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1 Introduction

A Hamiltonian system is integrable if there exists an infinite number of conserved charges
in involution or, equivalently, if a Lax connection can be constructed. The required in-
volution of these conserved charges leads to a particular form of the Poisson bracket
of the Lax connection in terms of an r-matrix [1–3]. In the context of string theory,
the integrability of the AdS5 × S5 superstring described by a σ-model on the supercoset
psu(2, 2|4)/so(1, 4)⊕ so(5) [4, 5] is a remarkable property that also shows up in less sym-
metric cases like the AdS4×CP3 background which is partially described by the supercoset
uosp(2, 2|4)/so(1, 3)⊕ u(3) [6, 7].

Since there is no generic and systematic way to construct integrable theories it is
quite natural to look for deformations of known integrable theories which still preserve
integrability. For the AdS5×S5 superstring this has been extensively analyzed by adapting
techniques used to deform integrable sigma models [8]. The strategy for building these
deformations, called q-deformations, is to construct a Poisson bracket that preserves the
relation between the Lax matrix and the undeformed Hamiltonian producing a deformed
Hamiltonian while keeping the dependence of the Lax matrix on the currents. From it we
can derive a Lagrangian which is integrable and depends on the R-operator that satisfies
the modified Classical Yang-Baxter equation (mCYBE). This procedure was applied to
deform the AdS5 × S5 superstring [9] and it was found that its η-deformed background
is not a solution of the standard type IIB supergravity equations despite the presence of
κ-symmetry [10, 11].

For superstrings propagating in other backgrounds only a few results are known. Re-
cently some examples of integrable deformations of the AdS4×CP3 background were given
based on abelian solutions of the Classical Yang-Baxter equation (CYBE), which also have
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an interpretation in terms of TsT transformation [12, 13]. These deformed backgrounds are
duals of noncommutative, dipole and β-deformed ABJM theory as well as a nonrelativistic
limit having Schrödinger symmetry.

In this paper we will consider deformations of the AdS4×CP3 space based on a solution
of the mCYBE whose R-operator is

R (Eij) =
{
−iEij if i < j

+iEij if i > j
, (1.1)

where Eij , with i, j = 1, . . . , 10, are the gl(4|6) generators [14]. Its main characteristic is
that the r-matrix, the map associated to the R-operator, is composed by the roots of the
superalgebra. This is in contrast to the r-matrices that solve the CYBE which are given by
the commuting generators of the superalgebra. Here we give the first steps by deriving the
bosonic part of the deformed AdS4 ×CP3 background via the standard coset construction
based on the superalgebra g = uosp(2, 2|6). We then take a special undeformed limit of
this background that leads to the gravity dual of the noncommutative ABJM theory [13].
Our results can be used towards to the computation of the full η-deformed AdS4 × CP3

background, which, once obtained, would allow us to explore a new family of integrable
backgrounds, including those of a new type of generalized type IIA supergravity.

This paper is organized as follows. In section 2 we present briefly the main steps needed
to construct an η-deformed superstring σ-model. Next, in section 3, we review the coset
construction of the undeformed bosonic AdS4×CP3 background and in section 4 we derive
the η-deformed bosonic sector of uosp(2, 2|4)/so(1, 3)⊕ u(3). In section 5 we conclude and
discuss our results.

2 η-deformed superstring sigma models

The action for the η-deformed superstring σ-model on g is [9, 15]

S = −
(
1 + cη2)2

4 (1− cη2)

∫
d2σ

(
γαβ − κεαβ

)
Str

(
Aα, ďJβ

)
, (2.1)

where A = g−1dg ∈ g, g ∈ G, γαβ is the string worldsheet metric with det γ = 1 and
κ2 = 1. The Z4-grading of g allows the split of A as

A = A(0) +A(1) +A(2) +A(3),
[
A(k), A(m)

]
⊆ A(k+m) mod Z4. (2.2)

