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1 Introduction

Black hole information paradox is a problem over 40 years. Recent progress hints towards a
new understanding of the late time black hole interior as part of the Hawking radiation,
which is called island. In particular the island formula for the radiation entropy gives Page
curve [1–3] and therefore maintains unitarity. The key step to reproduce Page curve in
recent breakthrough works [4, 5] is to employ the quantum extremal surface (QES) formula
for the fine grained entropy, which was inspired from the quantum corrected Ryu-Takayanagi
formula in computing holographic entanglement entropy [6–9]. For recent related works,
see [10–98].
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It is surprising that a semi-classical formula such as quantum extremal surface can
capture the unitarity of quantum gravity. In two dimensional Jackiw-Teitelboim (JT)
gravity plus CFT model, the island formula can be derived from the Euclidean gravitational
path integral, or the so called replica wormhole calculation [10]. However there appears the
factorization puzzle or JT/ensemble relation if one takes the replica wormhole solutions
seriously [11]. It is therefore interesting to ask how we can justify island formula by other
means. In particular, as a semi-classical formula at this stage, what would be the potential
UV correction?

In [69] we proposed defect extremal surface (DES) formula as the holographic coun-
terpart for the boundary island formula. Defect extremal surface is defined by minimizing
the Ryu-Takayanagi surface corrected by the defect theory. That is particularly interesting
when the RT surface crosses or terminates on the defect. In a static set up of AdS3/BCFT2,
it was demonstrated that the defect extremal surface formula gives precisely the same
entanglement entropy as that from the boundary quantum extremal surface. In particular
a decomposition procedure consist of partial Randall-Sundrum reduction1 and Maldacena
duality has been proposed, for an AdS bulk with a defect brane, from which one can clearly
see how island formula emerges from a brane world system with gravity glued to a flat
space quantum field theory.

In this paper we extend our study on defect extremal surface to time dependent
cases as well as higher dimensions. The main motivation to consider the time dependent
defect extremal surface is to derive Page curve. We start from a Euclidean AdS3/BCFT2
and conformally transform the boundary (including the brane) to a cylinder bath with a
Euclidean time circle (temperature) glued with a brane. We then cut off half of the system
and construct an initial state by defining an Euclidean path integral over the remaining
half. This is essentially a thermofield double state and we then evolve it along real time.
In real time, one can see an induced eternal black hole on the brane. From boundary point
of view, this is very similar to the system consist of an eternal black hole plus CFT bath
discussed in [10]. Also the brane approach to this system was first explored by Rozali, Sully,
Raamsdonk, Waddell and Wakeham in [13]. However, compared with those works, there
are several major differences here: first, we do not have JT gravity in the brane region.
Rather we consider the 2d gravity on the brane purely from the partial reduction of the bulk.
Second, we do have quantum field theory on the brane, which is considered as the defect
theory since we treat brane as a defect in AdS. In particular, compared with the holographic
set up [13], we obtain a 2d effective description following the decomposition procedure
consist of partial Randall-Sundrum reduction and Maldacena duality proposed in [69].

We first derive Page curve from defect extremal surface formula and then compute it
independently using island formula in the 2d effective description mentioned above. We
find precise agreement. This justifies the validity of defect extremal surface formula in
time dependent set up. We then move to higher dimensions. There is no simple tools to
calculate the matter entanglement entropy of several intervals in higher dimensions. We
therefore assume that our matter CFTs are holographic and employ the corresponding Ryu-

1For details about partial Randall-Sundrum reduction, we refer to [69] or subsection 2.3.
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Takayanagi results. The defect extremal surface calculation for the entanglement entropy
in higher dimensions is then straightforward. To find the one-dimension lower description
of the AdSd+1 with a d-dimensional brane, we again employ the partial Randall-Sundrum
reduction, which leads to a d-dimensional Newton constant on the brane (as the leading
term in effective action). After that we perform an independent computation of the same
entropy, now using island formula in the d-dimensional effective description. We find some
universal inequality between DES result and island result, namely DES always gives smaller
entropy. We consider this as a consequence of the partial Randall-Sundrum reduction,
which is essentially a coarse graining process thus increases the entropy by some amount.
Our results indicate that the UV completion of island formula may give a smaller entropy.

This paper is organized as follows. We review defect extremal surface in section 2.
After that we discuss AdS3/BCFT2 in a dynamical set up and derive Page curve in
section 3 from both DES approach and island approach and find agreement. In section 4,
we move to higher dimensions and discuss entanglement entropy for a strip both from
DES calculation and island calculation, where we extend the decomposition of partial
Randall-Sundrum+AdS/CFT to higher dimensions. In appendix A, we construct a higher
dimensional eternal black hole on a brane following the set up in section 3 and find the Page
curve. We check the entanglement entropy for a ball shape subregion in higher dimensions in
section 5, as another example of higher dimensional DES and island calculation. We found
similar results as those in section 4. We conclude and discuss future questions in section 6.

2 Review of defect extremal surface

In this section, we give a brief review of defect extremal surface. We first review some
basics of AdS/BCFT and then bring in the DES proposal. Finally, we review how to obtain
boundary effective description of the bulk and show that the entropy computed by DES in
the bulk equals to the entropy computed by island formula in the boundary description [69].

2.1 AdS/BCFT

When there is a codimension one end of the world brane in AdS bulk, the total action is
given by:

I = 1
16πGN

ˆ
N

√
−g(R− 2Λ) + 1

8πGN

ˆ
M

√
−γ

(
K(γ) − Σ(γ)

)
+ 1

8πGN

ˆ
Q

√
−hK(h) + IQ + IP ,

(2.1)

where N denotes the bulk AdS spacetime, M denotes the asymptotic boundary where
the Dirichlet boundary condition is imposed. Q is the brane where Neumann boundary
condition is imposed. IQ is the matter action on Q and IP is the counter term on P = Q∩M .
The variation of this action leads to the Neumann boundary condition on Q [99]

K
(h)
ab − habK

(h) = 8πGNTab , (2.2)
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Figure 1. RT surface for an interval I := [0, x0] that contains the boundary.

where hab is the induced metric on the brane and K(h)
ab is the extrinsic curvature. Tab =

− 2√
−h

δIQ
δhab

is the stress energy tensor coming from the variation of matter action. Consider
a brane with a constant tension, IQ = − 1

8πGN

´
Q

√
−hT , where T denotes the brane tension,

Neumann boundary condition is reduced to

K
(h)
ab = (K(h) − T )hab. (2.3)

In AdS3/BCFT2, the bulk is 3 dimensional and the Q brane is 2 dimensional as shown
in figure 1. There are two sets of coordinates that are useful: (t, x, z) and (t, ρ, y). They
are related by

z = −y/ cosh ρ
l
, x = y tanh ρ

l
(2.4)

and the bulk metric can be written as

ds2
N = dρ2 + l2 cosh2 ρ

l
· −dt

2 + dy2

y2

= l2

z2 (−dt2 + dz2 + dx2),
(2.5)

where l is the AdS radius. It is also useful to introduce polar coordinate θ with 1
cos(θ) =

cosh
(ρ
l

)
. If the brane locates at ρ = ρ0, where ρ0 is a positive constant, then the geometry

on the brane is AdS2 and the relation between ρ0 and brane tension is T = tanh( ρ0
l )

l .
For an interval I := [0, x0] in BCFT, the entanglement entropy can be computed

holographically using RT formula. As shown in figure 1, the minimal surface denoted by
γI terminates on a point on the brane which can be determined by extremization. The
entanglement entropy is

SI = Area (γI)
4GN

= c

6 log 2x0
ε

+ c

6ρ0

= c

6 log 2x0
ε

+ c

6 arctanh(sin θ0),
(2.6)

where θ0 is related to ρ0 by 1
cos(θ0) = cosh

(ρ0
l

)
, c is the CFT central charge and ε is the UV

cut off.
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2.2 Bulk defect extremal surface result

When there is quantum matter localized on the end of the world brane, one should take
into account its contribution when calculating entanglement entropy. It is obvious that one
should do so if we treat the brane as a defect in the bulk. In the work of [69], it has been
proposed that the entanglement entropy including defect contribution is given by defect
extremal surface (DES) formula,

SDES = min
Γ,X

{
extΓ,X

[Area(Γ)
4GN

+ Sdefect [D]
]}

, X = Γ ∩D, (2.7)

where Γ is co-dimension two surface in AdS bulk and X is the lower dimensional entangling
surface given by the intersection of Γ and the defect D.

