive applications of the formalism. In particular, we calculated Rényi entropies for two
disjoint intervals in minimal CFTs, reproducing with great accuracy the available results for
the free Majorana fermion and providing new ones for interacting theories. We also showed
how the partially transposed reduced density matrix for two disjoint intervals could be
calculated in a conformal block expansion and applied this result to the Tricritical Ising CFT.
The representation in terms of sphere conformal blocks of the twist field correlators was also
employed to refine the bound on the structure constants of unitary theories found in [28].

There are a couple of possible future directions that are worth to be mentioned. First,
it would be useful to investigate whether our formalism can be extended to arbitrary values
of the genus g = N − 1. This task involves the determination of the descendant N -point
function in eq. (3.15) for a rational CFT. We expect the latter to be analytic in g at least
for a free compactified boson, thus allowing to recover the results for the entanglement
entropy and negativity discussed in [15, 19, 42, 59, 61] from a different route. Also it will be
important to understand if a recursive formula for higher genus conformal blocks, such as
that put forward in [30], can be effectively implemented when c < 1, due to the additional
null vector resonances.

Acknowledgments

We thank Andrea Cappelli, Nina Javerzat, Sylvain Ribault and Erik Tonni for stimulating
discussions. We are indebted to Benoit Estienne for important comments on a first version
of the paper. FA and JV somehow acknowledge partial support by the Brazilian Ministries
MEC and MCTC, the CNPq (grant number 306209/2019-5), the Simons Foundation (Grant
Number 884966, AF) and the Italian Ministry MIUR under the grant PRIN 2017 “Low-
dimensional quantum systems: theory, experiments and simulations”. RS thanks the IIP,
Natal, where this project started. FA is grateful to Maurizio Fagotti for his kind invitation to
LPTMS, Paris. Finally, we acknowledge Institut Pascal, Paris, and the program “Bootstat
2021” for hospitality during the final stages of this work.

A Transformation properties of Virasoro descendants

Consider a CFT on the compactified complex plane (Riemann sphere) with coordinate z.
The Virasoro generators are defined by their action on the fields,

L−n(z)φMh (z) =
∮
Cz

dz′

2πi(z
′ − z)−n+1 T (z′) φMh (z), (A.1)
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where Cz is a closed contour containing z and T (z) is the stress energy tensor. From the
current-current OPE,

T (z)T (0) = c/2
z4 + 2

z2T (0) + 1
z
∂T (0) + regular terms, (A.2)

one obtains the Virasoro algebra

[Ln(0), Lm(0)]φMh (0) =
[
(n−m)Ln+m(0) + c

12n(n2 − 1)δn+m,0

]
φMh (0). (A.3)

The Virasoro generators acting on a field inserted at z =∞ are given by

L−n(z =∞) = −
∮
C∞

dz

2πiz
n+1T (z). (A.4)

Let us see how these operators transform under a conformal map t 7→ z(t). By recalling the
transformation of the stress energy tensor when we apply it,

T (z) 7→
(
dz

dt

)−2
T (t)− c

12 {z(t), t} , (A.5)

where {z(t), t} is the Schwarzian derivative, the Virasoro descendant in eq. (A.4) is then
transformed into the linear combination of descendants acting on the point t∞ in the
t-surface whose image is z(t∞) =∞

L−n(t∞) = −
∮
Ct∞

dt

2πi

(
dz

dt

)−1
[z(t)]n+1

[
T (t)− c

12{z(t), t}
]
, (A.6)

where Ct∞ is a contour encircling the point t∞, and T (t) can be expressed as

T (t) =
∑
m∈Z

(t− t∞)−m−2Lm(t = t∞). (A.7)

The results in section 3.2 can be derived by evaluating eq. (A.6) with the map given in
eq. (3.16). In particular, we can write down the expansion of the Virasoro descendants in
eq. (A.6) by applying the residue theorem; if n ≥ 1 one has

L−n(t∞) =
∑

m≥−n
anmLm(t = t∞) + c

32(n− 1), t∞ = {0,∞}, (A.8)

with
anm = 1

4n

[
22n+1 −

(
2n+ 1

m+ n+ 1

)
2F1(1,m− n,m+ n+ 2,−1)

