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Kasner exponents and the entanglement and butterfly velocities probing the black hole
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1 Introduction

Understanding the interior of a black hole is an intriguing and fundamental problem from
both theoretical and experimental perspectives. Due to the highly non-linear nature of the
Einstein’s equations, it is typically difficult to obtain black hole solutions analytically. As
a matter of fact, the structure and dynamics of the black hole interior, in particular, the
region near the black hole singularity where the spacetime curvature becomes infinite, are
still elusive concepts. Nevertheless, some analytical black hole solutions were found in the
past. The first case is the neutral Schwarzschild black hole whose geometry displays an
event horizon and a spacelike singularity within it [1]. Other examples include Reissner-
Nordstrom (RN) [2, 3] and Kerr black holes [4], corresponding to the cases with non-
trivial electric charge and angular momentum, respectively. Both have an additional inner
Cauchy horizon that represents a breakdown of predictability in general relativity and
present a timelike singularity, appearing to violate the strong cosmic censorship (SCC)
conjecture [5]. More recently, in the framework of General Relativity, it has been shown
that there is no Cauchy horizon for some kind of black holes with scalar hairs and symmetric
horizons [6–11]. Under quite general conditions, the authors of [12] showed that the number
of horizons is highly constrained by classical matter.

On the other side, Holography [13] provides some important and promising probes of
the black hole interior, such as correlation functions [14, 15], entanglement entropy [16]
and complexity [17, 18]. Following this line of investigation, recently the authors of [19]
considered a deformation of a thermal CFT state by a relevant scalar operator, which in
the bulk yields a deformation of the Schwarzschild singularity, at late interior times, into a
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more general Kasner form.1 This provides a first step beyond the non-generic and classi-
cally unstable black hole interiors which have been the main focus of previous holographic
literature. At this point, it is imperative to extend such study to more general cases and to
uncover possible novel features. One interesting case is that of massive gravity [21–23] in
which the standard general relativity framework is modified by endowing the graviton with
a nonzero mass. From the holographic perspective, massive gravity and the consequent
(partial or not) breaking of diffeomorphisms invariance, realizes in a simple and effective
way (in fact retaining the homogeneity of the background geometry) the breaking of trans-
lational invariance in the dual field theory [24]. In general, it is very helpful to write down
the massive gravity theory in the so-called Stueckelberg form [25, 26] where it appears as
a simple set of shift-invariant massless scalar coupled to canonical massless gravity. The
usages of this class of models in the Holographic community are very vast, specially in view
of the applications to strongly coupled matter [27–30]. We refer the Reader to [31] for a
complete and exhaustive review on the topic.

In the present work, in the context of the holographic massive gravity framework
of [25, 26], we study holographic renormalization group flows induced by a neutral scalar
field φ and interpolating between a 3-dimensional UV CFT and a singular Kasner-like
universe in the trans-IR. In contrast to the previous cases [19, 20] where the hairless
background is given by the Schwarzschild solution lacking the Cauchy horizon, in the
massive gravity case the black hole solution in the absence of the scalar hair φ can have
an inner horizon due to the mass of graviton, which in some sense acts as a charge for the
black hole.2 We consider a relevant deformation of the dual CFT thermal state leading
to a holographic renormalization group (RG) flow at finite temperature. Although in
our framework, in absence of scalar hair, the black hole presents an inner Cauchy due to
the finite graviton mass, the deformation induced by a neutral scalar operator generically
removes this Cauchy horizon such that the deformed black hole with non-trivial scalar
hair approaches a spacelike singularity at late interior time. The instability of the Cauchy
horizon triggered by the scalar field leads to a rapid collapse of the Einstein-Rosen bridge
at the would-be Cauchy horizon. The asymptotic geometry near the spacelike singularity
is shown to take a general Kasner form whenever the kinetic term of the scalar field φ

dominates. On the contrary, when the potential terms for φ become important, we find
novel and interesting deviations from the standard Kasner universe. Additionally, we prove
analytically that, contrarily to the holographic superconductor case of [8], no Josephson
oscillations are present in our case. Our findings suggest that such oscillations do not
appear in the absence of background charge and a non-trivial bulk gauge field.

Given these general facts, we also present a more detailed analysis of the black hole
interior geometry in function of the various parameters of the model such as the graviton
mass. Finally, we probe the aforementioned black hole interior by computing the entan-
glement velocity and butterfly velocity for the deformed black holes displaying a Kasner
singularity at late times.

1The authors of [19] studied a free scalar minimally coupled to Einstein gravity with a negative cosmo-
logical constant. The generalization to the case with a scalar self-interaction term was studied in [20].

