
J
H
E
P
1
0
(
2
0
2
1
)
0
8
8

Published for SISSA by Springer

Received: June 28, 2021
Accepted: September 21, 2021

Published: October 12, 2021

The qT and ∆φ spectra in W and Z production at
the LHC at N3LL′+N2LO

Wan-Li Ju and Marek Schönherr
Institute for Particle Physics Phenomenology, Durham University,
Durham DH1 3LE, U.K.

E-mail: wan.l.ju@durham.ac.uk, marek.schoenherr@durham.ac.uk

Abstract: The production of weak gauge bosons, W± and Z, are at the core of the
LHC precision measurement program. Their transverse momentum spectra as well as their
pairwise ratios are key theoretical inputs to many high-precision analyses, ranging from
the W mass measurement to the determination of parton distribution functions. Owing to
the different properties of the W and Z boson and the different accessible fiducial regions
for their measurement, a simple one-dimensional correlation is insufficient to capture the
differing vector and axial-vector dynamics of the produced lepton pair. We propose to
correlate them in two observables, the transverse momentum qT of the lepton pair and its
azimuthal separation ∆φ. Both quantities are purely transverse and therefore accessible in
all three processes, either directly or by utilising the missing transverse momentum of the
event. We calculate all the single-differential qT and ∆φ as well as the double-differential
(qT ,∆φ) spectra for all three processes at N3LL′+N2LO accuracy, resumming small trans-
verse momentum logarithms in the soft-collinear effective theory approach and including
all singlet and non-singlet contributions. Using the double-differential cross sections we
build the pairwise ratios RW+/Z , RW−/Z , and RW+/W− and determine their uncertain-
ties assuming fully correlated, partially correlated, and uncorrelated uncertainties in the
respective numerators and denominators. In the preferred partially correlated case we find
uncertainties of less than 1% in most phase space regions and up to 3% in the lowest qT
region.

Keywords: QCD Phenomenology

ArXiv ePrint: 2106.11260

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2021)088

mailto:wan.l.ju@durham.ac.uk
mailto:marek.schoenherr@durham.ac.uk
https://arxiv.org/abs/2106.11260
https://doi.org/10.1007/JHEP10(2021)088


J
H
E
P
1
0
(
2
0
2
1
)
0
8
8

Contents

1 Introduction 1

2 Details of the calculation 4
2.1 Factorisation and fixed-order functions 4
2.2 Hard function: non-singlet and singlet contributions 6
2.3 Resummation 10
2.4 Power corrections 12
2.5 Matching to fixed-order QCD and observable calculation 13

3 Numerical results 14
3.1 Setup and fiducial region 14
3.2 Validation 18
3.3 Resummation improved results 22
3.4 The W±/Z and W+/W− correlations 27

4 Conclusions 32

A Impact of the singlet contributions 34

B Impact of leptonic power corrections 37

C Fixed-order functions 40

1 Introduction

One of the most important observables at the LHC is the differential spectrum of the elec-
troweak gauge bosons in their leptonic decay channels [1–11]. The extraordinary precision
reached by the ATLAS and CMS collaborations in their measurements enables the precision
extraction of the parameters of the Standard Model (SM), such as the W boson mass [12]
and parton densities [13–16]. In order to exploit this precision data to its fullest, however,
theory calculations of equal precision are indispensable. Of particular interest here are
angular observables of the final state leptons, such as φ∗ in Z production [17, 18], as the
angular resolution of charged objects is much more precise than their energy resolution,
which is needed for pT-type observables. The purely transverse azimuthal decorrelation
∆φ of the lepton pair carries the same experimental advantages as φ∗, while being less
favoured theoretically as it is not weighted by the scattering angle and, thus, less sensitive
to the vector boson transverse momentum qT.
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Unfortunately, the measurement of W production always involves the determination
of the event’s missing momentum as a proxy for the inaccessible neutrino momentum. Fur-
thermore, only the transverse part of the missing momentum can be determined at hadron
colliders due to the composite nature of the incident protons and the incomplete detec-
tor geometry, and thus all W observables have to be constructed solely in the transverse
plane. As such, observables such as φ∗ can not be used, in contrast to its simpler version
∆φ, the azimuthal decorrelation of the lepton and the missing transverse momentum. For
its lepton ingredient it has the same experimental advantages as φ∗, depending only on
the lepton direction but not its momentum. Conversely, however, the missing transverse
momentum’s transverse direction resolution, being determined by the sum of all other
measurable particles’ momentum vectors, is not significantly improved as compared to its
magnitude [19–22]. Still, in combination, a better resolution for ∆φ should be achievable
as compared to the transverse momentum qT of the reconstructed W boson.

Similarly, due to the purely transverse nature of measurable missing momentum vec-
tor as well as the rapidity limitations of the physical lepton detectors (electromagnetic
calorimeter and muon chambers), the fiducial regions for lepton-neutrino and lepton-pair
final states differ by definition. Thus, any correlation of the two production processes
that aims for the precise extrapolation from one to the other, as is paramount in the W
mass measurements for example, should take into account detector-acceptance-induced dif-
ference of the internal dynamics of both systems. Hence, also multidifferential precision
predictions of the W+, W− and Z production cross sections and their ratios are needed.

On the theory side, the Drell-Yan processes have drawn extensive attention for decades.
The total cross section at LO [23] was one of the earliest processes calculated in the Stan-
dard Model, and its NLO QCD corrections have been derived soon after [24–28]. The
NNLO QCD corrections [29–36] and, very recently, the third-order QCD results [37, 38]
are known as well. Similarly, the transverse momentum spectrum of the gauge boson at fi-
nite qT is known also up to O(α3

s) [39–50]. In addition to the QCD corrections higher-order
electro-weak (EW) effects [51–62] and QCD-EW mixed corrections emerging at two-loop
order [63–73] are of importance at this level of accuracy as well.

In addition, the small transverse momentum region of the gauge boson is of particular
interest as it contains the bulk of the production cross section. In light of its sensitivity to
the soft and collinear radiations, fixed-order calculations are dominated by the powers of
large logarithms of the form ln λT, with λT ≡ qT/m and m being the mass of the produced
(off-shell) gauge boson, spoiling the convergence of the perturbative expansion. It is thus
imperative to resum these logarithms to all perturbative orders.

Based on the infrared-collinear (IRC) properties of QCD, the exploration of the small-
qT exponentiation has been a topic of investigation since the formulation of the the-
ory [74–83], and the first all-order proof was achieved by Collins, Soper and Sterman [84].
After that, a formalism of recombining the occurring ingredients has been proposed in
refs. [85–87], such as to arrive at a process-independent Sudakov form factor. In the recent
decades, many efforts have been devoted to this theme and alternative schemes have been
proposed and implemented, such as the distributional space resummation [88], the direct
momentum-space resummation [89–92] and a number of variants within the soft-collinear
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effective theory (SCET) [93–95]. As one of the more popular factorisation techniques,
SCET enables a formal but flexible way to explore the factorisation properties in the
small-qT domain [96–102].

With the progresses made in the framework development, the resummation accuracy
has increased steadily. Throughout this work, we take the following counting rule for the
resummation results,

dσ
d2~qT

∼σBorn · exp
[

ln λTf0(αs ln λT)︸ ︷︷ ︸
(LL)

+ f1(αs ln λT)︸ ︷︷ ︸
(NLL,NLL′)

+αsf2(αs ln λT)︸ ︷︷ ︸
(N2LL,N2LL′)

+α2
sf3(αs ln λT)︸ ︷︷ ︸
(N3LL,N3LL′)

+ . . .

]

·
{

1(LL,NLL);αs(NLL′,N2LL);α2
s(N2LL′,N3LL);α3

s(N3LL′,N4LL); . . .
}
, (1.1)

where the exponent indicates the anomalous dimension level required by the resumma-
tion accuracy, the desired perturbative level for the fixed-order functions is presented
in the curly brackets. We have taken αs ln λT ∼ O(1) here. In the previous investiga-
tions, the N2LL calculations were carried out in refs. [96, 103–109], whilst the authors in
refs. [91, 92, 110–112] have accomplished N3LL very recently. Thanks to the developments
in fixed-order perturbative calculations, the cusp anomalous dimension has achieved four-
loop accuracy [113] and the fixed-order ingredients (including the non-singlet quark form
factor [114], soft [102, 115] and beam functions [116–118]) at N3LO are available now. The
non-cusp anomalous dimensions can be extracted from the latter sectors.

Consequently, we present in this work N3LL′ accurate calculations where the fixed-
order functions are improved by one power of αs order with respect to the unprimed accu-
racy.1 During our calculation, not only are the ingredients mentioned above assembled, the
singlet contributions in the neutral Drell-Yan process are also addressed for completeness.
In spite of its expected smallness, the singlet contribution in fact acts as the essential con-
stituent starting from N2LL′ or N3LL. To include it, the low energy effective field theory
(LEEFT) [121–126] resulting from integrating out the top quark has been employed in this
work. With the help of the availability of the complete four-momenta of the final state
leptons and neutrinos, we compute the qT spectrum in an experimentally accessible fiducial
region. Additionally, this work will also project the resummation of small-qT logarithms on
the azimuthal decorrelation ∆φ, and compute single- and double- differential cross sections
and their ratios.

The paper is organised as follows: in section 2 we detail the ingredients of our cal-
culation, emphasising on the specifics of the resummation. Section 3 then presents the
results for off-shell Z, W+ and W− production and the respective W±/Z ratios, double
differential in (qT,∆φ). Section 4 summarises our findings. Finally, the appendices collect
the details on the specific size and impact of the singlet contributions and leptonic power
corrections. They also detail the process-specific hard functions.

1During the preparation of this work, two papers [119, 120] at N3LL′ accuracy have appeared very
recently.
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2 Details of the calculation

In this section we detail the construction of our resummed results using the SCET formalism
for both the qT and ∆φ observables. These expressions, fully differential in the lepton
momenta, are then matched to the respective fixed-order calculation.

2.1 Factorisation and fixed-order functions

From the QCD factorisation theorem [127], the differential cross section for the Drell-Yan
(DY) process can be expressed as

d5σ

d2~qT dYL dM2
L dΩL

=
∑
i,j

∫ 1

τmin
dτ ffij(τ, µF ) d5σ̂ij(τ, µR, µF )

d2~qT dYL dM2
L dΩL

, (2.1)

where YL andML stand for the rapidity and the invariant mass of the final state lepton pair,
respectively. ΩL represents the solid angle of one of the final leptons in the lepton-pair rest
system. σ̂ij denotes the partonic cross section which depends on the renormalisation scale
µR as well as the factorisation scale µF . ffij is the effective parton luminosity function. It
is defined as

ffij(τ, µF ) =
∫ 1

τ

dξ

ξ
fi/N+(ξ, µF ) fj/N−(τ/ξ, µF ) , (2.2)

where fi/N is the parton distribution function (PDF) for the parton i out of the nucleon N±
traveling in the ±z direction. In addition, eq. (2.1) also involves the parameter τ ≡ ŝ/s,
where s and ŝ are the square of the hadronic and partonic colliding energies, respectively.
Its minimal value is a function of the invariant mass and transverse momentum to be
produced,

τmin = 1
s

[
cosh(YL)MT +

√
q2

T + sinh2(YL)M2
T

]2
. (2.3)

Therein, MT =
√
M2
L + q2

T. In the small qT regime particularly concerned, the partonic
cross section σ̂ij can be factorised further. In the context of SCET, one can in principle
utilise the decoupling transformation [94] to express σ̂ij as a convolution of hard, collinear
and soft sectors. However, neither the collinear nor soft sector at this stage is well-defined
due to the appearance of the rapidity singularity [128]. Various different regulators have
been proposed in the recent years, such as the analytic regulator [96, 98], the ∆ regula-
tor [99, 100] and exponential regulators [101, 102]. In light of its particular performance
in the fixed-order calculations, the framework with the exponential regulator will be em-
ployed in this work. In this approach, the factorisation formula of eq. (2.1) can be rewritten
as [101, 102],

d5σ

d2~qT dYL dM2
L dΩL

= 1
16s(2π)4M2

L

∑
i,j

[ ∫
d2~bT ei

~bT·~qT HVij(ML,ΩL, µR) S(~bT, µR, ν)

Bi+(η+,~bT, µR, ν) Bj−(η−,~bT, µR, ν)
]

+O(λT) .