The operator ď is defined as the following combination of projectors Pi (i = 1, 2, 3) on the
gradings of g

ď = P1 + 2
1− cη2P2 − P3. (2.3)

The absence of P0 is required for (2.1) to be g(0)-invariant. The deformed current is then

J = 1
1− η Rg ◦ ď

A = O−1A, (2.4)
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where the operator Rg is

Rg (M) = Ad−1
g ◦R ◦Adg (M) = g−1R(gMg−1)g, g ∈ G, (2.5)

and R : g 7→ g, which is the operator associated to the r-matrix required for integrability,
must satisfy the Yang-Baxter equation (YBE)

[RM,RN ]−R ([RM,N ] + [M,RN ]) = c [M,N ] , (2.6)

where M,N ∈ g. In (2.1) and (2.6) the parameter c refers to either the classical Yang-
Baxter equation (CYBE), c = 0, or to the modified classical Yang-Baxter equation
(mCYBE), c = 1. The case c = 1, which is also known as non-split R-matrix [16], can be
solved as [10],

R (M)ij = −iεijMij , εij =


1 if i < j

0 if i = j

−1 if i > j

, M ∈ g, (2.7)

and was considered in [9]. This type of deformation has been explored for superstrings in
AdS5×S5 [10, 11] but not for superstrings in AdS4×CP3. In this work we will present some
results concerning the bosonic η-deformed background based only on the bosonic roots of
the algebra as done in [10].

3 Coset construction of the bosonic AdS4 × CP3 background

The isometry group of AdS4 × CP3 is the coset

AdS4 × CP3 ≡ SO(2, 3)
SO(1, 3) ×

SU(4)
U(3) , (3.1)

which is part of the supercoset UOSp(2, 2|6)/ (SO(1, 3)×U(3)) [6, 7]. The supergroup
G = UOSp(2, 2|6) has the superalgebra g = uosp(2, 2|6) on which the σ-model can be
constructed. The bosonic sector of g can be expressed as [12, 13]

gb := so(2, 3)⊕ su(2)⊕ su(4) =
g(0)︷ ︸︸ ︷

(so(1, 3)⊕ su(2)⊕ u(3))⊕

g(2)︷ ︸︸ ︷(
so(2, 3)⊕ su(2)⊕ su4
so(1, 3)⊕ su(2)⊕ u(3)

)
.

(3.2)
As supermatrices, the elements of g can be written as

M(6|4)×(6|4) =

 so(2, 3) 0 Q

0 su(2) 0
Q 0 su(4)

 , (3.3)

where the dashed lines divide the supermatrix into the blocks corresponding to the sub-
spaces AdS4, CP3 and Q, Q̄ ∈ gf = g(1) ⊕ g(3).
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We will use the same basis as in [13] to parametrize so(2, 3)⊕ su(2)⊕ su(4) which, as
supermatrices, can be expressed as

Mij =

mij

0
0

 , Ma = − i2

 0
σa

0

 , Lm = − i2

 0
0
λm

 , (3.4)

where mij , with i, j = 0, 1, . . . , 4, are the ten 4×4 antisymmetric matrices representing the
generators of isometries of so(2, 4); σa, with a = 1, 2, 3 and λm, with m = 1, . . . , 15, are,
respectively, the usual 2 × 2 Pauli and 4 × 4 Gell-mann matrices of su(2) and su(4) (see
appendix A and appendix B).