]
. (A.9)

In the case N = 3, studied in section 3.3, the orbifold three-point function of eq. (3.24)
is calculated by applying the conformal map of eq. (3.23). The pullbacks L−n(t∞) of the
Virasoro descendants L−n(z =∞) under this map can be also derived by using eq. (A.6).
We have, for n ≥ 1,

L−n(t∞) =
∑
m≥n

at∞nmLm(t = t∞) + c

27(n− 1), t∞ = {0, 1,∞} (A.10)
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where the coefficients at∞nm can be determined in closed form from the residue theorem, see
also eq. (2.9) of ref. [28].

The three-point correlations on the sphere that appear in the expansion in eq. (3.29) of
the N = 3 orbifold conformal block can be computed recursively by employing the following
Ward identities [71],

〈L−nφM1
h1
|φM2
h2

(1)|φM3
h3
〉 = 〈φM1

h1
|φM2
h2

(1)|LnφM3
h3
〉

+
n∑

m=1

(
n+ 1
m+ 1

)
〈φM1
h1
|LmφM2

h2
(1)|φM3

h3
〉, (A.11)

〈φM1
h1
|L−nφM2

h2
(1)|φM3

h3
〉 =

∞∑
m=0

(
n+m− 2

m

)[
〈Lm+nφ

M1
h1
|φM2
h2

(1)|φM3
h3
〉

+ (−1)n〈φM1
h1
|φM2
h2

(1)|Lm−1φ
M3
h3
〉
]
, (A.12)

and
〈φh1 |φh2(1)|L−nφh3〉 = 〈L−nφh3 |φh2(1)|φh1〉. (A.13)

B Orbifold Virasoro sub-algebra

In each sheet of the orbifold theory C⊗N/ZN , we can consider a copy T (j)(z), j = 1, . . . , N ,
of the stress-energy tensor of the seed theory C. Then the stress-energy tensor of the orbifold
theory T (z) is

T (z) =
N∑
j=1
T (j)(z). (B.1)

It generates transformations affecting all the sheets in the same way. Its Fourier modes,

Ln =
∮
C0

dz

2πiz
n+1T (z), (B.2)

where C0 is a contour encircling the point z = 0, are symmetric under the exchange of
sheets,

Ln =
N∑
j=1
L(j)
n , L(j)

n = I⊗
j
· · · ⊗ Ln ⊗ · · · ⊗ I, (B.3)

and form a Virasoro algebra,

[Ln,Lm] = (n−m)Ln+m + Nc

12 n(n2 − 1)δn+m,0, (B.4)

with central charge Nc.

C Entanglement entropy and logarithmic negativity

Let us consider a generic quantum system that can be divided into two spatial regions,
which we call A and B, such that the total Hilbert space factorizes as H = HA ⊗HB. We
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suppose that the system is in a pure state |Ψ〉 ∈ H. Hence the state of subsystem A is
described by the reduced density matrix

ρA = TrHB |Ψ〉〈Ψ|, (C.1)

with TrHB denoting the partial trace in the space HB. The entanglement between regions
A and B can be analysed using the moments of the reduced density matrix, Tr ρNA . In
particular, the entanglement entropy

SA = −Tr(ρA log ρA) (C.2)

can be calculated from the Rényi entanglement entropies

S
(N)
A = 1

1−N logTr ρNA (C.3)

by exploiting the so-called replica trick [12, 13]

SA = lim
N→1+

S
(N)
A = − lim

N→1+

∂

∂N
Tr ρNA . (C.4)

If subsystem A consists of two disjoint regions A1 and A2, such that and HA = HA1 ⊗HA2 ,
then one can consider the partial transpose ρT2

A of ρA. If {|e(l)
j 〉} denotes a basis of the space

HAl , then the matrix elements of ρT2
A are defined as

〈e(1)
j1
e

(2)
k1
|ρT2
A |e

(1)
j2
e

(2)
k2
〉 = 〈e(1)

j1
e

(2)
k2
|ρA|e(1)

j2
e

(2)
k1
〉. (C.5)

The moments Tr(ρT2
A )N encode the entanglement between regions A1 and A2. A particular

measure of the entanglement between these two regions is for instance the logarithmic
negativity [17],

E = logTr |ρT2
A |, (C.6)

which can also be calculated through the replica trick [18, 19]

E = lim
ne→1+

logTr(ρT2
A )ne , (C.7)

by taking the analytic continuation of the moments Tr(ρT2
A )N with even exponent N = ne.