(2.4)
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Therein the light-cone decomposition has been carried out upon the impact parameter
b, i.e.,

bµ = b · n+
2 nµ− + b · n−

2 nµ+ +~bT ≡ b+nµ− + b−n
µ
+ +~bT . (2.5)

Here n± are two reference vectors satisfying n2
± = 0 and n+ · n− = 2. For later reference,

we also introduce the light-cone coordinate bµ ≡ (b+, b−,~bT).
The integrand of eq. (2.4) comprises three kinds of ingredients. S(~bT, µR, ν) is the soft

function encoding all the soft quantum fluctuations surrounding the beam. As a result
of the ultraviolet (UV) and rapidity divergences, it possesses explicit dependences on the
virtuality scale µR and the rapidity scale ν. The definition of S reads [101]

S(~bT, µR, ν) = Z−1
S lim

τ→0+

1
Nc
〈0|Tr

[
Y
†
+Y −(−ib0τ ,−ib0τ ,~bT)Y †−Y +(0)

]
|0〉
∣∣∣∣
τ= 1

2ν

, (2.6)

where Z−1
S is the soft renormalisation constant, Y ± stands for the incoming Wilson line

along the n± direction, and τ here denotes the rapidity regulator and b0 = 2eγE . Currently,
the soft function S(~bT, µR, ν) is known at N3LO accuracy [102].

The beam functions B± contain the collimated contributions along the ±z direction.
Introducing the momentum fractions η± = ML exp(±YL)/

√
s, the field-operator definition

for B+ is [101, 129]

Bi+(η+,~bT, µR, ν) =

Z−1
B+
Z−1

0 lim
τ→0+

∫ db+
2π e−2iη+b+P−〈P |χ̄+,i(−ib0τ ,−ib0τ + b+,~bT)

/n−
2 χ+,i(0)|P 〉

∣∣∣∣
τ= 1

2ν

,
(2.7)

where Z−1
B+

is the collinear renormalisation constant, Z−1
0 is the zero-bin subtractor to

remove the soft-collinear overlapping contribution, χ+,i is the gauge-invariant building
block for the collinear quark qi [130, 131] in +z direction. The expression for B− or the anti-
quark case can be obtained through changing the light-cone components or field operators
in eq. (2.7), respectively. Working in the hierarchy qT � ΛQCD, the beam function can be
further factorised into the following form [101, 129],

Bi±(η±,~bT, µR, ν) =
∑
j

∫ 1

x±

dξ

ξ
Iij(ξ,~bT, µR, µF , ν) fj/N±

(
η±
ξ
, µF

)
, (2.8)

where the factorisation scale µF emerges in the right-hand side in the usual way. Consid-
ering the µF dependence of the PDFs will cancel against that in Iij order by order, we
suppress µF in the B± arguments. Currently, the hard-collinear function Iij is known at
the N3LO accuracy [116, 129, 132].

In addition to the soft and beam functions, the factorisation formula in eq. (2.4)
also involves the hard sector HVij (V = γ/Z,W±). HVij can be calculated from the UV
renormalised partonic amplitudes,

HVij =
∑

col,pol
ZB+ZB−ZS

∣∣∣M(qiq̄j → V ∗ → `¯̀)
∣∣∣2 , (2.9)
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(a) Non-singlet amplitude. (b) Singlet amplitude induced
by a vector current.

(c) Singlet amplitude induced
by an axial-vector current.

Figure 1. Representative Feynman diagrams which contribute to the hard functions. The curly and
straight lines denote the gluon and quark propagators, respectively. The crossed circle represents
the electroweak current operator.

where the sum runs over all the colours and polarisations of the initial partons and in-
cludes the appropriate averaging factors. As the result of renormalisation, |M|2 is free of
UV divergences but presents manifest IRC singularities. From the strategy of asymptotic
expansion [133, 134], these IRC behaviours should be exactly removed by the product of
ZB+ , ZB− and ZS and thus HVij is left as a finite quantity. In contrast to Bi± and S, which
are universal within the three processes under consideration in this paper, the hard func-
tion depends on the process and encodes the specifics of the hard partonic interaction. In
section 2.2 their structure will be detailed.

2.2 Hard function: non-singlet and singlet contributions

The Feynman diagrams contributing to the three hard processes under consideration in
this paper, off-shell Z or W± production, can be grouped into two categories according to
whether or not the incident quark lines are connected to the EW vertex or not: the singlet
and non-singlet contributions (see figure 1). Here, the non-singlet contribution of figure 1a
collects all configurations that connect the external quark lines to the EW vertex while
all other configurations are part of the singlet contribution. The latter can be subdivided
according to whether they couple to the vector or axial-vector part of the EW vertex, as
depicted in figure 1b and figure 1c, respectively.

Z production. Here, the quarks coupling to the EW vertex are always of the same
flavour. Hence, both singlet and non-singlet amplitudes contribute. In the following, their
construction and embedding in the resummation framework is detailed. Their numerical
impact is fully examined in appendix A. In essence, while at N2LO the impact of the singlet
contributions is numerically small, it reaches the same size at N3LO as the standard non-
singlet contribution and it is essential to include it.

All needed amplitudes can in principle be calculated in the full SM and evaluated loop
by loop. However, the presence of multiple mass scales complicates the loop integrations
considerably, rendering this method somewhat involved. Alternatively, in this work we will
employ LEEFT resulting from the SM by integrating out the top quark. For the vector
current, due to its conservative nature, the matching from SM onto LEEFT amounts to

– 6 –
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the re-definitions of the strong coupling αs as well as the field operators [121, 122].2 As a
result, one can collect the effective vector currents as

V µ
γ =

∑
qi=u,d,c,s,b

gqiγ q̄iγ
µqi ,

V µ
Z =

∑
qi=u,d,c,s,b

gqiV q̄iγ
µqi .

(2.10)

It is apparent that the expressions for SM light quark vector currents are formally retained
in V µ

γ/Z . For later convenience the currents induced by γ∗qq̄ and Z∗qq̄ vertices are listed
separately. In absence of the EW corrections, one can always distinguish them. The
coupling factors gqiγ,V collect the EW coupling constants,

gqγ = eQq , gqV = e

sw cw

(
T 3
q

2 −Qq s2
w

)
. (2.11)

Here we utilise e as the electromagnetic coupling and sw and cw as the sine and cosine of
the weak-mixing angle θw. T 3

q and Qq are the third component of the weak isospin and
charge for the quark q, respectively.

The axial-vector current on the other hand, which exists only for Z boson exchange,
requires a more delicate matching procedure. As the renormalisability of SM relies on the
anomaly cancellation within each quark generation, the removal of the top quark by brute
force will break the renormalisation group invariance (RGI) explicitly and thus it necessi-
tates an additional renormalisation constant in the LEEFT for its restoration. To this end,
the following operator basis is proposed for the axial-vector effective current [123–126],

AµZ = gA

 ∑
i=1,2,3

∆ns
i + CtOs

 , (2.12)

where the coupling factor gA again collects the EW coupling constant, i.e.

gA = − e

4 sw cw
. (2.13)

It is independent of the quark flavour. ∆ns
i stands for the non-singlet operators of the ith

quark generation,

∆ns
1 = ūγµγ5u− d̄γµγ5d, ∆ns

2 = c̄γµγ5c− s̄γµγ5s, ∆ns
3 = Os

NF
− b̄γµγ5b . (2.14)

For the first two quark generations, the operators ∆ns
1,2 are formally identical to those in

SM, whilst for the third one, ∆ns
3 is artificially constructed to facilitate the anomalous

cancellation. Here NF represents the number of massless quarks, taking the value NF = 5
throughout this work. Os is the singlet operator, which is defined as

Os =
∑

qi=u,d,c,s,b
q̄iγ

µγ5qi. (2.15)

2This work takes mu,d,c,s,b = 0 throughout and hence the redefinition of quark masses is not essential
here.
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In addition, AµZ also comprises a novel structure CtOs beyond what is present in the
SM. In presence of the axial-anomaly, the renormalised singlet Os operator exhibits the
explicit dependence on the renormalisation group transformations (RGT). However, this
RGT-dependence will be eliminated order by order by the Wilson coefficient Ct such that
the RGI is still maintained in LEEFT. To calculate Ct, one needs to compare the SM
amplitudes induced by t̄γµγ5t − b̄γµγ5b with those from Os in the limit ML � mt. Here
mt denotes the pole mass of the top quark. In this work we follow the conventions of [125],

Ct = − 1
NF

+
(
αs
4π

)2 (
− 8Lt + 4

)
+
(
αs
4π

)3 (
−184

3 L2
t −

784
9 Lt + 208ζ3 −

6722
27

)
. (2.16)

where Lt = ln(µ2/m2
t ). Here the tree-level result (−1/NF ) balances the Os/NF term in

∆ns
3 . The singlet contribution starts from the two-loop level and the O(α2

s) results can be
either straightforwardly read from the axial-anomaly form factor in ref. [135], or extracted
from [124, 136]. The third order expressions can be found in ref. [123]. Particular attention
needs to be noted that in refs. [123, 124] the Os operator is renormalised in a different
prescription from those in refs. [125, 135]. Their conversion is essential and we present the
corresponding details in appendix C.

Now that we have all ingredients at hand we can finally calculate the hard function.
From eq. (2.9), the hard sector can be addressed from the square of IRC-subtracted on-
shell amplitudes. In absence of EW corrections, the amplitudes involved can be naturally
decomposed into two parts: the hadronic and the leptonic currents. The hadronic cur-
rent can be expressed using the effective vector and axial-vector currents, V µ

Z/γ and AµZ ,
respectively. More explicitly, we have

Hµ,ij
γ =

√
ZB+ZB−ZS 〈0|V µ

γ |qiq̄j〉 =
(
gqiγ Cns + gΣ

γC
V
s

)
Vµij ,

Hµ,ij
Z,V =

√
ZB+ZB−ZS 〈0|V

µ
Z |qiq̄j〉 =

(
gqiV Cns + gΣ

V C
V
s

)
Vµij ,

Hµ,ij
Z,A =

√
ZB+ZB−ZS 〈0|A

µ
Z |qiq̄j〉 = gA

[(
2Tqi + 1

NF

)
Cns + CtC

A
s

]
Aµij ,

(2.17)

where gΣ
γ/V is introduced to collect the EW coupling, namely,

gΣ
γ ≡

∑
qi=u,d,s,c,b

gqiγ , gΣ
V ≡

∑
qi=u,d,s,c,b

gqiV . (2.18)

Vµij and Aµij are born level amplitudes induced by the vector and axial-vector vertices,
respectively. Their expressions read,

Vµij = δij 〈0|q̄iγµqi|qiq̄i〉
∣∣∣
Born

, Aµij = δij 〈0|q̄iγµγ5qi|qiq̄i〉
∣∣∣
Born

. (2.19)

As the massless QCD interactions conserve chirality, one can always factor them out after
the renormalisation and IRC-pole subtraction. In addition, we have also utilised a set
of hard coefficients in eq. (2.17) encoding the loop corrections. Cns contains all the non-
singlet contributions (see figure 1a) and can be extracted from the γ∗qq̄ form factor. In the
recent years, the γ∗qq̄ form factor has been calculated up to three-loop level [114, 137, 138].
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Further, CVs stems from the singlet contribution to the vector current (see figure 1b). As
Furry’s theorem forbids contributions at two-loop order, the lowest order result enters at
O(α3

s), see [114, 138]. Similarly, CAs represents the QCD corrections induced by Os. Its
N2LO expression can be extracted from refs. [114, 135, 137, 138], while the logarithmic
dependences at third-loop order accuracy can be obtained from the anomalous dimensions.
The specific expressions for all three coefficient functions Cns, CVs and CAs are listed in
appendix C.

Besides the hadronic contributions, the hard function also comprises the leptonic ones,
namely the leptonic currents, including the vector boson propagators,

Lµγ =
g`γ
M2
L

〈`+`−|¯̀γµ`|0〉 ,

LµZ,V = g`V
M2
L − µ2

Z

〈`+`−|¯̀γµ`|0〉 ,

LµZ,A = g`A
M2
L − µ2

Z

〈`+`−|¯̀γµγ5`|0〉 .

