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1 Introduction

AdS/CFT duality [2] is a paradigm shift in our understanding of quantum gravity. This
duality relates a conformal field theory to a theory of gravity in one higher dimension.
In a strict sense there are no local observables in theory of quantum gravity and all the
dynamics are encoded in the boundary (hologram). Though in an effective description
of classical gravity, the notion of locality is well defined as is obvious in our universe.
Therefore emergence of bulk locality is a natural question that people have been curious
about from the beginning days of AdS/CFT. Here we revisit the ideas introduced in [1]
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and look for further evidence in support of this claim. There are two natural length scales
in the problem, the AdS radius R and the string length ls. Now if we consider an effective
field theory in AdS the locality is supposed to hold down till ls. Since R = λ1/4ls and
λ = g2N where N is the number of color in the boundary conformal gauge theory and g is
the coupling constant, it is expected that, for local description λ has to be very large so that
R is parametrically larger than ls. AdS/CFT [2–4], therefore implies that the dimension
of the operators, dual to string excitations, will have large dimensions.1 So a local bulk
theory in AdS will correspond to a perturbative CFT in large central charge (c ∼ N2)
expansion with large gap in the spectrum, i.e., all single trace operators with spin greater
than 2 will have large dimensions.

In [1], the authors made a remarkable conjecture that these implications run in the
opposite direction as well, a CFT with a large gap in the spectrum necessarily is described
by a local bulk dual.2 They studied the crossing equation of four point correlator of a
single trace operator, O, in a theory containing just the single trace operator itself and
its double traces in large central charge expansion (to order O

(
c−1)). There are as many

independent solutions to the crossing equations as there are local bulk counterterms with
the specified support in spin. The independent data of the crossing is encoded in the
anomalous dimensions of the double trace operators On,l = O�n∂µ1∂µ2 · · · ∂µlO − traces.
The number of undetermined anomalous dimensions due to crossing are in agreement
with the number of local counterterms for a given support in spin. The consistency of
the crossing equation therefore requires the existence of a local bulk dual. The explicit
expressions for the anomalous dimensions have also been computed for explicit bulk counter
terms [1, 5]. In [6] the authors have proved the assumptions of [1] from CFT axioms for
the case of identical scalars (see also [7] which arrived at similar bounds motivated from
Regge boundedness of the corresponding Lorentzian CFT correlator). In this present paper
we provide more evidence for this conjecture by considering (d = 4) scalars and (d = 1)
fermions charged under global symmetry. The results for scalars can be extended to any
dimensions using the analytical functions discussed in subsection 2.5.

We consider holographic CFTs of coloured scalars (in d = 4 initially) charged under the
fundamental and adjoint representations of SO(N) and SU(N) respectively. Following [1,
5], we solve the crossing equation of four point correlators to order O(c−1) or O

(
N−2) with

finite support over spin L. We note that the parameter N in the large N expansion of the
correlator is different from the N of SO(N) and SU(N) respectively. We find that for a
fixed spin L support, we can encode the number of undetermined parameters for O

(
c−1)

crossing in terms of partition functions. A comprehensive list of such partition functions
are given in table 1.

We also verify this counting by bootstrapping large c CFTs using analytic function-
als [8, 9]. Construction of analytic functionals in CFTs have been of interest in recent
years [10–15]. In [8], the authors construct analytic functionals for CFTs in d > 1 and re-
late them to Regge bounded Witten diagrams and in [9] it was shown that for holographic
CFTs consisting of just scalars and its double traces, such functionals reproduce the count-

1AdS/CFT dictionary tells us ∆(∆ − d) = m2R2.
2Throughout the text we will denote the bulk dimensions as D, while the boundary dimensions will be

labelled by d.
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Group Representations Spin support: Even and Odd spin
SO(N) Fundamental 1

8 (L+ 2)(3L+ 4), 1
8 (L+ 1)(3L+ 5)

SO(N) Adjoint 1
4 (L+ 2)(3L+ 4), 1

4 (L+ 1)(3L+ 5)
SU(N) Fundamental 3

4L(L+ 2) + 1, 3
4 (L+ 1)2

SU(N) Adjoint 1
4 (L+ 2)(3L+ 4), 1

4 (L+ 1)(3L+ 5)

Table 1. Spin support for bulk contact terms: scalars with global symmetry

Group Representations Derivative support

− − x4b+2

SO(N) Fundamental (1 + 2x2)x4b

Table 2. Bulk contact terms (D = 2): fermions with and without global symmetry

S-matrix Lagrangian S3 representations Module structure

LSO(N),f 3
∑
m,n am,n

∏m
b=1
∏n
c=1 (∂µb∂νcφiφi) (∂µbφj∂νcφj)

L1
SO(N),a 3

∑
m,n am,n

∏m
b=1
∏n
c=1 (∂µb∂νcφijφji) (∂µbφkl∂νcφlk)

L2
SO(N),a 3

∑
m,n am,n

∏m
b=1
∏n
c=1 (∂µb∂νcφij∂µbφjkφkl∂νcφli)

L1
SU(N),a 3

∑
m,n am,n

∏m
b=1
∏n
c=1

(
∂µb∂νcφ

i
jφ
j
i

) (
∂µbφkl ∂

νcφlk
)

L2
SU(N),a 3

∑
m,n am,n

∏m
b=1
∏n
c=1

(
∂µb∂νcφ

i
j∂
µbφjkφ

k
l ∂

νcφli

)
LSU(N),f 6

∑
m,n am,n

∏m
b=1
∏n
c=1

(
∂µb∂νcφi∂

νbφ
i
)(

φj∂
µbφ

j
)

Table 3. Generators of scalar local module with global symmetry.

ing of bulk counterterms in terms of anomalous dimensions. A remarkable achievement is
that, the finite spin support is not an assumption in their analysis but rather an outcome
in trying to bootstrap in this method. We extend their analysis to construct function-
als for scalar correlators with global symmetry and verify the counting of undetermined
anomalous dimensions obtained using usual bootstrap methods.

We also consider flat space S-matrices in D = 2 for massive Majorana fermions charged
under global symmetry which are dual to d = 1 fermions in CFT. In order to solve the
crossing equation, we write down the functionals and the necessary subtractions for d = 1
fermions charged under global symmetry following [15, 16]. The ambiguities obtained can,
similar to the scalars, be encoded in terms of a partition function however with the vital
difference from the higher dimensional case in the sense that the support is over derivatives
rather than spin (See table 2 where exponent of x denotes order of derivatives).

In order to evaluate the bulk contact interaction, we follow the techniques of [17, 18]
to group theoretically evaluate the “local module” for the four point scalar and fermions
charged under global symmetry. As defined in [17], local modules are in one-to-one cor-
respondence with local bulk Lagrangians and are graded by order of derivatives and S3
transformation properties (S2 for D = 2 fermion S-matrices).

We obtain the following module of bulk scalar Lagrangians (table 3). In this table
the entry in the l.h.s. denotes the details of the local Lagrangian (the subscript denotes

– 3 –
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S-matrix Lagrangian S3 representations Spin support

LSO(N),f 3 nI1(L) + nI2(L) + nI3(L)

L1
SO(N),a 3 nI1(L) + nI2(L) + nI3(L)

L2
SO(N),a 3 nI1(L) + nI2(L) + nI3(L)

L1
SU(N),a 3 nI1(L) + nI2(L) + nI3(L)

L2
SU(N),a 3 nI1(L) + nI2(L) + nI3(L)

LSU(N),f 6 nI1(L) + 2nI2(L) + 2nI3(L) + nI4(L)

Table 4. Spin support for scalar S-matrices.

S-matrix Lagrangian Module structure

LF
∑
m,n am,n

∏m
b=1
∏n
c=1(∂µb∂νcψ∂µbψ)(∂νcψψ)

LFSO(N),f
∑
m,n am,n

∏m
b=1
∏n
c=1(∂µb∂νcψi∂µbψj)(∂νcψjψi)

Table 5. Generators of fermion local module w/o global symmetry

the lie group and the irreducible representation: f for fundamental and a for adjoint), the
middle column denotes the S3 transformation property and the right most column denotes
the explicit generator upto a given order (2m + 2n) in derivatives. For (bulk) dimensions
D > 3, we also evaluate the support of the scalar flat space S-matrices (and equivalently
the bulk Lagrangians) over spin. This can be encoded in the form of a partition function
for every bulk Lagrangian corresponding to an irreducible representation of S3. This can
be summarised by the following table 4. In this table the entries in the first two columns
have the same significance as table 3 and the right most column denotes the number of
independent Lagrangians contributing to a spin support L, where

nI1(L) = 1
2

(⌊
L

2

⌋
+ 1

)(⌊
L

2

⌋
+ 2

)
,

nI2(L) = 1
2

(⌊
L− 1

2

⌋
+ 1

)(⌊
L− 1

2

⌋
+ 2

)
,

nI3(L) = 1
2

(⌊
L− 2

2

⌋
+ 1

)(⌊
L− 2

2

⌋
+ 2

)
,

nI4(L) = 1
2

(⌊
L− 3

2

⌋
+ 1

)(⌊
L− 3

2

⌋
+ 2

)
. (1.1)

For the case of coloured fermions in D = 2, we explicitly evaluate the module of local
Lagrangians charged under the fundamental of SO(N) and obtain a perfect match with
the number of functional ambiguities at a particular derivative order. The Lagrangians are
listed in table 5.

The paper is organised as follows, we obtain the solutions to the crossing equation
at O

(
c−1) with finite support in spin for identical scalars (d > 2) with colour (SO(N)

and SU(N) fundamental and adjoint) in section 2. We find independent group theoretic
agreement of scalar bulk contact terms with finite support in spin in subsection 2.3 and

– 4 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
6

also list out the explicit flat-space Lagrangians for the same. We analyse the large N CFT
crossing equations in terms of analytic functionals in subsection 2.5 and find agreement
with results obtained using usual bootstrap. In section 3, we study the solutions of crossing
of d = 1 fermions charged under fundamental of SO(N) using analytic functionals and
derive the number of contact terms required as a function order by order in derivatives.
We match the counting in subsection 3.2 by an independent method of evaluating and
explicitly writing down Lagrangians which generate flat-space Majorana fermion S-matrices
in D = 2 bulk.

2 Scalars with global symmetry in d = 4

In this section we consider crossing of four point functions of scalars and its double traces
charged under a global symmetry group at large central charge [1]. For concreteness we
consider scalars charged under the fundamental and adjoint of SO(N) and SU(N) respec-
tively but in principle these methods can be applied to any lie group. The theory we
consider has no other single trace operator and hence the spectrum consists of just the
single trace coloured scalar and its double traces. We write down the crossing equation
(with finite support in spin) along with the different types of double trace operators being
exchanged. We consider the bulk local operators (charged under the same global symmetry
group) and evaluate the most general contact terms with derivatives.

2.1 Constraints from crossing SO(N)

Let us consider the four point function of identical scalars transforming under fundamental
representation of SO(N),

〈φi(x1)φj(x2)φk(x3)φ`(x4)〉 = Gijk`(u, v)
x

2∆φ

12 x
2∆φ

34
=
∑
R

(
t(R)

)ijk` G(r)(u, v)
x

2∆φ

12 x
2∆φ

34
, (2.1)

where the cross ratios are given by,

u = x2
12x

2
34

x2
13x

2
24
, v = x2

14x
2
23

x2
13x

2
24
, (2.2)

and
(
t(R)

)ijk`
are given by,

(
t(S)

)ijk`
= δijδk`,

(
t(T )

)ijk`
=
(
δikδj` + δi`δjk

2 − 1
N
δijδk`

)
,(

t(A)
)ijk`

= δikδj` − δi`δjk
2 .

(2.3)

The indices R run over the labels which represent the irreducible structures which appear in
the tensor product of two fundamentals of SO(N), we choose to label them by (Singlet (S),
Traceless symmetric (T ), Anti-symmetric (A)) corresponding to the following irreducible
representations, in terms of SO(N) young tableaux(

I , ,
)
.
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The crossing symmetry implies the following constraints [19–24],

Gijk`(u, v) =
(
u

v

)∆φ

Gkji`(v, u), G(µ)(u, v) = Mµν
SO(N),f

(
u

v

)∆φ

G(ν)(v, u), (2.4)

where µ = 1, 2, 3 denotes S, T and A respectively and the crossing matrixMSO(N),f is given
in (A.1). Now we have conformal block decomposition for each sector of the correlator,

G(R)(u, v) =
∑
∆,`

CR∆,` g∆,`(u, v), (2.5)

where R could stand for singlet(S), traceless symmetric(T) or antisymmetric(A) sectors.
Note that throught this section we assume that N is large enough so that we can ignore
specific representations which might appear for low enough N . We show in later in this
section, that this counting works for SO(4) where we have additional structures in the
crossing. The double trace operators corresponding to the different irreducible sectors are
as follows,

O(S)
n,l = φi�

n∂lφi, O(T )
n,l = φ(i�

n∂lφj) −
δij
N
φk�

2n∂lφk, O(A)
n,l = φ[i�

n∂lφj]. (2.6)

Note that the S and T sectors can take on only even values of spin and the A sector has
support only over odd spins. We now study the crossing equation in a large central charge
(c) expansion.