As an example to illustrate, one can include CFT matter on the brane in the previous
AdS3/BCFT2. The bulk action (disregarding M) is then given by

I = 1
16πGN

ˆ
N

√
−g(R− 2Λ) + 1

8πGN

ˆ
Q

√
−h(K − T ) + ICFT , (2.8)

and the vacuum one point function of the CFT stress tensor is given by

〈Tab〉AdS2 = χhab. (2.9)

The Neumann boundary condition then becomes

Kab − hab(K − T ) = 8πGNχhab . (2.10)

For a brane located at constant ρ0, the metric on the brane is again AdS2. The entanglement
entropy for an interval I := [0, x0] can be calculated by DES formula (2.7). The final result is

SDES = c

6 log 2x0
ε

+ c

6 arctanh(sin θ0) + c′

6 log
(

2l
εy cos θ0

)
, (2.11)

where c′ is the CFT central charge on the brane and εy is the UV cut-off on the brane.
Notice that in this case, the defect contribution on the AdS2 brane is a constant, Sdefect =
c′

6 log
(

2l
εy cos θ0

)
, therefore it does not shift the position of the Ryu-Takayanagi surface.

2.3 Boundary island result

One can justify the above DES formula by island formula [12]. This has been carried
out in [69] by proposing an effective 2d description for the AdS3 bulk with a brane. The
effective 2d description was obtained by combining partial Randall-Sundrum reduction2 and
AdS/CFT correspondence as follows.

We first insert an imaginary boundary Q′ that is orthogonal to the asymptotic boundary
as shown in figure 2, and the bulk is decomposed into two parts W1 and W2. For W1
we employ a partial Randall-Sundrum reduction along the extra dimension ρ, and the
resulting brane theory is a 2d gravity coupled with CFT matter. According to AdS/CFT,

2For the detail discussion of partial Randall-Sundrum, see [69].
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Figure 2. Bulk decomposition by inserting an imaginary boundary Q′.

Figure 3. Effective description with Neumann boundary condition.

W2 can be dual to half space CFT with zero boundary entropy. In the end we have a
gravity theory coupled with a CFT on the brane, glued with a flat space CFT as shown in
figure 3. Notice that the boundary condition between 2d brane theory and half space CFT
is transparent and the imaginary boundary Q′ is essentially the holographic dual of the
transparent boundary condition.

One can use island formula to compute entanglement entropy in this 2d effective
description of the system. As an illustration, consider an interval [0, L] in the flat CFT
region. According to island formula (quantum extremal surface), the entropy is calculated by

Sisland = exta
{
Sgen(a)

}
= exta

{
Sarea(y = −a) + Smatter([−a, L])

}
, (2.12)

where a is the boundary of the island on the brane.
The area term can be obtained as follows. When doing reduction along ρ direction,

d+ 1-dimensional gravity on the wedge is reduced to a d-dimensional gravity on the brane.
The d-dimensional Newton constant on the brane is [69]

1
G

(d)
N

= 1
GN

(
cosh ρ0

l

)2−d ˆ ρ0

0
dρ

(
cosh ρ

l

)d−2
. (2.13)
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Notice that in 2 dimensions the area term is

Sarea(y = −a) = 1
4G(2)

N

= ρ0
4GN

= c

6arctanh(sin θ0) . (2.14)

After extremization, the final result of the entanglement entropy is

Sisland = c

6 arctanh(sin θ0) + c

6 log 4x0l

cos θ0εεy

= c

6 log 2x0
ε

+ c

6 arctanh(sin θ0) + c

6 log 2l
εy cos θ0

.

(2.15)

This is exactly the same entropy as calculated by DES for c′ = c, which justified the DES
proposal. Inversely, defect extremal surface together with partial Randall-Sundrum gives a
holographic derivation of island formula. In AdS3/BCFT2, it is therefore clear that defect
extremal surface formula is the holographic counterpart of boundary island formula. We
should emphasize that the Einstein action of brane gravity in AdS3/BCFT2 is not dynamical
due to dimensionality constraint. However, it is dynamical in higher dimensions as we
will see. The main goal in this paper is to study further defect extremal surfaces in time
dependent cases as well as in higher dimensions.

3 Page curve for 2d eternal black hole

In this section, we study the time dependent AdS3/BCFT2, where an eternal black hole
emerges on the EOW brane. Following the decomposition procedure in the previous section,
we obtain a 2d effective theory to describe the black hole evaporation. We then compute
the Page curve using island formula and find that it agrees with the bulk defect extremal
surface result precisely. We compute in Euclidean spacetime and then analytically continue
to real time. The holographic computation without considering defect correction has been
done in [13].

3.1 The system

We first look at how the eternal black hole emerges. Recall that the holographic dual of the
BCFT defined on a half spacetime is given by an AdS with an EOW brane. In Euclidean
spacetime, there is no difference between space and time if we do not try to give physical
interpretation, one can therefore choose the boundary of BCFT to be τ = 0 and the BCFT
is defined in the region τ ≥ 0. The metric of the AdS is given by

ds2 = l2
dτ2 + dx2 + dz2

z2 , (3.1)

with the holographic region τ + z tan θ > 0. As shown in figure 4, the EOW brane in the
AdS is located at τ = −z tan θ.

– 7 –
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Figure 4. Holographic dual of Euclidean BCFT defined on half spacetime (τ > 0).

Under particular conformal transformations

τ = 2(x′2 + τ ′2 + z′2 − 1)
(τ ′ + 1)2 + x′2 + z′2

,

x = 4x′

(τ ′ + 1)2 + x′2 + z′2
,

z = 4z′

(τ ′ + 1)2 + x′2 + z′2
,

(3.2)

the boundary is mapped to a circle

x′2 + τ ′2 = 1

and the EOW brane is mapped to a part of sphere

(z′ + tan θ)2 + x′2 + τ ′2 = sec2 θ ,

while the metric is preserved, as shown in figure 5. Assuming the UV cut off where the
BCFT lives is z′ = ε, it is not a constant in the original coordinate system (τ, x, z) as will
be seen in the last terms of (3.6)(3.7).

By doing wick rotation τ ′ → it′, one can find that the lightlike curves on the EOW
brane

x′ = ±t′ , z′ = 1− sin θ
cos θ (3.3)

asymptotes to the boundary of the brane [13], x′2 − t′2 = 1, when t′ → ∞. These are
actually the black hole horizons and the black hole interior is given by |x| < t or z > 1−sin θ

cos θ .
In figure 6 the horizon on the brane is projected to be dashed lines on the asymptotic
boundary.