The global isometries of the AdS4 space can be written as

so(2, 3) = so(1, 3)⊕ so(2, 3)
so(1, 3) , (3.5)

where the coset so(2,3)
so(1,3) is parametrized by

K0 = 1
2M04, K1 = 1

2M14, K2 = 1
2M24, K3 = 1

2M34 ≡
1
2D, (3.6)

where
Str (KmKn) = 1

4ηmn, m, n = 0, 1, 2, 3. (3.7)

An appropriate coset representative for AdS4 is then

gAdS4 = exp (tM04 + φM12) exp (−ζM13) exp
(
sinh−1 ρM14

)
. (3.8)

The isometries of CP3 space can be written as

su(2)⊕ su(4) = su(2)⊕ u(3)⊕ su(2)⊕ su(4)
su(2)⊕ u(3) . (3.9)

The coset su(2)⊕su(4)
su(2)⊕u(3) can be described by

K4 = L11, K5 = L12, K6 = L13,

K7 = L14, K8 = H, K9 = L10,
(3.10)

and H = L6 + L9 + M1, with Lm given in (3.4) and

Str (KmKn) = 1
2δmn, m, n = 4, . . . , 9. (3.11)

Then an appropriate coset representative for CP3 is [12]

gCP3 = exp (ϕ1L3 + ϕ2L− ψM3) exp (θ1L2 + (θ2 + π)L14) exp ((2ξ + π) (L10 + M2)) ,
(3.12)

where
L = − 1√

3
L8 −

√
2
3L15. (3.13)
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Hence, the bosonic coset representative for AdS4 × CP3 is

gb = gAdS4 × gCP3 . (3.14)

With this parametrization the undeformed AdS4×CP3 metric1 has the expected form

ds2
AdS4 = 1

4

(
−
(
1 + ρ2

)
dt2 + dρ2

1 + ρ2 + ρ2
(
dζ2 + cos2ζdφ2

))
, (3.15)

and

ds2
CP3 = dξ2 + 1

4 cos2ξ
(
dθ2

1 + sin2θ1dϕ
2
1

)
+ 1

4 sin2ξ
(
dθ2

2 + sin2θ2dϕ
2
2

)
+
(1

2 cos θ1dϕ1 −
1
2 cos θ2dϕ2 + dψ

)2
sin2ξ cos2ξ,

(3.16)

where (θ1, ϕ1) and (θ2, ϕ2) parametrize the two spheres of CP3, the angle ξ, 0 ≤ ξ ≤ π/2,
determines their radii and 0 ≤ ψ ≤ 2π [18].

4 The bosonic η-deformed AdS4 × CP3 background

By switching off the fermionic degrees of freedom the deformed action in (2.1) reduces to

S = −1
2

(
1 + η2

1− η2

)2 ∫
d2σ

(
γαβ − εαβ

)
Str (Aα, P2 (Jβ)) , κ = 1. (4.1)

The action of P2 on A, Rg (Km) and J are [12, 13]

P2 (A) = EmKm, P2 (Rg (Km)) = Λ n
m Kn, P2 (J) = jmKm, (4.2)

where Km are the generators of g(2) and the coefficients jm can be obtained from

jm = KnC
m
n . (4.3)

The coefficients C m
n can be seen as a matrix in terms of Λ n

m

C = (I− χΛ)−1 , χ = 2η
1− η2 . (4.4)

Then, from (4.1), we can read off the metric and the B-field as

ds2 = Str (AP2 (J)) = 1
4

3∑
m=0

jmStr (AKm) + 1
2

9∑
m=4

jmStr (AKm) , (4.5)

B = Str (A ∧ P2 (J)) = −1
4

3∑
m=0

jm ∧ Str (AKm)− 1
2

9∑
m=4

jm ∧ Str (AKm) . (4.6)

1We set R2
str = R3/k = 25/2π

√
N/k = 1, where R2

str is defined in [17].
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Now, in order to compute the deformed background with the action (4.1) we have first
to compute the nonzero components of Λ n

m in (4.2)

Λ 1
0 = Λ 0

1 = −ρ,
Λ 3

2 = −Λ 2
3 = −ρ sin ζ,

Λ 5
4 = −Λ 4

5 = sin2
(
θ1
2

)
− cos 2ξ cos2

(
θ1
2

)
= q1,

Λ 8
5 = Λ 5

8 = − sin θ1 sin ξ cos2 ξ = q2,

Λ 7
6 = −Λ 6

7 = − cos2
(
θ2
2

)
− cos 2ξ sin2

(
θ2
2

)
= q3,

Λ 9
7 = −Λ 7

8 = − sin θ2 cos ξ sin2 ξ = q4,

Λ 9
8 = −Λ 8

9 = − cos 2ξ = q5.

