
J
H
E
P
1
0
(
2
0
2
1
)
0
8
9

Published for SISSA by Springer

Received: July 30, 2021
Accepted: September 20, 2021

Published: October 12, 2021

Lifting 1/4-BPS states in AdS3 × S3 × T 4

Nathan Benjamin,a Christoph A. Kellerb and Ida G. Zadehc
aPrinceton Center for Theoretical Science, Princeton University,
Princeton, NJ 08544, U.S.A.

bDepartment of Mathematics, University of Arizona,
Tucson, AZ 85721-0089, U.S.A.

cAbdus Salam International Centre for Theoretical Physics,
Strada Costiera 11, 34151 Trieste, Italy
E-mail: nathanb@princeton.edu, cakeller@math.arizona.edu,
zadeh@ictp.it

Abstract: We establish a framework for doing second order conformal perturbation theory
for the symmetric orbifold SymN (T 4) to all orders in N . This allows us to compute how
1/4-BPS states of the D1-D5 system on AdS3 × S3 × T 4 are lifted as we move away from
the orbifold point. As an application we confirm a previous observation that in the large
N limit not all 1/4-BPS states that can be lifted do get lifted. This provides evidence that
the supersymmetric index actually undercounts the number of 1/4-BPS states at a generic
point in the moduli space.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory, Conformal Field
Models in String Theory, Extended Supersymmetry

ArXiv ePrint: 2107.00655

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2021)089

mailto:nathanb@princeton.edu
mailto:cakeller@math.arizona.edu
mailto:zadeh@ictp.it
https://arxiv.org/abs/2107.00655
https://doi.org/10.1007/JHEP10(2021)089


J
H
E
P
1
0
(
2
0
2
1
)
0
8
9

Contents

1 Introduction and summary of results 1
1.1 Comparison to literature 5

2 The symmetric orbifold of T 4: setup and notation 6
2.1 Conventions and notation 6
2.2 The contracted large N = (4, 4) SCA for T 4 and SymN (T 4) 7
2.3 Twist 2 sector 9
2.4 Normalization and permutation symmetry 10

3 Second order perturbation theory for 1/4-BPS states 11
3.1 Setup 11
3.2 Lifting 1/4-BPS primaries using Ward identities 12
3.3 Contour integrals 13

4 Computing the correlation functions I1(x) and I2(x) 14
4.1 Correlation function on the base 14
4.2 Cover map 16
4.3 Correlation function on the cover 18

5 Lifting untwisted sector states 19
5.1 Contracted large N = 4 SCA and the 1/4-BPS spectrum 19
5.2 j̄ = 0: the symmetry algebra 19
5.3 j̄ = 1 23

5.3.1 j̄ = 1, h = 1/2: the moduli 23
5.3.2 j̄ = 1, h = 1 24

5.4 j̄ = 2 24

A 1/4-BPS states in Sym2(T 4) 26
A.1 Generic BPS spectrum in K3 26
A.2 Generic BPS spectrum in Sym2(T 4) 27

B 3-point functions in SymN (T 4) 28

1 Introduction and summary of results

The D1-D5 system is one of the best studied examples of the AdS/CFT correspondence [1].
Here string theory on an AdS3×S3×X background is dual to the symmetric product orb-
ifold of X for X = T 4 or K3. However, at the symmetric orbifold locus itself, the theory is
very stringy: it is dual to a tensionless string theory rather than an Einstein gravity theory
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(see [2–4] for an exact duality between the symmetric orbifold and a tensionless string with
one unit of NS-NS flux when X = T 4). In fact, any symmetric orbifold theory has a low-
lying density of states growing exponentially with energy rather than sub-exponentially,
which is consistent with a string theory rather than supergravity interpretation [5, 6].
However, it is believed that deforming the symmetric product orbifold theory by an ex-
actly marginal operator (modulus) in the twisted sector of the orbifold takes the theory
to a strongly-coupled regime in which most of the low-lying states get lifted, making the
spectrum compatible with a supergravity interpretation.

In view of this, the purpose of this article is twofold. First, we establish a systematic
framework for second order perturbation theory of the symmetric product orbifold of T 4.
Such computations have of course been done before, e.g. in [7–12], but our framework
allows to do them systematically to all order in N . The crucial ingredient here is a careful
analysis of the combinatorial factors that appear due to the symmetric orbifold. To our
knowledge, this is the first time this has been done in the literature. In the process we
focus on 1/4-BPS primary fields and their lifting. Our methods are particularly appropriate
for this for two reasons: first, because 1/4-BPS states saturate the unitarity bound, the
first order perturbation term has to vanish, so that the second order term is the leading
contribution. Second, we can use Ward identities to simplify the problem considerably. In
particular, the area integral of 4-point functions which have to be evaluated at the second
order can be reduced to a non-holomorphic contour integral, which then only picks out a
finite number of terms. This leads to a slightly more general version of the Gava-Narain
formula for the lifting matrix Dk` first found in [11] and also used in e.g. [13, 14],

Dk` =
∑

χ:hχ=hk
h̄χ=h̄k+1/2

2πC∗
χ†O′ϕ`

Cχ†O′ϕk +
∑

χ:hχ=hk
h̄χ=h̄k−1/2

2πC∗
χ†O′†ϕ`

Cχ†O′†ϕk . (1.1)

We will give a detailed description of the ingredients in section 3, but the basic idea is that
the lifting matrixDk` can be written as a finite sum of squares of 3-point functions involving
the lifted fields ϕk and the moduli O. Depending on the situation this formula may or may
not be more efficient than computing the full 4-point function, but it is certainly a useful
way of exhibiting structural properties such as positive definiteness of the lifting matrix.

We explain how to perform such computations for symmetric product orbifolds of
T 4, including the full combinatorial factors that give the all order N dependence, and also
explain how to compute the necessary 4-point functions in practice by using the well-known
trick of going to a cover surface. In a few simple cases we go through the computations in
detail. For more complicated cases, we provide as supplementary material a Mathematica
notebook, lifting.nb, which can perform such computations in great generality.

The second purpose of this article is an application of the framework we established.
The goal here is to understand the lifting of 1/4-BPS states in the moduli space of
SymN (T 4). For this, consider the elliptic genus, which is an index of 1/4-BPS states.
The elliptic genus of SymN (K3) can be computed [15], and for large N has the asymptotic
behavior

ρ(∆) ∼ e#
√

∆, 1� ∆� N . (1.2)
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The elliptic genus however does not count 1/4-BPS, but rather computes an index, which
potentially has a lot of cancellations. The number of 1/4-BPS states of SymN (K3) in fact
grows much faster [16],

ρ(∆) ∼ e2π∆, 1� ∆� N . (1.3)
This much faster Hagedorn growth is actually the same as for non-BPS states [5]. There is
an immediate physical argument why this faster growth is not allowed for the elliptic genus:
since the elliptic genus is a protected quantity and therefore constant on the entire moduli
space, if it did grow as (1.3), then there could never be a point in its moduli space where
the theory is dual to large-radius Einstein gravity [17]. Interestingly this is a somewhat
unusual property of K3. For most supersymmetric “seed” CFTs X, the growth of the
low-lying states of both the partition function and the elliptic genus of SymN (X) has the
same scaling behavior [18–21].

In view of this a natural question to ask is: at a generic point in moduli space, is the
growth of BPS sates as in (1.2), or is it somewhere between (1.3) and (1.2)? To address
this question it is instructive to consider the supergravity point. If instead of computing
the index, we simply count the number of supergravity KK modes in AdS3 × S3 [22, 23],
the growth of BPS states scales as [16]

ρ(∆) ∼ e#∆3/4
, 1� ∆� N , (1.4)

which although slower than (1.3), is still parametrically faster than (1.2). If the same
thing holds not just at the supergravity point but also at a generic point in the moduli
space, then this would imply that many BPS states that can cancel from the representation
theory of the N = 4 superconformal algebra (SCA) nevertheless do not cancel even at a
generic point.

The question of whether or not a protected signed count of supersymmetric states is
representative of the true density of states is of course of great interest to many physically
important problems including black hole entropy [24], and recently has had renewed inter-
est [25, 26]. We want to address this question by conformal perturbation theory for the
case X = T 4. Here (1.3) and (1.4) also hold, and we want to investigate for points near
but not on the orbifold locus which one holds. For this we want to investigate how many
of the 1/4-BPS states get lifted as we deform the theory away from the symmetric orbifold
point to a more generic point.

Let us point out that this type of analysis can be done for simpler examples, such as for
K3 and its description as a T 4/Z2 orbifold. The elliptic genus of K3 predicts for instance
that there are 90 1/4-BPS states of weight h = 1. K3 is special in the sense that there
only two short representations, one of which is the vacuum. Cancellations that occur must
therefore involve chiral fields, that is currents corresponding to additional symmetries. This
is for instance what happens at the T 4/Z2 orbifold locus of K3: here there are additional
chiral fields which lead to 102 rather than 90 h = 1 1/4-BPS states. Assuming that there
are no such chiral fields at a generic point, [27] computed the 1/4-BPS spectrum at a generic
point in the moduli space. This prediction was recently confirmed in [28]: by perturbing
away from the orbifold point, it was established that 12 of the 102 states pair up to non-
BPS states and get lifted, so that only the predicted 90 states remain BPS. We note that
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this question recently became important in the context of Mathieu moonshine [29] and its
proposed explanation through symmetry surfing [30, 31].