– 8 –
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Figure 5. Holographic dual of a BCFT after the conformal transformation.

Figure 6. The horizon on the brane.

Following the decomposition procedure in the previous section, we will eventually obtain
a gravity system on the brane glued to a bath. The angle direction in polar coordinates of
x′ − τ ′ plane is naturally identified as Euclidean time circle. To factorize the time direction
we need another coordinate transformation

x′ = eX cosφ , τ ′ = eX sinφ , (3.4)

which sends the bath CFT onto a cylinder. The Euclidean path integral on half of the
cylinder essentially prepares the initial state as a TFD state as shown in figure 7. Finally
we Wick rotate φ to real time T to see the nontrivial evolution, which can be equivalently
written as

x′ = eX cosh T, τ ′ = ieX sinh T . (3.5)

– 9 –
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Figure 7. Thermofield double perspective of the system.

3.2 Bulk DES result

We consider the interval [−∞,−x′0]∪ [x′0,∞] at τ ′ = τ ′0 and use the DES formula to calculate
the entanglement entropy. The two endpoints (τ ′0, x′0) and (τ ′0,−x′0) are mapped to (τ0, x0)
and (τ0,−x0) respectively by (3.2). There are two phases of the extremal surface, one is
connected and the other is disconnected. In the former phase, the extremal surface does not
intersect with the EOW brane as in figure 8. Therefore, no bulk term would be included,
and the entropy is given by the RT surface,

SDES = c

6

[
log(2x0)2 − 2 log 4ε

(τ ′0 + 1)2 + x′20

]
= c

3 log 2x′0
ε
.

(3.6)

In the disconnected phase, the extremal surfaces intersect with the brane at two points
as shown in figure 9. By the symmetry with respect to x = 0 plane, the locations of the two
intersection points can be denoted as (τ ′1,±x′1, z′1), or (−z1 tan θ,±x1, z1) in the coordinate
system (τ, x, z). The length of each extremal surface is given by

4GN
l
SRT1 = 4GN

l
SRT2

= log (τ0 + z1 tan θ)2 + (x0 − x1)2 + z2
1√

(τ0 + z1 tan θ)2 + (x0 − x1)2

+ arctanh(τ0 + z1 tan θ)2 + (x0 − x1)2 − z2
1

(τ0 + z1 tan θ)2 + (x0 − x1)2 + z2
1

− log 4ε
(τ ′0 + 1)2 + x′20

,

(3.7)

where the last term corresponds to the cut off in the coordinates without prime.
To compute the defect contribution, i.e. the entropy of the interval bounded by the

intersection points on the brane, we insert two twist operators. From the correlation function
of the twist operators, we get the entropy as follows,

Sdefect([A,B]) = lim
n→1

1
1− n log〈Ψn(A)Ψ̄n(B)〉Q

= c

3 min
{

log 2lx1
εyz1

, log 2l
εy cos θ

}
.

(3.8)
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Figure 8. Connected phase of extremal surface.

Figure 9. Disconnected phase of extremal surface.

By combining the area terms (3.7) with the bulk term (3.8), we have the generalized entropy

Sgen([A,B]) = SRT1 + SRT2 + Sdefect([A,B]) . (3.9)

If x1 cos θ < z1, the first choice in (3.8) is picked. However, it turns out that ∂Sgen
∂x1

as
well as ∂Sgen

∂z1
never vanishes. In other words, there is no DES solution. When x1 cos θ > z1,

in which case the second choice in (3.8) is picked, we find that DES solution coincides with
the RT surface since the bulk term is constant. More specifically, the DES solution isz1 = τ0 cos θ

x1 = x0 .
(3.10)
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Figure 10. The entropy SDES (in the unit of c3 ) with respect to time T for X0 = 1 and θ = π
6 ,

π
4 ,

π
3 .

We pick ε = 0.01, εy = 0.1 and l = 1.

And the restriction x1 cos θ > z1 becomes x0 > τ0, or

2x′0 > x′20 + τ ′20 − 1 (3.11)

in the coordinate system (τ ′, x′). From the extremal condition we calculate that the entropy is

SDES = c

3

(
log x

′2
0 + τ ′20 − 1

ε
+ arctanh sin θ + log 2l

εy cos θ

)
. (3.12)

Comparing (3.6) and (3.12), we can find that when the later is favored,

2x′0 > (x′20 + τ ′20 − 1)earctanh(sin θ) 2l
εy cos θ . (3.13)

Note that it is stronger than the restriction (3.11). Thus in the disconnected phase the
second choice in (3.8) is favored and the extremal point does exist.

We summarize the result by writing the entropy in the coordinate system (T,X)

SDES =


c

3

(
log 2 coshT

ε
+X0

)
, T < TP

c

3

(
log e

2X0 − 1
ε

+ arctanh(sin θ) + log 2l
εy cos θ

)
, T > TP .

(3.14)

This can be interpreted as the Von Neumann entropy of the bath as a function of physical
time T , which fits the Page curve. The Page time is at

TP = arccosh
(

sinhX0e
arctanh sin θ 2l

εy cos θ

)
. (3.15)

As explicitly shown in figure 10, the entropy follows a Page curve increasing at early time
and being constant after the Page time (3.15). We can also see that the Page time is larger
for larger angle θ of the brane.

– 12 –
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3.3 Boundary island result

Now we rederive the entropy of the interval [−∞,−x′0]∪[x′0,∞] at τ ′ = τ ′0 from the boundary
point of view following the decomposition procedure in the previous section. Similar to
DES, there are two possible phases in the 2d island computation, one of which contains no
contribution from the brane while the other includes the area term as well as the matter
entropy from the brane.

Without contribution from the brane, the entropy of [−∞,−x′0] ∪ [x′0,∞] is just the
matter entropy, i.e.

Sno island = Smatter([−∞,−x′0] ∪ [x′0,∞]) = c

3 log 2x′0
ε
, (3.16)

which is the same as (3.6).
Since the brane CFT is coupled to gravity, there is also a possibility that the matter

term receives an interval contribution on the brane with the endpoints at A : (y1, x1) and
B : (y1,−x1). These two endpoints also bring area terms, i.e.

Sarea = 2× 1
4G(2)

N

= c

3arctanh sin θ . (3.17)

By employing the entropy formula of two disjoint intervals at large central charge [100], we
get the matter term as

Smatter
(
A,B

)
= c

3 min
{

log 2x1x0l

y1 cos θεy
, log

[
(y1 + τ0)2 + (x1 − x0)2] l

y1 cos θεy

}
− c

3 log 4ε
(τ ′0 + 1)2 + x′20

.

(3.18)

Notice that the last term corresponds to the cut-offs at the endpoints (τ0, x0) and (τ0,−x0).
Now, if the first choice in the “min” is picked, the extremal condition ∂x1Sgen(A,B) =
c
3

1
x1

= 0 as well as ∂y1Sgen(A,B) = − c
3

1
y1

= 0 has no solution. If the second choice is picked,
we can find that the extremization procedure givesy1 = τ0

x1 = x0 .
(3.19)

Combined with the area term (3.17), it thus gives the island result of the entropy,

Sisland = c

3arctanh sin θ + c

3 log 2(x′0
2 + τ ′0

2 − 1)l
cos θεεy

. (3.20)

To summarize in (X,T ) coordinates,

Sno island/island =


c

3

(
log 2 coshT

ε
+X0

)
, T < TP

c

3

(
log e

2X0 − 1
ε

+ arctanh sin θ + log 2l
εy cos θ

)
, T > TP ,

(3.21)

which is exactly the same as (3.14). Similarly, it can also be checked that the second choice
in (3.18) is indeed the minimum after the Page time.
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Figure 11. Strip interval (deep grey region) in BCFT.