2See for example the simplest model in [32].
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The rest of the paper is organized as follows. In section 2, we introduce the gravitational
model used in this work, a general four dimensional massive gravity theory coupled to a
neutral scalar field φ. We present analytic black hole solutions without the scalar hair and
prove the absence of a Cauchy-horizon for the hairy black holes. In section 3 we discuss the
collapse of the Einstein-Rosen bridge associated with the instability of the inner Cauchy
horizon triggered by the scalar field. In section 4, we construct the holographic flows from
the AdS boundary to the Kasner singularity sourced by the scalar field. In section 5, we
prove analytically the absence of Josephson oscillations in our holographic model. The
violation of the Kasner form near the spacelike singularity is also discussed. The probes of
the Kasner exponent are considered in section 6. We conclude with a brief discussion and
some remarks for the future in section 7.

2 Holographic setup

We consider the following 4-dimensional bulk action

S = 1
16πG

∫
dx4√−g

[
(R− 2Λ)−K(X)− ∂µφ∂µφ− V (φ2)

]
, (2.1)

where G is the Newton constant, R the Ricci scalar, Λ the cosmological constant and φ a
neutral bulk scalar field whose potential is denoted as V . Additionally, we have introduced
a set of shift-invariant massless scalar fields ΦI(I = x, y) via their kinetic term X ≡
1
2
∑2
I=1 ∂µΦI∂µΦI . Here K is a generic scalar function [25, 33] which is sometimes labelled

as K-essence [34]. The bulk solution for the axion fields ΦI is taken to be

ΦI = αxI , (2.2)

with α a constant. In this sense, these scalars break translational invariance and they
provide a mass for the graviton [21–23]; they are indeed nothing else that the Stueckelberg
fields which do restore diffeomorphism invariance in our massive gravity theory. In addition,
the rest of the solution is parametrized as

ds2 = 1
r2

(
−f(r)e−χ(r)dt2 + dr2

f(r) + dx2 + dy2
)
, φ = φ(r) , (2.3)

where, in our coordinate system, the AdS boundary is at r = 0 and the black hole singularity
locates at r → ∞. Moreover, at the event horizon r+, the blackening function f(r+)
vanishes. From (2.1), the independent equations of motion read

r4e
χ
2

(
e−

χ
2 fφ′

r2

)′
= dV

dφ2 φ , (2.4)

χ′ = r(φ′)2 , (2.5)

4e
χ
2 r4

(
e−

χ
2

r3 f

)′
= 2V (φ2) + 2K(α2r2)− 12 , (2.6)
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with a prime denoting the derivative with respect to r. We have also chosen the cosmologi-
cal constant Λ = −3/L2 with the AdS radius L set to one. In general, these coupled differ-
ential equations do not allow analytical solutions, thus one has to solve them numerically.

Depending on the choice of the potential K(X), the model in eq. (2.1) corresponds to
different boundary field theories. In particular, the shape of the potential and its behaviour
near the AdS boundary at r = 0 determines whether translational invariance is broken
explicitly or spontaneously in the dual field theory picture [31, 35]. In the present work,
we are interested in the following two cases:

• Type I: K(X) = X, which corresponds to the well-known linear axion model [32].

• Type II: K(X) = a1
√
X + a2X with a1 and a2 two constants. This form of potential

corresponds to the non-linear dRGT massive gravity model [24] as proven in [26].

We stress that K ′(X) > 0 to avoid ghost instability [29]. Both Type I and Type II
corresponds to the explicit breaking of translations in the dual field theory and their physics
is that described by momentum dissipation.

To continue, near the AdS boundary r → 0, the asymptotic expansion for the various
fields {φ, χ, f} is, respectively, given as follows:

φ = φ0 r + 〈O〉 r2 + . . . , (2.7)

χ = φ2
0

2 r2 + 4φ0 〈O〉
3 r3 + . . . , (2.8)

f =

1− α2

2 r
2 + φ2

0r
2 − 〈Ttt〉 r3 + . . . , for Type I

1− αa1
4 r − α2 a2

2 r2 + φ2
0r

2 − 〈Ttt〉 r3 + . . . , for Type II
(2.9)

where we have considered the scalar potential V (φ2) = m2φ2 with m2 = −2, and have
taken the normalization of the time coordinate at the boundary such that χ(r = 0) = 0.
Here, φ0 is the source of the scalar operator of the boundary field theory and 〈O〉 the
corresponding expectation value.3 〈Ttt〉 is the energy density of the thermal state in the
boundary field theory, and the corresponding temperature reads

T = −f
′e−

χ
2

4π
∣∣∣
r=r+

. (2.10)