(4.7)

Then we follow the same procedure as in [13] to find the η-deformed metric. The AdS4
part is given by

ds2
AdS4

1 + χ2 = 1
4

(
− f+(ρ)
f−(χρ)dt

2 + 1
f+(ρ)f−(χρ)dρ

2 + 1
1 + χ2ρ4 sin2 ζ

ρ2ds2
S2

)
, (4.8)

where f±(x) = 1 ± x2 and ds2
S2 is an undeformed S2 sphere parametrized by (ζ, φ). For

the CP3 part we find

ds2
CP3

1+χ2 =F
[
G
(
q2

1 +q2
2 +q2

3 +q2
4 |q2

1q
2
3 +q2

1q
2
4 +q2

2q
2
3

)
dξ2+G

(
q2

3 +q2
4 +q2

5 |q2
3q

2
5

) 1
4 cos2 ξdθ2

1

+G
(
q2

2 +q2
3 +q2

4 +q2
5 |q2

2q
2
3 +q2

3q
2
5

) 1
4 cos2 ξ sin2 θ1dϕ

2
1+G

(
q2

1 +q2
2 +q2

5 |q2
1q

2
5

) 1
4 sin2 ξdθ2

2

+G
(
q2

1 +q2
2 +q2

4 +q2
5 |q2

1q
2
4 +q2

1q
2
5

) 1
4 sin2 ξ sin2 θ2dϕ

2
2

+G
(
q2

1 |0
)
G
(
q2

3 |0
)(1

2 cosθ1dϕ1−
1
2 cosθ2dϕ2+dψ

)2
sin2 ξ cos2 ξ

]
, (4.9)

where q1, . . . q5 are given in (4.7),

F−1 = G
(
q2

1 + q2
2 + q2

3 + q2
4 + q2

5 | q2
1q

2
3 + q2

1q
2
4 + q2

1q
2
5 + q2

2q
2
3 + q2

3q
2
5

)
, (4.10)

and

G(r | s) = 1 + rχ2 + sχ4. (4.11)

Notice that for the undeformed theory, when χ = 0, we get F = G(r | s) = 1 and the
metrics (4.8) and (4.9) reduce to (3.15) and (3.16) respectively. Finally, the bosonic part
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of the η-deformed B-field is given by

B

1 + χ2 = 1
2

(
χρ

1− χ2ρ2dt ∧ dρ
)

+ 1
2

(
χρ4 cos ζ

1 + χ2ρ4 sin2ζ

)
dζ ∧ dφ

+ F
(1

2q2q5χ
2G
(
q2

3 | 0
)

cos ξdξ ∧ dθ1 + 1
2q4q5χ

2G
(
q2

3 | 0
)

sin ξdξ ∧ dθ2

+ q5χG
(
q2

3 | 0
)

cos ξ
(
G
(
q2

1 | 0
)

cos θ1 sin ξ + q1q2χ
2 sin θ1

)
dξ ∧ dϕ1

− q5χG
(
q2

1 | 0
)

sin ξ
(
G
(
q2

3 | 0
)

cos θ2 cos ξ + q3q4χ
2 sin θ2

)
dξ ∧ dϕ2

+ q5χG
(
q2

1 | 0
)
G
(
q2

3 | 0
)

sin 2ξdξ ∧ dψ

+ χ

2
(
q1G

(
q2

3 + q2
4 + q2

5 | q2
3q

2
5

)
sin θ1 − q2G

(
q2

3 | 0
)

cos θ1 sin ξ
)

cos2ξdθ1 ∧ dϕ1

+ χ

4
(
q3q4χ

2 sin θ2 +G
(
q2

3 | 0
)

