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Abstract: Recent high precision determinations of Vus and Vud indicate towards anomalies
in the first row of the CKM matrix. Namely, determination of Vud from beta decays
and of Vus from kaon decays imply a violation of first row unitarity at about 3σ level.
Moreover, there is tension between determinations of Vus obtained from leptonic Kµ2 and
semileptonic K`3 kaon decays. These discrepancies can be explained if there exist extra
vector-like quarks at the TeV scale, which have large enough mixings with the lighter
quarks. In particular, extra vector-like weak singlets quarks can be thought as a solution
to the CKM unitarity problem and an extra vector-like weak doublet can in principle
resolve all tensions. The implications of this kind of mixings are examined against the
flavour changing phenomena and SM precision tests. We consider separately the effects
of an extra down-type isosinglet, up-type isosinglet and an isodoublet containing extra
quarks of both up and down type, and determine available parameter spaces for each
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more stringent with larger masses, so that the extra species should have masses no more
than few TeV. Moreover, only one type of extra multiplet cannot entirely explain all the
discrepancies, and some their combination is required, e.g. two species of isodoublet, or
one isodoublet and one (up or down type) isosinglet. We show that these scenarios are
testable with future experiments. Namely, if extra vector-like quarks are responsible for
CKM anomalies, then at least one of them should be found at scale of few TeV, and
anomalous weak isospin violating Z-boson couplings with light quarks should be detected
if the experimental precision on Z hadronic decay rate is improved by a factor of 2 or so.
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1 Introduction

The Standard Model (SM) SU(3)×SU(2)×U(1) contains three fermion families with left-
handed (LH) components of quarks qLi = (uL, dL)i and leptons `Li = (νL, eL)i, i = 1, 2, 3,
forming doublets and the right-handed (RH) components uRi, dRi, eRi being singlets of
isotopic symmetry SU(2) of weak interactions. The charged current weak interactions in
terms of the quark mass eigenstates, up quarks u, c, t and down quarks d, s, b, are described
by the coupling

g

2
√

2
W+
µ (u c t) γµ(1− γ5)VCKM

 ds
b

 + h.c. (1.1)

where VCKM is the Cabibbo-Kobayashi-Maskawa (CKM) matrix:

VCKM =

 Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

 (1.2)

In the SM context VCKM should be unitary. Any deviation from its unitarity can be a
signal of new physics beyond the SM (BSM).

At present, the determinations of |Vus| and |Vud| have reached high enough precision
to test with high accuracy the unitarity of the first row in CKM matrix (1.2):

|Vud|2 + |Vus|2 + |Vub|2 = 1 (1.3)

Namely, precision experimental data on kaon decays, in combination with the latest lattice
QCD calculations of the decay constants and form-factors, provide accurate information
about |Vus|. On the other hand, recent calculations of short-distance radiative corrections
in β-decays substantially improved the determination of |Vud|. Since the contribution of
|Vub| ' 0.004 is very small and actually negligible, the test of the sum rule in eq. (1.3) is
practically equivalent to a Cabibbo universality check.

In our previous paper ref. [1] it was pointed out that there is a significant (about
4σ) anomaly in the first row unitarity (1.3), after using three types of independent de-
terminations of |Vus| and |Vud|, which were dubbed as determinations of type A, B and
C. Specifically, determination A corresponds to the direct determination of |Vus| from the
kaon semileptonic (K`3) decays, B comes from the determination of the ratio |Vus/Vud|
obtained from charged kaon leptonic (Kµ2) decays by comparing them with pion leptonic
decays, and C corresponds to the direct determination of |Vud| from superallowed 0+–0+

nuclear transitions by employing the value of the Fermi constant obtained from the muon
decay, GF = Gµ.

For explaining this anomaly we proposed two possible BSM scenarios. One is related to
a new physics in the lepton sector. Namely, we considered the horizontal gauge symmetry
SU(3)` × SU(3)e between the lepton families, with SU(3)` acting between LH states `Li =
(νL, eL)i and SU(3)e acting between RH ones eRi. We have shown that flavour changing
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gauge bosons of SU(3)` induce an effective operator which contributes to the muon decay
in positive interference with the SM contribution (W -boson exchange). In this way, the
muon decay constant Gµ becomes different from the Fermi constant GF : Gµ = GF (1 + δµ)
with δµ = (vw/vF )2, where vw and vF respectively are the electroweak and horizontal
symmetry breaking scales. Since the values of |Vus| and |Vud| are normally extracted by
assuming GF = Gµ, in this scenario they are shifted by a factor 1 + δµ while their ratio
is not affected. CKM unitarity is recovered with δµ ' 7 × 10−4 which corresponds to a
horizontal breaking scale of about 6TeV. Interesting point is that such a low mass scale
for the horizontal gauge bosons is not in conflict with the stringent experimental limits on
the lepton flavour changing processes as µ → 3e, τ → 3µ etc. [1]. The breaking scale of
SU(3)e symmetry of the RH leptons can also be as small as few TeV without contradicting
experimental limits [2].

Another (more straightforward) possibility discussed in ref. [1] is to introduce extra
vector-like quarks.1 In particular, with extra isosinglet quarks of down-type b′ or up-type
t′ one can settle the CKM unitarity problem which results from the determination of Vud
from superallowed beta decays (C) and Vus from kaon decays (A and B), whereas by
employing the extra quarks forming the weak isodoublet (t′, b′) all the tensions between
the independent determinations A, B and C can in principle be explained.

However, large mixings with SM families induce flavour changing phenomena which can
be in potential conflict with stringent experimental limits. In this work we give a detailed
study of the effects on relevant flavour changing processes and electroweak observables
and constrain the parameter space for each scenario (extra weak isosinglets of up-type or
down-type or weak isodoublets).

As we will show, there still remains some available parameter space which can satisfy
these stringent constraints but it is very limited and can be excluded with future experi-
mental data. In particular, it can be excluded if the limits on masses of extra vector-like
species will increase up to 3TeV or so or the limits on some relevant flavour changing
phenomena or Z boson physics will further strengthen. Therefore, all these scenarios can
be falsified in close future.

The paper is organized as follows. Since after ref. [1] some new data appeared, in
section 2 we update the analysis of the CKM first row anomalies. As we will show, although
numbers have changed, the anomalies are still there. In section 3 we discuss the generalities
about the role of different types of vectorlike quarks in fixing the problem. In sections 4
and 5 we analyze separately the scenarios with extra weak isosinglet quarks of down-type
(b′) and up-type (t′), by providing a detailed study of flavour changing phenomena induced
in this scenarios and determining the available parameter space. In section 6 we perform
the analysis in the case of additional extra weak isodoublet (t′, b′). In section 6.5 we discuss
some combinations in case more families are introduced. At the end, in section 7 we give
our conclusions.

1After ref. [1] the problem of the CKM unitarity anomaly was addressed with different approaches in
several subsequent papers [3–16].
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2 Present situation in the determination of |Vus| and |Vud|

As already stated, the precision of recent determinations of |Vus| and |Vud| allows to test the
first row unitarity (1.3) of CKM matrix. Deviation from unitarity can be parameterized as

|Vud|2 + |Vus|2 + |Vub|2 = 1− δCKM (2.1)

Hence, the value δCKM shows the measure of the unitarity deficit.
The element |Vus| can be directly determined from semileptonic K`3 decays (KLµ3,

KLe3, K±e3, etc.) which imply [17]:

f+(0)|Vus| = 0.21654± 0.00041 (2.2)

where f+(0) is the vector form factor at zero momentum transfer which can be computed
in the lattice QCD simulations. The average of 4-flavor computations reported by FLAG
2019 is f+(0) = 0.9706(27) [18]. We combine it with the latest 4-flavor result f+(0) =
0.9696(19) [19] (which was not included in FLAG 2019 [18]) getting f+(0) = 0.9699(15).
In this way, from eq. (2.2) we obtain the value of |Vus| (determination A in the following) as:

A : |Vus|A = 0.22326(55) (2.3)

An independent information (determination B in the following) stems from the ratio
of the kaon and pion leptonic decay rates K → µν(γ) and π → µν(γ) which implies [20]:

|Vus/Vud| × (fK±/fπ±) = 0.27599± 0.00038 (2.4)

Then, by employing the 4-flavour average for the decay constants ratio fK±/fπ±=1.1932(19)
reported in FLAG 2019 [18], we obtain:

B : |Vus|/|Vud| = 0.23130(49) (2.5)

As regards the element |Vud|, its most precise determination is obtained from super-
allowed 0+–0+ nuclear β-decays, which are pure Fermi transitions sensitive only to the
vector coupling constant GV = GF |Vud|. The master formula reads [21, 22]:

|Vud|2 = K

2G2
FFt (1 + ∆R)

= 0.97142(58)
1 + ∆R

(2.6)

where K = 2π3 ln 2/m5
e = 8120.2765(3) × 10−10 s/GeV4, GF = Gµ = 1.1663787(6) ×

10−5 GeV−2 is the Fermi constant determined from the muon decay [24] and the nucleus
independent value Ft = 3072.24(1.85) s is derived from ft-values of 15 best determined
superallowed 0+–0+ nuclear transitions by absorbing in the latter all transition-dependent
(so called outer) corrections. This value has been very recently updated in ref. [22]. In
particular, while the Ft central value is almost unchanged, the uncertainty attributed
to the theoretical corrections has increased.2 The second source of uncertainty in Vud is

2In our previous work [1] we used Ft = 3072.07(72) s [23], but this value was recently upadated in
ref. [22].
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related to the transition independent short-distance (so called inner) radiative correction
∆R which in 2006 was computed by Marciano and Sirlin obtaining ∆R = 0.02361(38) [25].

However, a recent calculation with improved hadronic uncertainties brought to a dras-
tically different value ∆R = 0.02467(22) [26]. A more conservative approach of ref. [27]
gives a slightly lower result with relatively larger uncertainty, ∆R = 0.02426(32). For our
analysis we decided to use the average of these two results, ∆R = 0.02454(18).3 Then,
using this average, from eq. (2.6) we get the value of |Vud|:

0+–0+: |Vud| = 0.97373(29)Ft(9)∆R
= 0.97373(31) (2.7)

The value of |Vud| can be extracted also from the free neutron β-decay:

|Vud|2 = K/ ln 2
G2
FFnτn (1 + 3g2

A)(1 + ∆R)
= 5024.46(60) s
τn(1 + 3g2

A)(1 + ∆R)
(2.8)

where Fn = fn(1+δ′R) is the neutron f -value fn = 1.6887(2) corrected by the long-distance
QED correction δ′R = 0.014902(2) [31]. It is somewhat less precise due to limited accuracy
in the experimental determination of the neutron lifetime τn and the axial coupling constant
gA = GA/GV . By combining the recent determination of axial coupling gA = 1.27625(50)
and the “bottle” lifetime4 τbottle

n = 879.4(0.6) s as in ref. [1], using the average ∆R =
0.02454(18), we get:

free neutron: |Vud| = 0.97333(33)τn(32)gA(9)∆R
(6)fn = 0.97333(47) (2.9)

(Interestingly, by comparing the determinations of |Vud| from free neutron decays and
superallowed 0+–0+ decays, the factor 1 + ∆R cancels out and one obtains an accurate
determination of the neutron lifetime τn = 5172.0(1.1)/(1 + 3g2

A) = 878.7(0.6) [33] which
well agrees with τbottle

n but is in strong tension with τbeam
n = 888.0(2.0) s [32].)

By averaging the results from superallowed beta decays and free neutron decay (2.7),
(2.9) we get the value of |Vud| (determination C in the following):

C : |Vud| = 0.97362(26) (2.10)

The measurements of π+ → π0e+ν branching ratio by PIBETA experiment [34] lead to the
independent result |Vud| = 0.9728(30) which however has about 10 and 6 times larger uncer-
tainties as compared to determinations (2.7) and (2.9). Therefore, we take in consideration
determination C obtained from superallowed 0+–0+ transitions and free neutron decay.

The tensions between determinations A, B and C are shown in figure 1, which presents
the fit of the values (2.3), (2.5), (2.10), with Vus and Vud considered as independent param-
eters, without imposing unitarity. The unitarity condition (1.3) is shown with the black

3Other more recent studies confirmed the shift of the value of ∆V
R [28–30]. By including these results,

the discrepancies in the first row of the CKM matrix would increase, so we are more conservative with
our choice.

4There is an apparent tension (4σ) between the neutron lifetime measurements using the bottle and
beam experimental methods, τbottle

n = 879.4(0.6) s and τbeam
n = 888.0(2.0) s, origin of which requires more

profound understanding and perhaps some new physics [32].
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Figure 1. The purple, blue and red bands correspond respectively to the values of |Vus| from
eq. (2.3), |Vus/Vud| from eq. (2.5) and |Vud| = 0.97362(26) from eq. (2.10). The best fit point, 1σ,
2σ and 3σ coverage probability contours are shown (green cross and green circles) for Vus and Vud
considered as independent parameters, without imposing unitarity. The black curve corresponds to
the unitarity condition (1.3). The dashed black curve corresponds to eq. (2.1) with the deficit of
unitarity δCKM = 1.8× 10−3.

continuous line. The best fit (minimum χ2) corresponds to

|Vus| = 0.22436(36) |Vud| = 0.97356(26) (2.11)

The unitarity curve is 3σ away. The χ2 value is rather large, χ2 = 7.1, due to the tension
between the two determinations A and B from kaon decays. Using eq. (2.1) for fitting the
data, the deficit of CKM unitarity results

δCKM = 1.8(5)× 10−3 (2.12)

The tensions can be manifested also in another way. We can take |Vus|A = 0.22326(55)
from the direct determination A while B and C can be also translated in |Vus| determina-
tions by imposing the unitarity condition (1.3). Namely, the value of |Vus| obtained in this
way from eq. (2.5) is:

|Vus|B = 0.22535(45) (2.13)

which is compatible also with a theoretical result |Vus| = 0.22567(42) from Kµ2 decays
obtained in ref. [35].

From determination C (2.10) we get instead:

|Vus|C = 0.2282(11) (2.14)

For completeness, in table 1 we show the values of |Vud| and respective “unitarity” values
of |Vus| corresponding to the choices of ∆R as reported in original refs. [25–27], indicated
as C0, C1 and C2.
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Determination ∆R |Vud| |Vus|
C0 [25] 0.02361(38) 0.97420(21) 0.2257(9)
C1 [26] 0.02467(22) 0.97355(27) 0.2284(11)
C2 [27] 0.02426(32) 0.97375(29) 0.2276(12)
C (our choice) 0.02454(18) 0.97362(26) 0.2282(11)

Table 1. Values of ∆R reported in original references [26, 27], respectively labeled as C1 and C2,
and corresponding values of |Vud| obtained by averaging eqs. (2.6) and (2.8). Values of |Vus| are
obtained assuming unitarity (1.3). C represents our average (see text). C0 represents the value
quoted by Particle Data Group (PDG) review 2018 [36].

A: |Vus|=0.22326(55) B: |Vus|=0.23130(49)|Vud| Average∗

C1: |Vud|=0.97355(27) 2.3 · 10−3 1.5 · 10−3 1.8 · 10−3

C2: |Vud|=0.97375(29) 2.0 · 10−3 1.1 · 10−3 1.5 · 10−3

C: |Vud|=0.97362(26) 2.2 · 10−3 1.3 · 10−3 1.7 · 10−3

∗Average of the values of Vus given in the columns A and B.

Table 2. Values of δCKM obtained for different choices of the values of |Vus| and |Vud|.

Figure 2 displays the values |Vus|A (2.3), |Vus|B (2.13) and |Vus|C (2.14) with corre-
sponding error bars (shaded areas). Between determinations obtained from kaon decays,
A and B, there is about 3σ tension, which maybe could disappear with more accurate
lattice simulations.5 Therefore, we conservatively take a democratic average of |Vus|A and
|Vus|B without reducing error bars (with the uncertainty taken as arithmetical average of
two uncertainties):

A+B : |Vus| = 0.22451(50) (2.15)

We see that there is about 4σ tension between determination A and C and 2.3σ tension
between B and C. The discrepancy between the conservative averages A+B and C results
in 3σ. Let us notice that if we try to fit the incompatible determinations of Vus A (2.3),
B (2.13), C (2.14), we would get the average value |Vus| = 0.22482 but with a ugly large
χ2 value, χ2 = 18.

In table 2 we show the landscape of possible values of the unitarity deficit δCKM. We see
that depending on the choice of the data this value spans from about 10−3 to about 2 ·10−3.

In conclusion, the CKM unitarity condition with three families (1.3) is not really
consistent with the present determinations of |Vus| and |Vud|. An immediate solution would
be to introduce a fourth sequential family (t′, b′), analogous to the three SM families, with
the LH components forming weak isodoublets and RH components being isosinglets. Then

5These determinations obtained from 3-flavor lattice computations [37] were in fact compatible because
of larger error-bars, see figure 2.
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Figure 2. Shaded areas show the values of |Vus| obtained from determinations A (2.3), B (2.5)
and C (2.10) by assuming CKM unitarity (1.3), while the black line corresponds to the democratic
average of A and B (2.15) (see text). C1, C2 are the values of |Vus| obtained from the values
of ∆R reported by original references, as listed in table 1. For comparison we also show the
values of |Vus| obtained using 3 flavours lattice QCD simulations as reported in FLAG 17 [37] and
adopted in Particle Data Group 2018. These determinations have practically no tension with the
old determination C0 [25]. Hence, this picture demonstrate that the CKM tensions in fact emerged
due to improved precision of 4-flavours computations [18, 19] on one side, and due to the changes
in inner radiative correction ∆R [26, 27] on the other side.

the 3× 3 CKM matrix (1.2) should be extended to a unitary 4× 4 matrix:

VCKM =


Vud Vus Vub Vub′

Vcd Vcs Vcb Vcb′

Vtd Vts Vtb Vtb′

Vt′d Vt′s Vt′b Vt′b′

 , (2.16)

and correspondingly the first row unitarity condition would be modified to:

|Vud|2 + |Vus|2 + |Vub|2 + |Vub′ |2 = 1 (2.17)

Comparing this equation with eq. (2.1) we see that the parameter δCKM assumes the
meaning of the mixing with the fourth family, δCKM = |Vub′ |2. Therefore for typical values
of δCKM given in table 2 we get |Vub′ | ≈ 0.04, which is comparable with |Vcb| and an
order of magnitude larger than |Vub| ≈ 0.004. It looks not very natural that the mixing
of the first family with the fourth family is much stronger than its mixing with the third
family, but some models admit this possibility [39]. Unfortunately, the existence of a fourth
sequential family is excluded by the limits from electroweak precision data combined with
the LHC data.

However, vector-like quarks can be introduced without any contradiction with SM
precision tests. The LHC limits merely tell that their masses should be above 1TeV or so.

In the rest of this paper we discuss how the anomalies in the first row of CKM matrix
can be solved by introducing extra vector-like fermions. In particular we will consider the
role of weak isosinglets of down-type or up-type and weak isodoublets.
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In fact, two approaches to the problem can be considered. The incompatibility inside
kaon physics may be attributed to some uncertainties which can disappear maybe soon
with more precise determinations, focusing instead on the average of determinations from
kaons. Then the problem consists in solving the lack of unitarity in the first row of VCKM.
The insertion of an extra vectorlike weak isosinglet, down-type or up-type, is on this line.

However, the Vus anomaly (discrepancy between Vus determinations from the kaon
semileptonic and leptonic decays) can be considered seriously,6 and one has to look for
a solution addressing the whole situation. As it will be shown, a weak isodoublet can in
principle explain all the anomalies.