After imposing regularity at the horizon, r = r+, one can write down 〈O〉 and 〈Ttt〉 in
terms of T , φ0 and α. Nevertheless, our system enjoys the following scaling symmetry

r → r/λ, (φ0, T, α)→ λ(φ0, T, α), 〈O〉 → λ2 〈O〉 , 〈Ttt〉 → λ3 〈Ttt〉 , (2.11)
3It should be noted that the mass square m2 of the bulk scalar field φ determines the scaling dimension

∆ of the dual operator O according to

∆ = 3
2 +

√
9
4 +m2 ,

A negative value of m2 < 0 corresponds to a relevant operator with ∆ < 3 in the three dimensional
boundary theory. Throughout the rest of the paper, we will always consider standard quantization for all
our bulk fields.
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Figure 1. The blackening factor f(r) as a function of r from the boundary r = 0 to near the black
hole singularity r = ∞. The left panel refers to the Type I linear axion case with K = X, while
the right panel to the dRGT Type II scenario K = a1

√
X + a2X with a1 = 0.1 and a2 = 0.3.

with λ a constant parameter. Therefore, without loss of generality, we shall work with
dimensionless quantities in units of T . All in all, the final full solution is then parametrized
solely by the dimensionless combinations φ0/T and α/T . For convenience, we fix r+ = 1
in all the manuscript.

2.1 Black holes with no scalar hair

The black hole solutions of (2.4)–(2.6) in the absence of the scalar φ can be obtained
analytically (see [25] for the general solution). It is clear that the only non-trivial equation
is (2.6) when φ = 0.

For the linear axion model (Type I), from (2.6), we obtain

f(r) = 1− α2r2

2 + r3

r+

(
α2

2 −
1
r2

+

)
. (2.12)

The interior of the black hole depends on the choice of the parameter α which determines the
size of the graviton mass and the rate of translations breaking in the dual field theory [36].
When 0 ≤ α <

√
2/r+, the black hole has no inner Cauchy horizon inside the event horizon

r+, and the interior geometry will end at a spacelike singularity. For other cases, there
is typically an inner horizon, for which the singularity is timelike. See the left panel of
figure 1 for an illustration.

For the dRGT case with K = a1
√
X + a2X (Type II), the black brane solution takes

the form

f(r) = 1−
(
r

r+

)3
− a1 α

4

(
r − r+

(
r

r+

)3
)
− a2 α

2

2

(
r2 − r2

+

(
r

r+

)3
)
. (2.13)

In this case, the black hole has both an event horizon and an inner horizon, except when

a1 <
4

r+ α
and a2 <

4− a1 r+ α

2 r2
+ α

2 (2.14)

for which the inner horizon is absent (see the right panel of figure 1).
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2.2 Proof of no inner-horizon

Following ref. [6], let’s prove the absence of an inner-horizon in the model defined in
eq. (2.1). Suppose the existence of an inner horizon at rI > r+, for which one has
f(rI) = f(r+) = 0. From eq. (2.4), we obtain

∫ rI

r+

(
fe−

χ
2 φφ′

r2

)′
dr =

∫ rI

r+
e−

χ
2 r−4

( dV
dφ2 φ

2 + r2f(φ′)2
)
dr . (2.15)

Clearly, the left hand side yields

∫ rI

r+

(
fe−

χ
2 φφ′

r2

)′
dr = fe−

χ
2 φφ′

r2

∣∣∣r+

rI
= 0 , (2.16)

where we have used the fact that f(rI) = f(r+) = 0. On the other hand, since f(r)
is negative between the two horizons, when we take dV

dφ2 < 0 for every value of φ, the
integrand in the right hand is negative. Therefore, the only way there can be two horizons
is for φ = 0. The presence of the scalar hair, φ 6= 0, necessarily removes the inner horizon.
For example, for the free scalar case with V = m2φ2, the inner horizon will not appear
when m2 < 0 corresponding to relevant operators in the boundary theory. Notice that the
cases of irrelevant operators m2 > 0 or any other possible potential with dV

dφ2 positive evade
this proof and therefore the inner horizon could appear again.

3 Collapse of the Einstein-Rosen bridge

As we have proved in the last section, the black hole with non-trivial scalar hair has no inner
horizon, and the black hole interior ends at a spacelike singularity at r →∞. Following the
spirit of ref. [6], we do expect to see a crossover around rI , i.e. the position of the would-be
inner horizon. In particular, in absence of scalar hair, φ = 0, there is typically an inner
horizon at r = rI for the black hole solutions (2.12) and (2.13) in the massive gravity theory
considered. However, no matter how small the scalar hair is, it has strong non-linear effect
closed to the would-be inner Cauchy horizon of (2.12) and (2.13), triggering an instability
of the latter.