cos θ2 cos ξ
)

sin 2ξdθ1 ∧ dϕ2

− q2χG
(
q2

3 | 0
)

sin ξ cos2ξdθ1 ∧ dψ

+ χ

4
(
q1q2χ

2 sin θ1 +G
(
q2

1 | 0
)

cos θ1 sin ξ
)

sin 2ξdθ2 ∧ dϕ1

+ χ

2
(
q3G

(
q2

1 + q2
2 + q2

5 | q2
1q

2
5

)
sin θ2 − q4G

(
q2

1 | 0
)

cos θ2 cos ξ
)

sin2ξdθ2 ∧ dϕ2

+ q4χG
(
q2

1 | 0
)

sin2ξ cos ξdθ2 ∧ dψ
)
, (4.12)

which vanishes for the undeformed theory.
The deformed background (4.8), (4.9) and (4.12) breaks the isometries of the AdS space

so that the dual gauge theory will be neither conformal nor Lorentz invariant. Also, the
presence of the B-field indicates that the dual gauge theory would be a noncommutative
deformation of the ABJM theory.

We can now find a special undeformed limit which is a solution of the standard super-
gravity in a similar way as has been done for AdS5 × S5 [11]. We first rescale the AdS4
coordinates

t→ √χt, ρ→ ρ/
√
χ, ζ → ζ0 +√χζ, φ→ √χφ/ cos ζ0, (4.13)

where ζ0 is a parameter, and then set χ = 0 to get

ds2 = 1
4

(
−ρ2dt2 + dρ2

ρ2 + ρ2

1 + ρ4 sin2 ζ0

(
dζ2 + dφ2

))
+ ds2

CP3 , (4.14)

and
B = 1

2
ρ4 sin ζ0

1 + ρ4 sin2 ζ0
dζ ∧ dφ. (4.15)

This is the gravity dual of the noncommutative ABJM theory with deformation param-
eter sin ζ0 [13] which is a type IIA supergravity solution. The connection between the
η-deformed background and the gravity dual of the noncommutative ABJM theory can
be understood as an infinite boost of the r-matrix that generates the η-deformed back-
ground which gives a r-matrix with parameter sin ζ0 leading to the gravity dual of the
noncommutative theory [19].
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5 Conclusions and outlook

In this paper we derived the bosonic η-deformed AdS4 × CP3 background using the same
technique developed for the bosonic Yang-Baxter deformed AdS4 × CP3 background [13].
We have also shown that in the special limit χ → 0 it is the gravity dual of the non-
commutative ABJM theory. In the AdS5 × S5 case there is also the so-called “maximal
deformation” limit χ → ∞ [20] that in our case should leads to the mirror AdS4 × CP3

background. This would allow us to study the finite size thermodynamic Bethe ansatz.
However, in our case, the construction of the double Wick rotated background that gen-
erates the mirror undeformed AdS4 × CP3 background is not simply the interchange of
the metric elements corresponding to the coordinates involved in the light-cone gauge fix-
ing [21]. To do that we have to take coordinate t in AdS4 and the coordinate ψ in CP3. This
happens because CP3 is not block diagonal so that the double Wick rotation constructed
in [20] (see also [22, 23]) must be adapted to our case. After that, it will be possible to
get the maximal deformation of our η-deformed metric and B-field and see if it also has
the mirror background as a limit. Another interesting limit is χ→ i, which establishes the
connection to the Pohlmeyer reduced model for the undeformed AdS4 × CP3 [24]. These
are important topics that deserve further study.

The deformed fermionic sector can in principle be obtained in the same way as in the
AdS5 × S5 case [11] but there are important subtleties that must be taken into account.
The superalgebra uosp(2, 2|6) does not describe all fermionic degrees of freedom of the
AdS4 × CP3 string [6] which are needed to build the RR sector. A fermionic factor gf
will appear in the coset representatives needed to obtain the fermionic currents A(1), A(3)

and the fermionic contributions to the operator O−1 in (2.4). Then they can be expanded
up to quadratic order to get the deformed fluxes of the theory. The first problem one
must face to get the full deformed background is to reincorporate those 32 fermions. Since
not all of them are part of the supercoset, a possibility is to start from a supercoset that
contains them.

