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1 Introduction and summary

Our understanding of the concept of symmetries in quantum field theories (QFT) has been
greatly improved in the last several years. We now have the concept of p-form symmetries
acting on p-dimensional operators [22]. This concept gives a point of view which unifies
both ordinary symmetries acting on point operators for p = 0 and center symmetries of
gauge theories acting on Wilson line operators for p = 1. In addition, the ’t Hooft magnetic
flux [38] can now be thought of as a background gauge field for the 1-form center symmetry.
It is also realized more recently that 0-form symmetries and 1-form symmetries can not
only coexist in a direct product but also mix in a more intricate manner. They can have
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mixed anomalies between them, or they can also combine nontrivially to form a symmetry
structure called 2-groups.1

In this paper, we study these issues in the case of 4d so quantum chromodynamics
(QCD), i.e. so(Nc) gauge theories with Nf flavors of fermion fields in the vector represen-
tation. We assume that the fermions are massless, unless otherwise explicitly stated.

Symmetries of so QCD: let us start by quickly recalling the 0-form and 1-form sym-
metries of the so QCD. As for the 0-form symmetry, we focus our attention on the su(Nf )
symmetry acting on Nf flavors of matter fields in the vector representation. We will not
consider other discrete symmetries in this paper for brevity.

As for the 1-form symmetry, we first need to recall that the theory comes in three
versions, Spin, SO+ and SO−, distinguished firstly by the global form of the gauge group
(Spin vs. SO) and further by the choice of the discrete theta angle (SO+ vs. SO−) [3].2
They also differ by the nontrivial line operator they possess: the Spin theory has the
Wilson line W in the spinor representation, the SO+ theory has the ’t Hooft line H which
is mutually non-local with respect toW , and the SO− theory has the dyonic line D = WH.
Furthermore, these line operators are charged under corresponding Z2 1-form symmetries,
which we respectively call electric, magnetic and dyonic 1-form symmetries.

The main question is then how the su(Nf ) 0-form symmetry and the Z2 1-form sym-
metry are related.3 We concentrate on the case when Nc and Nf are both even: Nc = 2nc
and Nf = 2nf . We introduce three possible behaviors, which we call none, extension, and
anomaly:

• The case none. The 0-form symmetry and the 1-form symmetry stay separate without
an anomaly.

• The case extension. Take, for example, the Spin(2nc) gauge theory with 2nf flavors.
When nc is odd, two copies of the Wilson line W in the spinor representation form a
Wilson line in the vector representation. This can be screened by a dynamical fermion,
which is whyW 2 = 1 as far as the 1-form symmetry charge is concerned. Now let us recall
that this dynamical fermion transforms nontrivially under −1 ∈ SU(2nf ). Therefore,
when we further take the flavor symmetry into account, W 2 is still nontrivial.

As was discussed in [23], this means that the Z2 1-form symmetry extends the
SU(2nf )/Z2 0-form symmetry in a nontrivial manner, forming a 2-group H fitting in the

1The first appearance of 2-groups in string theory is in the Green-Schwarz mechanism. Namely, that
the gauge-invariant field strength of the B-field is H = dB + CS(ω) + · · · where ω is the affine connection
means that the U(1) 1-form symmetry (for which the B-field is the gauge field) and the diffeomorphism
form a nontrivial 2-group extension. This point was discussed in a series of papers by Urs Schreiber and
his collaborators, see e.g. [8, 17, 18, 33, 34]. Note that the 2-group in this case is a gauge symmetry. The
significance of 2-groups as a global symmetry structure in field theory was recognized much later in [4, 11, 32].

2This is when the theories are considered on spin manifolds. For non-spin manifolds, a further distinction
needs to be made [2]. For simplicity, we only consider spin manifolds in this paper.

3A partial answer was given in [23], but the contribution from fermions was not taken into account in
that reference. Our conclusion is consistent with theirs when the fermion contributions vanish, e.g. when
the fermions can be made massive preserving the flavor symmetry.
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sequence
0 −→ Z2[1] −→ H −→ SU(2nf )/Z2 −→ 0, (1.1)

whose extension class is specified by

βa2 ∈ H3(B(SU(2nf )/Z2);Z2). (1.2)

Here, Z2[1] stands for Z2 regarded as a 1-form symmetry, SU(2nf )/Z2 is the quotient by
the subgroup {±1}, a2 is (the representative cocycle of) the obstruction class controlling
whether the SU(2nf )/Z2 bundle lifts to SU(2nf ), and β is the Bockstein homomorphism.4
The background field for such a 2-group is given by the background gauge field for
SU(2nf )/Z2 together with a Z2-valued degree-2 cochain E satisfying5

δE = βa2. (1.3)

A consequence of this nontrivial extension is that the theory cannot be coupled to a
general SU(2nf )/Z2 background without introducing a nontrivial E background. In
short, SU(2nf )/Z2 is not a subgroup but a quotient group of the whole symmetry 2-
group, and thus gauging SU(2nf )/Z2 alone without gauging Z2[1] part does not make
sense.

• The case anomaly. The SO+(2nc) gauge theory is obtained by gauging the Z2 1-form
symmetry of the Spin(2nc) gauge theory [28]. The gauging of the Z2 1-form symmetry
whose background field is E is done by introducing another Z2-valued degree-2 closed
cochain B, adding the interaction

2πi · 1
2

∫
BE, (1.4)

and summing over all possible E. In this particular case, the background field E is the
second Stiefel-Whitney class w2 of the SO(2nc) gauge bundle, and summing over them
gives the SO+ gauge theory.

As we will see, the contribution to the anomalies from the fermions significantly
complicates the analysis. Neglecting this contribution, we see that the coupling (1.4) is
not closed due to (1.3), and has the variation

2πi · 1
2

∫
Bβa2. (1.5)

4For a Z2-valued cocycle a ∈ Z2(X,Z2), its Bockstein is defined as follows. We first construct the Z4-
valued lift a of a by sending {0, 1} to {0, 1} ⊂ {0, 1, 2, 3}. Let us now consider δa. By construction it is 0
mod 2, and therefore 1

2δa is a well-defined Z2-valued cocycle, which is defined to be βa. When βa is zero
as a cohomology class, there is a Z2-valued cochain b such that βa = δb. This is equivalent to the fact that
the Z4-valued cochain a′ := a + 2b is a Z4-valued cocycle. In this manner we found that [βa] = 0 means
that a can be lifted to a Z4-valued cocycle. We now lift this Z4-valued cocycle to a Z8-valued cochain a.
In this case 1

4δa is a well-defined Z2-valued cocycle, which is defined to be β2a. This β2 is known as a
higher Bockstein operation, which we will need to use later in the paper. When β2a is zero as a cohomology
class, we can lift a to a Z8-valued cocycle. We can then lift it to a Z16-valued cochain and define β3a, ad
infinitum.

5In this equation, a2 and βa2 need to be interpreted as cochains rather than cohomology classes. More
generally, cochains and cohomology classes will not be carefully distinguished explicitly in this paper.
Hopefully this bad practice would not cause too much confusions.
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(nc, nf ) Spin SO+ SO−
(even, even) none none none

(odd, even) extension anomaly extension

(even, odd) anomaly extension extension

(odd, odd) extension extension anomaly

Table 1. How the Z2 1-form symmetry and the SU(2nf )/Z2 0-form symmetry are combined in
massless so(2nc) QCD. ‘none’ implies that they remain a direct product without mixed anomaly;
‘anomaly’ means that they remain a direct product but with mixed anomaly; and ‘extension’ is
when they combine into a nontrivial 2-group. The orange lines show how the duality of Intriligator
and Seiberg acts on this set of theories.

(nc, nf ) Spin SO+ SO−
(even, even) none none none

(odd, even) extension anomaly extension

(even, odd) none none none

(odd, odd) none none none

Table 2. How the Z2 1-form symmetry and the SO(2nf )/Z2 0-form symmetry are combined in
massive so(2nc) QCD. Our conventions follow that of table 1.

This means that the Z2 1-form symmetry of the SO(2nc) gauge theory and the SU(2nf )/Z2

0-form flavor symmetry remains a direct product, but with a mixed anomaly given
by (1.5).

We will carefully analyze how the Z2 1-form symmetry and the SU(2nf )/Z2 0-form
symmetry are combined in the rest of the paper. The novelty in our paper over the analysis
in [23] is that we take fermionic contributions into account. The derivation will be detailed
in the following, and here we simply summarize the result in table 1.

