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1 Introduction

Two dimensional gravity coupled to a conformal matter is a useful toy model for the study
of quantum gravity. When coupled to a particular conformal matter, it is exactly solvable
via a double-scaled matrix model [4–6]. For instance, 2d gravity coupled to the (2, 2k− 1)
minimal model is described by a hermitian one-matrix model at a multi-critical point, and
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it corresponds to a particular background of Witten-Kontsevich topological gravity [7, 8]
where the first k couplings tn (n ≤ k) are turned on in a certain manner.

Recently, Saad, Shenker and Stanford showed that Jackiw-Teitelboim (JT) gravity [9,
10] is also described by a certain double-scaled matrix model [11], which enables us to study
the holographic duality in a solvable model of 2d gravity. It is shown in [12–14] that the
matrix model of JT gravity is a special case of Witten-Kontsevich topological gravity where
the infinitely many couplings tn are turned on in a specific way (see (3.28)).1 This connec-
tion between JT gravity and matrix model puts the old story of 2d gravity into the modern
perspective of holography. In the matrix model of JT gravity [11], the Hamiltonian H of
the boundary theory becomes the random matrix and the path integral of JT gravity on the
asymptotically AdS spacetime with boundary lengths βi (i = 1, . . . , n) corresponds to the
ensemble average of the partition function Z(β) = Tr e−βH over the random Hamiltonian H

〈Z(β1) · · ·Z(βn)〉. (1.1)

In the 2d gravity literature, such quantity (1.1) is known as the correlator of macro-
scopic loop operators Z(β). These correlators satisfy a set of equations called the loop
equation. As we review in appendix C, the loop equation of finite N matrix model sim-
ply follows from the Schwinger-Dyson equation for the matrix integral. After taking the
double-scaling limit of the loop equation, one can derive the Virasoro constraint obeyed by
the partition function of the hermitian one-matrix model [16, 17]. As shown in [18], the
same Virasoro constraint can be derived from the Kontsevich matrix model [8] as well.

The loop equation in the double-scaled matrix model is customarily written in terms
of the resolvent, which is related to the macroscopic loop operator Z(β) by the Laplace
transformation. The genus expansion of the resolvent can be computed systematically by
using the topological recursion, which basically follows from the loop equation [19].

In this paper, we will write down the loop equation for the correlator of macroscopic
loop operators Z(β) in Witten-Kontsevich topological gravity for the arbitrary background
{tk}. In particular, we will elaborate on the treatment of the genus-zero part of the one-
point function 〈Z(β)〉, i.e. the disk amplitude, and prove the loop equation in the case
with non-zero genus-zero part u0 of the specific heat u = g2

s ∂
2
0F of topological gravity. We

emphasize that although the loop equation of topological gravity was already written in the
original paper [17], the details of the treatment of the disk amplitude and the u0 6= 0 case
for the general background have not been worked out in the literature before, as far as we
know. Starting from the Virasoro constraints (2.3), we will prove the loop equations (3.1)
and (3.2) for Witten-Kontsevich topological gravity with arbitrary couplings {tk}.

Our loop equation involves the effective potential Veff(ξ) whose explicit form was re-
cently obtained for the general background with u0 6= 0 [20]. The effective potential
Veff(ξ) is defined by the leading term of the genus expansion of the Baker-Akhiezer function
ψ(ξ) = e

− 1
2gs

Veff(ξ)+O(g0
s ) and it is related to the genus-zero part of the eigenvalue density by

ρ0(E) = 1
2πgs

ImV ′eff(−E + i0). (1.2)

1JT gravity can also be viewed as the p → ∞ limit of the (2, p) minimal model coupled to 2d
gravity [11, 15].
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The u0 6= 0 case is of particular interest since the edge of the spectrum of ρ0(E) is shifted
from E = 0 to a non-zero threshold energy E0 = −u0. Near E = E0, ρ0(E) generically
behaves as

ρ0(E) ∼
√
E − E0. (1.3)

This shift of threshold energy played an important role in the recent study of JT gravity
with conical defects [21, 22].

We revisit the loop equation in topological gravity partly because we are motivated
by the recent discussion of the null state originating from the diffeomorphism invariance of
the gravitational path integral [1]. It has long been speculated that the Virasoro constraint
of double-scaled matrix model represents the diffeomorphism invariance of 2d gravity, and
as a consequence the loop equation defines a null state. We give a concrete expression
to this argument using the free boson/fermion representation of the correlators which we
developed in [20]. We find similarities and differences between our expression and that
advocated in [1]. We will give a cautionary remark on the naive application of the sewing
operation in the gravitational path integral, which might be related to the differences
between the two expressions. Our expression of loop equation has a close connection to
the closed string field theory of non-critical strings developed by Ishibashi and Kawai [2, 3]
but the details are slightly different.

This paper is organized as follows. In section 2, we summarize the definitions and basic
properties of the multi-boundary correlators in Witten-Kontsevich topological gravity. We
also introduce a continuum analog of the Virasoro operators and recall the explicit form of
the effective potential. In section 3, we give a precise description and a proof of the general
loop equations. We also make an interpretation of the absence of the disk amplitude. The
loop equations are then verified in the JT gravity and the Airy cases as well as in the most
general case. In section 4, we first recall that the Virasoro constraint and the loop equation
can be nicely expressed in the free boson/fermion representation of the Witten-Kontsevich
τ -function. Then we comment on the difference between our result and the approach of
Marolf and Maxfield in [1]. We also comment on the similarity and difference between our
result and the closed string field theory of Ishibashi and Kawai [2, 3]. Finally we conclude in
section 5. Some of the details of the proof of (3.1) and (3.2) in the main text are relegated
to the appendices A and B. In appendices C and D, we review the loop equation at finite
N and the cut-and-join representation of the Witten-Kontsevich τ -function, respectively.

2 Multi-boundary correlators in Witten-Kontsevich gravity

2.1 Generating function for intersection numbers

In Witten-Kontsevich topological gravity [7, 8] (see e.g. [13] for a recent review) observables
are made up of the intersection numbers

〈τd1 · · · τdn〉g,n =
∫
Mg,n

ψd1
1 · · ·ψ

dn
n , d1, . . . , dn ∈ Z≥0. (2.1)

They are associated with a closed Riemann surface Σ of genus g with n marked points
p1, . . . , pn. We let Mg,n denote the moduli space of Σ and Mg,n the Deligne-Mumford
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compactification of Mg,n. Here τdi = ψdii and ψi is the first Chern class of the complex
line bundle over Mg,n whose fiber is the cotangent space to pi. The generating function
for the intersection numbers is defined as

F ({tk}) :=
∞∑
g=0

g2g−2
s Fg({tk}), Fg({tk}) :=

〈
e
∑∞

d=0 tdτd
〉
g
. (2.2)

Here gs is the genus counting parameter. F is uniquely determined either by the KdV equa-
tions with the string equation [7, 8] or by the Virasoro constraints [16, 17]. In our previous
papers [20, 23] we formulated a systematic method of computing multi-boundary correla-
tors based on the former conditions. In this paper we instead investigate the implication
of the latter conditions for the multi-boundary correlators.

The Virasoro constraints are written as the highest weight conditions

Lme
F = 0 m ≥ −1. (2.3)

The Virasoro generators are given by

Lm = 1
2
∑
k≥0

(2k + 2m+ 1)!!
(2k − 1)!! t̃k∂k+m + g2

s
4

∑
k,l≥0

k+l=m−1

(2k + 1)!!(2l + 1)!!∂k∂l (m ≥ 1),

L0 = 1
16 + 1

2
∑
k≥0

(2k + 1)t̃k∂k, (2.4)

L−1 = t20
4g2

s
+ 1

2
∑
k≥0

t̃k+1∂k,

where
∂k := ∂

∂tk
, t̃k := tk − δk,1. (2.5)

Lm satisfy
[Lm, Ln] = (m− n)Lm+n m,n ≥ −1. (2.6)

For later convenience, let us introduce the Itzykson-Zuber variables [18]

In(v) ≡ In(v, {tk}) =
∞∑
m=0

tn+m
vm

m! (n ≥ 0). (2.7)

They satisfy
∂vIn(v) = In+1(v). (2.8)

Throughout this paper In without specifying its argument should always be understood as

In = In(u0) (2.9)

with
u0 := ∂2

0F0. (2.10)
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F and multi-boundary correlators can be expressed in terms of either {tk} or {In}. The
relation between tk and In can also be expressed as

tk =
∞∑
m=0

(−u0)m

m! Ik+m. (2.11)

The variables In are useful because Fg (g ≥ 2) are polynomials in In (n ≥ 2) and (1−I1)−1.
The (genus zero) string equation also takes the simple form

I0 = u0. (2.12)