In this article we want to consider SymN (T 4). Here the situation is a bit different
from the K3 example just discussed. First of all, the elliptic genus vanishes; instead we
could compute the “modified” index of [32]. The elliptic genus of SymN (T 4) vanishes due
to fermionic zero-modes. Relatedly, the theory has not just small N = 4 superconformal
symmetry, but actually an enlarged chiral algebra called the contracted large N = 4
superconformal algebra. Using this fact, we can be more precise about the lifting of 1/4-
BPS states: short representations χj of the contracted large N = 4 SCA can combine to
long representations χh,j as (see section 2.2 for notations)

χj + 2χj+1 + χj+2 = χj/2,j . (1.5)

The modified index of [32] mentioned above is indeed invariant under (1.5).
In this article we focus on 1/4-BPS states in the h = 1, j = 0 long representation for

the left movers, and in the j̄ short representation for the right movers. At the symmetric
product orbifold point the number of primaries is listed in the first line of table 1 As ex-
pected, there are many such states at the symmetric orbifold point. Generically, one might
expect that when perturbing away from that point, all short representations would com-
bine to long representations according to (1.5) whenever possible. Because there are now
more than just two representations, the situation is now more complicated than in the K3
example above. In particular just assuming that there are no chiral fields at a generic point
is no longer enough to fix the entire 1/4-BPS spectrum. Nonetheless one could conjecture
that as many states as possible get lifted. This would lead to a ‘minimal’ spectrum as given
in the second line of table 1. In computing this minimal spectrum, we assume that there
are no additional conserved currents in the spectrum, and that we are only allowed to pair
states up in accordance with (1.5) from the orbifold point; the minimal spectrum is not
necessarily unique. However, in view of the remarks above, this expectation is too quick.
Ref. [33] also computed the 1/4-BPS spectrum at the supergravity point. The result is
given in the third line of table 1, and we immediately see that more than just the minimal
number of states remain unlifted. For example additional 10 cancellations of the form

χ1,0χ̃2 + 2χ1,0χ̃3 + χ1,0χ̃4 = χ1,0χ̃1,2 (1.6)

in principle could occur; here χ̃ denotes the right-moving characters. Given that these
cancellations do not occur at the supergravity point, it is reasonable to conjecture that not
all 1/4-BPS states get lifted under perturbation away from the orbifold point.

This is indeed what we will check in our paper. For simplicity we check only states
in the untwisted sector at the orbifold point. A more refined count separating the BPS
states at the symmetric product orbifold point into untwisted vs. twisted sectors is given
in table 2 in section 5. At leading order in 1/N , we find that all 3 states with j̄ = 0 and
all 6 untwisted states with j̄ = 1 do indeed get lifted. However, we find that for j̄ = 2,
only 3 of the 9 untwisted 1/4-BPS states are lifted at second order in perturbation theory.
This means that at large N , the total number of 1/4-BPS states cannot be the minimal
spectrum as in table 1, but it is compatible with the result at the supergravity point.
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j̄ 0 1 2 3 4 5 ≥ 6
symmetric orbifold 3 14 36 44 26 6 0

minimal 0 0 3 2 0 0 0
sugra 0 0 10 20 15 4 0

Table 1. 1/4-BPS spectrum for h = 1, j = 0 left-moving states.

Let us be slightly more careful here. The reason why we talk about leading order in
N is because we want to compare to the supergravity result, which requires taking the
large N limit. More precisely, the correct prescription is to keep the ’t Hooft type coupling
λ/
√
N fixed while sending N → ∞; here λ is the coupling that appears in the conformal

perturbation theory. At second order perturbation theory this means that we are keeping
only the N−1 term and discard all subleading terms.

When we do this, as described above at j̄ = 2 indeed only 3 of the 9 untwisted states
get lifted. If however we keep all orders in N , 6 of the 9 untwisted sector states are lifted.
If every single twisted sector state gets lifted, then this would still be consistent with the
minimal spectrum in table 1. It is thus possible that for finite N , generically all possible
liftings occur. We note that this agrees with the results of [34], which did the computation
for N = 2 and found liftings compatible with the minimal spectrum — see appendix A
for a discussion of this. To fully verify this, we need to compute the lifting of the twisted
sector states, which we leave to future work. We also note that there is a nice supergravity
interpretation of this: the weight of multi particle states is protected to leading order
in N , but interactions between protected single particle states will lead to corrections at
subleading order, which is exactly what we find here.

1.1 Comparison to literature

Before starting out, let us briefly discuss how our results fit in with the literature on
conformal perturbation theory for holographic CFTs. In particular we consider the follow-
ing works:

• Ref. [35] computed the lifting of single trace chiral states, that is higher spin fields
with h = s and h̄ = 0. They restricted to states which are uncharged with respect to
the large N = 4 SCA. In particular, they computed the lifting of the ‘flavor’ su(2)
symmetry current Ĵ (3) (see eq. (2.12) below), and find its lifting:

δh = 1
2
λ2π2

N
. (1.7)

(Note that in their notation they replace N by N + 1.) They only consider the single
trace part of the state, and our result agrees with their leading order result up to
a factor of 2, which we believe is related to the choice of the normalisation of the
twisted sector operators — see section 2.4 below.

• Refs. [14, 34, 36] developed technology and computed lifting of states in the Ramond
sector which are in the right moving Ramond ground state, that is have conformal
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dimensions (h, c/24). In [34] states with h = 1 and N = 2 copies of the seed theory
are considered. They found that a triplet of long multiplets get lifted by the same
amount

δE = λ2π2 . (1.8)

The computation was extended to h = 4 in [36] and it was found that, up to second
order in perturbation theory, all the states that can lift (by the supersymmetric
index) indeed get lifted. We perform our computations in the NS sector, but of
course the results are directly related by spectral flow. The triplet they consider
corresponds again to our flavor currents Ĵ , and we indeed also find that they all get
lifted by an equal amount. We did however not match the amount of lifting to their
results exactly, since our result strictly speaking only holds for N ≥ 3. In fact the
case N = 2 is special enough that under a weak assumption one can compute the
1/4-BPS spectrum at a generic point directly. We discuss this in appendix A.

• Ref. [37] computed lifting of particular single particle and multi particle states in the
untwisted sector which have excitations of the form J

(+)
−(2m+1) · · · J

(+)
−3 J

(+)
−1 |0〉NS on the

NS vacuum of various copies of the seed theory.

• In a series of papers [38–42] lifting of various twisted sector Ramond fields and some
of their composite operators are computed up to second order in perturbation theory.

The organization of the rest of the paper is as follows: in section 2 we define our nota-
tion for the symmetric product orbifold CFT, the N = 4 SCA, as well as the normalization
of the states. In section 3, we discuss our setup for second order conformal perturbation
theory, the superconformal Ward identities we use, and the evaluation of the contour in-
tegrals. Section 4 describes the computation of the 4-point functions of the symmetric
product orbifold CFT. Finally, in section 5 we compute lifting of a set of 1/4-BPS states in
the untwisted sector with h = 1 and j = 0, and with j̄ = 0, 1, 2. In appendix A we discuss
the representation theory of the small and contracted large N = 4 SCA and in appendix B
we compute 3-point functions involved in the computation of the lifting of the 3 currents
with h = 1 and j = j̄ = 0.

An ancillary Mathematica notebook, lifting.nb, in the supplementary material, per-
forms the computation of lifting at the second order in perturbation theory.

2 The symmetric orbifold of T 4: setup and notation

2.1 Conventions and notation

Unfortunately symmetric orbifold computations tend to be swamped by the number of
different indices. We are taking the following conventions for fields φ: downstairs indices
φn always denote the modes. Upstairs indices without round parentheses φi always denote
the tensor factor, so that φ = ⊗N

i=1 φ
i. The symmetric group SN acts by permuting the

tensor factors,

gφ :=
N⊗
i=1

φg(i) , (2.1)
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potentially introducing fermionic signs in the process. Operators in the symmetric orb-
ifold are given by orbits under this action. We will denote by φ̌ a representative of that
orbit, usually chosen such that the all non-vacuum factors are in the front. The actual
symmetrized operator φ, up to normalization, is then given by

φ ∼
∑
g∈SN

gφ̌ . (2.2)

More precisely, pick a representative of this orbit φ̌ whose first L factors are non-vacuum
factors, and whose last N − L factors are vacua,

φ̌ = φ1 ⊗ · · ·φL ⊗
N−L⊗
|0〉 . (2.3)

Note we can use φ̌ to construct such a state for any N , as long as N ≥ L. This allows to
construct a large N limit. A normalized state φ which is permutation symmetric can then
be written as the normalized orbit of φ̌,

φ = 1√
N !Aφ(N − L)!

∑
g∈SN

gφ̌ (2.4)

where the normalization constant Aφ is independent of N , and is given by∑
g∈SL

〈gφ̌|φ̌〉 = Aφ (2.5)

Upstairs indices in round parentheses φ(i) are additional labels, for instance the 4 coordi-
nates I = 1, 2, 3, 4 of the T 4. Right-movers are denoted by a tilde, φ̃. Bar denotes the
complex conjugation with respect to the complex coordinates on T 4.

Finally, let us introduce the convention that we call states with L = 1, that is with
only one non-vacuum factor, single trace, and states with L > 1 multi-trace. The rationale
behind this name is that in the large N limit, the correlation functions of such states
behave exactly like single trace and multi-trace operators in large N SYM: to leading
order, correlators of multi-trace operators can be computed as Wick contractions of their
single trace components [43].

2.2 The contracted large N = (4, 4) SCA for T 4 and SymN (T 4)

Next let us introduce the contracted large N = (4, 4) superconformal algebra and its
realization on T 4 and SymN (T 4). The contracted large N = 4 SCA has the generators

∂X(I) , Ψ(I) , L , G(αA) , J (a) , (2.6)

where I = 1, 2, 3, 4, α = ±, A = 1, 2, and a = 1, 2, 3 or a = ±, 3. Its central charge is
c = 6N .