So far we assumed that the fermions are massless. It is also useful to see what happens
when the fermions are massive. When we give equal masses to all Nf = 2nf fermions, the
flavor symmetry is reduced from SU(2nf )/Z2 to SO(2nf )/Z2. The crucial simplification is
that βa2 appearing in the anomaly or the extension becomes cohomologically trivial when
nf is odd, because a2 now lifts to a Z4 class controlling whether an SO(2nf )/Z2 bundle
lifts to a Spin(2nf ) bundle. Stated differently, the contributions from the fermions vanish
since the fermions can be made massive, so that then the analysis of [23] applies. The
results are shown in table 2, which is significantly simpler than the behavior in table 1.

Application to the Intriligator-Seiberg duality: our result thus far is equally ap-
plicable in the case of N = 1 supersymmetric QCD, since they are connected to the
non-supersymmetric QCD by a continuous deformation preserving all the symmetries we
care about. Now, let us recall that Intriligator and Seiberg found in [26] a duality exchang-
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ing so(Nc) and so(Nf −Nc+4), which in our notation sends nc to n′c = nf −nc+2, keeping
nf fixed.

Following a crucial set of observations in [35] that spinors in the original theory are
mapped to magnetic monopoles in the dual theory, the Intriligator-Seiberg duality of N = 1
so theories was refined in [3], to account for the global form of the gauge group and the
discrete theta angle. It was concluded there that Spin is exchanged with SO− while SO+
maps to itself. This mapping was given a further confirmation by using supersymmetric
localization on S3/Zn×S1 in [30]. Our analysis allows us to check this duality by comparing
how the 0-form symmetry and the 1-form symmetry are combined in the dual pairs. We
superimposed the action of the duality on our main table 1 for the massless case and table 2
for the massive case. It is satisfying to see that the duality action correctly preserves the
behaviors ‘none’, ‘anomaly’ and ‘extension’. In the last couple of years, the study of higher
symmetries and their anomalies of supersymmetric theories has seen some activity,6 but
mostly from the point of view of string theory or M-theory. The authors hope that this
paper paves a way toward a more field-theoretical analysis of these matters.

Organization of the paper: the rest of the paper is organized as follows. In section 2,
we determine exactly when the electric /magnetic / dyonic Z2 1-form symmetries and the
SU(2nf )/Z2 flavor 0-form symmetry form a nontrivial 2-group, by examining the charges of
line operators in each theory. In section 3, we exploit the SL(2,Z2) actions on theories with
Z2 1-form symmetries, including our so(2nf ) QCDs. This will allow us to determine the
’t Hooft anomalies they possess. Combining the results with those obtained in section 2, one
can completely determine the structures of symmetries and anomalies of so(2nf ) QCDs, and
can further confirm that they are indeed compatible with the Intriligator-Seiberg duality.
Although the result itself is satisfactory, the analysis leading to it is somewhat ad-hoc, so in
section 4, we partially complement it with a more direct computation of fermion anomalies.

In appendix A, we discuss how we can understand the 2-group structure in general by
studying line operators and line-changing point operators, and find a relation to the crossed
module extensions classifying H3. Finally, we have the two appendices providing technical
details of the mathematical facts used in the main part; in appendix B, we compute relevant
bordism groups capturing the anomalies of spin QFTs associated with various symmetries;
and in appendix C, we describe some subtleties concerning the Pontrjagin square.

Before proceeding, we list the obstruction classes which will be frequently encountered
in this paper. In general, given a group G, a subgroup Zn in the center of G, and a G/Zn
bundle on a manifold X, there is a obstruction class in H2(X;Zn) controlling whether this
bundle lifts to a G bundle. For G = Spin(Nc) and G/Z2 = SO(Nc) this is the familiar
second Stiefel-Whitney class w2. The classes we use are listed in table 3.

2 2-group structure

Let us first study whether the Z2 1-form symmetry and the SU(2nf )/Z2 0-form flavor
symmetry form a nontrivial 2-group or not. This can be found rather physically by studying
the line operators.

6See e.g. [1, 5, 12, 14, 20] where 2-groups of supersymmetric theories were studied.
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name G/Zn G Zn comments
w2 SO(2nc) Spin(2nc) Z2

v2 SO(2nc)/Z2 SO(2nc) Z2

x2 SO(2nc)/Z2 Spin(2nc) Z4 nc : odd
a2 SU(2nf )/Z2 SU(2nf ) Z2

a2 USp(2nf )/Z2 USp(2nf ) Z2

a2 U(nf )/Z2 U(nf ) Z2

Table 3. The names we use for the obstruction classes ∈ H2(X,Zn) controlling whether a G/Zn

bundle on X lifts to a G bundle.

2.1 Spin

We start by discussing the Spin(2nc) gauge theory with 2nf fermions in the vector repre-
sentation. The results presented in this subsection was originally found in [23, section 4.4].

First, recall that the center of Spin(2nc) is Z2 × Z2 or Z4 depending on whether nc
is even or odd. This corresponds to the fact that the tensor square of a spinor represen-
tation contains the identity representation when nc is even while it contains the vector
representation when nc is odd.

Now, consider the Wilson line W in the spinor representation. When nc is even, W 2

contains the identity representation, and therefore we simply have a Z2 1-form symmetry
independent of the flavor symmetry, and there is nothing more to see here.

When nc is odd, W 2 contains the vector representation. This can be screened by
the dynamical fermion, which however carries the fundamental representation of SU(2nf )
flavor symmetry, and in particular transforms nontrivially under −1 ∈ SU(2nf ). In other
words, the flavor Wilson line in the fundamental representation of SU(2nf ) can now be
considered as the square of the gauge Wilson line in the spinor representation of Spin(2nc).
This means that we have the following extension of groups

0 −→ Z2︸︷︷︸
group of

charges under
{±1} ∈ SU(2nf )

−→ Z4 −→ Z2︸︷︷︸
group of

gauge Wilson lines
up to screening

−→ 0. (2.1)

As the groups of charges of SU(2nf ) 0-form symmetry and Z2 1-form symmetry are com-
bined nontrivially, the symmetry groups themselves are also combined nontrivially. Let
us see this point by considering their background fields. (We will discuss another general
method to relate this extension to 2-groups in appendix A.)

The fermion fields are simultaneously in the vector representation of the gauge so(2nc)
and the fundamental representation of the flavor su(2nf ), and therefore are in a represen-
tation of G = SO(2nc)×SU(2nf )

Z2
. Given a G bundle on a manifold X, there is an SO(2nc)/Z2

bundle and an SU(2nf )/Z2 bundle associated with it. Let us denote by v2, a2 ∈ H2(X;Z2)
the obstruction classes controlling whether they lift to an SO(2nc) bundle and an SU(2nf )
bundle respectively. Then we have v2 = a2 for a G bundle. The flavor Wilson line in the
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fundamental representation is charged under −1 ∈ SU(2nf ) in the center, and a2 can be
considered as the background field for this Z2 1-form symmetry.

Now, without the flavor background, the background E ∈ H2(X;Z2) for the electric
Z2 1-form symmetry of the Spin(2nc) theory sets the Stiefel-Whitney class w2 ∈ H2(X;Z2)
of the SO(2nc) gauge bundle to be E = w2, which controls whether it lifts to a Spin(2nc)
bundle. When the flavor background a2 is nontrivial, the obstruction class v2 controlling the
lift from an SO(2nc)/Z2 bundle to an SO(2nc) bundle is nontrivial. In this situation, when
nc is odd, w2 can no longer be defined as a closed cochain; rather it satisfies δw2 = βv2,
where β is the Bockstein operation, since7 together they specify the obstruction class
x2 ∈ H2(X;Z4) controlling the lift from an SO(2nc)/Z2 = Spin(2nc)/Z4 bundle to a
Spin(2nc) bundle. As E = w2 and v2 = a2, we conclude that the background field satisfies

δE = βa2. (2.2)

In general, a 2-group H combining a 1-form symmetry A and a 0-form symmetry G,
which fits in the exact sequence

0 −→ A[1] −→ H −→ G −→ 0 (2.3)

with the extension class α ∈ H3(BG;A), is defined as a symmetry whose background
field is given by a pair of a degree-2 cochain E ∈ C2(X,A) and a background G field
g : X → BG satisfying δE = g∗(α). Here A[1] means the Abelian group A regarded as
a 1-form symmetry, and we drop the pull-back symbol g∗ when its presence is clear from
the context. In our case, we see that the Z2 1-form symmetry and the SU(2nf )/Z2 0-form
flavor symmetry form the 2-group H fitting in the sequence

0 −→ Z2[1] −→ H −→ SU(2nf )/Z2 −→ 0 (2.4)

with the extension class being βa2 ∈ H3(B(SU(2nf )/Z2);Z2).8

7Indeed, let v2 the Z4-lift of the cochain v2, where the value {0, 1} are lifted to {0, 1} ⊂ {0, 1, 2, 3}. βv2

is by definition 1
2δv2, as we explained in footnote 4. The Z2-reduction of the cochain x2 is v2, and x2 − v2

is divisible by 2, so we can identify w2 = 1
2 (x2 − v2). As 1

2δx2 is zero as a Z2-valued cochain, we find
δw2 = βv2, as desired.