2.2 Connected n-boundary correlator

In this paper we are interested in the n-boundary connected correlators

Zn(β1, . . . , βn) = 〈Z(β1) · · ·Z(βn)〉conn. (2.13)

They are given by the gravitational path integrals over all possible connected Riemann
surfaces with n boundaries (or more specifically, n macroscopic loops in the matrix model
language) of length β1, . . . , βn. They are generated from F as [24]

Zn(β1, . . . , βn) ' B(β1) · · ·B(βn)F, (2.14)

where

B(β) = gs√
2π

∞∑
k=0

βk+ 1
2∂k (2.15)

is the boundary creation operator.2 The symbol “'” in (2.14) means that the equality
holds up to an additional non-universal part [24]. More specifically, we call

Zu
n(β1, . . . , βn) := B(β1) · · ·B(βn)F (2.17)

the universal parts of Zn and decompose Zn as

Zn(β1, . . . , βn) = Zu
n(β1, . . . , βn) + Znu

n (β1, . . . , βn). (2.18)

2As we saw in (2.1), insertion of τd adds a marked point, i.e. a puncture on the Riemann surface, which
corresponds to a microscopic loop in the dual matrix model. The macroscopic loop operator Z(β) in the
limit β → 0 is expanded in terms of the microscopic loop operator τd as

Z(β) ' gs√
2π

∞∑
d=0

βd+
1
2 τd. (2.16)

The insertion of τd is represented by the derivative ∂d when acting on the free energy F . Therefore B(β) of
the form (2.15) is viewed as the operator that creates a macroscopic loop, i.e. a boundary on the Riemann
surface.
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The deviations Znu
n , which we call the non-universal parts, appear only for n = 1, 2 and

are given by [20]

Znu
1 (β) = 1

gs

√
β

2π

∫ 0

−∞
dv (I0(v)− v) eβv

= 1√
2πgs

∞∑
k=0

(−1)kβ−k−
1
2 t̃k,

Znu
2 (β1, β2) = 1

2π

√
β1β2

β1 + β2
.

(2.19)

It is easy to check that
B(β2)Znu

1 (β1) = Znu
2 (β1, β2),

B(β3)Znu
2 (β1, β2) = 0.

(2.20)

Therefore, Zn for general n can also be expressed as

Zn(β1, . . . , βn) = B(β1) · · ·B(βn−1)Z1(βn) n ≥ 2,
Z1(β) = B(β)F + Znu

1 (β).
(2.21)

2.3 Full n-boundary correlator

For our purposes it is convenient to consider the full n-boundary correlators as well. We
let them be denoted by

Zn(β1, . . . , βn) = 〈Z(β1) · · ·Z(βn)〉. (2.22)

They are given by the gravitational path integrals over all possible Riemann surfaces,
including disconnected ones, with n boundaries of length β1, . . . , βn. They are expressed
in terms of the connected correlators as

Z1(β) = Z1(β),
Z2(β1, β2) = Z2(β1, β2) + Z1(β1)Z1(β2),

Z3(β1, β2, β3) = Z3(β1, β2, β3) + Z2(β1, β2)Z1(β3) + Z2(β2, β3)Z1(β1)
+ Z2(β3, β1)Z1(β2) + Z1(β1)Z1(β2)Z1(β3).

(2.23)

In general, the relation between the full and the connected correlators is expressed by
means of the generating functionals

Z[J ] = eF [J ], (2.24)

where

Z[J ] := 1 +
∞∑
n=1

1
n!

∫
dβ1 · · · dβnJ(β1) · · · J(βn)Zn(β1, . . . , βn),

F [J ] :=
∞∑
n=1

1
n!

∫
dβ1 · · · dβnJ(β1) · · · J(βn)Zn(β1, . . . , βn).

(2.25)

– 6 –



J
H
E
P
1
0
(
2
0
2
1
)
1
0
7

Equivalently, in terms of F [J ] the full and the connected n-boundary correlators are ex-
pressed respectively as

Zn(β1, . . . , βn) = δ

δJ(β1) · · ·
δ

δJ(βn)e
F
∣∣∣∣
J=0

,

Zn(β1, . . . , βn) = δ

δJ(β1) · · ·
δ

δJ(βn)F
∣∣∣∣
J=0

.

(2.26)

Let us now introduce the operator

B(β) := B(β) + Znu
1 (β) = 1√

2π

∞∑
k=0

[
gsβ

k+ 1
2∂k + g−1

s (−1)kβ−k−
1
2 t̃k
]
, (2.27)

where B(β) and Znu
1 (β) are given in (2.15) and (2.19) respectively. The meaning of B(β)

is understood as follows. Recall that for any operators X,Y satisfying [X, [X,Y ]] =
[Y, [X,Y ]] = 0 the Baker-Campbell-Hausdorff formula is written as

eXeY = eX+Y+ 1
2 [X,Y ]. (2.28)

By setting X =
∫
dβJ(β)B(β) and Y = −

∫
dβJ(β)B(β) one obtains

e
∫
dβJ(β)B(β) = e

∫
dβJ(β)Znu

1 (β)+ 1
2 [
∫
dβ1J(β1)B(β1),−

∫
dβ2J(β2)B(β2)]e

∫
dβJ(β)B(β)

= e
∫
dβJ(β)Znu

1 (β)+ 1
2

∫
dβ1dβ2J(β1)J(β2)Znu

2 (β1,β2)e
∫
dβJ(β)B(β).

(2.29)

From this one sees that

e
∫
dβJ(β)B(β)eF

= e
∫
dβJ(β)Znu

1 (β)+ 1
2

∫
dβ1dβ2J(β1)J(β2)Znu

2 (β1,β2)e
∫
dβJ(β)B(β)eF

= e
∫
dβJ(β)Znu

1 (β)+ 1
2

∫
dβ1dβ2J(β1)J(β2)Znu

2 (β1,β2)e
∑∞

n=0
1
n!

∫
dβ1···dβnJ(β1)···J(βn)B(β1)···B(βn)F

= eF eF [J ]. (2.30)

Using (2.26) one obtains

Zn(β1, . . . , βn) = e−FB(β1) · · · B(βn)eF . (2.31)

Therefore, B(β) is interpreted as the boundary creation operator that generates the full
correlators.

2.4 Continuous Virasoro operator

Let us introduce
L(β) :=

∞∑
m=−1

βm+1

(m+ 1)!2mLm. (2.32)

L(β) is viewed as the continuum analog of the Virasoro generators Lm. Indeed, it follows
from (2.6) that L(β) satisfies

[L(β1), L(β2)] = (β1 − β2)L(β1 + β2), (2.33)

which is viewed as a continuum limit of (2.6). Moreover, L and B satisfy

[L(β),B(β′)] = −β′B(β + β′). (2.34)

We give a proof of this relation in appendix A.
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2.5 Effective potential

The correlators Zn as well as F are uniquely characterized by the KdV equations. The
KdV equations are obtained as the compatibility conditions of the Schrödinger equation(

g2
s
2 ∂

2
0 + u

)
ψ = ξψ (2.35)

with u = g2
s ∂

2
0F and the KdV flow equations (see [25] for their explicit forms in our

convention). The Baker-Akhiezer function ψ(ξ; {tk}) is a solution to these auxiliary linear
differential equations. It plays an important role in topological gravity. In our previous
papers we systematically investigated the multi-boundary correlators Zn [20, 23] and the
open free energy [25] using the fact that they are expressed in terms of ψ(ξ). For instance,
Z1(β) is related to ψ(ξ) as

∂0Z1(β) =
√

2
gs

∫ ∞
−∞

dξeβξψ(ξ)2. (2.36)

In terms of ψ(ξ) the effective potential Veff(ξ) is introduced as the leading order expo-
nent in the small gs expansion

ψ(ξ) = e
− 1

2gs
Veff(ξ)+O(g0

s )
. (2.37)

The explicit form of Veff(ξ) for general Witten-Kontsevich gravity was first obtained in [20].
It is given by3

Veff(ξ) = −2
∞∑
n=1

In − δn,1
(2n+ 1)!!2

n+ 1
2 (ξ − u0)n+ 1

2 . (2.38)

In this paper we will deal with its first derivative

V ′eff(ξ) = −2
∞∑
n=1

In − δn,1
(2n− 1)!!2

n− 1
2 (ξ − u0)n−

1
2 . (2.39)

In fact, V ′eff will appear in the form of the differential operator V ′eff(∂β), which consists of
half-integer powers of (∂β − u0). The half-integer power of the differential operator ∂β is
defined as (see e.g. [17])

∂
k− 1

2
β βn−

1
2 =

Γ(n+ 1
2)

Γ(n− k + 1)β
n−k (k, n ∈ Z). (2.40)

It follows that

(∂β − u0)k−
1
2 eβu0βn−

1
2 = eβu0∂

k− 1
2

β βn−
1
2 = eβu0

Γ(n+ 1
2)

Γ(n− k + 1)β
n−k. (2.41)

3The effective potential in this paper is related to that in [20] by V here
eff =

√
2V there

eff with the identification
In = (−1)nBn−1 (n ≥ 2). As explained in [26], generalization from the JT gravity case to the Witten-
Kontsevich case is straightforward.
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2.6 One-boundary correlator and disk amplitude

In this paper we will use the following decomposition of the one-boundary correlator

Z1(β) = Zg≥1
1 (β) + Zg=0

1 (β). (2.42)

The higher genus part is given by

Zg≥1
1 (β) = B(β)F g≥1

= B(β)
∞∑
g=1

g2g−2
s Fg.