In these scenarios with extra vector-like families, the unitarity deficit δCKM will be
related to the mixing of the extra quarks with the SM families.

3 The SM with extra vector-like fermions

The Standard Model SU(3)× SU(2)×U(1) contains, by definition, three chiral families of
fermions, the LH quarks qLi = (uL, dL)i and leptons `Li = (νL, eL)i transforming as SU(2)
isodoublets and the RH components uRi, dRi, eRi being isosinglets, with i = 1, 2, 3 being
the family index. This set of fermions is free of gauge anomalies. Attractive property of the
SM is that these fermions can acquire masses only via the Yukawa couplings with Higgs
doublet ϕ:

LSM
Yuk = Y ij

u ϕ̃ qLiuRj + Y ij
d ϕ qLidRj + Y ij

e ϕ `LieRj + h.c. (3.1)

where Y ij
u,d,e are the Yukawa constant matrices, and ϕ̃ = iτ2ϕ

∗. The known species of
quarks and leptons are eigenstates of mass matrices Mu,d,e = Yu,d,evw where 〈ϕ0〉 = vw
is the Higgs VEV. In other words, in the SM the quark and lepton masses are induced
only after the electroweak symmetry breaking, and their values are proportional to the
electroweak scale vw.

The quark mass matrices can be diagonalized by bi-unitary transformations

V †LuMuVRu = M̃u = diag(mu,mc,mt), V †LdMdVRd = M̃d = diag(md,ms,mb) (3.2)

and the weak eigenstates in terms of mass eigenstates are: uL1
uL2
uL3

 = VLu

 uLcL
tL

 ;

 dL1
dL2
dL3

 = VLd

 dLsL
bL

 (3.3)

The CKM mixing matrix in W boson charged current couplings (1.1) emerges as a com-
bination of the ‘left’ unitary transformations, VCKM = V †LuVLd, and thus it should be
unitary. As for the ‘right’ matrices VRu and VRd, in the SM frames they have no physi-
cal significance. Without loss of generality, one can choose a fermion basis in which one

6In fact, a recent high precision determination of K`3 radiative corretions [38] indicates that the SM
electroweak effects are not large enough to account for Vus anomaly.
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of the Yukawa matrices Yu or Yd is diagonal in which cases we would have respectively
VCKM = VLd or VCKM = V †Lu.

The SM exhibits a remarkable feature of natural suppression of flavor-changing neu-
tral currents (FCNC) [40–42]: no flavor mixing emerges in neutral currents coupled to Z
boson and Higgs boson. In particular, this means that Z boson tree level couplings with
the fermion mass eigenstates remain diagonal after rotations (3.3). On the other hand, the
Yukawa matrices Yu,d,e and mass matrices Mu,d,e are proportional and thus by transforma-
tions (3.2) they are diagonalized simultaneously, so that the Yukawa couplings of the Higgs
boson H with the fermion mass eigenstates are diagonal. Hence, all FCNC phenomena are
suppressed at tree level and emerge exclusively from radiative corrections. At present, the
majority of experimental data on flavor changing and CP violating processes are in good
agreement with the SM predictions.

Clearly, in the SM framework the unitarity of the CKM matrix as well as the natural
flavor conservation in neutral currents are direct consequences following from the fact that
the three families are in identical representations of SU(3)× SU(2)×U(1).

However, in addition to three chiral families of quarks and leptons, there can exist
extra vector-like species, with the LH and RH in the same representations of the SM.
In particular, one can consider the extra fermion species in the same representations of
SU(3)×SU(2)×U(1) as standard quarks and leptons, namely in the form of weak isosinglets
of down quark type DL,R, up quark type UL,R and charged lepton type EL,R, and weak
isodoublets QL,R = (U ,D)L,R and LL,R = (N , E)L,R of quark and lepton types.7 (Extra
vector-like fermions can be introduced also in other representations as e.g. SU(2) isotriplets
which can contain quark or lepton type fragments but also some fragments with exotic
electric charges but here we do not address these cases.) The mass terms of these species
are not protected by the SM gauge symmetries and hence their masses can be (or must be)
considerably larger than the electroweak scale.

In the following we shall concentrate on the quark sector. Namely, we consider a theory
which, besides the three chiral families of standard quarks uRi, dRi and qLi = (uL, dL)i
(i = 1, 2, 3), includes some extra vector-like quark species UL,R, DL,R and QL,R = (U ,D)L,R
which in principle can be introduced in different amounts. Therefore, along with the
standard Yukawa terms for the three chiral families:8

LYuk = Yuϕ̃ qLuR + Ydϕ qLdR + h.c. (3.4)

the most general Lagrangian of this system must include the mixed Yukawa terms between
the standard and extra species:

Lmix
Yuk = hU ϕ̃ qLUR + hDϕ qLDR + hU ϕ̃QLuR + hDϕQLdR + h.c. (3.5)

7Such vector-like species are predicted in some extensions of the Standard Model. For example, D and L
type species emerge (per each family) in the context of minimal E6 [43, 44] or SU(6) [45] grand unifications.
In addition, the specifics of the latter model in which Higgs emerges as pseudo-Goldstone particle, requires
at least one copy of Q, U and E type species for inducing the fermion masses and in particular the top
quark mass [46, 47].

8Hereafter indices i = 1, 2, 3 of normal families as well as indices of extra species are suppressed.
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and the mass terms

Lmass = MUULUR +MDDLDR +MQQLQR + µuULuR + µdDLdR + µqqLQR + h.c.
(3.6)

where hU,D and hu,d in the Yukawa terms (3.5) and MU,D,Q and µu,d,q in mass terms (3.6)
are the matrices of proper dimensions depending on the amounts of extra species. One
could introduce also the Yukawa couplings between extra species:

Lextra
Yuk = λU ϕ̃QLUR + λU ϕ̃QRUL + λDϕQLDR + λDϕQRDL + h.c. (3.7)

However, they play no relevant role in further discussions and for simplicity we neglect
them.

The vector-like quarks are key players in models with horizontal inter-family symme-
tries [48–55], in some models of the axion [56–60] as well as in axionless (Nelson-Barr type)
models for solving the strong CP problem via spontaneous CP or P violation [61–65]. In
these models the values MU,D,Q and µu,d,q in mass terms (3.6) are related to the breaking
scales of respective symmetries, and in some models e.g. [63, 65, 66] they can be as low as
few TeV.

Interestingly, some of these symmetries (e.g. flavor symmetry or Peccei-Quinn sym-
metry) may forbid the direct Yukawa terms (3.4) but allow the mixed ones (3.5) while
mass terms µ and M in (3.5) can be originated from some physical scales.9 Nevertheless,
despite that the original constants Yu,d in (3.4) are vanishing, the SM Yukawa terms (3.1)
for normal fermions will be induced after integrating out the heavy states. In particular,
provided that mixing mass terms µu,d,q are smaller than MU,D,Q, we obtain

Yu ' hUM−1
U µu + µqM

−1
Q hU , Yd ' hDM−1

D µd + µqM
−1
Q hD (3.8)

In other words, the non-zero quark masses are induced via the mixings with the extra
vector-like species. Such a scenario known as ‘universal’ seesaw mechanism [48, 67–69] is
commonly used in predictive model building for fermion masses and mixings as e.g. [48, 69–
76]. In the context of supersymmetric models with flavor symmetry this mechanism can
give a natural realization of the minimal flavor violation scenario via the alignment of soft
supersymmetry breaking terms with the Yukawa terms [77–79].

In the following we are not interested in the model details and in possible dynamical
effects of the underlying symmetries broken at higher scales, but only in the effects of the
mixing between the three normal (chiral) and extra (vector-like) quarks. Therefore, we can
conveniently redefine the fermion basis. Namely, the species uR and UR, dR and DR, and
qL and QL, are in the identical representations of SU(3)×SU(2)×U(1). Thus, by redefining
these species, one can eliminate mixed mass terms µu, µd and µq in (3.6) by ‘absorbing’
them respectively in the mass terms MU , MD and MQ (this means that e.g. from 3 + n

RH species with quantum numbers of dR we can always select n their combinations which
9E.g. in the ‘seesaw’ model of ref. [48] the values of µu,d and MU,D are respectively determined by the

breaking scales of left-right symmetry and family symmetry, i.e. by the VEV of the ‘right’ Higgs doublet
and VEVs of flavon scalars which break the horizontal symmetry.
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‘marry’ n species of LH fermions DL via mass terms while the remaining 3 combinations
have no mass terms). In addition, without losing generality, the ‘heavy’ mass matrices MU ,
MD and MQ can be taken to be diagonal and real.

In this basis the total mass matrices of up type (u, U,U)L,R and down type (d,D,D)L,R
quarks, after substituting the Higgs VEV 〈φ〉 = vw, read:

Mup =

 Yuvw hUvw 0
0 MU 0

hUvw 0 MQ

 , Mdown =

 Ydvw hDvw 0
0 MD 0

hDvw 0 MQ

 (3.9)

where the blocks Yu,d are matrices of dimensions 3×3. Assuming that the numbers of extra
species U , D and Q are respectively p, n and m, then blocks MU , MD and MQ should be
correspondingly of dimensions p×p, n×n and m×m. Thus,Mup andMdown respectively
are (3 + p+m)× (3 + p+m) and (3 + n+m)× (3 + n+m) matrices.

The mass matrices (3.9) can be brought to the diagonal forms via bi-unitary transfor-
mations (VLup)†MupVRup = M̃up and (VLdown)†MdownVRdown = M̃down. In this way, the initial
states of e.g. down-type quarks are related to their physical states (mass eigenstates) as d

D

D


L,R

= VL,Rdown

 d′

D′

D′


L,R

=

 V
L,R
dd′ V L,R

dD′ V
L,R
dD′

V L,R
Dd′ V

L,R
DD′ V

L,R
DD′

V L,R
Dd′ V

L,R
DD′ V

L,R
DD′


 d′

D′

D′


L,R

(3.10)

Here d = (d1, d2, d3)T are initial states and d′ = (d, s, b)T are the mass eigenstates, and
similarly for heavy species D and D. Analogously, unitary matrices VL,Rup connect the initial
up-quark type states u, U,U with their mass eigenstates u′, U ′,U ′, where u = (u1, u2, u3)T

and u′ = (u, c, t)T .
Since we have M̃2

down = (VLdown)†MdownM†down VLdown = (VRdown)†M†downMdown VRdown,
unitary matrices VLdown and VRdown can be determined by considering the hermitian squares
ofMdown:

MdownM†down =

 v
2
wYdY

†
d + v2

whDh
†
D vwhDMD v2

wYdh
†
D

vwMDh
†
D M2

D 0
v2
whDY

†
d 0 M2

Q + v2
whDh

†
D

 ,

M†downMdown =

 v
2
wY
†
d Yd + v2

wh
†
DhD v2

wY
†
d hD vwh

†
DMQ

v2
wh
†
DYd M2

D + v2
wh
†
DhD 0

vwMQhD 0 M2
Q

 . (3.11)

The off-diagonal entries of these matrices are fixed by the value vw, so that the elements
of the off-diagonal blocks VdD′ , VdD′ etc. in (3.10) are determined by the ratio of the
electroweak scale to the masses of extra quark species. In the limit when the latter are
very heavy they decouple and their mixings with light quarks become negligibly small.
Thus, in this limit 3 × 3 block Vdd′ becomes unitary. The same is true for analogous Vuu′
block in up quark mixing. However, if the extra quarks are not that heavy and off-diagonal
blocks are not negligible, then Vdd′ and Vuu′ blocks are no more unitary.
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The present experimental limits on the extra quark masses are MU,D,Q > (1÷1.5)TeV,
depending on their type and decay modes [20]. Therefore, the ratios εu = vw/MU , εd =
vw/MD and εq = vw/MQ can be considered as small parameters, εu,d,q ≤ 0.1 or so. By
inspecting the matrices (3.11), one can estimate the elements of the off-diagonal blocks in
Vdown
L,R and Vup

L,R as

|V L
dD′ | ∼ εd, |V L

uU ′ | ∼ εu, |V L
dD′ |, |V L

uU ′ | ∼ ε2q
|V R
dD′ |, |V R

uU ′ | ∼ εq, |V R
dD′ | ∼ ε2d, |V R

uU ′ | ∼ ε2u (3.12)

modulo the Yukawa constants which are assumed to be ≤ 1 for perturbativity. Therefore,
the deviation from unitarity of the “left” matrices V L

dd′ and V L
uu′ blocks are ∼ ε2u,d ≤ 10−2.

E.g. the first row unitarity of the matrix VLdown implies |V1d|2 + |V1s|2 + |V1b|2 = 1−|V1D′ |2−
|V1D′ |2 = 1− δd. Taking into account the above estimations, we see that the deviation can
be as large as δd ∼ ε2d ∼ 10−2. Let us recall that the CKM unitarity deficit δCKM estimated
in previous section is about (1÷ 2)× 10−3, see table 2. Thus, for accounting for the above
values of δCKM, one would need εd = 0.03− 0.05. As for ε4 ∼ 10−4 contributions, they are
irrelevant and so order ε2 mixings as V1D′ etc. can be safely neglected.

Let us assume, for simplicity, that each of U , D and Q type species is present in one
copy, i.e. p = m = n = 1 (our discussion can be extended in a straightforward way for
arbitrary number of extra species). In this case the off-diagonal blocks proportional to
vw in 5 × 5 matrices (3.9) become columns as e.g. hD = (h1D, h2D, h3D)T or rows as e.g.
hD = (hD1, hD2, hD3). The Yukawa couplings Yu,d can be presented in the form Yu =
VLuỸuV

†
Ru and Yd = VLdỸdV

†
Rd where Ỹu,d are diagonal 3× 3 matrices, Ỹu = diag(yu, yc, yt)

and Ỹd = diag(yd, ys, yb). Let us denote also hU = VLuh̃U , hD = VLdh̃D, hU = h̃UV
†
Ru and

hD = h̃DV
†
Rd.

Then for 5× 5 unitary matrix of ‘left’ rotations we obtain, with the precision up to ε2

terms:

VLdown =

 VLd 0 0
0 1 0
0 0 1



√

1−SDS†D SD 0
−S†D

√
1−S†DSD 0

0 0 1



√

1−SDS†D 0 SD
0 1 0
−S†D 0

√
1−S†DSD



=


VLd

[
1− 1

2SDS
†
D−

1
2SDS

†
D+. . .

]
VLdSD VLdSD

−S†D 1− 1
2S
†
DSD+. . . O(εdε2q)

−S†D 0 1− 1
2S
†
DSD+. . .

 (3.13)

where the column SD = εdh̃D describes the light quark (d, s, b) mixings with the extra
isosinglet species D. As for their mixings with D ⊂ Q from extra isodoublet, SD = ε2q Ỹdh̃

†
D,

it can be neglected since, apart of ε2 suppression, these are proportional to the small Yukawa
constants yd, ys, yb in Ỹd. Clearly, the unitarity conditions for rows and columns of this
matrix is fulfilled with the precision up to ∼ ε4d terms. The matrix VLup can be presented
in an analogous form.

Let us discuss now charged current interactions. Considering that qL and QL are SU(2)
doublets while UL and DL are singlets, the LH charged current interacting with W boson
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in terms of initial states and mass eigenstates reads:

g√
2
W+
µ (uL UL UL)γµJL

 dL
DL

DL

= g

2
√

2
W+
µ (u′ U ′ U ′)γµ(1−γ5)Vmix

L

 d′

D′

D′

 (3.14)

where JL = diag(1, 1, 1, 0, 1) and Vmix
L = (Vup

L )†JLVdown
L , or explicitly

Vmix
L =

(1− 1
2∆U )Ṽ (1− 1

2∆D) (1− 1
2∆U )Ṽ SD O(ε2)

S†U Ṽ (1− 1
2∆D) S†U Ṽ SD O(ε3)

O(ε2) O(ε3) 1

, Ṽ = V †LuVLd (3.15)

where ∆U = SUS
†
U = ε2uh̃U h̃

†
U and ∆D = SDS

†
D = ε2dh̃Dh̃

†
D as far as O(ε4q) contributions

SUS
†
U and SDS†D can be neglected.
We are interested in its 3× 3 block which describes the transitions between the quark

mass eigenstates u′ = (u, c, t) and d′ = (d, s, b) in charged current:

VCKM =
(

1− 1
2∆U

)
Ṽ

(
1− 1

2∆D

)
=

 Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

 (3.16)

While Ṽ = V †LuVLd is unitary 3 × 3 matrix, the ‘corrected’ matrix VCKM is not. In par-
ticular, deviation from the unitarity for its rows or columns read, up to order ε2 terms,
respectively as10

VCKMV
†

CKM = 1− ε2uh̃U h̃
†
U − ε

2
dṼ h̃Dh̃

†
DṼ
†,

V †CKMVCKM = 1− ε2dh̃Dh̃
†
D − ε

2
uṼ h̃U h̃

†
U Ṽ
† (3.17)

In particular, the unitarity deficit for first row (2.1) we obtain δCKM = 1−|Vud|2 + |Vus|2 +
|Vub|2 ≈ ε2u|h̃U1|2 + ε2d|h̃D1|2, which can fall in the range of (1÷ 2)× 10−3 provided that εu
and/or εd are ∼ 0.1 and the Yukawa constants h̃U1 and h̃D1 are large enough.

Let us discuss the RH sector. Considering that QR is an SU(2) doublet while uR, dR,
UR and DR are singlets, the RH charged current interacting with W boson in terms of
initial states and mass eigenstates reads:

g√
2
W+
µ (uR UR UR)γµJR

 dR
DR

DR

= g

2
√

2
W+
µ (u′ U ′ U ′)γµ(1+γ5)Vmix

R

 d′

D′

D′

 (3.18)

where JR = diag(0, 0, 0, 0, 1) and Vmix
R = (Vup

R )†JRVdown
R . Thus, presenting matrices Vdown

R

which diagonalizesM†downMdown (3.11) in the form similar to Vdown
L (3.13), and analogously

doing for and Vup
R , we get up to O(ε2) terms:

Vmix
R =

 SuS
†
d 0 −Su(1− 1

2S
†
dSd)

0 0 0
−(1− 1

2S
†
uSu)S†d 0 1− 1

2S
†
dSd −

1
2S
†
uSu

 (3.19)

10Obviously, the ‘large’ mixing matrix Vmix
L is not unitary in itself because of the non-unitary factor JL

‘sandwiched’ between the unitary matrices Vup
L and Vdown

L .
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where Sd = εqh̃
†
D and Su = εqh̃

†
U . Thus, we see that the mixing with the weak isodoublet

Q-type species induces RH charged current interactions between the quark mass eigenstates
u′ = (u, c, t) and d′ = (d, s, b), given by the (non-unitary) 3× 3 matrix:

∆ =

∆ud ∆us ∆ub

∆cd ∆cs ∆cb

∆td ∆ts ∆tb

 = SuS
†
d = ε2q h̃

†
uh̃d = ε2q

 h
∗
uhd h

∗
uhs h

∗
uhb

h∗chd h
∗
chs h

∗
chb

h∗thd h
∗
ths h

∗
thb

 (3.20)

where we denote the elements of row vectors h̃U ,D in the light quark mass basis as
h̃U = (hu, hc, ht) and h̃D = (hd, hs, hb). Therefore, mixing with Q-type fermions violates
pure V −A character of the quark interactions withW boson, and vector and axial couplings
for each transition are not equal anymore but have a difference O(ε2q).