8When the 0-form symmetry part is finite, the extension class can be visualized in terms of the
codimension-2 operator implementing the 1-form symmetry, emerging from the triple-intersections of three
codimension-1 operator implementing 0-form symmetry, see [4].
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Note that having the extension of groups of charges of line operators as in (2.1) is equiv-
alent to having a nontrivial 2-group extension (2.4) whose background field satisfies (2.2).
The situation can be summarized as the following commuting diagram:

0 0

0 SU(2nf ) SU(2nf ) 0

0 Z2[1] H SU(2nf )/Z2 0

0 Z2[1] AH [1] Z2[1] 0

0 0 0

w2

. (2.5)

Here, the sequences of the form 0 → G → G′ → G′′ → 0 in the columns and the rows are
to be interpreted as having fibration sequences BG → BG′ → BG′′ among the respective
classifying spaces.9 We note that the map w2 : SU(2nf )/Z2 → Z2[1] extracts the informa-
tion of the obstruction class a2 ∈ H2(B(SU(2nf )/Z2);Z2). We also note that the 2-group
H is uniquely determined by AH [1]: if AH [1] = Z4[1], the extension is nontrivial, while
AH [1] = (Z2 × Z2)[1], it is trivial. Therefore, to determine the 2-group extension, we can
simply study the group of charges AH of line operators, which we will carry out for SO±
gauge theories next.

2.2 SO±

We would like to study how the magnetic / dyonic Z2 1-form symmetry of the SO(2nc)±
gauge theory is combined with the SU(2nf ) flavor symmetry. We first discuss the case SO+
in detail; the minor changes needed to take SO− into account would be described later.

In accord with the discussions in the previous subsection, we consider what happens
when we take two copies of the ’t Hooft line operator H and fuse them. At the very naive
level, H2 can be screened by dynamical monopoles, but dynamical monopoles can receive
flavor / gauge center charges from the fermion zero modes.

Making deformations: to study these issues, it is useful to deform the theory and make
it simpler by performing the following steps:

• Reduce the flavor symmetry from SU(2nf ) to USp(2nf ). The fundamental represen-
tation still transforms nontrivially under −1 ∈ USp(2nf ), which is enough for our
purposes.

• Add an adjoint scalar Φ[ab] and the interaction ψaiα ψ
bj
β JijΦabε

αβ + c.c. . Here a, b and
i, j are vector indices of SO(2nc) and USp(2nf ), α, β are the spinor indices, and J[ij]
is the constant invariant matrix for the USp(2nf ).

• Give a generic vacuum expectation value (vev) to Φab and break SO(2nc) to SO(2)nc .
9In particular, the maps SU(2nf )→ SU(2nf )/Z2 and SU(2nf )→ H are not injective in the usual sense.
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The ’t Hooft lines in the resulting SO(2)nc theory can be labeled by their magnetic
charges (m1, . . . ,mnc) ∈ Znc . The dynamical monopoles have the charges in the ‘adjoint
class’, which are in the root lattice Λ of SO(2nc). Then, the group of the magnetic charges
of ’t Hooft lines up to screening by the dynamical monopoles is

Znc/Λ = Z2, (2.6)

which agrees with the 1-form symmetry before the deformation. We now would like to
study how this Z2 is combined with the flavor / gauge center Z2 charge.

Reduction to the so(4) case: for this purpose we need to know slightly more details
of the dynamical monopoles. The dynamical monopoles associated with the breaking of a
gauge group to its Cartan were analyzed in many places, e.g. in [41]. There, the following
was shown. Let φ be the scalar vev in the real Cartan subalgebra, φ ∈ h ⊂ g. This
determines the simple roots α. Then you can embed the standard spherically-symmetric
’t Hooft-Polyakov monopole using the su(2) subalgebra associated with α, and have a
monopole solution without additional bosonic moduli.

Let us say we chose the standard φ such that the simple roots are

(1,−1, . . . , 0), (0, 1,−1, . . . , 0), . . . , (0, . . . , 1,−1), (0, . . . , 1,+1) ∈ Znc , (2.7)

which we call simple dynamical monopoles. Now, consider the group Znc × Z2 which
combines the magnetic charges in Znc and the flavor / gauge center charge q ∈ Z2. What
we are after is the quotient of Znc ×Z2 by the subgroup generated by the charges of simple
dynamical monopoles, which we denote respectively by

(1,−1, . . . , 0; q1), (0, 1,−1, . . . , 0; q2), . . . , (0, . . . , 1,−1; qnc−1), (0, . . . , 1,+1; qnc). (2.8)

To determine this quotient, we do not have to determine the all qi’s; we simply use the first
nc− 2 vectors to relate any charge vector (m1, . . . ,mnc−2,mnc−1,mnc ; q) to a vector of the
form (0, . . . , 0,m,m′; q′). Then, only qnc−1 and qnc need to be determined. This reduces
the study to the case of nc = 2 and so(2nc) = so(4) ' su(2)1×su(2)2, where the monopoles
associated with the simple roots are just ’t Hooft-Polyakov monopoles associated with the
two factors of su(2)’s.

Analysis of the so(4) case: the vev of the adjoint scalar in this basis can be written
as (a1, a2), which we assume to be a1 > a2 > 0. Here, the fermion is in the vector
representation of so(4). Under the monopole in su(2)1, it is a doublet coupled to an
adjoint vev of size a1 with bare mass a2, and similarly for the monopole in su(2)2.

Now, the explicit analysis in [9, section IV] concerning the number of zero modes in the
’t Hooft-Polyakov monopole says that a doublet fermion coupled to an adjoint vev of size a
with bare mass µ has a zero mode if |a| > |µ| and has no zero modes if |a| < |µ|. With our
assumption a1 > a2 > 0, this means that the monopole in su(2)1 has a zero mode, while
the monopole in su(2)2 does not. In our original basis, this means that the monopole with
(0, . . . , 1,−1; qnc−1) does not produce any zero modes and qnc−1 = 0, while the monopole
with (0, . . . , 1,+1; qnc) has two zero modes per flavor. The 1-form symmetry group is

– 9 –
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obtained by dividing Z2 × Z2 by the subgroup generated by (1,−1; 0) and (1,+1; qnc).
This is Z2 × Z2 or Z4 depending on whether qnc is 0 or 1.

Let us determine qnc , the center charge of the monopole in su(2)1. We saw that there
are two zero modes per flavor; this means that there are fermionic zero modes transform-
ing in

R2nf
⊗ V2, (2.9)

where R2nf
is the fundamental representation of usp(2nf ), while V2 is the doublet of

su(2)2,10 and we need to impose the reality condition using the pseudo-reality of both
factors, so that there are 4nf Majorana fermion in total.

To determine the flavor / gauge center charge qnc of the monopole, it suffices to consider
the case nf = 1; the general case is given simply by multiplying it by nf . When nf = 1,
there are 4 Majorana fermions. Quantizing them, we find the monopoles in

(R2 ⊗ 1)⊕ (1⊗ V2). (2.10)

It has the ‘vector’ charge under usp(2) ' su(2) flavor symmetry or is a doublet under
su(2)2, which corresponds to the ‘vector’ charge under so(4) gauge symmetry. In either
case, they have the flavor / gauge center charge 1 ∈ {0, 1} = Z2. Therefore we conclude the
flavor / gauge center charge qnc is simply given by nf mod 2.

Summary: combining the intermediate steps we described above, we conclude the fol-
lowing: for the SO(2nc)+ gauge theory, the group Z2 of magnetic charges of ’t Hooft lines
is extended by the flavor / gauge center symmetry Z2 to become Z4 when nf is odd, while
they remain separate when nf is even.

The analysis of the SO(2nc)− gauge theory is largely the same; the only difference
is that the discrete theta angle gives an additional gauge center charge11 to the simple
dynamical monopole with the magnetic charge (0, 0, . . . , 1,+1), so that qnc = nf + nc
mod 2. Therefore, we conclude the following: for the SO(2nc)− gauge theory, the group
Z2 of magnetic charges of ’t Hooft lines is extended by the flavor / gauge center symmetry
Z2 to become Z4 when nf + nc is odd, while they remain separate when nf + nc is even.