AR(z, z) = AR0 (z, z) + 1
c
AR1 (z, z) + · · · ,

CR(n, `R) = CR0 (n, `R) + 1
c
CR1 (n, `R) + · · · ,

∆R(n, `R) = ∆R
0 (n, `R) + 1

c
γR1 (n, `R) + · · · (2.7)

We want to solve (2.4), order by order in c assuming the ansatz (2.7). Schematically,

AR0 (z, z) = 1 +
∞∑
n=0

∞∑
`=0

CR0 (n, `R)g2∆φ+2n+`R,`R(z, z),

AR1 (z, z) =
∞∑
n=0

∞∑
`=0

(
CR1 (n, `R) + CR0 (n, `R)γ1(n, `R) ∂

∂n

)
g2∆φ+2n+`R,`R(z, z) . (2.8)

Solution for O
(
c0). The Mean field amplitude is given by,

〈φi(x1)φj(x2)φk(x3)φ`(x4)〉 = δijδkl1 + δikδj`u
∆φ + δilδjk

(
u

v

)∆φ

. (2.9)

Decomposing it into irreducible sectors one finds,

G(S)(u, v) = 1 + 1
N

(
u∆φ +

(
u

v

)∆φ
)
, G(T )(u, v) =

(
u∆φ +

(
u

v

)∆φ
)
,

G(A)(u, v) =
(
u∆φ −

(
u

v

)∆φ
)
.

(2.10)

– 6 –
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Assuming that the conformal block decompositions are given by ,

G(R)(u, v) =
∑
∆,`

C
(R)
∆,`g∆,`(u, v), (2.11)

we can solve for C(R)
∆,` . In order to do so, we use (2.8) and the explicit form of the d = 4

blocks listed below.

g∆,` = zz

z − z
(κ (∆ + `, z)κ (∆− `− 2, z)− κ (∆ + `, z)κ (∆− `− 2, z)) ,

κ (x, y) = y
x
2 2F1(x, x; 2x; y). (2.12)

We expand (2.10) and (2.11) in the limit z → 0, z → 0 and solve order by order to get,3

C
(S)
∆,` =

CMFT
n,`

N
, C

(T )
∆,` = CMFT

n,` , C
(A)
∆,` = −CMFT

n,` ,

CMFT
n,` = π(`+ 1)2−4∆φ−2l−4n+7(2∆φ + `+ 2n− 2)Γ(n+ ∆φ − 1)Γ(n+ 2∆φ − 3)Γ(`+ n+ ∆φ)

Γ(∆φ − 1)2Γ(∆φ)2Γ(n+ 1)Γ(`+ n+ 2)Γ
(
n+ ∆φ − 3

2

)
Γ
(
`+ n+ ∆φ − 1

2

)
× Γ(`+ n+ 2∆φ − 2) (2.13)

with ∆ = 2∆φ + 2n + `. We note that only even spins appear in singlet and traceless
symmetric representations whereas only odd spins appear in antisymmetric representation.4

Solution for O
(
c−1). At order O(c−1), we write down the equations which we have to

solve to find anomalous dimension from (2.8) and (2.11). We will focus on the coefficient
of the non-analytic pieces proportional to log z log(1 − z) and restrict ourselves to finite
spin cut-off L.

αµn,l = Mµν
SO(N),f α̃

ν
n,l, (2.14)

where,

αµn,l =
∑
n

L∑
`

C
(µ)
n,` γ

(µ)
n,`

z

1− z
(
zn+`zn−1 F∆φ+n+`(z)F̃∆φ+n−1(1− z)

−(n+ `)↔ (n− 1)
)
,

α̃µn,l =
∑
n

L∑
`

C
(µ)
n,` γ

(µ)
n,`

z − 1
z

(
(1− z)n+`(1− z)n−1F∆φ+n−1(1− z)F̃∆φ+n+`(z)

−(n+ `)↔ (n− 1)
)

(2.15)

and µ = 1, 2, 3 denotes S, T and A respectively and we have used

Fα(x) = 2F1(α, α; 2α;x), F̃α(x) = −Γ(2α)
Γ(α)2 2F1(α, α; 1;x).

3Note that this is differs from the respective answers in [19] by a factor of 2 in the S and T sectors
since they use a different normalisation of the symmetric and anti-symmetric projectors. Also note that the
O(c0) OPE coefficients are negative in certain sectors because of our normalisation of the conformal blocks.

4In general dimensions, we can use the expansions listed in [25] to get CMFT
n,` in general dimensions.
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We now project using orthogonality conditions of the Hypergeometric function,∮
C

dz

2πiz
m−m′−1F∆+m(z)F1−∆−m′(z) = δm,m′ , (2.16)

to give us,

βµp,q = Mµν
SO(N),fβ

ν
q,p , (2.17)

where βµp,q is defined in equation (A.2). The set of equations (2.17) can be solved by
choosing particular values of (p, q) analogous to [1, 5]. We have solved these set of equations
upto a very large order of finite cut-off L and present the pattern below. The number of
undetermined anomalous dimensions can be encoded in the form of a partition function.

ZL=even
CFT,SO(N),f = 1

8(L+ 2)(3L+ 4), ZL=odd
CFT,SO(N),f = 1

8(L+ 1)(3L+ 5). (2.18)

Adjoint scalars of SO(N). In this subsection we consider scalars charged under adjoint
of SO(N). The crossing equation is a bit more intricate and we follow the conventions of [19]
and avoid giving explicit tedious expressions.

〈φi2i1(x1)φj2j1(x2)φk2
k1

(x3)φl2l1(x4)〉 =
∑
r

(tr)i2j2k2l2
i1i2i3i4

G(r)(u, v)
x

2∆φ

12 x
2∆φ

34
, (2.19)

where the tensor structures (tr)i2j2k2l2
i1i2i3i4

have been listed in appendix B of [19] and we do
not reproduce them here. The labels r run over the irreducible representations that oc-
cur in the tensor product of two Adjoints of SO(N), for convenience we label them by
(S, F, T,R,Ms,A) and they respectively correspond to the following irreducible represen-
tations of SO(N). (

I, , , , ,

)
The crossing equation then can be encoded in form of a matrix.

G(µ)(u, v) = Mµν
SO(N),a

(
u

v

)∆φ

G(ν)(u, v), (2.20)

where the matrix MSO(N),a is defined in (A.4). The conformal block decomposition of
G(R)(u, v) is given by,

G(R)(u, v) =
∑
∆,`

C
(R)
∆,`g∆,`(u, v). (2.21)

The spin support of the different sectors can be encoded as (even, odd, even, even, odd,
even). The projected crossing equations at O

(
c−1) are,

σµp,q = Mµν
SO(N),aσ

ν
q,p, (2.22)

where σµp,q is defined in (A.5). We have solved these set of equations upto a very large order
of L and present the pattern below. The number of undetermined anomalous dimensions
can be encoded in the form of a partition function.

ZL=even
CFT,SO(N),a = 1

4(L+ 2)(3L+ 4), ZL=odd
CFT,SO(N),a = 1

4(L+ 1)(3L+ 5). (2.23)

Note that these are exactly twice the partition function counting we evaluated for SO(N)
fundamental (see (2.18)).

– 8 –
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Fundamental of SO(4). In the previous subsections we have worked out the crossing
equations for scalars charged under fundamental or adjoint of SO(N) for a generic N .
In general for low values of N , there are more tensor structures possible for the crossing
equation (and similarly the bulk counting also is different). In this subsection we provide
evidence that the correspondence holds true even for low values of N by explicitly evaluating
the spin support of crossing equations for SO(4) fundamental scalars. Let us consider
the four point function of identical scalars transforming under fundamental representation
of SO(4),

〈φi(x1)φj(x2)φk(x3)φ`(x4)〉 = Gijk`(u, v)
x

2∆φ

12 x
2∆φ

34
, (2.24)

Where Gijk`(u, v) is modified from the large N [22, 23, 26],

Gijk`(u, v) = δijδk`G
(S)(u, v) +

(
δikδj` + δi`δjk

2 − 1
N
δijδk`

)
G(T )(u, v)

+
(
δikδj` − δi`δjk

4 + εijkl

2

)
G(A)(u, v)

+
(
δikδj` − δi`δjk

4 − εijkl

2

)
G(A′)(u, v).

(2.25)

Note the presence of the fully-antisymmetric εijkl due to SO(4). The crossing symmetry
requires,

Gijk`(u, v) =
(
u

v

)∆φ

Gkji`(v, u). (2.26)

From this we arrive at the following constraints coming from crossing symmetry,

G(S)(u, v) =
(
u

v

)∆φ
(1

4G
(S)(v, u) + 9

16G
(T )(v, u) + −3

16
(
G(A)(v, u) +G(A′)(v, u)

))
,

G(T )(u, v) =
(
u

v

)∆φ
(
G(S)(v, u) + 1

4G
(T )(v, u) + 1

4
(
G(A)(v, u) +G(A′)(v, u)

))
,

G(A)(u, v) =
(
u

v

)∆φ
(
−G(S)(v, u) + 3

4G
(T )(v, u) + 1

4
(
3G(A′)(v, u)−G(A)(v, u)

))
,

G(A′)(u, v) =
(
u

v

)∆φ
(
−G(S)(v, u) + 3

4G
(T )(v, u) + 1

4
(
3G(A)(v, u)−G(A′)(v, u)

))
.

(2.27)
Now we have conformal block decomposition for each part of the correlator,

G(R)(u, v) =
∑
∆,`

CR∆,` g∆,`(u, v), (2.28)

where R could stand for singlet (S), traceless symmetric (T) or antisymmetric (A,A’)
sectors. The double twist operators corresponding to the different irreducible sectors are
as follows,

O(S)
n,l = φi�

n∂lφi , O(T )
n,l = φ(i�

n∂lφj) −
δij
N
φk�

2n∂lφk ,

O(A)
n,l = φ[i�

n∂lφj] , O(A′)
n,l = εijkmφk�

n∂lφm . (2.29)
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Note that the S and T sectors can take on only even values of spin and the A,A′ sectors
have support only over odd spins. The MFT solutions are,

C
(S)
∆,` =

CMFT
n,`

4 , C
(T )
∆,` = CMFT

n,` , C
(A)
∆,` = −CMFT

n,` , C
(A′)
∆,` = −CMFT

n,`
(2.30)

with ∆ = 2∆φ + 2n+ `, CMFT
n,` is given by (2.13) and only even spins appear in singlet and

traceless symmetric representations whereas only odd spins appear in the two antisymmet-
ric representations. The projected crossing equation at O(c−1) is given by,

β′
µ
p,q = Mµν

SO(4),fβ
′ν
q,p (2.31)

where, β′µp,q is defined in equation (A.16) and matrixMSO(4),f is defined in equation (A.15).
The partition function for the solutions takes the form

ZL=even
CFT,SO(4),f =

(
L

2 + 1
)
L+ 1, ZL=odd

CFT,SO(4),f = 2
(
L− 1

2 + 1
)2
. (2.32)

2.2 Constraints from crossing: SU(N)

In this section we consider scalars charged under the fundamental and anti-fundamental of
SU(N). We can consider the following correlator,

〈φi(x1)φ†j(x2)φk(x3)φ†`(x4)〉 = Gj`ik(u, v)
x

2∆φ

12 x
2∆φ

34
=
∑
r

(
b(r)

)jl
ik

G(r)(u, v)
x

2∆φ

12 x
2∆φ

34
, (2.33)

where
(
b(r)

)jl
ik

is given by,

(
b(S)

)jl
ik

= δji δ
`
k,

(
b(Adj)

)jl
ik

=
(
δ`i δ

j
k −

1
N
δji δ

`
k

)
. (2.34)

Now the crossing symmetry requires (this is the equivalence of s and t channel),

Gj`ik(u, v) = Gj`ki(u, v). (2.35)

This gives us the following constraints,

G(S)(u, v)− 1
N
G(Adj)(u, v) =

(
u

v

)∆φ

G(Adj)(v, u),

G(Adj)(u, v) =
(
u

v

)∆φ
(
G(S)(v, u)− 1

N
G(Adj)(v, u)

)
.