D Operator content and fusion rules in the minimal models considered

In this appendix, we recollect the list of primary fields and fusion rules for the conformal
minimal models under consideration in the paper. The general expression for the central
charge cp,q and the conformal dimension of the primaries of these models are respectively
given in eqs. (3.31) and (3.32).

• Lee-Yang CFT: (p, q) = (5, 2), c5,2 = −22/5

φh h

ϕ −1/5 ϕ× ϕ = I + ϕ (D.1)
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• Ising CFT: (p, q) = (4, 3), c4,3 = 1/2

φh h

σ 1/16
ε 1/2

σ × σ = I + ε

ε× ε = I
σ × ε = σ

(D.2)

• Gaffnian CFT: (p, q) = (5, 3), c5,3 = −3/5

φh h

σ −1/20
ψ 3/4
ε 1/5

σ × σ = I + ε σ × ε = σ + ψ

ε× ε = I + ε σ × ψ = ε

ψ × ψ = I ε× ψ = σ

(D.3)

• Tricritical Ising CFT: (p, q) = (5, 4), c5,4 = 7/10

φh h

σ 3/80
σ′ 7/16
ε 1/10
ε′ 3/5
ε′′ 3/2

ε× ε = I + ε′ σ × σ = I + ε+ ε′ + ε′′

ε′ × ε′ = I + ε′ σ′ × σ′ = I + ε′′

ε× ε′ = ε+ ε′′ σ × σ′ = ε+ ε′

ε× σ′ = σ ε′ × σ′ = σ

ε× σ = σ′ + σ ε′ × σ = σ′ + σ

(D.4)

E N = 3 orbifold conformal blocks for the Ising CFT

For the Ising CFT, according to its fusion rules in eq. (D.2), the conformal block decompo-
sition of eq. (3.1) of the Z3 twist field four-point function takes the form

〈σ3(∞)σ̃3(1)σ3(z, z̄)σ̃3(0)〉 =
∣∣∣G(3)

1
2 ,{0,0,0}

(z)
∣∣∣2 + 3DσσI

∣∣∣G(3)
1
2 ,{

1
16 ,

1
16 ,0}

(z)
∣∣∣2

+ 3DεεI

∣∣∣G(3)
1
2 ,{

1
2 ,

1
2 ,0}

(z)
∣∣∣2 + 3Dσσε

∣∣∣G(3)
1
2 ,{

1
16 ,

1
16 ,

1
2}

(z)
∣∣∣2, (E.1)

where
DσσI = 1

33/4 , DεεI = 1
729 , Dσσε = 1

4 · 315/4 . (E.2)

The N = 3 orbifold conformal blocks above have the following expansions in terms of
Virasoro sphere conformal blocks up to level L = 5, cf. eq. (4.5),

G(3)
1
2 ,{0,0,0}

(z)∼F 3
2 ,0

(z)+ 49
10451673F 3

2 ,4
(z)+ 2

4782969F 3
2 ,5

(z), (E.3)

G(3)
1
2 ,{

1
16 ,

1
16 ,0}

(z)∼F 3
2 ,

1
8
(z)+ 1

432F 3
2 ,

9
8
(z)+ 2209

2612736F 3
2 ,

17
8

(z)+ 590597
5965996032F 3

2 ,
25
8

(z)

+ 61593283775
9375929753665536F 3

2 ,
33
8

(z)+ 13237693484267
24583253711470460928F 3

2 ,
41
8

(z), (E.4)

G(3)
1
2 ,{

1
2 ,

1
2 ,0}

(z)∼F 3
2 ,1

(z)+ 1
54F 3

2 ,2
(z)+ 1

3402F 3
2 ,3

(z)+ 2401
8109396F 3

2 ,4
(z)