(2.43)

The genus zero part, i.e. the disk amplitude is given by [20]

Zg=0
1 (β) = 1

gs

√
β

2π

∫ u0

−∞
dv (I0(v)− v) eβv. (2.44)

We further decompose it as

Zg=0
1 (β) = Znu

1 (β) + Zu,g=0
1 (β), (2.45)

where Znu
1 (β) is the non-universal part given in (2.19) and

Zu,g=0
1 (β) = 1

gs

√
β

2π

∫ u0

0
dv (I0(v)− v) eβv = B(β)F0

g2
s

(2.46)

is the genus-zero universal part.

3 Proof of loop equations

3.1 Loop equations

The main purpose of this paper is to prove the loop equations for general Witten-Kontsevich
gravity. The fundamental loop equation is written as∫ β

0
ds
[
Z2(s, β − s) + Zg≥1

1 (s)Zg≥1
1 (β − s)

]
= 1
gs
V ′eff(∂β)Zg≥1

1 (β). (3.1)

More generally, connected multi-boundary correlators satisfy
1
gs
V ′eff(∂β)Z̃n+1(β, β1, . . . , βn)

=
∫ β

0
ds

[
Zn+2(s, β − s, β1, . . . , βn) +

∑
I⊂S

Z̃|I|+1(s;βI)Z̃|S−I|+1(β − s;βS−I)
]

+
n∑
j=1

βjZn({βi + δijβ}ni=1) n ∈ Z≥0.

(3.2)

Here

Z̃n+1 =

Zg≥1
1 n = 0

Zn+1 n ≥ 1
, Z̃|I|+1(s;βI) =

Zg≥1
1 (s) |I| = 0

Z|I|+1(s, βi1 , . . . , βi|I|) |I| ≥ 1
(3.3)
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with I = {i1, i2, . . . , i|I|}, S = {1, 2, . . . , n} and the sum is taken for all possible subsets I
of S including the empty set. (3.2) includes (3.1) as the n = 0 case.

As we reviewed in appendix C, the above loop equations have appearances naturally
expected from those for the finite-size matrix model. Moreover, apart from the treatment
of the genus-zero contribution, (3.1) was derived in [17] for double-scaled matrix models.
To the best of our knowledge, however, the precise treatment of the genus-zero contribu-
tion, i.e. the absence of the disk amplitude as presented in (3.1) and (3.2) has never been
clearly stated in the literature. Also, in [17] the general form of the loop equation was ex-
trapolated from that of the multi-critical models, but it is not so clear how their derivation
is generalized in the case of u0 6= 0. Having the explicit form (2.39) of V ′eff(ξ) obtained
recently, we think it is meaningful to revisit the derivation in a more specific manner. In
what follows we will present a rigorous, concrete proof of (3.1) and (3.2). In section 3.4 we
will also remark on what the absence of the disk amplitude implies.

3.2 Proof of fundamental loop equation

Let us first prove (3.1). By plugging (2.4) into (2.32) the operator L(β) is explicitly
written as

L(β) = g2
s
2
∑
k,l≥0

(2k + 1)!!(2l + 1)!!βk+l+2

(k + l + 2)!2k+l+2 ∂k∂l

+
∑

m≥−1, k≥0
(m,k) 6=(−1,0)

(2k + 2m+ 1)!!βm+1

(2k − 1)!!(m+ 1)!2m+1 t̃k∂k+m + β

16 + t20
2g2

s

=: L(β)
∣∣∣
∂∂

+ L(β)
∣∣∣
t̃∂

+ β

16 + t20
2g2

s
.

(3.4)

Let us rewrite the above expression in terms of the boundary creation operator B(β) given
in (2.15) instead of the derivative ∂k. The first term is immediately rewritten as

L(β)
∣∣∣
∂∂

= g2
s

2π
∑
k,l≥0

Γ(k + 3
2)Γ(l + 3

2)
Γ(k + l + 3) βk+l+2∂k∂l

=
∫ β

0
dsB(s)B(β − s).

(3.5)

As we prove in appendix B, the second term can be expressed as

L(β)
∣∣∣
t̃∂

= −2
∫ β

0
dsZu,g=0

1 (β − s)B(s)− 1
gs
V ′eff(∂β)B(β), (3.6)

where Zu,g=0
1 (β) and V ′eff(ξ) are given in (2.46) and (2.39) respectively. Thus (3.4) is

rewritten as

L(β) =
∫ β

0
dsB(s)B(β−s)−2

∫ β

0
dsZu,g=0

1 (β−s)B(s)− 1
gs
V ′eff(∂β)B(β)+ β

16 + t20
2g2

s
. (3.7)

The Virasoro constraints (2.3) imply that

L(β)eF = 0. (3.8)
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By using (3.7) this equation is written as

0 = e−FL(β)eF =
∫ β

0
ds[B(s)B(β − s)F + (B(s)F )(B(β − s)F )]

− 2
∫ β

0
dsZu,g=0

1 (β − s)B(s)F − 1
gs
V ′eff(∂β)B(β)F + β

16 + t20
2g2

s

=
∫ β

0
ds [Zu

2 (s, β − s) + Zu
1 (s)Zu

1 (β − s)]

− 2
∫ β

0
dsZu,g=0

1 (β − s)Zu
1 (s)− 1

gs
V ′eff(∂β)Zu

1 (β) + β

16 + t20
2g2

s

=
∫ β

0
ds
[
Z2(s, β − s) + Zg≥1

1 (s)Zg≥1
1 (β − s)

]
− 1
gs
V ′eff(∂β)Zg≥1

1 (β)

−
∫ β

0
dsZu,g=0

1 (β − s)Zu,g=0
1 (s)− 1

gs
V ′eff(∂β)Zu,g=0

1 (β) + t20
2g2

s
.

(3.9)

In the last step we have used

Z2 = Zu
2 + Znu

2 , Zu
1 = Zg≥1

1 + Zu,g=0
1 (3.10)

and ∫ β

0
dsZnu

2 (s, β − s) =
∫ β

0
ds

√
s(β − s)
2πβ = β

16 . (3.11)

Expanding the last expression of (3.9) in gs, one finds that the first two terms give contri-
butions that are non-negative powers of gs while the last three terms are of the order of
g−2

s . They both vanish independently in order for (3.9) to hold. Thus we have proved (3.1).

3.3 Proof of general loop equation

Let us next prove (3.2). For any function f({tk}) it follows from (3.7) that

e−FL(β)eF f = fe−FL(β)eF

+
∫ β

0
ds
[
B(s)B(β − s) + 2(B(β − s)F )B(s)− 2Zu,g=0

1 (β − s)B(s)
]
f

− 1
gs
V ′eff(∂β)B(β)f (3.12)

=
[∫ β

0
dsB(s)B(β − s) + 2

∫ β

0
dsZg≥1

1 (β − s)B(s)− 1
gs
V ′eff(∂β)B(β)

]
f.

In the last step we have used (3.8) and BF = Zu
1 = Zg≥1

1 + Zu,g=0
1 .

On the other hand, starting from (3.8) and using (2.31) and (2.34) we obtain

0 = e−FB(β1) · · · B(βn)L(β)eF

= e−FL(β)B(β1) · · · B(βn)eF − e−F [L(β),B(β1) · · · B(βn)]eF

= e−FL(β)eFZn(β1, . . . , βn) + e−F
n∑
k=1

βkB(β1) · · · B(βk + β) · · · B(βn)eF

=
[
e−FL(β)eF + T (β)

]
Zn(β1, . . . , βn).

(3.13)
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Here we have introduced a formal shift operator T (β) which acts on any function f of
n-variables β1, . . . , βn as

T (β)f(β1, . . . , βn) :=
n∑
k=1

βkf(β1, . . . , βk + β, . . . , βn). (3.14)

By using (3.12) and (2.26), the equation (3.13) is expressed as

0 =
[∫ β

0
dsB(s)B(β − s)

+ 2
∫ β

0
dsZg≥1

1 (β − s)B(s)− 1
gs
V ′eff(∂β)B(β) + T (β)

]
δ

δJ(β1) · · ·
δ

δJ(βn)e
F
∣∣∣∣
J=0

= δ

δJ(β1) · · ·
δ

δJ(βn)Ae
F
∣∣∣∣
J=0

(3.15)

with
A =

∫ β

0
dsB(s)B(β − s)F +

∫ β

0
ds(B(s)F)(B(β − s)F)

+ 2
∫ β

0
dsZg≥1

1 (β − s)B(s)F − 1
gs
V ′eff(∂β)B(β)F + T (β)F .