This crossover can be obtained analytically when the scalar field is small. Note however
that the spacetime dynamics is highly nonlinear in the small scalar field limit. This fact
is associated with a collapse of the Einstein-Rosen bridge between the two asymptotic
boundaries.4 The main idea of ref. [6] is that for vanishing small scalar field the instability
becomes so fast that one can essentially keep the r coordinate fixed. Let’s set r = rI + δr,
so that f , χ and φ are now functions of δr, while any explicit factors of r in the equations
of motion (2.4)–(2.6) are set to rI .

4In the black hole interior, gtt is an indicator of the measure for the spatial t coordinate that runs
along the wormhole connecting the two exteriors of the black hole, i.e. the Einstein-Rosen bridge. A quick
decrease in gtt near the would-be inner horizon is thus considered as a collapse of the Einstein-Rosen bridge
for a fixed coordinate separation ∆t.
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Figure 2. The ratio c2/c1 as a function of the dimensionless scalar source φ0/T . The blue lines show
the theoretical prediction c2/c1 = a + bT/φ0. Left panel: Type I model K = X with α/T = 19.8.
Right panel: Type II case with K = 0.1

√
X + 0.3X. We have fixed α/T = 24.95.

For simplicity, we consider V (φ2) = m2φ2. Around the location of the would-be inner
horizon, r = rI , the mass of the scalar field can be neglected in (2.4) and (2.6) [6]. By
using this approximation, one obtains(

e−χ/2fφ′
)′

= 0, 4rIf ′ = 2r2
If(φ′)2 + 2K(α2r2

I)− 12, χ′ = rI(φ′)2 . (3.1)

Integrating the first equation and writing φ′ = −c1(K(z2
Iα

2) − 6)1/2eχ/2/f with c1 an
unspecified constant, one finds the general solution to above equations. In particular, the
metric component gtt = −fe−χ/r2

I is found to obey [6]

c2
1 log(gtt) + gtt = −rI2 c2

2(δr + c3) , (3.2)

with c2 and c3 two different constants. Making use of eq. (3.1) and the above solution, one
obtains

φ = − 2c1
rIc2

log (c4 gtt) , e−χ = 2z4
I

c2
1(K(r2

Iα
2)− 6)(φ′)2g2

tt . (3.3)

Clearly, the scalar field shows a logarithmic growth as the metric component gtt becomes
small close to the would-be inner horizon.

As pointed out in [6], the value of c2/c1 will be large when the boundary source for
the scalar φ is small. We check numerically in figure 2 that indeed the ratio c2/c1 scales
as ∼ T/φ(0) as the source φ(0)/T → 0. Therefore, the term (c2/c1)2δr in (3.2) can become
very large, which in turn allows the metric component gtt to undergo a suddenly change
in the vicinity of rI . Near the would-be inner horizon, for r < rI (or δr < 0), gtt ∝ rIc

2
2

2 δr

vanishes linearly towards rI , while for r > rI (or δr > 0) one observes a rapid collapse of
gtt to an exponentially small value, i.e. gtt ∝ e−(c2/

√
2c1)2rIδr. Note that this collapse occurs

over a coordinate range ∆r = (c1/c2)2 as illustrated in [8]. This behavior is illustrated in
figure 3 for a small value of the scalar source φ0

T = 0.5 in both Type I and II cases. In
addition, the scalar field derivative changes from φ′ = c1/(c2|δr|) for r < rI to φ′ = c1/c2
for r > rI , revealing the highly nonlinear nature of this rapid transition.
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Figure 3. The sudden crossover of the metric component gtt at the would-be Cauchy horizon. The
numerical solution of the equations of motion is depicted by the blue curve, while the red line is a
fit to the analytic form (3.2) valid around r ∼ rI . Left panel: the Type I model with α/T = 19.8.
Right panel: the Type II case with K = 0.1

√
X + 0.3X. We have fixed α/T = 24.95. The location

of the would-be inner horizon rI is denoted by the dashed vertical line.

4 Thermal holographic flows and the Kasner singularity

After studying the internal structure of our hairy black holes as well as the collapse of the
Einstein-Rosen bridge that occurs at the location of rI of the would-be inner horizon, we
now construct the holographic flows sourced by the scalar field φ and analyze, in particular,
the asymptotic behavior near the spacelike singularity.

In figure 4 we present the behaviors of the various functions approaching the singularity
and for different values of α/T by taking φ0/T = 12.5 and V (φ2) = −2φ2. The curves
therein provide explicit examples of holographic flows that interpolate from a UV radial
scaling to a timelike scaling towards a late time singularity behind the black hole event
horizon, when the thermal state of the dual CFT is deformed by a relevant scalar operator.