(2.20)

Therein, µZ stands for the complex mass of Z boson, which will be introduced properly in
section 3.1. In absence of EW corrections, the couplings of the leptonic sector g`γ,V,A can
be inferred from the leading order vertices,

g`γ = eQ` , g`V = e

sw cw

[
T 3
`

2 −Q` s
2
w

]
, and g`A = − e

sw cw
· T

3
`

2 . (2.21)

Putting all pieces together, the hard function can be expressed as

Hγ/Zij (mt,ML,ΩL, µ) =
∑

col,pol

∣∣∣Hµ,ij
γ Lγ,µ +

(
Hµ,ij
Z,V +Hµ,ij

Z,A

) (
LZ,V,µ + LZ,A,µ

)∣∣∣2 . (2.22)

W± production. In this process, as the quarks participating in the EW vertex are
always of different flavours, only non-singlet diagrams will contribute. In analogy to
eqs. (2.17)–(2.22), we write the hard functions as

HWij (ML,ΩL, µ) =
∑

col,pol

∣∣Hµ,ij
W LW,µ

∣∣2 , (2.23)

where

Hµ,ij
W = e Vji

2
√

2 sw
Cns 〈0|q̄jγµ(1− γ5)qi|qiq̄j〉

∣∣∣
Born

,

LµW = e

2
√

2 sw
1

M2
L − µ2

W

〈`±ν(ν̄)|¯̀γµ(1− γ5)`|0〉 .
(2.24)

Here Vji signals the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and µW represents the
complex mass of the W boson.
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2.3 Resummation

With the help of eq. (2.4), the scales relevant to the small qT regime can be successfully
separated. However, in presence of the scale hierarchy, such as qT � ML, any fixed-order
expansion of eq. (2.4) will suffer from the large logarithmic terms reducing the pertur-
bativity. To address this issue, we employ the solutions of RGEs as well as the rapidity
group equations (RaGEs) to carry out the scale evolution. In this way, the fixed-order
functions contribute only at their intrinsic scales and the large logarithmic terms arising
from the scale hierarchy can collectively be resummed within the exponential functions of
the evolution. The procedure is detailed in the following.

We begin with the RGEs and RaGEs for each sector. The RGE for Ct reads

d
d lnµ2 lnCt(mt, µ) = −γt , (2.25)

where γt is the anomalous dimension and its N3LO result can be found in ref. [125]. The
evolution equations for Cns, CAs and CVs can be expressed as

d
d lnµ2 lnCns(ML, µ) = Γcusp

2 ln
[−M2

L − iε
µ2

]
+ γh ,

d
d lnµ2 lnCAs (ML, µ) = Γcusp

2 ln
[−M2

L − iε
µ2

]
+ γh + γt ,

d
d lnµ2 lnCVs (ML, µ) = Γcusp

2 ln
[−M2

L − iε
µ2

]
+ γh ,

(2.26)

where Γcusp stands for the cusp anomalous dimension. Its result is known at the three-loop
accuracy [139], whilst the four-loop evaluation has been accomplished very recently [113].
γh represents the hard anomalous dimensions and can be extracted from [114]. The remain-
ing equations for the soft and beam functions, S and B± introduced in eqs. (2.6) and (2.7),
read [101]

∂

∂ lnµ2 lnS(~bT, µ, ν) = Γcusp ln
[
µ2

ν2

]
− γs ,

∂

∂ lnµ2 lnB±(η±,~bT, µ, ν) = Γcusp ln
[

ν

η±
√
s

]
+ γb ,

(2.27)

and

∂

∂ ln ν2 lnS(~bT, µ, ν) = − 2 ∂

∂ ln ν2 lnB±(η±,~bT, µ, ν)

= γr

[
αs

(
b0
bT

)]
+
∫ b20

b2T

µ2

dµ̄2

µ̄2 Γcusp [αs(µ̄)] .
(2.28)

Therein, γs is the soft anomalous dimension, on which the accuracy has already arrived at
N3LO [115]. γb is the non-cusp anomalous dimension for the beam function, which can be
derived from the consistency relationship γb = (γs− 2γh)/2. In addition to the ingredients
of the RGEs, the rapidity anomalous dimension, γr, is involved within the RaGEs. Its
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Logarithmic accuracy Cns, CAs , CVs , Ct, S, B Γcusp γt,h,s,b

NLL′ O(αs) O(α2
s) O(αs)

N2LL′ O(α2
s) O(α3

s) O(α2
s)

N3LL′ O(α3
s) O(α4

s) O(α3
s)

Table 1. Needed accuracy of the fixed-order inputs to achieve a given logarithmic accuracy of the
resummation, in accordance with eq. (1.1).

universality (or the rapidity regulator independence) has been discussed in refs. [101, 140],
and the N3LO results are detailed in refs. [102, 140].

With all ingredients collected, we can now carry out the resummation. In this work,
the resummed distributions are calculated at NLL′, N2LL′, and N3LL′ level. For each level
of the logarithmic accuracy, the perturbative order for each ingredient can be found out in
eq. (1.1) and has been also summarised in table 1. Note that as the accuracy of the fixed-
order functions is counted with respect to the Born cross section, only the O(α3

s) terms for
CVs are needed in this paper. The resummed spectrum is then obtained by substituting
the solutions of the RGEs as well as RaGEs into eq. (2.4), giving

d4σres
d2~qT dYL dM2

L dΩL
= 1

16s(2π)4M2
L

∑
i,j

∫
d2~bT ei

~bT·~qT UV (µh, µb± , µs, νb±) UR(µs, νb± , νs)

× H̃V,res
ij (ML,ΩL, µh) S(~bT, µs, νs)

× Bi+(η+,~bT, µb+ , νb+) Bj−(η−,~bT, µb− , νb−) ,
(2.29)

where the kernels UV,R, respectively, implement the virtuality and rapidity evolutions.
Their explicit expressions read

UV = exp
{∫ µ2

b±

µ2
h

dµ̄2

µ̄2

[
− Γcusp ln

(
µ̄2

M2
L

)
+ 2γh

]
+
∫ µ2

b±

µ2
s

dµ̄2

µ̄2

[
Γcusp ln

(
µ̄2

ν2
b±

)
− γs

]}
,

UR = exp
{

ln
[
ν2
b±

ν2
s

] [
γr

(
αs

(
b0
bT

))
+
∫ b20

b2T

µ2
s

dµ̄2

µ̄2 Γcusp [αs(µ̄)]
]}

.

(2.30)

Therein, a set of auxiliary scales, µh,b±,s and νb±,s, are introduced to reduce the logarithmic
impacts from the fixed-order ingredients. An appropriate choice facilitates the convergence
of the resummed spectra, for their precise values see section 3.1.

Finally, H̃V,res
ij is the part of the hard function participating in the resummation. In

W± production, as ML is the only physical scale in the hard sector, the natural choice
of scale µh can be easily identified (assuming it is related to ML). H̃V,res

ij then coincides
directly with HWij from eq. (2.23), giving

H̃W,res
ij (ML,ΩL, µh) = HWij (ML,ΩL, µh) . (2.31)
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Conversely, the hard function in Z production, contains a second intrinsic scale in ad-
dition to ML, mt, originating in the singlet contributions. In order to resum the logarithm
associated with their scale hierarchy, ln[m2

t /M
2
L], we substitute the Wilson coefficient Ct

in eq. (2.11) with its resummed version,

Cres
t (mt, µh) = Ct(mt, µt) exp

[
−
∫ µ2

h

µ2
t

dµ2

µ2 γt

]
, (2.32)

and then evaluate all other Wilson coefficients Cns, CVs and CAs , at the scale µh. As a
result, the part of the hard function participating in the resummation can be expressed as

H̃γ/Z,res
ij (mt,ML,ΩL, µh) = Hγ/Zij

∣∣∣∣∣ Ct→Cres
t (mt,µh),Cns→Cns(ML,µh)

CVs →C
V
s (ML,µh),CAs →C

A
s (ML,µh)

. (2.33)

Again, the choice of µt and its ensuing uncertainty will be discussed in section 3.1.

2.4 Power corrections

To extrapolate eq. (2.29) to the entire phase space, it is crucial to properly account for power
corrections stemming from the truncation of the asymptotic series in qT/ML (recalling that
eq. (2.4) only contains the leading power contributions). They can impact both the leptonic
currents LµW,Z,γ (in eq. (2.20) and eq. (2.24)) as well as the hadronic ones. To improve the
lepton currents, we substitute the LµW,Z,γ by their pre-expanded results, i.e.,

LµV −→ Λµ`,ν(~qT)LνV , (2.34)

where V = W,Z, γ. Λµ`,ν accounts for the Lorentz transformation from the leptonic centre of
mass reference frame to the rest frame of the initial proton pair or lab frame. Noting that in
eq. (2.20) and eq. (2.24), as a result of the qT/ML expansion in the hard sector, LµV is defined
in the lepton centre of mass frame. Thus, the replacement in eq. (2.34) restores the leptonic
currents to their form in the exact SM calculation. Their impact is assessed in appendix B.
It is worth noting that even though the substitution in eq. (2.34) manifestly breaks energy-
momentum conservation when coupling the hadronic and the corrected leptonic tensor, it
induces no gauge violations in practice. This is because the longitudinal component of the
γ, Z, or W± propagators can always be eliminated by the attached leptonic currents in
the massless limit. Alternative methods with the analogous effects can also be found in
refs. [108, 119, 141–143]. Very recently, a systematic classification has been carried out in
ref. [112] as to the leptonic power corrections.

On the other hand, it is also necessary to handle the power corrections to the hadronic
currents. In principle, one can incorporate them power by power with the aid of the sub-
leading SCET Lagrangians and Hamiltonians [95, 130, 144]. Nevertheless, not only can
more structures beyond eq. (2.4) be introduced by the subleading vertices, the inhomogene-
ity in asymptotic series, which arises from the rapidity regulation, may further complicate
the investigations [145–147]. So for simplicity, this work only considers the leading power
factorisation and the according resummation in the hadronic sector, treating the power
corrections through the matching to fixed-order.
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2.5 Matching to fixed-order QCD and observable calculation

Finally, we match the resummation to the exact QCD fixed-order calculation. We therefore
introduce the following matching procedure,

dσmat
dΦ =

{dσres+lpc
dΦ − dσexp+lpc

dΦ (µR, µF )
}
f

(
qT
µQ

)
+ dσf.o.

dΦ (µR, µF ) , (2.35)

where σexp+lpc is the fixed-order expansion of σres+lpc and the “lpc” addition in the subscript
signals the inclusion of the leptonic power corrections. σf.o. denotes the exact fixed-order
perturbative result at the conventional renormalisation and factorisation scales µR and
µF . Of course, both σexp+lpc and σf.o. must be expanded to the same order. dΦ stands
for the differential phase space element d2~qT dYL dM2

L dΩL. The transition function f is
introduced to assure that the resummation is only active in the asymptotic region, more
explicitly,

f

(
qT
µQ

)
= 1

1 + a
qT
µQ
−1

b

µQ−∆qT

µQ

µQ+∆qT

0

0.5

1

qT

f
(

q
T

µ
Q

)

(2.36)

The numerical choice of the matching scale µQ will be discussed in section 3. The base of
the exponent a can be thought of as a free parameter governing the shape of the transition
function. We choose to link it to µQ and define it as a = exp(µQ/qref

T ), qref
T is taken to be

1GeV. It is important to note that although f is smaller than unity for all physical qT,
the precise choice of µQ will ensure that it differs from unity by amounts much smaller
than one permille in a wide region around the Sudakov peak where the resummation effects
dominate. Likewise, qT = µQ does not mark the endpoint of the resummation region, but
where the resummation effects are faded out to half their intrinsic size, f(1) = 1

2 . The
functional form then induces a symmetric reduction of the influence of the resummation in
the region [µQ −∆qT, µQ + ∆qT], wherein ∆qT = qref

T ln((1 − f)/f) and f is the fraction
of reduction. Thus, with the above value for qref

T the resummation effects are reduced from
99% to 1% of their actual size in the interval µQ ∓ 4.6GeV. The functional form of the
base of the exponent a ensures that the width of the transition region, ∆qT, is directly
proportional to qref

T , with qref
T taking the role of an easily interpretable shape parameter.