The result of the analysis is summarized in table 4. There, ‘product’ means that the
Z2 1-form symmetry and the SU(2nf )/Z2 flavor symmetry are kept separate and form a
direct product, while ‘extension’ means that they form a nontrivial 2-group. We remark
that the nontrivial 2-group is always given by the extension (2.4) whose background fields
satisfy (2.2).

3 SL(2,ZZZ2) action and the anomalies

In the last section we determined the 2-group structure of the so(2nc) gauge theories with
2nf flavors, by studying the group of the charges of line operators. Here we determine the

10It is actually broken to u(1), but keeping su(2)2 representation is useful in organizing the answer.
11To see this, note that the original interaction 2πi

∫ 1
4P(w2) induces the interaction 2πi

∫ 1
4

(∑nc

i=1 c
(i)
1

)2

in the SO(2)nc theory. This gives the electric charge (1, 1, . . . , 1) to the monopole with the magnetic charge
(0, 0, . . . , 1,+1). Under −1 ∈ SO(2nc) such a state transforms by (−1)nc .
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(nc, nf ) Spin SO+ SO−
(even, even) product product product
(odd, even) extension product extension
(even, odd) product extension extension
(odd, odd) extension extension product

Table 4. How the Z2 1-form symmetry and the SU(Nf )/Z2 0-form flavor symmetry are combined in
so(2nc) QCD. The label ‘product’ means that they form a direct product, while the label ‘extension’
means that they form a nontrivial 2-group.

anomalies of these symmetries, utilizing the SL(2,Z2) action on the set of QFTs with Z2
1-form symmetry.

3.1 SL(2,ZZZ2) action and so gauge theories

Let us say that we are given a four-dimensional spin QFT Q with Z2 1-form symmetry. We
denote its partition function on a manifold X by ZQ[E], where we suppress the dependence
on X in the notation, and E ∈ H2(X;Z2) is the background field for the Z2 1-form
symmetry. We then define SQ and TQ to be QFTs with partition functions given by the
formula

ZSQ[B] ∝
∑
E

(−1)
∫

X
B∪EZQ[E], ZTQ[E] = (−1)

∫
X

1
2P(E)ZQ[E], (3.1)

where P : H2(−;Z2)→ H4(−;Z4) is a cohomology operation called the Pontrjagin square.
We can show that S2 = T 2 = 1 and (ST )3 = 1, meaning that they generate SL(2,Z2).
This operation was introduced in [22] as an analogue of the SL(2,Z) action on 3d QFTs
with U(1) symmetry of [43] and then further studied in [6].

Importantly, Spin(2nc) and SO(2nc)± gauge theories with 2nf flavors with the same
(nc, nf ) form a single orbit under this SL(2,Z2) action. More precisely, we need to make
a distinction between Spin(2nc) and T (Spin(2nc)), and similarly between SO(2nc)± and
T (SO(2nc)±) respectively, where the theories with T prepended are different from the
original ones only by its discrete theta coupling to the background. Then we have the
following chain of actions:

T (Spin) T←→ Spin S←→ SO+
T←→ T (SO+) S←→ T (SO−) T←→ SO−.

S

(3.2)

3.2 SL(2,ZZZ2) actions with extra background

Let us now study what happens if we perform this SL(2,Z2) action when the Z2 1-form
symmetry in question is part of a larger symmetry group. So far we have been considering
the effect of SU(2nf )/Z2 0-form flavor symmetry, but the discussions in the last section
show that, at a formal level, only the background field a2 ∈ H2(X;Z2) matters, which
controls the lift from an SU(2nf )/Z2 bundle to an SU(2nf ) bundle. Let us regard a2 as
the background field for a flavor Z2 1-form symmetry.
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Then, it is combined with the original Z2 1-form symmetry into either Z2 × Z2 or
Z4, and we perform the SL(2,Z2) action by picking a Z2 subgroup. The symmetry and
the anomaly of the resulting theory can be determined by a formal argument independent
of the dynamics of the theory, once those of the original theory and the action of the
anomaly-free subgroup to be gauged are given, as discussed in [36].

Let us work at the level of anomalies described by cohomology, since we do not need to
deal with more general anomalies described by bordism. We consider a d-dimensional QFT
with a symmetry group G with an anomaly specified by a cochain α ∈ Cd+1(BG; U(1)). We
pick a subgroup H ⊂ G such that α trivializes in it, so that one can find its trivialization
µ ∈ Cd(BH; U(1)) satisfying α|H = δµ. We then gauge H, using µ as the action.

What determines the symmetry and the anomaly of the gauged theory is the data
(µ, α). Clearly, given ν ∈ Cd(BG; U(1)), the pair (µ, α) and the pair (µ − ν|H , α − δν)
should give the same result, since we merely added the counterterm ν to the action. This
allows us to always choose the pair of the form (0, α′) equivalent to a given (µ, α), by taking
ν to be an arbitrary lift of µ from H to G. This is convenient in discussing the SL(2,Z2)
action, since our S operation is defined in the convention that µ = 0.

At this stage, the residual identifications (0, α′) ∼ (0, α′′) are of the form α′′ = α′+ δν,
where ν ∈ Cd(BG; U(1)) is required to satisfy ν|H = 0. Their equivalence classes form the
relative cohomology group Hd+1(BG,BH ; U(1)).12

The four choices: now, what are the possible choices of (µ, α) ∼ (0, α′) we need to
discuss? Let us first consider Z2 × Z2 1-form symmetry. As detailed in the appendix B,
the only possible anomaly for 4d spin QFTs with this symmetry is

α = 1
2BβE, (3.3)

where B,E ∈ H2(Y ;Z2) are the background fields on the bulk 5d spin manifold Y , and we
use Q/Z-valued cochains to describe the anomaly. Its restriction to Z2 1-form symmetry
subgroup is trivial i.e. α|H=Z2 = 0, and thus the possible choice of µ is simply the discrete
theta angle

µ = 1
4P(E), (3.4)

where P is the Pontrjagin square. This µ can be lifted from the Z2 subgroup to the entire
Z2 × Z2 group as a closed cochain, and therefore does not affect the gauging process.
Therefore, we only have to consider pairs (0, 0) and (0, α).

Next, we consider Z4 1-form symmetry. In the appendix B, we show that there is
no anomaly for Z4 1-form symmetry. Therefore we can pick α = 0. Then the only
possible choice of µ for the Z2 1-form subgroup is again the discrete theta angle (3.4). One
difference here is that the discrete theta angle (3.4) cannot be lifted as a closed cochain
to the entire Z4 1-form subgroup. As discussed in the appendix C, with δE = βa2 where
a2 ∈ H2(X;Z4/Z2), one finds

α′ := δµ = 1
2a2β2ã2, (3.5)

12It might be interesting to study anomalies taking values in the relative cohomology (or bordism) groups.
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where β2 is the higher Bockstein operation associated with the short exact sequence

0 −→ Z2 −→ Z8 −→ Z4 −→ 0, (3.6)

and ã2 is the lift of a2 to a Z4-valued cochain; see also footnote 4. We conclude that the
pairs we need to consider for the Z4 1-form symmetry are (0, 0) and (µ, 0) ∼ (0, α′).

Summarizing, we need to consider the following four choices, namely:

• For Z2 × Z2, the pairs (0, 0) and (0, α), which we call ‘none’ and ‘anomaly’
• For Z4, the pairs (0, 0) and (µ, 0) ∼ (0, α′), which we call ‘extended’ and ‘extendedT ’.

SL(2,ZZZ2) action on the four choices: let us now determine how the SL(2,Z2) action
affects these data. The case ‘none’ is very easy. The additional Z2 factor plays no role,
and we find the chain of actions given by

none T←→ none S←→ none T←→ none S←→ none T←→ none.
S

(3.7)

In the rest of this subsection, we will establish the chain of actions

extendedT T←→ extended S←→ anomaly T←→ anomaly S←→ extended T←→ extendedT .

S

(3.8)
We already explained above that T (i.e. adding the discrete theta angle (3.4)) leaves

‘anomaly’ unchanged, while it exchanges ‘extended’ and ‘extendedT ’. To establish the
chain above, we then need to show that S exchanges ‘extended’ and ‘anomaly’ while leaves
‘extendedT ’ unchanged.

That S exchanges ‘extended’ and ‘anomaly’ was in fact already reviewed in the Intro-
duction, around (1.4) and (1.5), where we started from ‘extended’, gauged the Z2 subgroup
of Z4, and found the ‘anomaly’, as first demonstrated in [36].