Interestingly, we find that for both Type I and Type II models, all curves approach
to constant values near the singularity as r → ∞. Actually, we verify numerically (and
validate a posteriori) that for our present cases the mass term of the scalar field and the
potential K in the equations of motion can be neglected. Assuming that the contributions
from the graviton mass (i.e. α 6= 0) are negligible, the resulting equations can be solved in
generality and the solutions at large r take the following form:

φ = 2c log r + . . . , χ = 4c2 log r + . . . , f = −f1r
3+2c2 + . . . , (4.1)

with c and f1 constants. Therefore, one finds that the geometry near the singularity takes
a Kasner form

ds2 ∼ −dτ2 + τ2ptdt2 + τ2px
(
dx2 + dy2

)
, φ ∼ −pφ log τ , (4.2)

where we have traded the radial coordinate r to the proper time τ via dτ = dr

r
√
f
. The

Kasner exponents in eq. (4.2) are given by

px = 2
3 + 2c2 , pt = 2c2 − 1

3 + 2c2 , pφ = 4c
3 + 2c2 . (4.3)
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Figure 4. The functions r dX/dr with X = {φ, χ, log g′
tt}. Left panel: Type I case. Right panel:

Type II case with a1 = 0.1 and a2 = 0.3. The solid dark, dotted blue, dashed red, and dotted
dashed green curves correspond to α/T = {0, 0.1, 0.5, 1}, respectively. For these cases, the functions
r dX/dr tend to be a constant at spacelike singularity. These constants will be determined by the
Kasner exponents.

One can immediately verify that the above exponents obey

pt + 2px = 1, p2
φ + p2

t + 2p2
x = 1 . (4.4)

Before proceeding, let’s consider the case without scalar hair, φ = 0. Notice that for
this case the contributions from the graviton mass are not negligible and therefore eq. (4.1)
is not applicable. As evident from figure 1, for φ = 0, the hairless black hole can have
different internal structures, depending on the value of α. Taking the Type I potential as
an example, for 0 ≤ α <

√
2/r+, the black hole (2.12) has no inner Cauchy horizon and

the interior is similar to the Schwarzschild case with pt = −1/3. For
√

2/r+ < α <
√

6/r+,
there is a smooth inner horizon which has pt = 1 in Kasner coordinate. The extremal case
T = 0 is obtained at α =

√
6/r+. Another particular case is α =

√
2/r+ for which there is

no inner horizon and pt = 0.

– 9 –



J
H
E
P
1
0
(
2
0
2
1
)
0
9
8

0.001 0.100 10 1000

-0.32

-0.30

-0.28

-0.26

ϕ0/T

pt
α/T=0.6

α/T=0.4

α/T=0.2

α/T=0

0.001 0.100 10 1000

-0.33

-0.32

-0.31

-0.30

ϕ0/T

pt α/T=0.6

α/T=0.4

α/T=0.2

α/T=0

Figure 5. The Kasner exponent pt of the singularity as a function of the dimensionless scalar
source φ0/T for different values of α/T . Left panel: Type I case. Right panel: Type II case with
a1 = 0.1 and a2 = 0.3. As φ0/T increases for fixed α/T , pt deviates from the value −1/3.
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Figure 6. Diagram of the Kasner exponent pt as a function of the parameter α/T for φ0/T =
{12.5, 15, 30} from top to bottom, respectively. Note that the left panel is related to the Type I
case with K = X, while the right panel is related to the Type II one with K = a1

√
X + a2X and

a1 = 0.1, a2 = 0.3.

So far, figure 4 proves the existence of the already discussed holographic flows from the
AdS boundary to an interior Kasner universe. The emergent Kasner scaling is determined
by the two dimensionless CFT parameters φ0/T and α/T . The Kasner exponent pt as
function of φ0/T for different α/T is presented in figure 5 from which one can see that
pt deviates from −1/3 as the source is increased. Therefore, a deformation triggered by
the scalar operator changes the near-singularity scaling exponents, signifying a dynamical
instability of the singularity for the hairless black hole at later interior time. The Kasner
exponent pt with respect to α/T with φ0/T fixed is shown in figure 6. One finds that pt
increases monotonically as α/T is increased. Our numerical data can be fitted well by a
quadratic form c1 + c2(α/T )2 with c1 and c2 constants.