In fact, instead of purely V −A couplings (1.1), now we have

g

2
√

2
W+
µ (u c t)

[
γµ(VCKM + ∆)− γµγ5(VCKM −∆)

]  ds
b

 (3.21)

The presence of RH couplings has a direct implications for our problem. In particular,
determination C from purely Fermi 0+ − 0+ transitions now fixes the vector coupling
constant GV = GF |Vud + ∆ud|, instead of GF |Vud|. Analogously, determination A from
semileptonic decaysK`3, transforms in the determination of the vector coupling |Vus+∆us|,
instead of |Vus|. On the other hand, since the leptonic decays Kµ2 and πµ2 are contributed
only by axial current, determination B instead of the ratio |Vus/Vud| fixes the combination
|Vus −∆us|/|Vud −∆ud|. Therefore, instead of (2.10), (2.3) and (2.5), now we have:

C : |Vud + ∆ud| = |Vud| |1 + δud| = 0.97376(16) (3.22)
A : |Vus + ∆us| = |Vus| |1 + δus| = 0.22326(55) (3.23)

B :
∣∣∣∣Vus −∆us

Vud −∆ud

∣∣∣∣ =
∣∣∣∣VusVud

∣∣∣∣ ∣∣∣∣1− δus1− δud

∣∣∣∣ = 0.23130(49) (3.24)

where δud = ∆ud/Vud = ε2q h
∗
uhd/Vud and δus = ∆us/Vus = ε2q h

∗
uhs/Vus are in general

complex numbers. Hence, Q-type extra fermion can have interesting implications and
potentially it can resolve all tensions between A, B and C determinations.11

However, mixing with extra vector-like species (with non-standard isosipin content)
affects the natural flavor conservation of the SM. Namely, by integrating out the heavy
isosinglet states D and U one induces the following effective operators for the quark cou-
plings with Z-boson

g

cos θW
qLiγ

µ

(T3 −Q sin θ2
W )δij − T3

hDih
†
Djϕ

†ϕ

M2
D

 qLjZµ ,
g

cos θW
qLiγ

µ

(T3 −Q sin θ2
W )δij − T3

hUih
†
Ujϕ̃

†ϕ̃

M2
U

 qLjZµ, (3.25)

11In principle, one can obtain the RH weak currents also from left-right symmetric models. However,
strong limits on WR mass imply that the mixing WL-WR is too small to give the RH contributions needed
to explain the anomalies.
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qLj DR DL DL DR
qLi

Z

MD MD

ϕ ϕ

dRj QL QR QR QL dRi

Z

MQ MQ

ϕ ϕ

Figure 3. Anomolous flavour non-diagonal couplings of Z-boson with SM families, contributing
to flavour changing processes at tree level.

as it is shown in figure 3, where T3 is the weak isospin and Q the electric charge, while
mixing with the extra doublet Q induces anomalous isospin violating couplings with the
RH states

g

cos θW

[
−1

2
h†dihdjϕ

†ϕ

M2
Q

+ 1
3 sin θ2

W δij

]
dRiγ

µdRjZµ,

g

cos θW

[
1
2
h†uihujϕ̃

†ϕ̃

M2
Q

− 2
3 sin θ2

W δij

]
uRiγ

µuRjZµ. (3.26)

Thus, such anomalous couplings, flavor-non-diagonal between the mass eigenstates, after
substitution of the VEV 〈φ〉 = vw, contribute at tree level in the flavor changing phenomena
as K0 −K0 mixing etc. inducing four-fermion effective operators

−
hDih

†
DjhDkh

†
Dmv

2
w

4M4
D

(dLiγµdLj)(dLkγµdLm), −
hUih

†
UjhUkh

†
Umv

2
w

4M4
U

uLiγ
µuLjuLkγ

µuLm

(3.27)

and analogously for RH states. These operators parametrically are order GF (vw/M)4 ∼
v2
w/M

4. On the other hand, box diagrams shown in the upper-left part of figure 4 (and
analogously for up-type quarks) induce operators which parametrically are order 1/M2:

hDih
†
DjhDkh

†
Dm

128π2M2
D

(dLiγµdLj)(dLkγµdLm),
hUih

†
UjhUkh

†
Um

128π2M2
U

uLiγ
µuLjuLkγ

µuLm (3.28)

but are suppressed by a loop factor. Regarding the RH sector, as in the upper-right part
of figure 4 we have:

h†dihdjh
†
dkhdm

64π2M2
D

(dRiγµdRj)(dRkγµdRm), h†uihujh
†
ukhum

64π2M2
U

uRiγ
µuRjuRkγ

µuRm (3.29)

In the presence of all type of fermions, also left-right operators can be induced, as shown
in figure 4 (bottom).

In addition, extra vector-like leptons induce analogous contributions in lepton sector.
However, in the following, for brevity, we shall concentrate only on quark sector, and study
one by one implications of D-type, U -type and Q-type extra fermions.
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D

ϕ

D

ϕ

qLi

qLj

qLk

qLm

Q

ϕ

Q

ϕ

dRi

dRj

dRk

dRm

D

ϕ

Q

ϕ

qLi

qLj

dRk

dRm

Figure 4. Box diagrams induced by the presence of vector-like quarks.

Namely, in each of these cases we put limits that emerge from flavour changing phe-
nomena (K0-K̄0, D0-D̄0, B0-B̄0, flavour changing meson decays) and flavour conserving
observables (Z-boson physics, low energy observables). Our aim is to understand if pa-
rameter space remains for vector-like fermions to contribute at the level needed for fixing
the Cabibbo anomalies. Our strategy is to consider each process separately and see the
parameter space left available, in order to make clear how much constraining each process
is. Then, it can be inferred for each process the needed level of progress in accuracy and
sensitivity which can possibly show this new physics. Moreover, since our theoretical knowl-
edge is different depending on the process, in this way we can separate limits obtained from
golden modes, which do not suffer from large long distance contributions and are theoret-
ically clean. Since we made rather conservative choices for the bounds, we present results
so that limits can be rescaled according to increasing accuracy or different assumptions.
For down-type weak singlets these limits were first discussed in ref. [80]. However in that
work contributions of box diagrams involving heavy states were not discussed, whereas,
as we will show, these diagrams become dominant if heavy vector-like quarks have masses
larger than ∼ 3TeV. The whole of these operators was considered in ref. [81].

4 Extra down-type isosinglet

Let us examine in details the implications of the addition of a down-type vector-like weak
isosinglet (D-type) couple of quarks DL = dL4 and DR = dR4 involved in the mixing with
the SM three families qLi = (uLi, dLi)T , uRi and dRi, i = 1, 2, 3. New Yukawa terms and
Dirac mass terms should be added to the Lagrangian density besides the standard Yukawa
terms: h′djϕqLjd′Ri + midL4d

′
Ri + h.c.. Since the four species of right-handed singlets d′Ri

have identical quantum numbers, a unitary transformation can be applied on the four
components d′Ri so that mj = 0 for j = 1, 2, 3 and dR4 is identified with the combination
making the Dirac mass term with the left handed singlet dL4. Thus the Yukawa Lagrangian
of this system can be written as:

yuijϕ̃qLiuRj + ydijϕqLidRj + hdjϕqLjdR4 +M4ddL4dR4 + h.c. (4.1)
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where, without losing generality, the mass term M4d can be taken real and positive. Then
the down-type quarks mass matrix looks like:

dLim(d)
ij dRj + h.c. =

= (dL1, dL2, dL3, dL4)


hd1vw

y(d)
3×3vw hd2vw

hd3vw
0 0 0 M4d



dR1
dR2
dR3
dR4

+ h.c. (4.2)

where vw = 174GeV is the SM Higgs vacuum expectation value (VEV) (for a conve-
nience, we use this normalization of the Higgs VEV instead of the “standard” normalization
〈φ〉 = v/

√
2, i.e. v =

√
2vw) and y(d)

3×3 is the 3× 3 matrix of Yukawa couplings. The mass
matrix m(d) can be diagonalized with positive eigenvalues by a biunitary transformation:

V
(d)†
L m(d)V

(d)
R = m(d)

diag = diag(ydvw, ysvw, ybvw,Mb′) (4.3)

where V (d)
L,R are two unitary 4×4 matrices. m(d)

diag is the diagonal matrix of mass eigenvalues
md,s,b = yd,s,bvw and Mb′ ≈M4d. Weak eigenstates in terms of mass eigenstates are:

dL1
dL2
dL3
dL4

 = V
(d)
L


dL
sL
bL
b′L

 , V
(d)
L =


VL1d VL1s VL1b VL1b′

VL2d VL2s VL2b VL2b′

VL3d VL3s VL3b VL3b′

VL4d VL4s VL4b VL4b′

 (4.4)

As for up-type quarks, the up-quark Yukawa matrix can be taken diagonal, yu = diag(yu,
yc, yt), so that also the mass matrix mu = diag(mu,mc,mt) = diag(yu, yc, yt) × vw is
diagonal, and u1, u2, u3 correspond to the mass eigenstates u, c, t. Since only the three
down-type quarks dL1, dL2, dL3 couple with W -bosons, the Lagrangian for the charged
weak interactions expressed in terms of mass eigenstates become:

Lcc = g√
2

(
uL1 uL2 uL3

)
γµ

 dL1
dL2
dL3

W+
µ + h.c. =

= g√
2

(
uL cL tL

)
γµṼCKM


dL
sL
bL
b′L

W+
µ + h.c. (4.5)

where

ṼCKM = Ṽ
(d)
L =

 VL1d VL1s VL1b VL1b′

VL2d VL2s VL2b VL2b′

VL3d VL3s VL3b VL3b′

=

 Vub′

VCKM Vcb′

Vtb′

=

 Vud Vus Vub Vub′Vcd Vcs Vcb Vcb′

Vtd Vts Vtb Vtb′

 (4.6)

is the 3 × 4 submatrix of V (d)
L in eq. (4.4), obtained by cutting the last row. Obviously,

ṼCKM is not unitary anymore. More precisely, although the unitarity condition is violated
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Figure 5. Determinations of |Vus| obtained using eq. (4.7) with |Vub′ | = 0.043, with the dataset in
eqs. (2.3), (2.5), (2.14), to be compared with figure 2.

Determination |Vus| value |Vub′ | = 0.043
A 0.22326(55) 0.22326(55)
B 0.22535(45) 0.22515(45)
C 0.2282(11) 0.2241(11)
A+B 0.22451(35) 0.22439(35)
A+B+C 0.22482(33) 0.22436(33)

Table 3. Values of Vus obtained from the dataset in eqs. (2.3), (2.5), (2.14). In the first column
the SM unitarity of CKM matrix is used, while in the second column the extended unitarity (4.7)
is used with |Vub′ | = 0.043.

for columns, it still holds for rows: Ṽ (d)
L Ṽ

(d)†
L = 13×3, with 13×3 being the 3 × 3 identity

matrix. In particular, the first row unitarity condition of CKM matrix is modified to

|Vud|2 + |Vus|2 + |Vub|2 + |Vub′ |2 = 1 (4.7)

which is the extended unitarity condition for the first row. The elements of the fourth
column of ṼCKM determine the strength of the violation of SM CKM unitarity.

The dataset A, B, C from eqs. (2.3), (2.5), (2.10) can be fitted in this scenario by
using the extended unitarity (4.7). The best fit point (χ2

dof = 7.1) is obtained in |Vus| =
0.22436(36), with:

|Vub′ |2 = 1.83(55)× 10−3 , |Vub′ | = 0.043(7) (4.8)

At 95% C.L. the needed additional mixing is |Vub′ | = 0.043+0.011
−0.015. In figure 5 it is shown

how the present situation would look like by choosing |Vub′ | = 0.043. The data are listed
in table 3. Determinations B and C are shifted with respect to the ones in figure 2, while
A remains unchanged. Determination C, which is obtained from Vud from beta decays,
becomes aligned with the average of the determinations of Vus obtained from kaon decays,
because of the extended unitarity relation (4.7). The χ2 is rather large χ2 = 7.1, because
of the remaining tension between the determinations of Vus from kaon physics (A and B).
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However, the mixing V
(d)
L induces non-standard couplings of Z-boson with the LH

down quarks, since the normal families dLi, i = 1, 2, 3 reside in doublets while dL4 is a
weak singlet (the mixing V (d)

R of the RH quarks does not give the same effect since all RH
states dRi are in identical representations of the SM). In fact, Z-boson couples to a fermion
species f (LH or RH) as Zµf(T3 + Q sin2 θW )f , where T3 is the weak isospin projection
and Q the electric charge. Therefore, Q-dependent couplings remain diagonal between the
mass eigenstates d, s, b, b′, while the T3 dependent part gets non-diagonal couplings. The
weak neutral current Lagrangian for down quarks reads:

Lnc = g

cos θW

−1
2
(
dL1 dL2 dL3

)
γµ

 dL1
dL2
dL3

+ 1
3 sin2 θW

(
dLγµdL + dRγµdR

)Zµ =

= g

cos θW

−1
2
(
dL sL bL b′L

)
γµV (d)

nc


dL
sL
bL
b′L

+ 1
3 sin2 θW

(
dLγµdL + dRγµdR

)
Zµ

V (d)
nc = V

(d)†
L diag(1, 1, 1, 0)V (d)

L = Ṽ
(d)†
L Ṽ

(d)
L (4.9)

where d is the column vector of the four down-type quarks d, s, b, b′. As comes out from
eq. (4.9), the non-unitarity of Ṽ (d)

L is at the origin of non-diagonal couplings with Z boson,
which means flavor changing neutral currents (FCNC) at tree level. Explicitly, the weak
isospin dependent part of the Z coupling is given by:

V (d)
nc = V

(d)†
L diag(1, 1, 1, 0)V (d)

L =

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+


−|VL4d|2 −V ∗L4dVL4s −V ∗L4dVL4b −V ∗L4dVL4b′

−V ∗L4sVL4d −|VL4s|2 −V ∗L4sVL4b −V ∗L4sVL4b′

−V ∗L4bVL4d −V ∗L4bVL4s −|VL4b|2 −V ∗L4bVL4b′

−V ∗L4b′VL4d −V ∗L4b′VL4s −V ∗L4b′VL4b |VL1b′ |2+|VL2b′ |2+|VL3b′ |2


(4.10)

V
(d)
L can be parameterized by 6 angles and 10 phases. However, four phases can be elimi-

nated by phase transformations of d, s, b, b′ states, so that V (d)
L can be presented as:

V
(d)
L =


VL1d VL1s VL1b VL1b′

VL2d VL2s VL2b VL2b′

VL3d VL3s VL3b VL3b′

VL4d VL4s VL4b VL4b′

 ' V (d)
3L L

(d) =

=


0

V
(d)

3×3 0
0

0 0 0 1




1 0 0 0
0 1 0 0
0 0 cdL3 −s̃dL3
0 0 s̃d∗L3 cdL3




1 0 0 0
0 cdL2 0 −s̃dL2
0 0 1 0
0 s̃d∗L2 0 cdL2



cdL1 0 0 −s̃dL1
0 1 0 0
0 0 1 0
s̃d∗L1 0 0 cdL1

≈

≈


0

V
(d)

3×3 0
0

0 0 0 1




cdL1 0 0 −s̃dL1
−s̃dL2s̃

d∗
L1 cdL2 0 −s̃dL2

−s̃dL3s̃
d∗
L1 −s̃d∗L2s̃

d
L3 c

d
L3 −s̃dL3

s̃d∗L1 s̃d∗L2 s̃d∗L3 c
d
L1c

d
L2c

d
L3

 (4.11)
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cdLi are cosines and s̃dLi are complex sines of angles in the 1 4, 2 4, 3 4 family planes param-
eterizing the mixing of the first three families with the vector-like quark:

s̃dLi = sin θdLi4eiδ
d
Li = sdLie

iδdLi , cdLi = cos θdLi4 , δdLij = δdLi − δdLj (4.12)

and corresponding to the elements of the last row:

VL4d ≈ s̃d∗L1 , VL4s ≈ s̃d∗L2 , VL4b = s̃d∗L3 (4.13)

Since it is the relative phase of the elements which will come into play, we also defined
the relative phase of the elements in eq. (4.12). V

(d)
3L contains 3 angles and 3 phases; it

diagonalizes the 3 × 3 Yukawa matrix y(d)
3×3 in eq. (4.2). Since the elements in V

(d)
3L are

small, hdi = V
(d)
Lij h̃dj ≈ h̃di. Equation (4.11) is true at order O(|hdi|(yi)2 v3

w

M3
b′

+|hdj |2|hdi| v
3
w

M3
b′

),
i, j = 1, 2, 3, yi = yd,s,b, with:

1
2 tan(2θdLi4) ≈ |hdi|vw

Mb′
, δdLi = arg(hdi)− π (4.14)

that is:

s̃dLi ≈ −
hdivw
Mb′

(4.15)

Because of small mixing angles, V (d)
3×3 is practically equal to the 3 × 3 submatrix of V (d)

L

in (4.4). In fact, for example in the chosen parameterization (4.11), the main corrections
regard the elements: VL3d ' V3×3 3d − s̃dL1s̃

d
L3, VL2d ' V3×3 2d − s̃dL1s̃

d
L2, VL3s ' V3×3 3s −

s̃dL2s̃
d
L3, VL1d ' V3×3 1d c

d
L1. However, it will be shown that, in order to have sdL1 ≈ |VL4d| ≈

|Vub′ | ≈ 0.03, it should be that at most sdL3 = |VL4b| < 7.4 × 10−3 and sdL2 ≈ |VL4s| <
5.0× 10−4. Then:

[V (d)
L ]iβ ' [V (d)

3×3]iβ (4.16)

As regards charged currents, ṼCKM in (4.6) can be described by 6 moduli and 9 phases,
6 of which can be absorbed into the quark fields. For the submatrix VCKM in (4.6), it
holds that:

[VCKM]αβ =
3∑
i=1

V
(u)∗
L iα V

(d)
L iβ '

3∑
i=1

V
(u)∗
L iα V

(d)
3×3 iβ (4.17)

Then, after rephasing the quark fields, VCKM can be in the usual parameterization with
3 angles and one phase. Also another phase can be absorbed, so we can always choose
δdL1 = 0 without loss of generality. From (4.17), for the elements of the fourth column of
ṼCKM in (4.6) it holds that:

Vub′ ≈ −V ∗L4dVud − V ∗L4sVus − V ∗L4bVub ≈ −V ∗L4d (4.18)
Vcb′ ≈ −V ∗L4dVcd − V ∗L4sVcs − V ∗L4bVcb (4.19)
Vtb′ ≈ −V ∗L4dVtd − V ∗L4sVts − V ∗L4bVtb ' −V ∗L4b (4.20)

where the last approximations come from the mentioned constraints on the mixings.
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It should be noted that also the couplings of quarks with the real Higgs are not diagonal
if the vector-like species are added. In fact, the matrix of Yukawa couplings and the mass
matrix (4.2) are not proportional anymore, and then they are not diagonalized by the
same transformation. In particular, left-handed light quarks are coupled with b′R with
coupling constants which can be in principle of order O(1). In fact, the Higgs couplings
with quarks are:

(dL1, dL2, dL3, dL4)


h̃d1

y(d)
3×3 h̃d2

h̃d3
0 0 0 0



dR1
dR2
dR3
dR4

 H0
√

2
+ h.c. ≈

≈ (dL, sL, bL, b′L)L(d)†


yd 0 0 hd1
0 ys 0 hd2
0 0 yb hd3
0 0 0 0

R(d)


dR
sR
bR
b′R

 H0
√

2
+ h.c. ≈

≈ (dL, sL, bL, b′L)


cdL1yd s̃d∗R2hd1 s̃d∗R3hd1 hd1
s̃d∗R1hd2 ys s̃d∗R3hd2 hd2
s̃d∗R1hd3 s̃d∗R2hd3 yb hd3
−s̃d∗L1yd −s̃d∗L2ys −s̃d∗L3yb

∑3
i=1(−s̃d∗Lihdi)



dR
sR
bR
b′R

 H0
√

2
+ h.c. (4.21)

where L(d) is defined in (4.11) and R(d) is analogously defined. Then in principle FC
couplings between light quarks emerge at tree level. However the mixing angles of the
SM right-handed quarks with b′R are much smaller than angles in the left-handed sector,
sdRi ≈

yi|hdi|v2
w

M2
b′

, where sdRi is defined in the same way as sdLi in eqs. (4.11), (4.12).
It should also be noticed that, because of the large mixing with the first family, the

extra quark b′ would mainly decay into u or d quark via the couplings with W , Z, H.
The CMS experiment put lower limits on the mass of vector-like quarks coupling to light
quarks, which in our scenario imply Mb′ & 700GeV [82]. It should be noticed that, with
this constraint, |Vub′ | ' 0.03 can be obtained if |hd1| & 0.1, much larger than the Yukawa
constant of the bottom quark yb. In turn, by taking |Vub′ | > 0.03 in Mb′ = |hd1|vw/|Vub′ |,
and assuming (for the perturbativity) |hd1| . 1, there is an upper limit on the extra quark
mass, Mb′ . 6TeV.