When ~qT enters the hadronic regime ΛQCD ∼ qT � ML, the non-perturbative con-
tributions become non-negligible. Hence, a modification factor parametrising the non-
perturbative dynamics of this regime, Smod(b2T), encoding all the hadronic contributions
within the low qT region [148, 149], should be introduced. In the recent years, a number
of parametrisations and input extractions of Smod(b2T) have been discussed in the litera-
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tures [15, 16, 150–154]. However, as the main concern of this work is with the perturbative
domain, we ignore Smod(b2T) here and leave its incorporation to the future investigations.

Taking the integral of eq. (2.35) together with the customised theta and delta functions,
one is able to implement the fiducial cuts and carry out the observable calculations, more
explicitly,

dσ
dO =

∫
dΦ Θ

[
G
(
Φ
)]
δ
[
O −FO

(
Φ
)] dσmat

dΦ , (2.37)

where G is a function of the phase space encoding the fiducial cuts. O stands for a generic
observable and FO is its corresponding functional definition. This work focusses on the qT
and ∆φ spectra, giving

FqT = |~qT|,

F∆φ = arccos
[
~p1,T · ~p2,T

|~p1,T ||~p2,T |

]
.

(2.38)

Here ~p1(2),T denotes the transverse momentum of the final (anti-)lepton in the lab frame.
In particular, both variables are purely transverse and are thus well-defined for both W

and Z production in a realistic detector environment where only the transverse part of the
neutrino’s momentum is observable through as missing transverse momentum. Further, in
calculating the phase-space integral of eq. (2.37), we retain the full kinematic dependences
in G(Φ) and FO(Φ) and do not carry out any expansions in qT/ML. As shown in ref. [155],
this strategy is helpful to restore the recoil effects and reduce the kinematical power cor-
rections. An alternative approach can also be found in ref. [108], which, however, differs
from that in ref. [155] by O(qT/ML).

3 Numerical results

In this section we are discussing numerical results obtained with the methods outlined in
the previous section for a representative fiducial region.

3.1 Setup and fiducial region

Throughout this paper, all distributions forW± production are calculated in the Gµ scheme
while those for Z production are calculated in the α(mZ) scheme [156]. We use the following
input parameters [157]

Gµ = 1.166378× 10−5 GeV−2

mW = 80.379GeV ΓW = 2.085GeV
mZ = 91.1876GeV ΓZ = 2.4955GeV
mt = 173.2GeV .

The width of the top quark as well as the mass and the width of the Higgs boson have no
phenomenological impact and are neglected. All other particles are considered massless.
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We work in the complex-mass scheme [158], with the complex masses and mixing angles
defined through

µ2
i = m2

i − imiΓi and sin2 θw = 1− µ2
W

µ2
Z

. (3.1)

The electromagnetic coupling constant is defined as

αGµ =
∣∣∣∣∣
√

2Gµµ2
W sin2 θw
π

∣∣∣∣∣ and αmZ = 1/128.802 (3.2)

in the Gµ and α(mZ) schemes, respectively.3 Other input schemes, in particular for Z
boson production, may be chosen in order to improve the description of the correlations
of the lepton pair system and the hadronic recoil, e.g. by using the weak mixing angle as
an input parameter [159]. Furthermore, we use the NNPDF31_nnlo_as_0118 [13] parton
distribution functions, interfaced through LHAPDF [160], with the corresponding value of
the strong coupling αs(mZ) = 0.118. In accordance with this choice we neglect all photon
induced contributions. The CKM matrix is chosen as diagonal, i.e. Vij = δij .

To carry out the resummation entering our matched results of eqs. (2.35) and (2.37),
we employ the CUBA library [161, 162] performing the respective integrations and make
use of LHAPDF evolving the factorisation scale. To tackle the harmonic poly-logarithms
participating in the Iij function (see eq. (2.8)), the package HPOLY [163] is used. The
LO hard functions in eqs. (2.23) and (2.22) are computed with FeynCalc [164–166] and
FeynArts [167, 168]. All remaining parts of the hard function, in particular the non-singlet
and singlet contributions Cns, CVs , and CAs as well as the top-quark contribution Ct, are im-
plemented analytically. The fixed-order contribution to eq. (2.35) and, hence, the matched
result is computed using SHERPA [169, 170] in combination with OPENLOOPS [171, 172].
In this framework, renormalised virtual amplitudes are provided by OPENLOOPS, which
uses COLLIER tensor reduction library [173] as well as CUTTOOLS [174] together with the
ONELOOP library [175]. All remaining tasks, i.e. the bookkeeping of partonic subprocesses,
phase-space integration, and the subtraction of all infrared singularities, are provided by
SHERPA using the matrix element generator AMEGIC [176–178].

In estimating the theoretical uncertainties, we emphasise two aspects. The first one is
the uncertainty arising from higher order corrections, which can be estimated by examining
the sensitivity of the results to the scale variations. As presented in section 2.5 the matched
result depends on a set of auxiliary scales, originating both in the resummation and the
fixed-order calculation, {µ, ν} ≡ {µt, µh, µb+ , µb− , µs, νb+ , νb− , µR, µF }. During the numer-
ical implementation, we take µb = µb± as well as νb = νb± in accordance with identical
initial state particles, and set µR = µF throughout to simplify the matching procedure of
the fixed-order full QCD calculation to the results obtained in the soft-collinear effective
theory. We set their default values, well away from the non-perturbative regime, to

µdef
R = µdef

F = ML. (3.3)
3As all calculations in this paper are of LO accuracy in the EW sector and the Gµ and α(mZ) schemes

differ only in the value of α, the results can be converted from one scheme to the other by applying a global
normalisation factor. This is not true for scheme transformations that involve changes in sin2 θw or once
higher-order EW corrections are included.
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Please note that while ML = m`` in Z production, it is equal to invariant charged-lepton-
neutrino mass in W production. For the sake of reducing the logarithmic contribution in
the H,B,S functions, the default intrinsic scales are taken as

µdef
t = mt , µdef

h = νdef
b = ML , µdef

s = νdef
s = µdef

b = b0/bT . (3.4)

It is worth noting that with the choice of µdef
s = µdef

b = b0/bT, the impact-parameter space
integration of eq. (2.29) can not be carried out straightforwardly due to presence of the
Landau singularity at small momentum transfers, or large impact parameters, of the strong
coupling constant αs. To cope with this issue, we make use of the prescription in ref. [179]
and impose the upper bound bcut

T = 2 GeV−1 to regularise the bT-integral. To estimate the
ensuing uncertainties, we evaluate the differential cross sections with an alternative choice,
bcut
T = 4 GeV−1, and regard the according deviation as the theoretical error, namely, δbT .
Recent developments in coping with bT-integral can be found in refs. [104, 180–185]

For estimating the uncertainties from the choices in eqs. (3.3) and (3.4), we vary the
scales µt,h,b,s, µR,F and νb,s independently to twice and half their default values, and then
combine the deviations from the results using their above defined default values in the
quadrature. The thus constructed uncertainty estimate is denoted δscale hereafter.

This leaves the uncertainty originating in the matching parameter µQ. As our default
we take µQ = 16GeV. The effectiveness of this choice will be illustrated and discussed
in sections 3.2–3.3. For the estimation of its error, we alter the value in the interval
[14, 20]GeV and denote the uncertainty from this by δmat. Together with δscale, the total
uncertainty can be evaluated as δtot =

√
δ2
bT

+ δ2
scale + δ2

mat.
We compute our results in a fiducial phase space that is loosely modelled after the

respective ATLAS and CMS measurement regions. It differs slightly depending on the
process and the physics objects. Leptons are required to have a transverse momentum pT of
larger than 20GeV and an absolute pseudo-rapidity of less than 2.4. In the dilepton channel
we require an opposite-sign same-flavour pair with an invariant mass m`` of more than
80GeV and less than 100GeV to effectively restrict it to the Z pole. In both lepton-plus-
missing-transverse-momentum channels we require one such lepton of the respective charge
and a missing transverse momentum 6pT of more than 20GeV. For simplicity, the missing
transverse momentum is equated with transverse momentum of the neutrino. In addition,
the missing transverse momentum and the charged lepton have to have a transverse mass
mT =

√
2 pT 6pT(1− cos ∆φ) of more than 40GeV, where ∆φ is the opening angle between

the two in the transverse plane. These definitions are summarised in table 2.
As we work at strict leading order in the electroweak sector, questions about the

precise lepton definition do not arise. While the resummation part of the matched result is
calculated for the specific observable under consideration, the fixed-order part is generated
as conventional collider events and analysed using RIVET [186, 187]

Figure 2 now details the distribution at N2LO, that is including terms up to O(α2
s),

in the transverse momentum of the leptonic system qT and the opening angle between
the two leptons in the transverse plane ∆φ. A regularising cut of qT > 1GeV is applied.
As can be seen, the different sets of fiducial cuts necessitated by the differing measurable
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W+ W− Z

pT(`+) [20,∞]GeV – [20,∞]GeV
|η(`+)| [−2.4, 2.4] – [−2.4, 2.4]
pT(`−) – [20,∞]GeV [20,∞]GeV
|η(`−)| – [−2.4, 2.4] [−2.4, 2.4]
6pT [20,∞]GeV [20,∞]GeV –
mT [40,∞]GeV [40,∞]GeV –
m`` – – [80, 100]GeV

Table 2. Fiducial phase space.
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Figure 2. N2LO distributions in the transverse momentum of the leptonic system qT and the
opening angle between the two leptons in the transverse plane ∆φ in the fiducial phase space.
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Figure 3. Illustration of the position of the three chosen slices in qT and ∆φ encompassing a
region below (I), containing (II), and above (III) the Sudakov peak in each distribution.

physics objects in each channel, induce differing coverages of the qT-∆φ-plane. Although
the fiducial regions overlap well at very small qT and ∆φ, they illustrate that ratios between
Z and W channels for the purpose of reweighting one channel to the other should not be
taken single-differentially in qT but need to take the constrained internal dynamics of the
lepton system into account.

Finally, figure 3 shows the qualitative behaviour of the single-differential behaviour of
the matched cross section in qT and ∆φ. In both distributions the typical resummed shape
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can be observed, exhibiting a Sudakov peak close to the singular point (qT,∆φ) = (0, 180◦).
It must be noted though, that the expression of the Sudakov peak in the ∆φ spectrum
strongly depends on the precise definition of the fiducial region. With these observations
at hand, we define three different regions of interest for both spectra: (I) a region between
the singular point and the Sudakov peak, (II) a region containing the Sudakov peak, and
(III) a region beyond the Sudakov peak that includes the part of the spectrum where the
resummation becomes unimportant. For the present study we therefore examine the qT
spectrum in three slices of ∆φ, 180◦ > ∆φ > 178.2◦, 178.2◦ > ∆φ > 175.5◦, and 175.5◦ >
∆φ, and the ∆φ spectrum in three slices of qT, 1GeV < qT < 2GeV, 2GeV < qT < 6GeV,
and 6GeV < qT.

3.2 Validation

In this part, we confront the resummed results, expanded to next-to-leading order (NLOs)
and next-to-next-to-leading order (N2LOs), i.e. truncating at O(αs) and O(α2

s), respec-
tively, to the exact full QCD results at the same order, NLO and N2LO.

Figure 4 shows this comparison for the qT spectra in the three slices in ∆φ introduced
earlier. As a result of the kinematical selections, the increasing distance of ∆φ from the
singular point 180◦ moves the peak of the qT spectra away from the asymptotic domain,
i.e., the region qT ∼ 0GeV. More specifically, the qT distributions in the first two slices
peak around qT = 2GeV, while it is located in the area qT ∼ 5GeV in the last one. This
trend can already be observed in figure 2, in which the maximal qT is directly related to
the difference (180◦ −∆φ) near the divergent point (qT,∆φ) = (0, 180◦).