Let us first discuss its structure for c = 6. In this case the ∂X(I) and Ψ(I) are simply
given by four free fermions and four free bosons on T 4. We will write them in complex
notation

Ψ(i) , Ψ̄(i) , ∂X(i) , ∂X̄(i) , (2.7)
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where i = 1, 2 with the understanding that Ψ(3) := Ψ̄(1) and Ψ(4) := Ψ̄(2) and likewise for
the bosons. The non-vanishing (anti-)commutation relations are given by

[∂X(i)
m , ∂X̄(j)

n ] = mδijδm,−n (2.8)
{Ψ(i)

r , Ψ̄(j)
s } = δijδr,−s (2.9)

The Virasoro tensor L is given by the usual expression. The R-symmetry su(2) currents
are given by

J (3) = 1
2
(
: Ψ(1)Ψ̄(1) : + : Ψ(2)Ψ̄(2) :

)
= 1

2δij : Ψ(i)Ψ̄(j) : , (2.10)

J (+) = −Ψ(1)Ψ(2) = −1
2εijΨ

(i)Ψ(j) ,

J (−) = Ψ̄(1)Ψ̄(2) = 1
2εijΨ̄

(i)Ψ̄(j) ,

where we work in the usual Cartan-Weyl basis for su(2). Finally the four supercurrents
G(αA) are given by

G(+1) = δijΨ(i)∂X̄(j) G(−1) = εijΨ̄(i)∂X̄(j) (2.11)
G(+2) = −εijΨ(i)∂X(j) G(−2) = δijΨ̄(i)∂X(j)

The index α = ± indicates the R-charge, that is the GaA form two doublets under the su(2)
R-symmetry. Note that there is also a second ‘flavor’ su(2) symmetry which is an outer
automorphism of the small N = 4 superconformal algebra. The corresponding currents Ĵ
are given by

Ĵ (3) = 1
2
(
−Ψ(1)Ψ̄(1) + Ψ(2)Ψ̄(2)

)
, (2.12)

Ĵ (+) = −Ψ(1)Ψ̄(2) ,

Ĵ (−) = Ψ̄(1)Ψ(2) .

For c > 6, we can describe the algebra in a way that is very natural for the symmetric
orbifold. Namely, we can write the generators of the c = 6N N = 4 algebra as single trace
version of the generators of the c = 6 algebra, namely

O =
N∑
i=1

Oi . (2.13)

Note that in the case c = 6 the generators L,G, J could be expressed in terms of the free
fields ∂X(I) and Ψ(I). For c > 6 this is no longer the case: now L,G, J can no longer
be written in terms of the single trace version of ∂X(I) and Ψ(I), since their bilinears are
multi-trace states. This means that the single trace versions of L,G, J are new, independent
generators [34, 37].

Note that the N = 4 SCA of course still contains the R-symmetry su(2) currents J .
These are expected to survive under perturbations away from the orbifold point; in fact we
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check this explicitly at second order in section 5.2. The situation for the flavor symmetry
currents Ĵ however is different: they are still present at the orbifold point, where they are
given by the single trace version of the seed generators Ĵ . They are however not part of
the N = 4 SCA, and are therefore not expected to survive perturbations away from the
orbifold point. In fact, this is exactly what the result of [34] implies for N = 2, and what
we will confirm in section 5.2: the generators of Ĵ get lifted.

Let us finally discuss the representation theory of the contracted large N = 4 SCA.
We will perform all our computations in the NS sector. In the NS sector, the large N = 4
SCA has a family of irreducible short representations

χj j = 0, 1, . . . c/6− 1 , (2.14)

which have su(2) spin j and conformal weight h = j/2, and a family of irreducible long
representations

χh,j j = 0, . . . c/6− 2 with h > j/2 , (2.15)

with su(2) spin j and conformal weight h [44, 45]. As usual, at the unitarity bound a long
representation decomposes into short representations,

χj + 2χj+1 + χj+2 = χj/2,j . (2.16)

The conformal weight of short representations is of course fixed, so that they will not be
lifted. Once they combine into long representations, their weight is no longer protected,
and they can be lifted. This is exactly what we are probing with perturbation theory.

2.3 Twist 2 sector

Let us set up the computation for lifting untwisted states for T 4. First, let us discuss
the modulus O. The N th symmetric orbifold has twist 2 sectors which are denoted by
permutations (ij) of cycle length 2. Each such sector has twisted ground state σ(ij). For
concreteness let us first discuss the twist field σ(12). It acts by permuting the first and
second tensor factor. That is, when rotating an operator φ1 around it, the operator gets
mapped to φ2 and vice versa. To make the connection to the usual Z2 orbifold, it is useful
introduce a change of basis for fields φ1,2,

φS = 1√
2

(φ1 + φ2) φA = 1√
2

(φ1 − φ2) (2.17)

φS is invariant under rotations around σ(12), whereas φA picks up a minus sign. In particular
this implies that its moding will be different.

The twist field σ(12) = σbσf has a bosonic σb and a fermionic component σf . The
bosonic component is uncharged and has the usual dimension

hσb = h̄σb = c

24(n− 1/n) = 1/4 . (2.18)

To describe the fermionic component, it is useful to bosonize the fermions Ψ(i)A. We define

Ψ(1)A = eiH
(1)
, Ψ̄(1)A = e−iH

(1)
, (2.19)

Ψ(2)A = eiH
(2)
, Ψ̄(2)A = e−iH

(2)
,
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where H(1) and H(2) are real bosonic fields. We actually need to be slightly careful here
to make sure that two orthogonal fermionic operators anti-commute rather than commute.
One way to deal with this issue is to introduce anti-commuting Klein factors ηi satisfying
{ηi, ηj} = 2δij [46]. Next note that ΨA is anti-periodic and therefore has zero modes. This
means that σf actually is a 16-dimensional space on which the zero modes Ψ(i)A

0 , Ψ̄(i)A
0 , i =

1, 2 and their right-moving counterparts act. In terms of the bosonized momenta the states
in this space are given by

|k1, k2; k̃1, k̃2〉 ki, k̃i = −1
2 ,

1
2 . (2.20)

We take the convention that

Ψ(1)
0 Ψ(2)

0

∣∣∣∣− 1
2 ,−

1
2; k̃1, k̃2

〉
=
∣∣∣∣12 , 1

2; k̃1, k̃2

〉
(2.21)

The corresponding operators are given by

σk1k2k̃1k̃2
f = η

k1+1/2
1 eik1H(1)

η
k2+1/2
2 eik2H(2)

η
k̃1+1/2
3 eik̃1H̃(1)

η
k̃2+1/2
4 eik̃2H̃(2)

, (2.22)

That is, we took the convention that operators with positive values of k have odd fermion
parity. Let us call σ+

f = σ
1
2

1
2

1
2

1
2

f and σ−f = σ
− 1

2−
1
2−

1
2−

1
2

f its Hermitian conjugate (σ+
f )† = σ−f .

σ−f is thus annihilated by all Ψ̄(i)A
0 , ˜̄Ψ(i)A

0 . From (2.22) we immediately see that hσf = h̄σf =
1/4, so that hσ(12) = h̄σ(12) = 1/2. Moreover σ(12) is an su(2) doublet for both the left- and
right-moving R-symmetry. It is thus a 1/2-BPS state, exactly as expected for a modulus.

2.4 Normalization and permutation symmetry

For the twist 2 ground state σ2, we choose σ̌2 = σ(12) and get

σ2 = 1√
N !2(N − 2)!

∑
g∈SN

σ(g(1)g(2)) . (2.23)

To obtain the actual modulus O, we need to act on it with appropriate supercharges
G−1/2 and G̃−1/2. In fact, the primary σ2 leads to 4 possible moduli, which in N = 2
language correspond to (c,c), (a,c), (c,a) and (a,a) chiral rings. For concreteness we will
pick σ = σbσ

−
f , and act with G(+1)

−1/2 as the G descendant. We have

G(+1) =
N∑
i=1

(
Ψ(1)i∂X̄(1)i + Ψ(2)i∂X̄(2)i

)
= Ψ(1)S∂X̄(1)S + Ψ(2)S∂X̄(2)S + Ψ(1)A∂X̄(1)A + Ψ(2)A∂X̄(2)A

+
N∑
i=3

(
Ψ(1)i∂X̄(1)i + Ψ(2)i∂X̄(2)i

)
(2.24)

We then have

Ǒ = G
(+1)
−1/2G̃

(+1)
−1/2σ

−
(12)

=
(
∂X̄

(1)A
− 1

2
Ψ(1)A

0 + ∂X̄
(2)A
− 1

2
Ψ(2)A

0

)(
∂ ˜̄X(1)A
− 1

2
Ψ̃(1)A

0 + ∂ ˜̄X(2)A
− 1

2
Ψ̃(2)A

0

)
σ−(12) . (2.25)

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
0
8
9

Note that the symmetric contribution to G−1/2 is of the form ∂XS
0 ΨS
−1/2, and therefore

annihilates σ(12), so that only the anti-symmetric contribution survives. The hermitian
conjugate of the modulus is

Ǒ† = G
(−2)
−1/2G̃

(−2)
−1/2σ

+
(12)

=
(
∂X

(2)A
−1/2Ψ(1)A

0 − ∂X(1)A
−1/2Ψ(2)A

0

) (
∂X̃

(2)A
−1/2Ψ̃(1)A

0 − ∂X̃(1)A
−1/2Ψ̃(2)A

0

)
σ−(12) . (2.26)

It is straightforward to check that Ǒ is properly normalized, 〈Ǒ|Ǒ〉. In total, the modulus
is thus given by

O = 1√
N !2(N − 2)!