In the following sections experimental limits from FCNC and electroweak observables
are examined. The results are summarized in section 4.5, in table 6 and figures 11, 12.

In table 4 well determined basic quantities and SM parameters employed in the com-
putations are collected. Values are taken from Particle Data Group (PDG) [20].

4.1 Limits from rare kaon decays

4.1.1 K+ → π+νν̄

The decay K+ → π+νν̄ is one of the golden modes for testing the SM, since long-distance
contributions are negligibly small. The effective Lagrangian comes from a combination of
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Quantity Value Quantity Value
|Vcd| 0.221(4) Mt[GeV] 172.76(30)
|Vcb| 0.0410(14) mH [GeV] 125.10(14)
|Vts| 0.0388(11) mc(mc)[GeV] 1.27(2)
|Vtd| 0.0080(3) mb(mb)[GeV] 4.18(3)
|Vub| 0.00382(24) mK0 [MeV] 497.611(13)
|Vcs| 0.987(11) τKL [s] 5.116(21) · 10−8

λ 0.22653(48) τKS [s] 8.954(4) · 10−11

ρ̄ 0.123(32) MK+ [MeV] 493.677(16)
A 0.799(28) τK+ [s] 1.2380(20) · 10−8

η̄ 0.382(29) τD+ [s] 1.040(7) · 10−12

αs(MZ) 0.1185(16) MD+ [MeV] 1869.65(5)
α(MZ)−1 127.952(9) τD0 [s] 4.101(15) · 10−13

sin2 θW (MZ) 0.23121(4) mD0 [MeV] 1864.83(5)
GF [GeV−2] 1.1663787(6) · 10−5 τB0

d
[s] 1.519(4) · 10−12

mW [GeV] 80.379(12) MB0
d
[MeV] 5279.65(12)

mZ [GeV] 91.1876(21) τB0
sH

[s] 1.620(7) · 10−12

mµ[MeV] 105.6583745(24) MB0
s
[MeV] 5366.88(14)

Table 4. The central values are employed in the computations. All values are taken from Particle
Data Group (PDG) [20].

Z-penguin and box-diagram and it is given by [83]:

LSM = −4GF√
2

α(MZ)
2π sin2 θW

∑
`=e,µ,τ

[V ∗csVcdX`(xc) + V ∗tsVtdX
`(xt)](sLγµdL)(ν`Lγµν`L) + h.c.

(4.22)

X(xa) are the Inami-Lim function including QCD and electroweak corrections, with xa =
m2
a/M

2
W , a = c, t. The index ` denotes the lepton flavor. The dependence on the charged

lepton mass is negligible for the top contribution due to mt � m`, X`(xt) = X(xt),
whereas, being mτ comparable with mc, for the c-quark contribution the box with ` = τ

gives somewhat different contribution from ` = e, µ [83], Xe(xc) = Xµ(xc) 6= Xτ (xc).
Therefore, an averaged value X̄ = 1

3 (Xe(xc) +Xµ(xc) +Xτ (xc)) is used. Then the effec-
tive Lagrangian (4.22) can also be written as:

LSM = −4GF√
2
FK(sLγµdL)

∑
e,µ,τ

(ν`Lγµν`L)

FK = α(MZ)
2π sin2 θW

(
V ∗tsVtdX(xt) + (V ∗csVcd)X̄(xc)

)
=

= − α(MZ)
2π sin2 θW

λ5
(
A2(1− ρ− iη)X(xt) +

(
1− λ2

2

)
Pc(X)

)
(4.23)
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Z

s

d

ν̄`

ν`

V ∗
L4sVL4d

Figure 6. Tree level contribution to the rare kaon decays K+ → π+νν̄, K0 → π0νν̄ arising from
the mixing of the SM families with the extra downtype vectorlike quark.

where Pc(X) = 1
λ4 X̄, and we used the Wolfenstein parameterization:

Re(V ∗csVcd) =−λ
(

1−λ
2

2

)
, Re(V ∗tsVtd) =−

(
1−λ

2

2

)
A2λ5(1−ρ) , Im(V ∗tsVtd) =A2λ5η .

(4.24)

The top contribution gives X(xt) = 1.481 [84] (central value). For the charm contribution,
using the values in table 4, from the formula in ref. [85] we obtain Pc(X) ≈ 0.351. By using
ρ = 0.126, η = 0.392 and the central values in table 4 we have FK ≈ (−3.7 + i 1.2)× 10−6,
|FK | ≈ 3.9×10−6. The predicted SM contribution for the branching ratio can be written as:

Br(K+ → π+νν̄)SM ≈ kK+ |FK |2 , kK+ =
G2
F τK+M5

K+f2
+(0)I+

ν

64π3 ≈ 5.43 (4.25)

where f+(0) = 0.9699(15) is the form factor, I+
ν = 0.15269 is the phase space integral [86]

and we have used the values in table 4 for the kaon mass and mean life. In this way, we
obtain our benchmark value Br(K+ → π+νν̄)SM ≈ 0.82 · 10−10, which is within the range
of the estimate reported by PDG Br(K+ → π+νν̄)SM = (0.85± 0.05) · 10−10 [20]. The SM
expectation is compatible with the experimental branching ratio [87]:

Br(K+ → π+νν̄)exp < 1.78× 10−10 (90%C.L.) (4.26)

With future experimental precision, any deviation from the SM prediction of this golden
mode branching ratio would indicate towards new physics.

In our BSM scenario with extra vectorlike b′ quark, the non-diagonal couplings of
Z-boson with light quarks in eqs. (4.9) induce at tree level the operator with the same
structure as the SM one (4.22), as shown in the diagram in figure 6:

Lnew = −4GF√
2

1
2V
∗
L4sVL4d(sLγµdL)

∑
e,µ,τ

(ν`Lγµν`L) (4.27)

Thus, the new operator (4.27) contributes to the decay K+ → π+νν̄, in interference with
the SM (4.22). The total branching ratio becomes:

Br(K+ → π+νν̄)tot ≈ kK+

∣∣∣∣12V ∗L4sVL4d + FK
∣∣∣∣2 = Br(K+ → π+νν̄)SM

∣∣∣∣∣ 1
2V
∗
L4sVL4d
FK

+ 1
∣∣∣∣∣
2

(4.28)
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By using the experimental upper limit (4.26) we have:

Br(K+ → π+νν̄)tot < 1.78× 10−10 ,

∣∣∣∣∣ 1
2V
∗
L4sVL4d
FK

+ 1
∣∣∣∣∣ < 1.5 (4.29)

Figure 11 shows the constraint (4.29) in terms of the modulus and phase of the ele-
ments VL4d, VL4s, using V ∗L4sVL4d = |V ∗L4sVL4d|eiδ

d
L21 , δdL21 = δdL2 − δdL1, from eqs. (4.12)

and (4.13). Depending on the unknown relative phase, the limit results in the constraint
on the modulus:

|V ∗L4sVL4d| < (0.4÷ 1.9)× 10−5 (4.30)

As can be seen, in the most conservative case of destructive interference, the new amplitude
can be up to 2.5 times the SM amplitude:

1
2 |V

∗
L4sVL4d|
|FK |

. ∆K+ = 2.5 (4.31)

In this case we can express the experimental limit in terms of the ratio ∆K+ :

|V ∗L4sVL4d| . 1.9 · 10−5
[∆K+

2.5

] [ |FK |
3.9 · 10−6

]
(4.32)

4.1.2 KL → π0νν̄

The second golden mode is the decay KL → π0νν̄. In the Standard Model it is described
by the same Lagrangian as in (4.23). However this decay proceeds almost entirely through
direct CP violation, hence it is completely dominated by short-distance loop diagrams with
top quark exchanges and the charm contribution can be neglected [88]. In fact, with the
phase convention C|K0〉 = |K̄0〉 (or CP |K0〉 = −|K̄0〉) we have:

〈π0|(d̄s)V−A|K̄0〉 = −〈π0|(s̄d)V−A|K0〉 (4.33)

KL = 1√
2

[(1 + ε)K0 + (1− ε)K̄0] (4.34)

However, the terms of indirect (∆S = 2) CP violation (proportional to ε) can be ne-
glected in this decay and the dominant contribution comes from the imaginary part of the
operator (4.23):

〈π0νν̄|LSM|
K0 + K̄0
√

2
〉 = −4GF√

2
i 2ImFK√

2
〈π0|(sLγµdL)|K0〉

∑
`=e,µ,τ

〈ν`Lγµν`L〉 (4.35)

The SM predicted branching ratio can be written as:

Br(KL → π0νν̄)SM ≈ kKL |FK |
2 , kKL =

G2
F τKLM

5
K0f2

+(0)ILν
64π3 (4.36)

where I+
ν = 0.16043(31) is the phase space integral [86]. Putting the values of kaon mass

and lifetime (see table 4) we obtain Br(K+ → π+νν̄)SM ≈ 3.5 × 10−11, which practically
agrees with the estimate reported by PDG Br(KL → π0νν̄)SM = (3.0± 0.2)× 10−11 [20].
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On the other hand, the experimental limit on this decay is [20]:

Br(KL → π0νν̄)exp < 3.0× 10−9 (90%C.L.) (4.37)

which is two orders of magnitude larger than the SM expectation. Therefore, there is still
much room for new physics.

In our BSM scenario with extra vectorlike b′ quark, the new contribution comes from
the imaginary part of the Lagrangian in eq. (4.27) Since the interference term with the SM
contribution can be neglected, the experimental limit can be directly applied to the new
contribution:

Br(KL → π0νν̄)new ≈ kKL
1
4
(
Im(V ∗L4sVL4d)

)2
< Brexp (4.38)

So in the given parameterization (4.12), (4.13) we have:

|Im(V ∗L4sVL4d)| = |V ∗L4sVL4d|| sin(δdL21)| < 2.2× 10−5
[ Brexp

3.0× 10−9

] 1
2

(4.39)

This condition is shown in figure 11. Then, the present experimental limit allows the new
contribution to be one order of magnitude larger than the SM contribution:

|Im(V ∗L4sVL4d)|
2|ImFK |

< 9.3
[ Brexp

3.0 · 10−9

] 1
2

(4.40)

So the discovery of the decay KL → π0νν̄ with branching ratio larger than the SM expec-
tation can be a signal for BSM physics.

4.1.3 KL → π0e+e−

The decay KL → π0e+e− contains a direct CP violating contribution, indirect CP vio-
lating contribution, interference between them, and also a small CP conserving contri-
bution [20]. The CP conserving contribution to the amplitude is dominated by a two
photon exchange KL → π0γγ → π0e+e−, with both an absorptive and a dispersive
part. Using the decay KL → π0γγ, it is estimated that the CP-conserving branch-
ing ratio is of order ∼ O(10−13) [20]. The indirectly CP violating amplitude also de-
rives from the coupling of leptons to photons, it is given by the long-distance dominated
KS → π0e+e− amplitude times the CP parameter εK [83]. The complete CP-violating
contribution to the rate assuming a positive sign for the interference term is estimated
to be Br(KL → π0e+e−)CPV ≈ (3.1 ± 0.9) × 10−11, where the three contributions from
indirect, interference and direct CP violation are (1.76, 0.9, 0.45)×10−11 respectively [20].

Only the direct CP-violating amplitude can be calculated in detail within the SM,
since it is short distance dominated. The relevant operator contains the vector part of the
hadronic current and both axial and vector component of the leptonic current, and it is
given by:

LSM,SD = −GFα(MZ)√
2 2π

V ∗tsVtd(sγµd)
(
ỹV (eγµe) + ỹA(eγµγ5e)

)
+ h.c. (4.41)
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Z

s

d

`−

`+

VL4dV
∗
L4s

Figure 7. Tree level contribution to the rare kaon decays K0 → π0`+`−, K0 → µ+µ− (` = e, µ)
arising from the mixing of the SM families with the extra downtype vector-like quark.

where ỹV,A are a combination of Inami-Lim functions of box and Z and γ penguin diagrams,
as defined in ref. [89]. The direct CP-violating branching ratio in the SM can be written as:

Br(KL → π0e+e−)SM,SD = kKe

(
GFα(MZ)√

2 2π

)2 (2ImV ∗tsVtd√
2

)2
(ỹ2
A + ỹ2

V ) (4.42)

kKe = 1
2
M5
K0τKLf

2
+(0)Ie

192π3 (4.43)

where Ie = 0.16043(31) [86] is the phase space integral.
The new effective Lagrangian contributing to this decay (as shown in figure 7) is:

Lnew =− GF√
2
V ∗L4sVL4d(sγµd) [gV eγµe+ gAeγµγ5e] + h.c. (4.44)

where gA = 1
2 , gV = −1

2 +2 sin2 θW ≈ −0.038. The experimental limit on this decay is [20]:

Br(KL → π0e+e−)exp < 2.8× 10−10 (90%C.L.) (4.45)

which is one order of magnitude bigger than the SM expectation. Then, we can consider
the SM contribution as negligible and let the new contribution to be the dominant one,
imposing a limit directly on the new contribution:

Br(KL → π0e+e−)new = kKeG
2
F [Im(VL4sV

∗
L4d)]2

[
g2
V + g2

A

]
< Brexp (4.46)

In the given parameterization (4.12), (4.13) then:

|Im(VL4sV
∗
L4d)| = |VL4sV

∗
L4d|| sin(δdL12)| < 1.7× 10−5

[ Brexp
2.8 · 10−10

] 1
2

(4.47)

where the central values of all the quantities have been used. Also the decay KL → π0µ+µ−

gives a comparable constraint, being the experimental limit Br(KL → π0µ+µ−)exp < 3.8×
10−10 (90%C.L.), to be compared with the SM expectation Br(KL → π0µ+µ−) = (1.5±
0.3)× 10−11 (assuming positive interference between the direct- and indirect-CP violating
components) [20].
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4.1.4 KL → µ+µ−

The rare decay KL → µ+µ− is a CP conserving decay. Its short-distance part is given
by Z-penguins and box diagrams. However, this decay is dominated by a long-distance
contribution from a two-photon intermediate state. In fact, the full branching ratio can be
written as [83]:

Br(KL → µ+µ−) = |ReA|2 + |ImA|2 , ReA = ASD +ALD (4.48)

with ReA and ImA denoting the dispersive and absorptive contributions, respectively. The
absorptive (imaginary) part of the long-distance component is determined by the measured
rate for KL → γγ to be Brabs(KL → µ+µ−) = (6.64±0.07) ·10−9 and it almost completely
saturates the observed rate Br(KL → µ+µ−)exp = (6.84 ± 0.11) · 10−9 [20]. The real part
of the long-distance amplitude cannot be derived directly from experiment. However in
ref. [90] it is estimated an upper bound on the short distance contribution:

Br(KL → µ+µ−)SD < 2.5 · 10−9 (4.49)

As shown below, the SM prediction for the short distance contribution results: Br(KL →
µ+µ−)SD,SM ≈ 0.9 · 10−9 [89]. Then the condition (4.49) provides a constraint on new
physics scenarios.

Since only the axial component of both hadronic and lepton current contributes to the
decay, the effective Lagrangian describing the short distance contribution to the decay in
the SM can be written as [83]:

LSM,SD = GF√
2

α(MZ)
2π sin2 θW

(
V ∗csVcdY (xc) + V ∗tsVtdY (xt)

)
(sγµγ5d)(µγµγ5µ) + h.c. =

= GF√
2
FL2(sγµγ5d)(µγµγ5µ) + h.c. (4.50)

Y (xa), xa = m2
a/M

2
W , are the Inami-Lim functions including QCD and electroweak cor-

rections, whose leading order term is a linear combination of the axial components of
Z-penguins and box-diagrams. Numerically Y (xc) ≈ 3.3 × 10−4, Y (xt) ≈ 0.97 [83]. In
eq. (4.50) we defined the constant FL2 ≈ (−2.1 + i 0.78)× 10−6.

In the scenario with extra isosinglet quark, the non-diagonal couplings of Z-boson with
SM families due to the mixing of light quarks with the b′-quark leads to the Lagrangian
analogous to (4.44), contributing to the decay KL → µ+µ− at tree level (figure 7):

Lnew = GF√
2
V ∗L4sVL4d(sγµγ5d)1

2(µγµγ5µ) + h.c. (4.51)

By using again the phase convention C|K0〉 = +|K̄0〉 we have:

〈0|d̄γµγ5s|K̄0〉 = +〈0|s̄γµγ5d|K0〉 (4.52)

and neglecting indirect CP violation:

KL ≈ K2 = 1√
2

(K0 + K̄0) (4.53)
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Then we get:

〈µ+µ−|LSM,SD|KL〉 = GF√
2

2Re(FL2)√
2

〈0|s̄γµγ5d|K0〉[ū(p(µ))γµγ5v(p(µ̄))] (4.54)

〈µ+µ−|Lnew|KL〉 = GF√
2
Re(V ∗L4sVL4d)√

2
〈0|s̄γµγ5d|K0〉[ū(p(µ))γµγ5v(p(µ̄))] (4.55)

Then we can define the branching ratio given by the amplitude of the short distance
contribution:

Br(KL→µ+µ−)SD = k [Re(2FL2+V ∗L4sVL4d)]2 , k=
Br(K+→µ+νµ)τKLMK0

√
1−4 m2

µ

M2
K0

τ(K+)MK+

(
1− m2

µ

M2
K+

)2
|Vus|2

(4.56)

where we have used 〈0|s̄γµγ5d|K0〉 = ipµfK , Br(K+ → µ+νµ) = 0.6356(11) and |Vus| =
0.2252. In absence of new physics, the short distance contribution coincides with the SM
expectation Br(KL → µ+µ−)SD,SM.