Below the main graphs, three ratio plots are presented to explore the relationships
amongst the fixed-order results. To examine the effectiveness of the qT/ML expansion, the
ratios of N(2)LOs to N(2)LO are displayed in the first two ratio figures. It is seen that
for all three processes under investigation, Z, W+, and W− production, the agreement
between the exact and approximate results is excellent in the vicinity of qT = 0 GeV, and,
within a few percent, this agreement can last up to the area qT = 7 GeV in both NLO(s)
and N2LO(s). Remarkably, these observations hold independent of the factorisation and
renormalisation scale, as is indicated by the shown scale variation bands. Further increase
in qT will increase the size of the power correction terms. For instance, a 10% deviation
of N(2)LOs from N(2)LO can be found in the region around qT = 16 GeV, and it rapidly
climbs up to 20% just above qT ∼ 20 GeV. Those growing discrepancies can substantially
corrupt the effectiveness of the leading approximation on the asymptotic series of qT/ML.
To this end, the transition function f(qT/µQ) is introduced in eq. (2.35) to restrict the
active domain of the qT/ML expansion and in turn the resummation. The choice of the
relevant inputs to f(qT/µQ) will be elaborated on at the beginning of section 3.3.

In the bottom ratio plot, the ratios of NLOs, NLO, and N2LOs results with respect
to the N2LO results are exhibited. In the vicinity of qT = 1 GeV, tremendous corrections
from O(α2

s) contributions are revealed in all three processes. To interpret this scenario,
please note that due to the explicit dependences of eqs. (2.27)–(2.28) on the logarithmic
terms, the product of the beam and soft functions comprises the squared logs at NLOs and
quadrupled ones at N2LOs. After completing the inverse Fourier transformation, these
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Figure 4. Comparison of the fixed-order qT spectra in all three processes. N(2)LO denotes the
fixed-order full QCD perturbative result, while N(2)LOs is the fixed-order expansion of the SCET-
based resummation.
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logarithmic terms are all converted into the distributions of qT and then the differential
cross section for the finite value of qT can be expressed as,

dσ
dqT

∣∣∣∣
µF=µR=ML

∝ αs(ML)
4π

{
g2
qT

ln
[
qT
ML

]
+ g1
qT

}

+
(
αs(ML)

4π

)2 { e4
qT

ln3
[
qT
ML

]
+ e3
qT

ln2
[
qT
ML

]
+ e2
qT

ln
[
qT
ML

]
+ e1
qT

}
. . . ,

(3.5)

where the coefficients g1,2 and e1,2,3,4 are independent of qT. In the asymptotic regime, the
magnitude of the singular terms, such as ln3[qT/ML]/qT, can be substantially increased
so that they can compete with and even surpass that of O(αs), which in turn induces the
considerable corrections and the deteriorating theoretical uncertainties at N2LOs. Moving
away from the divergent point can alleviate the acuteness of these singular terms. In
particular, almost vanishing O(α2

s) impact is observed around qT = 7GeV in both the
approximate and exact calculations. And ranging from qT = 7 GeV to qT = 40 GeV, the
relative correction from O(α2

s) keeps no more than 30% in the exact results.
Figure 5 now conversely shows the comparison of the ∆φ distributions for all the three

slices in qT. In line with the correlations depicted in figure 2, the increase of qT detaches
the ∆φ maximum from the divergent region, i.e., ∆φ = 180◦. More explicitly, the ∆φ
peaks in the left and middle panels are situated within the region 177◦ < ∆φ < 180◦, while
in the last slice, the ∆φ spectrum peaks around ∆φ = 172◦.

As before, in the first two ratio graphs, we confront the approximate results, which
are derived from the soft-collinear effective theory, to those from exact QCD calculation.
Notable agreement, better than 1% except for the numerically challenged boundaries, takes
place in the first two slices for qT smaller than 6GeV. In the last qT slice, being well away
from the singular point, the agreement is worse, ranging from around 5% to 10%, with the
best agreement found neighbouring ∆φ = 172◦. It is interesting to note that differing from
those in figure 4, the ratios of N(2)LOs to N(2)LO here are largely insensitive to ∆φ for all
three processes. Hence, as this ratio is mainly impacted by the higher power contributions,
this implies a minor role being played by ∆φ in their functional form.

In the bottom ratio plot we gather all the fixed-order spectra. While the third slice
presents the moderate O(α2

s) correction of less than 30%, those contributions in the first
two slices are intensified near the divergent region. Furthermore, it is intriguing to see the
decline of the O(α2

s) contribution in approaching the boundaries of the right and middle
panels. As illustrated in figure 2, the upper boundary has positively related the value of qT
to the distance of ∆φ to the singular region, such that in the first two slices of figure 5, the
dynamics near the lowest ∆φ are actually corresponding to those with maximal qT values.
However, according to figure 4, the O(α2

s) influences experience progressive descents until
qT reaches around 7 GeV, which in turn results in the similar pattern, i.e., the minimal
O(α2

s) contribution, on the boundaries of the first two slices of figure 5.
It is worth stressing that in the diagrams of figure 4 and figure 5, small effects due to

limited statistics can be observed near the phase space boundaries, but do not impact our
findings.
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Figure 5. Comparison of the fixed-order ∆φ spectra in all three processes. N(2)LO denotes the
fixed-order full QCD perturbative result, while N(2)LOs is the fixed-order expansion of the SCET-
based resummation.

– 21 –



J
H
E
P
1
0
(
2
0
2
1
)
0
8
8

3.3 Resummation improved results

We now turn to examine our full resummation improved results, calculated according to
eq. (2.37). Contrary to the fixed-order evaluation of the previous section, the behaviour
of the cross section as we approach the singular point at (qT,∆φ) = (0, 180◦) is regular
and we can evaluate the complete (qT,∆φ) plane. To arrive at our resummation improved
results of this section, however, the governing eq. (2.35) still contains two terms that are
separately diverging as the singular point is approached, originating in the behaviour of
the full QCD fixed-order calculation and the fixed-order expansion of the resummation in
the soft-collinear effective theory.

To regulate their behaviour, the cutoff on the minimal value of qT is employed, namely,
qmin

T , in this work. Similar to the treatment in refs. [111, 155], we set the results derived
from SCET to be exactly equal to the full QCD ones for qT < qmin

T , leaving only the
resummed result. Ideally, a lower cutoff can reduce the influences from power suppressed
terms to a greater extent. However, with the decrease in qmin

T , the magnitudes of the
approximate results N(2)LOs and the exact ones N(2)LO both grow rapidly, such that
to retain the precision of their difference, higher and higher relative accuracies in their
individual contributions have to be achieved. Therefore, as a balance of the statistics and
the run time of our programs, the calculation will proceed with qmin

T = 1GeV by default.
Other choices, such as qmin

T = 0.75GeV or qmin
T = 1.25GeV, have also been tested over the

Sudakov peak region and it turns out only permille level fluctuations.
Having said that, the most important question to answer, is the choice of matching

scale µQ. For this, we follow two arguments to guide us to our choice of matching scale.
Firstly, we want to restrict the resummation to the asymptotic regime where its intrinsic
approximations are valid. Recalling that the resummation in eq. (2.29) is derived from the
factorisation of eq. (2.4) where only the leading contributions in an expansion in qT/ML

are kept, eq. (2.29) is valid only in the small qT regime and thus should be disabled beyond
it. To this end, the transition function f(x) of eq. (2.36) is employed to provide a smooth
transition from the resummed spectra to the fixed-order contribution in the matched result
of eq. (2.35) within the interval µQ ∓∆qT with ∆qT ≈ 4.6GeV with our choice of scales.
We note that the value of µQ is related to the effective range of the qT/ML expansion.
Following the spirit of [155] we determine that range by comparing in figure 4 the N2LO
result with the corresponding expansion of the resummation N2LOs. To be precise, we
require the fixed-order expansion of the SCET approximation to deviate from the exact
result by no more than 20%. For all three processes and ∆φ slices we extract similar values,
leading to a common choice of matching scale of µQ = 16GeV.

Secondly, we want the additional corrections introduced by the resummation with
respect to the fixed-order calculation to be small or negligible at the matching scale. To
evaluate this requirement, figure 6 is of particular interest. Here we observe that at values
around the chosen matching scale µQ = 16GeV the resummation improved results coincide
with the pure fixed-order one to better than 4%. At this point, the reader is reminded
that, although we are not comparing the pure resummation with the full QCD result
but instead a result where the resummation at the scale µQ is already subjected to the
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Figure 6. Single-differential cross section in qT for all three processes. We compare the full QCD
NLO and N2LO distributions to the resummation improved results, NLL′+NLO, N2LL′+N2LO,
and N3LL′+N2LO.

suppression function f(qT) of eq. (2.36), the suppression function has the value f(µQ) = 0.5.
Therefore, we still find that the resummation and the fixed-order result still agree to better
than 8% and resummation effects are no longer important. It is interesting to note that
this observation holds for both N2LL′+N2LO and N3LL′+N2LO. The situation is slightly
different for NLL′+NLO. However, since this result is mainly included to illustrate the
progression of the increased accuracy of our calculation we choose the same value for µQ.

Analytically this can be understood in the following. In the above argument we are
essentially evaluating the relative size of the contribution the resummation is supplying
beyond the accuracy of the fixed-order calculation. These terms are of O(α2

sL
4 + α2

sL
3 +

. . .) for the NLL′+NLO matched result, while they are of O(α3
sL

6 + αsL
5 + . . .) for the

N2LL′+N2LO and N3LL′+N2LO calculations, L = log(qT/ML). Now while qT is small,
these contributions are of the same order. Choosing µQ sufficiently large such that the
ratio qT/ML is of O(1) in its vicinity and above, L follows a different power counting
there. Thus, the additional terms induced by the resummation with respect to the fixed-
order calculation are indeed of higher-order in N2LL′+N2LO and N3LL′+N2LO than in
NLL′+NLO.

With this choice of resummation scale the single-differential distributions in the lep-
tonic transverse opening angle ∆φ similarly receive substantial resummation effects, as
shown in figure 7. Since the suppression function f acts in another variable, no clear tran-
sition from one regime to the other can be observed at any order. We observe, however,
that while at our highest order, N3LL′+N2LO, all three processes behave extremely sim-
ilarly and receive very similar resummation induced corrections to the N2LO result, this
is markedly different at NLL′+NLO accuracy. Here, the W production channels receive
somewhat larger corrections in the region between ∆φ = 150◦ and ∆φ = 165◦ than in Z
production.

With this global picture examined, we now turn to the aim of our study, the double-
differential distributions. We again begin with the qT spectra in our three chosen slices
of ∆φ in figure 8. While only the first slice for ∆φ > 175.5◦ contains the singular point,
all slices are close enough to the singularity that a Sudakov peak is formed. The descrip-
tion of this resummation region depends strongly on the order of logarithmic corrections
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Figure 7. Single-differential cross section in ∆φ for all three processes. We compare the full QCD
NLO and N2LO distributions to the resummation improved results, NLL′+NLO, N2LL′+N2LO,
and N3LL′+N2LO.

included. While the central values do not change significantly order-by-order, validating
our choice for the central scales involved in the resummation, the estimated uncertainty
steadily decreases when going to higher orders. To be definite, the uncertainty in our lowest
accuracy calculation (NLL′) ranges from −20% to +15% around the central value around
the Sudakov peak, independent of the ∆φ slice, and involves a sizeable shape uncertainty
as well. This shape uncertainty in particular differs in the region below the Sudakov peaks
depending on ∆φ. Both uncertainties are reduced greatly when higher-order logarithmic
corrections are included. At N2LL′ they amount to −4% to +7% while at N3LL′ they are
reduced to −2% to +4%.