In the above discussion, we have required the kinetic term of scalar field to be dominant
with respect to the potential terms V and K of (2.1), or more precisely that

lim
r→∞

|V (φ2)|
r3+2c2 � 1 and lim

r→∞
|K(α2r2)|
r3+2c2 � 1 . (4.5)

In particular, the first condition allows the scalar potential to be an arbitrary polynomial
functions of φ. However, as pointed out in [7, 10], if one considers a case that diverges

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
0
9
8

exponentially or even worse, the above condition can be violated and the Kasner form
would break down.

Before ending this section, we discuss indeed a scenario in which the Kasner form (4.1)
can be violated near the singularity. For illustration, we consider the following form of
potentials:

V (φ2) = −φ2 − cosh(γφ2) + 1, K(X) = Xn , (4.6)
with γ > 0 such that dV

dφ2 < 0 to remove any inner horizon, and n > 0 to avoid the ghost
and gradient instabilities [25]. Following [7], we assume we are in the Kasner regime where
one has φ = 2c ln r at large r. For the potentials of (4.6), we have

|V (φ2)|
r3+2c2 ∼

e4c2γ(ln r)2

r3+2c2 >
e4c2κγ ln r

r3+2c2 = r4c2κγ−3−2c2
, (4.7)

|K(α2r2)|
r3+2c2 ∼ (α2r2)n

r3+2c2 = α2nr2n−3−2c2
, (4.8)

where κ is a constant for which one only requires κ < ln r. It is obvious that when κ > 3+2c2

4c2γ

the first constraint in eq. (4.5) is no longer obeyed. In addition, when n > 3+2c2

2 , the second
constraint can be violated as well.

The above analysis predicts that, for the scalar potential V of eq. (4.6), the Kasner
form should be violated no matter how small the value of γ is. A deviation from the Kasner
form is expected beyond a critical point zc given by

rc ∼ e
3+2c2
4γc2 ⇒ ln(r/r+) = 3 + 2c2

4c2γ
+ bγ , (4.9)

with bγ a constant. It is numerically challenging to verify the scaling law (4.9) for small
γ, because one has to solve the equations of motion to sufficiently large r. Some examples
are shown in figure 7 from which one observes a noticeable deviation from the asymptotic
solution (4.1) towards the singularity. The relationship between rc at which the Kasner
form is violated and γ from our numerics is presented in the bottom of figure 7. We indeed
verify the expected scaling behavior (4.9) for small γ.

We now turn to the role of K(X). Note that for both Type I and Type II, the
second constraint of eq. (4.5) is always satisfied. In order to see the deviation from the
Kasner form, one should consider other forms of K(X). The analysis of (4.8) suggests to
consider K(X) = Xn with n > 3+2c2

2 . Consequently, we find a deviation from the Kasner
behavior (4.1) beyond a position rc that obeys

ln
(
rc
r+

)
= − 2n

2n− (3 + 2c2) ln
(
α

T

)
+ bα (4.10)

with bα a constant that depends on the model we take. The case with K(X) = X3 is
presented in the left panel of figure 8 where we numerically show the behavior of rdφ/dr
at the large r. As one can see, there exists a critical value rc, beyond which the Kasner
behavior will be modified. In the right panel of figure 8, we compare the numerical data
for rc versus α with our theoretical prediction (4.10). After fitting the coefficient bα, we
find that the numerical results agree with the theoretical prediction quite well for all the
cases considered, K(X) = {X2, X3, X4}.
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5 Absence of Josephson oscillations

After studying in detail the geometry and the gravitational dynamics inside the BH horizon
in our model, it is time to compare our results with those obtained in ref. [8]. In their
case, before reaching the singularity, strong Josephson oscillations in the condensate are
observed. As evident from the previous sections, this is not the case in our setup; let us
explain why. In the previous analysis, we ignored the mass of the scalar field in (3.1). If
we keep the mass term, then the first expression in eq. (3.1) takes the following form:

e−
χ
2 f

r2

(
e−

χ
2 fφ′

r2

)′
= |m

2gtt|
r4 φ . (5.1)

As we have shown, the collapse of the ER brdige occurs in an extremely small range of the r
coordinate. Therefore, it is consistent to set r = rI in eq. (5.1). Using this approximation,
we obtain the general solution for the scalar field to be

φ = c1e
β
∫ r
rI
eχ/2/fdr + c2e

−β
∫ r
rI
eχ/2/fdr (5.2)

where β =
√
|m2gtt(rI)| and c1 and c2 are integration constants. For the charged scalar

case considered in ref. [8] and using the same coordinates system, the analogous equation
of motion reads

e−
χ
2 f

r2

(
e−

χ
2 fφ′

r2

)′
= −q

2Φ2

r4 φ (5.3)

where q and Φ are respectively the charge of scalar field and the gauge potential. In contrast
to (5.1), in which the coefficient of the right hand side is always positive, the one in eq. (5.3)
is negative. This is a fundamental difference which will lead to several consequences. In
particular, we can solve eq. (5.3) and find the oscillating solution discussed in [8]