∑
g∈SN

gǑ , (2.27)

and the hermitian linear combination of the two moduli are:

O ≡ 1√
2(O +O†) , Ô ≡ i√

2(O −O†) . (2.28)

3 Second order perturbation theory for 1/4-BPS states

3.1 Setup

Let us first set up our notation for computing the shift in weight of 1/4-BPS states in a
general CFT. In setting up our conventions for conformal perturbation theory, we mostly
follow [47]. We perturb the action by

S + λ

∫
d2zO(z, z̄) , (3.1)

where the normalized modulus O is given by one of the hermitian linear combinations
in (2.28). For concreteness we will work with the combination O. We want to compute
how the weight of set of 1/4-BPS states ϕ(k) gets shifted at second order. Because these
will in general be degenerate, we need to take into account operator mixing. We therefore
introduce the lifting matrix

γk` = π

4λ
2Dk` (3.2)

where we define the matrix

Dk` := −
∫
d2xGk`(x, x̄) = − i2

∫
dxdx̄Gk`(x, x̄) (3.3)

where Gk`(x, x̄) = Gk`1 (x, x̄) + Gk`2 (x, x̄) with

Gk`1 (x, x̄) = 〈ϕ(`)†(∞,∞)O†(1, 1)O(x, x̄)ϕ(k)(0, 0)〉 , (3.4)
Gk`2 (x, x̄) = 〈ϕ(`)†(∞,∞)O(1, 1)O†(x, x̄)ϕ(k)(0, 0)〉 . (3.5)

The lifting matrix γk` then gives the shift in the weight h of the 1/4-BPS state. More
precisely, we diagonalize γk` to get its eigenvalues µi, which give the shift

h
(2)
i = µi . (3.6)

Note that in the notation of [47], D = −2M , the factor of 2 coming from the normalization
in (2.28). In our convention, the matrix Dk` then needs to be positive semi-definite for
1/4-BPS states to avoid violating the unitarity bound.
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3.2 Lifting 1/4-BPS primaries using Ward identities

We will now explain how to evaluate (3.3) efficiently in the case where ϕ is a 1/4-BPS
state. The idea is to use Ward identities to reduce the integral (3.3) to a contour integral.
This method is very similar to the one introduced in [11], and further developed and used
in [13, 14, 35].

Let the modulus O be given as some G−1/2 and G̃−1/2 descendant of some h = h̄ = 1/2
1/2-BPS field σ. Here we denote right movers by a tilde. Moreover we take the lifted field
ϕ to be a 1/4-BPS state. More precisely, we assume that it is a BPS state and a primary
field with respect to the right-moving N = 4 SCA, so that it satisfies

G̃−1/2ϕ = 0 . (3.7)

It follows that

G̃(z̄)ϕ(w, w̄) ∼ 0 , G̃(z̄)ϕ†(w, w̄) ∼
(G̃−1/2ϕ

†)(w, w̄)
z̄ − w̄

. (3.8)

The second statement follows from the fact that even though ϕ† is not annihilated by
G̃−1/2, it is still a highest weight state, so that all positive modes of G̃ annihilate it. The
first statement follows from (3.7).

Consider then the correlation function

C(z1, z2, z3, z4) = 〈ϕ`†(z1, z̄1) O(z2, z̄2) O†(z3, z̄3) ϕk(z4, z̄4)〉 . (3.9)

Using (3.8), we can use Ward identities as in [28] to write C as a total derivative, namely
either as

C(z1, z2, z3, z4) = −∂z̄3

(
z̄3 − z̄1
z̄2 − z̄1

〈
ϕk(z1, z̄1) O′(z2, z̄2) O′†(z3, z̄3) ϕ`†(z4, z̄4)

〉)
. (3.10)

or as

C(z1, z2, z3, z4) = −∂z̄2

(
z̄2 − z̄4
z̄3 − z̄4

〈
ϕk(z1, z̄1) O′(z2, z̄2) O′†(z3, z̄3) ϕ`†(z4, z̄4)

〉)
. (3.11)

Here we have introduced the notation

O′ ≡ G(+1)
− 1

2
σ−− (3.12)

that is the operator with the same left-moving structure as that of the modulus.
We can now express Gk`1 (x, x̄) (3.4) in terms of C by sending the zi in (3.11) to their

respective positions z1 → 0, z2 → x, z3 → 1, and z4 →∞,

Gk`1 (x, x̄) = C(0, x, 1,∞) = −∂x̄〈ϕ`|O′†(1, 1)O′(x, x̄)|ϕk〉 =: −∂x̄Ik`1 (x, x̄) , (3.13)

and Gk`2 (x, x̄) (3.5) by choosing z2 → 1, z3 → x in (3.10),

Gk`2 (x, x̄) = C(0, 1, x,∞) = −∂x̄
(
x̄〈ϕ`|O′(1, 1)O′†(x, x̄)|ϕk〉

)
=: −∂x̄Ik`2 (x, x̄) , (3.14)

where we defined
Ik`1 (x, x̄) = 〈ϕ`|O′†(1, 1)O′(x, x̄)|ϕk〉 (3.15)

and
Ik`2 (x, x̄) = x̄〈ϕ`|O′(1, 1)O′†(x, x̄)|ϕk〉 . (3.16)
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3.3 Contour integrals

We use Stokes’ theorem in both cases (3.13) and (3.14) to reduce the integral to a contour
integral around 0, 1,∞.

Dk` = − i2

∫
dxdx̄Gk`(x, x̄) = i

2

∮
0,1,∞

dx(I1(x, x̄) + I2(x, x̄)) . (3.17)

Here the minus sign comes from reversing the direction of the boundary. We evaluate the
contour integral by evaluating the OPE of O′(x) with the three other fields at 0, 1,∞. More
precisely, for x = 0 we parametrize x = εeiθ, integrate over θ, and discard all non-constant
powers in ε: they either vanish for ε → 0, or, if they diverge, are regulated away. This
means that we pick up the term x−1x̄0 in the expansion of I1,2(x, x̄) around x, x̄ = 0. A
similar argument shows that we pick up the same term x−1x̄0 in the expansion around
x = ∞, although with a minus sign, since the contour integral is now clockwise. Finally,
the contour integral around x = 1 does not contribute, roughly speaking because the pole
comes from the OPE of the modulus with itself. For a more detailed argument for this see
for instance [28]. In total we thus get

Dk` = −π
(
(I1(x, x̄) + I2(x, x̄))|0x−1x̄0 − (I1(x, x̄) + I2(x, x̄))|∞x−1x̄0

)
(3.18)

Since we are picking out only a single term in the x-expansion of the four point function
around 0, effectively we only need to take into account the contribution of a finite number
of states of a certain weight. Expanding over an orthonormal basis of states χ, in terms of
three point functions we have

I1(x, x̄)|0 =
∑
χ

Cϕ`†O′†χCχ†O′ϕkx
hχ−hk−1x̄h̄χ−h̄k−1/2 (3.19)

and
I2(x, x̄)|0 =

∑
χ

Cϕ`†O′χCχ†O′†ϕkx
hχ−hk−1x̄h̄χ−h̄k+1/2 . (3.20)

The expansion around infinity is very similar. We can use the crossing transformation

I1(x, x̄) = − 1
x2x̄
I1(1/x, 1/x̄) (3.21)

to obtain

I1(x, x̄)|∞ = −
∑
χ

Cϕ`†O′χCχ†O′†ϕkx
−hχ+hk−1x̄−h̄χ+h̄k−1/2 , (3.22)

I2(x, x̄)|∞ = −
∑
χ

Cϕ`†O′†χCχ†O′ϕkx
−hχ+hk−1x̄−h̄χ+h̄k+1/2 . (3.23)

By picking out the appropriate terms, the lifting matrix can thus be written as finite sum
of squares of three point functions,

Dk` = −2π
∑

χ:hχ=hk
h̄χ=h̄k+1/2

Cϕ`†O′†χCχ†O′ϕk − 2π
∑

χ:hχ=hk
h̄χ=h̄k−1/2

Cϕ`†O′χCχ†O′†ϕk

=
∑

χ:hχ=hk
h̄χ=h̄k+1/2

2πC∗
χ†O′ϕ`

Cχ†O′ϕk +
∑

χ:hχ=hk
h̄χ=h̄k−1/2

2πC∗
χ†O′†ϕ`

Cχ†O′†ϕk (3.24)
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The minus sign in the second line comes from the fact that we exchanged an odd number
of fermionic operators. In particular we see that the lifting matrix is manifestly positive
semidefinite, which is exactly what is needed to preserve unitarity.

4 Computing the correlation functions I1(x) and I2(x)

In this section we discuss our method of computing the 4-point functions I1(x) and I2(x)
defined in eqs. (3.15) and (3.16), respectively. In subsection 4.1, We start by computing
the N -dependent combinatorial factors associated with the symmetrization of the states
under the permutation group SN , as well as the normalization of the states. We then
map the problem to the covering space of the original setup in subsection 4.2. Finally, in
subsection 4.3 we determine bosonisation of fermionic fields and show how to use them to
compute the 4-point functions on the cover.

4.1 Correlation function on the base

Let us now discuss how to compute correlation functions

I1(x, x̄) = 〈ϕ(1)|O′†(1, 1)O′(x, x̄)|ϕ(1)〉 (4.1)

and
I2(x, x̄) = 〈ϕ(1)|O′(1, 1)O′†(x, x̄)|ϕ(1)〉. (4.2)

First we use a conformal transformation to map the half-moduli O′ to 0,∞ and the ϕ to
1, x by using the conformal map

z 7→ x− z
1− z (4.3)

giving

I1(x, x̄) = (1− x)2hϕ(1− x̄)2h̄ϕ

(x− 1)2(x̄− 1) I1(x, x̄) , (4.4)

where we defined
I1(x, x̄) := 〈O′|ϕ(1)(1, 1)ϕ(2)(x, x̄)|O′〉 . (4.5)

Similar expressions hold for I2 and I2. The branch cut now runs between 0 and ∞, which
will be useful for lifting to the cover.

Next we need to take care of the symmetrization of the states. To that end, we want
to write I(x, x̄) as a sum over the images of some representative φ̌ over SN . That is, the
representative of each of the four operators O′, ϕ(1), ϕ(2) and O′ is summed over a copy
SiN , i = 1, 2, 3, 4 of the symmetric group respectively. We want to deal with these sums as
follows, picking up various N dependent factors in the process:

1. We use S1
N of the first O′ as an overall diagonal group to fix the overall ‘gauge’ such

that the twisted factors of O′ are (12), and all other factors only contain the vacuum.
This gives an overall factor of

N ! . (4.6)

Note that there are no fermionic signs from these permutations, since we are acting
with the diagonal group on all four states at the same time.
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2. Next consider the terms coming from S4
N . They all vanish, unless the twisted factors

are (12) or (21). In that case, there are an additional (N − 2)! possibilities for the
vacuum factors, giving an overall factor of

2(N − 2)! . (4.7)

There are no fermionic signs since there is only one non-vacuum factor.