Departing from the singular point qT = 0GeV, the manifest reduction in the the-
oretical uncertainties can be observed for all the precision levels, from NLL′ to N3LL′,
until qT reaches ∼ 10 GeV. In this range, the increase of qT keeps reducing the influ-
ences of the singular terms, e.g., ln3[qT/ML]/qT in eq. (3.5), and the latter will further
decrease the perturbative corrections and scale variations. As qT goes beyond 10 GeV,
the matching uncertainty tends to become comparable to the perturbative uncertainties
in the resummation, dominating in particular NLL′+NLO calculation around µQ but not
exceeding ±3% for both the N2LL′+N2LO and N3LL′+N2LO spectra. Particular attention
should be paid to the regions near qT = 18 GeV for the Z production, and qT = 16 GeV
for the W± productions, where pinch structures are formed in the relative uncertainties.
To interpret this, recall that in this work, the matching procedure involves the differ-
ence (σres+lpc − σexp+lpc)f(qT/µQ) in eq. (2.35), and the matching uncertainty is esti-
mated by varying µQ ∈ [14, 20] GeV. However, due to the accidental intersection between
dσres+lpc/dqT and dσexp+lpc/dqT in the vicinity of qT = 18 GeV or qT = 16 GeV, any change
in µQ results in the same output and thus the quoted spectra actually carry no match-
ing uncertainties here. This situation can be improved by reparameterising the matching
procedure, but we leave this to a future study. A further increase of qT will enter the fixed-
order regime, where the resummation has been switched off by the transition function f

and the exact QCD spectrum is fully restored.
Finally, we examine the resummation improved results for the ∆φ spectra in the three

chosen qT regions. Recall that the first region with transverse momenta smaller than 2GeV
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Figure 8. Double-differential cross section in qT and three slices of ∆φ for all three processes.
We present the resummation improved results at NLL′+NLO, N2LL′+N2LO, and N3LL′+N2LO
accuracy.

resides entirely below the Sudakov peak in the transverse momentum spectrum, while the
second one contains the peak, and the third region with qT > 6GeV resides entirely beyond
the Sudakov peak. Consequently, very different behaviour can be observed despite the per-
bin-cross sections being of similar orders of magnitude. The results of our computation
for the ∆φ spectra are shown in figure 9. As all three processes exhibit a very similar
behaviour we continue to discuss them simultaneously.

In the left and middle panels, which probe the regions below and around the Sudakov
peak in the qT spectrum, near back-to-back topologies are favoured unsurprisingly and re-
summation effects dominate the calculation throughout. Consequently, as observed before,
the central values of our three predictions of increasing logarithmic accuracies agree very
well, and the uncertainties keep steadily decreasing with the increasing accuracy of the
resummation, reaching −1% to +2% in the N3LL′ case.
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Figure 9. Double-differential cross section in ∆φ and three slices of qT for all three processes.
We present the resummation improved results at NLL′+NLO, N2LL′+N2LO, and N3LL′+N2LO
accuracy.

In contrast to those in figure 8, it is interesting to note that the variation in ∆φ here
has only a small influence on the relative uncertainty. To interpret this, please note that
except for exp(i~bT · ~qT), the integrand in the master formula of eq. (2.29) only depends on
the magnitude of bT, such that after transforming into the momentum space, the product
of the beam and soft functions turns out to be a function of q2

T, rather than ~qT. In this
way, any changes in ∆φ can impact the results only through the hard function and the
phase space integral,4 but make no influences on the beam and soft sectors. The latter two
pieces however make up the bulk of the contributions to the relative uncertainties.

4For the W± production, the dependence of hard function on ∆φ is only through the overall Born cross
section. Nonetheless, as to the Z/γ∗ process, due to the participation of the singlet diagrams, angular
observables can impact the hard amplitudes nontrivially starting from O(α2

s).
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The third qT slice, located entirely above the qT Sudakov peak, now sees a stronger
impact of the full QCD fixed-order calculations. Hence we find the central values no longer
agree, partially reflecting the difference in cross section between the NLO and N2LO pre-
dictions for the spectrum. The increasing importance of the full QCD fixed-order part for
smaller ∆φ likewise explains the shape corrections at higher order. Still, the uncertainties
are much reduced in our highest precision calculation at N3LL′+N2LO accuracy, being
smaller than ±1% throughout.

Finally, please note that the smallest ∆φ bin in the lower two qT slices carries almost
no cross section and, thus, suffers from larger statistical uncertainties.

3.4 The W±/Z and W+/W− correlations

With the double-differential resummation-improved cross sections of the previous section at
hand we finally turn towards cross section ratios. They are useful to obtain high-precision
W+ and W− production data, by measuring the fully and precisely reconstructible cross
sections in Z production and applying the following theory predictions, see e.g. refs. [12].
Similarly, the W+ to W− ratio is of interest for PDF extractions, see e.g. [13]. A key
question, however, is how to determine the uncertainties of such a ratio. The main bot-
tleneck is the fundamental lack of statistical interpretation of the theoretical uncertainties
on (multi-)differential cross sections as presented so far. Thus, in particular various as-
sumptions about their (non-)correlation in the numerator and denominator of the RW±/Z
have to be made. In the following, we present results for the following three correlation
assumptions:

• Uncorrelated. The scales of the W± and Z processes are assumed to be completely
uncorrelated. All scales in the numerator and denominator are varied independently.
This corresponds to the assumption that both processes have no common structure
in the form of their higher-order corrections or input functions, such as the PDFs.
As this is known not to be the case, the uncertainties on the ratio obtained this way
are likely to be severely overestimated.

• Fully correlated. All scales of the W± and Z processes are assumed to be com-
pletely correlated. They are thus varied by a common factor in the numerator and
denominator simultaneously. This corresponds to the assumption that both pro-
cesses have exactly the same structure in the form of their higher-order corrections
and input functions, such as the PDFs. As this is known not to be the case, the
uncertainties on the ratio obtained this way are likely to be severely underestimated.

• Partially correlated. A careful analysis of the internal structure of the higher-order
corrections toW± and Z production allows to carefully assess which corrections have
identical (or at least very similar) structures and which differ. This allows, to first
approximation, to select a subset of scales to fully correlate, uncorrelating the rest.
Following a detailed analysis of the derivations of section 2, we find that the singlet
contributions to Z production are numerically small, see appendix A. In consequence,
both the hard and soft functions for W± and Z decays show the same dependence
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on the respective scales. Differences, however, occur for the beam functions, arising
in the different composition of initial states in all three processes. We thus choose
to fully correlate the variation of all scales except for µb and νb, which we fully
uncorrelate.

Figures 10 and 11 now show the ratios RW+/Z , RW−/Z , and RW+/W− for all three def-
initions of their uncertainties detailed above. In the following, we will discuss the different
features of both their central values and uncertainties separately.

Central values. The central values of the cross section ratios are of course unaffected by
the precise definition of the uncertainty band. Instead, they are largely determined by the
slightly different location of the Sudakov peak induced by the mass difference, the different
x-dependence of the contributing parton distributions, and the slightly different fiducial
phase spaces. In addition, they only exhibit a small dependence on the perturbative order
at which they are calculated. In fact, with respect to the perturbative stability of these
ratios, we observe only minor corrections on the level of up to 2% in RW+/Z and RW−/Z ,
and much smaller in RW+/W− , when increasing the intrinsic accuracy of the resummation-
improved calculation from NLL′+NLO to N3LL′+N2LO.

Further, the cross section ratios depend only weakly on the transverse momentum of
the reconstructed vector boson for qT > 5GeV. Below that value, in the vicinity and
left flank of the Sudakov peak, all three ratios exhibit a marked increase. As alluded to
earlier, this increase is induced by the differing precise locations of the Sudakov peak in
each process. Figure 12 investigates this phenomenon more closely, by

a) setting complex mass of the Z boson to that of the W boson in the propagator only,
keeping all other parameters at the default values,

b) replacing the fiducial phase space definition for the Z production channel, GZ , by
that of the W± channel, GW± with the `∓ taking the role of the neutrino, and

c) applying both modifications a) and b).

This leaves the differences due to the participating parton fluxes and the different spin-
structures in the underlying EW couplings. We find that in the qT spectra the majority
of the effect is induced by the differing fiducial regions, with smaller additional corrections
stemming from the different W and Z boson masses. With both effects accounted for, the
ratios are nearly qT and ∆φ independent, with the remaining small deviations attributed
to the PDFs and the different spin-structures of the underlying EW coupling.

It needs to be noted, though, that the difference in fiducial phase spaces between W±
and Z measurements in the W -boson mass measurement [12] was larger than the one used
here. Hence, the effect can be estimated to have been larger in that phase space as well.

The ∆φ spectra show a stronger variation of the central value of the cross section ratio,
increasing to up to a factor of three above their value far away from the Sudakov peak in
both qT and ∆φ, in particular in the first two regions. This increase, however, appears
on the far side of the peak away from the back-to-back region, in contrast to the increase
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Figure 10. Double-differential cross section ratios in qT and three slices of ∆φ for all three
processes. We present the resummation improved results at NLL′+NLO, N2LL′+N2LO, and
N3LL′+N2LO accuracy.
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Figure 11. Double-differential cross section ratios in ∆φ and three slices of qT for all three
processes. We present the resummation improved results at NLL′+NLO, N2LL′+N2LO, and
N3LL′+N2LO accuracy.
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Figure 12. Double-differential cross section ratios RW+/Z and RW−/Z in qT and the two ∆φ slices
closest to the singular region. We present the resummed results at N3LL′ accuracy for the default
parameters and fiducial regions used in all physical predictions (black), for the default parameters
and the Z production phase space GZ adapted to the W± production phase space GW± (green), for
the Z boson mass set equal to the W boson mass and default fiducial regions (blue), and for both
adaptations of the Z production parameters (red), see text for details.
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Figure 13. Double-differential cross section ratios RW+/Z and RW−/Z in ∆φ and the two qT slices
closest to the singular region. We present the resummed results at N3LL′ accuracy for the default
parameters and fiducial regions used in all physical predictions (black), for the default parameters
and the Z production phase space GZ adapted to the W± production phase space GW± (green), for
the Z boson mass set equal to the W boson mass and default fiducial regions (blue), and for both
adaptations of the Z production parameters (red), see text for details.

observed in the qT spectra. Nonetheless, its origin can be traced to the same factors as for
the qT spectra in figure 13, the different definitions of the fiducial phase space in W and
Z production and the different W and Z boson masses. To be specific, we observe that
when both effects are accounted for the ratio is nearly independent of both qT and ∆φ.
This also means that the remaining PDF dependence is small.
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At this point it is important to note that although both the fiducial phase spaces
in W+ and W− appear to be the same, they are not. The reason is that, in terms of
spin-correlation the anti-neutrino produced in the decay of the W− takes the role of the
charged lepton in the decay of the W+, but not in the observable definition. This is
compounded by the fact that, out of the three processes under consideration here, W+ and
W− show the largest divergence of the contributing partonic fluxes, imparting differing
rapidity distributions on the produced boson and, thus, slightly different effects of the
fiducial cuts. These factors add up to explain the remaining small, but non-negligible qT
and ∆φ dependence of RW+/W− .

Finally, the ratios RW+/Z , RW−/Z , and RW+/W− are nearly flat in the third region
containing events with qT > 6GeV, its only structure being induced mostly by the difference
in the fiducial phase space in W and Z boson production.

Uncertainties. The uncertainty of the cross section ratios follows the pattern laid out
in their definition: while the fully-correlated case leads to vanishingly small uncertainties,
smaller than 1% in most regions (in fact, the largest surviving uncertainty is related to the
matching procedure), the fully-uncorrelated case lies on the opposite end of the spectrum
with uncertainties of ±4% for our best calculation at N3LL′+N2LO accuracy both in the
fixed-order region and the resummation region. The partially-correlated ansatz so far
yields the, in our judgement, most reliable result, ranging from ±1% in the fixed-order
region where the respective scales are correlated and ±3% in the resummation region. In
particular, it is interesting to note that the beam function uncertainties are the driving
force of the resummation uncertainties overall, reinforcing the difference in contributing
parton fluxes as a driving factor for the details of the ratio overall. Similarly, we observe
that, apart from the fully-correlated uncertainty estimate, the uncertainty for RW+/W−

largely follows the pattern of RW+/Z and RW−/Z both qualitatively and quantitatively.

4 Conclusions

In this paper we have computed the single-differential qT and ∆φ as well as the double-
differential (qT,∆φ) spectra for inclusive Z,W+, andW− production in the experimentally
accessible fiducial phase space up to N3LL′+N2LO accuracy resumming small transverse
momentum logarithms. Besides the essential inclusion of the third-order soft and beam
functions, the resummation features the incorporation of leptonic power corrections and the
singlet contribution into the hard sector. The leptonic power corrections have been found
to extend the region of validity of the approximate SCET result. The singlet contributions,
on the other hand, characterised by topologies where the external quarks do not directly
couple to the electroweak gauge boson, enter the Z boson production process at second and
third order in αs, and have been found to yield corrections of similar size as the non-singlet
third order ones, and are thus non-negligible at N3LL′.