By using the upper bound in eq. (4.49) on the branching ratio (4.56) we have:

|Re(2FL2 + V ∗L4sVL4d)| < 6.9× 10−6 (4.57)

This constraint is shown in figure 11 in terms of the modulus |V ∗L4sVL4d| and relative
phase δdL21, as parameterized in (4.12), (4.13). In terms of the ratio between the new
amplitude (4.51) and the SM amplitude (4.50), eq. (4.57) implies:∣∣∣∣1 + Re(V ∗L4sVL4d)

2Re(FL2)

∣∣∣∣ < 1.7 , 0.7 < |Re(V
∗
L4sVL4d)|

2|ReFL2|
< 2.7 (4.58)

or, by using Re(V ∗L4sVL4d) = |V ∗L4sVL4d| cos δdL21 we have:

− 0.28× 10−5 < |V ∗L4sVL4d| cos δdL21 < 1.11× 10−5 , (4.59)

where we used the Wolfenstein parameterization (4.24).

4.1.5 KS → µ+µ−

The effective Lagrangian (4.50) gives the short distance contribution to the decay
KS → µ+µ−:

Br(KS → µ+µ−)SD,SM = 4kKS [Im(FL2)]2 (4.60)

where kKS is the same as k in eq. (4.56) with the change τKL → τKS . It is obtained
Br(KS → µ+µ−)SD ≈ 0.2·10−12. There are also long distance contributions arising from the
two photon intermediate state which result in the rate Br(KS → µ+µ−)LD ≈ 5.1·10−12 [91].
The experimental upper limit for this decay was found by the LHCb collaboration [92]:

Br(KS → µ+µ−)exp < 2.1× 10−10 (90%C.L.) (4.61)
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W

d

s

s

d

Figure 8. Box diagram for the transition K0 → K̄0 in the SM, qα, qβ = u, c, t.

Then, an extra contribution is allowed to be higher than both the short and long-distance
contributions to the decay, so we can impose an upper limit on the new contribution arising
in the scenario with the extra isosinglet. The new decay channel is described by the effective
Lagrangian (4.51) and gives the rate:

Br(KS → µ+µ−)new = kKS [Im(V ∗L4sVL4d)]2 < Brexp (4.62)

We have:

|Im(V ∗L4sVL4d)| = |V ∗L4sVL4d|| sin δdL21| < 4.8× 10−5
[ Brexp

2.1 · 10−10

]1/2
(4.63)

where we used the parameterization in eqs. (4.12), (4.13).

4.2 Limits from neutral mesons systems

4.2.1 K0-K̄0 mixing

In the SM the short-distance contribution to the transition K0(ds̄) ↔ K̄0(d̄s) arises from
weak box diagrams (figure 8). The effective Lagrangian describing this contribution is
given by:

LSM
∆S=2 = −G

2
Fm

2
W

4π2

[
λ2
cS0(xc) + λ2

tS0(xt) + 2λcλtS0(xc, xt)
]

(sLγµdL)2 + h.c. (4.64)

where λa = V ∗asVad, xa = m2
a

m2
W

and S0(xi) are the Inami-Lim functions [93]:

S0(x) = x

(
4− 11x+ x2

4(1− x)2 − 3x2 ln x
2(1− x)3

)
(4.65)

S0(xj , xk) = xjxk

[(
1
4 −

3
2(xj − 1) −

3
4(xj − 1)2

)
log xj
xj − xk

+(1
4 −

3
2(xk − 1) −

3
4(xk − 1)2

) log xk
xk − xj

− 3
4(xj − 1)(xk − 1)

]
(4.66)
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The weak short-distance contribution to the mass splitting ∆mK = mKL −mKS and
the CP-violating parameter εK are described by the off-diagonal term M12 of the mass
matrix of neutral kaons, which is given by:

M12 = − 1
2mK0

〈K0|L∆S=2|K̄0〉 (4.67)

In the SM it reads [96]:

MSM
12 = G2

Fm
2
W

12π2 (η1λ
∗2
c S0(xc) + η2λ

∗2
t S0(xt) + 2η3λ

∗
cλ
∗
tS0(xc, xt))f2

KmK0BK (4.68)

where fK is the kaon decay constant, which can be estimated in lattice QCD to be fK =
155.7(0.7)MeV [18], mK0 is the neutral kaons mass and we also added the factors η1 =
1.38±0.20, η2 = 0.57±0.01, η3 = 0.47±0.04 which describe short-distance QCD effects [83].
The factor BK is the correction to the vacuum insertion approximation (VIA) which is
estimated from lattice QCD calculations, giving BK = 0.7625(97) [18].

The modulus |M12| and the imaginary part ImM12 respectively describe short-distance
contributions in the mass splitting and CP-violation in K̄0 → K0 transition. In the SM,
in the standard parameterization of VCKM we have:

|MSM
12 | ≈ |ReMSM

12 | ≈
G2
Fm

2
W

12π2 η1|λ2
c |S0(xc)f2

KmK0BK ≈
G2
F

12π2 η1|λ2
c |m2

cf
2
KmK0BK (4.69)

ImMSM
12 =−G

2
Fm

2
W

6π2 f2
KmK0BK [η1Re(λc)Im(λc)S0(xc)+

+
(
η2Re(λt)S0(xt)+η3Re(λc)S0(xc,xt)

)
Im(λt)

]
(4.70)

The mass difference between mass eigenstates is given by [83]:

∆mK ≈ 2|M12|+ ∆mLD (4.71)

where ∆mLD is the long-distance contribution. Although efforts are made, the long-
distance contribution is still difficult to evaluate [94, 95]. Nevertheless, the short distance
contribution ∆mK ≈ 2|MSM

12 | ' 2.2 · 10−15 GeV gives a dominant contribution to the
experimentally measured value [20]:

∆MK = (3.484± 0.006)× 10−15 GeV (4.72)

The CP violation is parameterized by εK , which, with the phase choice CP |K0〉 = −|K̄0〉,
is almost determined by short distance physics [96]:

|εK | ≈
|Im[M12]|√

2∆mK

(4.73)

in the standard parameterization of VCKM. From experimental data it is obtained [20]:

|εK | = (2.228± 0.011)× 10−3 (4.74)

In our BSM scenario with extra vectorlike b′ quark, the non-diagonal couplings of Z and
Higgs bosons with light quarks in eqs. (4.9), (4.21) induce the same operator as in (4.64),
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Figure 9. Contributions to K̄0-K0 transition due to the insertion of the additional vectorlike
down-type weak isosinglet couple b′L, b′R in quark mixing.

both at tree level and loop level, interfering with the SM in the transition K̄0 ↔ K0, as
shown in figure 9.

The new tree level contribution translates into the effective Lagrangian:

Ltree
∆S=2 =− GF√

2
(V ∗L4dVL4s)2(dLγµsL)2 + h.c. (4.75)

However if Mb′ is of order few TeV, the loop contribution to K̄0-K0 mixing becomes
important. In particular, for Mb′ = 3.1TeV the effective operator for the box diagram
with Higgs and Z bosons exchange in figure 9 gives the same contribution as the effective
operator of the tree level diagram. Moreover the box diagram contribution grows as ∝M2

b′ .
In fact, the effective Lagrangian for the loop contribution is:

Lbox
∆S=2 ≈−

(hd1h
∗
d2)2

128π2M2
b′

(dLγµsL)2 + h.c. (4.76)

where hdi are the Yukawa couplings defined in eq. (4.1). However, we are interested in
fixing a value for the elements of the mixing matrix rather than setting the Yukawas hdi.
Then, it is convenient to express the Lagrangian explicitly in terms of the mixing elements.
From eqs. (4.13), (4.15), we have:

hd1 ≈ −V ∗L4d
Mb′

vw
, hd2 ≈ −V ∗L4s

Mb′

vw
. (4.77)

Then, using GF /
√

2 = 1/4v2
w, the Lagrangian can be written as:

Lbox
∆S=2 ≈ −

G2
F M

2
b′

16π2 (V ∗L4dVL4s)2(dLγµsL)2 + h.c. (4.78)

Hence, the complete new contribution is:

Lnew
∆S=2 = Ltree

∆S=2 + Lbox
∆S=2 ≈

≈ −GF√
2

(V ∗L4dVL4s)2
(

1 + GFM
2
b′

8
√

2π2

)
(dLγµsL)2 + h.c. =

= −GF√
2

(V ∗L4dVL4s)2f(Mb′)(dLγµsL)2 + h.c. (4.79)

f(Mb′) = 1 +
(

Mb′

3.1TeV

)2
(4.80)
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where we defined the function f(Mb′) of the mass of the extra quark b′. From the La-
grangian (4.79), there is an additive contribution Mnew

12 to the mixing mass M12 (see
eq. (4.67)), participating both in the mass splitting and CP-violating effects. Then, the
new contribution is constrained by both CP-conserving and CP-violating observables.

Regarding the CP-conserving part, which originates the mass splitting ∆mK , we can
confront the moduli of the two components of the mixing mass and impose that the new
contribution |Mnew

12 | is less than a fraction ∆K of the short-distance SM contribution |MSM
12 |:

|Mnew
12 | < |MSM

12 |∆K (4.81)

where we defined real and positive ∆K . This is analogous to comparing the modulus of the
coefficients of the effective operators in eqs. (4.64) and (4.79). We evaluate the constraint
at leading order of both SM and new physics contributions, neglecting QCD corrections.
Hence, eq. (4.81) corresponds to:

GF√
2
f(Mb′) |V ∗L4dVL4s|2 <

G2
Fm

2
c

4π2 |λ
2
c |∆K (4.82)

eq. (4.81) can also be translated into a constraint on the scale of the new contribution:

GF√
2
f(Mb′)

∣∣∣(V ∗L4dVL4s)2
∣∣∣ < 1

Λ2
sd

, ∆K =
(

1.9 · 103 TeV
Λds

)2

(4.83)

where we defined the minimum allowed equivalent scale Λ2
sd of the new contribution. We

estimate the constraint with ∆K = 1, that is by imposing the condition |Mnew
12 | < |MSM

12 |,
meaning that the additional processes contribute to ∆mK at most as the SM short-distance
contribution. Anyway, we leave ∆K as free parameter in next equations so to allow to
reevaluate the results with a different constraint. Then, using eqs. (4.12), (4.13), from the
condition (4.82) we have:

|V ∗L4dVL4s| < 1.7× 10−4
[
f(1TeV)
f(Mb′)

]1/2
[∆K ]1/2 (4.84)

where we evaluated the constraint for the benchmark value Mb′ = 1TeV.
Regarding the contribution to the CP-violating parameter εK , the imaginary part of

the new contribution to the mixing mass ImMnew
12 can be constrained to be a fraction ∆εK

of the SM contribution:

|ImMnew
12 | < |ImMSM

12 |∆εK , (4.85)

where we defined real and positive ∆εK . At leading order of the new physics contribu-
tion, eq. (4.85) is equivalent to comparing the magnitude of the imaginary part of opera-
tors (4.64) and (4.79):

GF√
2
f(Mb′)|Im[(V ∗L4dVL4s)2]|< G2

Fm
2
W

4π2 2 |η1Re(λc)Im(λc)S0(xc)+

+
(
η2Re(λt)S0(xt)+η3Re(λc)S0(xc,xt)

)
Im(λt)

∣∣∆εK (4.86)
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eq. (4.86) can also be translated into a constraint on the scale of the new contribution:

GF√
2
f(Mb′)

∣∣∣Im[(V ∗L4dVL4s)2]
∣∣∣ < 1

Λ2
sd,Im

, ∆εK =
(

1.6 · 104 TeV
Λds,Im

)2

(4.87)

where we defined the minimum allowed equivalent scale Λ2
sd,Im of the new contribution.

The numerical value is obtained by using the Wolfenstein parameterization as in eq. (4.24),
with Im(V ∗csVcd) = −A2λ5η. We make an estimation choosing ∆εK = 0.4, corresponding to
Λds,Im = 2.5 · 104 TeV. Using eqs. (4.12) and (4.13), from the condition (4.86) we have:

|V ∗L4dVL4s|
√
| sin[2(δdL12)]| < 1.3 · 10−5

[
f(1TeV)
f(Mb′)

]1/2 [∆εK

0.4

]1/2
(4.88)

where we evaluated the constraint for the benchmark value Mb′ = 1TeV. The constraints
are also shown in figure 11 for Mb′ = 1TeV, in terms of the modulus and relative phase of
the elements V ∗L4dVL4s.

Let us elaborate a little more about the two contributions to Lnew
∆S=2 from the tree

and box diagrams. The tree level operator (4.79) can be written in terms of the Yukawa
constants hdi, in order to be compared with the operator (4.76). Using GF /

√
2 = 1/4v2

w

and eq. (4.77), we have:

Ltree
∆S=2 = −(hd1h

∗
d2)2

4
v2
w

M4
b′

(dLγµsL)2 + h.c. (4.89)

which parametrically is a factor v2
w/M

2
b′ less than the box operator (4.76). That is why, after

compensating the loop factor, for Mb′ > 3.1TeV the box contribution becomes comparable
or more important than the tree level contribution.

4.2.2 B0
d,s-B̄0

d,s mixing

In the SM the dominant contribution to B0
d(b̄d)-B̄0

d(d̄b) and B0
s (b̄s)-B̄0

s (s̄b) mixings comes
from box-diagrams with internal top-quark, while the charm quark and the mixed top-
charm contributions are entirely negligible. The effective Lagrangians for B0

d,s-B̄0
d,s mixings

are [83]:

LSM
∆B(d)=2 = −G

2
F

4π2m
2
WS0(xt)(V ∗tbVtd)2(bLγµdL)2 + h.c. (4.90)

where S0(x) is the Inami-Lim function (4.65), and analogously for B0
s system with the

substitution d→ s. Then, analogously to the kaons system,

2MB0
d,s
M

(d,s)∗
12 = 〈B̄0

d,s| − L∆B(d,s)=2|B0
d,s〉 (4.91)

∆Md,s = 2|M (d,s)
12 | (4.92)

In the SM:

∆MSM
d,s = G2

Fm
2
W

6π2 f2
Bd,s

mBd,sBBd,s |(VtbV
∗
td/s)

2|ηBS0(xt) (4.93)
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where ηB is the QCD factor, ηB = 0.551 [83], and the factors BBd,s are the corrective fac-
tors to the vacuum insertion approximation. From lattice QCD calculations: fBd

√
BBd =

225(9)MeV, fBs
√
BBs = 274(8)MeV [18]. In contrast to ∆mK , long distance contribu-

tions are estimated to be very small in neutral B meson systems, and ∆Md,s is very well
approximated by the relevant box diagrams [83]. The experimental results are [20]:

∆Md exp = (3.334± 0.013) · 10−13 GeV (4.94)
∆Ms exp = (1.1683± 0.0013) · 10−11 GeV (4.95)

In our BSM scenario with extra vectorlike b′ quark, the non-diagonal couplings of Z-
boson and Higgs boson with light quarks in eqs. (4.9), (4.21) induce the operator with the
same structure as in (4.90), interfering with the SM in the transition B̄0

d,s ↔ B0
d,s. The

new contributions at tree level and loop level are analogous to the operators giving K0

mixing (4.75), (4.78), with diagrams analogous to the ones in figure 9. Then, analogously
to the neutral kaons system, the new contribution to neutral B-mesons mixing is:

Lnew
∆B(d)=2 ≈ −

GF√
2

(V ∗L4dVL4b)2f(Mb′)(dLγµbL)2 + h.c. (4.96)

Lnew
∆B(s)=2 ≈ −

GF√
2

(V ∗L4sVL4b)2f(Mb′)(sLγµbL)2 + h.c. (4.97)

where f(Mb′) is defined in eq. (4.80). From the Lagrangians (4.96), (4.97), there is an
additive contribution Mnew

12 to the mixing mass M (d,s)
12 (4.91), and thus to the mass dif-

ference ∆Md,s (4.92). We can constrain the new contribution to be less than a fraction
∆B(d,s) of the SM contribution ∆MSM

d,s = 2|M (d,s)SM
12 | given in eq. (4.93). This is analogous

to comparing the coefficients of the effective operators in eqs. (4.96), (4.97) with the SM
ones (4.90):

GF√
2
f(Mb′)|V ∗L4d/sVL4b|2 <

G2
F

4π2m
2
W |Vtd/s|2S(xt) ·∆Bd/s = 1

Λ2
bd/s

(4.98)

where we evaluate the constraint at leading order of both SM and new physics contributions,
neglecting QCD corrections. We use ∆B(d,s) = 0.3 as a benchmark value, corresponding to
the scales Λbd = 1.0 · 103 TeV, Λbs = 2.1 · 102 TeV. Then we obtain:

|V ∗L4dVL4b| < 3.3× 10−4
[
f(1TeV)
f(Mb′)

]1/2 [∆Bd

0.3

]1/2
(4.99)

|V ∗L4sVL4b| < 1.6× 10−3
[
f(1TeV)
f(Mb′)

]1/2 [∆Bs

0.3

]1/2
(4.100)

4.2.3 D0-D̄0 mixing

In the SM D0(cū)-D̄0(c̄u) mixing receives contributions from box diagrams, dipenguin
diagrams and from long-distance effects [96]. In box diagrams only the internal strange
and down quarks contribute effectively. Differently from the case of kaons and B-mesons,
the masses of s and d are small compared to the mass of the external c quarks, which then
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b′

c
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Figure 10. New contribution to D0 − D̄0 mixing, q = d, s, b, b′.

cannot be neglected and an extra operator appears in the effective Lagrangian. In VIA
approximation, the box contribution results |M12| ∼ 10−17÷10−16 GeV [96]. Also dipenguin
diagrams can give a contribution not much smaller than box diagrams [97]. Long-distance
effects are expected to be large [98]. However, since their contribution is non-perturbative
and difficult to compute, there is room for new physics, which in principle can be the
dominant contribution to the mass difference ∆mD in D0 system. In fact, a nonzero mass
difference in the D0 meson system was recently observed by the LHCb collaboration [99]:

∆mD exp = (6.4± 0.9)× 10−15GeV (4.101)

which allows values two orders of magnitude bigger than the SM short-distance expectation.
In the scenario with extra down-type quark, the additional box diagrams with internal

b′ quarks contribute to D mesons mixing, as shown in figure 10. The corresponding effective
Lagrangian is:

Lnew
∆C=2 ≈−

G2
Fm

2
W

4π2 (Vub′V ∗cb′)2S0(xb′)(uLγµcL)2 + h.c. (4.102)

with xb′ = M2
b′

m2
W

(taking Mb′ ' 1TeV, the two mixed contributions would be competitive
only if |Vub′V ∗cb′ | < 2 · 10−7, but we are considering scenarios with larger mixings). Since
the new effective operator (4.102) originates from charged currents, this process involves
directly the elements Vub′ , Vcb′ of the enlarged CKM matrix ṼCKM (4.6). This operator
gives an additional contribution MD

12 new to the mixing mass and thus contributes to the
mass difference ∆mD:

∆mDnew = 2|MD
12 new| '

G2
Fm

2
W

6π2 (Vub′V ∗cb′)2S0(xb′)f2
DmD0 (4.103)

where fD = 212.0±0.7MeV [18] is the decay constant. Since we do not know long distance
contributions, the new contribution can be regarded as the dominant one, and we can think
that the new operator can account up to the entire mass difference in D-mesons system.
Then, a rough estimate can be made by imposing on ∆mD new to stay within twice the
error-bar of the experimental value (4.101):

∆mDnew < 8.2× 10−15 GeV (4.104)

|Vub′V ∗cb′ | < 3.9× 10−4
[ ∆mD exp

8.2 · 10−15

]1/2 [1TeV
Mb′

]
(4.105)

The last scaling in eq. (4.105) holds since S0(xb′) ∼ 1
4xb′ for Mb′ & 2TeV.
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4.3 Limits from rare B mesons decays

4.3.1 B0
d,s → µ+µ−

The decays B0
d,s → `+`−, ` = e, µ, τ , are dominated by the Z-penguin and box diagrams

involving top quark exchanges. The charm contributions are fully negligible here and the
effective Lagrangian in the SM is [89]:

LSM = G2
Fm

2
W

2π2 V ∗tbVtqY (xt)(bγµγ5q)(¯̀γµγ5`) (4.106)

with q = d, s. Y (xt) is the Inami-Lim function, including QCD and electroweak corrections,
which at leading order is a linear combination of Z-penguin and box diagrams, the same
as in eq. (4.50). Here we use Y (xt) = 0.935 from ref. [100], inserting the values in table 4.