(2.36)

In this crossing equation, the sum over spins for the S and Adj sector runs over all
spins. To be more precise, let us label the sum over even and odd spins for a particular
irreducible sector in the following manner [20]∑

`=even
C

(R)
∆,`g∆,`(u, v) = G

(R)
+ ,

∑
`=odd

C
(R)
∆,`g∆,`(u, v) = G

(R)
− . (2.37)
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Reflection positivity of the euclidean correlator (2.33) implies that, on both sides of the
crossing equation (2.36), the sum over spins run over both even and odd spins with the
same sign. In equations,(

G
(S)
+ (u, v) +G

(S)
− (u, v)

)
− 1
N

(
G

(Adj)
+ (u, v) +G

(Adj)
− (u, v)

)
=
(
u

v

)∆φ (
G

(Adj)
+ (v, u) +G

(Adj)
− (v, u)

)
,(

G
(Adj)
+ (u, v) +G

(Adj)
− (u, v)

)
(2.38)

=
(
u

v

)∆φ
((

G
(S)
+ (v, u) +G

(S)
− (v, u)

)
− 1
N

(
G

(Adj)
+ (v, u) +G

(Adj)
− (v, u)

))
.

We can now consider the u-channel crossing of correlator (2.33). Instead of directly
evaluating it, we can consider the t-channel and the s-channel expansion of the following
transposed correlator,

〈φi(x1)φj(x2)φ†k(x3)φ†`(x4)〉 . (2.39)
The s and t- channel expansions are,

(12)(34) ≡ 1
x

2∆φ

12 x
2∆φ

34

((
δki δ

`
j + δ`i δ

k
j

)
G(Sym)(u, v) +

(
−δki δ`j + δ`i δ

k
j

)
G(Anti−sym)(u, v)

)
,

(14)(23) ≡ 1
x

2∆φ

12 x
2∆φ

34

(
u

v

)∆φ
(
δ`i δ

k
jG

(S)(v, u) +
(
δki δ

`
j −

1
N
δ`i δ

k
j

)
G(Adj)(v, u)

)
, (2.40)

where the G(Sym) and G(Anti−sym) run over even and odd spins respectively. Equating
different tensor structures on both sides of s = t equation, will lead us to following con-
straint equations,(

G
(S)
+ (u, v)−G(S)

− (u, v)
)
− 1
N

(
G

(Adj)
+ (u, v)−G(Adj)

− (u, v)
)

=
(
u

v

)∆φ (
G(Sym)(v, u) +G(Anti−sym)(v, u)

)
,(

G
(Adj)
+ (u, v)−G(Adj)

− (u, v)
)

(2.41)

=
(
u

v

)∆φ (
G(Sym)(v, u)−G(Anti−sym)(v, u)

)
.

Note the change in sign of the odd spin sum in l.h.s. of (2.41) compared to (2.38).
This is because the transposed correlator is no longer reflection positive in the t-channel.5
Using orthogonality conditions of the Hypergeometric function ((2.16)) we get,

κµp,q = Mµν
SU(N),fκ

ν
q,p, τµp,q = M̃µν

SU(N),fΩν
q,p (2.42)

where κµp,q, τµp,q and Ωµ
p,q are defined in (A.11). The matrices MSU(N),f and M̃SU(N),f are

defined in equation (A.9) and (A.10). The number of undetermined anomalous dimensions
can be encoded in the form of a partition function.

ZL=even
CFT,SU(N),f = 3

4L(L+ 2) + 1, ZL=odd
CFT,SU(N),f = 3

4(L+ 1)2. (2.43)

5See section 2.1 of [20] for a group theoretic understanding of this.
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Adjoint scalars of SU(N). In this subsection we consider scalars charged under adjoint
of SU(N) [19, 27].

〈φi2i1(x1)φj2j1(x2)φk2
k1

(x3)φl2l1(x4)〉 =
∑
r

(sr)i2j2k2l2
i1i2i3i4

G(r)(u, v)
x

2∆φ

12 x
2∆φ

34
, (2.44)

where the tensor structures (sr)i2j2k2l2
i1i2i3i4

have been listed in appendix B.3 of [19]. The labels
r run over the irreducible representations that occur in the tensor product of two adjoints
of SU(N), for convenience we label them by (S,Adj−, Adj+, AS,AA, SS). The crossing
equation then can be encoded in form of a matrix.

G(µ)(u, v) = Mµν
SU(N),a

(
u

v

)∆φ

G(ν)(u, v), (2.45)

where the matrix MSU(N),a is defined in (A.12). The conformal block decomposition of
G(R)(u, v) is given by,

G(R)(u, v) =
∑
∆,`

C
(R)
∆,`g∆,`(u, v). (2.46)

The spin support of the different sectors can be encoded as
(even, odd, even, odd, even, even). We now project using the orthogonality of the
Hypergeometric function (2.16) to get,

Λµp,q = Mµν
SO(N),aΛ

ν
q,p (2.47)

where Λµp,q is defined in (A.13). The matrix MSU(N),a is given in equation (A.12). The
number of undetermined anomalous dimensions can be encoded in the form of a partition
function.

ZL=even
CFT,SU(N),a = 1

4(L+ 2)(3L+ 4), ZL=odd
CFT,SU(N),a = 1

4(L+ 1)(3L+ 5). (2.48)

Note that these are exactly the partition function counting we evaluated for SO(N) adjoint
(see (2.23)).

2.3 Counting flat space S-matrices

In this section we follow [17, 18] to evaluate flat space S-matrices for scalars in D ≥ 4
and determine the number of bulk contact terms with finite support over spin. Local
Lagrangians are isomorphic to flat space s-matrices upto field re-definitions and equations
of motion. We evaluate this by deriving an integral formula using plethystic techniques.
Let us summarise the procedure in brief . We construct the single letter partition function
for the particle with internal symmetry label and impose equations of motion [28, 29]. We
evaluate the multi particle partition function by plethystic exponentiation and project the
resulting group theoretic expression onto the singlets of the space-time symmetry and the
internal symmetry. From general group theoretic arguments, it is known that the flat space
S-matrices can be organised by their S3 transformation properties. More precisely,

ZS-matrix(x) =
∑
J

x∆JZRJ(x) (2.49)
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where ZRJ(x) are listed in (D.7) and are the partition functions of irreducible represen-
tations RJ of S3. More generally, from the partition function (2.49), we can count how
many linearly independent flat-space S-matrices are there at a particular derivative order.
As an aside, in [17], the authors obtained a nice mathematical structure of the S-matrices
in terms of local and bare module generators.6 For scalars the local and bare module gen-
erators are the same and (2.49) can be viewed as a partition function encoding the various
local module generators with their respective S3 transformation properties. In order to
generate the S-matrices, this way of viewing the partition function will play a crucial role
for finding the spin support of the local Lagrangians of a particular derivative order. We
will also construct the explicit local Lagrangians (or the local modules) for the respective
partition functions.

Scalar flat-space S matrices with internal symmetry. Using AdS/CFT correspon-
dence we can say that the boundary operator φ(R) which transforms under an irreducible
representation R of some global symmetry group is dual to the field Φ(R), which trans-
forms under the same representation. In this section we first enumerate and construct the
Lorentz scalars that can be built out of scalar fields Φ(R) charged under

• Fundamental and adjoint of SO(N).

• Fundamental-anti fundamental and adjoint of SU(N).

The single letter partition function for scalars charged under some internal symmetry
is a simple generalisation of the scalars with no internal symmetry; it is given by

is(x, y, z) = Tr x∆yHii yzii = χR(z)(1− x2)D(x, y).

D(x, y) =
(D/2∏
i=1

(1− xyi)(1− xy−1
i )

)−1

for D even,

=
(

(1− x)
bD/2c∏
i=1

(1− xyi)(1− xy−1
i )

)−1

for D odd. (2.50)

HereHi and zi stands for the Cartan elements of SO(D) and G respectively. D(x, y) encodes
the tower of derivatives on Φ(x) keeping track of the degree and the charges under the
Cartan subgroup of SO(D). The factor χR(z), basically the character of the representation
R of the internal symmetry group G, keeps track of the internal symmetry of the field
Φ(R)(G). For scalar fields charged under fundamental, adjoint representation of SO(N)
and adjoint representation of SU(N), the Bose symmetrized multi letter partition function
consisting of four letters is given by:

i(4)
s (x, y, z) = 1

24
(
i4s(x, y, z) + 6i2s(x, y, z)is(x2, y2, z2) + 3i2s(x2, y2, z2)

+ 8is(x, y, z)is(x3, y3, z3) + 6is(x4, y4, z4)
)
.

(2.51)

6See section 2.4 of [17] for a self contained discussion on modules in the context of flat space S-matrices.
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Once we construct this, we recall that the equivalence class of scalar Lagrangians are given
by scalar quartic polynomials (along with derivatives) modulo polynomials that are total
derivatives. This is easily implemented by dividing the four letter partition function by
D(x, y), the generator for towers of derivatives.

i(4)
s (x, y, z)/D(x, y) .

Finally to project onto the singlet sector of both SO(D) and SO(N)/SU(N), we perform
a Haar integral over the Haar measure of the respective groups. Schematically this is
given by,

IRs (x) :=
∮
dµG

∮
dµSO(D) i

(4)
s (x, y, z)/D(x, y), (2.52)

where dµSO(D) is the Haar measure associated with the Lorentz group SO(D) and dµG
is the Haar measure associated with the colour group G. Using techniques outlined in
appendix C of [18] and appendix H.1 of [17], the Haar integral over the SO(D) can be
performed and (2.52) then takes the schematic form,

IRs (x) :=
∮
dµG

(
χGR(z2)χGR(z)2

4 (1− x4) + χGR(z4)
4 (1− x4) + χGR(z)4

24 (x2 − 1)2

+ χGR(z2)2

8 (x2 − 1)2 + χGR(z3)χGR(z)
3 (x4 + x2 + 1)

)
. (2.53)

We delegate the evaluation of the Haar colour integrals to the appendices (see appendix D)
and present the results in the main section.7

SO(N): fundamental and adjoint. For scalars charged under the fundamental and
the adjoint representation of SO(N), using the integrals listed in table 7, (2.53) evaluates
to the partition function,

Ifs, SO(N)(x) = 1 + x2 + x4

(1− x4)(1− x6) = Z3, Ias, SO(N)(x) = 2 + 2x2 + 2x4

(1− x4)(1− x6) = 2Z3. (2.54)

Note that the evaluation has been done for large N [18]. From the analysis done in [17],
we see that this is the partition function corresponding to a local module that transforms
in the 3S of S3. This is an reducible representation of S3.

3 = 1S ⊕ 2M, (2.55)

where recall that 1S and 2M are the irreducible one and two dimensional representations
of S3. Let us suppose that the colour module generators transforming the 3 of S3 is
denoted by |e(1,2,3)〉. We follow the same conventions of [17], where |e(1)〉, |e(2)〉, |e(3)〉 are
the module elements which are symmetric under particle swap (3↔ 4), (2↔ 4) and (2↔ 3)
respectively. The local module at 2r order in derivatives is then given by the scalar products
of the module generators with polynomial of mandelstam invariants which transform in the
same irreducible representation. In equations, considering the basis of polynomials which

7See also [30–36] for recent progress using similar formalism and related interesting applications.
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transform in 3 of S3 to be given by (f(t, u), f(t, s), f(s, u)), one constructs the elements of
the most general descendant module as(

f(t, u)|e(1)〉, f(t, s)|e(2)〉, f(s, u)|e(3)〉
)

where f(i, j) = ir−kjk+ikjr−k. The corresponding local scalar modules and its descendants
can be easily obtained from the following tower of Lagrangians.

LSO(N),f =
∑
m,n

am,n

m∏
b=1

n∏
c=1

(∂µb∂νcΦiΦi) (∂µbΦj∂
νcΦj) . (2.56)

L1
SO(N),a =

∑
m,n

am,n

m∏
b=1

n∏
c=1

(∂µb∂νcΦijΦji) (∂µbΦkl∂
νcΦlk) ,

L2
SO(N),a =

∑
m,n

am,n

m∏
b=1

n∏
c=1

(∂µb∂νcΦij∂
µbΦjkΦkl∂

νcΦli) . (2.57)

Our condensed notation for the derivatives can be explained by considering the follow-
ing expression,

m∏
b=1

∂µb Φ1 ∂
µb Φ2 ≡ ∂µ1∂µ2 . . . ∂µm Φ1 ∂

µ1∂µ2 . . . ∂µm Φ2 , (2.58)

for some operators Φ1 and Φ2. The same notation is also used for the second tower of
derivatives indexed as ∂νc . In particular, each term denotes a Lorentz invariant Lagrangian
term with 2m+2n derivatives. The Lagrangians (2.56) and (2.57) encode the most general
higher derivative Lagrangians that we can build out of identical scalars charged under
SO(N) fundamental and adjoint respectively. The partition functions (2.54) tells us of the
S3 transformation properties of the local Lagrangian structures.