4 Entanglement entropy for a strip in BCFTd

From now on, we study defect extremal surface and island in higher dimensions. The study
of higer dimensional island is initiated in paper [29], in which the island phase and no-island
phase are discovered in higher dimensions. And in paper [67], the authors have studied
island in higer dimensions with the bath to be gravitational. For non-gravitational bath,
they obtain a page curve for eternal black hole in higher dimensions, which will be our task
in next section.

We first look at the entanglement entropy for a strip in half-space BCFTd defined on
x > 0.3 The left boundary of the strip is at (x = 0, τ1) and the right boundary A is at
(x1, τ1). The holographic dual of the BCFT is given by AdSd+1 with an EOW brane. The
metric describing an AdSd+1 is given by

ds2 = l2
dτ2 + dx2 + dz2 + d~u2(= du2

1 + · · ·+ du2
d−2)

z2 , (4.1)

with the bulk region given by x+ z tan θ > 0. The EOW brane in the AdS is located at
x = −z tan θ. To proceed the calculation, we also cut off the strip in the ui directions, more
explicitly, −L/2 < ui < L/2, i = 1, 2, · · · , d− 2. The strip is shown in figure 11.

4.1 Bulk DES result

We use the DES formula to calculate the entropy. It consists of an area term Sarea of the
extremal surface and a bulk term Sdefect contributed by the entropy on the brane. In the
present case with a translation symmetry in the direction of ui, i = 1, 2, · · · , d − 2, the
region for Sdefect is also a strip with the boundaries at (ya, τa) (recall that the coordinate y
is related to z and x as (2.4)), which is connected with A by the extremal surface. From

3This BCFT should be distinguished from that in the previous section since it is static.
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the reflection symmetry Sgen(ya, τa) = Sgen(ya, 2τ1 − τa), we deduce that τa = τ1. Then, we
can write the generalized entropy as a function of ya, i.e.

Sgen(ya) = SRT(ya) + Sdefect(ya) . (4.2)

For the first term, we have [101]

4G(d+1)
N SRT(ya) = ld−1

d− 2

(
L

ε

)d−2
+
√
π

2d− 2
Γ( 2−d

2d−2)
Γ( 1

2d−2)
ld−1

(
L

z∗

)d−2

+ ηld−1Ld−2
ˆ z∗

ya cos θ
dz

zd−1
∗

zd−1
√
z2d−2
∗ − z2d−2

,

(4.3)

where z∗ as a function of ya is the turning point of the RT surface (or its extension) and
η = ±1 depends on whether the turning point is on the RT surface or on the extension. Note
that the first two terms correspond to half of the full RT surface ending on the asymptotic
boundary and the last term is for the rest part. The integral turns out to be

1
zd−2
∗ (d− 2)

[(
ya cos θ
z∗

)2−d
F

(
1
2 ,−

d− 2
2(d− 1) ; d

2(d− 1) ;
(
ya cos θ
z∗

)2d−2)

− F
(1

2 ,−
d− 2

2(d− 1) ; d

2(d− 1) ; 1
)]

,

(4.4)

where F denotes the hypergeometric function 2F1 for short. The relation between ya and
z∗ can be found by integrating the differential equation for the RT surface as follows.

dz

dx
=

√
z2d−2
∗ − z2d−2

zd−1

⇒
ˆ z∗

ya cos θ
dz

zd−1√
z2d−2
∗ − z2d−2

= |x(z∗) + ya sin θ|

⇒ −z∗
d

[(
ya cos θ
z∗

)d
F

(
1
2 ,

d

2(d− 1) ; 3d− 2
2(d− 1) ;

(
ya cos θ
z∗

)2(d−1))

− F
(1

2 ,
d

2(d− 1) ; 3d− 2
2(d− 1) ; 1

)]
= η

(
x1 −

√
πΓ( d

2d−2)
Γ( 1

2d−2)
z∗ + ya sin θ

)
.

(4.5)

From the above equation we can see that η = sign(x1 −
√
πΓ( d

2d−2 )
Γ( 1

2d−2 ) z∗ + ya sin θ). Now we

replace the variables ya and z∗ with wa ≡ ya cos θ
z∗

and va ≡ 1
z∗
. Then, the above equation

simplifies to

va = − η

x1d

[
wdaF

(1
2 ,

d

2(d− 1) ; 3d− 2
2(d− 1) ;w2(d−1)

a

)
− F

(1
2 ,

d

2(d− 1) ; 3d− 2
2(d− 1) ; 1

)]

+
√
πΓ( d

2d−2)
x1Γ( 1

2d−2)
− wa tan θ

x1
,

(4.6)

which gives va as a function of wa.
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Now, we can calculate Sdefect in a similar way since the defect theory on the brane
is also a BCFT, which has no boundary degree of freedom. Note that the background
is curved and in order to bring this effect in, one can calculate Sdefect holographically by
replacing the flat space cut off εy with geodesic cut off Ωεy where Ω is the conformal factor.
By taking εy → Ωεy = ya cos θεy

l , one can get

Sdefect(ya) = 1
4G(d+1)

N

 ld−1

d−2

(
Ll

ya cosθεy

)d−2

+
π
d−1

2 Γ( 2−d
2d−2)Γ( d

2d−2)d−2
ld−1Ld−2

(2d−2)Γ( 1
2d−2)d−1

yd−2
a

 . (4.7)

Combining (4.3) with (4.7), we rewrite the generalized entropy in terms of wa as

Sgen = 1
4G(d+1)

N

{
ld−1

d− 2

(
L

ε

)d−2
+
√
π

2d− 2
Γ( 2−d

2d−2)
Γ( 1

2d−2)
ld−1(Lva)d−2

+ η
ld−1Ld−2vd−2

a

d− 2

[
w2−d
a F

(1
2 ,−

d− 2
2(d− 1) ; d

2(d− 1) ;w2d−2
a

)

− F
(1

2 ,−
d− 2

2(d− 1) ; d

2(d− 1) ; 1
)]

+ ld−1

d− 2

(
Llva
waεy

)d−2

+
π
d−1

2 Γ( 2−d
2d−2)Γ( d

2d−2)d−2
ld−1Ld−2vd−2

a cos θd−2

(2d− 2)Γ( 1
2d−2)d−1

wd−2
a

}
,

(4.8)

with wa to be varied. Then SDES is calculated as

SDES = min
wa

Sgen(wa) . (4.9)

Notice that unlike 2 dimensional BCFT, the entanglement due to the defect theory on the
brane will shift the Ryu-Takayanagi surface.

4.2 Boundary island result

Now we compute the entropy of the strip from the boundary point of view, where the
brane CFT is coupled to gravity. In this set-up, the gravitational region is at x < 0 where
we identify x with −y, and the non-gravitational region is at x > 0. So the metric is
ds2 = Ω−2(x)(dτ2 + dx2 + d~u2) in which the warped factor is

Ω(x) =

1, x > 0
−x cos θ

l , x < 0
. (4.10)

In the formula of the entropy, we will holographically calculate the matter term in an
AdSd+1 with the cut off at z = εΩ(x) when x > 0 and z = εyΩ(x) when x < 0. The matter
term receives a strip contribution on the brane with the boundaries at (xa, τa) (xa < 0).
This boundary brings an area term, i.e.