(3.16)

Note that B and T in A do not act on eF in the last line of (3.15). We can rewrite (3.15)
as

0 =
[

δ

δJ(β1) · · ·
δ

δJ(βn)A
]
eF
∣∣∣∣
J=0

+
∑
I(S

∏
ik∈I

[
δ

δJ(βi1) · · ·
δ

δJ(βi|I|)
A
] ∏
jk∈S−I

[
δ

δJ(βj1) · · ·
δ

δJ(βj|S−I|)
eF
] ∣∣∣∣∣
J=0

,

(3.17)

where I = {i1, i2, . . . , i|I|}, S = {1, 2, . . . , n} and the sum is taken for all possible proper
subsets I of S including the empty set. Based on this expression one can show by induction
(with respect to n) that

δ

δJ(β1) · · ·
δ

δJ(βn)A
∣∣∣∣
J=0

= 0. (3.18)

This gives (3.2).

3.4 Remark on disk amplitude contribution

For a better understanding of the structure of the loop equation let us elaborate on the
absence of the disk amplitude in (3.2).

To do this, let us first rewrite the genus-zero part (2.44) as follows. Consider the Taylor
series expansion of (I0(v)− v) about the point v = u0. By using the property (2.8) and
the string equation (2.12) it is expressed as

I0(v)− v =
∞∑
n=1

(In(u0)− δn,1)(v − u0)n

n! . (3.19)

– 12 –
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Plugging this into (2.44) and evaluating the integral one obtains

Zg=0
1 (β) = eβu0

√
2πgs

∞∑
n=1

(−1)nβ−n−
1
2 (In − δn,1). (3.20)

From this expression one observes that the disk amplitude contains negative powers of β.
This is in contrast to the higher genus amplitudes, which contain only nonnegative powers
of β [14, 20] (see (3.25) in the next subsection).

Comparing the expression (3.20) with (2.39) one can regard V ′eff(ξ) as a formal Laplace
transform of the disk amplitude

− 1
2gs

V ′eff(ξ) ∼
∫ ∞

0
dβZg=0

1 (β)e−βξ. (3.21)

Of course, this should not be viewed as a mathematically rigorous relation, because the
Laplace transform converges only for eβu0β−n−

1
2 with n < 1

2 , but actually n is summed
over positive integers. Nevertheless, at the price of mathematical rigor this formal relation
provides us with an intuitive understanding of the structure of the loop equations, as we
see below.

Let us now come back to the loop equation (3.2). If we naively place Z1(β) instead of
Zg≥1

1 (β), the r.h.s. of (3.2) gets an extra contribution

2
∫ β

0
dsZg=0

1 (s)Z̃n+1(β − s, {βk}nk=1). (3.22)

This gives rise to divergence due to the negative powers of β as seen in (3.20) and thus
should not be included in the loop equation. However, let us be tolerant for a while and
attempt to evaluate it using (3.21). Let Z̃∗n+1 denote the Laplace transform of Z̃n+1:

Z̃∗n+1(ξ) =
∫ ∞

0
dβe−βξZ̃n+1(β), Z̃n+1(β) = 1

2πi

∫
C
dξeβξZ̃∗n+1(ξ). (3.23)

Here we have introduced the abbreviated notation Z̃∗n+1(ξ) ≡ Z̃∗n+1(ξ; {βk}nk=1), Z̃n+1(β) ≡
Z̃n+1 (β, {βk}nk=1) and the contour C is chosen accordingly so that the inverse Laplace
transform makes sense. Recall that the Laplace transform maps a convolution product to
an ordinary product. Rewriting the convolution (3.22) using (3.21) and (3.23) we see that

2
∫ β

0
dsZg=0

1 (s)Z̃n+1(β − s) ∼ 2 1
2πi

∫
C
dξeβξ

(
− 1

2gs
V ′eff(ξ)

)
Z̃∗n+1(ξ)

= − 1
gs
V ′eff(∂β) 1

2πi

∫
C
dξeβξZ̃∗n+1(ξ)

= − 1
gs
V ′eff(∂β)Z̃n+1(β).

(3.24)

Being transposed to the other side of the loop equation, this becomes precisely what we
have already had on the l.h.s. of (3.2)! Therefore, we can think that the disk amplitude
contribution (3.22) is not removed by hand from the loop equation, but rather it turns into
the term involving V ′eff(∂β) as a mathematically well-defined contribution.
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3.5 Examples: JT gravity and Airy case

One can check the loop equation (3.2) order by order in the genus expansion, using the for-
malism of the genus expansion of the multi-boundary correlators developed in our previous
paper [20]. Although we have applied this formalism to the JT gravity case in [20], our
formalism can be trivially generalized to 2d topological gravity with arbitrary background
couplings {tk}, as explained in [26]. Indeed, we have checked that the loop equation (3.2) is
satisfied up to the first few orders in the genus expansion for the general background {tk}.
For instance, the one- and two-boundary correlators in the genus expansion are obtained
as [14, 20]

Zg≥1
1 (β) = eβu0√

2πβ3

[(
I2β

2

24t2 + β3

24t

)
gs

+
[(

I5
1152t4 + 29I2

3
5760t5 + 11I2I4

1440t5 + 5I2
2I3

144t6 + 7I4
2

288t7

)
β2

+
(

7I3
2

288t6 + 29I2I3
1440t5 + I4

384t4

)
β3 +

(
7I2

2
480t5 + 29I3

5760t4

)
β4

+ 29I2β
5

5760t4 + β6

1152t3
]
g3

s +O(g5
s )
]
,

Z2(β1,β2) =
√
β1β2
2π e(β1+β2)u0

[
1

β1 +β2

+
(
I3

24t3 + I2
2

12t4 + I2(β1 +β2)
12t3 + β2

1 +β1β2 +β2
2

24t2

)
g2

s +O(g4
s )
]
,

(3.25)

where
t = 1− I1. (3.26)

Substituting these into (3.1) and using the formula (2.41) one can check that the both sides
of the equation give

β

16 +
[(

I3
384t3 + 49I2

2
9216t4

)
β2 + 49I2

9216t3β
3 + 35

16384t2β
4
]
g2

s +O(g4
s ). (3.27)

This confirms (3.1), which is (3.2) for n = 0, up to this order.
JT gravity is a special case of topological gravity with infinitely many couplings turned

on in a specific way [12–14]

t0 = t1 = 0, tk = (−1)k

(k − 1)! (k ≥ 2). (3.28)

In this case
u0 = I1 = 0, Ik = (−1)k

(k − 1)! (k ≥ 2) (3.29)

and V ′eff(ξ) in (2.39) is given by

V ′eff(ξ) =
√

2 sin(2
√
ξ). (3.30)
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In JT gravity the one- and two-boundary correlators at the first few orders in the genus
expansion are given by [11, 14, 20]4

Zg≥0
1 (β) = 1√

2πβ3

[
β2 + β3

24 gs

+
(

29β2

3072 + 169β3

11520 + 139β4

11520 + 29β5

5760 + β6

1152

)
g3

s +O(g5
s )
]
,

Z2(β1, β2) =
√
β1β2
2π

[
1

β1 + β2
+
(

1
16 + β1 + β2

12 + β2
1 + β1β2 + β2

2
24

)
g2

s +O(g4
s )
]
.

(3.31)

These expressions are nothing but (3.25) evaluated at the special values (3.29). One can
check that the loop equation (3.2) for n = 0 is satisfied with (3.30) and (3.31), though this
is evident from the previous example with general tk.

Another interesting example is what is called the Airy case corresponding to the trivial
background tk = 0 (k ≥ 0). In this case u0 = In = 0 and V ′eff(ξ) in (2.39) becomes

V ′eff(ξ) = 2
√

2ξ. (3.32)

The n-boundary correlators in the Airy case for n = 1, 2, 3 are known in a closed form [23,
27, 28]

Z1(β) = 1√
2πβ3gs

e
g2
s β

3
24 ,

Z2(β1,β2) =Z1(β1 +β2)Erf
(
gs

2
√

2

√
β1β2(β1 +β2)

)
,

Z3(β1,β2,β3) =Z1

( 3∑
i=1

βi

)

×
[
1−4T

(
gs
2

√
β1(β2 +β3)(β1 +β2 +β3),

√
β2β3

β1(β1 +β2 +β3)

)

−4T
(
gs
2

√
β2(β3 +β1)(β1 +β2 +β3),

√
β3β1

β2(β1 +β2 +β3)

)

−4T
(
gs
2

√
β3(β1 +β2)(β1 +β2 +β3),

√
β1β2

β3(β1 +β2 +β3)

)]
,

(3.33)

where Erf(z) and T (z, a) denote the error function and the Owen’s T -function respectively

Erf(z) = 2√
π

∫ z

0
dt e−t

2
, T (z, a) = 1

2π

∫ a

0
dt
e−

1
2 z

2(1+t2)

1 + t2
. (3.34)

We have checked that the loop equations (3.2) for n = 0, 1 are indeed satisfied by the
correlators in the Airy case (3.33) with V ′eff(ξ) in (3.32).