3. To count the terms coming from the S2
N action on ϕ̌(1), we split up the N ! terms

into configurations ρ1. Such a configuration ρ1 = (a1, a2, S) consists of an ordered
tuple of factors (a1, a2) corresponding to the factors at (1) and (2), and an unordered
multiset S corresponding to the remaining N −2 factors. Let us call Kρ1 the number
of non-vacuum factors in S, such that Kρ1 is L1, L1 − 1 or L1 − 2. Note that each
configuration comes with a sign, as we pick up fermionic signs for moving factors to
(1)(2). The multiplicity of the configuration ρ1 then comes from two contributions:
first, there are (N −L1)!/(N −Kρ1 − 2)! ways of picking the 2− (L1 −Kρ1) vacuum
factors from the N − L1 vacuum factors in ϕ̌(1). Next, the stabilizer group of (12),
S2
N−2, gives an additional multiplicity of (N − 2)! for each configuration ρ1. We use

the stabilizer to fix these N − 2 factors such that the non-vacuum factors are in the
positions {3, 4, . . . ,Kρ1 + 2}, not leading to any signs, and pull out the factor of
(N − 2)!. In total we thus pick up a factor of

(N − 2)!(N − L1)!
(N −Kρ1 − 2)! . (4.8)

4. For S3
N , we again choose configurations ρ2 with corresponding signs. For their mul-

tiplicity we again get a factor of (N − L2)!/(N −Kρ2 − 2)!. The stabilizer subgroup
S2
N−2 however needs to be treated differently: the correlation function vanishes unless

the non-vacuum factors of ϕ̌(2) in S are lined up with the non-vacuum factors of ϕ̌(1)

in S, that is unless they are also in the positions {3, 4, . . . ,Kρ1 +2}. In particular this
means that Kρ1 = Kρ2 . All non-vanishing terms are thus in the sum over the setwise
stabilizer of {3, 4, . . . ,Kρ1 + 2}, which is SK × SN−K−2. For a given configuration,
we therefore sum over the permutation group SK , and pull out the additional factor
of (N −K − 2)! from SN−Kρ1−2, giving a total factor of

(N − L2)! . (4.9)

Finally, we also need to take into account the normalization of the four operators. The
moduli have L = 2 and A = 2. The total normalization factor of the 4-point function
is thus

(N !)−1(2(N − 2)!)−1(||ϕ(1)||||ϕ(2)||)−1 (4.10)

Pulling together all N -dependent factors and the normalization (4.10), for a given config-
uration ρ with K = Kρ we get

κρ(N) = (N − 2)!(N − L1)!(N − L2)!
||ϕ(1)||||ϕ(2)||(N −Kρ − 2)!

. (4.11)
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(Note that since Kρ1 = Kρ2 , we simply write κρ.) If ϕ(1,2) are of the form (2.4), then in
the large N limit,

κρ(N) ∼ NK− 1
2L1− 1

2L2 . (4.12)

Note that we have K ≤ L1, L2, so that the leading term is O(1) if K = L1 = L2, and
any other terms are subleading. Also note that this leading term is a disconnected piece
consisting of contracted 2-point functions, which will therefore not contribute to the lifting.
This agrees with the general picture in [43, 48]. To have a connected piece, at least one
factor of each ϕ(1) and ϕ(2) has to be in the position 1 or 2, meaning K < L1, L2. If
L1 = L2, this gives a subleading term O(N−1). This agrees with the general expectation
that the analogue of the ’t Hooft coupling should be λN−1/2.

In summary, our procedure for computing I(x) is the following:

I(x, x̄) =
∑
ρ1,ρ2

κρ1(N)
∑
g∈SK

〈Ǒ′|ϕ̌(1,ρ1)(1, 1)gϕ̌(2,ρ2)(x, x̄)|Ǒ′〉 (4.13)

Here Ǒ′ is the representative with the twisted factors in (12), and ϕ̌(i,ρi) is the representative
with K non-vacuum factors in (3)(4) . . . (K + 2), which are permuted by the symmetric
group SK .

4.2 Cover map

Let us now compute the correlator

〈Ǒ′|ϕ̌(1,ρ1)(1, 1)gϕ̌(2,ρ2)(x, x̄)|Ǒ′〉 =: 〈Ǒ′|φ(1)(1, 1)φ(2)(x, x̄)|Ǒ′〉 (4.14)

We can write this as the product of an untwisted two point function Iu involving the factors
(3)(4) . . . (K + 2) of φ(1),(2) with a twisted correlation function It in the factors (12),

Itw(x) = 〈Ǒ′|(φ(1)1 ⊗ φ(1)2)(1, 1)(φ(2)1 ⊗ φ(2)2)(x, x̄)|Ǒ′〉 (4.15)

Iu is of course easy to evaluate as it is a product of two 2-point functions. To compute
Itw, we go to the double cover using the cover map

z(t) = t2 , (4.16)

where z is the coordinate on the base, and t the coordinate on the cover. This means that
we have

φ(t) = φ(z)
(
dz

dt

)h
= φ(z)(2t)h . (4.17)

Note that because for fermions we have

ψ(t) = ψ(z)
(
dz

dt

)1/2
= ψ(z)(2t)1/2 , (4.18)

we are potentially introducing branch cuts. In particular this means that if we want
fermionic operators ψ(z) to be periodic around 0, then we need to make ψ(t) antiperiodic
on the cover. This means that even though we work in the NS sector on the base, we need
to work in the Ramond sector on the cover.
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The fields (φ(1)1 ⊗ φ(1)2)(1, 1) and (φ(2)1 ⊗ φ(2)2)(x, x̄) then simply get mapped to

2−hφ(1)1−h̄φ(1)1 (−2)−hφ(1)2−h̄φ(1)2φ(1)1(1, 1)φ(1)2(−1,−1) (4.19)

and

(2
√
x)−hφ(2)1 (2

√
x̄)−h̄φ(2)1 (−2

√
x)−h̄φ(2)2 (−2

√
x̄)−h̄φ(2)2φ(2)1(

√
x,
√
x̄)φ(2)2(−

√
x,−
√
x̄) ,
(4.20)

where hφ(i)j is the holomorphic dimension of the field φ(i)j . When mapping the Ǒ′ we
need to be slightly more careful. The twisted ground state σ2 usually gets mapped to the
vacuum on the cover. As mentioned above, here it gets mapped to a Ramond ground states
at t = 0 and∞. More precisely, the Ramond ground state is degenerate, forming a doublet
under both su(2) R- and flavor symmetry for both left- and right-movers. We will denote
these Ramond ground states by

|k1, k2; k̃1, k̃2〉R , ki, k̃i ,= −
1
2 ,

1
2 . (4.21)

and the corresponding fields by

σk1k2k̃1k̃2
R , ki, k̃i = −1

2 ,
1
2 , (4.22)

or, if we do not want to specify the su(2) charges, simply by |0〉R and σR.
For G−1/2 acting on the twisted ground state, using G(z) = ∑

rGrz
−r−3/2 we write

G−1/2|σ2〉 = G1
−1/2|σ2〉+G2

−1/2|σ2〉 =
∮

0
G1(z)|σ2〉dz +

∮
0
G2(z)|σ2〉dz

=
∮

0
G(t)|0〉R(2t)−3/22tdt =

∮
0
G(t)|0〉R(2t)−1/2dt = 2−1/2G−1|0〉R (4.23)

The upshot is thus that we have G−1 acting on the Ramond ground state. Since G−1 ∼
∂X

(I)
−1 Ψ(J)

0 , this means that we simply insert an additional boson at t = 0,∞, and we act
with a fermion zero mode on the Ramond ground state. We can check that the normal-
ization is indeed correct by choosing both φ to be the identity operator. On the base we
then have

〈σ−|G(−2)
1/2 G

(+1)
−1/2|σ

−〉 = 〈σ−|L0 −
1
2J

(3)
0 |σ

−〉 = 1 (4.24)

and on the cover we have
1
2〈0R|G

(−2)
1 G

(+1)
−1 |0R〉 = 1

2〈0R|L0 − J (3)
0 + 3

4 |0R〉 = 1
2

(1
4 + 1 + 3

4

)
= 1 , (4.25)

which indeed agrees. Starting from (2.24) and (2.25), the moduli are thus mapped to the
following operators on the cover:

O′(0, 0) → 1√
2

(
∂X̄(1)σ

1
2−

1
2−

1
2−

1
2

R + ∂X̄(2)σ
− 1

2
1
2−

1
2−

1
2

R

)
(0, 0) (4.26)

O′†(∞,∞) → 1√
2

(
−∂X(1)σ

− 1
2

1
2

1
2

1
2

R + ∂X(2)σ
1
2−

1
2

1
2

1
2

R

)
(∞,∞) (4.27)
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4.3 Correlation function on the cover

Let us now discuss how to evaluate the correlation function (4.15) on the cover. We use
the fact that it is a free correlator that can be computed by Wick contractions. More
precisely, we first factor it into a bosonic and fermionic piece. Furthermore we can use the
fact that the pairs ∂X(1), ∂X(3) = ∂X̄(1) and ∂X(2), ∂X(4) = ∂X̄(2) are orthogonal, so that
we can also factorize their contributions. For the states φ that we are considering, ∂X(I)

only appears as a ∂X(I)
−1 descendant, so that we can simply compute a correlation function

of free bosons.
The G descendant simply lead to an insertion of ∂X(I) at 0 and∞ and a change in the

Ramond ground state. More precisely, the Ramond ground state is degenerate, forming
a doublet under both su(2) R- and flavor symmetry for both left- and right-movers. The
Ramond ground states and the corresponding fields were defined in eqs. (4.21) and (4.22).

Computing the fermionic part is only slightly more complicated. We again factor it into
contributions of the two pairs Ψ(1),Ψ(3) and Ψ(2),Ψ(4). The main difference is that there are
Ramond ground states at 0 and ∞. To compute the Ramond sector correlation functions,
we again want to bosonize the fermions. Note that mathematically this is essentially
identical to our discussion of bosonization in section 2.3; conceptually the difference is
simply that there we were working in the NS sector of twisted sector of a symmetric
orbifold, whereas now we are working in the R sector of an ordinary fermionic theory.