Sarea = Ld−2

4G(d)
N

(
l

cos θ

)d−2 1
|xa|d−2

= ld−1

4G(d+1)
N

Ld−2

|xa|d−2

ˆ θ

0
cos1−d θ′dθ′ .

(4.11)
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Note that in the second step the Newton constant on the brane G(d)
N has been replaced by

the bulk one G(d+1)
N through the brane-world holography [69].

For the matter term Smatter(xa, τa), holographically it can be calculated with an RT
surface connecting (x1, τ1) with (xa, τa). Since Smatter(xa, τa) = Smatter(xa, 2τ1 − τa) due to
the reflection symmetry and Sarea has no dependence on τa, we can know that τa = τ1.

Now we write explicitly Smatter(xa, τ1). It is

Smatter(xa, τ1) = 1
4G(d+1)

N

 ld−1

d− 2L
d−2

(
1

(εΩ(x1))d−2 + 1
(εyΩ(xa))d−2

)

− 2d−1π
d−1

2 ld−1

d− 2

(
Γ( d

2d−2)
Γ( 1

2d−2)

)d−1 (
L

x1 − xa

)d−2


= 1
4G(d+1)

N

 ld−1

d− 2L
d−2

(
1

εd−2 + ld−2

(εy|xa| cos θ)d−2

)

− 2d−1π
d−1

2 ld−1

d− 2

(
Γ( d

2d−2)
Γ( 1

2d−2)

)d−1 (
L

x1 + |xa|

)d−2
 .

(4.12)

Then, the generalized entropy becomes

Sgen(|xa|) = Sarea + Smatter

= ld−1

4G(d+1)
R

Ld−2

|xa|d−2

ˆ θ

0
cos1−d θ′dθ′ + ld−1Ld−2

4G(d+1)
N

 1
(d− 2)εd−2

− 2d−1π
d−1

2

d− 2

(
Γ( d

2d−2)
Γ( 1

2d−2)

)d−1
1

(x1 + |xa|)d−2

 ,
(4.13)

where we have renormalized the Newton constant G(d+1)
R in the area term to incorporate

the UV cutoff in the gravitational region. The extremization condition gives

0 = ∂|xa|Sgen(|xa|) = − l
d−1Ld−2

4G(d+1)
R

|xa|1−d(d− 2)
ˆ θ

0
cos1−d θ′dθ′

+ ld−1Ld−2

4G(d+1)
N

(x1 + |xa|)1−d2d−1π
d−1

2

(
Γ( d

2d−2)
Γ( 1

2d−2)

)d−1

.

(4.14)

And the solutions are

1
|xa,1|

= 0, 1
|xa,2|

= 1
x1


(
G

(d+1)
R

G
(d+1)
N

) 1
d−1 2π1/2 Γ( d

2d−2 )
Γ( 1

2d−2 )(
(d− 2)

´ θ
0 cos1−d θ′dθ′

) 1
d−1
− 1

 . (4.15)

When the second solution xa = xa,2 exists, namely

(d− 2)
ˆ θ

0
cos1−d θ′dθ′ <

G
(d+1)
R

G
(d+1)
N

(
2π1/2 Γ( d

2d−2)
Γ( 1

2d−2)

)d−1

, (4.16)
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Figure 12. Entropy difference divided by SDES with respect to x1.

we find ∂|xa|Sgen(|xa|) > 0 for |xa| ∈ (|xa,2|,∞). It implies the second solution is the
minimal point. Plugging the solutions into (4.13), we finally get

Sno island/island =


ld−1Ld−2

4G(d+1)
N

1
(d− 2)εd−2 , θ > θc

Sgen(|xa,2|), θ < θc,

(4.17)

with θc the critical angle of the inequality (4.16).

4.3 Comparison between DES result and island result

In this section we compare the result obtained from DES and island calculation. In island
side, one can get an analytical solution for the extremal point as well as the entropy.
However, in general it is hard to get an analytical solution in DES side. Therefore we give
numerical comparison for DES and island result. We choose d = 4, l = 1, G(5)

N = G
(5)
R ,

ε = 0.1 and the variables are x1 and θ respectively. Notice that comparing with boundary
island result, there is an extra free parameter εy in DES. Demanding that the island
boundary in island calculation is the same as that in DES on the brane, one can fix the
value of εy. This matching condition is physical, because otherwise there will be a mismatch
from the viewpoint of entanglement wedge. Thus by imposing the matching condition and
choose x1 and θ properly we get the numerical result of DES. The comparison between
DES and island result when θ = 0.05 and x1 ∈ [0.8, 1.4] are shown in figure 12. With x1 = 1
fixed and θ ∈ [0.03, 0.15] as the variable, the data and diagram for DES and island result
are shown in figure 13.

From the numerical result, one can see that the entropy calculated by DES is always
smaller than the entropy obtained from island calculation.
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Figure 13. Entropy difference divided by SDES with respect to θ.

5 Entanglement entropy for a ball in BCFTd

Now we consider a d− 1-dimensional time slice of BCFTd which has a spherical boundary
r′ = 1 (where ~r′ = (x′1, x′2, · · ·x′d−1) are the Cartesian coordinates). The holographic dual
of the BCFT is an AdSd+1 with an EOW brane located at (z′ + tan θ)2 + r′2 = sec2 θ. The
cut off where the BCFT lives is z′ = ε. Note that under the conformal transformations

x1 = 2(r′2 + z′2 − 1)
r′2 + z′2 + 2x′1 + 1

xi>1 =
4x′i>1

r′2 + z′2 + 2x′1 + 1

z = 4z′

r′2 + z′2 + 2x′1 + 1 ,

(5.1)

which preserves the metric, the boundary is mapped to a d − 2-dimensional hyperplane
x1 = 0 and the EOW brane is mapped to a d− 1-dimensional hyperplane x1 = −z tan θ. In
the rest of this section, we will calculate the entanglement entropy of a subregion bounded
by a d− 2-sphere r′ = r′0 and we take d = 4 as an example.

5.1 Bulk DES result

The proposal of defect extremal surface formula is (2.7). In general there are two phases of
the extremal surface. One does not intersect with the EOW brane while the other does. In
the former phase, no defect contribution would be included as shown in figure 14, and the
entropy is given by the RT surface [101]

SDES = πl3

2G(5)
N

((
r′0
ε

)2
− log r

′
0
ε

)
. (5.2)
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Figure 14. The phase that extremal surface does not intersect with the EOW brane.

For the phase where the extremal surface intersects with the brane, one should also add the
contribution of CFT matter on the brane to the generalized entropy functional. We assume
that the extremal surface intersects the brane at (z′1, r′1) where z′1 =

√
sec2 θ − r′21 − tan θ

according to the equation for the EOW brane. Then the area of a tube anchoring on r′ = r′0
and r′ = r′1 is given by the functional

A = 4πl3
ˆ r′0

r′1

dr′

√
1 +

(
dz′

dr′

)2 r′2

z′3
, (5.3)

where z′ is a function of r′. With the change of variables r′ = eζP√
1+P 2 and z′ = eζ√

1+P 2 ,4 the
endpoints (r′0, ε) and (r′1, z′1) are mapped to

P0 = r′0
ε
→∞, ζ0 = log r′0 ,

P1 = r′1
z′1
, ζ1 = 1

2 log(r′21 + z′21 ) ,
(5.4)

and the functional becomes

A = 4πl3
(ˆ P0

P∗

+η
ˆ P1

P∗

)
dP

√
1 + (P 2 + 1)2

(
dζ

dP

)2 P 2
√

1 + P 2
, (5.5)

where P∗ is the turning point of the RT surface or its extension and η = ±1 depending on
whether ζ(P∗) > ζ1 or not.