+ 6245
1499726502F 3

2 ,5
(z)+ 539

12033950004F 3
2 ,6

(z), (E.5)
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and

G(3)
1
2 ,{

1
16 ,

1
16 ,

1
2}

(z) ∼ F 3
2 ,

5
8
(z) + 49

432F 3
2 ,

13
8

(z) + 637
124416F 3

2 ,
21
8

(z) + 176647
1988665344F 3

2 ,
29
8

(z)

+ 6395744863
1086928370270208F 3

2 ,
37
8

(z) + 528656973059
299112879787868160F 3

2 ,
45
8

(z). (E.6)

For the Ising CFT, the function RN (z) that appears in eqs. (5.14) and (5.15) is of the
form [16, 35]

RIsing
N (z) = 1

2N−1|Θ[ 0
0 ](Ω(z))|

∑
ε,δ

|Θ[ εδ ](Ω(z))| , z ∈ C, (E.7)

where
Θ[ εδ ](Ω) =

∑
m∈ZN−1

eiπ(m+ε)t·Ω(m+ε)+2πi(m+ε)t·δ.

The characteristics of the Theta function above are half-integer vectors, ε, δ ∈ (Z/2)N−1.
The sum in eq. (E.7) runs over all the vectors ε, δ with components εj , δj ∈ {0, 1/2}, and
Ω(z) is the symmetric (N − 1)× (N − 1) matrix

Ωrs(z) = 2i
N

N−1∑
k=1

sin
(
πk

N

)
cos

[2πk
N

(r − s)
]
βk/N (z), (E.8)

in which
βk/N (z) = 2F1(k/N, 1− k/N, 1; 1− z)

2F1(k/N, 1− k/N, 1; z) .

F N = 3 orbifold conformal blocks for the Tricritical Ising CFT

If we take into account the fusion rules of eq. (D.4), the decomposition of the Z3 twist field
four-point correlation function in the Tricritical Ising CFT reads

〈σ3(∞)σ̃3(1)σ3(z, z̄)σ̃3(0)〉 =
∣∣∣G(3)

7
10 ,{0,0,0}

(z)
∣∣∣2 + 3DσσI

∣∣∣G(3)
7

10 ,{
3

80 ,
3

80 ,0}
(z)
∣∣∣2

+ 3Dσ′σ′I

∣∣∣G(3)
7

10 ,{
7

16 ,
7

16 ,0}
(z)
∣∣∣2 + 3DεεI

∣∣∣G(3)
7

10 ,{
1

10 ,
1

10 ,0}
(z)
∣∣∣2

+ 3Dε′ε′I

∣∣∣G(3)
7

10 ,{
3
5 ,

3
5 ,0}

(z)
∣∣∣2 + 3Dε′′ε′′I

∣∣∣G(3)
7

10 ,{
3
2 ,

3
2 ,0}

(z)
∣∣∣2

+ 3Dσσε

∣∣∣G(3)
7

10 ,{
3

80 ,
3

80 ,
1

10}
(z)
∣∣∣2 + 3Dσσε′

∣∣∣G(3)
7

10 ,{
3

80 ,
3

80 ,
3
5}

(z)
∣∣∣2

+ 3Dσσε′′

∣∣∣G(3)
7

10 ,{
3

80 ,
3

80 ,
3
2}

(z)
∣∣∣2 + 6Dσσ′ε

∣∣∣G(3)
7

10 ,{
3

80 ,
7

16 ,
1

10}
(z)
∣∣∣2

+ 6Dσσ′ε′

∣∣∣G(3)
7

10 ,{
3

80 ,
7

16 ,
3
5}

(z)
∣∣∣2 + 3Dσ′σ′ε′′

∣∣∣G(3)
7

10 ,{
7

16 ,
7

16 ,
3
2}

(z)
∣∣∣2

+ 3Dεεε′

∣∣∣G(3)
7

10 ,{
1

10 ,
1

10 ,
3
5}

(z)
∣∣∣2 + 6Dεε′ε′′

∣∣∣G(3)
7

10 ,{
1

10 ,
3
5 ,

3
2}

(z)
∣∣∣2

+Dε′ε′ε′

∣∣∣G(3)
7

10 ,{
3
5 ,

3
5 ,

3
5}

(z)
∣∣∣2 (F.1)
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The structure constants Dh1,h2,h3 above are determined, according to eq. (3.30), by the OPE
coefficients of the Tricritical Ising CFT, whose analytic values can be found for instance in
ref. [62].