To compute R sector correlation function, we again bosonise the fermions as

Ψ(i) = eiH
(i)
, Ψ̄(i) = e−iH

(i)
, Ψ(i)Ψ̄(i) = i∂H(i) , i = 1, 2 , (4.28)

where the H(i) are real bosonic fields. One can check that the OPEs between Ψ and Ψ̄
have the correct form. With this definition, the Ramond ground state operators can be
written in the bosonised form

σk1k2k̃1k̃2
R = ei(k1H(1)+k2H(2)+k̃1H̃(1)+k̃2H̃(2)) . (4.29)

These indeed introduce the correct branch cuts as we have

Ψ(i)(t) σ−R(0) ∼ 1
t

1
2
σ+
R(0) , (4.30)

and is anti-periodic when taken around the origin once, as expected. The advantage of
bosonisation is that all fermionic correlation functions, even those including Ramond spin
fields σR, can be evaluated uniformly using free bosons. Concretely, the correlation function
of the product of exponentials is of the form, see ([49], appendix 6.A.):〈 n∏

l=1
: eAl :

〉
= e

∑n

l,m=1, l<m〈Al Am〉 . (4.31)

For A = ik ·H(t) = i
∑2
i=1 kiH

(i)(t), this reads〈 n∏
l=1

: eik(l)·H(tl) :
〉

=
n∏

l,m=1, l<m
(tl − tm)k(l)·k(m)

, (4.32)

We implemented this algorithm to compute the lifting matrix in the Mathematica notebook
lifting.nb.
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5 Lifting untwisted sector states

In this section we use the method developed in sections 3 and 4 to evaluate the lifting of a
set of 1/4-BPS states in the untwisted sector of the CFT. These states have h = 1, j = 0,
and j̄ = 0, 1, 2. We will first discuss the representation theory and the degeneracy of these
states in subsection 5.1. We will then compute the lifting of the states with j̄ = 0, 1, 2 in
subsections 5.2, 5.3, and 5.4, respectively.

5.1 Contracted large N = 4 SCA and the 1/4-BPS spectrum

Let us now apply our computations to the lifting of 1/4-BPS states. We are interested in
1/4-BPS states of the form

χh,jχ̃j̄ , (5.1)

that is states that are in short representations for the right movers, and in long representa-
tions for the left movers. Note that because the overall spin is integral, the left moving NS
weight h is quantized. In fact we will concentrate on states with h = 1, j = 0. There are
multiple types of right-moving short multiplets that can occur, so that j̄ can in principle
take any integer value if N is large enough. As a function of j̄ with fixed h = 1, j = 0,
their spectrum can be computed as in [33]: let us now compute the lifting of the untwisted
states for the first few values of j̄, namely j̄ = 0, 1 and 2. For j̄ = 0 we will present our
computations analytically, explaining how we implement the method outlined in section 4
in practice. For higher values of j we will use the Mathematica notebook lifting.nb,
which we provide as a supplementary material to this paper. The notebook consists of
three parts: the first part defines all the functions necessary to run the code. The second
part computes all the primary fields by imposing the primary conditions. In principle this
is not necessary, since we could compute the lifting matrix for all states and not just the
primaries. However, since the number of primaries is vastly smaller than the number of
all states, restricting ourselves to primaries makes the computation much faster. Finally
the third part computes the lifting matrix for all primaries and gives the result to all
orders in N .

The notebook can in principle be used to compute the lifting of any untwisted states
in the T 4 symmetric orbifold. The only major constraint is that currently only Ψ(I)

−1/2 and
∂X

(I)
−1 descendants are implemented, which is enough for our purposes here. It would be

straightforward to allow for higher descendants, but would require to introduce additional
bookkeeping to keep track of the descendant modes.

5.2 j̄ = 0: the symmetry algebra

Let us start with the case j̄ = 0, h = 1. These states correspond to the symmetry algebra,
since the right-movers are in the vacuum. For simplicity, we work with the highest weight
state of the j̄ = 0 representation, that is the vacuum. The representatives ϕ̌ of the orbits
of states with j̄ = 0, h = 1 are given by

∂X
(I)1
−1 |0〉 , Ψ(I)1

−1/2Ψ(J)1
−1/2|0〉 , Ψ(I)1

−1/2Ψ(J)2
−1/2|0〉 , (5.2)
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of which there are a total of 4 + 6 + 6 = 16. We recall the notation in eq. (2.6) where
I = 1, 2, 3, 4. How many of these 16 states are primaries? Clearly ∂X

(I)
−1 |0〉 are all de-

scendants coming from the generator ∂X(I). Next there are 6 linear combinations coming
as
(∑

i Ψ(I)i
) (∑

j Ψ(J)j
)
descendants. Finally, there are 3 descendants coming from the

J (±,3) modes, which are single trace fermionic bilinears. This leaves us with 3 primary
fields, as expected. A detailed version of this calculation can be found in lifting.nb. The
1/4-BPS states are thus given by

3χ1,0χ̃0 . (5.3)

These are fermionic bilinears which correspond to the generators Ĵ (±,3) of the flavor su(2).
That is, they form a triplet under su(2), and we expect them to be lifted. In particular we
note all three fields have single trace part.

To identify them, we check that they are annihilated by Ψ(I)
1/2, ∂X

(I)
1 and J (±,3)

1 . For
example, we find the following expression

Ĵ (−) = 1√
N !(N − 1)! +N !(N − 2)!

∑
g∈SN

(
Ψ(2)g(1)
−1/2 Ψ(3)g(1)

−1/2 |0〉 −Ψ(2)g(1)
−1/2 Ψ(3)g(2)

−1/2 |0〉
)
. (5.4)

First note that the 2-trace term is necessary for Ĵ (−) to be a primary field: the single trace
term by itself is not annihilated by the large N = 4 generator ∑i Ψ(2)i

1/2 . Second note that
we obtained the normalization factor by computing the inner product Ĵ (−) with itself. The
first term in the normalization factor comes from the norm of the single trace term. The
second term comes from the norm of the 2-trace term. We note that it is subleading in N .
This holds in general, which means that as long as we are only interested in leading order
terms, it is indeed enough to work with the single trace terms only.

Let us now describe the computation of the entry of the lifting matrix coming from
the contribution of the single trace terms with itself. In (4.13), there are three possible
configurations ρ1,2 each:

(Ψ(2)
−1/2Ψ(3)

−1/2|0〉, |0〉, {|0〉, . . . , |0〉}) : K = 0 (5.5)

(|0〉,Ψ(2)
−1/2Ψ(3)

−1/2|0〉, {|0〉, . . . , |0〉}) : K = 0 (5.6)

(|0〉, |0〉, {Ψ(2)
−1/2Ψ(3)

−1/2|0〉, . . . , |0〉}) : K = 1 . (5.7)

The two configurations give a vanishing contribution unless K is the same for both. The
configuration with K = 1 is simply an untwisted 2-point function of two h = 1 fields,

((N − 1)!)2(N − 2)
N !(N − 1)! +N !(N − 2)!

1
(x− 1)2 . (5.8)

For the K = 0 configurations, we have

κ = ((N − 1)!)2

N !(N − 1)! +N !(N − 2)! . (5.9)

The contributions are of the form〈
O
′†(∞,∞) Ψ(4)iΨ(1)i(1, 1) Ψ(3)jΨ(2)j(x, x̄) O

′(0, 0)
〉

i, j = 1, 2 . (5.10)
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These get mapped to the cover correlators〈 1√
2

(
: ∂X(1)e−

i
2 (−H(1)+H(2)+H̃(1)+H̃(2)) : + : ∂X(2)e

i
2 (H(1)−H(2)+H̃(1)+H̃(2)) :

)
(t∞)×

×
(±1

2

)
Ψ(4)Ψ(1)(±1)

( ±1
2
√
x

)
Ψ(3)Ψ(2)(±

√
x)×

× 1√
2

(
: ∂X(3)e

i
2 (H(1)−H(2)−H̃(1)−H̃(2)) : +∂X(4)e

i
2 (−H(1)+H(2)−H̃(1)−H̃(2)) :

)
(0)
〉

(5.11)

where the four choices of ± correspond to the four choices of i, j = 1, 2 (which give a sum
of four terms), and O′ is defined in eq. (3.12). We will take the limit t∞ →∞ at the end
of the computation. The term corresponding to t+1 = 1 and t+x =

√
x reads

1
8
√
x

〈(
: ∂X(1)e

i
2 (−H(1)+H(2)+H̃(1)+H̃(2)) : + : ∂X(2)e

i
2 (H(1)−H(2)+H̃(1)+H̃(2)) :

)
(t∞)×

× ei(H(1)−H(2))(1) e−i(H
(1)−H(2))(

√
x)×

×
(

: ∂X̄(1)e
i
2 (H(1)−H(2)−H̃(1)−H̃(2)) : + : ∂X̄(2)e

i
2 (−H(1)+H(2)−H̃(1)−H̃(2)) :

)
(0)
〉

=

1
8
√
x

{ (t∞ −
√
x)

(t∞ − 1)(t∞ − 0)2|t∞ − 0|

( (1− 0)
(1−

√
x)2

1
(
√
x− 0)

)
+

+ (t∞ − 1)
(t∞ −

√
x)(t∞ − 0)2|t∞ − 0|

( 1
(1−

√
x)2(1− 0) (

√
x− 0)

)}
(5.12)

where in the first three lines we used the bosonised form of the currents — see eqs. (2.12)
and (2.19) — and used the OPEs of exponentials given in eq. (4.32). Taking the limit
t∞ →∞ (which requires multiplying the correlation function by the appropriate conformal
factor th∞t̄h̄∞ with (h, h̄) conformal dimensions of the field at∞), we find that the correlation
function (5.12) is of the form

1
8

1
(1−

√
x)2

(1
x

+ 1
)
. (5.13)

The remaining three configurations in eq. (5.11) are computed similarly. In total we get

1
4

(1
x

+ 1
)( 1

(1−
√
x)2 + 1

(1 +
√
x)2

)
= 1

2x
(1 + x)2

(1− x)2 . (5.14)

Including the combinatorial prefactor (5.9), we evaluate the 4-point function I1 — see
eq. (4.5):

I1(x, x̄) = ((N − 1)!)2

N !(N − 1)! +N !(N − 2)!
1

2x
(1 + x)2

(1− x)2 . (5.15)

Finally, including the K = 1 configuration (5.8) and the conformal prefactor (4.4) we get

I1(x, x̄) = 1
(x̄− 1)

((N − 1)!)2

N !(N − 1)! +N !(N − 2)!