In our numerical evaluation we first confronted the approximate results derived from
the SCET with the exact ones and excellent agreement has been observed in the asymp-
totic regime. We then computed the resummation-improved single- and multidifferential
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distributions at NLL′+NLO, N2LL′+N2LO and N3LL′+N2LO and found excellent pertur-
bative convergence in the asymptotic regime, i.e. the higher order predictions and their
estimated uncertainties are fully contained in the lower order uncertainty band. Further,
the respective uncertainties themselves are systematically reduced to the level around 4%
or less at N3LL′+N2LO.

In addition, we computed the ratios RW+/Z , RW−/Z , and RW+/W− of these calcula-
tions and estimated their uncertainty assuming no correlation, full correlation, and, as our
best prediction, a partial correlation of the scale variations in the numerator and denom-
inator making up the uncertainty. For the partial correlation case in particular, a careful
assessment of the internal structure of our calculation allowed to identify identical (or very
similar) components and structures that differed between the three different processes.
Consequently, the scales used to estimate the uncertainties originating in similar compo-
nents were correlated while scales used to estimate the uncertainties originating in differing
structures were varied independently. The main driver for the differences were identified to
be related to the incident beams and the partonic fluxes initiating the respective processes.

In summary, we determine the ratios with relative uncertainties of less than 1%, rising
to 3-4% in the resummation region at N3LL′+N2LO accuracy. The shape of the ratios,
although largely perturbatively stable, is not constant but shows a strong impact of the
fact that the Sudakov peak is located at slightly different positions in all three processes.
This observation is the consequence of three main factors:

1) the difference in the W and Z boson masses,

2) the different partonic fluxes contributing to the three processes and the different
(x,Q)-dependence of the u and d valence quarks in particular, and

3) the difference in the fiducial regions for `+`− and `± + 6pT final states.
The latter is, in fact, the dominating factor in the ∆φ and low-qT-dependence of theRW+/Z

and RW−/Z ratios.
With the presented calculation at hand, precise predictions for both absolute fidu-

cial multidifferential cross sections and their ratios that are vital for the LHC’s preci-
sion measurements programme can be made. Nonetheless, important contributions from
higher-order corrections originating in the electroweak sector of the Standard Model are not
included in our calculation yet, and we leave their investigation to a future publication.
Similarly, we have for now not included non-perturbative corrections that are expected
to give non-negligible contributions in particular at small transverse momenta or large
azimuthal separations. Their reliable modelling is intricate, including both flavour and x-
dependent contributions, and goes beyond the scope of this paper. It will also be addressed
in a future publication.
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A Impact of the singlet contributions

In this appendix we present a quantitative discussion of the singlet contributions to the
hard function. To this end, we re-express the hadronic current Hµ,ij of (2.17) in the
following form,

Hµ,ij
γ =

(
gqiγ Cns + gΣ

γC
V
s

)
Vµij ≡ eVµij

∑
m

h(m),ij
γ ,

Hµ,ij
Z,V =

(
gqiV Cns + gΣ

V C
V
s

)
Vµij ≡

e

sw cw
Vµij

∑
m

h
(m),ij
Z,V ,

Hµ,ij
Z,A = gA

[(
2Tqi + 1

NF

)
Cns + CtC

A
s

]
Aµij ≡ gAAµij

∑
m

h
(m),ij
Z,A ,

(A.1)

where the coefficients h(m),ij
γ , h(m),ij

Z,V and h
(m),ij
Z,A represent the O(αms ) corrections to the

hadronic currents. During our calculations here, the invariant mass ML is specifically fixed
to mZ , while the scale µ is left as a variable.

Figure 14 exhibits the size of the non-singlet N3LO coefficients h(3)
γ and h(3)

Z,V for the
uū and dd̄ partonic channels. As the singlet contribution to the vector current is forbidden
at two loop level by C-parity, we plot only the third order therein. The numerical results
computed in three different ways are displayed: 1) the O(α3

s) correction with both the non-
singlet coefficient Cns and the singlet coefficient CVs included; 2) the same O(α3

s) correction
including only the non-singlet contribution Cns; and 3) the O(α3

s) singlet contribution CVs .
It is seen that for the entire µ range, both the real and the imaginary parts of the full
O(α3

s) correction (in blue lines) almost coincide with the pure non-singlet ones (in red
lines), and the singlet contributions (in green lines) are negligible. This indicates that at
least up to O(α3

s), the role played by the singlet terms in the vector hadronic current is
of little phenomenological impact. Moreover, it can also be observed that the full and
non-singlet results of uū initial state are curved in the opposite direction to the dd̄ ones.
This is caused by the different charges and weak isospins of the u and d quarks. As shown
in eq. (2.17), given the negligible singlet vector terms, the vector current hard coefficients
between different initial states can be related as follows

h
(3),uū
γ

h
(3),dd̄
γ

∼ Qu
Qd

= −2 ,

h
(3),uū
Z,V

h
(3),dd̄
Z,V

∼ T 3
u − 2Qus2

w

T 3
d − 2Qds2

w

∼ −1
2 .

(A.2)

– 34 –



J
H
E
P
1
0
(
2
0
2
1
)
0
8
8
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Figure 14. Numeric results for the hard coefficients h(3)
γ (left) and h

(3)
Z,V (right) in the vector

current.

Here the flipping signs account for the different curvatures as observed, and the proportions
derived in the last step give the relationship of the magnitudes of the uū and dd̄ initiated
results.

In figure 15, the magnitudes of the real and imaginary parts of axial-vector current
hard coefficients are depicted. As the singlet contribution here starts at O(α2

s), we show
both h(2)

Z,A and h(3)
Z,A. In complete analogy to the vector current coefficients, we here also

graph the three types of outputs therein: 1) the full result calculated as eq. (2.17); 2) the
non-singlet one including Cns only; and 3) the singlet one which is the difference between the
previous two cases. Contrary to figure 14, the axial-vector singlet terms give an unignorable
contribution here for all values of µ, but in particular for values of µ close to 0.5 or 1.5
where either the real or imaginary part of the non-singlet contribution vanishes. In the
region µ ∼ mZ , which is the default hard scale taken in the resummation in this paper (see
eq. (3.4)), the singlet terms can account for around 20% of the real contributions of the full
results in O(α2

s), and nearly 40% in O(α3
s). In the imaginary parts, it is also noted that

more than 10% of =[h(2),uū
Z,A ] and =[h(2),dd̄

Z,A ] is made up of the singlet terms for the majority
of the µ range, and although at the third order accuracy the singlet terms experience zeros
in the vicinity of µ = mZ , its proportions can recover to ∼ 10% when µ/mZ exceeds
2. Furthermore, one interesting phenomenon in figure 15 is that the singlet contributions
remain the same in the uū and dd̄ initial states, but the non-singlet lines are curved in
the different directions. The reason can be found in eq. (2.17). Therein the non-singlet
contribution Cns is directly proportional to the weak isospin of the initial parton, Tqi ,
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ℜ[h(2),uūZ,A ] ns only
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Figure 15. Numeric results for the hard coefficients h(2)
Z,A (left) and h(3)

Z,A (right) in the axial-vector
current.
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Figure 16. Comparison of the total singlet contribution to the third-order non-singlet contribution.

whilst the singlet terms CtCAs +Cns/NF are universal for all initial states. Therefore, after
excluding the singlet terms, the h(2,3),uū

Z,A results are actually taking the opposite numbers
of those for the dd̄ channel, while the singlet terms hold. Please note that we have added
an uncertainty band to the results of CA,(3)

s to account for the uncertainty arising from the
finite terms, see eq. (C.9) and discussion thereafter. The error estimation is carried out by
varying cA,(3)

s around the default choice as [1
2 , 2] · C(3)

ns |LH=0 .
To further explore the properties of the axial-vector singlet terms, we confront the

whole singlet contribution (the sum of the O(α2
s) and O(α3

s) corrections) with the non-
singlet h(3)

Z,As in figure 16. It is seen that for the majority of the µ range, the singlet
contribution takes the comparable magnitude to the third-order non-singlet result. Espe-
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cially in the µ ∼ mZ region, the singlet terms approach =[h(3),dd̄
Z,A ] but are even greater

than <[h(3),uū
Z,A ], =[h(3),uū

Z,A ] as well as <[h(3),dd̄
Z,A ] in magnitude. In fact, this observation can

substantially highlight the importance of the singlet terms in the resummation. As shown
in table. 1, the resummation at N2LL′ requires the O(α2

s) hard function, whilst the N3LL′
accuracy needs those up to the third order. So if only a precision of the order of 10% of
the O(α2

s) correction is needed, the singlet terms could be neglected at the N2LL′ accuracy
in a numerically approximate sense. Nevertheless, as the complete singlet corrections are
of the same magnitude as, if not larger than, the third-order non-singlet corrections, their
inclusion is mandatory for a meaningful and robust N3LL′ resummation.

B Impact of leptonic power corrections

In eq. (2.34), the Lorenz-transformation matrix Λ`(~qT) has been incorporated into the hard
functions for including the leptonic power corrections. In this part, we will investigate its
numerical influences on the double-differential observable d2σ/(dqTd∆φ). To this end, we
define the ratio of the approximate results to the exact ones as follows,

κ(qT, ∆φ) ≡ d2σexp/(dqTd∆φ)
d2σf.o./(dqTd∆φ) , (B.1)

where σf.o. denotes the exact fixed-order perturbative result. σexp represents the pertur-
bative expansions of the resummed distribution in eq. (2.29). For comparison, we will
calculate σexp in two different ways: with or without Λ`(~qT) contributions. While the
result experienced eq. (2.34) is still named N(m)LOs, same as those in figures 4–5, those
excluding Λ`(~qT) effects are labelled as “N(m)LOs w/o. lpc”. Here the superscript “m”
specifies the expansion order in αs. Throughout this section, the results in former case will
be depicted in the solid lines, and to distinguish, the dashed ones illustrate the later case.

In figure 17, we exhibit the numerical results for κ(qT, ∆φ) after integrating out ∆φ
over the following four intervals:

1) 178 .2◦ < ∆φ < 180◦;
2) 175 .5◦ < ∆φ < 178.2◦;
3) 168◦ < ∆φ < 175.5◦;
4) 0◦ < ∆φ < 168◦.

In the small qT regime, the κ distributions in the four slices all approach the unity and
the differences due to the leptonic power corrections are insensible. This phenomenon is
in agreement with the observations in section 3.2 and also validates the leading power
factorisation in eq. (2.4). However, with the increase in the qT, the power corrections start
to manifest themselves. For instance, in the intermediate region qT ∼ 20GeV, one can find
that the κ spectra obviously deviate from the unity grid and furthermore the discrepancies
arising from the Λ`(~qT) incorporation emerge. One interesting phenomenon is that differing
from the first three slices, the κ spectra in the last slice are fairly sensitive to the leptonic
power corrections. To be specific, around the point qT = 25GeV, the Λ`(~qT) incorporations

– 37 –



J
H
E
P
1
0
(
2
0
2
1
)
0
8
8

pp → Z/γ∗ → µ+µ− (13 TeV LHC)

178.2◦ < ∆φ < 180◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → Z/γ∗ → µ+µ− (13 TeV LHC)

175.5◦ < ∆φ < 178.2◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → Z/γ∗ → µ+µ− (13 TeV LHC)

168◦ < ∆φ < 175.5◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → Z/γ∗ → µ+µ− (13 TeV LHC)

0◦ < ∆φ < 168◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W+ → µ+νµ (13 TeV LHC)

178.2◦ < ∆φ < 180◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W+ → µ+νµ (13 TeV LHC)

175.5◦ < ∆φ < 178.2◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W+ → µ+νµ (13 TeV LHC)

168◦ < ∆φ < 175.5◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W+ → µ+νµ (13 TeV LHC)

0◦ < ∆φ < 168◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W− → µ−ν̄µ (13 TeV LHC)

178.2◦ < ∆φ < 180◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W− → µ−ν̄µ (13 TeV LHC)

175.5◦ < ∆φ < 178.2◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W− → µ−ν̄µ (13 TeV LHC)

168◦ < ∆φ < 175.5◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]

κ
/
κ N

2
L
O
s

pp → W− → µ−ν̄µ (13 TeV LHC)

0◦ < ∆φ < 168◦

NLOs
N2LOs
NLOs w/o. lpc
N2LOs w/o. lpc

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

κ
(q

T
,∆

φ
)

0.94
0.96
0.98

1
1.02
1.04

κ
/
κ N

L
O

s

0 5 10 15 20 25 30 35 40
0.94
0.96
0.98

1
1.02
1.04

qT[GeV]
κ
/
κ N

2
L
O
s

Figure 17. Numeric impacts of the leptonic power corrections on the qT spectra.

in the first three slices improve the dashed lines by nearly 1% towards the “f.o.” ones, whilst
it escalates to 5% for the last slice.