The non-diagonal couplings of Z-boson with SM families lead to the same extra tree
level contributions as in eqs. (4.120), (4.121). In this case only the axial part of both quark
and leptons is involved:

Lnew = GF√
2

1
2V
∗
L4bVL4q(bγµγ5q)(¯̀γµγ5`) (4.107)

for q = d, s. Considering the case ` = µ, the branching ratios of the decays B0
d,s → µ+µ−

would be:

Br(B0
d/s → µ+µ−)tot = kd/s

G2
F

2

∣∣∣∣ α

2π sin2 θW
Y (xt)V ∗tbVtd/s + 1

2V
∗
L4bVL4d/s

∣∣∣∣2 (4.108)

where Bq is the flavour eigenstate (b̄q), fBs = 230.3(1.3)MeV, fBd = 190.0(1.3)MeV [18]
are the decay constants defined by 〈0|b̄γµγ5q|B0

q (p)〉 = ipµfBq , and:

kd = τB0
d

1
2πf

2
Bd
m2
µMB0

d

√
1− 4m2

µ/M
2
B0
d
, ks = τB0

sH

1
2πf

2
Bsm

2
µMB0

s

√
1− 4m2

µ/M
2
B0
s

(4.109)

In absence of new physics, the branching ratios (4.108) give the SM expectations:
Br(B0

d → µ+µ−)SM ≈ 8.6× 10−11, Br(B0
s → µ+µ−)SM ≈ 3.2 × 10−9, obtained using the

central values of the quantities in table 4.
The experimental branching ratio of the decay B0

s → µ+µ− is [20]:

Br(B0
s → µ+µ−)exp = (2.9± 0.4)× 10−9 (4.110)

which is in agreement with the SM expectation. Regarding the decay B0
d → µ+µ−, the

experimental limit is [101]:

Br(B0
d → µ+µ−)exp < 2.1× 10−10 95%C.L. (4.111)

Then, we should set a limit on the decay rates (4.108), in order to not contradict
experimental results. At 95% C.L. we can take:

Br(B0
d → µ+µ−)tot < 2.1× 10−10 (4.112)

2.1× 10−9 < Br(B0
s → µ+µ−)tot < 3.7× 10−9 (4.113)
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Depending on the relative unknown phase of the mixing elements VL4b, VL4d/s (δdL32 and
δdL31 in terms of the parameterization (4.12), (4.13)), the above upper limits correspond to:

|V ∗L4bVL4d| < (0.4÷ 2.2)× 10−4 (4.114)
|V ∗L4bVL4s| < (0.3÷ 8.1)× 10−4 (4.115)

We can express the limits (4.112), (4.113) in terms of comparison between the two effective
operators (4.106) and (4.107). By defining:

FB0
q

= α

2π sin2 θW
Y (xt)V ∗tbVtq (4.116)

the constraint can be written as:
1
2 |V

∗
L4bVL4q|
|FB0

q
|

< ∆B0
q

(4.117)

Then, in the case of destructive interference, the limits (4.114), (4.115) correspond to:

|V ∗L4bVL4d| < 2.2× 10−4
[∆B0

d

2.7

] [ FB0
d

4.1× 10−5

]
(4.118)[

∆B0
s

1.8

]
7.1× 10−4 < |V ∗L4bVL4s| < 8.1× 10−4

[
∆B0

s

2.1

] [ FB0
s

2.0× 10−4

]
(4.119)

or |V ∗L4bVL4s|< 0.7×10−4
[

∆
B0
s

0.2

]
in the second case, for δdL31 = 2.72 and δdL32 =π respectively.

4.3.2 Rare semileptonic B decays

Results on rare B-decays can constrain mixings of the extra vector-like quark with SM
families because of the new contributions to FCNC processes involving b→ s(d) originated
at tree level by non-diagonal couplings of Z-boson with SM quarks.

The new effective Lagrangian contributing to b→ s(d)`+`− decays are:

Lnew =−4GF√
2
VL4dV

∗
L4b(bLγµdL)

[(
−1

2 +sin2 θW

)
(`Lγµ`L)+sin2 θW (`Rγµ`R)

]
(4.120)

Lnew =−4GF√
2
V ∗L4bVL4s(bLγµsL)

[(
−1

2 +sin2 θW

)
(`Lγµ`L)+sin2 θW (`Rγµ`R)

]
(4.121)

giving both exclusive decays, such as B → π`+`− and B → K`+`−, and inclusive decays
B → Xs(d)`

+`−, where Xs(d) stands for anything with a s(d) quark.
As regards exclusive decays b → s`+`−, experimental branching fractions are below

SM predictions [20]. The decays B0 → K0∗`+`− and B+ → K+`+`− are the best studied
and tensions with SM were found related to the quantity P ′5 and to lepton universality
test [20] (and references therein). As regards inclusive decays, experimental measurements
of B → Xs`

+`− were made by both Belle [102] and BaBar [103]. Their data are consistent
with SM expectations at 95% C.L. [104]. In order to estimate the constraint on the mix-
ings |VL4dV

∗
L4b|, |VL4sV

∗
L4b|, we can consider the total branching fraction averaged between

electrons and muons, which experimentally results [20]:

Br(B → Xs`
+`−)exp = (5.8± 1.3)× 10−6 (4.122)
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SM calculations predict Br(B → Xs`
+`−)SM = (4.6± 0.8)× 10−6 [105]. Let us define the

branching ratio which would be given only by the new contribution:

|Anew|2 =Br(B→Xs`
+`−)new'

'Br(B→Xc`
+ν`)

|V ∗L4bVL4s|2[(−1
2 +sin2 θW )2+sin4 θW ]
|Vcb|2

<Br(B→Xs`
+`−)max

(4.123)

Br(B → Xs`
+`−)max is defined here as the maximal allowed value for the branching ratio

associated to the amplitude of the new contribution alone and we use the experimen-
tal branching ratio Br(B → Xc`

+ν`) = 0.1065(16) [20]. Similarly |ASM|2 = Br(B →
Xs`

+`−)SM. In order to have a rough indication of the constraint on the mixings, we can
limit the new prediction with twice the error-bars of the experimental result:

3.25× 10−6 < |Anew +ASM|2 < 8.35× 10−6 (4.124)

Then, we can obtain the least stringent constraint from destructive interference:

|V ∗L4bVL4s| < 1.8× 10−3
[
Br(B → Xs`

+`−)max
2.5× 10−5

] 1
2

(4.125)

and, for this case of destructive interference, |V ∗L4bVL4s| > 1.4× 10−3.
As regards b → d`+`− transitions, the LHCb collaboration measured the branching

ratio for the decay B+ → π+µ+µ− [20, 106]:

Br(B+ → π+µ+µ−)exp = (1.78± 0.23)× 10−8 (4.126)

which agrees with SM predictions, for example Br(B+ → π+µ+µ−)SM = 1.88+0.32
−0.21 ×

10−8 [107], Br(B+ → π+µ+µ−)SM = (2.04 ± 0.21) × 10−8 [108]. Other than that, up-
per limits on exclusive decays include Belle constraint Br(B+ → π+`+`−) < 4.9 · 10−8

(90% C.L.) [109] and BaBar result [110]:

Br(B0 → π0`+`−)exp < 5.3 · 10−8 90%C.L. (4.127)

` = e or µ. The SM expectation for the B0 decay can be obtained from the predictions of B+

branching ratios by multiplying by the factor (τB0/τB+)/2, where τB0/τB+ = 1.076(4) [20].
Let us define as before the decay rate which would arise only from the new contribution:

|Anew
B±,0→π±,0`+`− |

2 = Br(B±,0 → π±,0`+`−)new ' kB±,0 |VL4dV
∗
L4b|2 (4.128)

Then we should have:

1.3× 10−8 < |Anew
B±→π±`+`− +ASM

B±→π±`+`− |
2 < 2.2× 10−8 (4.129)

|Anew
B0→π0`+`− +ASM

B0→π0`+`− |
2 < 5.3 · 10−8 (4.130)

– 38 –



J
H
E
P
1
0
(
2
0
2
1
)
0
7
9

where we defined |ASM|2 = BrSM. We used the 2σ interval of the experimental result (4.126)
and the upper limit (4.127). In order to have the least stringent constraint, we can consider
the case of destructive interference between the new contribution and the SM one:

|VL4dV
∗
L4b| < 2.5× 10−4

[
Br(B± → π±`+`−)max

1.1× 10−7

] 1
2

(4.131)

|VL4dV
∗
L4b| < 4.2× 10−4

[
Br(B0 → π0`+`−)max

1.1× 10−7

] 1
2

(4.132)

where Brmax is defined as in eq. (4.123) as the maximal allowed value for the branching
ratio induced by the amplitude of the new contribution alone, and we used

kB± = 2
Br(B± → π0`+ν`)[(−1

2 + sin2 θW )2 + sin4 θW ]
|Vub|2

(4.133)

kB0 = 1
2
Br(B0 → π−`+ν`)[(−1

2 + sin2 θW )2 + sin4 θW ]
|Vub|2

(4.134)

with Br(B0 → π−`+ν`) = (1.50± 0.06)× 10−4, Br(B± → π0`+ν`) = (7.80± 0.27)× 10−5,
` = e or µ [20]. Regarding the measured decay B± → π±`+`−, in this case we also obtain
|V ∗L4bVL4d| > 2.2× 10−4.

4.4 Limits from Z-boson physics

The presence of additional vector-like quarks also affects the diagonal couplings of Z-boson
with standard quarks, changing the prediction of many observables related to the Z-boson
physics e.g. the Z total width ΓZ , the partial decay width into hadrons Γ(Z → had),
the partial decay widths Rc = Γ(cc̄)/Γ(Z → had), Rb = Γ(bb̄)/Γ(Z → had), Γ(Z → qq̄),
q = u, d, s, c, b, etc. Constraints obtained from these quantities are analized in this sec-
tion. Experimental values and SM predictions are taken from Particle Data Group [20], as
reported in table 5.

The predicted partial decay width of Z-boson decaying into bb̄ is Γ(Z → bb̄)SM ≈
375.75 ∓ 0.18MeV, which should be compared to the experimental value Γ(Z → bb̄)exp '
377.3 ∓ 1.2MeV, (using data from PDG [20], as reported in table 5). The SM prediction
of the partial decay rate of Z → bb̄ at tree level is given by:

Γ(Z → bb̄)SM = GFM
3
Z√

2π

[(
−1

2 + 1
3 sin2 θW

)2
+
(1

3 sin2 θW

)2
]

(4.135)

In order to compare with the experimental result, we should include QCD corrections,
which are given by a multiplicative factor ≈ 1.021 [20]. By inserting the vector-like isosin-
glet down-quark, the decay rate at tree level changes in:

Γ(Z → bb̄) = GFM
3
Z√

2π

[(
−1

2(1− |VL4b|2) + 1
3 sin2 θW

)2
+
(1

3 sin2 θW

)2
]

(4.136)

which means:

Γ(Z → bb̄)− Γ(Z → bb̄)SM ≈
GFM

3
Z√

2π

(
−1

2 + 1
3 sin2 θW

)
|VL4b|2 < 0 (4.137)
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Quantity Experimental value SM prediction
ΓZ 2.4952± 0.0023GeV 2.4942± 0.0009GeV
Γ(had) 1.7444± 0.0020GeV 1.7411± 0.0008GeV
Rb 0.21629± 0.00066 0.21581± 0.00002
Rc 0.1721± 0.0030 0.17221± 0.00003
A

(0,b)
FB 0.0992± 0.0016 0.1030± 0.0002

A
(0,c)
FB 0.0707± 0.0035 0.0736± 0.0002

A
(0,s)
FB 0.0976± 0.0114 0.1031± 0.0002

Ab 0.923± 0.020 0.9347
Ac 0.670± 0.027 0.6677± 0.0001
As 0.895± 0.091 0.9356
geuAV −0.1888
gedAV 0.3419
QW (Cs) −72.82± 0.42 −73.23± 0.01
QW (T`) −116.4± 3.6 −116.87± 0.02
gepAV −0.0356± 0.0023 −0.0357
genAV 0.4927± 0.0031 0.4950
2geuAV − gedAV −0.7165± 0.0068 −0.7195

Table 5. Values of interest from Particle Data Group [20].

So the prediction for the decay rate is lowered, not going towards the direction of a better
agreement with the experimental value. Then, the extra contribution to the rate should
be constrained: ∣∣∣Γ(Z → bb̄)− Γ(Z → bb̄)SM

∣∣∣ < ∆ΓZbb (4.138)

We may choose ∆ΓZbb so that Γ(Z → bb̄)tot lays in the 95% C.L. interval of the experimental
value, which implies:∣∣∣Γ(Z → bb̄)− Γ(Z → bb̄)SM

∣∣∣ < 8.6× 10−4 GeV (4.139)

|VL4b| < 3.2 · 10−2
[ ∆ΓZbb

8.6× 10−4 GeV

]1/2
(4.140)

The SM predictions for the Z decay rate and partial decay rate into hadrons are [20]:

Γ(Z)SM = 2.4942± 0.0009GeV , Γ(Z → hadr)SM = 1.7411± 0.0008GeV (4.141)

to be compared with the experimental results [20]:

Γ(Z)exp = 2.4952± 0.0023GeV , Γ(Z → hadr)exp = 1.7444± 0.0020GeV (4.142)

In this BSM scenario, the deviation from the SM expectation of the new predicted Z partial
decay rate into hadrons Γ(Z → had) (which also corresponds to the deviation of the total
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Z decay rate Γ(Z) if there are not additional leptons) is:

Γ(Z → had)− Γ(Z → had)SM = Γ(Z)− Γ(Z)SM =

= GFM
3
Z√

2π

 ∑
i,j=d,s,b

∣∣∣∣∣−1
2

3∑
k=1

V ∗LkiVLkj + 1
3 sin2 θW δij

∣∣∣∣∣
2

− 3
(
−1

2 + 1
3 sin2 θW

)2
 ≈

≈ GFM
3
Z√

2π

(
−1

2 + 1
3 sin2 θW

)(
|VL4d|2 + |VL4s|2 + |VL4b|2

)
< 0 (4.143)

QED+QCD corrections should also be included, which amount to a multiplicative factor
≈ 1.041 for d, s-quarks and≈ 1.021 for b-quark (there is additional correction for the bottom
quark due to a loop with the W boson and the top quark) [20]. As shown in eq. (4.143),
the prediction for the decay rate is lowered with respect to the SM expectation Γ(Z →
hadr)SM. Then, since the SM expectation (4.141) is below the experimental result (4.142),
the contribution of the extra quarks is not leading towards a better agreement. Therefore,
in order to set a constraint on the new expected decay rate, we can impose that the
new expectation Γ(Z → had) should be in the 95% C.L. interval of the experimental value
Γ(Z → had)exp, using in eq. (4.143) the limit value for the SM prediction Γ(Z → had)SM =
1.7419GeV. That gives:

Γ(Z → had)SM − Γ(Z → had) < ∆ΓZ

|VL4d|2 + |VL4s|2 + |VL4b|2 < 1.7× 10−3
[ ∆ΓZ

1.4× 10−3 GeV

]
(4.144)

With |VL4d| = 0.03, the constraint means |VL4s|2 + |VL4b|2 < 0.0008, which is satisfied for
example if both |VL4s|, |VL4b| < 0.02. If VL4s = VL4b = 0, this constraint implies:

|VL4d|2 < 1.7× 10−3 , |VL4d| < 0.041 (4.145)

which is extremely close to the value needed to solve the CKM unitarity problem (for
example, at 95% C.L. |VL4d| = 0.043+0.011

−0.015 (4.8) using our conservative averages for Vud
and Vus values (2.10), (2.14)). This means that an extra weak singlet could not completely
explain the CKM unitarity anomaly with more extreme values of the determinations of
CKM elements, as can be seen for example by comparing eq. (4.145) to the needed values
|VL4d|2 = δCKM displayed in table 2.

Constraints are expected also from Z-pole asymmetry analyses of e+e− → ff pro-
cesses. In particular, left-right asymmetries ALR, forward-backward asymmetries AFB and
left-right forward-backward asymmetries ALRFB [111] were measured at LEP. Cross sec-
tions for Z-boson exchange are usually written in terms of the asymmetry parameters Af ,
f = e, µ, τ, b, c, s, q, which contain final-state couplings. For example, they are related as
A

(0,f)
FB = 3

4AeAf , A
(0,f)
LRFB = 3

4Af (where the superscript 0 indicates the quantity corrected
for radiative effects). The presence of an additional isosinglet changes the couplings of
quarks with the Z boson as in eq. (4.9). Consequently the predictions for the asymmetries
are also changed:

Aq =
(1− |VL4q|2)2 − 4|Qq|s̄2

q(1− |VL4q|2)
(1− |VL4q|2)2 − 4|Qq|s̄2

q(1− |VL4q|2) + 8Q2
q s̄

4
q

(4.146)
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where s̄2
f are the effective weak angles which take into account EW radiative corrections.

Then, the mixing |VL4q| with the isosinglet quark makes the prediction for Aq lower than
the SM one. The most precise result for quarks regards the asymmetry for b-quark final
state. Taking the data from Particle Data Group [20] (also listed in table 5), in principle
the mixing |VL4b| modifies the couplings in the “good” direction with respect to the exper-
imental determinations of both Ab and A

(0,b)
FB . However, considering the other constraints

from Z decays, a mixing |VL4b| . 0.03 (4.140) would only give a relative change to Ab at
most of ∼ 0.016%, two orders of magnitude less than the relative experimental error.

4.5 Summary of experimental limits

As illustrated in section 2, the analysis of the latest determinations of Vus obtained from
kaon decays and the ones of Vud from beta decays results in a deviation from unitarity in
the first row of the CKM matrix. The SM unitarity relation (1.3) can be modified into
the relation in eq. (4.7) if an extra vector-like down-type quark dL4, dR4 participates in the
mixing with SM families. In section 4 it was shown that a quite large mixing with the first
family, |Vub′ | ≈ |VL4d| ≈ 0.043(7) (4.8), is needed in order to explain the data (see also
table 2, where in this case δCKM = |Vub′ |2). Then, we need to verify if such large mixing
is compatible with experimental constraints from flavour changing decays and electroweak
observables.