SU(N): adjoint. From [18] we can compute the large N plethystic integrals for SU(N).
Using table 8, (2.53) for SU(N) adjoint representation turns out to be

Ias, SU(N)(x) = 2 + 2x2 + 2x4

(1− x4)(1− x6) = 2Z3. (2.59)

The local modules transform in 3S and the associated Lagrangians are given by

L1
SU(N),a =

∑
m,n

am,n

m∏
b=1

n∏
c=1

(
∂µb∂νcΦi

jΦ
j
i

) (
∂µbΦk

l ∂
νcΦl

k

)
,

L2
SU(N),a =

∑
m,n

am,n

m∏
b=1

n∏
c=1

(
∂µb∂νcΦi

j∂
µbΦj

kΦ
k
l ∂

νcΦl
i

)
. (2.60)

SU(N): fundamental. We now turn to the problem of evaluating flat space S-matrices
of scalars charged under fundamental and anti-fundamental representation of SU(N). The
four letter partition function relevant for counting singlets is a bit different for this case
than (2.51). Two of the scalar fields is charged under the fundamental representation while
the other two have to be charged under the anti-fundamental representation for non-zero
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singlets. The symmetry group is now Z2⊗Z2 instead of the full S4 while the S3 is replaced
by Z2.8 The singlet condition is therefore given by

Zf−f =
∑

i1,i2,j3,j4

〈i1i2j3j4|yIyJ
(1 + P12P34)

2 |i1i2j3j4〉 = 1
2
(
ρ(x)2ρ(x)2 + ρ(x2)ρ(x2)

)
= S2(ρ⊗ ρ) (2.61)

where ρ denotes the fundamental representation and ρ denotes the anti-fundamental rep-
resentation of SU(N). The resulting modules are charged under Z2 of the Z2×Z2 and the
number of such modules are given by

Z±
f−f =

∑
i1,i2,j3,j4

〈i1i2j3j4|yIyJ
(1± P12

2

) (1 + P12P34)
2 |i1i2j3j4〉 =


S2(ρ)⊗ S2(ρ),

Λ2(ρ)⊗ Λ2(ρ)
.

(2.62)
For N ≥ 3, we find S2(ρ) ⊗ S2(ρ) = Λ2(ρ) ⊗ Λ2(ρ) = 1. Without loss of generality, we
can take particles 1 and 4 to transform in the fundamental representation while particles
2 and 3 transform in the anti-fundamental representation. The two Z2 invariant modules
for N ≥ 3 are9

|e1〉 = (φi(p1)φi(p2))(φj(p4)φj(p3)), |e2〉 = (φi(p1)φi(p3))(φj(p4)φj(p2)). (2.63)

Defining the modules under P34/P12 symmetry and anti symmetry as

|e+〉 = |e1〉+ |e2〉, |e−〉 = |e1〉 − |e2〉, (2.64)

the most general descendant module is generated by

J1 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)(
|e+〉

)
,

J2 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)(

(s+ t)|e+〉
)
,

J3 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)(

(s− t)|e−〉
)
, (2.65)

J4 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)((

s2 + t2 − 2u2
)
|e+〉

)
,

J5 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)((

s2 − t2
)
|e−〉

)
,

J6 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)((

s2t− t2s+ t2u− u2t+ u2s− s2u
)
|e−〉

)
.

8We thank Abhijit Gadde for discussions regarding this point.
9We have used [37] to evaluate (2.62) for various values of N .
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The local Lagrangian which gives rise to this module is given by

LSU(N),f =
∑
m,n

am,n

m∏
b=1

n∏
c=1

(
∂µb∂νcΦi∂

νbΦi
) (

Φj∂
µbΦj

)
. (2.66)

The generators (2.65) are in one-to-one correspondence with the descendent module
from the Lagrangian (2.66), where the factors of s and t count two derivative orders each.
The number of linearly independent S-matrices at a given order of 2k derivatives are the
number of solutions to 6m + 4n = 2k + αi for each Ji (to be precise, α1 = 0, α2 = α3 =
2, α4 = α5 = 4, α6 = 6). The spin support for the module generated by this Lagrangian is
the same as that of a module transforming in 6 = 1S + 2 2M + 1A of S3.

2.4 Counting independent data labelled by spin

In this section we evaluate the number of distinct contact terms contributing to a spin l

exchange (following [1]). Consider, as an warm-up, S-matrices generated by the scalars
without global symmetry, that can be put into the generic form [17]

(stu)m(st+ tu+ us)n|eS〉. (2.67)

In order to count for spin exchanged, we note that s, t and u in centre-of-mass frame can
be expressed as,

t = −s2 (1− cos θ) , u = −s2 (1 + cos θ) . (2.68)

Consider a scattering process where the highest spin being exchanged is L (an even integer
since we are considering identical scalars) corresponding to a non-coloured scalar S-matrix
of 2k derivative order. We can write the following set of equations,

3m+ 2n = k, 2m+ 2n = L . (2.69)

Thus we can see that the allowed terms contributing to highest spin exchange L are
derivative terms with k : L,L+1, · · ·L+ L

2 . Total number of flat space s-matrices therefore
contributing upto L exchange is [1],

L
2∑

a=0
(1 + a) = (L+ 2)(L+ 4)

8 (2.70)

Recall that a most general S-matrix is given by a S4 invariant polynomial of momenta
and global symmetry charges (and also polarizations for spinning particles). The Z2 × Z2
group is a normal subgroup for S4 and consequently the S-matrices can be labelled by
their S3 transformation properties alone. As explained in the previous section, we can
view the most general S-matrix as being generated by the scalar product of polynomials of
mandelstam variables with the module. S-matrix from the local Lagrangians listed in the

– 17 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
6

previous sections thus are given by a linear combination of the S3 modules listed in [17],

I1 = (stu)m(st+ tu+ us)n (|eS〉) ,

I2 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)(

(s+ t)|e(1)
2M
〉+ (t+ u)|e(2)

2M
〉+ (u+ s)|e(3)

2M
〉
)
,

I3 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)((

s2 + t2 − 2u2
)
|e(1)

2M
〉+

(
t2 + u2 − 2s2

)
|e(2)

2M
〉

+
(
u2 + s2 − 2t2

)
|e(3)

2M
〉
)
,

I4 =
(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)((

s2t− t2s+ t2u− u2t+ u2s− s2u
)
|e1A〉

)
.

(2.71)

where |eS〉, |e(i)
2M
〉 and |e1A〉 are the module for Lagrangians transforming in 1S, 2M and

1A respectively (these are the only three irreducible representations of S3). In the context
of present paper, the local modules are basically contractions of generator matrices under
which the fields are charged. Note that I1, I2, I3 and I4 essentially encode the information
contained in the partition functions (2.54), (2.58) and (2.58). We have to find the corre-
sponding number of flat-space S-matrices contributing to a particular spin L0 from each of
I1, I2, I3 and I4 respectively and sum them up. The contribution from I1 has been already
worked out in (2.70) [1]. The contribution from I2, I3 and I4 can be worked out similarly
and is given by,

nI1(L) = 1
2

(⌊
L

2

⌋
+ 1

)(⌊
L

2

⌋
+ 2

)
,

nI2(L) = 1
2

(⌊
L− 1

2

⌋
+ 1

)(⌊
L− 1

2

⌋
+ 2

)
,

nI3(L) = 1
2

(⌊
L− 2

2

⌋
+ 1

)(⌊
L− 2

2

⌋
+ 2

)
,

nI4(L) = 1
2

(⌊
L− 3

2

⌋
+ 1

)(⌊
L− 3

2

⌋
+ 2

)
, (2.72)

where bxc implies the integer less than or equal to x. Therefore the maximum number of
linearly independent flat space S-matrices contributing upto spin L0 exchange for a module
that is transforming in a 6 of S3 is given by

n(L0) = nI1(L0) + 2nI2(L0) + 2nI3(L0) + nI4(L0) . (2.73)

We list the spin support of the scalar S-matrices eqs. (2.56), (2.57), (2.60), and (2.66) in
order of their S3 representations in table 6.

We obtain perfect agreement with the respective partition functions for spin support
from CFT computation (see (2.18), (2.23), (2.43) and (2.48)).
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S-matrix Lagrangian S3 representations Spin support L
LSO(N),f 3 nI1(L) + nI2(L) + nI3(L)
L1

SO(N),a 3 nI1(L) + nI2(L) + nI3(L)
L2

SO(N),a 3 nI1(L) + nI2(L) + nI3(L)
L1

SU(N),a 3 nI1(L) + nI2(L) + nI3(L)
L2

SU(N),a 3 nI1(L) + nI2(L) + nI3(L)
LSU(N),f 6 nI1(L) + 2nI2(L) + 2nI3(L) + nI4(L)

Table 6. Spin support for scalar S-matrices

Counting bulk Lagrangians and support on spin for SO(4). The multi particle
partition function for SO(4) gives the following result,

Ifs, SO(4)(x) = 1 + x2 + x4 + x6

(1− x4)(1− x6) = Z3 + Z1A . (2.74)

This implies in addition to the usual Lagrangians (2.56), we have the additional Lagrangian
given by the bulk Lagrangian,

LSO(4),f =
∑
m,n

am,n

m∏
b=1

n∏
c=1

εijkl (∂µb∂νcφiφj∂µbφk∂νcφl) . (2.75)

The module generators transform in a 1A of S3 and are given by,(∑
m,n

am,n(stu)m(s2 + t2 + u2)n
)((

s2t− t2s+ t2u− u2t+ u2s− s2u
)
|e1A〉

)
,

|e1A〉 = εijkl. (2.76)

The spin support is therefore given by,

nSO(4),f = nI1(L) + nI2(L) + nI3(L) + nI4(L), (2.77)

where n(Ii)s are given in (2.72) and we obtain perfect agreement with (2.32).

2.5 Counting bulk ambiguities using functionals

The conformal bootstrap program in position space has been very successful numerically,
though it’s often hard to analytically constrain the OPE data. Recently interest has been
rekindled in analytic constrains in the form of pursuit of extremal analytic functionals [38],
where it was found for CFTs in d = 1 and also for special external dimensions of the
operators. It was further extended to general cases in [11–13, 15, 39–41] in one dimension.
These constructions naturally lead to a crossing symmetric formulation in terms of all
three channels unlike the more conventional bootstrap equation. These d = 1 functionals
have nice positivity properties and that enabled the authors to construct the extremal
functionals analytically and put analytic bounds on OPE coefficient.

– 19 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
6

Construction of analytic functionals in higher dimension was first carried out in [8] but
this time the crossing symmetry was respected with respect to two channels unlike d = 1
case. These functionals (without any further non trivial modifications) don’t have good
positivity properties. Nevertheless they are still useful and it has many advantages when
applied to holographic CFTs and perturbative CFTs ([42, 43]). In [8] the authors proposed
the following expansion of any unitary Regge superbounded10 CFTs,

G(z, z) = Gs + Gt, (2.78)

where Gs and Gt are such that,

dDisct(Gs) = 0, dDiscs(Gt) = 0, (2.79)

where dDisc means double discontinuity of the correlator. Using this property Gs and Gt
can be expanded in t channel and s channel double trace conformal blocks (denoted by
Gt∆n,`,`

(z, z) and Gs∆n,`,`
(z, z) respectively),

G(z, z) =
∑
n,`

αsn,`G
s
∆n,`,`

(z, z) + βsn,`∂∆G
s
∆n,`,`

(z, z) + (s↔ t). (2.80)

αsn,`, β
s
n,`, α

t
n,`, β

t
n,` form a dual basis of linear functionals and by definition Gt(z, z) =

Gs(1− z, 1− z). When these elements of dual basis act on crossing equation they lead to
sum rule of the form,∑

∆,`
a∆,`ω[F∆φ(z, z)] = 0,

F∆φ(z, z) = (zz)−∆φ Gs∆,`(z, z)− ((1− z)(1− z))−∆φ Gt∆,`(z, z) (2.81)

where ω can be α or β. These are dual to GFF solutions, i.e., they have double zeroes at
∆n,` = 2∆φ + 2n+ `. Therefore in a perturbative expansion around GFF (e.g. holographic
CFTs) the double trace operators get suppressed and the sum rules constrain the single
trace data.