(
1

2x
(1 + x)2

(1− x)2 + N − 2
(x− 1)2

)
. (5.16)

Since the second term in the parentheses comes from the configuration with K = 1, which
is the disconnected piece, it is not surprising that it does not give a contribution to the
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lifting matrix: when reading off the coefficient of x−1x̄0 in the expansion around 0, only
the first term contributes, giving

π

2
((N − 1)!)2

N !(N − 1)! +N !(N − 2)! = π

2
N − 1
N2 . (5.17)

There is no contribution from the expansion around ∞. I2(x) is a similar expression as
I1(x). Here, there is no contribution from x = 0, but there is a contribution identical
to (5.17) from x = ∞. The 2-trace terms in (5.4) turn out not to give a contribution
either: the cross term gives directly vanishing I1,2(x), and the term with itself gives an
I1,2(x) with vanishing expansion coefficients. In total we thus get

D−− = π(N − 1)
N2 . (5.18)

Let us briefly discuss how we can obtain the same result using (3.24). With hk = 1 and
h̄k = 0, clearly the second term in (3.24) vanishes. This corresponds to the observation
that I1 has no contribution at x =∞, and I2 none at x = 0. To compute the contribution
of the first term, we take the decomposition (4.13) as our starting point: that is, we pull
out the combinatorial factor κ in (5.9), and then only compute the three point functions
of the representatives. The intermediate field is χ = 1√

2∂X
(4)
− 1

2
Ψ(1)

0 σ
− 1

2−
1
2−

1
2−

1
2

R . The corre-
sponding 3-point function is computed in appendix B, and turns out to be C = 1

2
√

2 , so that
C2 = 1

8 . In total there are 4 configurations with K = 0, so that the overall contribution
indeed agrees with (5.18) once we include the combinatorial factor κ.

Repeating this computation for Ĵ (+), we obtain the same result for D++. For Ĵ (3)

we find
D33 = π(N − 1)

N2 . (5.19)

In total we find the lifting matrix for the three flavor currents Ĵ (+), Ĵ (−), Ĵ (3) to be

γkl = π

4λ
2Dkl = λ2π2


1

4N 0 0
0 1

4N 0
0 0 1

4N

+O(N−2) (5.20)

As expected, the additional flavor su(2) symmetry that is present at the orbifold point
does not survive the perturbation and is broken.

Before moving on to higher weight states, for completeness let us briefly confirm that
unlike the flavor currents Ĵ , the R-currents J do not get lifted. The computation is of
course very similar. The lifting 4-point function for J (−) is now given by〈

O
′†(∞,∞) Ψ(2)iΨ(1)i(1, 1) Ψ(3)jΨ(4)j(x, x̄) O

′(0, 0)
〉

i, j = 1, 2 , (5.21)

which is mapped to the covering surface as〈 1√
2

(
: ∂X(1)e−

i
2 (−H(1)+H(2)+H̃(1)+H̃(2)) : + : ∂X(2)e

i
2 (H(1)−H(2)+H̃(1)+H̃(2)) :

)
(t∞)×

×
(±1

2

)
Ψ(2)Ψ(1)(±1)

( ±1
2
√
x

)
Ψ(3)Ψ(4)(±

√
x)×

× 1√
2

(
: ∂X̄(1)e

i
2 (H(1)−H(2)−H̃(1)−H̃(2)) : +∂X̄(2)e

i
2 (−H(1)+H(2)−H̃(1)−H̃(2)) :

)
(0)
〉

(5.22)
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The term corresponding to t+1 = 1 and t+x =
√
x now reads (cf. eq. (5.12))

1
8
√
x

〈(
: ∂X(1)e

i
2 (−H(1)+H(2)+H̃(1)+H̃(2)) : + : ∂X(2)e

i
2 (H(1)−H(2)+H̃(1)+H̃(2)) :

)
(t∞)×

× ei(H(1)+H(2))(1) ei(−H
(1)−H(2))(

√
x)×

×
(

: ∂X̄(1)e
i
2 (H(1)−H(2)−H̃(1)−H̃(2)) : + : ∂X̄(2)e

i
2 (−H(1)+H(2)−H̃(1)−H̃(2)) :

)
(0)
〉

=

1
8
√
x

{ (t∞ −
√
x)0

(t∞ − 1)0(t∞ − 0)2|t∞ − 0|

( (1− 0)0

(1−
√
x)2

1
(
√
x− 0)0

)
+

+ (t∞ − 1)0

(t∞ −
√
x)0(t∞ − 0)2|t∞ − 0|

( 1
(1−

√
x)2(1− 0)0 (

√
x− 0)0

)}
. (5.23)

Taking the t∞ →∞ limit, this term is evaluated to be (4
√
x)−1(1−

√
x)2. Computing the

remaining three terms in eq. (5.22) and putting them all together we find

1
4
√
x

( 2
(1−

√
x)2 −

2
(1 +

√
x)2

)
= 2

(1− x)2 . (5.24)

This is indeed the disconnected part of the partition function. The connected part vanishes,
as expected, and hence the R-current is not lifted at the second order.

5.3 j̄ = 1

5.3.1 j̄ = 1, h = 1/2: the moduli

Next let us consider j̄ = 1. Before discussing the states with h = 1, let us make a quick
aside on the states with h = 1/2. Here we will find no 1/4-BPS states: instead there are
16 descendants, and 16 1/2-BPS states. To see this, note that in total there are 32 states:

Ψ(I)1
−1/2Ψ̃(J)1

−1/2|0〉 , Ψ(I)1
−1/2Ψ̃(J)2

−1/2|0〉 , (5.25)

where Ψ̃(J) denotes the right-movers. 16 of them are vacuum descendants coming from
the fermionic operators Ψ(I) and Ψ̃(J). The remaining 16 states are primaries. They are
arranged in 4 1/2-BPS multiplets,

4χ1χ̃1 . (5.26)

This means that they correspond precisely to the 16 moduli of the torus, that is the 16
untwisted sector moduli of the symmetric orbifold. An example of such a primary field is

ϕ̌ = (Ψ(I)1
−1/2Ψ̃(I)1

−1/2 + Ψ(I)2
−1/2Ψ̃(I)2

−1/2 −Ψ(I)1
−1/2Ψ̃(I)2

−1/2 −Ψ(I)2
−1/2Ψ̃(I)1

−1/2)|0〉 , (5.27)

since indeed

(Ψ(I)1
1/2 + Ψ(I)2

1/2 )ϕ̌ = (Ψ̃(I)1
−1/2 − Ψ̃(I)2

−1/2 + Ψ̃(I)2
−1/2 − Ψ̃(I)1

−1/2)|0〉 = 0 (5.28)

and similarly for the other positive mode generators. Being 1/2-BPS they are of course
protected against lifting.
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j̄ 0 1 2 3 4 5 ≥ 6
untwisted 3 6 9 8 3 0 0
twisted 0 8 27 36 23 6 0
total 3 14 36 44 26 6 0
sugra 0 0 10 20 15 4 0

Table 2. 1/4-BPS spectrum for h = 1, j = 0.

5.3.2 j̄ = 1, h = 1

Let us now turn to j̄ = 1, h = 1. Here there are a total of 168 states. They are all su(2)
doublets for the right movers, and hence BPS for the right-movers. Analyzing the structure
for the left movers reveals that there are 8 new multiplets,

2χ2χ̃1 + 6χ1,0χ̃1 , (5.29)

with the remaining states coming from descendants. The first two multiplets are 1/2-BPS
states. The remaining 6 multiplets are 1/4-BPS, which agrees with table 2. All 8 states
have a single trace part.

We did not compute the lifting matrix by hand, but instead used our Mathematica
notebook lifting.nb. The resulting lifting matrix γ turns out to be diagonal. To leading
order we have

γk` = λ2π2diag
( 1

8N ,
1

8N ,
1

8N ,
1

8N ,
1

8N ,
1

8N , 0, 0
)

+O(N−2) . (5.30)

As expected, the 1/2-BPS states do not get lifted, but all of the 1/4-BPS states do. This
agrees with the sugra prediction in table 2. The all order result is

γk` = λ2π2diag (d(N), d(N), d(N), d(N), d(N), d(N), 0, 0) , (5.31)

where
d(N) = N2 − 8

8N2(N − 1) . (5.32)

(Note that our computation assumes N ≥ 3.)

5.4 j̄ = 2

Finally let us turn to j̄ = 2. At h̄ = 1, h = 1 there are a total of 1068 states. Other than
the descendants, they decompose into 57 multiplets as

11χ2χ̃2 + 9χ2χ̃1,0 + 9χ1,0χ̃2 + 28χ1,0χ̃1,0 (5.33)

The first term corresponds to the 1/2-BPS states, and the last term to the non-BPS states.
The second and third terms are 1/4-BPS states. We are interested only in the third term
with j̄ = 2, for which there are 9 1/4-BPS states as given in table 2. In the ordering we
are choosing, the first 3 states have a single trace part. The remaining 6 states however
have no single trace part, and only have multi-trace contributions.
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Let us now discuss the lifting of these 9 1/4-BPS states. Again we used lifting.nbto
do the computation. To order O(N−1), the lifting matrix is again diagonal:

γk` = λ2π2diag
( 1

8N ,
1

8N ,
1

8N , 0, 0, 0, 0, 0, 0
)

+O(N−2) (5.34)

In the scaling limit that is relevant for the supergravity calculation, this means that only
3 states get lifted. More precisely, only the single trace states get lifted. The remaining 6
states do not get lifted. From the supergravity point of view, the multi-trace states can be
interpreted as multi particle states of protected particles, whose weight at this order in N
is protected, so that they are not lifted. The sugra prediction in table 2 is thus confirmed
already on the level of the untwisted states. In particular we expect that of the 27 twisted
primaries at h̄ = 1, 4 do not get lifted, so that a total of 10 1/4-BPS primaries remain
unlifted.