That S leaves ‘extendedT ’ unchanged was established in [23]. We will provide a slightly
different explanation than the one given there. Recalling that ‘extendedT ’ can be obtained
by performing the T transformation on ‘extended’, its S transformation then involves the
coupling

exp
[
2πi

∫
X

(1
2BE + 1

4P(E)
)]

, (3.9)

where E is the variable to be gauged and B is the newly introduced background field. As
Z2 to be gauged is the Z2 subgroup of Z4 1-form symmetry, E is not necessarily closed,
but rather satisfies the relation

δE = βa2, (3.10)

where a2 is the background field for the quotient Z4/Z2 1-form symmetry. Then the second
term in (3.9) is not closed, and to even talk about the first term in (3.9), one first needs
to extend the definition of the Pontrjagin square P to non-closed cochains, as we discuss
in appednix C.
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(nc, nf ) T (Spin) Spin SO+ T (SO+) T (SO−) SO−
(even, even) none none none none none none

(odd, even) extendedT extended anomaly anomaly extended extendedT
(even, odd) anomaly anomaly extended extendedT extendedT extended

(odd, odd) extended extendedT extendedT extended anomaly anomaly

Table 5. The symmetry structure of so(2nc) QCD with 2nf flavors, as deduced from the 2-group
structures found in section 2 and from the SL(2,Z2) action discussed in this section. The symmetry
structure of the Spin case, colored in purple, will be checked independently in section 4. The action
of Intriligator-Seiberg duality is also superimposed using orange arrows.

To make the coupling (3.9) well-defined, we consider adding a counterterm 1
4P(B)

depending solely on the newly introduced field B to (3.9), i.e. we perform a further T
transformation. The total coupling is now

exp
[
2πi

∫
X

(1
2BE + 1

4P(E) + 1
4P(B)

)]
= exp

[
2πi

∫
X

1
4P(E +B)

]
. (3.11)

This theory is perfectly well-defined and has no anomaly, if the newly-introduced back-
ground field B also satisfies

δB = βa2, (3.12)

since δ(B + E) = 0. This means that, starting from ‘extended’ and performing T , S, and
T , we come back to ‘extended’. Therefore, simply performing S for the theory of the type
‘extendedT ’, one finds ‘extendedT ’. This establishes the chain of actions shown in (3.8).

3.3 Anomalies from SL(2,ZZZ2) action

Let us now combine our result in table 4, which summarizes our knowledge whether the
0-form symmetry and the 1-form symmetry form a nontrivial 2-group, and the SL(2,Z2)
actions (3.7) and (3.8) on the four choices we determined above. We first need to double
each column of table 4, since we need to distinguish Spin from T (Spin) and SO± from
T (SO±). The entry ‘product’ in table 4 corresponds to either ‘none’ or ‘anomaly’, and the
entry ‘extension’ there corresponds to either ‘extended’ or ‘extendedT ’. We now demand
that the SL(2,Z2) action (3.2) on so QCD to be compatible with the SL(2,Z2) action on
the labels, (3.7) and (3.8). The only consistent assignment is given in table 5. As the way
we determine the symmetry structures were somewhat indirect, we confirm the structure
of the Spin case in the next section in a different means.

We can also use this table 5 to give a further check of the Intriligator-Seiberg duality,
which is known to act as follows, as shown in [22, section 6]:

Spin(2nc) ↔ T (SO−(2nf − 2nc + 4)),
SO+(2nc) ↔ T (SO+(2nf − 2nc + 4)),
SO−(2nc) ↔ T (Spin(2nf − 2nc + 4)).

(3.13)
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We displayed this action in table 5 using orange arrows; we see that the symmetry structures
are indeed preserved across the duality.

4 Fermion contribution to anomalies

So far, we first determined the 2-group structure in section 2 by studying the charges of line
operators, and then determined the anomalies in section 3 by matching it to the action of
SL(2,Z2). Going over the entries on the column Spin of table 5, we find that the anomaly
is trivial when (nc, nf ) is (even, even) or (odd, even), while it is α given in (3.3) or α′ given
in (3.5) when (nc, nf ) is (even, odd) or (odd, odd), respectively. Since the 1-form symmetry
background in the Spin theory is simply the Stiefel-Whitney class w2 of the SO(2nc) gauge
bundle, these anomalies should simply come from the anomalies of fermions charged under
SO(2nc)×USp(2nf )

Z2
. Here we use USp(2nf ) instead of SU(2nf ), because under the latter we

also have perturbative anomalies, which would complicate the analysis.
For even nc, the anomaly should be given by

α = 1
2w2βa2, (4.1)

where w2, a2 ∈ H2(X;Z2) controls the lifts from an SO(2nc) bundle to a Spin(2nc) bundle
and from a USp(2nf )/Z2 bundle to a USp(2nf ) bundle, respectively. For odd nc, the
anomaly cochain should be given by

α′ = 1
2x2β2x2, (4.2)

where x2 ∈ H2(X;Z4) is the class controlling the lift from an SO(2nc)/Z2 = Spin(2nc)/Z4
bundle to a Spin(2nc) bundle. We note that, as explained in the previous section, α′ is
exact as a cocycle on B

(SO(2nc)×USp(2nf )
Z2

)
but defines a nontrivial element in the relative

cohomology H5
(
B
(SO(2nc)×USp(2nf )

Z2

)
, BSO(2nc); U(1)

)
. As such, this cochain still affects

the gauging process.
The aim of this last section is to give a check of these anomalies from a different point of

view. We will proceed as follows. Starting from the theory where the fermions are charged
under SO(2nc)× USp(2nf ), we add scalar fields which are adjoint under USp(2nf ) in the
system, and break it down to a subgroup. We then determine the effective interaction
induced by the fermion zero modes. The next step is to see what happens when the
symmetry group is changed from SO(2nc)× USp(2nf ) to its Z2 quotient; we will see that
the effective interaction will have the required anomalies.

Before proceeding, we have two remarks. First, this method was first used in [42, sec-
tion 4] to understand ‘a curious minus sign’ appearing in the topologically-twisted Seiberg-
Witten theory, which was more recently recognized as determining an anomaly in [10,
section 2.4.3]. It was also used in [44, section 3.1 and 5.1.2] to relate the ‘new’ SU(2)
anomaly with the effective interaction in the U(1) theory. Second, in this section we can
only say that the effective interaction we find is compatible with the anomalies as found in
section 3, and will not be able to determine the anomalies completely. This is mostly due
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to the fact that the computation of the spin bordism group Ωspin
d

(
B
(SO(2nc)×USp(2nf )

Z2

))
which governs the anomaly is quite hard, because even the integral cohomology of the
classifying space in question is hard to compute, at least to the authors. Only in a couple
of cases we can say more, as we comment along the way.

4.1 Effective interaction

We break USp(2nf ) down to U(nf ) using a scalar field, such that the fundamental repre-
sentation of USp(2nf ) splits into the fundamental plus the anti-fundamental representation
of U(nf ). The monopole charge is given by the first Chern class c1 of the low-energy U(nf )
flavor symmetry.

Take a standard ’t Hooft-Polyakov monopole associated with U(1) ⊂ USp(2) and
embed it into U(nf ) ⊂ USp(2nf ). The fermion zero modes form a vector representation of
SO(2nc), whose quantization leads to the spinor representation. As first discussed in [40]
and also used in [44, section 3.1], this means that there is an effective interaction

1
2w2(SO(2nc))c1(U(nf )). (4.3)

One way to understand it is as follows.
We started from a system which has SO(2nc) symmetry, but the spinor representation

is only a projective representation of this symmetry. There is an anomaly at the core of
the monopole, which needs to flow in from the bulk. Indeed, taking the spacetime to be
X = R≥0 × Rt × S2 around the monopole, and reducing the bulk term (4.3) on S2 with∫
S2 c1 = 1, we have the effective interaction 1

2
∫
Y w2 on the half-space Y = R≥0 × Rt, with

the monopole living on the boundary. Therefore, the degree of freedom on the boundary
is in the projective representation characterized by w2 ∈ H2(BSO(2nc);Z2).

4.2 Anomalies

We now change the symmetry group from SO(2nc) × USp(2nf ) to SO(2nc)×USp(2nf )
Z2

by
taking the Z2 quotient. Note that π1(U(nf )/Z2) = Z× Z2 or Z depending on whether nf
is even or odd. We denote by a2 the obstruction class to lift a U(nf )/Z2 bundle to a U(nf )
bundle. This implies the following:

• When nf is even, c1(U(nf )) = c1(U(nf )/Z2) and a2(U(nf )/Z2) = a2(USp(2nf )/Z2).

• When nf is odd, c1(U(nf )/Z2) = 2c1(U(nf )) when the latter is well-defined. More
generally, a2(U(nf )/Z2) is the mod-2 reduction of c1(U(nf )/Z2).