4In (3.31) we have set the asymptotic value γ of the dilaton as γ = 1
2π2 . S0 in [11] is related to gs by

gs = (2π2) 3
2 e−S0 [14, 20].
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4 Relation to other approaches

4.1 Free boson/fermion representation

It is well-known that τ = eF of Witten-Kontsevich topological gravity is the tau-function
of the KdV hierarchy and it has a free boson/fermion representation (see e.g. [29–32] and
references therein)

eF = 〈t|V 〉, (4.1)

where the state 〈t| is given by the coherent state of free boson

〈t| = 〈Ω| exp
( ∞∑
k=0

tkα2k+1
gs(2k + 1)!!

)
(4.2)

with αn obeying the usual commutation relation of the free boson

[αn, αm] = nδn+m,0, 〈Ω|αn = 0 (n < 0). (4.3)

Note that only the odd modes α2k+1 of αn appear in (4.2) since the KdV hierarchy is a
mod-2 reduction of the KP hierarchy.

The state |V 〉 in (4.1) is written in terms of the free fermions ψr, ψ∗r (r ∈ Z+ 1
2) obeying

the anti-commutation relation

{ψr, ψ∗s} = δr+s,0, ψr|Ω〉 = ψ∗r |Ω〉 = 0 (r > 0). (4.4)

They are related to αn by the usual bosonization

αn =
∑

r∈Z+ 1
2

: ψrψ∗n−r : . (4.5)

Then |V 〉 is written as

|V 〉 = exp

 ∞∑
m,n=0

Am,nψ−m− 1
2
ψ∗−n− 1

2

 |Ω〉. (4.6)

The generating function of Am,n for the Witten-Kontsevich τ -function is obtained in [33–
35]:

∞∑
m,n=0

Am,nz
−m−1w−n−1 = 1

z − w
+ a(w)b(−z)− a(−z)b(w)

z2 − w2 , (4.7)

where a(z) and b(z) are given by

a(z) =
∞∑
m=0

(−gs
288

)m (6m)!
(2m)!(3m)!z

−3m,

b(z) = −
∞∑
m=0

(−gs
288

)m (6m)!
(2m)!(3m)!

6m+ 1
6m− 1z

−3m+1.

(4.8)
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Note that the derivative ∂k with respect to the coupling tk is mapped to the operator
α2k+1 when acting on the state 〈t| in (4.2)

∂k〈t| =
1

gs(2k + 1)!!〈t|α2k+1, (k ≥ 0). (4.9)

Using the commutation relation (4.3) one can also show that

tk〈t| = gs(2k − 1)!!〈t|α−2k−1

= gs
(−1)k

(−2k − 1)!!〈t|α−2k−1, (k ≥ 0),
(4.10)

where we have used (2k − 1)!!(−2k − 1)!! = (−1)k. Then the Virasoro constraint (2.3)
with Lm in (2.4) can be translated to the free boson/fermion language via the dictio-
nary (4.9), (4.10)

L̂n|V 〉 = 0 (n ≥ −1), (4.11)

where the Virasoro generator L̂n is given by

L̂n = 1
4
∑
k∈Z

: α2k+1α2n−2k−1 : + 1
16δn,0 −

1
2gs

α2n+3. (4.12)

Note that the linear term − 1
2gs
α2n+3 in (4.12) arises from the shift of t̃1 = t1 − 1 [18, 36].

Another useful expression of |V 〉 is the cut-and-join representation found in [37]

|V 〉 = eW |Ω〉,

W = 2gs
3

∞∑
m=−1

α−2m−3L̂
′
m,

(4.13)

where L̂′m = L̂m + 1
2gs
α2m+3. See appendix D for a derivation of this expression.

The boundary creation operator B(β) in (2.27) can also be translated to the free
boson/fermion language as

B(β)〈t| = 〈t|Ẑ(β), (4.14)

where Ẑ(β) is given by

Ẑ(β) = 1√
2π

∞∑
k=−∞

βk+ 1
2

(2k + 1)!! α̃2k+1. (4.15)

Here α̃n is defined by

α̃n = αn − g−1
s δn,−3 = e

− 1
3gs

α3αne
1

3gs
α3 , (4.16)

which is related to the shift of t̃k = tk − δk,1. One can show that the operators Ẑ(β)
mutually commute [20]

[Ẑ(β), Ẑ(β′)] = 0, (4.17)

and the full correlator (2.31) is written as

〈Z(β1) · · ·Z(βn)〉 = 〈t|Ẑ(β1) · · · Ẑ(βn)|V 〉
〈t|V 〉

. (4.18)
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In our previous paper [20], we identified the state |V 〉 as the Hartle-Hawking state
|HH〉 [38]

|HH〉 = |V 〉. (4.19)

This is based on the argument in [39] that the Hartle-Hawking state is “the most symmetric
state.” Indeed, |V 〉 is invariant under the Virasoro generators (4.12) and |V 〉 can be thought
of as the SL(2,R) invariant vacuum. In particular, the constraint L̂0|V 〉 = 0 corresponds
to the Wheeler-DeWitt equation. This indicates that the state |V 〉 is a natural candidate
for the Hartle-Hawking state |HH〉.

Our (4.19) is consistent with the identification of the one-point function 〈Z(β)〉 as
the wavefunction of the Hartle-Hawking state, which is commonly adopted in 2d gravity
literature (see e.g. [40] for a review)

〈Z(β)〉 = ΨHH(β) = 〈Z(β)|HH〉, (4.20)

where 〈Z(β)| is given by

〈Z(β)| = 〈t|Ẑ(β)
〈t|HH〉 . (4.21)

More generally, the multi-point correlator (4.18) is written as

〈Z(β1) · · ·Z(βn)〉 = 〈Z(β1) · · ·Z(βn)|HH〉, (4.22)

where 〈Z(β1) · · ·Z(βn)| is given by

〈Z(β1) · · ·Z(βn)| = 〈t|Ẑ(β1) · · · Ẑ(βn)
〈t|HH〉 . (4.23)

In [41, 42], the Virasoro constraint of matrix model is interpreted as the gauge sym-
metry of closed string field theory in a minimal model background. This suggests that
the Virasoro constraint is the analogue of the bulk diffeomorphism invariance. Since the
loop equation (3.2) is equivalent to the Virasoro constraint, one can regard the loop equa-
tion (3.2) as a manifestation of the bulk diffeomorphism invariance. The loop equation (3.2)
relates the amplitudes with different number of boundaries. This can be thought of as a
gauge redundancy due to the “large” diffeomorphism relating different topologies of space-
time [43]. In the language of [1], the Virasoro constraint defines a null state

|N 〉 = L̂(β)|HH〉 = 0, (4.24)

where L̂(β) is obtained from (2.32) as

L̂(β) =
∞∑

m=−1

βm+1

(m+ 1)!2m L̂m. (4.25)

More generally, acting Ẑ(β)’s on |N 〉 also gives rise to a null state

Ẑ(β1) · · · Ẑ(βn)|N 〉 = Ẑ(β1) · · · Ẑ(βn)L̂(β)|HH〉 = 0. (4.26)
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As we have seen in the previous section, after rewriting (4.26) as

L̂(β)Ẑ(β1) · · · Ẑ(βn)|HH〉 −
n∑
i=1

Ẑ(β1) · · · [L̂(β), Ẑ(βi)] · · · Ẑ(βn)|HH〉 = 0, (4.27)

and using [L̂(β), Ẑ(β′)] = −β′Ẑ(β + β′), (4.26) becomes equivalent to the loop equa-
tion (3.2). Thus we can regard the loop equation (3.2) as the equation for the null state
due to the large diffeomorphism invariance.