Since the Lagrangian has no explicit dependence on ζ, it gives a constant of motion

P 2
∗

√
1 + P 2

∗ =
P 2(1 + P 2)3/2 dζ

dP√
1 + (1 + P 2)2

(
dζ
dP

)2
. (5.6)

4Note that the following analysis of the tube RT surface is similar to [102], where d = 2 though.
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Therefore,

ζ0 − ζ1 =
(ˆ ∞

P∗

+η
ˆ P1

P∗

)
dP

P 2
∗
√

1 + P 2
∗

(1 + P 2)
√
P 4(1 + P 2)− P 4

∗ (1 + P 2
∗ )
, (5.7)

from which P∗ can be solved with given r′1 (Note that in most cases there are more than one
solutions, and we should pick the one which gives the smallest RT surface). Furthermore,
from this formula we can determine η, i.e.

η =


1,

ˆ ∞
P∗

dP
P 2
∗
√

1 + P 2
∗

(1 + P 2)
√
P 4(1 + P 2)− P 4

∗ (1 + P 2
∗ )

< ζ0 − ζ1

− 1, otherwise.
(5.8)

By substituting (5.6) back into (5.5) we can calculate the RT term

SRT(r′1) = A

4G(5)
N

= πl3

G
(5)
N

(ˆ P0

P∗

+η
ˆ P1

P∗

)
dP

P 4√
P 4(1 + P 2)− P 4

∗ (1 + P 2
∗ )
.

(5.9)

For the defect entropy, namely the entropy of the brane subregion bounded by (z′1, r′1),
we compute it holographically. The curved background can be recovered by picking the
geodesic cut-off properly. To see this, we first look at the induced metric ds2

Q on the brane.
Similar to the second term in (2.5), with the coordinate transformation

x1 = y sin θ
−z = y cos θ ,

(5.10)

we can write the induced metric as

ds2
Q = l2

cos2 θ

dy2 + dx2
2 + dx2

3
y2 . (5.11)

Now, to recover the metric (5.11) from a dual AdS4, we pick the cut-off at

zQ = −εyy cos θ , (5.12)

where zQ denotes the radial coordinate of the dual AdS4.
To calculate the defect entropy, it is convenient to do in prime coordinates since the

boundary of the brane subregion is spherical. Similar to (5.1), we use the coordinate
transformations

y =
2(r′2Q + z′2Q − 1)

r′2Q + z′2Q + 2x′1,Q + 1

xi>1 =
4x′i>1,Q

r′2Q + z′2Q + 2x′1,Q + 1

zQ =
4z′Q

r′2Q + z′2Q + 2x′1,Q + 1
,

(5.13)
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in which ~r′Q = (x′1,Q, x′2,Q, x′3,Q). With the coordinate changes, the cut-off (5.12) becomes5

z′Q =
εy cos θ(1− r′2Q)

2 . (5.14)

Note that by combining (5.1), (5.10) and (5.13), we can solve that on the EOW brane
(z′Q → 0) the relation between ~r′ and ~r′Q is

~r′ = 2~r′Q
1 + r′2Q + (1− r′2Q) sin θ

. (5.15)

The matter on the brane is a BCFT on curved background with zero boundary entropy,
thus from AdS/BCFT one can determine the location of the bulk brane of this BCFT to be
z′2Q + r′2Q = 1 (i.e. θ = 0). When changed to (P, ζ) coordinate, it is simply ζ = 0. Like flat
space BCFT, the RT surface have two phases, one doesn’t intersect with the bulk brane,
the other does. For the former phase, one can simply use the geodesic cut off (5.14) to
replace the flat space cut off in (5.2) and the result is

S
(0)
defect = πl3

2G(5)
N

( 2r′1,Q
εy cos θ(1− r′1,Q

2)

)2

− log
2r′1,Q

εy cos θ(1− r′1,Q
2)

 . (5.16)

For the later phase, by noticing that RT surface is orthogonal to the bulk brane at their
intersection point, the derivative dP

dζ at the intersection point is determined to be zero which
means that the endpoint of RT surface is just its turning point. Thus, similar to (5.9)

Sdefect = Ã

4G(5)
N

= πl3

G
(5)
N

ˆ Pεy (r′1)

P̃∗

dP
P 4√

P 4(1 + P 2)− P̃∗
4(1 + P̃∗

2)

= πl3

G
(5)
N

ˆ ∞
P̃∗

dP

 P 4√
P 4(1 + P 2)− P̃∗

4(1 + P̃∗
2)
− P 2
√

1 + P 2


+
ˆ Pεy (r′1)

P̃∗

dP
P 2

√
1 + P 2


= πl3

G
(5)
N

ˆ ∞
P̃∗

dP

 P 4√
P 4(1 + P 2)− P̃∗

4(1 + P̃∗
2)
− P 2
√

1 + P 2


− 1

2 P̃∗
√

1 + P̃∗
2 + 1

2arcsinhP̃∗

+ 1
2

(
2r′1,Q

εy cos θ(1− r′1,Q
2)

)2

− 1
2 log

2r′1,Q
εy cos θ(1− r′1,Q

2)


= S̃defect + S

(0)
defect ,

(5.17)

5Or Pεy (r′) =
2r′Q

εy cos θ(1−r′2
Q

) in coordinates (PQ, ζQ) with r′Q = e
ζQPQ√

1+P2
Q

and z′Q = e
ζQ√

1+P2
Q

(we will ignore

the label Q for (PQ, ζQ) below).
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Figure 15. Plot of defect entropy (5.17) (subtracting the UV divergent terms which does not
depend on P̃∗ explicitly) in the unit of πl3

G
(5)
N

with respect to r′1,Q. The arrows denote the increasing

direction of P̃∗.

where P̃∗ denotes the turning point of bulk surface that ends at P1 and P̃∗. In the last step
we have extracted the finite part S̃defect(r′1). Notice that by integrating the constant of
motion (5.6), we can determine P̃∗ from r′1,Q

r′1,Q = exp

− ˆ ∞
P̃∗

dP
P̃∗

2
√

1 + P̃∗
2

(1 + P 2)
√
P 4(1 + P 2)− P̃∗

4(1 + P̃∗
2)

 , (5.18)

which in general is not single-valued. However, as shown in figure 15, the larger value of P̃∗
gives a smaller defect entropy. Also note that when r′1,Q < 0.73693 this phase disappears.

Then the defect entropy is given by

Sdefect = S
(0)
defect + min

{
0, S̃defect

}
. (5.19)

And the generalized entropy is

Sgen(r′1) = SRT(r′1) + Sdefect . (5.20)

By extremizing the generalized entropy functional, the entropy is eventually obtained as

SDES = min
{

πl3

2G(5)
N

((
r′0
ε

)2
− log r

′
0
ε

)
,min
r′1

{Sgen(r′1)}
}
. (5.21)
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5.2 Boundary island result

Now we rederive the entropy of the same subregion from the boundary point of view. In the
boundary description, the brane CFT matter complements the BCFT in the flat region with
a transparent boundary condition. More specifically, we redefine that x1 = y when x1 < 0.