The expansions in sphere conformal blocks until level L = 5 of the N = 3 orbifold
conformal blocks that appear in the previous expression read

G(3)
7

10 ,{0,0,0}
(z)∼F 21

10 ,0
(z)+ 17

3838185F 21
10 ,4

(z)+ 2
4782969F 21

10 ,5
(z), (F.2)

G(3)
7

10 ,{
3

80 ,
3

80 ,0}
(z)∼F 21

10 ,
3

40
(z)+ 1

720F 21
10 ,

43
40

(z)+ 3265267
2547417600F 21

10 ,
83
40

(z)+ 3665197
50512896000F 21

10 ,
123
40

(z)

+ 155865980497261283
18705929999865937920000F 21

10 ,
163
40

(z)+ 462436566571594180410731
659386782637573125832704000000F 21

10 ,
203
40

(z),
(F.3)

G(3)
7

10 ,{
7

16 ,
7

16 ,0}
(z)∼F 21

10 ,
7
8
(z)+ 7

432F 21
10 ,

15
8

(z)+ 125
6594048F 21

10 ,
23
8

(z)+ 7557625
34022301696F 21

10 ,
23
8

(z)

+ 136592048239
41822362293239808F 21

10 ,
39
8

(z)+ 3691268343947
18937730481342382080F 21

10 ,
47
8

(z), (F.4)

G(3)
7

10 ,{
1

10 ,
1

10 ,0}
(z)∼F 21

10 ,
1
5
(z)+ 1

270F 21
10 ,

6
5
(z)+ 4489

6718950F 21
10 ,

11
5

(z)+ 734651
6957940500F 21

10 ,
16
5

(z)

+ 33710613028
7001301644623125F 21

10 ,
21
5

(z)+ 561570243431821
1229479741472989781250F 21

10 ,
26
5

(z), (F.5)

G(3)
7

10 ,{
3
5 ,

3
5 ,0}
∼F 21

10 ,
6
5
(z)+ 1

45F 21
10 ,

11
5

(z)+ 12664
12885075F 21

10 ,
16
5

(z)+ 75304
304266375F 21

10 ,
21
5

(z)

+ 5224025025746
910725734424436875F 21

10 ,
26
5

(z)+ 41871765632
94232186890734375F 21

10 ,
31
5

(z), (F.6)

G(3)
7

10 ,{
3
2 ,

3
2 ,0}

(z)∼F 21
10 ,3

(z)+ 1
18F 21

10 ,4
(z)+ 230

22113F 21
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40
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40
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4997056637667115008F 21
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40
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7

10 ,{
3
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3
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10 ,
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40
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40
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10 ,
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40

(z)
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10 ,
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40
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(z), (F.9)

G(3)
7
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3
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3
2}

(z)∼F 21
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63
40
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40
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10 ,
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40
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40

(z)
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(z), (F.10)
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(z)∼F 21
10 ,
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8
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10 ,
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8
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10 ,
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8

(z)+ 795728725
5786102439936F 21

10 ,
43
8

(z)
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10 ,
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8
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10 ,
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8
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10 ,

9
5
(z)+ 25
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10 ,
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123348562272120978F 21

10 ,
29
5

(z), (F.14)

G(3)
7

10 ,{
1

10 ,
3
5 ,

3
2}

(z)∼F 21
10 ,

11
5
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810F 21
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6102655912923750F 21

10 ,
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(z), (F.15)
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G(3)
7

10 ,{
3
5 ,

3
5 ,

3
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(z) ∼ F 21
10 ,

9
5
(z) + 961

458055F 21
10 ,

19
5

(z) + 355
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10 ,
24
5

(z) + 46601998346
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10 ,
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(z)
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5

(z). (F.16)
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