In this context we should discuss the u channel regge limit to introduce few terminology.
The u channel regge limit is defined by taking the limit z, z goes to i∞ with z

z fixed. The
correlators G(z, z) are bounded by (zz)J−1

2 . The correlators are superbounded if the Regge
spin is negative, on the other hand the unitary correlators are only bounded as J < 2. Note
that Gs and Gt are linearly independent when they are inside the space of superbounded
functions. But in the space of bounded functions these are not independent. The dual
basis satisfy the following orthonormality conditions,

αqn,`[G
r
∆n′,`′ ,`

] = δqrδnn′δ``′ , αqn,`[∂∆G
r
∆n′,`′ ,`

] = 0,

βqn,`[G
r
∆n′,`′ ,`

] = 0, βqn,`[∂∆G
r
∆n′,`′ ,`

] = δqrδnn′δ``′ .
(2.82)

where q, r stand for either s or t channel.
10To be defined below.
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Now we use the techniques described in [8] to write down functionals which can act on
the crossing equation we have written down above for various internal symmetry groups.
Though it’s an straightforward generalization but the class of functionals are different and
therefore, we find worth mentioning few aspects of it here. This method is democratic
to spacetime dimensions unlike HPPS functionals which were applied to two and four
spacetime dimensions. The functional action on the conformal blocks has a nice physical
interpretation in terms of exchange Witten diagram and a class of contact diagrams which
are bounded in the u channel Regge limit, eg, a Regge bounded exchange Witten diagram
has the following OPE decomposition in the direct channel,

′W̃ s
∆,`(z, z) = Gs∆,`(z, z) +

∑
n,`

An,`G
s
2∆φ+2n+`,`(z, z) +

∑
n,`

Bn,`∂G
s
2∆φ+2n+`,`(z, z). (2.83)

An,` and Bn,` are related to functional actions on block as,

An,` = −αsn,` Bn,` = −βsn,`. (2.84)

The functional actions on the block also has a nice integral representation,

βn,` =
∫

[dw][dw]H(w,w)Gs∆,`(w,w), (2.85)

where H(w,w) is constrained by the u− channel Regge growth of the correlator and
[dw] = dw

2πi . In [8] a recipe to construct such kernel was given when the correlator is
Regge superbounded, so the following fall of kernel was sufficient,

H(w,w)→ w−1, as w →∞, w →∞,with w/w = fixed. (2.86)

But in a unitary theory the u− channel Regge spin is bounded by 2. So we require
kernels to have stronger fall off as we probe the Regge limit. In [9] was shown that we
can get these better behaved kernels by taking suitable linear combinations of those poor
behaved kernels. These kernels were acted upon a s−t antisymmetric crossing equation, i.e.

βn,` : F∆φ(z, z) =
(

(zz)−∆φ Gs(z, z)− ((1− z)(1− z))−∆φ Gt(z, z)
)
, (2.87)

Further the above action can be written down as an action only on direct channel blocks
such as,

βn,` =
∫

[dw][dw]H(w,w)
(

(ww)−∆φ Gs(w,w)− ((1− w)(1− w))−∆φ Gt(w,w)
)

=
∫

[dw][dw] (H(w,w)−H(1− w, 1− w)) (ww)−∆φ Gs(w,w).
(2.88)

For unitary theories we expect that,

H(w,w)−H(1− w, 1− w)→ w−3, as w →∞, w →∞,with w/w = fixed. (2.89)

These are also called spin-2 convergent functionals. Examples of such functionals
include the following [9] (see appendix B),

νi,j = (i+ 1)2β̂i+1,j − (j + 1)2β̂i,j+1 − (i− j)(i+ j + 1)β̂i,j . (2.90)
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These are not good functionals for the crossing equations we have at hand as these are
not s − t symmetric. Indeed their action on the crossing symmetric function F∆φ(z, z) is
non trivial but their action on crossing antisymmetric combination H∆φ(z, z) is trivially
zero.11 In general in the analysis of crossing symmetry equations of four scalar fields
with global symmetry F∆φ(z, z) and H∆φ(z, z) both appear. One way forward is that we
can take a larger set of Regge bounded functionals so that the final kernels arising from
their subtractions will have a better fall off, i.e. instead of demanding better fall off of
the combination of H(w,w) − H(1 − w, 1 − w), individually we can improve it.12 Let us
explicitly write down few examples of such functionals,

ν̃1,2 = ν1,2 + 2ν0,2 − 3ν0,3,

ν̃1,3 = ν1,3 + 6ν0,3 − 8ν0,4,

ν̃1,4 = ν1,4 + 12ν0,4 − 15ν0,5,

ν̃2,3 = −3ν2,3 − 3ν1,3 + 4ν1,4,

ν̃2,4 = 8ν2,4 + 20ν1,4 − 25ν1,5.

(2.91)

All of these combinations are well behaved in the u− channel Regge limit (to be precise
their fall off property in individual channels is 1

w3 in contrast with (2.90), which has similar
fall-off behaviour only in the combination s − t.) so that we can act them on our O(N)
crossing equations,

(zz)−∆φ GS(s)(z, z)− ((1− z)(1− z))−∆φ

×
( 1
N
GS(t)(z, z) + (N + 2)(N + 1)

2N2 GT (t)(z, z) + 1−N
2N GA(t)(z, z

)
= 0,

(zz)−∆φ GT (s)(z, z)− ((1− z)(1− z))−∆φ

×
(
GS(t)(z, z) + (N − 2)

2N GT (t)(z, z) + 1
2G

A(t)(z, z
)

= 0,

(zz)−∆φ GA(s)(z, z)− ((1− z)(1− z))−∆φ

×
(
−GS(t)(z, z) + (N + 2)

2N GT (t)(z, z) + 1
2G

A(t)(z, z
)

= 0.

(2.92)

So we can act ν̃ on the above equations and those will give us nonperturbative sum rules
for O(N) fundamental theories. We can act these to crossing equations arising from other
groups and different representations as well without any further modifications.

Let us now turn our attention to AdS contact diagrams with four scalar fields trans-
forming in the fundamental representation of O(N). These contact terms have no dDisc
and therefore they can be expanded in the s− channel conformal blocks and its derivatives

11H∆φ(z, z) =
(

(zz)−∆φ Gs(z, z) + ((1 − z)(1 − z))−∆φ Gt(z, z)
)
.

12Our equations have different sectors corresponding to irreducible representations of the internal sym-
metry group. So one can also consider subtracting equations arising from different sectors to achieve better
fall off of the kernel. We do not try this here.
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with dimensions ∆ = 2∆φ + 2n+ `,

GS(z, z) =
∑
n,`

(
CS,1n,` + 1

2C
0
n,`γ

S
n,`∂∆

)
G2∆φ+2n+`,`,

GT (z, z) =
∑
n,`

(
CT,1n,` + 1

2C
0
n,`γ

T
n,`∂∆

)
G2∆φ+2n+`,`,

GA(z, z) =
∑
n,`

(
CA,1n,` + 1

2C
0
n,`γ

A
n,`∂∆

)
G2∆φ+2n+`,`.

(2.93)

Also there will be only even spin exchanges in the singlet and traceless symmetric
sector, whereas there will be only odd spin exchanges in the antisymmetric sector. Now
we can act our ν̃ on these equations to find the following relation in d = 4 and ∆φ = 2,

γS2,0 = −27
7
(
γS1,0 − γS0,0

)
, γT2,0 = −27

7
(
γT1,0 − γT0,0

)
, γA1,1 = 27

35γ
A
0,1. (2.94)

These results agree with our previous computation. Also we know that we have two
contact terms, one zero derivative and a two derivative term whose Regge behaviour is
bounded by spin 2. Both terms contribute to anomalous dimensions of singlet and trace-
less symmetric sector and only the two derivative term contributes to anomalous dimension
of antisymmetric operator. We have constructed more functionals and checked that they
all agree with results derived from other method whenever available. Note that in this
computation that we have presented, although we have “assumed” spin support, in prin-
ciple, following [9], one can find linear combinations of ν̃i,j functionals which tells us that
the spin support is finite. To give further example the following functional falls off as w−4,

ν̃1,4 −
3
2 ν̃2,3 −

3
4 ν̃1,3 = −3

4 (6ν0,3 − 24ν0,4 + 20ν0,5 + 3ν1,3 − 4ν1,4 + 2ν2,3) (2.95)

and it can bootstrap contact diagrams in AdS which has support till spin 2. This way we
can always start with the kernels which are well behaved in the regge limit and then find a
combination of them to improve the Regge behaviour further. We have not exhausted the
algorithm but hopefully have been able to convey to the interested reader, the novelty of
this approach.

3 Majorana fermions in d = 1 with global symmetry

In this section we consider solutions to crossing in the case when external particles are
Majorana fermions in d = 1. We will use the functional techniques to derive the CFT data.
The structure of D = 2 S-matrices will be related to bootstrap solutions of d = 1 CFTs.

3.1 Counting using functionals

In this case the functionals are defined as an integral action on the crossing equations but
they lead to crossing symmetric functionals unlike the cases we described in subsection 2.5,
where three channel crossing symmetry is broken. The important difference between these
two constructions are as follows: first, there are spinning exchange operators in higher
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dimensions and there are only scalars or fermions to consider in one dimensional CFTs
because of lack of rotation in one dimension. More significant difference comes from the
fact that the functionals in higher dimension acts on channels individually and therefore
its action on the crossing equation is trivial. This lead to a two channel crossing symmetric
construction of functionals in higher dimensions. On the other hand in one dimension we
will see that the kernels are built in a way so that its action on the crossing equation is non-
trivial and that leads to three channel crossing symmetric functionals having important
positivity properties which are lacking in those functionals discussed in previous sections
unless we take infinite combinations of them cleverly [9].

To be precise, let us write the conformal block expansion of four point function of
Majorana fermions charged under fundamental of SO(N).

〈ψi(x1)ψj(x2)ψk(x3)ψl(x4)〉

= 1
x

2∆ψ

12 x
2∆ψ

34

(
δijδkl

∑
∆
aS∆G∆(z) +

(
δilδjk + δikδjl −

2
N
δijδkl

)∑
∆
aT∆G∆(z)

+ (δilδjk − δikδjl)
∑
∆
aA∆G∆(z)

)
,

(3.1)

where,

z2 = x2
12x

2
34

x2
13x

2
24
, xij = (xi − xj).

This can be expressed more compactly in the following manner

∑
∆
CS∆


0

F
∆ψ

∆ (z)
H

∆ψ

∆ (z)

+
∑
∆
CT∆


F

∆ψ

∆ (z)
(1− 2

N )F∆ψ

∆ (z)
−(1 + 2

N )H∆ψ

∆ (z)

+
∑
∆
CA∆


−F∆ψ

∆ (z)
F

∆ψ

∆ (z)
−H∆ψ

∆ (z)

 = 0, (3.2)

where

F
∆ψ

∆ (z) = z−2∆ψG∆(z)− (1− z)−2∆ψG∆(1− z) ,

H
∆ψ

∆ (z) = z−2∆ψG∆(z) + (1− z)−2∆ψG∆(1− z)

and G∆(z) is the d = 1 conformal block.

G∆(z) = z∆
2F1(∆,∆; 2∆; z).

The functional action can be represented by,

∑
r,∆

ar∆(ω · Fr∆) = 0, (3.3)

where the functional action itself is represented by the following integral action.