φ = φ0 cos
(
|qΦ(rI)|

∫ r

rI

eχ/2

f
dr + ϕ0

)
, (5.4)

where φ0 and ϕ0 are two constants. As the Reader can notice, the difference sign in the
r.h.s. of eq. (5.1) and eq. (5.3) has the important effect of modifying the oscillating solution
∼ e±ikrr into an exponential one ∼ e±krr and therefore makes the Josephson oscillations
to disappear.

Notice how the sign of the mass squared m2 in our setup is fixed by the requirement
of having no inner horizon as discussed in section 2.2, which concludes our proof for the
absence of Josephson oscillations in our case. For completeness, we have verified this fact
numerically and we never observed oscillations as expected.

It would be interesting to extend our model by charging the bulk scalar field φ under
a U(1) symmetry. In this case, we do expect a competition between the graviton mass
and the effective mass coming from the gauge potential in the superconducting phase.
Therefore, at least in some regimes, we do expect the Josephson oscillations to re-appear.
In the massive gravity theories considered, holographic superconductor models have been
already studied in [37, 38] and they can be directly exploited to answer this question in a
more general framework. We leave this new analysis for the future.
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6 Probes of the black hole interior and Kasner geometry

In the previous sections, we have shown a rich dynamics in the way the geometry of the BH
interior can reach the singularity. For general potentials satisfying the constraint (4.5), we
have found that the deformation of the thermal CFT by a relevant scalar operator leads
to a general Kasner universe at late interior times. As these geometrical features should
leave strong imprints to all the observable of the dual CFT probing such a region, in this
section, we will use several field theory observables to probe the interior of the hairy black
holes in the bulk and our previous findings.

The first probe considered is the entanglement entropy. The holographic formula for
the entanglement entropy of the dual CFT was proposed in [39, 40]. The entanglement
entropy of a subregion A in a d dimensional CFT is given by the minimal area of a bulk
co-dimension 2 surface γA homologous to A at the boundary AdSd+1 geometry, i.e.

SA = min
γA

Area(γA)
4GN

. (6.1)

This concept has attracted enormous attention to probe various phase transitions e.g. in
black holes [41–43], holographic superconductors [44–47] metal-insulator transitions [48–
50] and topological transitions [51] in the context of the gravity/condensed matter corre-
spondence [52]. While formula (6.1) applies for time-independent case only, a covariant
generalization of this formula to general time-dependent case was proposed in [40]. In this
respect, the authors of [16] demonstrated that the extremal surface passes through the
interior region of the black brane for early times [16]. Consequently, the growth of the
entanglement entropy is related to the growth of the extremal surface along the spacelike
surfaces with small curvatures in the interior region of the black brane. At late times, the
extremal surface eventually stops expanding on a specific critical surface inside the horizon
and does not approach the singularity.

Hence, at late times there is a linear growth in the entanglement entropy with time,
from which one defines the entanglement velocity vE [16]:

dS

dt(0) = vEV1s, v2
E = r4

+
|f |e−χ

r4 |r=rcrit , (6.2)

where t(0) is the boundary time, V1 is length of y boundary direction5 and s is thermal
entropy density. For our hairy black holes with a Kasner singularity, −fe−χ/r4 has a max-
imum inside the horizon at the radius rcrit. For the black hole solutions (2.12) and (2.13),
one can obtain vE at small α/T for which the inner horizon is absent and the interior is
similar to the Schwarzschild case with pt = −1/3.

vE =



√
3

2 3√2
− 3

√
3

64π2

(
3√4− 1

) (
α
T

)2 +O
(
α
T

)4
, Type I

√
3

2 3√2
− a1

√
3

32 3√4π
(2 3√2− 1)αT +

√
3

4096π2

(
a2

1(7− 12 3√2(1− 3√2)
)

−192 a2(1− 3√4)
(
α
T

)2 +O
(
α
T

)3
. Type II

(6.3)

5The bulk surface is fixed at boundary x = x0 and is extended in the boundary y direction, thus in the
bulk follows a curve r(t).
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Figure 9. Top: entanglement velocity vE as a function of α/T . Bottom: butterfly velocity vB as
a function of α/T . The left panel is for the Type I case with K = X, while the right panel for the
Type II case K = a1

√
X + a2X with a1 = 0.1 and a2 = 0.3.