4.2 Relation to Marolf-Maxfield [1]

Let us discuss the relation between our expression (4.22) and the one proposed by Marolf
and Maxfield in [1]

〈Z(β1) · · ·Z(βn)〉 = 〈HH|Ẑ(β1) · · · Ẑ(βn)|HH〉
〈HH|HH〉

. (4.28)

This is different from our (4.22). In their formulation the Hartle-Hawking state is repre-
sented by both the bra 〈HH| and ket |HH〉 as in (4.28), while in our formulation the bra
and ket are treated asymmetrically and the Hartle-Hawking state is represented by the
ket |HH〉 only. In other words, our expression (4.22) corresponds to a special (Euclidean)
time-slicing of the spacetime where the initial state has no boundary and all the boundaries
are on the final state. On the other hand, the proposal (4.28) in [1] is based on a certain
assumption of the cutting and sewing of the gravitational path integral and the existence
of the CPT conjugation.

However, as emphasized in [44], the sewing of path integral in quantum gravity is
quite different from the ordinary quantum field theories without gravity. Let us recall the
argument in [44]. When the manifold M is cut into two pieces M1 and M2, the path
integral of quantum fields over M is obtained by gluing M1 and M2 along the common
boundary Σ = ∂M1 = ∂M2∫

M
Dφ e−S(φ) =

∫
Σ
DφbψM1(φb)ψM2(φb) = 〈ψM1 |ψM2〉, (4.29)

where ψMi(φb) (i = 1, 2) is the wavefunction defined by the path integral over Mi with the
fixed boundary value φ|Σ = φb

ψMi(φb) =
∫
Mi;φ|Σ=φb

Dφ e−S(φ). (4.30)

In the case of quantum gravity we have to perform the path integral over the metrics, which
in particular includes the integral over the moduli space of metrics. Let M,M1 andM2
denote the moduli spaces ofM ,M1 andM2 respectively. In calculating ψM1 and ψM2 we in-
tegrate overM1 andM2, and as a consequence the inner product 〈ψM1 |ψM2〉 is given by the
integral overM1×M2. However,M is not equal to the product ofM1 andM2 in general

M 6=M1 ×M2. (4.31)
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Therefore, the inner product 〈ψM1 |ψM2〉 does not correspond to the integral over M . In
other words, the sewing operation does not commute with the integration over the mod-
uli [44]. As mentioned in [44], the sewing operation in the gravitational path integral is
valid only for a given point in moduli space and it breaks down when we integrate over the
moduli space. The sewing operation works for local fields on spacetime, but the moduli
space is defined from the global property of spacetime.

Of course, one can also consider the cutting and sewing of the moduli space integral.
For instance, the Weil-Petersson volume of the moduli space of Riemann surfaces satisfies
the recursion relation found by Mirzakhani [45],5 which comes from the pant decomposi-
tion of the underlying Riemann surfaces. This recursion relation essentially says that the
higher genus Weil-Petersson volume is obtained by summing over all possible pant decom-
positions. In particular, we have to include the contribution of a pair of pants connecting
two punctures on either connected or disconnected Riemann surfaces with lower genera,
which can be thought of as a contribution of wormhole connecting either the same universe
or disjoint universes.6 In other words, in 2d gravity we have to sum over all possible cut-
ting/sewing of the spacetime and include the contribution of wormholes. We expect that
this is a general feature of the gravitational path integral.

The above argument urges us to reconsider the derivation of the expression (4.28)
in [1] more carefully.7 In fact, the correlator in 2d quantum gravity, which is exactly
solved in terms of the double-scaled matrix model, takes the form (4.22), not (4.28). The
Hilbert space based on the conventional free boson/fermion representation that we studied
in section 4.1 does not seem to be identical with the one proposed in [1] and we do not
know how to relate our (4.22) with (4.28) proposed in [1]. We leave this as an important
future problem.

4.3 Relation to Ishibashi-Kawai [2, 3]

Next we consider the relation to the closed string field theory (SFT) of non-critical strings
developed in a series of papers by Ishibashi and Kawai [2, 3]. Their SFT naturally arises in
the quantization of 2d gravity in the temporal gauge [50]. Let us briefly recall the formalism
of [2, 3]. First they introduce the creation and annihilation operators Ψ†(β),Ψ(β) of the
macroscopic loops obeying the commutation relation

[Ψ(β),Ψ†(β′)] = δ(β − β′), (4.32)

and define the “vacuum state” |0〉 as

Ψ(β)|0〉 = 〈0|Ψ†(β) = 0. (4.33)

5As shown by Eynard and Orantin [46], this recursion relation is equivalent to the topological recursion
of the double-scaled matrix model.

6Here, by “wormhole” we mean a wormhole with a puncture, which is topologically equivalent to a pair
of pants.

7The naive applications of sewing operation in the third quantization of universes [47] or “universe field
theories” (see [48, 49] and references therein) suffer from the same problem.
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Then the partition function eF is written as

eF = 〈0|v〉, (4.34)

where |v〉 is given by
|v〉 = lim

τ→∞
e−τH|0〉. (4.35)

Here H can be thought of as the Fokker-Planck Hamiltonian for the stochastic quantiza-
tion [50]. H describes the splitting and joining of loops and its explicit form is given by

H =
∫ ∞

0
dββΨ†(β)

[
T (β) + β−1ρ(β)

]
, (4.36)

with
T (β) =

∫ β

0
dsΨ(s)Ψ(β − s) + g2

s

∫ ∞
0

ds sΨ†(s)Ψ(β + s). (4.37)

This satisfies the continuum Virasoro algebra

[T (β), T (β′)] = g2
s (β − β′)T (β + β′). (4.38)

ρ(β) in (4.36) represents the tadpole term. In this formalism, the correlator of macroscopic
loops is written as

〈Z(β1) · · ·Z(βn)〉 = g−ns
〈0|Ψ(β1) · · ·Ψ(βn)|v〉

〈0|v〉 . (4.39)

It is argued in [2, 3] that the state |v〉 in (4.35) satisfies the constraint[
T (β) + β−1ρ(β)

]
|v〉 = 0. (4.40)

This condition fixes the form of ρ(β) in terms of the disk amplitude Zg=0
1 (β)

β−1ρ(β) = −g2
s

∫ β

0
dsZg=0

1 (s)Zg=0
1 (β − s). (4.41)

Note that this is just a formal expression since this integral is divergent due to the negative
powers of s in Zg=0

1 (s) (see (3.20)). From (4.40) the following form of the loop equation is
obtained in [2, 3]∫ β

0
ds〈Ψ(s)Ψ(β − s)〉J + g2

s

∫ ∞
0

dssJ(s)〈Ψ(β + s)〉J + β−1ρ(β) = 0, (4.42)

where 〈· · ·〉J is defined by

〈· · ·〉J =
〈0|(· · · ) exp

[ ∫∞
0 dsJ(s)Ψ(s)

]
|v〉

〈0| exp
[ ∫∞

0 dsJ(s)Ψ(s)
]
|v〉

. (4.43)

The loop equation (4.42) is almost identical to our result, but there are some subtle
differences. Let us compare (4.42) and the free boson/fermion formalism. One can formally
introduce the “boundary annihilation operator”

Ẑ†(β) = lim
ε→+0

i√
2π

∞∑
k=0

(−1)k
[
(β + iε)k+ 1

2
α2k+1

(2k + 1)!! − (β − iε)−k−
1
2

α−2k−1
(−2k − 1)!!

]
, (4.44)

– 21 –



J
H
E
P
1
0
(
2
0
2
1
)
1
0
7

which satisfies
[Ẑ(β), Ẑ†(β′)] = βδ(β − β′). (4.45)

Then it is tempting to identify

Ψ(β)↔ gsẐ(β),

Ψ†(β)↔ 1
gsβ

Ẑ†(β).
(4.46)

This identification works at the level of commutation relation, but the Hilbert spaces on
which these operators act are different. In particular, there is no such state |0〉 annihilated
by Ẑ(β) for all β ≥ 0 at least in the Fock space of free boson/fermion.

Also, it is argued in [3] that the algebra of T̃ (β) = T (β) + β−1ρ(β) does not close due
to the presence of the tadpole term ρ(β)

[T̃ (β1), T̃ (β2)] = g2
s (β1 − β2)T̃ (β1 + β2)− g2

s
β1 − β2
β1 + β2

ρ(β1 + β2), (4.47)

and the consistency of the constraint T̃ (β)|v〉 = 0 in (4.40) is a subtle issue. On the other
hand, in our case the constraint algebra is closed

[L̂(β1), L̂(β2)]|V 〉 = (β1 − β2)L̂(β1 + β2)|V 〉 = 0 (4.48)

and there is no problem associated with the tadpole term. This difference can be traced
back to the fact that only the positive powers of β appear in the definition of L(β) in (2.32)
and the convolution of the disk amplitudes in (4.41) is already subtracted from the begin-
ning (see (3.7))

L(β) =
∫ β

0
dsB(s)B(β − s) + · · · 6=

∫ β

0
dsB(s)B(β − s) + · · · . (4.49)

Note that B(β) denotes the universal part which contains only the positive powers of β.
It is interesting to observe that the cut-and-join operator W in (4.13) has a similar

form with the SFT Hamiltonian H in (4.36). W in (4.13) can be thought of as the SFT
Hamiltonian written in terms of the microscopic loop operators αn.