ω · Fr∆ =−
∫ 1

2 +i∞

1
2

dz {f1(z), f2(z), f3(z)} · Fr∆ +
∫ 1

1
2

dz {g1(z), g2(z), g3(z)} · Fr∆ . (3.4)
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Fr∆ for O(N) group is defined as the column vectors in (3.2) and r denotes the represen-
tations (S, T,A). To illustrate this let us consider the simplified kernels for ∆ψ = 1

2 [16],13

~fSm(z) =
{
am

2
N

(
P1+2m( z−2

z )
z

+
P1+2m(1+z

z−1)
1− z

)
, am

N + 1
N

(
P1+2m( z−2

z )
z

−
P1+2m(1+z

z−1)
1− z

)
,

am
N − 1
N

(
P1+2m( z−2

z )
z

−
P1+2m(1+z

z−1)
1− z

)}
~fTm(z) =

{
− am

(
P1+2m( z−2

z )
z

+
P1+2m(1+z

z−1)
1− z

)
,−am

(
P1+2m( z−2

z )
z

+
P1+2m(1+z

z−1)
1− z

)
,

am

(
P1+2m( z−2

z )
z

−
P1+2m(1+z

z−1)
1− z

)}
~fAm(z) =

{
bm

(
P2m( z−2

z )
z

+
P2m(1+z

z−1)
1− z

)
,−bm2

(
P2m( z−2

z )
z

+
P2m(1+z

z−1)
1− z

)
,

bm
2

(
P2m( z−2

z )
z

−
P2m(1+z

z−1)
1− z

)}
(3.5)

where Pm(z) are Legendre polynomials and

am = − Γ2(2 + 2m)
π2Γ(3 + 4m) . bm = − Γ2(1 + 2m)

π2Γ2(1 + 4m) (3.6)

Now in the Regge limit, the kernel has a fall off O( 1
z2 ) in Singlet and Traceless sym-

metric sector whereas it has slower fall off, O(1
z ), in the Antisymmetric channel. We know

that the unitary CFT correlator grows at most like a constant in the Regge limit. So the
third component of the kernel requires to be improved by further subtraction. In presence
of global symmetry, there is exactly one contact term (deformation) in AdS2 which is regge
bounded, i.e., the four fermi interaction term without any derivatives, which vanishes due
to anticommuting property if there is no color. So we have to subtract among the unim-
proved kernels for different m such that the subtracted kernels will have correct fall off
to bootstrap the regge bounded unitary CFT correlators. One such choice is to subtract
m = 0 functional and our improved kernel will take the following form,

~̃f rm(z) = ~f rm(z) + cm
~fA0 (z), (3.7)

with cm is determined by demanding O( 1
z2 ) fall off in all sectors and this depends on ∆ψ

and ∆. Thus the idea is that to bound correlation functions that are badly regge behaved,
we subtract the prefunctionals amongst each other. The form of the above kernels are fixed
such that the following orthogonality conditions are satisfied,

αr
n(s,∆s

m) = δn,mδ
rs , ∂∆α

r
n(s,∆s

m) = −dr,sn δm,0,
βrn(s,∆s

m) = 0 , ∂∆β
r
n(s,∆s

m) = δn,mδ
rs − cr,sn δm,0,

(3.8)

where cr,sn are some constants which depends on the subtractions we have to make such
that the integration is finite. Also the labels r, s stands for different irreps of O(N). The

13Kernels for general ∆ψ can be found in [16] and the subtraction scheme described above does not depend
on dimension of external operators. So we quoted a simplified example for ∆ψ = 1

2 in our discussion above.
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double trace operator dimensions for different sectors is given by, ∆S/T
m = 2∆ψ + 2m + 1

and ∆A
m = 2∆ψ + 2m. Then if we have the CFT correlator which grows like zp, we have to

demand stronger fall off for the kernel and that will introduce more subtractions. These
are in one-to-one correspondence number of bulk contact terms upto 2p derivatives. E.g.
for p = 1, we can take combinations like,

~̃f rm(z) = ~f rm(z) + cm
~fA0 (z) + dm

~fA1 (z) + em
~fS0 (z), (3.9)

so that this falls off like 1
z3 in all sectors. This tells us that there are three contact terms if

we consider contact terms involving at most with two derivatives. Proceeding in a similar
manner, this exercise tells us that as we increase 4 derivatives, another 3 contact terms
are added to the list. The counting problem of the number of subtractions for a particular
Regge behaviour can be encoded in the form of a partition function,

I
SO(N)
f,f (x) = 1 + 2x2

(1− x4) . (3.10)

This partition function is to be understood as a series expansion about x = 0. Sum of
coefficient upto xn in this expansion denotes the number of subtractions required from our
basis in order to bootstrap a correlator which grows like xn in the Regge limit. We will
show that this matches an independent counting of flat space S-matrix in the next section.

3.2 Majorana fermion flat space S-matrices in 1+1 dimensions

We first enumerate and construct the Lorentz scalars that can be built out of massive Ma-
jorana fields in two spacetime dimensions charged under fundamental of SO(N). Consider
a theory of massive Majorana ψRα (G) charged under some irreducible representation R of
an internal symmetry group G (α is the spinor index which we will not explicitly indicate
from this point onwards). We wish to study the most general local action for this theory,
retaining only those terms that affect four fermion scattering. We consider the equation of
motion for our field ψR(G) to be

/∂ψR(G) = mψR(G), −/∂ψR(G) = mψ
R(G) . (3.11)

We adopt the Majorana conventions of [44] for our gamma matrices.

γ0 =
(

0 1
−1 0

)
= iσ2, γ1 =

(
0 1
1 0

)
= σ1 . (3.12)

In this representation the Majorana condition and the Majorana conjugate becomes,

ψ? = ψ, ψ = ψTC (3.13)

where C = iγ0. In appendix C, we construct the explicit plane wave solutions to equa-
tion (3.11), necessary to construct the flat space S-matrices. For Majorana fermion fields
we first construct the multi letter partition function consisting of four letters by Bose
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anti-symmetrizing the single letter partition function. The four-letter partition function -
relevant for counting quartic Lagrangians is given by:

i
(4)
f (x, y, z) = 1

24
(
i4f(x, y, z)− 6i2f(x, y, z)if(x2, y2, z2) + 3i2f(x2, y2, z2)

+ 8if(x, y, z)if(x3, y3, z3)− 6if(x4, y4, z4)
)
.

(3.14)

where if(x, y, z) is the Majorana single letter partition function where x keeps track of the
operator dimension while yi and zi are chemical potentials corresponding to the cartan
charges of the Lorentz group and the internal symmetry group respectively. Once we
construct this, we recall that the equivalence class of fermion Lagrangians are given by
fermion quartic polynomials (along with derivatives) modulo polynomials that are total
derivatives. This is easily implemented by dividing the four letter partition function by
D(x, y), the generator for towers of derivatives.

i
(4)
f (x, y, z)/D(x, y) .

Finally to project onto the singlet sector of both space time symmetry group and internal
symmetry, we perform a Haar integral over the Haar measure of the respective groups.
Schematically this is given by,

IRf (x) :=
∮
dµG

∮
dµSO(D) i

(4)
f (x, y, z)/D(x, y). (3.15)

where dµSO(D) is the Haar measure associated with the Lorentz group SO(D) and dµG is
the Haar measure associated with the colour group G. In this subsection we will restrict
the Lorentz group to SO(2). The integral at hand, (3.15), therefore has two Haar integrals
one of which pertains to projecting onto Lorentz singlets, while the other is to project onto
the colour singlets. We perform the Haar integral for both using numerical techniques used
in [17].

3.2.1 Fermions without colour

In this subsection we derive the partition function for Majorana fermions without any
colour. The single letter partition function for Majorana fermions is given by [28, 45],

if(x, y) = Tr x∆yHii = χf (y)(1− x)D2(x, y) ,

D2(x, y) =
(
(1− xy1)(1− xy−1

1 )
)−1

,

χf (y) =
(
√
y1 + 1

√
y1

)
. (3.16)

Here Hi stands for the Cartan elements of SO(2). The denominator factor D2(x, y) encodes
the tower of derivatives on ψ(x) keeping track of the degree and the charges under the
Cartan subgroup of SO(2) while the factor χf (z), basically encodes the character of the
spinor representation. These are necessary since we will eventually project onto singlets of
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SO(2).14 Although we have expressed this for D = 2, in principle this can be extended to
higher dimensions. Using numerical integration, we find that (3.14) evaluates to

If(x) = x2

(1− x4) = ZA. (3.17)

In this partition function, x keeps track of the derivative order and indicates that the
module transforms in the antisymmetric irreducible representation of S2 (see appendix E).
The number of independent fermion Lagrangians, at a particular derivative order m, is
obtained from (3.17) by taylor expanding this partition function about x = 0 and looking
at the coefficient of xm. The Lagrangian giving rise to the flat space S-matrices can be
listed as

LF =
∑
m,n

am,n

m∏
b=1

n∏
c=1

(∂µb∂νcψ∂µbψ)(∂νcψψ), (3.18)

where we have used the following condensed notation for the derivatives,
m∏
b=1

∂µb O1 ∂
µb O2 ≡ ∂µ1∂µ2 . . . ∂µm O1 ∂

µ1∂µ2 . . . ∂µm O2. (3.19)

for some operators O1 and O2. The same notation is also used for the second tower of
derivatives indexed as ∂νc . In particular, each term denotes a Lorentz invariant Lagrangian
term with 2m+ 2n derivatives. Now the Lagrangians, as written, are not linearly indepen-
dent. The linearly independent grassmann modules are as follows.

• m+ n = even ≥ 0: there is no linearly independent S-matrix. These S-matrices are
given by mα times the lower derivative-order S-matrices.

• m + n = odd ≥ 1: there is one linearly independent module which is given by
any am,n.

3.2.2 Fermions charged under fundamental of SO(N)

The single letter partition function for Majorana fermions charged under fundamental of
SO(N) is a simple generalisation of (3.16) and is given by [28, 45],

if(x, y, z) = Tr x∆yHii yzii = χ
SO(N)
f (z)χf (y)(1− x)D2(x, y).

χ
SO(N)
f (y) =

bN/2c∑
i=1

(
yi + 1

yi

)
for N even,

χ
SO(N)
f (y) =

bN/2c∑
i=1

(
yi + 1

yi

)
+ 1 for N odd . (3.20)

The Haar integrals for the colour is done using the large N integrals listed in table 7, while
the space time integral has been done numerically. The final result is given by,

I
SO(N)
f,f (x) = 1 + 2x2

(1− x4) = ZS + 2ZA. (3.21)

14Note that we recover the Majorana fermion letter partition function in [28] (see eqn B.11) if we set
yi = 0 in (3.16).
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The Lagrangian which saturates the paritition function counting is given by

LFSO(N),f =
∑
m,n

am,n

m∏
b=1

n∏
c=1

(∂µb∂νcψi∂µbψj)(∂νcψjψi). (3.22)

The linearly independent grassmann modules are as follows.
• m+ n = even ≥ 0: there is one linearly independent S-matrix for any am,n.

• m + n = odd ≥ 1: there are two linearly independent modules which are given
canonically by am+n,0 and a0,m+n.

4 Conclusions

In this paper we have revisited to the investigation of locality of bulk physics in AdS
by a counting argument on both sides of the duality following [1]. We considered CFTs
with scalars in d = 4 and fermions in d = 1 charged under various global symmetry
group. Then assuming a large central charge expansion we have counted the number of
independent solutions to crossing equation at first non trivial order in O

(
c−1) expansion

using HPPS functionals and also the analytic functionals introduced in [8, 9, 16]. The
analytical functionals can be used to find CFT data in any spacetime dimension. There
is a correspondence between number of independent CFT solutions and S matrices in flat
space which we evaluated through plethystic counting and obtained a perfect agreement.
Apart from charged scalars we have also computed the S matrices of charged fermions in
two dimensions.

Demanding polynomial boundedness in the Regge limit and no double discontinuity in
the Mellin amplitude makes the counting argument identical for CFT in Mellin variables
and QFT in Mandelstam variables15 [46, 47]. However we explored a different direction by
computing the possible solutions of crossing equation. On the way we have developed non
perturbative analytic functionals that can act on crossing equations arising in the presence
of global symmetry. Also we have tried to extend our discussion to fermions. To our
knowledge an explicit formula relating Mellin amplitude to flat space S matrix amplitudes
for spinning particles is not fleshed out clearly yet (building on the seminal work of [48])
and is a direction worth pursuing.

In [17, 18] the flat space four graviton and four gluon S matrices were constructed.
We would like to extend the notion of bulk locality in the sense of HPPS to spinning
operators also. In the same spirit, it will be to interesting to consider three dimensional
Majorana fermions in the CFT [49, 50]. The group theoretic counting of fermion S-matrices,
introduced in this paper, can be generalised to D = 4. We are hoping to extend the analytic
functional methods of [8, 9] to obtain the CFT data. This exercise of classification of flat
space S-matrix counting also has implications for the S-matrix bootstrap [51]. We expect
functional methods of [6] (as well as formalism of [7]) can be extended in presence of global
symmetry and non-integer spin, putting the conjecture of [1] on further concrete footing.
Recently in [52] the blocks for five point correlator was found. Therefore we can also test
the notion of bulk locality in higher point functions given the plethystic counting for scalars

15We thank the anonymous referee for raising this point.
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are already known in literature. Another possibility is to push this computations to next
order in large central charge expansion. With the CFT data found in this work we can
now construct the thermal two point functions which are also dual to the same theories of
charged fields as considered here in AdS but with non zero temperature. Following [53, 54]
we can assume that there are no new operators in the OPE of two fields apart from those
which appeared in our analysis at zero temperature. Then using KMS conditions and
assuming polynomial boundedness of thermal two point functions in the Regge limit we
can compute the correction to mean field theory thermal two point functions. In particular
it will be interesting to explore this possibility for d = 3 fermionic CFTs which will be dual
to fields in AdS4.