In table 6 the relevant constraints extracted in this section are listed.
Limits from each flavour changing kaon process are shown in figure 11, where VL4d and

VL4s are elements of the mixing matrix V (d)
L (4.4). In order to not contradict any bound,

depending on the relative phase, the product |VL4dV
∗
L4s| cannot exceed the limit:

|VL4dV
∗
L4s| . (0.3÷ 1.7)× 10−5 (4.147)

taking Mb′ = 1TeV. Using the parameterization in eqs. (4.12), (4.13), the maximum and
minimum values are obtained for δdL21 ≈ 1.6π and δdL21 = π respectively. Taking into
account the needed values to recover the unitarity of the CKM matrix in eq. (4.8), we use
|Vub′ | ≈ |VL4d| = 0.03 as a conservative benchmark value. Then, from eq. (4.147) we have:

|VL4s| < (0.9÷ 5.0)× 10−4
[ 0.03
|Vub′ |

]
(4.148)

Constraints on the value of |Vtb′ | ≈ |VL4b| are obtained from flavour changing B-mesons
decays. The present most stringent bound is given by the decay B0 → µ+µ− (4.114):

|V ∗L4bVL4d| < (0.4÷ 2.2)× 10−4 , |VL4b| < (1.4÷ 7.4)× 10−3
[ 0.03
|Vub′ |

]
(4.149)

depending on the relative phase δdL31, where the maximum and minimum value are obtained
respectively for δdL31 = 2.72 and δdL31 = −0.42.

Then, taking into account that (4.13), (4.15):

VL4d ≈ −
h∗d1vw
Mb′

, VL4s ≈ −
h∗d2vw
Mb′

, VL4b ≈ −
h∗d3vw
Mb′

(4.150)
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Process Constraint

K+ → π+νν̄ |V ∗L4sVL4d| < 1.9× 10−5 |VL4s| < 6.4× 10−4
[

0.03
|Vub′ |

]
KL → π0νν̄ |V ∗L4sVL4d|| sin δdL21| < 2.2× 10−5 |VL4s| < 7.4×10−4

| sin δd
L21|

[
0.03
|Vub′ |

]
KL → π0e+e− |V ∗L4sVL4d|| sin δdL21| < 1.7× 10−5 |VL4s| < 5.5×10−4

| sin δd
L21|

[
0.03
|Vub′ |

]
KL → µ+µ− −0.3× 10−5 < |V ∗L4sVL4d| cos δdL21 < 1.1× 10−5 |VL4s| < 3.7×10−4

| cos δd
L21|

[
0.03
|Vub′ |

]
KS → µ+µ− |V ∗L4sVL4d|| sin δdL21| < 4.8× 10−5 |VL4s| < 1.6×10−3

| sin δd
L21|

[
0.03
|Vub′ |

]
K0-K̄0 |V ∗L4sVL4d| < 1.7× 10−4 |VL4s| < 5.8× 10−3

[
0.03
|Vub′ |

]
|V ∗L4sVL4d|

√
| sin(2δdL21)| < 1.3× 10−5 |VL4s| < 4.4×10−4√

| sin(2δd
L21)|

[
0.03
|Vub′ |

]
B0-B̄0 |VL4bV

∗
L4d| < 3.3× 10−4 |VL4b| < 1.1× 10−2

[
0.03
|Vub′ |

]
B0 → π0`+`− |VL4bV

∗
L4d| < 4.2× 10−4 |VL4b| < 1.4× 10−2

[
0.03
|Vub′ |

]
B± → π±`+`− |VL4bV

∗
L4d| < 2.5× 10−4 |VL4b| < 8.4× 10−3

[
0.03
|Vub′ |

]
B0 → µ+µ− |VL4bV

∗
L4d| < 2.2× 10−4 |VL4b| < 7.4× 10−3

[
0.03
|Vub′ |

]
B0
s -B̄0

s |VL4bV
∗
L4s| < 1.6× 10−3

B → Xs`
+`− |VL4bV

∗
L4s| < 1.8× 10−3

B0
s → µ+µ− |VL4bV

∗
L4s| < 8.1× 10−4

D0-D̄0 |Vub′V ∗cb′ | < 3.9× 10−4
[

1 TeV
Mb′

]
|Vcb′ | < 1.3× 10−2

[
0.03
|Vub′ |

]
Z → bb̄ |VL4b| < 3.2 · 10−2

ΓZ , Z → hadr |VL4d| < 0.041

Table 6. Limits on the mixing of the SM three families with a fourth down-type vector-like
isosinglet. As in eq. (4.12), (δdLi − δdLj) = δdLij . Regarding the elements of CKM matrix, Vub′ ≈
−V ∗L4d, Vcb′ ≈ −V ∗L4dVcd − V ∗L4sVcs − V ∗L4bVcb, Vtb′ ≈ −V ∗L4b as in eqs. (4.18), (4.19), (4.20). For
details see the text.

where hdi are the Yukawa couplings defined in eq. (4.1), from eqs. (4.148), (4.149) it follows
that the Yukawa couplings hd2 and hd3 should be respectively at least 50 times and 4 times
smaller than the coupling of the first family hd1.

As regards the new column of the enlarged CKM matrix (4.6), we have |Vub′ | ≈ |VL4d|,
|Vtb′ | ≈ |VL4b| and, from eq. (4.19):

|Vcb′ | ≈ | − V ∗L4dVcd − V ∗L4sVcs − V ∗L4bVcb| =

=
∣∣∣|Vcd||Vub′ | − |VL4s|eiδ

d
L21 − |Vcb||VL4b|eiδ

d
L31
∣∣∣ ≈ |Vcd||Vub′ | (4.151)

where in the last step we have taken into account the constraints (4.148), (4.149). In fact,
in order to have the needed value |Vub′ | ≈ 0.043, there is no much room in the parameter
space to accommodate the relation (4.151) without contradicting experimental constraints
from D0 mixing and flavour changing kaon decays, as shown in figure 12. There, the blue
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Figure 11. Upper limits obtained from kaon decays and neutral kaon mixing on the product
|V ∗L4sVL4d| of the elements of the mixing matrix V (d)

L (4.4), as a function of their relative phase δdL21.

area is excluded by flavour changing processes involving K-mesons (4.148). We use the
indicative upper limit obtained for δdL21 = Arg(V ∗L4sVL4d) = 0, |V ∗L4sVL4d| < 1.1 × 10−5,
which is allowed by every single process for −3/2π . δdL21 . 0.3π (for other choices the
constraint should be more stringent, see figure 11). The green region is excluded by the
relation in eq. (4.151), for any value of the relative phase δdL31 and for the considered values
of the relative phase δdL21 (other values of δdL21 only allow a slightly larger opening angle of
the allowed “cone” on the upper side, which does not widen the allowed range of values of
Vcb′ , because the constraint from kaon physics is more stringent for those other values of the
phase δdL21). The red area is excluded by the constraints on |Vcb′ | from D0 systems (4.105)
with Mb′ = 1TeV:

|Vub′V ∗cb′ | < 3.9× 10−4
[ ∆mD exp

8.2 · 10−15

]1/2 [1TeV
Mb′

]
(4.152)

which, together with eq. (4.151) (and flavour changing kaon processes), implies:

|Vub′ | . 0.042
[ ∆mD exp

8.2 · 10−15

]1/4 [1TeV
Mb′

]1/2
(4.153)

which already excludes the more extreme values needed to explain the Cabibbo angle
anomaly (for example, at 95% C.L. |VL4d| = 0.043+0.011

−0.015 (4.8) using our conservative average
for Vud (2.10), or see also the needed values |VL4d|2 = δCKM displayed in table 2). As
discussed in section 4.2.3, the constraint is obtained by allowing the new contribution to
the mass difference in D0 mesons system to account for the experimental value ∆mD exp, in
the 2σ interval. The red dashed lines indicate the boundary of the excluded area under more
stringent assumptions. In particular, the new contribution to D-mesons mass difference
is limited to be equal to the central experimental value (4.101) (left) and one third of

– 44 –



J
H
E
P
1
0
(
2
0
2
1
)
0
7
9

Figure 12. Constraints on |Vcb′ | and |VL4s|. On the left, |Vub′ | ≈ |VL4d| = 0.04. The red area is
excluded by the constraints on |Vcb′ | from D0 systems, with Mb′ = 1TeV, as reported in table 6.
The red lines show where the boundary shifts if the mass of the extra quark is taken as Mb′ = 1.5.
The red dashed line indicate the boundary of the excluded area if the new contribution to D-mesons
mass difference is equal to the central experimental value (4.101). The blue area is excluded by
flavour changing processes involving K-mesons, using the result |VL4s| < 3.7 · 10−4, from figure 11,
eq. (4.148), which is allowed by every single process for −3/2π . δdL21 . 0.3π. The green region
is excluded by the relation in eq. (4.151), for the considered values of the relative phase δdL21. On
the right, the same constraints are shown setting |Vub′ | ≈ |VL4d| = 0.03. The constraint on |Vcb′ |
from D-mesons mixing (red area) is lowered to the red lines taking the mass of the extra quark as
Mb′ = 1.5TeV, Mb′ = 2.5TeV. The red dashed line indicate the boundary of the excluded area
under more stringent assumptions. In particular, the new contribution to D-mesons mass difference
is limited as one third of the experimental value (4.101).

the experimental value (right). This means that a deeper knowledge of the long distance
contribution (and corresponding sign) can exclude this possibility if it will saturate the
experimental value or, viceversa, the extra singlet quark can be thought as a way to explain
the value of the mass difference in neutral D-mesons system in case of deviation between
experimental and expected value. A narrow allowed region (including VL4s = 0) can be
found for values Vub′ < 0.042. However, in any case, the mass of the extra quark cannot
exceed few TeV. In fact, with larger values of Mb′ the constraint from D0 mixing becomes
more stringent. For example, as shown in figure 12, the allowed region vanishes if Mb′ =
1.5TeV for |Vub′ | = 0.04, and even with a conservative choice |Vub′ | = 0.03 the allowed area
disappear with b′ mass less than Mb′ = 2.5TeV. Also the constraint from flavour changing
processes of kaons shifts towards lower values with larger values of the extra quark mass.

In addition to that, results on Z-boson decay rate into hadrons imply that (4.145):

|VL4d|2 < 1.7× 10−3 , |Vub′ | ≈ |VL4d| < 0.041 (4.154)

which is also in the range of values needed to solve the CKM unitarity problem (for example,
at 95% C.L. |VL4d| = 0.043+0.011

−0.015). This means that also precision measurements of Z
boson decays can exclude down-type weak singlet as a good solution of the CKM unitarity
problem.
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We can also notice that the mixings of b′ with c-quark and t-quark |Vcb′ |, |Vtb′ | should
be at least four times smaller than the mixing with the u-quark. Moreover, |Vub′ | ∼ 0.03
is comparable to |Vcb| and ten times larger than |Vub|. However, although it may seem
unnatural to expect a larger mixing of the 4th state with the lightest family than with the
heavier ones, it cannot be excluded. Moreover, with |Vub′ | = 0.03, Mb′ . 6TeV would be
needed for the perturbativity, assuming |hd 1| . 1.

5 Extra up-type isosinglet

The case of the addition of a vector-like up-type isosinglet couple of quarks (u4L, u4R) is
examined in this section. Analogously to the case of the extra down-type quark, there is
an additional piece in the Yukawa Lagrangian:

yuijϕ̃qLiuRj + ydijϕqLidRj + huiϕ̃qLiuR4 +M4uuL4uR4 + h.c. (5.1)

with i, j = 1, 2, 3 and ϕ̃ = iτ2ϕ
∗. Then, the up-type quarks mass matrix looks in a way

analogous to the mass matrix in eq. (4.2) (with substitution d → u), and it is similarly
diagonalized by two unitary 4 × 4 matrices with positive eigenvalues mu,c,t = yu,c,tvw

and Mt′ . Weak and mass eigenstates and the unitary matrices V (u)
L,R can be defined as in

eq. (4.4). Since only the three up-type quarks uL1, uL2, uL3 couple with W -bosons, the
Lagrangian for the charged current interaction is:

Lcc = g√
2

(
uL1 uL2 uL3

)
γµ

 dL1
dL2
dL3

W+
µ + h.c. =

= g√
2

(
uL cL tL t′L

)
γµṼCKM

 dLsL
bL

W+
µ + h.c. (5.2)

where

ṼCKM = Ṽ
(u)†
L =


Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb
Vt′d Vt′s Vt′b

 (5.3)

is a 4× 3 matrix, Ṽ (u)
L is the 3× 4 submatrix of V (u)

L without the last row and the unitary
3 × 3 matrix diagonalizing the down-type quark mass matrix from the left, V (d)

L , is taken
diagonal. Again ṼCKM is not unitary:

ṼCKMṼ
†

CKM = Ṽ
(u)†
L Ṽ

(u)
L 6= 1 (5.4)

In particular, for the first row it holds that

|Vud|2 + |Vus|2 + |Vub|2 = [ṼCKMṼ
†

CKM]11 = [Ṽ (u)†
L Ṽ

(u)
L ]11 = 1− |VL4u|2 (5.5)
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which is the same extended unitarity condition as in eqs. (2.1) and (4.7), where δCKM =
|VL4u|2 and |VL4u| has the same effect on the unitarity of the first row as |Vub′ |. Then, the
analysis of the determinations of Vus obtained from leptonic and semileptonic kaon decays
and of Vud from beta decays gives the same result as in section 4, leading to the best fit
point in eq. (4.8):

|VL4u|2 = 1.83(55)× 10−3 , |VL4u| = 0.043(7) (5.6)

which shifts the values of Vus obtained from the three determinations as shown in figure 5.
The mixing matrix V (u)

L induces non-standard couplings of Z-boson with the LH up
quarks because of different weak isospin couplings, as also described in section 4. Then,
the weak neutral current Lagrangian for up quarks reads:

Lnc = g

cos θW

1
2
(
uL cL tL t′L

)
γµṼ

(u)†
L Ṽ

(u)
L


uL
cL
tL
t′L

− 2
3 sin2 θW (uLγµuL + uRγµuR)

Zµ
(5.7)

where u is the column vector of the four up-type quarks u, c, t, t′. Then, as shown in
eq. (5.7), the non-unitarity of Ṽ (u)

L is at the origin of non-diagonal couplings with Z boson,
which means flavor changing neutral currents (FCNC) at tree level. The weak isospin
dependent Z couplings are the same as in eq. (4.10) with substitutions d → u, s → c,
b → t. V (u)

L can be parameterized analogously to eqs. (4.11), (4.12). As it will be shown,
in order to have VL4u ≈ 0.03, it should be |VL4c| . 4.2 × 10−3, |Vt′b| . 8.5 × 10−2. Then,
as regards the elements of the fourth row of ṼCKM = Ṽ

(u)†
L , it holds that:

Vt′d ≈ −VL4u

Vt′s ≈ −VL4uVus − VL4cVcs − VL4tVts (5.8)
Vt′b ≈ −VL4t

with:

VL4u = −s̃uL1 ≈
h∗u1vw
Mt′

, VL4c ≈ −s̃uL2 ≈
h∗u2vw
Mt′

, VL4t ≈ −s̃uL3 ≈
h∗u3vw
Mt′

s̃uLi = sin θuLi4eiδ
u
Li = suLie

iδuLi (5.9)

where s̃uLi are complex sines of angles in the 1 4, 2 4, 3 4 family planes parameterizing the
mixing of the first three families with the vector-like quark, as in (4.11), (4.12), and we
can choose δuL1 = 0 without loss of generality.

Since the matrix of Yukawa couplings and the mass matrix are not proportional, also
the couplings of quarks with the real Higgs are not diagonal. In particular, left-handed
SM quarks are coupled with t′R with coupling constants which can be in principle of order
O(1), as shown in eq. (4.21) (with the replacements hdi → hui, d, s, b→ u, c, t).

Let us also notice that, because of the large mixing with the first family, the extra
quark t′ would mainly decay into u or d quark via the couplings with W , Z, H. The CMS
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experiment put a lower limit Mt′ & 685GeV [82], which implies that |Vt′d| ' 0.03 can be
obtained if |hu1| & 0.1, much larger than the Yukawa constant of the bottom quark. In
turn, by taking |VL4u| > 0.03 inMt′ = |hu1|vw/|Vt′d|, and assuming (for the perturbativity)
hu1 . 1, there is an upper limit on the extra quark mass, Mt′ . 6TeV.

In the following sections experimental limits from FCNC and electroweak observables
are examined. The results are summarized in section 5.4, in table 7 and figures 14, 16.

5.1 Limits from rare D mesons decays

D-mesons rare decays can limit mixings of the standard quarks with the additional vector-
like singlet up-quark t′. In fact, the non-diagonal couplings of Z-boson with light quarks
in eqs. (5.7) induce at tree level flavour changing leptonic and semileptonic decays of
D-mesons:

Lnew = 4GF√
2
V ∗L4uVL4c(uLγµcL)

[(
−1

2 +sin2 θW

)
(`Lγµ`L)+sin2 θW (`Rγµ`R)

]
+h.c. (5.10)

The most stringent constraint from semileptonic decays comes from the experimental
limit [20]:

Br(D+ → π+µ+µ−)exp < 7.3 · 10−8 90%C.L. (5.11)

Neglecting the SM contribution, we can impose the experimental limit on the new
contribution:

Br(D+ → π+µ+µ−)new ' Br(D+ → π0µ+νµ)
2|V ∗L4uVL4c|2[(−1

2 + sin2 θW )2 + sin4 θW ]
|Vcd|2

< 7.3 · 10−8 (5.12)

from which

|V ∗L4uVL4c| < 2.0 · 10−3
[ Brmax

7.3 · 10−8

] 1
2

(5.13)

where we take advantage of the experimental branching ratio Br(D+ → π0µ+νµ) = (3.50±
0.15) ·10−3 [20]. Brmax is defined as in eq. (4.123) as the maximum allowed branching ratio
induced by the beyond SM amplitude alone.

The experimental constraint on the leptonic decay D0 → µ+µ− is [20]:

Br(D0 → µ+µ−)exp < 6.2 · 10−9 90%C.L. (5.14)

Neglecting the SM short- and long- distance contribution, the limit on the new contribution:

Br(D0→ µ+µ−)new = Br(D+→ µ+νµ)1
2

τ(D0)MD0

√
1−4 m2

µ

M2
D0

τ(D+)MD+

(
1− m2

µ

M2
D+

)2
|V ∗L4uVL4c|2

|Vcd|2
< 6.2 ·10−9

(5.15)
It is obtained that:

|V ∗L4uVL4c| < 2.0 · 10−3
[ Brmax

6.2 · 10−9

] 1
2

(5.16)

using the values in table 4, with Br(D+ → µ+νµ) = (3.74± 0.17) · 10−4.
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5.2 Limits from neutral mesons systems

5.2.1 D0-D̄0 mixing

As described in section 4.2.3, the experimental result (4.101) for the mass difference in the
D0 system allows values which can be two orders of magnitude higher than the SM short-
distance expectation, while long-distance effects cannot be computed reliably. Then, new
physics scenarios can in principle account for the experimental mass difference ∆mD exp in
eq. (4.101).

The non-diagonal couplings of Higgs and Z bosons with quarks bring additional con-
tributions to the transition D̄0 ↔ D0, both at tree level and loop level. Analogously to
eq. (4.79), the corresponding effective Lagrangian reads:

Lnew
∆C=2 ≈ −

GF√
2

(V ∗L4uVL4c)2
(

1 + GFM
2
t′

8
√

2π2

)
(uLγµcL)2 + h.c. =

= −GF√
2

(V ∗L4uVL4c)2f(Mt′)(uLγµcL)2 + h.c. (5.17)

f(Mt′) = 1 +
(

Mt′

3.1TeV

)2
(5.18)

Then, the new operator (5.17) can generate the mass difference:

∆mD new ≈ 2|MD
12 new| '

2
3
GF√

2
f(Mt′)|V ∗L4uVL4c|2f2

DmD0 (5.19)

We can think that ∆mD new is the dominant contribution to the mass difference. Then,
as in section 4.2.3, we can set an indicative limit by using the experimental result (4.101)
within two error bars, ∆mD new < 8.2× 10−15 GeV, as in (4.104):

|V ∗L4uVL4c| < 1.3× 10−4
[
f(1TeV)
f(Mt′)

]1/2 [ ∆mDmax
8.2 · 10−15

]
(5.20)

5.2.2 K0-K̄0 mixing

In the SM, the short-distance contribution to the transition K0(ds̄)↔ K̄0(d̄s) arises from
weak box diagrams (figure 8), which corresponds to the effective Lagrangian in eq. (4.64).