5 Conclusions and outlook

In this paper we have presented a detailed proof of the loop equations (3.1) and (3.2) obeyed
by the multi-boundary correlators in Witten-Kontsevich topological gravity with arbitrary
background {tk}. Since the Virasoro operator L(β) in (2.32) contains only nonnegative
powers of β, the disk amplitude Zg=0

1 (β) does not appear in the convolution part (i.e. the
s-integral) of (3.1) and (3.2). We emphasize that our loop equations (3.1) and (3.2) are
valid for the general background {tk} including the u0 6= 0 case, which has not been worked
out in the literature before. As a concrete example, we have demonstrated that our loop
equations are indeed satisfied for JT gravity and the Airy case.

One of the motivations of our study of the loop equation is to understand the relation to
the discussion of the null state by Marolf and Maxfield [1]. In section 4, we have argued that
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our loop equation has an interpretation as the null state in the free boson/fermion language
of the Witten-Kontsevich τ -function. It is interesting that the loop equation relates the
multi-boundary correlators with different number of boundaries and it can be thought of as
a consequence of the “large” diffeomorphism relating different topologies of spacetime [43].

As we mentioned in section 4, our expression of multi-boundary correlator (4.22) is
different from (4.28) of Marolf and Maxfield [1]. Since 2d gravity is completely solved
by the double-scaled matrix model and (4.22) is what we get from the general formula of
Witten-Kontsevich topological gravity, we have to take the result (4.22) very seriously. The
integrable structure of Witten-Kontsevich topological gravity leading to the result (4.22)
is tightly constrained and there is no natural way to rewrite (4.22) into the form of (4.28).
We suspect that one of the possible pitfalls of the discussion in [1] is the naive application
of the sewing operation in the gravitational path integral. As discussed in [44], the sewing
operation breaks down when we integrate over the moduli space of metrics. It would be
desirable to reconsider the argument in [1] in view of the remark in [44]. We leave this as
an important future problem.
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A Proof of commutation relation (2.34)

In this section we prove the commutation relation (2.34). The l.h.s. of (2.34) is written as

[L(β),B(β′)] =
∞∑

m=−1

βm+1

(m+ 1)!2m
1√
2π

∞∑
k=0

(
g−1

s (−1)kβ′−k−
1
2 [Lm, t̃k] + gsβ

′k+ 1
2 [Lm, ∂k]

)
.

(A.1)
One can show that

[Lm, t̃k] =


1
2

(2k + 1)!!
(2k − 2m− 1)!! t̃k−m (m ≤ k),

g2
s
2 (2k + 1)!!(2m− 2k − 1)!!∂m−k−1 (m ≥ k + 1),

[Lm, ∂k] =


− t0

2g2
s

(m, k) = (−1, 0),

−1
2

(2k + 2m+ 1)!!
(2k − 1)!! ∂k+m otherwise.

(A.2)
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Using these relations we obtain

[L(β),B(β′)]

= 1√
2πgs

∞∑
m=−1

∞∑
k=m

βm+1(−1)kβ′−k−
1
2

(m+ 1)!2m+1
(2k + 1)!!

(2k − 2m− 1)!! t̃k−m

+ gs√
2π

∞∑
m=1

m−1∑
k=0

βm+1(−1)kβ′−k−
1
2

(m+ 1)!2m+1 (2k + 1)!!(2m− 2k − 1)!!∂m−k−1

− gs√
2π

∑
m≥−1, k≥0

(m,k) 6=(−1,0)

βm+1β′k+ 1
2

(m+ 1)!2m+1
(2k + 2m+ 1)!!

(2k − 1)!! ∂k+m.

(A.3)

Note that the contribution of the (m, k) = (−1, 0) case of [Lm, ∂k] is included as the
(m, k) = (−1,−1) case of the first term.

By setting m̃ = m+ 1 and ` = k −m the first term of (2.34) is rewritten as

1√
2πgs

∞∑
m=−1

∞∑
k=m

βm+1(−1)kβ′−k−
1
2

(m+ 1)!2m+1
(2k + 1)!!

(2k − 2m− 1)!! t̃k−m

= −β′ 1√
2πgs

∞∑
`=0

(−1)`β′−`−
1
2 t̃`

∞∑
m̃=0

1
m̃

(
β

β′

)m̃ (−1)m̃(2`+ m̃− 1)!!
2m̃(2`− 1)!!

= −β′ 1√
2πgs

∞∑
`=0

(−1)`β′−`−
1
2 t̃`

(
1 + β

β′

)−`− 1
2

= −β′B(β + β′)
∣∣∣
t̃
.

(A.4)

This reproduces the polynomial part of the r.h.s. of (2.34).

Next, by setting ` = m− k − 1 the second term of (A.3) becomes

gs√
2π

∞∑
m=1

m−1∑
k=0

βm+1(−1)kβ′−k−
1
2

(m+ 1)!2m+1 (2k + 1)!!(2m− 2k − 1)!!∂m−k−1

= gs√
2π

∞∑
m=1

m−1∑
`=0

βm+1(−1)m−`−1β′`−m+ 1
2

(m+ 1)!2m+1 (2m− 2`− 1)!!(2`+ 1)!!∂`

= − gs√
2π

∞∑
`=0

∞∑
m=`+1

βm+1(−1)m−`β′`−m+ 1
2

(m+ 1)!2m+1 (2m− 2`− 1)!!(2`+ 1)!!∂`

= − gs√
2π

∞∑
`=0

∞∑
m=`+1

βm+1β′`−m+ 1
2

(m+ 1)!
Γ(`+ 3

2)
Γ(`−m+ 1

2)
∂`.

(A.5)
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On the other hand, by setting ` = k +m the third term of (A.3) becomes

− gs√
2π

∑
m≥−1, k≥0

(m,k) 6=(−1,0)

βm+1β′k+ 1
2

(m+ 1)!2m+1
(2k + 2m+ 1)!!

(2k − 1)!! ∂k+m

= − gs√
2π

∞∑
`=0

∑̀
m=−1

βm+1β′`−m+ 1
2

(m+ 1)!2m+1
(2`+ 1)!!

(2`− 2m− 1)!!∂`

= − gs√
2π

∞∑
`=0

∑̀
m=−1

βm+1β′`−m+ 1
2

(m+ 1)!
Γ(`+ 3

2)
Γ(`−m+ 1

2)
∂`.

(A.6)

From (A.5) and (A.6) we see that the sum of the second and the third terms in (A.3)
becomes (we set m̃ = m+ 1)

− gs√
2π

∞∑
`=0

∞∑
m=−1

βm+1β′`−m+ 1
2

(m+ 1)!
Γ(`+ 3

2)
Γ(`−m+ 1

2)
∂`

= −β′ gs√
2π

∞∑
`=0

β′
`+ 1

2
∞∑
m̃=0

1
m̃!

(
β

β′

)m̃ Γ(`+ 3
2)

Γ(`− m̃+ 3
2)
∂`

= −β′ gs√
2π

∞∑
`=0

β′
`+ 1

2

(
1 + β

β′

)`+ 1
2
∂`

= −β′B(β + β′)
∣∣∣
∂
.

(A.7)

This reproduces the derivative part of the r.h.s. of (2.34). Thus we have proved (2.34).

B Proof of relation (3.6)

In this section we prove the relation (3.6). Let us start from the r.h.s. of (3.6). To evaluate
the first term, we first substitute (3.19) and eβv =

∑∞
m=0

βmvm

m! into (2.46). This gives

Zu,g=0
1 (β) = 1

gs

√
β

2π

∞∑
l=1

Il − δl,1
l!

∞∑
m=0

βm

m!

∫ u0

0
dv(v − u0)lvm

= 1√
2πgs

∞∑
l=1

∞∑
m=0

(−1)l(Il − δl,1)
(l +m+ 1)! ul+m+1

0 βm+ 1
2 .

(B.1)

Using this expression and the definition (2.15) of B(β) we obtain

2
∫ β

0
dsZu,g=0

1 (β − s)B(s)

= 1
π

∞∑
l=1

∞∑
m=0

∞∑
n=0

(−1)l(Il − δl,1)
(l +m+ 1)! ul+m+1

0

∫ β

0
ds(β − s)m+ 1

2 sn+ 1
2∂n.

(B.2)

The last integral is evaluated as∫ β

0
ds(β − s)m+ 1

2 sn+ 1
2 =

Γ(m+ 3
2)Γ(n+ 3

2)
Γ(m+ n+ 3) βm+n+2

=
(−1)m+1πΓ(n+ 3

2)
Γ(−m− 1

2)(m+ n+ 2)!
βm+n+2.