Another interesting direction is to explore the Colour kinematics and Double Copy
relations in AdS [55–58]. In [59] it was pointed out that there is a tension in establishing
CK duality in four point amplitudes due to EFT corrections to pure non abelian gauge
field. It will be interesting to explore the status of the same in AdS for gluons, gravitons
and fermion EFT corrections.

We leave a detailed analysis for further work.
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A Details of crossing matrices

In this section we write down explicitly the crossing matrices that we will refer to in the
main text. The crossing matrix for scalars charged under fundamental of SO(N) is given by,

MSO(N),f =


1
N

(N+2)(N−1)
2N2

1−N
2N

1 (N−2)
2N

1
2

−1 (N+2)
2N

1
2

 . (A.1)

The matrix βµp,q used in (2.17) is defined as

βSp,q =

 L∑
`=0,even

γ′S(−`+ p− 1, `)J∆−1(−`+ p− 1, q)− γ′S(p, `)J∆−1(`+ p+ 1, q)
n

)


βTp,q =

 L∑
`=0,even

γ′T (−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′T (p, `)J∆−1(`+ p+ 1, q)
n

)


βAp,q = −

 L∑
`=1,odd

γ′A(−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′A(p, `)J∆−1(`+ p+ 1, q)
n


(A.2)
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where

γ′i = 2(`+ 1)(2∆ + 2n+ `− 2)
(∆− 1)2 γ(i)(n, `) (A.3)

and J∆−1(p, q) has been defined in (A.7). Note that the negative sign in PAp,q is due to the
negative sign in the solution of the MFT OPE coefficient in (2.13).

The crossing matrix for SO(N) adjoint is given by [19],

MSO(N),a =



2
(N−1)N

4(N−2)
(N−1)N

4(N−2)(N+2)
(N−1)N2

N3−7N−6
(N−1)2N

−N2+N+6
N−N2

(N−3)(N−2)
(N−1)N

1
2(N−2)

1
2

−N2+2N+8
4N−2N2

−N3+7N+6
4(N−2)2(N−1) 0 N−3

2(N−2)
1

2(N−2)
N−4

2(N−2)
N2−8

2(N−2)N
N3−6N2+5N+12
4(N−2)2(N−1)

3−N
(N−2)2 − N−3

2(N−2)
1
3 −2

3
2(N−4)

3N
N2−6N+11
3N2−9N+6 − N−4

3(N−2)
1
3

1
2 0 − 4

N
−N2+3N+4
2N2−6N+4

1
2 −1

2
1
6

2
3 −2(N+2)

3N
N2+3N+2

6(N2−3N+2)
N+2

12−6N
1
6


. (A.4)

The matrices σµp,q used in (2.22) is defined as

σSp,q =

 L∑
`=0,even

4γ
′
S(−`+ p− 1, `)J∆−1(−`+ p− 1, q)− γ′S(p, `)J∆−1(`+ p+ 1, q)

N(N − 1)


σFp,q =

 L∑
`=1,odd

−γ
′
F (−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′F (p, `)J∆−1(`+ p+ 1, q)

N − 2


σTp,q =

 L∑
`=0,even

γ′T (−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′T (p, `)J∆−1(`+ p+ 1, q)
N − 2


σRp,q = 2

 L∑
`=0,even

γ′R(−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′R(p, `)J∆−1(`+ p+ 1, q)
3


σMs
p,q = −

 L∑
`=1,odd

γ′Ms(−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′Ms(p, `)J∆−1(`+ p+ 1, q)


σAp,q =

 L∑
`=0,even

γ′A(−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′A(p, `)J∆−1(`+ p+ 1, q)
3


(A.5)

where

γ′i = 2(`+ 1)(2∆ + 2n+ `− 2)
(∆− 1)2 γ(i)(n, `)

(A.6)

and J∆−1(p, q) is defined as,

J∆−1(m,m′) = Cm
Cm′

I(m,m′), I(m,m′) =
∮
C

dz

2πi
(1− z)m
zm′+1 F∆−1+m(z)F2−∆−m′(z)

Cp = Γ(p+ 2(∆− 1)− 1)Γ(p+ ∆− 1)2

p!Γ(∆− 1)2Γ(2p+ 2(∆− 1)− 1) . (A.7)

– 31 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
6

In [1, 5], the closed form expressions for J∆−1(m,m′) were also given

J∆−1(m,m′) = −Γ(2p+ 2∆− 2)Cp
Γ(p+ ∆− 1)2Cq

p∑
`=0

(−1)`
(p
`

)
((p+ ∆− 1)q−`) 2

Γ(q − `+ 1)2

× 4F3(`− q, `− q,−q −∆ + 2,−q −∆ + 2; (A.8)
−p− q + `−∆ + 2,−p− q + `−∆ + 2,−2q − 2∆ + 4; 1) .

The crossing matrix corresponding to (2.42) are given by,

MSU(N),f =
( 1

N 1− 1
N2

1 − 1
N

)
(A.9)

M̃SU(N),f =
(

1 + 1
N 1− 1

N

1 −1

)
. (A.10)

The matrices κµp,q and τµp,q used in (2.42) are given by,

κ(S)
p,q =

∑L
`=0 (γs(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γs(p, l)J(∆− 1, l + p+ 1, q))

N

κ(Adj)
p,q =

∑L
`=0 (γs(−l+p−1, l)J(∆− 1,−l+p−1, q)− γs(p, l)J(∆− 1, l+p+1, q))

N

τ (S)
p,q =

∑L
`=0(−1)` (γs(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γs(p, l)J(∆− 1, l + p+ 1, q))

N

τ (Adj)
p,q =

∑L
`=0(−1)` (γs(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γs(p, l)J(∆− 1, l + p+ 1, q))

N

Ω(Sym)
p,q =

∑L
`=0,even (γs(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γs(p, l)J(∆− 1, l + p+ 1, q))

N

Ω(Anti−sym)
p,q =

∑L
`=1,odd (γs(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γs(p, l)J(∆− 1, l + p+ 1, q))

N
.

(A.11)

The crossing matrix MSU(N),a defined in (2.45) is given by,

MSU(N),a =



1
N2−1

2N
N2−1

8−2N2

N−N3
N2−4
N2−1

(N−3)N2

(N−1)2(N+1)
N2(N+3)

(N−1)(N+1)2

1
2N

1
2

1
2 −

2
N2 0 1

1−N + 1
2 − N+3

2N+2
N

2(N2−4)
N2

2(N2−4)
N2−12

2(N2−4)
N

4−N2 − (N−3)N3

2(N−2)2(N2+N−2)
N3(N+3)

2(N−2)(N+1)(N+2)2

1
2 0 − 2

N
1
2

1
N−2 + 1

1−N −
1
2 − 1

N+2 + 1
N+1 −

1
2

1
4

1
2 −N+2

2N −N+2
4N

1
2−2N + 1

N−2 + 1
4

N+3
4N+4

1
4 −1

2
1
2 −

1
N −N−2

4N
N−3

4(N−1)
N2+N+2

4N2+12N+8


.

(A.12)

The matrices Λµp,q used in (2.47) is defined as

ΛSp,q =
L∑

`=0,even
2
(
γ′S(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γ′S(p, l)J(∆− 1, l + p+ 1, q)

(N + 1)(N − 1)

)
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ΛAdj−
p,q =

L∑
`=1,odd

−
(
γ′Adj−(−l+p−1, l)J(∆− 1,−l+p−1, q)− γ′Adj−(p, l)J(∆− 1, l+p+1, q)

N

)

ΛAdj+
p,q =

L∑
`=0,even

N

(
γ′Adj−(−l+p−1, l)J(∆− 1,−l+p−1, q)− γ′Adj−(p, l)J(∆− 1, l+p+1, q)

(N + 2)(N − 2)

)

ΛASp,q =
L∑

`=1,odd
−
(
γ′AS(−l+p−1, l)J(∆− 1,−l+p−1, q)− γ′AS(p, l)J(∆− 1, l+p+1, q)

)
ΛAAp,q =

L∑
`=0,even

(
γ′AA(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γ′AA(p, l)J(∆− 1, l + p+ 1, q)

2

)

ΛSSp,q =
L∑

`=0,even

(
γ′SS(−l + p− 1, l)J(∆− 1,−l + p− 1, q)− γ′SS(p, l)J(∆− 1, l + p+ 1, q)

2

)
(A.13)

where

γ′i = 2(`+ 1)(2∆ + 2n+ `− 2)
(∆− 1)2 γ(i)(n, `) (A.14)

and J∆−1(p, q) has been defined in (A.7). The matrices β′µp,q and MSO(4),f used in (2.31)
are defined as

MSO(4),f =


1
4

9
16 −

3
16 −

3
16

1 1
4

1
4

1
4

−1 3
4 −

1
4

3
4

−1 3
4

3
4 −1

4

 (A.15)

β′
S
p,q =

 L∑
`=0,even

γ′S(−`+ p− 1, `)J∆−1(−`+ p− 1, q)− γ′S(p, `)J∆−1(`+ p+ 1, q)
n


β′
T
p,q =

 L∑
`=0,even

γ′T (−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′T (p, `)J∆−1(`+ p+ 1, q)
n


β′
A
p,q = −

 L∑
`=1,odd

γ′A(−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′A(p, `)J∆−1(`+ p+ 1, q)
n


β′
A′

p,q = −

 L∑
`=1,odd

γ′A′(−`+ p− 1, l)J∆−1(−`+ p− 1, q)− γ′A′(p, `)J∆−1(`+ p+ 1, q)
n

 .

(A.16)

B Relation between β̂i,j and βn,`

Here we briefly discuss the relation between β̂i,j and βi,j following [8]. Let’s define the
following generating functional,∑

n,`

G∆B ,`(z, z)αn,` +
∑
n,`

∂∆G∆B ,`(z, z)βn,` (B.1)
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where ∆B = 2∆φ + 2n+ `. Using the explicit form of conformal block [25, 60, 61],

G∆,` =
∞∑
n=0

∑
j

An,jP∆+n,J , (B.2)

where,
PE,J(s, ξ) = sE

j!
(2ν)j

Cνj (ξ). (B.3)

The coefficients An,j satisfy the following recursion relation,(
C∆+n,j − C∆,`

)
An,j = γ+

∆+n−1,j−1An−1,j−1 + γ−∆+n−1,j+1An−1,j+1 (B.4)

where,

γ+
E,J = (E + j)2(j + 2ν)

2(j + ν) , γ−E,J = (E − j − 2ν)2j

2(j + ν) (B.5)

and we have the initial conditions A0,j = δjl. Using this the generating functional will take
the following form,

∞∑
i,j=0

(
α̂i,j + β̂i,j

log(zz)
2

)
zizj (B.6)

α̂i,j , β̂i,j are independent of spacetime dimension and dimension of external operator.
These are easy to compute and using the expansion of conformal block we can always
translate α̂i,j , β̂i,j to αn,`, βn,`.

C Scattering of four Majorana fermions in 1+1 dimensions

In this appendix we set up the scattering kinematics and the necessary ingredients for
massive Majorana fermion scattering in 1+1 dimensions. In particular, we review the 1+1
dimensional scattering kinematics and also provide the explicit expressions for S-matrix
for the Lagrangians listed in subsection 3.2. Our results are consistent with the analysis
of [62] when restricted to 1+1 dimensions.

Kinematics. Consider the scattering of four identical massive particles in 2-dimensional
Minkowski space. Let pµi be momentum of the ith particle with mass m. Momentum
conservation and on-shell condition implies

p2
i = −m2, pµ1 + pµ2 − p

µ
3 − p

µ
4 = 0. (C.1)

For convenience we parametrize the momenta in the following manner,

pµi = (m coshαi, sinhαi). (C.2)

We use the convention that particles with momenta p1 and p2 are incoming and p3 and
p4 are outgoing. Momentum conservation implies p1 = p4, p2 = p3. The Mandelstam
variables can be defined as follows,

s := −(p1 + p2)2 = −(p3 + p4)2 = 2m2 − 2p1.p2,

t := −(p1 − p3)2 = −(p4 − p2)2 = 2m2 + 2p1.p3,

u := −(p1 − p4)2 = −(p2 − p3)2 = 0.
(C.3)
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The equalities in (C.3) follow from (C.1). Due to momentum conservation the Mandelstam
invariants are related by s+ t = 4m2. Contrary to D ≥ 3, for the special case D = 2, the
kinematics of four particle scattering degenerates and variables u and t can be solved for
in terms of s and m2 (in particlar u = 0).