To interpret this, note the topological configuration of final leptons in the fourth slice
considerably differs from the others. For the first three slices, as required by the small
value of (π−∆φ), the final leptons are almost in the back to back configuration. So for the
qT ≥ 25GeV region, the direction of ~qT tends to be aligned with ~̂p

`,T in the transverse plane,
so as to avoid the energetic recoil enhancing the (π −∆φ) value. Here ~̂p

`,T represents the
(anti-)lepton momentum in the rest frame of the lepton pair. Given the limit ~qT ‖ ~̂p`,T , the
Λ`(~qT) matrix acts only on the time-like and the longitudinal components of LV , whereas
the later case is only able to polarise perpendicularly to ~̂p

`,T in the massless limit.5 After
the contraction, the Λ`(~qT) matrix is effectively reduced to the metric tensor and therefore
gives rise to mild influences in the first three slices. The situation in the last slice is however
different. A variety of (π −∆φ) values therein can encourage the stronger recoils against

5Generically, one can decompose the transformation matrix as Λµ`,ν(~qT) ≡ ΛµzΛµxΛµy . Here Λµz represents
the boost-transformation along the colliding beam direction. Λµx(y) stands for those in the transverse plane.
Here we only consider the transformation in the transverse plane, since the boost along the beam direction
has vanishing impacts after being contracted against the leading power hadronic current.
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Figure 18. Numeric impacts of the leptonic power corrections on the ∆φ spectra.

the lepton momenta, so that ~qT is capable of developing a sizable perpendicular component
with respect to ~̂p

`,T , which in turn permits Λ`(~qT) to be non-trivially coupled with LV .
Except for the boundary bins which suffer from statistical issues, the fact that κ values
are all shifted towards the unity after incorporating the leptonic power correction matrix
Λ`(~qT) indicates that Λ`(~qT) indeed compensates for the power expansion and therefore
demonstrates the effectiveness of our strategy.

Additionally, figure 18 illustrates κ(qT, ∆φ)s after integrating out qT over the four
intervals as follows:

1) 1GeV< qT < 2GeV;
2) 2GeV< qT < 6GeV;
3) 6GeV< qT < 20GeV;
4) 20GeV< qT < 40GeV.

For the first two slices, since the qT value is constrained to be fairly small and thus the power
corrections are significantly suppressed therein, it is challenging to observe any impacts
from Λ`(~qT). However, with the value of qT growing in the next two slices, it emerges that
the appreciable discrepancies between the results of N(m)LOs and those without Λ`(~qT)
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insertions. Instructively, it is observed that the Λ`(~qT) influences are gradually corrupted
when ∆φ moves towards 180◦. For example, Λ`(~qT) can account for 3% ∼ 5% contribution
in the ∆φ ∼ 150◦ region, whilst the proportion decreases to less than 1% in the vicinity of
∆φ = 180◦. This phenomenon can be interpreted by the arguments above: as to the non-
vanishing qT, the greater ∆φ value, the less opportunities that Λ`(~qT) is able to couple with
the leptonic current. In this way, the Λ`(~qT) contributions in the right end of the graphs
are relatively weaker than the left one, which therefore produces the inverse relationships
between the Λ`(~qT) influences and ∆φ as illustrated in the ratio plots of the last two slices.

C Fixed-order functions

Axial Wilson coefficient Ct. As illustrated in (2.12), the axial-vector effective current
comprises a novel structure CtOs to restore the RGI in LEEFT and encode the contribu-
tions induced by the top loops. In general, Ct can be determined by matching the SM ampli-
tudes induced by t̄γµγ5t−b̄γµγ5b onto those from Os in the limitML � mt. However, owing
to differences in the Os renormalisation, the expressions for Ct differ. Two prescriptions ex-
ist in the literatures: 1) Larin’s [125] and 2) Chetyrkin’s [123, 124, 126]. In the latter case,
the results for Ct up to four-loop accuracy have been computed [123, 124, 126, 188–191].
In the former scheme, the axial-anomaly form factor induced by a top quark loop has been
calculated in [135] at the two-loop level. The Ct expressions in different schemes can be
related as

CLarin
t

CChetyrkin
t

= Zf,Chetyrkin
5

Zf,Larin
5

= 1−
(
αs
4π

)2 (3
2 CFNF

)
+
(
αs
4π

)3 (
−26CACFNF ζ3 + 163

27 CACFNF

+24C2
FNF ζ3 −

35
2 C

2
FNF −

88
27CFN

2
F

)
, (C.1)

where the superscripts represent the schemes of Os renormalisation. This paper employs
αs which is renormalised with NF = 5 active quarks throughout. In the Chetyrkin’s
prescription, the finite renormalisation constant Zf,Chetyrkin

5 is actually equal to the non-
singlet case Zf,Larin

ns in Larin’s scheme. The Zf,Larin
ns expression up to O(α3

s) can be found
in [123, 192]. As to the Zf,Larin

5 expression, the first two order investigation was carried out
some time ago in [125], while the third order result is given in a very recent publication [193].
In this work, we use Larin’s scheme. The corresponding expression for Ct reads,

Ct = − 1
NF

+
(
αs
4π

)2
(
−8Lt + 4

)
+
(
αs
4π

)3 (
−184

3 L2
t −

784
9 Lt + 208ζ3 −

6722
27

)
. (C.2)

where Lt = ln(µ2/m2
t ). Here the tree-level result (−1/NF ) balances the Os/NF term in

∆ns
3 . The singlet contribution starts from the two-loop level and the O(α2

s) results can be
either straightforwardly read from the axial-anomaly form factor in ref. [135], or extracted
from [124, 136] with the aid of eq. (C.1). We can confirm that both methods result in the
same O(α2

s) expression. The third order expression is obtained from [123] after multiplying
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the converter in eq. (C.1). We have checked that the Ct expression here indeed satisfies
the RGE in (2.25) up to O(α3

s), as expected by the Larin’s renormalisation scheme [125].

Non-singlet and singlet functions Cns, CV
s , and CA

s . As shown in eq. (2.17), the
hadronic currents Hγ , HZ,V and HZ,A involve a set of coefficients Cns, CVs and CAs encoding
the hard contributions in the loop integrals. In practice, they can be extracted from the UV-
renormalised and IRC-subtracted quark form factors. To cope with the possible ambiguities
arising from the γ5 manipulation, the form factors with the Larin’s prescription will be
adopted throughout, in accordance with the choice in Ct. In the following paragraphs,
their expressions will be presented.

First, we specify the non-singlet function Cns. As illustrated in eq. (2.17), Cns partic-
ipates in both the vector and axial-vector hadronic sectors. Due to the appearance of γ5,
one may expect that the non-singlet vector quark form factor would differ from those in the
axial vector case. However, since (at least) in Larin’s prescription the anticommutativity
of γ5 is effectively restored for the massless QCD, the axial-vector form factor coincides
with the vector one after the renormalisation [125]. Therefore, we utilise Cns to represent
both cases here. Without any loss of generality, the perturbative expansion for Cns can be
defined as

Cns =
∞∑
i=0

(
αs
4π

)i
C(i)

ns . (C.3)

According to the calculations on γ∗qq̄ amplitudes, the first three coefficients can be given
as [114, 137, 138]

C(0)
ns = 1,

C(1)
ns =− 4L2

H

3 + 4LH + 2π2

9 − 32
3 ,

C(2)
ns = 8L4

H

9 − 52L3
H

27 +
(

28π2

27 − 418
27

)
L2
H +

(
−184ζ3

3 + 7850
81 + 20π2

27

)
LH

+ 2356ζ3
27 + 46π4

81 − 277π2

81 − 85081
486 ,

C(3)
ns =− 32L6

H

81 − 80L5
H

81 +
(

2486
81 − 128π2

81

)
L4
H +

(
736ζ3

9 − 23284
243 − 416π2

243

)
L3
H

+
(

11024ζ3
81 − 209686

729 + 7052π2

243 − 4124π4

1215

)
L2
H+

[
−235168ζ3

81 +π2
(3776ζ3

81 + 5356
729

)

+15328ζ5
9 + 4877080

2187 − 514π4

405

]
LH −

87112ζ5
81 + π2

(928ζ3
243 −

124987
729

)
− 25664ζ2

3
27

+ 4274126ζ3
729 − 492512π6

229635 + 326479π4

21870 − 145304189
39366 ,

(C.4)

where LH = ln[(−M2
L − iε)/µ2].
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Next, the expression for the vector singlet contribution CVs starts at the third-loop
level and can be given as [114, 138]

CVs =
(
αs
4π

)3
(

280ζ3
27 − 1600ζ5

27 + 100π2

27 + 80
9 −

2π4

81

)
. (C.5)

Note that as there are no ε-poles confronted by CVs at O(α3
s), the expression in eq. (C.5)

contains no logarithmic terms.
At last, the axial vector function CAs induced by the Os operator will be determined.

Similarly, we also introduce the perturbative expansion for CAs here,

CAs =
∞∑
i=0

(
αs
4π

)i
CA,(i)s , (C.6)

where CA,(i)s encodes the Os contribution in each order. Topologically, Os can conduct
both the singlet and non-singlet Feynman diagrams (see figure 1). Considering that the
singlet part will start to work at O(α2

s), CAs should be identical to Cns up to NLO. Hence
we have

CA,(0)
s = 1 ,

CA,(1)
s = − 4

3L
2
H + 4LH + 2π2

9 − 32
3 .

(C.7)

From N2LO, CAs however comprises both the singlet and non-singlet contributions. To dis-
cuss, it is convenient to subtract the Cns from CAs , and define the pure singlet contribution
as CAps ≡ (CAs − Cns)/NF (see figure 1c). For now, the N2LO calculation on CAps has been
carried out in ref. [135] based on the prescription in [125], while the Cns expressions have
been specified above. After the combination, we get

CA,(2)
s = 8L4

H

9 − 52L3
H

27 +
(

28π2

27 − 418
27

)
L2
H +

(
−184ζ3

3 + 20π2

27 + 11090
81

)
LH + 2356ζ3

27

+ 46π4

81 + 83π2

81 − 143401
486 . (C.8)

In comparison to C(2)
ns , it is observed that the terms proportional to L2

H and those with the
higher power remain the same, while the participation of singlet contribution has modified
the others. This phenomenon is in agreement with the expectation of eq. (2.26), where
the cusp anomalous dimension receives no changes but the non-cusp one endures an extra
term, γt. We also have checked that up to O(α2

s), CAs indeed satisfies the corresponding
RGEs in eq. (2.26).
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In order to obtain the third order contribution, we resort to the perturbative solution
of the RGE in eq. (2.26), which gives,

CA,(3)
s =− 32

81L
6
H −

80
81L

5
H +

(
2486
81 − 128π2

81

)
L4
H +

(
736ζ3

9 − 416π2

243 − 36244
243

)
L3
H

+
(

11024ζ3
81 + 5612π2

243 − 199966
729 − 4124π4

1215

)
L2
H +

[
π2
(3776ζ3

81 − 24884
729

)

+15328ζ5
9 − 235168ζ3

81 − 514π4

405 + 8541520
2187

]
LH + cA,(3)

s .

(C.9)

It is also seen that the coefficients in front of L4
H , L5

H as well as L6
H all stay still with

respect to C
(3)
ns , while γt makes differences in the others. Also note that there is one

constant term c
A,(3)
s which relies on the third order expressions of CAps. In this work, we

take cA,(3)
s = C

(3)
ns |LH=0 to contain the non-singlet contributions.6
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