We compute the entropy of CFT holographically. By tuning the cut-off of the dual
AdS, we can recover the CFT on the curved background. Just the same as (5.14), in the
coordinate system (r′, z′) the cut-off for the gravitational region r′ < 1 is

z′ = εy cos θ(1− r′2)
2 . (5.22)

Similar to DES, there are two possible phases in the island computation, one of which
contains no contribution from the brane while the other does. Without contribution from
the brane, the entropy is just the matter entropy [101]

Sno island = Smatter(r′0) (5.23)

= πl3

2G(5)
N

((
r′0
ε

)2
− log r

′
0
ε

)
, (5.24)

which is the same as (5.2).
Since the brane CFT is coupled to gravity, there is also a possibility that the matter

term receives a subregion contribution on the brane bounded by a 2-sphere r′ = r′1. The
boundary will also bring an area term, i.e.

Sarea = πr′21

G
(4)
N

( 2l
(1− r′21 ) cos θ

)2
(5.25)

= 2πr′21
G

(5)
N

l3

(1− r′21 )2

(
arctanh sin θ + sin θ

cos2 θ

)
. (5.26)

Note that in the second step the Newton constant on the brane G(4)
N has been replaced by

the bulk one G(5)
N through the partial Randall-Sundrum [69].

For the matter term Smatter(r′1), holographically there are two phases of the RT surface.
It is either disconnected or connected. The former phase should be abandoned because it is
strictly larger than (5.23). For the later case, the area of a tube anchoring on r′ = r′0 and
r′ = r′1 is given by the functional

A = 4πl3
ˆ r′0

r′1

dr′

√
1 +

(
dz′

dr′

)2 r′2

z′3
, (5.27)

which is the same as (5.3) in the bulk calculation (although the boundary z′(r′1) is different).
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Similarly, we minimize the functional and get the matter term

Smatter(P∗) = A

4G(5)
N

= πl3

G
(5)
N

(ˆ P0

P∗

+
ˆ Pεy

P∗

)
dP

P 4√
P 4(1 + P 2)− P 4

∗ (1 + P 2
∗ )

= 2πl3

G
(5)
N

ˆ ∞
P∗

dP

(
P 4√

P 4(1 + P 2)− P 4
∗ (1 + P 2

∗ )
− P 2
√

1 + P 2

)

+ πl3

G
(5)
N

(ˆ P0

P∗

+
ˆ Pεy

P∗

)
dP

P 2
√

1 + P 2

= 2πl3

G
(5)
N

ˆ ∞
P∗

dP

(
P 4√

P 4(1 + P 2)− P 4
∗ (1 + P 2

∗ )
− P 2
√

1 + P 2

)

+ πl3

2G(5)
N

(
r′20
ε2
− log r

′
0
ε

+ 4r′21
ε2y cos2 θ(1− r′21 )2 − log 2r′1

εy cos θ(1− r′21 )

)

− πl3

G
(5)
N

(P∗
√

1 + P 2
∗ − arcsinhP∗) .

(5.28)

where P0(εy) is the cut-off at r′ = r′0(1), i.e.

P0 = r′0
ε
,

Pεy = 2r′1
εy cos θ(1− r′21 )

,
(5.29)

and r′1 can be expressed in terms of P∗ by integrating (5.6)

r′1 = r′0 exp
(
−2
ˆ ∞
P∗

dP
P 2
∗
√

1 + P 2
∗

(1 + P 2)
√
P 4(1 + P 2)− P 4

∗ (1 + P 2
∗ )

)
. (5.30)

Combined with the area term, it gives the generalized entropy

Sgen(P∗) = Sarea + Smatter

= 2πr′21
G

(5)
R

l3

(1− r′21 )2

(
arctanh sin θ + sin θ

cos2 θ

)

+ 2πl3

G
(5)
N

ˆ ∞
P∗

dP

(
P 4√

P 4(1 + P 2)− P 4
∗ (1 + P 2

∗ )
− P 2
√

1 + P 2

)

− πl3

G
(5)
N

(P∗
√

1 + P 2
∗ − arcsinhP∗) + πl3

2G(5)
N

(
r′20
ε2
− log r

′
0
ε

)
.

(5.31)

Note that we have renormalized the Newton constant G(5)
N to G(5)

R . To get the final entropy,
we need to extremize Sgen(P∗) with respect to P∗. To summarize,

Sno island/island = πl3

2G(5)
N

(
r′20
ε2
− log r

′
0
ε

)
+ min

{
0,min

P∗
S̃gen(P∗)

}
, (5.32)

where S̃gen(P∗) denotes Sgen(P∗) with the last term subtracted.
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Figure 16. Plot of the entropy difference divided by SDES. We pick 1
G

(5)
R

= 2
G

(5)
N

, θ = 0.1 and
ε = 0.05.

5.3 Comparison between DES result and island result

In this subsection we compare the entropy computed by DES formula and that by island
formula numerically. To proceed, we determine the cut-off εy in the DES side by demanding
that the two formulae give the same extremal points (surfaces) on the brane. In other
words, the extremal values of r′1 are related to each other by (5.15), where r′Q is r′1 in the
island result subsection.

When defect extremal surface intersects with the brane, the generalized entropy (5.20)
gives the extremal equation

dr′1
dr′1,Q

S′RT(r′1)+S̃′defect(r′1,Q)+ πl3

2G(5)
N

(
−

8r′1,Q(1+r′21,Q)
ε2y cos2 θ(r′21,Q−1)3−

1+r′21,Q
r′1,Q(1−r′21,Q)

)
= 0 , (5.33)

where the last term on the left side comes from the UV divergent term S
(0)
defect(r′1,Q). Then

by plugging in the extremal value of r′1, one can solve that

εy =

 πl3

2G(5)
N

8r′1,Q(1 + r′21,Q)
cos2 θ(r′21,Q − 1)3

1
dr′1
dr′1,Q

S′RT(r′1) + S̃′defect(r′1,Q)− πl3

2G(5)
N

1+r′21,Q
r′1,Q(1−r′21,Q)


1
2

. (5.34)

Inserting the solution of εy back in (5.21), we finally get the DES entropy. In figure 16 and 17,
we plot the difference between the entropy achieved from the two formulae numerically,
divided by SDES. It can be seen that DES formula gives a smaller value.
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Figure 17. Plot of the entropy difference divided by SDES. We pick 1
G

(5)
R

= 2
G

(5)
N

, r′0 = 1.015 and
ε = 0.05.

6 Conclusion and discussion

In this paper we studied defect extremal surface in time dependent AdS/BCFT as well as
in higher dimensions. Defect extremal surface as the holographic counterpart of the island
formula in the context of static defect AdS/CFT, has been proposed in [69]. In the present
work we focus on the validity of defect extremal surface formula in dynamical cases and
found that it gives the same Page curve as the boundary island formula in AdS3/BCFT2.
The derivation relies on a decomposition procedure of the AdS bulk with a brane proposed
in [69]. An effective theory including both gravity region and flat space QFT naturally
appears, because we do reduction for one part of the bulk using partial Randall-Sundrum
and dualize the remaining part of the bulk by traditional AdS/CFT. In the present
work, we extend the partial Randall-Sundrum+AdS/CFT procedure to higher dimensions
and compare the entanglement entropy computed from bulk defect extremal surface and
boundary island formula. Unlike the precise agreement found in 2d, we found that defect
extremal surface gives a smaller entropy in all cases we have checked. We understand this
as a consequence of the partial Randall-Sundrum reduction we employ, which basically
transforms the microscopic entropy such as some part of Ryu-Takayangagi surface, to the
Bekenstein-Hawking area entropy and therefore increases it by some amount. It would be
interesting to understand further how this coarse-graining changes the prescription from
DES to the island rule. In particular, these two entropies are the same in AdS3/BCFT2.
We expect that a more refined reduction procedure, such as considering all Kaluza-Klein
contributions in the partial reduction, will perhaps resolve the discrepancy. It is also worth
to consider the defect extremal surface as the UV completion of the island formula, which
will be useful in clarifying the gravity/ensemble puzzle both in 2d and higher dimensions.
We leave these questions for future work.
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A Page curve for eternal black hole in BCFTd