The R-operator (2.7) was also considered in AdS5 × S5 [10] where it was found that
the deformed background does not solve the standard type IIB supergravity equations
but a kind of generalized supergravity equations [25, 26]. We then expect that our NSNS
fields (4.8), (4.9) and (4.12) are also part of some generalized supergravity. Besides that, the
R-operator (2.7), called reference R-operator in [27], can be associated to a r-matrix which
is not unimodular [28]. However, as shown in [27], it is possible to find a permutation of the
R-operator which gives an unimodular inequivalent R-operator such that the η-deformed
background is a solution of type IIB supergravity with the same NSNS fields. It will be
very interesting to find out whether the AdS4 × CP3 case has the same property.

A A basis for the so(2, 3) algebra

The 10 generators of SO(2, 3) can be written as

mij = i

4 [Γi,Γj ] , (A.1)
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and satisfy
[mij ,mk`] = i (ηi`mjk + ηjkmi` − ηj`mik − ηikmj`) , (A.2)

where i, j, k, ` = 0, 1, 2, 3, 4. We choose the following representation for the SO(2, 3) Γi
matrices

{Γi,Γj} = 2ηij , (A.3)

Γi =
{

iγ5γa i = a = 0, 1, 2, 3
γ5 = iγ0γ1γ2γ3 i = 4

(A.4)

with ηij = diag(− + + + −), and γa being the gamma matrices in a Dirac representation
of SO(1, 3) [29] (see [6] for a different choice)

γ0 =
(
I2 0
0 −I2

)
, γ1 =

(
0 σ3
−σ3 0

)
,

γ2 =
(

0 σ1
−σ1 0

)
, γ3 =

(
0 σ2
−σ2 0

)
.

(A.5)

and
γ5 =

(
0 I2
I2 0

)
. (A.6)

From (A.1), we get

mab = 1
4 [γa, γb] , ma4 = i

2γa, a, b = 0, 1, 2, 3. (A.7)

In order to make explicit the conformal group let us split the indices as

mij = {mµν ,mµ3,mµ4,m34} , µ, ν = 0, 1, 2, (A.8)

such that ηµν = diag(−,+,+).2 Let us also define [29]

pµ = mµ4 +mµ3,

kµ = mµ4 −mµ3,

D = m34. (A.9)

Then the conformal algebra SO(2, 3) is

[mµν ,mρσ] = ηµσmνρ + ηνρmµσ − ηµρmνσ − ηνσmµρ,

[mµν , D] = 0,
[D, pµ] = −pµ,
[D, kµ] = kµ, (A.10)
[kµ, pν ] = 2ηµνD + 2mµν ,

[mµν , pρ] = −ηµρpν + ηνρpµ,

[mµν , kρ] = −ηµρkν + ηνρkµ.
2This is going to be the signature on the Minkowskian boundary of AdS4.
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B A basis for the su(4) algebra

A basis for su(4) can be constructed in terms of anti-hermitian 4 × 4 matrices known as
Gell-Mann matrices,

λ1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , λ2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , λ3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ,

λ4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , λ5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , λ6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

λ7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , λ8 = 1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 , λ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

λ10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 , λ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , λ12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 ,

λ13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , λ14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , λ15 = 1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 . (B.1)

The first 8 matrices form a basis for su(3) ⊂ su(4). Furthermore, these matrices are
orthogonal and satisfy

Tr (λmλn) = 2δmn, m = 1, . . . , 15, (B.2)

and commutation relations
[λm, λn] = 2ifpmnλp. (B.3)

A list of non-vanishing structure constants can be found in [30]. In this representation the
Cartan generators are given by λ3, λ8 and λ15.
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