We can of course also consider the problem outside of the scaling limit N →∞, λ/N →
1 by keeping all orders in N . In that case the lifting matrix D is no longer diagonal, so
that we need to obtain its eigenvalues instead. They are given by

µ1, µ2, µ3 = 0 (5.35)

µ4 = π(a1 + b1) = π

2N −
5π

2N2 +O(N−3)

µ5 = π(a1 − b1) = π

N2 +O(N−3)

µ6, µ7 = π(a2 + b2) = π

2N −
5π

2N2 +O(N−3)

µ8, µ9 = π(a2 − b2) = π

N2 +O(N−3)

where

a1 = N6 − 8N5 + 22N4 − 9N3 − 108N2 + 212N − 84
4N (N6 − 5N5 + 6N4 + 7N3 − 23N2 + 18N − 4) (5.36)

b1 = 1
4N (N6 − 5N5 + 6N4 + 7N3 − 23N2 + 18N − 4)

(
N12 − 24N11 + 220N10 +

−890N9 + 868N8 + 5388N7 − 19551N6 + 18504N5 + 26072N4 − 80536N3 +

+74256N2 − 24800N + 2832
) 1

2

a2 = N6 − 8N5 + 23N4 − 16N3 − 100N2 + 236N − 152
4(N − 1)2N (N4 − 3N3 + 8N − 8)

b2 = 1
4(N − 1)2N (N4 − 3N3 + 8N − 8)

(
N12 − 24N11 + 222N10 +

−928N9 + 1129N8 + 4720N7 − 20120N6 + 25128N5 + 14688N4 − 83520N3 +

+107088N2 − 62784N + 14656
) 1

2
.

We note that µ4 and µ6,7 start to differ at order O(N−6), whereas µ5 and µ8,9 differ at
order O(N−4). This result is not surprising from the supergravity point of view: the weight
of multi particle states is only protected to leading order in N . Interactions between the
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single particle states will lead to corrections at subleading order, which is exactly what we
find here.1
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A 1/4-BPS states in Sym2(T 4)

In this section we will use representation theory arguments to calculate the quarter-BPS
spectrum of a generic point in the moduli space of Sym2(T 4). Before doing so, we will first
review the argument computing the generic quarter-BPS spectrum for a K3 surface, first
done in [27].

A.1 Generic BPS spectrum in K3

The K3 sigma model is governed by the small N = 4 superconformal algebra at c = 6.
This algebra has two massless representations whose characters were computed in [50, 51].
The two massless characters combine to form a massive character via

χG(q, y) + 2χM (q, y) = χlong(q, y). (A.1)

The elliptic genus is insensitive to times when the quarter-BPS states “pair up,” as in (A.1).
However, of the two massless representations, one is the vacuum multiplet. If we assume
that a generic point in the conformal manifold, the chiral algebra is not enhanced, then
this fully determines the quarter-BPS spectrum. This was used in [27] to calculate the
generic BPS spectrum. The generic BPS spectrum

ZBPS = χGχG + 20χMχM +
∞∑
h=1

Nhq
h
(
χG + 2χM

)
χM + c.c. (A.2)

has elliptic genus

ZEG = −2χG + 20χM +
∞∑
h=1

Nhq
h
(
χG + 2χM

)
. (A.3)

Therefore
∞∑
h=1

Nhq
h = ZEG(q, y) + 2χG(q, y)− 20χM (q, y)

χG(q, y) + 2χM (q, y)

= 90q + 462q2 + 1540q3 + . . . . (A.4)
1We thank Alex Belin for discussion of the supergravity interpretation of our results.
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Note that although naively the second line of (A.4) is y-dependent, the final answer is
not. It was also pointed out in [27] that a necessary consistency condition for (A.4) to
be the generic quarter-BPS spectrum is for all the coefficients to be non-negative integers.
We also pause to point out that these integers have interesting relations to irreducible
representations of the sporadic Mathieu group M24 [29].

The fact that a generic point in moduli space has no additional currents was checked
in conformal perturbation theory away from the orbifold point T 4/Z2 [28]. There, the first
term of (A.4) was checked.

A.2 Generic BPS spectrum in Sym2(T 4)

The chiral algebra of a generic point in the symmetric product of T 4 is larger than that of
K3. Instead of the small N = 4 algebra, the theory has contracted large N = 4 algebra.
The characters of this algebra were computed in [44, 45]. At c = 12, the same phenomena
happens as in K3: there are only two massless representations, of which one is the vacuum
multiplet. Therefore if we assume that a generic point in moduli space has no additional
conserved currents, we can repeat the argument in section A.1 to compute the generic
quarter-BPS spectrum. If we call the massless characters χ0, χ1 with χ0 being the vacuum,
they combine into a long multiplet as:

χ0(q, y) + 2χ1(q, y) = χlong(q, y). (A.5)

Note that because of the fermion zero modes, the quantity that is protected under (A.5)
is no longer the elliptic genus (which trivially vanishes), but the “modified” index of [32].
The generic BPS spectrum is given by

ZBPS = χ0χ0 + 5χ1χ1 +
∞∑
h=1

Nhq
h
(
χ0 + 2χ1

)
χ1 + c.c. (A.6)

where the first two lines are determined by the half-BPS spectrum (which can be read off
from the hodge diamond). This has modified index

Zmodified EG = 2χ0 − 5χ1 −
∞∑
h=1

Nhq
h
(
χ0 + 2χ1

)
(A.7)

so therefore
∞∑
h=0

Nhq
h = Zmodified EG(q, y)− 2χ0(q, y) + 5χ1(q, y)

−χ0(q, y)− 2χ1(q, y)

= 42q2 + 70q3 + 324q4 + 672q5 + 1820q6 + 3726q7 + 8370q8 + 16380q9 + . . . .

(A.8)

In [34, 36], the first four terms (i.e. the terms up to q4) of (A.8) were computed from
conformal perturbation theory.

For reference recall Zmodified EG(q, y) was computed in (5.8) of [32] and has the first
few terms for Sym2(T 4):

Zmodified EG(q, y) =
(
2y2 + y − 6 + y−1 + 2y−2

)
+ (A.9)

+
(
y−3 − 12y−2 + 39y−1 − 56 + 39y − 12y2 + y3

)
q + . . . .
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B 3-point functions in SymN (T 4)

In this appendix we consider the lifting 4-point function of the flavor current Ĵ (−) which was
evaluated in section 5.2 explicitly. An alternative derivation of the result is given in terms
of a finite sum of squares of 3-point function using formula (3.24) — see the discussion
below eq. (5.18).

We shall compute I1 defined in eq. (3.15):

I1 = 〈Ĵ (+)(z1, z̄1) O′†(z2, z̄2) O′(z3, z̄3) Ĵ (−)(z4, z̄4)〉 (B.1)
=
∑
χ

〈Ĵ±,3(z1, z̄1) O′†(z2, z̄2)|χ〉〈χ|O′(z3, z̄3) Ĵ±,3(z4, z̄4)〉 .

The 3-point functions we are interested in computing are of the form

C := 〈Ĵ (−)(z1, z̄1) O′†(z2, z̄2)χ(0, 0)〉 (B.2)
=
〈

Ψ̄(1)
− 1

2
Ψ(2)
− 1

2
(z1, z̄1) (∂X1

− 1
2
Ψ̄1

0 + ∂X2
− 1

2
Ψ̄2

0)σ
1
2

1
2

1
2

1
2 (z2, z̄2) χ(0, 0)

〉
.

The intermediate fields χ which contribute to lifting have conformal dimensions hχ = 1,
h̄χ = 1

2 . Moreover, group selection rule requires χ to be in the twisted sector. As such, the
anti-holomorphic part of χ can only be in the twist ground state. The holomorphic part
has excitations which are restricted by the bosonic and fermionic excitations of Ĵ (−) and
O†. It turns out the only intermediate field in this case is: χ = 1√

2∂X
(4)
− 1

2
Ψ1

0σ
− 1

2−
1
2−

1
2−

1
2 :

C =
〈

Ψ̄(1)
− 1

2
Ψ(2)
− 1

2
(z1, z̄1) (∂X1

− 1
2
Ψ̄1

0 + ∂X2
− 1

2
Ψ̄2

0)σ
1
2

1
2

1
2

1
2 (z2, z2)

× 1√
2
∂X̄2
− 1

2
Ψ1

0σ
− 1

2−
1
2−

1
2−

1
2 (0, 0)

〉
. (B.3)

Bosonising the fermions and the current — see eqs. (2.19) and (2.12) — we find:

C =
〈

:ei(−H(1)+H(2)): (z1, z̄1) :
(
e
i
2 (−H(1)+H(2))X1

− 1
2

+ e
i
2 (H(1)−H(2))∂X2

− 1
2

)
σb: (z2, z̄2)×

× 1√
2

:e
i
2 (H(1)−H(2))∂X̄2

− 1
2
σb: (0, 0)

〉
= 1

2
√

2
1

z
3
2
2 z̄2

〈
: ei(−H(1)+H(2)) : (z1, z̄1) : e

i
2 (H(1)−H(2)) : (z2, z̄2) : e

i
2 (H(1)−H(2)) : (0, 0)

〉

= 1
2
√

2
1

z
3
2
2 z̄2

z
1
2
2

(z1 − z2)z1
. (B.4)

Next, sending z1 →∞ and z2 → 1, we find that C = 1
2
√

2 . This establishes the claim below
eq. (5.18).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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