On the other hand, in the context of the gauge/gravity duality, certain properties of
quantum chaos in thermal CFTs can be described by the propagation of shock waves near
the event horizon of the AdS black hole [53–55], More precisely, the propagation of the
shock wave near the horizon provides a description of the butterfly effect in the dual field
theory. The butterfly velocity in terms of bulk quantities is shown to be [53]

v2
B = r+

|f ′|
4 eχ

∣∣∣
r=r+

. (6.4)

and it has as well considered as a probe for holographic quantum phase transitions [56].
For small α/T , the butterfly velocity for hairless black hole solutions (2.12) and (2.13) are,
respectively, given by

vB =


√

3
2 −

3
√

3
128π2

(
α
T

)2 +O
(
α
T

)4
, Type I

√
3

2 −
√

3a1
32π

α
T + 3

√
3

1024π2
(
a2

1 − 8a2
) (

α
T

)2 +O
(
α
T

)3
, Type II

(6.5)

In the presence of the scalar field φ, the black hole interior is deformed. We show the
entanglement velocity vE and the butterfly velocity vB as a function of α/T in figure 9,
and the case as a function of φ0/T in figure 10. One can find that vE and vB display a
similar behavior. Both velocities decrease by increasing α/T for given φ0/T . For small
α/T , both vE and vB as a function of φ0/T first decrease and then increase, while both
decrease monotonically when α/T is large.
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Figure 10. Left: entanglement velocity vE as a function of φ0/T . Right: the butterfly velocity vB

as a function of φ0/T . The left panel corresponds to the Type I case with K = X, while the right
panel to the Type II case with K = 0.1

√
X + 0.3X.

Nevertheless, as shown in figure 11, the value of butterfly velocity is always bigger
than the entanglement velocity, consistent with the result proved in [57]. By setting α = 0,
our model comes back to the one studied in [19] where the hairless background is given
by Schwarzschild solution. We find that the ratio vE/vB tends to the Schwarzschild value
vE/vB = 1/ 3√2 as φ0/T →∞, which is consistent with the expectation in [19]. In contrast,
for the massive gravity case,the ratio vE/vB at large φ0/T is significantly different from the
Schwarzschild value vE/vB = 1/ 3√2. This suggests that vE and vB can indeed probe the
region behind the event horizon. As a property of the black hole interior, we show vE and
vB as a function of the Kasner exponent in figure 12. For our solutions with a deformed
interior, both velocities decrease away from the undeformed values at −1/pt = 3. As −1/pt
is increased, the behaviors are sensitive to the value of α/T .

7 Conclusions

We have studied holographic RG flows from 3-dimensional UV CFTs to the Kasner universe
in the trans-IR driven by a relevant scalar operator in massive gravity theories. In the
bulk, this scenario corresponds to black hole solutions at finite temperature with a non-
trivial scalar hair φ. Due to the mass of graviton, the black hole in the absence of φ can
have an inner Cauchy horizon, and thus has a similar internal structure of the RN black
hole. Nevertheless, we have shown that the Cauchy horizon never develops for any scalar
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Figure 12. Top: entanglement velocity vE as a function of −1/pt. Bottom: butterfly velocity vB

as a function of −1/pt. K = X for the left panel and K = 0.1
√
X + 0.3X for the right panel.

potential with dV
dφ2 < 0. Therefore, the hairy solution continues smoothly through the

event horizon and ends in a spacelike singularity at later interior time. Moreover, we have
shown that the instability of the inner horizon results in the collapse of the Einstein-Rosen
bridge, for which gtt rapidly collapses to an exponential small value over a shot proper
time. We have found that the spacelike singularity takes a general Kasner form as long as
the potentials terms can be neglected. We have also uncovered that the Kasner form can
be violated when the potential terms become important to determine the resulting black
hole geometry. Finally, we have used the entanglement velocity and butterfly velocity to
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probe of the black hole interior. In particular, we studied in detail the effect of the scalar
deformation and the graviton mass on the Kasner exponents.

In the present work, we have limited ourselves to black holes with maximally symmet-
ric horizons; it would be interesting to consider more general cases with inhomogeneous
geometries and with additional matter fields, for example, the case of holographic super-
conductors. Interestingly, we have shown that the dynamics near the spacelike singularity
allows for different behaviors with respect to the standard Kasner form, it is worth inves-
tigating this feature in the future in more detail. While both entanglement and butterfly
velocities seem to be a property of the black hole interior, they are not able to probe the
near-singularity region. It will be helpful to find other probes for the Kasner singularity.
Finally, it would be desirable to consider quantum corrections to the interior of black holes,
in particular, in the vicinity of the singularity. We hope to report on results in the above
directions in the near future.
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