There is a higher-dimensional generalization of the eternal black hole in section 3, where the
BCFTd has a cylinder boundary S×Rd−2. More specifically, the boundary is at x2

1 + τ2 = 1
with no restriction on xi, i = 2, · · · , d− 1. The AdSd+1 dual has an EOW brane located at

(z + tan θ)2 + x2
1 + τ2 = sec2 θ . (A.1)

This is the same equation as that in section 3, but now the EOW brane has more dimensions
xi, i = 2, · · · , d− 1. It is supported by certain stress energy tensor following the Neumann
boundary condition (2.2). Once the embedding function of the EOW brane is given, one
can directly compute the induced metric and the extrinsic curvature, thus derive the stress
energy tensor. One can also check null energy condition for the stress tensor. To illustrate,
we give an example of d = 3 with AdS radius taken to be 1. The embedding function is

f = (z + tan θ)2 + x2
1 − t2 − sec2 θ = 0. (A.2)

Thus the normal vector na = ∂f
∂xa (toward the outside direction) is

nt = t cos θ
z

, (A.3)

nz = −z cos θ + sin θ
z

, (A.4)

nx1 = −x1 cos θ
z

, (A.5)

nx2 = 0. (A.6)

The induced metric given by hab = gab − nanb is

htt = 1
z2 −

t2 cos2 θ

z2 , (A.7)

htx1 = hx1t = tx1 cos2 θ

z2 , (A.8)

htz = hzt = t cos θ(z cos θ + sin θ)
z2 , (A.9)

hx1x1 = 1
z2 −

x2
1 cos2 θ

z2 , (A.10)

hx1z = hzx1 = −x1 cos θ(z cos θ + sin θ)
z2 , (A.11)

hzz = 1
z2 −

(z cos θ + sin θ)2

z2 , (A.12)

hx2x2 = 1
z2 , (A.13)
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with other components vanishing. The extrinsic curvature can be calculated as
Kab = hcah

d
b∇cnd and K = habKab. Then one can obtain the stress energy tensor as

Tab = 1
8πGN

[
K

(h)
ab − habK(h)

]
. Now we check whether this Tab satisfies null energy con-

dition TabNaN b ≥ 0, where Na is arbitrary null vector. In present case, one can choose
Na =

(
1, 0, tx ,−

√
x2−t2
x

)
. It’s easy to check that Na satisfies Nana = 0 and NaNa = 0,

thus it is indeed a null vector on the brane. One can therefore check6

TabN
aN b = (x− t)(t+ x) cos θ

x2z
≥ 0. (A.14)

By noting that the null vector is real, this inequality is true for θ ∈ [0, π2 ] and z > 0.
The cut off where the BCFT lives is z = ε. Like what we did in section 3, now we

consider a subregion of the bath bounded by (τ, x1) = (τ0, x0) and (τ0,−x0), with the other
coordinates freely extended. To proceed the calculation of the entanglement entropy, we
will cut off such that −L/2 < xi < L/2, i = 2, · · · , d− 1. Similar to section 3, eventually
we will rotate to coordinate system (T,R) with the transformations given by

x1 = eR cosh T, τ = ieR sinh T . (A.15)

A.1 Early-time phase

Now we compute the entropy for the chosen subregion of the bath. There are two possible
phases, i.e., the connected phase and the disconnected phase. The connected one does not
include contribution from the brane, so the entropy is just the matter entropy, i.e. [101]

S(R0, T ) = 1
4G(d+1)

N

2ld−1

d− 2
Ld−2

εd−2 −
2d−1π

d−1
2 ld−1

d− 2

(
Γ( d

2d−2)
Γ( 1

2d−2)

)d−1 (
L

2x0

)d−2


= 1
4G(d+1)

N

2ld−1

d− 2
Ld−2

εd−2 −
2d−1π

d−1
2 ld−1

d− 2

(
Γ( d

2d−2)
Γ( 1

2d−2)

)d−1 (
L

2eR0 cosh T

)d−2
 .

(A.16)

A.2 Late-time phase

In the disconnected phase, we only consider the entropy without defect contribution, i.e.
the RT surface. The RT surface ends on the brane at (τa,−x1,a, za) and (τa, x1,a, za). Since
the two disconnected RT surfaces are identical, we will just look at one of them, e.g. the
one ending on (τa, x1,a, za) and (τ0, x0, ε). With the coordinate transformations τ = r sin TE
and x1 = r cosTE ,7 we rewrite the endpoint on the brane as (TE,a, ra, za). Note that za is a
function of ra from the equation (A.1), more specifically,

za =
√

sec2 θ − r2
a − tan θ . (A.17)

6The stress tensor Tab is computed by mathematica code which has partially used the package named
diffgeo.m written by Matthew Headrick, see [103].

7By comparing it with (A.15), one can find the relation that r = eR and TE = iT .
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From the symmetry of TE → 2TE(τ0, x0) − TE , we deduce that the RT surface is in the
slice TE = TE(τ0, x0). To be the minimal, the RT surface should intersect the brane
perpendicularly, which gives the condition that

dz

dx
= za + tan θ

ra

=
√

sec2 θ − r2
a

ra
.

(A.18)

Combining it with the first equation in (4.5), we solve that

z∗ = za

(sec θ
ra

) 1
d−1

. (A.19)

And similar to (4.3), the area of the RT surface is

A = ld−1Ld−2
{

1
(d− 2)εd−2 +

√
π

2d− 2
Γ( 2−d

2d−2)
Γ( 1

2d−2)zd−2
∗

+ 1
zd−2
∗ (d− 2)

[(
za
z∗

)2−d
F

(
1
2 ,−

d− 2
2(d− 1) ; d

2(d− 1) ;
(
za
z∗

)2d−2
)

− F
(1

2 ,−
d− 2

2(d− 1) ; d

2(d− 1) ; 1
)]}

.

(A.20)

The value of ra can be determined by solving an equation as in (4.5), namely

r1 = −z∗
d

[(
za
z∗

)d
F

(
1
2 ,

d

2(d− 1) ; 3d− 2
2(d− 1) ;

(
za
z∗

)2(d−1)
)

− F
(1

2 ,
d

2(d− 1) ; 3d− 2
2(d− 1) ; 1

)]
+
√
πΓ( d

2d−2)
Γ( 1

2d−2)
z∗ + ra .

(A.21)

Note that (A.20) has no dependence on time T . Finally, the entropy in this phase is

S(R0, T ) = A

2G(d+1)
N

. (A.22)

In figure 18, we plot the entropy which is the minimum of (A.16) and (A.22). We
find that the phase transitions only occur in a small range of θ. When θ is too small, e.g.
θ = 0.159, the late-time phase (A.22) dominates in the beginning and the entropy remains
constant. When θ is too large, e.g. θ = 0.165, the early-time phase (A.16) dominates in the
whole time period.
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Figure 18. The entropy (in the unit of l
d−1Ld−2

4G(d+1)
N

) with respect to time T for d = 4, X0 = 0.1 and

θ = 0.159, 0.161, 0.163, 0.165. We also substract the constant term 2ld−1

d−2
Ld−2

εd−2 .
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