(B.3)
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Thus we have

2
∫ β

0
dsZu,g=0

1 (β − s)B(s)

=
∞∑
l=1

∞∑
m=0

∞∑
n=0

(−u0)l+m+1

(l +m+ 1)!
Il − δl,1

Γ(−m− 1
2)

Γ(n+ 3
2)

(m+ n+ 2)!β
m+n+2∂n

=
∞∑
n=0

∞∑
m̃=2

m̃−1∑
l=1

(−u0)m̃

m̃!
Il − δl,1

Γ(l − m̃+ 1
2)

Γ(n+ 3
2)

(n− l + m̃+ 1)!β
n−l+m̃+1∂n.

(B.4)

In the last step we have set m̃ = l +m+ 1.
On the other hand, the second term on the r.h.s. of (3.6) is evaluated as

− 1
gs
V ′eff(∂β)B(β)

=
∞∑
l=1

∞∑
n=0

Il − δl,1
Γ(l + 1

2)
(∂β − u0)l−

1
2βn+ 1

2∂n

=
∞∑
l=1

∞∑
n=0

Il − δl,1
Γ(l + 1

2)

∞∑
m=0

Γ(l + 1
2)

Γ(l −m+ 1
2)

(−u0)m

m! ∂
l− 1

2−m
β βn+ 1

2∂n

=
∞∑
l=1

∞∑
n=0

∞∑
m=0

Il − δl,1
Γ(l −m+ 1

2)
(−u0)m

m!
Γ(n+ 3

2)
Γ(n− l +m+ 2)β

n−l+m+1∂n.

(B.5)

In the last step we have used the formula (2.40).
Now, observe that the summand of (B.4) is identical with that of (B.5). Therefore,

subtracting (B.4) from (B.5) we see that the r.h.s. of (3.6) becomes

− 2
∫ β

0
dsZu,g=0

1 (β − s)B(s)− 1
gs
V ′eff(∂β)B(β)

=
∞∑
n=0

∑
m≥0, l≥m
(m,l) 6=(0,0)

Il − δl,1
Γ(l −m+ 1

2)
(−u0)m

m!
Γ(n+ 3

2)
Γ(n− l +m+ 2)β

n−l+m+1∂n.
(B.6)

By adding and subtracting the (m, l) = (0, 0) contribution and setting k = l −m, (B.6) is
rewritten as

∞∑
n=0

( ∞∑
m=0

n+1∑
k=0

Ik+m − δk+m,1

Γ(k + 1
2)

(−u0)m

m!
βn−k+1

(n− k + 1)! −
I0β

n+1

Γ(1
2)(n+ 1)!

)
Γ
(
n+ 3

2

)
∂n. (B.7)

By using (2.11) this is rewritten as

∞∑
n=0

(
n+1∑
k=0

tk − δk,1 + u0δk,0

Γ(k + 1
2)

βn−k+1

(n− k + 1)! −
I0β

n+1

Γ(1
2)(n+ 1)!

)
Γ
(
n+ 3

2

)
∂n

=
∞∑
n=0

n+1∑
k=0

t̃k

Γ(k + 1
2)

βn−k+1

(n− k + 1)!Γ
(
n+ 3

2

)
∂n.

(B.8)
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In the last step we have used the string equation (2.12). By setting m = n − k this is
further rewritten as ∑

m≥−1, k≥0
(m,k) 6=(−1,0)

t̃k

Γ(k + 1
2)

βm+1

(m+ 1)!Γ
(
k +m+ 3

2

)
∂k+m

=
∑

m≥−1, k≥0
(m,k) 6=(−1,0)

(2k + 2m+ 1)!!βm+1

(2k − 1)!!(m+ 1)!2m+1 t̃k∂k+m.

(B.9)

This is precisely the second term on the r.h.s. of (3.4) and thus equal to the l.h.s. of (3.6).

C Loop equation at finite N

In this appendix we review the loop equation of matrix model at finite N . See e.g. [40] for
a review on this subject.

The loop equation of matrix model follows from the Schwinger-Dyson equation
N∑

i,j=1

∫
dM

∂

∂Mij

[(
eβM

)
ij
e
− 1
gs

TrV (M)+
∫∞

0 dβJ(β)Z(β)
]

= 0, (C.1)

where M is the N ×N hermitian matrix and Z(β) is defined by

Z(β) = Tr eβM . (C.2)

J(β) in (C.1) is the source for Z(β). Note that Z(β) becomes the usual partition function
Tr e−βH under the identification M = −H.

Using the relations
N∑

i,j=1

∂

∂Mij

(
eβM

)
ij

=
∫ β

0
dsTr esM Tr e(β−s)M ,

N∑
i,j=1

(
eβM

)
ij

∂

∂Mij
Tr f(M) = Tr

[
f ′(M)eβM

]
,

(C.3)

(C.1) is written as

1
gs

〈
Tr
[
V ′(M)eβM

]〉
J

=
∫ β

0
ds
〈

Tr esM Tr e(β−s)M
〉
J

+
∫ ∞

0
dβ′β′J(β′)

〈
Tr e(β+β′)M

〉
J
,

(C.4)
where 〈· · ·〉J is defined by

〈· · ·〉J =
∫
dM(· · · )e−

1
gs

TrV (M)+
∫∞

0 dβJ(β)Z(β)∫
dMe

− 1
gs

TrV (M)
. (C.5)

Using the identity TrV ′(M)eβM = V ′(∂β) Tr eβM , (C.4) is rewritten in terms of Z(β) =
Tr eβM as

1
gs
V ′(∂β)

〈
Z(β)

〉
J

=
∫ β

0
ds
〈
Z(s)Z(β − s)

〉
J

+
∫ ∞

0
dβ′β′J(β′)

〈
Z(β + β′)

〉
J
. (C.6)
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By taking the derivative of the both sides of (C.6) with respect to J and setting J = 0,
we find the loop equation for the multi-point functions of Z(β). For instance, by simply
setting J = 0 in (C.6) we find

1
gs
V ′(∂β)

〈
Z(β)

〉
=
∫ β

0
ds
〈
Z(s)Z(β − s)

〉
. (C.7)

By induction, one can show that the following loop equation is obtained from (C.6)

1
gs
V ′(∂β)Zn+1(β, β1, · · · , βn)

=
∫ β

0
ds

[
Zn+2(s, β − s, β1, · · · , βn) +

∑
I⊂S

Z|I|+1(s;βI)Z|S−I|+1(β − s;βS−I)
]

+
n∑
j=1

βjZn
(
{βi + δijβ}ni=1

)
,

(C.8)

where Zn(β1, . . . , βn) = 〈Z(β1) · · ·Z(βn)〉conn denotes the connected correlator and the
definition of I and S is the same as in (3.2). (C.8) is the finite N version of the loop
equation; essentially it has the same form as the loop equation (3.2) in the double-scaled
matrix model but the potential V should be replaced by the effective potential Veff in the
double-scaled version of the loop equation (3.2). Note that the integral over s in (C.8) is
finite and we do not have to subtract the genus-zero part of one-point function at finite N .

D Cut-and-join representation of |V 〉

In this appendix we review the derivation of |V 〉 in (4.13), [37]. The Virasoro constraint
L̂m|V 〉 = 0 is written as

L̂′m|V 〉 = 1
2gs

α2m+3|V 〉, (D.1)

where L̂′m = L̂m + 1
2gs
α2m+3. Following [37] we introduce the operator D by

D = 1
2

∞∑
k=0

α−2k−1α2k+1. (D.2)

One can show that

[D, L̂′m] = −mL̂′m, [D,α2k+1] = −
(
k + 1

2

)
α2k+1. (D.3)

Then we expand |V 〉 as

|V 〉 =
∞∑
n=0
|Vn〉, D|Vn〉 = ∆n|Vn〉, (D.4)

where |Vn〉 has the increasing weight of D

∆0 < ∆1 < ∆2 < · · · . (D.5)
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We assume that |V0〉 = |Ω〉 and ∆0 = 0. Plugging (D.4) into (D.1) we find

L̂′m|Vn〉 = 1
2gs

α2m+3|Vn+1〉. (D.6)

From this we find the condition of the weight ∆n

−m+ ∆n = −m− 3
2 + ∆n+1. (D.7)

This is solved as
∆n = 3n

2 . (D.8)

Applying α−2m−3 to both sides of (D.1) and summing over m ≥ −1 we find the recursion
relation for |Vn〉

∞∑
m=−1

α−2m−3L̂
′
m|Vn〉 = 1

gs
D|Vn+1〉 = 3(n+ 1)

2gs
|Vn+1〉. (D.9)

This is solved as

|Vn〉 = 1
n!

2gs
3

∞∑
m=−1

α−2m−3L̂
′
m

n |Ω〉. (D.10)

Finally, plugging (D.10) into (D.4) we find our desired result (4.13).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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