We now compute the anomaly cochains in the four cases separately:

(nc, nf ) = (even, even). w2(SO(2nc)) and c1(U(nf )) can be generalized to closed
cochains of B(SO(2nc)/Z2) and of B(U(nf )/Z2) without any problem, and therefore

δ

(1
2w2(SO(2nc))c1(U(nf ))

)
= 0. (4.4)
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(nc, nf ) = (odd, even). w2(SO(2nc)) needs to be upgraded to a Z4-valued cochain
x2(SO(2nc)/Z2). The original interaction is then

1
4x2(SO(2nc)/Z2)c1(U(nf )), (4.5)

which is closed without problem, and therefore taking δ results in zero.

(nc, nf ) = (even, odd). Here we need to replace c1(U(nf )) by 1
2c1(U(nf )/Z2). The

effective interaction is then
1
4w2(SO(2nc))c1(U(nf )/Z2) (4.6)

and

δ

(1
4w2(SO(2nc))c1(U(nf )/Z2)

)
= 1

2

(1
2δw2(SO(2nc))c1(U(nf )/Z2)

)
(4.7)

= 1
2
(
βw2(SO(2nc))

)
c1(U(nf )/Z2), (4.8)

which is a pull-back of the anomaly cochain

1
2
(
βw2(SO(2nc))

)
a2(USp(2nf )/Z2). (4.9)

This is the anomaly we wanted to see.
When nc = 2 and nf = 1, we can confirm that this is indeed the entire anomaly,

since we can compute Hom
(
Ωspin

5

(
B
(

SO(4)×USp(2)
Z2

))
,U(1)

)
and show that this is the

only nontrivial element there. For details, see appendix B.3.

(nc, nf ) = (odd, odd). Now we make the replacement on both sides and therefore the
effective interaction is 1

8x2(SO(2nc)/Z2)c1(U(nf )/Z2) (4.10)

and

δ

(1
8x2(SO(2nc)/Z2)c1(U(nf )/Z2)

)
= 1

2

(1
4δv2(SO(2nc)/Z2)c1(U(nf )/Z2)

)
(4.11)

= 1
2
(
β2x2(SO(2nc)/Z2)

)
c1(U(nf )/Z2), (4.12)

which is the pull-back of

1
2
(
β2x2(SO(2nc)/Z2)

)
a2(USp(2nf )/Z2). (4.13)

Recall that the symmetry we are now considering is SO(2nc)×USp(2nf )
Z2

, and therefore there
is a single degree-2 obstruction cochain which equals both v2 and a2, and therefore the
anomaly cochain is

1
2x2β2x2. (4.14)

This is what we wanted to show.
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A 2-group structure, line-changing operators, and crossed module ex-
tensions

In this paper we have encountered the 2-group extensions such as (2.4) in massless so QCD.
Here we put our observation there into a more general framework. A similar remark was
made very recently in [5, section 2].

A.1 Physics setup

Let us generally consider a theory with a 0-form symmetry G and a discrete 1-form sym-
metry A. The Pontrjagin dual of the 1-form symmetry group A can be identified with the
following group:13

Â = {line operators} / ∼, (A.1)

where the quotient via ∼ means that we identify two line operators L1 and L2 if there
exists a line-changing operator between them.14

Two line operators can be connected by a line-changing operator, but the operator is
not necessarily consistently acted on by the 0-form symmetry group G, which is defined to
act faithfully on the local operators. In this situation, we can also define the group

Â′ = {line operators} / ∼′, (A.2)

where the quotient by ∼′ is similar to the previous one by ∼, but here only the line-changing
operator consistently acted on by the 0-form symmetry group G is considered.

This group Â′ fits in the following short exact sequence

0→ Ĉ → Â′ → Â→ 0, (A.3)
13There can be nontrivial p-form symmetries that act trivially on all of the p-dimensional objects in the

theory. One of the examples is the 0-form symmetries of a 3d Chern-Simons TQFT. Another example for
Z2 1-form symmetry is found in [25]. Such symmetries (in general topological operators) are called the
condensations [21]. Here we ignore these symmetries.

14To be precise, we identify L1 and L2 if there exists a line operator L3 such that there exists a point
operator connecting L1, L

∗
2, L3, L

∗
3 with ∗ being the orientation reversal. The freedom to include L3 is

necessary to make A a group in general, for example in a 3d TQFT, but can be ignored in our non-
topological gauge theory example.
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which dually forms the short exact sequence

0→ A→ A′ → C → 0. (A.4)

The lines in Ĉ are equivalent to trivial lines under the equivalence relation ∼. Therefore,
a line labeled by ĉ ∈ Ĉ can end on a point operator which is in a nontrivial projective
representation of G, and ĉ controls the projective phase. Equivalently, such a point operator
is in a representation of G̃ which is an extension of G by C:

0→ C → G̃→ G→ 0. (A.5)

Combining, we have an exact sequence of groups

1→ A→ A′ → G̃→ G→ 1, (A.6)

where G̃ is the group faithfully acting on the whole set of line-changing operators. Now,
the extension (A.5) is characterized by an element w2 ∈ H2(G,C). We can then use the
Bockstein operator β associated to (A.4) to obtain an element βw2 ∈ H3(G,A), which is
the data characterizing the 2-group extension.

A.2 Mathematical remark

Since the dawn of time, humans wondered how to find an interpretation for H3(G,A) and
higher cohomology groups analogous to the fact that H2(G,A) classifies extensions

0→ A→ G̃→ G→ 0. (A.7)

This was achieved e.g. in [24].15 The statement goes as follows. Given G and A, one
considers all extensions of the form

0→ A→ N
a→ G̃→ G→ 0, (A.8)

where N is not necessarily Abelian, and we furthermore require that N is a crossed module
over G̃, i.e. there is an action of g ∈ G̃ on n ∈ N which we denote as gn, such that

a(n)n′ = nn′n−1, a(gn) = ga(n)g−1. (A.9)

Let us denote such an extension by (N, G̃). For two such extensions we denote by (N, G̃)⇒
(N ′, G̃′) if we can make the following diagram commute:

0→ A → N → G̃ → G → 0
↓ ↓ ↓ ↓

0→ A → N ′ → G̃′ → G → 0
(A.10)

where the first and the fourth down arrows are isomorphisms and the second and the third
are homomorphisms. Then, we say (N, G̃) ≈ (N ′, G̃′) when there is a chain

(N, G̃)⇒ (N1, G̃1)⇐ (N2, G̃2)⇒ · · · ⇔ (N ′, G̃′) (A.11)
15It was found independently by many authors around the same time, not all of which were published.

For historical details, see [29].
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where the last arrow can be oriented in either direction. The fundamental result proved
in [24] is that the extensions of the form (A.8) satisfying (A.9) under the equivalence
relation ≈ form the group H3(G,A). It was further shown in [24, proposition 2.7] that we
can always choose N to be Abelian. In this case, the conditions (A.9) reduce to the fact
that A and A′ are G-modules and the sequence (A.8) is compatible with the G action.

Therefore, our setup in section A.1 actually covers all possibilities of extension classes
α ∈ H3(G,A). In particular, there always is a choice of a coefficient sequence 0 → A →
A′ → C → 0 (A.4) such that α = βw for an element w ∈ H2(G,C) with β the Bockstein
operation.

B Bordism group computations

The bordism groups Ωspin
• (X) for X = Bp+1G are known [16, 45] to capture the anomalies

of p-form symmetry G. More precisely, the anomalies of d-dimensional spin QFT are
characterized by (d+ 1)-dimensional spin invertible QFTs, whose deformation classes form
a group Invd+1

spin(X) which sits in the middle of the following short exact sequence

0 −→ ExtZ(Ωspin
d+1(X),Z) −→ Invd+1

spin(X) −→ HomZ(Ωspin
d+2(X),Z) −→ 0. (B.1)

Note that the information on global (non-perturbative) anomalies is encoded in the part

ExtZ(Ωspin
d+1(X),Z) ' Hom(Ωspin

d+1(X)torsion,U(1)), (B.2)

while that on local (perturbative) anomalies is encoded in the part

HomZ(Ωspin
d+2(X),Z), (B.3)

both of which correspond to bordism invariants.
In this appendix, we compute these bordism groups Ωspin

• (X) for various classifying
spaces, using the Atiyah-Hirzebruch spectral sequence associated with the trivial fibration

pt −→ X
p−→ X.

In short, the spectral sequences have the E2-terms given by ordinary homology groups
Hp
(
X; Ωspin

q

)
, and they converge to the desired bordism groups. For a more detailed

introduction especially aimed at physicists, see e.g. [19] and references therein.