Plane wave solutions to Majorana equation. We consider the plane wave solutions
to (3.11) for Majorana fermions with no colour as

ψ(x) =
∫

dp

(2π)2p0

(
b(p)u(p)eipµxµ + c†(p)v(p)eipµxµ

)
(C.4)

where, the commutation relations and the Majorana condition (3.13) implies

c(p) = b(p), u?(p) = v(p), {b(p), b†(p′)} = 2πδ(p− p′)2p0 (C.5)

The momentum space Majorana equation becomes,

(ipµγµ −m)u(p) = 0, (−ipµγµ −m)v(p) = 0
u(p)(ipµγµ −m) = 0, v(p)(−ipµγµ −m) = 0 . (C.6)

The general procedure for evaluating this involves going to the rest frame and then boosting
the solution obtained. This procedure gives the following solutions to u(p) and v(p),

u(pi) =
√
m(e−αi/2, ieαi/2), v(pi) =

√
m(e−αi/2,−ieαi/2) (C.7)

We then evaluate the relevant inner products as,

u(p1) · u(p2) =
√

2m2 − 2p1 · p2, v(p1) · v(p2) = −
√

2m2 − 2p1 · p2

u(p1) · v(p2) =
√
−2m2 − 2p1 · p2, v(p1) · u(p2) = −

√
−2m2 − 2p1 · p2

u(p2) · v(p1) = −
√
−2m2 − 2p1 · p2, v(p2) · u(p1) =

√
−2m2 − 2p1 · p2 (C.8)

where A = ATC as defined in (3.13).

Fermion S-matrix. In this subsection we write the explicit form of the fermion S-
matrix which is generated by the local Lagrangians listed in (3.18) and (3.22) respectively.
Consider the scattering process of four identical Majorana fermions

ψα + ψβ → ψγ + ψδ

where the subscript denotes the spinor index. Using the plane wave solutions listed in (C.7),
the fermion S-matrix can be written as

SL
F = (u(p3) · u(p2)u(p4) · u(p1) + v(p2) · v(p3)v(p1) · v(p4))(p3 · p2)m(−p3 · p4)n

+(u(p3) · u(p1)v(p2) · v(p4) + v(p1) · v(p3)u(p4) · u(p2))(p3 · p2)m(p3 · p1)n

+(u(p3) · v(p4)v(p1) · u(p2) + v(p4) · u(p3)u(p2) · v(p1))(p3 · p1)m(−p3 · p4)n .
(C.9)
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Consider the scattering process of four identical Majorana fermions charged under the
fundamental of SO(N),

ψaα + ψbβ → ψcγ + ψdδ

where the superscript denotes the internal symmetry index while the subscript denotes the
spinor index as usual. Using the plane wave solutions listed in (C.7), the fermion S-matrix
can be written as

S
LFSO(N),f

= (u(p3) · u(p2)u(p4) · u(p1) + v(p2) · v(p3)v(p1) · v(p4))(p3 · p2)m(−p3 · p4)nδbcδad
+(u(p3) · u(p1)v(p2) · v(p4) + v(p1) · v(p3)u(p4) · u(p2))(p3 · p2)m(p3 · p1)nδacδbd
+(u(p3) · v(p4)v(p1) · u(p2) + v(p4) · u(p3)u(p2) · v(p1))(p3 · p1)m(−p3 · p4)nδabδcd .

(C.10)

D Plethystic integrals

In this appendix we detail the evaluation of colour integral of (2.52) and (3.15)

IRs (x) :=
∮
dµG

∮
dµSO(D) i

(4)
s (x, y, z)/D(x, y),

IRf (x) :=
∮
dµG

∮
dµSO(D) i

(4)
f (x, y, z)/D(x, y). (D.1)

where dµSO(D) is the Haar measure associated with the Lorentz group SO(D) and dµG is
the Haar measure associated with the colour group G. The Haar measure for SO(D) for
even dimensions (D = 2N) and odd dimensions (D = 2N + 1) are given by,

∆e(yi) =
2
(∏N

j=1

(∏j−1
i=1

(
yi + 1

yi
− yj − 1

yj

)))2

(2πi)N2NN !∏N
i=1 yi

,

∆o(yi) =

(∏N
k=1

(
1− yk − 1

yk

)) (∏N
j=1

(∏j−1
i=1

(
yi + 1

yi
− yj − 1

yj

)))2

(2πi)NN !∏N
i=1 yi

(D.2)

and the integral over yi in (2.52) is a closed circular contour about yi = 0. The Haar
measure for SU(N) is given by [63],

dµSU(N) = 1
(2πi)(N−1)N !

N−1∏
l=1

dzl
zl

∆(φ)∆(φ−1) (D.3)

where φa(z1, . . . zN−1)|Na=1 are the coordinates on the maximal torus of SU(N) with∏N
l=1 φl = 1 and ∆(φ) = ∏

1≤a<b≤N (φa − φb) is the Vandermonde determinant. Simi-
lar to SO(D), the integral over zi in (2.52) is a closed circular contour about zi = 0.
Explicitly written out, the coordinates on the maximal torus take the form,

φ1 = z1, φk = z−1
k−1zk, φN = z−1

N−1 . (D.4)
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We, therefore, have to perform two Haar integrals one of which projects onto Lorentz
singlets, while the other projects onto the colour singlets. We perform the Haar integral
for the Lorentz singlets first using the Large D techniques used in [17], keeping in mind
that the Haar integral for the lorentz group stabilizes for D > 3 for scalars. We obtain the
following general result

IDs (x) :=
∮
dµG

(
χGR(z2)χGR(z)2

4 (1− x4) + χGR(z4)
4 (1− x4) + χGR(z)4

24 (x2 − 1)2

+ χGR(z2)2

8 (x2 − 1)2 + χGR(z3)χGR(z)
3 (x4 + x2 + 1)

)
. (D.5)

Now let us consider the colour projections case by case. For the cases where the scalar
field is transforming in the fundamental and adjoint of SO(N) and SU(N), we expect the
final partition function to be a sum of the partition functions Z of representations of S3
(see subsection 2.9 of [17]). More precisely we expect,

ZS-matrix(x) =
∑
J

x∆JZRJ(x) (D.6)

where ZRJ(x) are listed in (D.7).

Z1S(x) = D, Z1A(x) = x6D, Z2M(x) = (x2 + x4)D,

Z3(x) = Z1S + Z2M(x) =
(
1 + x2 + x4

)
D

Z3A(x) = Z1A + Z2M(x) =
(
x6 + x2 + x4

)
D

Z6(x) = Z1S + Z1A + 2Z2M(x) =
(
1 + 2x2 + 2x4 + x6

)
D

where D = 1
(1− x4)(1− x6) .

(D.7)

D.1 Integrals for SO(N) fundamental and adjoint

In this subsection, we set up the computation for the cases when G = SO(N) and R is the
fundamental and the adjoint representation of SO(N). Since we are interested in large N
computation, it suffices to perform the Haar integral over colour singlets using the large
N techniques of [17, 18]. We obtain the following results for fundamental and adjoint
representation of SO(N), see table 7, where

χ
SO(N)
f (y) =

bN/2c∑
i=1

(
yi + 1

yi

)

χSO(N)
a (y) =

χSO(N)
f (y)2 − χSO(N)

f (y2)
2

 . (D.8)

For low N , the integrals can be done using numerical integrations outlined in [17, 18].
We list the results of the Haar integral in table 7.
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Integral SO(N) fundamental SO(N) adjoint∮ ∏bN/2c
i=1 dyi ∆(yi) χ

SO(N)
R (y2)χSO(N)

R (y)2 1 2∮ ∏bN/2c
i=1 dyi ∆(yi) χ

SO(N)
R (y4) 1 2∮ ∏bN/2c

i=1 dyi ∆(yi) χ
SO(N)
R (y)4 3 6∮ ∏bN/2c

i=1 dyi ∆(yi) χ
SO(N)
R (y2)2 3 6∮ ∏bN/2c

i=1 dyi ∆(yi) χ
SO(N)
R (y3)χSO(N)

R (y) 0 0

Table 7. Large N integrals for SO(N).

Integral SU(N) adjoint
1

(2πi)(N−1)N !
∮ ∏N−1

l=1
dzl
zl

χ
SU(N)
a (z2)χSU(N)

a (z)2 1
1

(2πi)(N−1)N !
∮ ∏N−1

l=1
dzl
zl

χ
SU(N)
a (z4) 3

1
(2πi)(N−1)N !

∮ ∏N−1
l=1

dzl
zl

χ
SU(N)
a (z)4 9

1
(2πi)(N−1)N !

∮ ∏N−1
l=1

dzl
zl

χ
SU(N)
a (z2)2 5

1
(2πi)(N−1)N !

∮ ∏N−1
l=1

dzl
zl

χ
SU(N)
a (z)χSU(N)

a (z3) 0

Table 8. Large N integrals for SU(N) adjoint.

D.2 Integrals for SU(N) adjoint

The results for the adjoint representation has already been listed in [18] and reproduced in
table 8 for convenience, where

χ
SU(N)
f (z) =

N∑
i=1

zi, χ
SU(N)
f

(z) =
N∑
i=1

z−1
i

χSU(N)
a (z) = χ

SU(N)
f (z)χSU(N)

f
(z)− 1 (D.9)

D.3 Fermions

In this subsection we present the Haar integral over the D = 2 space-time for fermions.
Quoting (3.15),

IRf (x) =
∮
dµG

∮
dµSO(2)

1
24
(
i4f(x, y, z)− 6i2f(x, y, z)if(x2, y2, z2)

+ 3i2f(x2, y2, z2) + 8if(x, y, z)if(x3, y3, z3)− 6if(x4, y4, z4)
)
. (D.10)

The lorentz integral was done numerically while the colour integral has been done using
the large N techniques explained in the previous section. An important difference from the
previous section is the following fact that, in D = 2, the number of invariant Mandelstam
invariants is just one instead of two for higher dimensions. This implies the final result can
be written in the form

ZD=2
S-matrix(x) =

∑
J

x∆JZRJ(x) (D.11)

– 38 –



J
H
E
P
1
0
(
2
0
2
1
)
1
4
6

where ZRJ(x) are the partition functions corresponding to the irreducible representations
of S2 as outlined in appendix E.

ZS(x) = 1
1− x4 , ZA(x) = x2

1− x4 . (D.12)

We obtained (3.17) and (3.21) in this manner.

E Representation theory of S2 and action on Mandelstam invariants

We present the representation theory for two dimensional discrete group S2 and its action
on the Mandelstam invariants. The permutation group of two elements has two one-
dimensional irreducible representations — the totally symmetric representation and the
totally anti-symmetric representation. The generator for the S2 is a Z2 flip and it is almost
immediately obvious the two irrducible represenations can be labelled by their Z2 charges.
The standard young’s diagrams associated with these representations are

ZS = , ZA = . (E.1)

To be precise, denoting the Z2 generator by P12, the representation ZS has the charge “+”
while ZA has the charge“ −” under the actions of P12. We now construct the action of
S2 on the Mandelstam invariants s, t subject to the constraint s + t = 0 (we focus on the
massless case first, the massive case is a trivial generalisation of this case). Before trying to
construct polynomials that transform in the two irreducible representations of S2, we first
present the partition function counting. Following [17], we can define the single variable
partition function as

z(x) := Trx2∆ = 1
1− x2 . (E.2)

Here ∆ is the degree of momentum homogeneity. The partition functions over polynomials
of two variables with given transformation property and the constraint s+ t = 0 are

ZS(x) := 1
2
(
z(x)2 + z(x2)

)
(1− x2) = 1

1− x4

ZA(x) := 1
2
(
z(x)2 − z(x2)

)
(1− x2) = x2

1− x4 . (E.3)

The modules built out of polynomials of Mandelstam invariants, corresponding to these
partition functions can also be constructed as follows

MZS(n) = s2n, MZA(n) = s2n+1 (E.4)

where the S2 properties of the modules are self-explanatory. Therefore in two dimensions,
the S-matrix partition function is expected to be of the form

ZS-matrix =
∑
∆J

x∆JZ∆J
(x) (E.5)

where Z∆J
(x) can be either one of (E.3). For the massive case the modules become

M ′ZS(n) = (s(4m2 − s))n, M ′ZA(n) = s(s(4m2 − s))n . (E.6)
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