B.1 X = B2(ZZZ2 × ZZZ2)

The (reduced) bordism group Ω̃spin
d (X) to be computed characterizes the anomalies of

Z2×Z2 1-form symmetry in spin QFTs. Since B2(Z2×Z2) = B2Z2×B2Z2, the necessary
information on (co)homology is derived from those of the Eilenberg-MacLane space B2Z2 =
K(Z2, 2). Here, the Z2-(co)homology is known [31] to be

H∗(K(Z2, 2);Z2) = Z2[u2, Sq
1u2, Sq

2Sq1u2, · · · ], (B.4)
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where Sqi are the Steenrod operations, among which Sq1 coincides with the Bockstein
homomorphism β associated with the short exact sequence

0 −→ Z2 −→ Z4 −→ Z2 −→ 0, (B.5)

while the Z-homology of K(Z2, 2) can be read off from [13]. Then, with the help of the
Künneth formula which says that, for a principal ideal domain (PID) R, there are short
exact sequences

0 −→
⊕
i

Hi(X;R)⊗R Hn−i(Y ;R)

−→ Hn(X × Y ;R) −→⊕
i

TorR
(
Hi(X;R), Hn−i−1(Y ;R)

)
−→ 0 (B.6)

which are split, the E2-page of the Atiyah-Hirzebruch spectral sequence is filled as

E2
p,q = Hp

(
K(Z2 × Z2, 2); Ωspin

q

)
Ω̃spin
p+q(K(Z2 × Z2, 2))

6
5
4 Z ∗ ∗ ∗ ∗
3
2 Z2 Z⊕2

2 Z⊕2
2 ∗ ∗ ∗

1 Z2 Z⊕2
2 Z⊕2

2 Z⊕3
2 Z⊕6

2 ∗

0 Z Z⊕2
2 Z⊕2

4 ⊕ Z2 Z⊕3
2 ∗

0 1 2 3 4 5 6

−→

6 ∗
5 Z2
4 Z⊕3

2
3
2 Z⊕2

2
1
0

. (B.7)

The horizontal and vertical axes correspond to p and q respectively; this will be the con-
vention throughout the appendix.

Here, the differentials d2 : E2
p,q → E2

p−2,q+1 for q = 0, 1 are known [37] to be the
duals of Sq2 (composed with mod-2 reduction for q = 0). First, d2 : E2

4,0 → E2
2,1 and

d2 : E2
4,1 → E2

2,2 should be duals of

Sq2(u2) = (u2)2 (B.8)

and also d2 : E2
5,0 → E2

3,1 and d2 : E2
5,1 → E2

3,2 should be duals of

Sq2(Sq1u2) = Sq2Sq1u2 (B.9)

and finally d2 : E2
6,0 → E2

4,1 should be a dual of

Sq2(u2u
′
2) = (Sq1u2)(Sq1u′2). (B.10)
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As a result, the spectral sequence converges as in the r.h.s. of (B.7), and the corresponding
bordism invariants in 4d are 1

2P(a), 1
2P(b), ab, (B.11)

where a (resp. b) is pulled back from u2 (resp. u′2), and P : H2(−;Z2) → H4(−;Z4) is
the Pontrjagin square. It is known that P(u2) is the generator of H4(K(Z2, 2);Z4), and is
even on a spin manifold i.e. P(x) = x2 = 0 (mod 2) for the pulled-back x, which allows us
to divide it by 2. Also, the bordism invariant in 5d is

aβb (= bβa). (B.12)

B.2 X = B2ZZZ4

This time, the bordism group to be computed captures the anomalies of Z4 1-form sym-
metry of spin QFTs. It is known [31] that the Z2-cohomology ring of B2Z4 = K(Z4, 2) is

H∗(K(Z4, 2);Z2) = Z2[u2, β2u2, Sq
2β2u2, . . .] (B.13)

where u2 ∈ H2(K(Z4, 2);Z4) is the Z4-lift of u2, and β2 : H•(−;Z4)→ H•+1(−;Z2) is the
higher Bockstein operator (see also footnote 4) associated with the short exact sequence

0 −→ Z2 −→ Z8 −→ Z4 −→ 0.

Together with the information on the Z-homology [13], one can fill in the E2-page as

E2
p,q = Hp

(
K(Z4, 2); Ωspin

q

)
Ω̃spin
p+q(K(Z4, 2))

6
5
4 Z ∗ ∗ ∗ ∗
3
2 Z2 Z2 Z2 ∗ ∗ ∗
1 Z2 Z2 Z2 Z2 ∗ ∗
0 Z Z4 Z8 Z2 ∗

0 1 2 3 4 5 6

−→

6 ∗
5
4 Z4
3
2 Z4
1
0

. (B.14)

As before, the differentials d2 : E2
4,0 → E2

2,1 and d2 : E2
4,1 → E2

2,2 should be duals of

Sq2(u2) = (u2)2 (B.15)

while d2 : E2
5,0 → E2

3,1 and d2 : E2
5,1 → E2

3,2 should be duals of

Sq2(β2u2) = Sq2β2u2. (B.16)

Therefore, the spectral sequence converges as in the r.h.s. of (B.14), and the bordism
invariant in 4d is simply given by (multiples of)

1
2P(a) (B.17)

where a is pulled back from u2, and P : H2(−;Z4)→ H4(−;Z8) is the Pontrjagin square,
which is again even on a spin manifold and thus divisible by 2. In contrast, there are no
bordism invariants in 5d.
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B.3 X = B
(

SO(4)×SU(2)
ZZZ2

)
The necessary information on (co)homology can be obtained by using the Leray-Serre
spectral sequence, whose E2-terms are Hp(B;Hq(F ;Z)) and converges to H•(E;Z) for the
fibration F −→ E

p−→ B. For the case of interest, the relevant fibration is

BSU(2) −→ B

(SO(4)× SU(2)
Z2

)
−→ B (SO(4)/Z2) = BSO(3)×BSO(3) (B.18)

where the cohomology of the fiber is known to be

H∗(BSU(2);Z) = Z[c2] (B.19)

while that of the base is derived from

H∗(BSO(3);Z2) = Z2[w2, w3] (B.20)

and
d 0 1 2 3 4 5 6 · · ·

Hd(BSO(3);Z) Z 0 0 Z2 Z 0 Z2 · · ·
(B.21)

together with the use of the Künneth formula. As a result, the E2-page is filled as

Ep,q2 = Hp (B (SO(4)/Z2) ;Hq(BSU(2);Z)) Hp+q
(
B
(

SO(4)×SU(2)
Z2

)
;Z
)

6
5
4 Z ∗ ∗ ∗ ∗
3
2
1
0 Z Z⊕2

2 Z⊕2 Z2 Z⊕3
2

0 1 2 3 4 5 6

−→

6 Z⊕3
2

5
4 Z⊕3

3 Z⊕2
2

2
1
0 Z

. (B.22)

It turns out that the differential d5 : E0,4 → E5,0 must be nontrivial to account for the
allowed instanton numbers.16 As a result, we end up with the following integral cohomology
structure

d 0 1 2 3 4 5 6 · · ·
Hd(B

(
SO(4)×SU(2)

Z2

)
;Z) Z 0 0 Z⊕2

2 Z⊕3 0 Z⊕3
2 · · ·

. (B.23)

16To explain this point in more detail, note first that the E2-page implies that H4 (B (SO(4)×SU(2)
Z2

)
;Z
)

=
Z⊕3 regardless of whether the differential is trivial. Recalling that SO(4)×SU(2)

Z2
contains three su(2) factors,

let c2, c′2 be the instanton numbers of two su(2) factors of the SO(4)/Z2 part, so that p1 = 4c2 and p′1 = 4c′2
are the generators of E4,0. Similarly, let c̃2 be the instanton number of the SU(2) part, i.e. the generator of
E0,4. Now, in B

(SO(4)×SU(2)
Z2

)
, we have (c2, c

′
2, c̃2) = 1

4 (P(w2 + a2),P(w2),P(a2)) modulo Z3; this simply
follows from the fact that p1 = P(w2) mod 4 in BSO(3) [39]. Then, we see that 2(c2 + c′2 + c̃2) is always Z-
valued, meaning that H4 (B (SO(4)×SU(2)

Z2

)
;Z
)

= Z⊕3 is obtained by extending H4(B(SO(4)/Z2);Z) = Z⊕2

by the Z generated by 2c̃2. This means that the differential d5 in question needs to be a mod-2 reduction
i.e. nontrivial.
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Having obtained the (co)homology groups, one can fill in the E2-page of the Atiyah-
Hirzebruch spectral sequence:

E2
p,q = Hp

(
B
(

SO(4)×SU(2)
Z2

)
; Ωspin

q

)
6
5
4 Z Z⊕2

2 ∗ ∗ ∗
3
2 Z2 Z⊕2

2 Z⊕2
2 Z⊕3

2 ∗ ∗

1 Z2 Z⊕2
2 Z⊕2

2 Z⊕3
2 Z⊕3

2 ∗

0 Z Z⊕2
2 Z⊕3 Z⊕3

2 ∗
0 1 2 3 4 5 6

. (B.24)

For each differential, d2 : E2
4,0 → E2

2,1 and d2 : E2
4,1 → E2

2,2 should be duals of

Sq2(w2) = (w2)2 (B.25)

and also d2 : E2
5,0 → E2

3,1 and d2 : E2
5,1 → E2

3,2 should be duals of

Sq2(w3) = w2w3 (B.26)

and finally d2 : E2
6,0 → E2

4,1 should be a dual of

Sq2(w2w
′
2) = w3w

′
3 + (w2)2w′2 + w2(w′2)2. (B.27)

Then, the E3-page would become

E3
p,q Ω̃spin

p+q

(
B
(

SO(4)×SU(2)
Z2

))
6
5
4 Z ∗ ∗ ∗ ∗
3
2 Z2 ∗ ∗ ∗
1 Z2 ∗ ∗
0 Z Z⊕2

2 Z⊕3 Z2 ∗
0 1 2 3 4 5 6

−→

6 ∗
5 Z2
4 Z⊕3

3
2 Z⊕2

2
1
0

(B.28)

and converges to the r.h.s. . Therefore, the bordism invariant in 5d characterizing the
anomaly of interest is

aβb (= bβa) (B.29)

where a (resp. b) is pulled back from w2 (resp. w′2).
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B.4 X = B
(

SO(4n+2)×SU(2m)
ZZZ2

)
We again use the Leray-Serre spectral sequence, this time for the fibration

BSU(2m) −→ B

(SO(4n+ 2)× SU(2m)
Z2

)
−→ B

(SO(4n+ 2)
Z2

)
= BPSO(4n+ 2).

(B.30)
According to [27], the Z2-cohomology of BPSO is given as follows

d 0 1 2 3 4 5 6 · · ·
Hd(BPSO(4n+ 2);Z2) Z2 0 Z2 Z2 Z2 Z2 Z⊕2

2 · · ·
generators 1 − v2 y′(1) (v2)2 y′(2) (v2)3 · · ·

y′(1)2

(B.31)

for n ≥ 1, where the action of the cohomology operations are

β2v2 = y′(1),
Sq2y′(1) = y′(2),
Sq1y′(2) = y′(1)2.

(B.32)

The Z-cohomology of BPSO can be determined by exploiting another Leray-Serre spectral
sequence for the fibration

BSO(4n+ 2) −→ BPSO(4n+ 2) −→ B2Z2 = K(Z2, 2). (B.33)

From the knowledge on the Z-cohomology of BSO(4n + 2) [7, 15] and K(Z2, 2) [13], the
E2-page is filled as

Ep,q2 = Hp
(
B2Z2;Hq(BSO(4n+ 2);Z)

)
6 Z2 ∗ ∗ ∗ ∗ ∗
5 Z2 ∗ ∗ ∗ ∗ ∗
4 Z ∗ ∗ ∗
3 Z2 Z2 Z2 ∗ ∗ ∗
2
1
0 Z Z2 Z4 Z2

0 1 2 3 4 5 6

(B.34)

from which one can deduce

d 0 1 2 3 4 5 6 · · ·
Hd(BPSO(4n+ 2);Z) Z 0 0 ? Z ? ? · · ·

, (B.35)

and for example the d = 3 piece is either Z2 × Z2 or Z4. By requiring the result to be
consistent with the Z2-cohomology (B.31) and the universal coefficient theorem, one can
actually conclude

d 0 1 2 3 4 5 6 · · ·
Hd(BPSO(4n+ 2);Z) Z 0 0 Z4 Z 0 Z2 · · ·

. (B.36)
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Then, the E2-page of the original Leray-Serre spectral sequence can be filled and con-
verges as

Ep,q2 = Hp
(
B
(

SO(4n+2)
Z2

)
;Hq(BSU(2m);Z)

)
Hp+q

(
B
(

SO(4n+2)×SU(2m)
Z2

)
;Z
)

6 Z ∗ ∗ ∗
5
4 Z ∗ ∗ ∗
3
2
1
0 Z Z4 Z Z2

0 1 2 3 4 5 6

−→

6 Z⊕ Z2
5
4 Z⊕2

3 Z4
2
1
0 Z

.

(B.37)
Having obtained the (co)homology groups, one can fill in the E2-page of the Atiyah-

Hirzebruch spectral sequence as follows:

E2
p,q = Hp

(
B
(SO(4n′c+2)×SU(2nf )

Z2

)
; Ωspin

q

)
Ω̃spin
p+q

(
B
(

SO(4n+2)×SU(2m)
Z2

))
6
5
4 Z ∗ ∗ ∗ ∗
3
2 Z2 Z2 Z2 ∗ ∗ ∗

1 Z2 Z2 Z2 Z⊕2
2 ∗ ∗

0 Z Z4 Z⊕2 Z2 ∗
0 1 2 3 4 5 6

−→

6 ∗
5
4 Z⊕2

3
2 Z4
1
0

. (B.38)

For each differential, d2 : E2
4,0 → E2

2,1 and d2 : E2
4,1 → E2

2,2 should be duals of

Sq2v2 = (v2)2 (B.39)

and also d2 : E2
5,0 → E2

3,1 and d2 : E2
5,1 → E2

3,2 should be duals of

Sq2y′(1) = y′(2) (B.40)

and finally d2 : E2
6,0 → E2

4,1 should be a dual of

Sq2c2 = c3. (B.41)

Therefore, the spectral sequence converges as in the r.h.s. of (B.38), and in particular there
should be no bordism invariants in 5d.
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C Coboundary of Pontrjagin square for non-closed cochains

The aim of this section is to determine the coboundary of the Pontrjagin square of non-
closed cochains. Recall that the Pontrjagin square for an element x ∈ C•(−;Z2m) is defined
to be

P(x) := x̃ ∪ x̃− x̃ ∪1 δx̃ (C.1)

where x̃ ∈ C•(−;Z) is an integral lift of x, and ∪1 is the higher cup product of Steenrod.
The variation of interest is then given by

δ

( 1
2m+1P(x)

)
= 1

2m+1 · δ
(
x̃ ∪ x̃− x̃ ∪1 δx̃

)
= 1

2m+1 ·
[(
δx̃ ∪ x̃+ x̃ ∪ δx̃

)
−
(
x̃ ∪ δx̃− δx̃ ∪ x̃+ δx̃ ∪1 δx̃

)]
= 1

2m+1 ·
[
2 · δx̃ ∪ x̃− δx̃ ∪1 δx̃

]
.

(C.2)

If x is a Z2m-cocycle, then x̃ is a cocycle mod 2m i.e. δx̃ = 0 (mod 2m), and the r.h.s.
of (C.2) is 0 mod 1, which then means that P(x) is a Z2m+1-cocycle. However, when x is
not a cocycle but merely a cochain, P(x) is also not a cocycle. For our purpose, we limit
ourselves to the case

δx = βy (C.3)

for a cocycle y ∈ Z2(−;Z2). Recalling that the Bockstein operation β is associated with
the short exact sequence

0 −→ Z2
2−→ Z4 −→ Z2 −→ 0, (C.4)

x and y combine to define a cocycle z ∈ Z2(−;Z4), such that z = y (mod 2) and z̃ = 2x̃
when y = 0. This motivates us to consider the term

1
4 ·

1
4P(z̃), (C.5)

which reduces to 1
4P(x̃) when y = 0, as its general replacement. Using (C.2), we find

δ

(1
4 ·

1
4P(z̃)

)
= 1

2 ·
1
8 ·
[
2 · δz̃ ∪ z̃ − δz̃ ∪1 δz̃

]
= 1

2 ·
(1

4δz̃
)
∪ z̃ −

(1
4δz̃

)
∪1

(1
4δz̃

)
mod 2= 1

2 · (β2z) ∪ z mod 1

(C.6)

where β2 is the higher Bockstein operation associated with the short exact sequence

0 −→ Z2
4−→ Z8 −→ Z4 −→ 0

↑ ↑ =

0 −→ Z 4−→ Z −→ Z4 −→ 0
(C.7)

defined for cocycles y ∈ Z2(−;Z2) which are Z4-liftable to z ∈ Z2(−;Z4).
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