In the scenario with extra up-type quark, the mixing of the SM quarks with the t′-
quark in the charged current in eq. (5.2) gives additional contributions to the K0 mixing,
in interference with the SM. In fact, the same operator as in (4.64) is originated by box
diagrams with internal t′-quark running in the loop, as shown in figure 13:

Lnew
∆S=2 = −G

2
Fm

2
W

4π2

(
(V ∗t′sVt′d)2S(xt′) + 2(V ∗t′sVt′d)(V ∗csVcd)S(xc, xt′)+

+ 2(V ∗t′sVt′d)(V ∗tsVtd)S(xt, xt′)
)
(sLγµdL)(sLγµdL) + h.c. (5.21)

where xa = m2
a

m2
W

and S0(x, y) are the Inami-Lim functions [93] in eqs. (4.65), (4.66).
We constrain the modulus and imaginary part of the BSM contribution (5.21) to the

mixing mass following section 4.2.1. The mixing mass in the SMMSM
12 is given in eq. (4.68).
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q

W W

t′

s

d

d

s

Figure 13. New contribution to K̄0 → K0 mixing, q = u, c, t, t′.

Regarding the CP-conserving part, in order to estimate the constraint on the new mixing
elements we can impose:

|Mnew
12 | <

∣∣∣MSM
12

∣∣∣ ∆K (5.22)

where ∆K is real and positive. As an indicative estimate, we will evaluate for ∆K = 1, as
in section 4.2.1. This is analogous to comparing the coefficients of the effective operators in
eqs. (4.64) and (5.21). In this case the upper bound is basically determined by constraining
the contribution of the box diagram with t′ running in the loop:

|V ∗t′sVt′d|2S0(xt′) < S0(xc)(V ∗csVcd)2 ∆K

|V ∗t′sVt′d| < 5.2× 10−4
[1TeV
Mt′

]
[∆K ]1/2 (5.23)

The scaling with t′ mass in eq. (5.23) holds since S0(xt′) ∼ 1
4xt′ for Mt′ & 2TeV.

Regarding the contribution to the CP-violating parameter εK , we can estimate the up-
per bound on the new operator by constraining the imaginary part of the new contribution
to the mixing mass |ImMnew

12 | to be a fraction ∆εK of the SM contribution, as in eq. (4.85):

|ImMnew
12 | < |ImMSM

12 |∆εK (5.24)

At leading order of the new physics contribution, eq. (5.24) is equivalent to comparing the
magnitude of the imaginary part of operators (4.64) and (5.21), in the standard parame-
terization of CKM matrix:∣∣∣Im((V ∗t′sVt′d)2S(xt′) + 2(V ∗t′sVt′d)(V ∗csVcd)S0(xc, xt′)+

+2(V ∗t′sVt′d)(V ∗tsVtd)S0(xt, xt′)
)∣∣∣ < |Im(CSM)| ∆εK (5.25)

with

CSM = η1(V ∗csVcd)2S0(xc) + η2(V ∗tsVtd)2S0(xt) + 2η3(V ∗csVcd)(V ∗tsVtd)S0(xc, xt) (5.26)

The constraint depends on the mass of the extra quark, since the first term of eq. (5.21)
scales as S0(xt′) ∼ 1

4M
2
t′/m

2
W for Mt′ & 2TeV, while the second and third components

are logarithmically growing with t′ mass. We make an estimation choosing ∆εK = 0.4,
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Figure 14. Upper limits on the product |V ∗t′sVt′d| from neutral kaon mixing, obtained from the
constraint in eqs. (5.22), (5.24) with ∆K = 1, ∆εK

= 0.4, as a function of the relative phase
δds = arg(V ∗t′sVt′d). The blue and orange lines indicate where the upper limit shifts for Mt′ = 5TeV.

corresponding to an equivalent scale of the new operator Λds,Im = 2.5·104 TeV, as defined in
eq. (4.87). The upper bounds on the product V ∗t′sVt′d obtained with ∆K = 1, ∆εK = 0.4 are
shown in figure 14, where δds = arg(V ∗t′sVt′d). The excluded region is shown forMt′ = 1TeV,
while the lines show the shift of the upper limit for Mt′ = 5TeV.

5.2.3 B0
s,d-B̄0

s,d mixing

As illustrated in section 4.2.2, in the SM the dominant contribution to B0
d(b̄d)-B̄0

d(d̄b) and
B0
s (b̄s)-B̄0

s (s̄b) mixings comes from box-diagrams with internal top-quark, with effective
Lagrangian in eq. (4.90).

In the scenario with extra up-type quark, the mixing of the SM quarks with the t′-quark
in the charged current in eq. (5.2) contribute to neutral B-mesons mixing, in interference
with the SM. In fact, the same operator as in (4.90) is originated by box diagrams with
internal t′ and t, t′-quarks:

Lnew
∆B(d)=2 = −G

2
Fm

2
W

4π2

(
(V ∗t′bVt′d)2S0(xt′) + 2(V ∗t′bVt′d)(V ∗tbVtd)S0(xt, xt′)

)
(bLγµdL)2 + h.c.

(5.27)

Lnew
∆B(s)=2 = −G

2
Fm

2
W

4π2

(
(V ∗t′bVt′s)2S0(xt′) + 2(V ∗t′bVt′s)(V ∗tbVts)S0(xt, xt′)

)
(bLγµsL)2 + h.c.

(5.28)

where xa = m2
a

m2
W

and S(xa) are the Inami-Lim functions [93] given in eqs. (4.65), (4.66).
The c-quark contribution is negligible.

We can constrain the new contribution to be less than a fraction ∆B(d,s) of the SM
contribution ∆MSM

d,s = 2|M (d,s)SM
12 | given in eq. (4.93), as:

|M (d,s)new
12 | < |M (d,s)SM

12 |∆Bd,s (5.29)
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Figure 15. Upper limits on the products of the mixing elements |V ∗t′sVt′d|, |V ∗t′sVt′d| from neutral
B-mesons mixing, obtained from the constraint in eqs. eqs. (5.30) with ∆Bd,s

= 0.3, as a function
of the relative phases δdb = arg(V ∗t′bVt′d), δsb = arg(V ∗t′bVt′s), evaluated for the values of extra quark
masses Mt′ = 1.5, 2, 3, 6TeV (blue, purple, orange and black curves respectively).

This is analogous to comparing the coefficients of the effective operators in eqs. (5.27), (5.28)
with the SM ones (4.90):∣∣∣(V ∗t′bVt′d/s)2S0(xt′) + 2(V ∗t′bVt′d/s)(V ∗tbVtd/s)S0(xt, xt′)

∣∣∣ < S(xt)|V ∗tbVtd/s|2 ∆Bd,s (5.30)

where we evaluate the constraint at leading order of both SM and new physics contributions.
As in section 4.2.2, we use ∆B(d,s) = 0.3 as a benchmark value. Then, by takingMt′ = 1TeV,
we obtain:

|V ∗t′bVt′d| < 0.4÷ 2.6× 10−3 (5.31)
|V ∗t′bVt′s| < 0.2÷ 1.2× 10−2 (5.32)

depending on the relative phases δdb = arg(V ∗t′bVt′d), δsb = arg(V ∗t′bVt′s). The constraints
become more stringent for higher values of t′ mass. The contribution from the mixed box
diagrams with t, t′ grows logarithmically with Mt′ , but the contribution from the box-
diagram with t′ increases linearly with the mass for Mt′ & 2TeV. Then, for Mt′ & 3TeV
the upper limits start to decrease as M−1

t′ . The upper bound on the mixing elements
|V ∗t′bVt′d|, |V ∗t′bVt′d| as a function of the relative phase of the elements is shown in figure 15
for increasing values of the extra quark t′ mass.

5.3 Limits from Z-boson physics

The presence of vector-like quarks affect both off-diagonal couplings and diagonal couplings
of Z-boson with quarks, changing the prediction of the observables related to the Z boson
physics. In this BSM scenario, the partial decay rate into hadrons Γ(Z → had) (which also
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corresponds to the deviation of the total Z decay rate Γ(Z), since there are not additional
leptons) would be changed with respect to the SM expectation by:

Γ(had)− Γ(had)SM = Γ(Z)− Γ(Z)SM =

= GFM
3
Z√

2π

 ∑
i,j=u,c

∣∣∣∣∣12
3∑

k=1
V ∗LkiVLkj −

2
3 sin2 θW δij

∣∣∣∣∣
2

− 2
(1

2 −
2
3 sin2 θW

)2
 =

= GFM
3
Z√

2π

[ ∑
q=u,c

(1
2(1− |VL4q|2)− 2

3 sin2 θW

)2
+ 1

2 |V
∗
L4uVL4c|2 − 2

(1
2 −

2
3 sin2 θW

)2
]
≈

≈ GFM
3
Z√

2π

(
−1

2 + 2
3 sin2 θW

)(
|VL4u|2 + |VL4c|2

)
< 0 (5.33)

where QED and QCD corrections factor ≈ 1.050 should be included. As shown in eq. (5.33),
the prediction for the decay rate is lowered with respect to the SM one. Since the SM
expectation (4.141) is below the experimental result (4.142), following section 4.4, we can
choose to use the limit value of the SM prediction Γ(Z → had)SM = 1.7419GeV. Then
we can impose that Γ(Z → had) should stay in the 95% C.L. interval of the experimental
value Γ(Z → had)exp, which means:

|VL4u|2 + |VL4c|2 < 2.0 · 10−3
[ ∆ΓZ

1.4× 10−3 GeV

]
(5.34)

where ∆ΓZ is defined by Γ(Z → had) − Γ(Z → had)SM < ∆ΓZ as in eq. (4.143). The
constraint is satisfied if both |VL4u,c| . 0.032. With VL4c = 0, the constraint implies:

|VL4u|2 < 2.0 · 10−3 , |VL4u| < 0.044 (5.35)

which is extremely close to the value needed to solve the CKM unitarity problem (for exam-
ple, at 95% C.L. |VL4u| = 0.043+0.011

−0.015 (4.8) using our conservative average for Vud (2.10)).
The presence of the additional up-type isosinglet changes the predictions for the asym-

metries as in eq. (4.146). However, the expected value of Ac remains in the 95% C.L.
interval of the experimental determination Ac = 0.670 ± 0.027 with VL4c < 0.24, and it is
within one errorbar of the Ac value extracted from A

(0,c)
FB with VL4c < 0.28.

5.4 Summary of experimental limits

As illustrated in section 2, the analysis of the latest determinations of Vus obtained from
kaon decays and of Vud from beta decays results in a deviation from unitarity of the first
row of the CKM matrix. The SM unitarity relation (1.3) can be modified into the relation
in eq. (5.5) if an extra vector-like up-type quark uL4, uR4 participates in the mixing of the
SM families. A quite large mixing with the first family, |Vt′d| ≈ |VL4u| ≈ 0.043(7) (5.6), is
needed in order to explain the data, see eq. (5.6) (see also table 2, where in this scenario
δCKM = |VL4u|2). In this way, the values of Vus obtained from the three determinations can
be shifted as shown in figure 5, where |Vt′d| ≈ |VL4u| plays the same role as |Vub′ |. Then,
we need to verify if such large mixing is compatible with experimental constraints from
flavour changing decays and electroweak observables.

– 53 –



J
H
E
P
1
0
(
2
0
2
1
)
0
7
9

In table 7 constraints obtained in this section on the mixing of the new up-type vector-
like quark with the SM families are summarized (|Vt′d| ≈ |VL4u| = 0.03 is used as a
conservative benchmark value).

In figure 16 the allowed area in the parameter space of |Vt′s| and |VL4c| is shown, using
|Vt′d| = 0.04 and |Vt′d| = 0.03 as benchmark values.

The blue area is excluded by constraints on neutral K-mesons system, as obtained
in section 5.2.2 and summarized in figure 14. Since the constraint on the CP violating
contribution can be avoided for specific values of the phase δds = arg(V ∗t′sVt′d), in figure 16
we conservatively use the bound on the contribution to the mass difference ∆mK (5.23)
for Mt′ = 1TeV, which gives:

|V ∗t′sVt′d| < 5.2× 10−4
[1TeV
Mt′

]
, |Vt′s| < 1.7 · 10−2

[ 0.03
|VL4u|

] [1TeV
Mt′

]
(5.36)

The red area is excluded by the constraints on |VL4c| from D0 systems, forMt′ = 1TeV,
as reported in eq. (5.20):

|V ∗L4uVL4c| < 1.3× 10−4
[
f(1TeV)
f(Mt′)

]1/2
, |VL4c| < 4.2 · 10−3

[ 0.03
|VL4u|

]
(5.37)

where f(Mt′) is defined in eq. (5.18). As discussed in section 5.2.1, the constraint is obtained
by allowing the new contribution to the mass difference in D0 mesons system to account
for the experimental value ∆mD exp, in the 2σ interval. Then, also in this case, knowledge
of the long distance contribution (and corresponding sign) can exclude this possibility if it
will saturate the experimental value or, viceversa, the extra singlet quark can be thought
as a way to explain the value of the mass difference in neutral D-mesons system in case
of deviation between experimental and expected value. We can also notice that, taking
into account the relations (5.9) VL4u ≈ −h∗u1vw/Mt′ , VL4c ≈ −h∗u2vw/Mt′ , where hdi are
the Yukawa couplings defined in eq. (5.1), from eq. (5.37) follows that the coupling of the
4th species with the 2nd family hd2 should be one order of magnitude smaller than the
coupling with the first one hd1.

From eq. (5.8) we have:

|Vt′s| ≈ |Vt′dVus − VL4cVcs + Vt′bVts| ≈

≈
∣∣∣|Vt′d|Vus + eiδ

u
L21 |VL4c|Vcs − e−iδdb |Vt′b||Vts|

∣∣∣ (5.38)

where we used the parameterization in eqs. (5.9), and arg(Vt′d) ≈ δuL1, −δdb = arg(Vt′bV ∗t′d)
≈ δuL31 = δuL3− δuL1, and we can choose δuL1 = 0 without loss of generality. The green region
is excluded by the relation (5.38) for any value of the relative phases, using the values for
Vt′b allowed by the limit from the B-mesons system in eq. (5.31), figure 15:

|V ∗t′bVt′d| < 2.6× 10−3 , |Vt′b| < 8.5× 10−2
[ 0.03
|Vt′d|

]
(5.39)

The conditions on Vt′s and Vt′b also satisfy the constraint on the product V ∗t′bVt′s (5.32)
for the relative phase needed in order to have the upper bounds (5.36), (5.39), δsb =
Arg(V ∗t′bVt′s) = δdb − δds ≈ 2.77.

– 54 –



J
H
E
P
1
0
(
2
0
2
1
)
0
7
9

Process Constraint

D+→ π+µ+µ− |VL4cV
∗
L4u|< 2.0×10−3 |VL4c|< 6.7×10−2

[
0.03
|VL4u|

]
D0→ π0e+e− |VL4cV

∗
L4u|< 3.3×10−2

D0→ µ+µ− |VL4cV
∗
L4u|< 2.0×10−3 |VL4c|< 6.8×10−2

[
0.03
|VL4u|

]
D0-D̄0 |VL4cV

∗
L4u|< 1.3×10−4 |VL4c|< 4.2×10−3

[
0.03
|VL4u|

]
K0-K̄0 |V ∗t′sVt′d|< (0.1÷5.8)×10−4 |Vt′s|< 1.9×10−2

[
0.03
|VL4u|

]
B0-B̄0 |V ∗t′bVt′d|< (0.4÷2.6)×10−3 |Vt′b|< 8.5×10−2

[
0.03
|VL4u|

]
B0
s -B̄0

s |V ∗t′bVt′s|< (0.2÷1.2)×10−2

ΓZ , Γ→ hadr |VL4u|2 + |VL4c|2 < 2.0 ·10−3, |VL4u|< 0.044

Table 7. Limits on the mixing of the SM three families with a vector-like up-type isosinglet t′. The
upper bounds obtained from neutral mesons mixing depend on the relative phases of the mixing
elements and on the extra quark mass. Here the limits are computed forMt′ = 1TeV (see the text for
details). Regarding the elements of CKMmatrix, Vt′d ≈−VL4u, Vt′s ≈−VL4uVus−VL4cVcs−VL4tVts
and Vt′b ≈−VL4t, as in eq. (4.18).

Figure 16. Constraints on |Vt′s| and |VL4c|. On the left, |Vt′d| ≈ |VL4u| = 0.04. The red area is
excluded by the constraints on |VL4c| from D0 systems with Mt′ = 1TeV, as reported in eq. (5.20).
The red line shows where the boundary is shifted if the mass of the extra quark is taken as Mt′ =
2.5TeV. The blue area is excluded by neutral kaons mass difference, using the result |Vt′s| <
1.4 ·10−2 from eq. (5.23). The blue line indicates where the forbidden region expands if the mass of
the extra quark is taken asMt′ = 2.5TeV. The green region is excluded by the relation in eq. (5.38),
using the values for Vt′b allowed by the limit from the B-mesons system in eq. (5.31), figure 15. On
the right, the same constraints are shown setting |Vt′d| ≈ |VL4u| = 0.03 as a conservative benchmark
value. The red and blue continuous (dotted) lines show where the boundaries from D-mesons and
K-mesons shift if the mass of the extra quark is taken as Mt′ = 5TeV (Mt′ = 2.5TeV). The dashed
lines in both figures indicate the boundaries of the excluded area under more stringent assumptions.
In particular, ∆K = 0.1 is chosen in eq. (5.22) and the new contribution to D-mesons mass difference
is limited as one third of the experimental value (4.101).
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However, in order to have the needed value |VL4u| ≈ 0.043, there is no much room
to accommodate the relation in eq. (5.38) without contradicting experimental constraints
from neutral mesons mixing. Some allowed region can be found for values VL4u < 0.057
with Mt′ = 1TeV. In any case, the mass of the extra quark cannot exceed few TeV.
In fact, with larger values of Mt′ constraints from neutral mesons mixing become more
stringent (5.36), (5.37). In particular, as shown in figure 16 (left), for |VL4u| ' 0.04 the
mass of the extra quark should not exceed ∼ 2.5TeV. Moreover, the constraint from
K-mesons mixing in eq. (5.36) requires specific values of the phase δds in order to avoid
constraints from CP violation.

For |VL4u| = 0.03 (figure 16 right) the mass of the extra quark cannot exceed ∼ 5TeV
in order to leave allowed values in the parameter space. If Mt′ ≈ 5TeV, it should be that
|Vt′s| ∼ 3.8 · 10−3, |Vt′b| ∼ 5.7 · 10−3, meaning that in this case the mixing of t′ with the
second and third families is respectively eight times and five times smaller than the mixing
with the d-quark. Moreover |Vt′d| ' 0.03 is comparable to |Vcb| and ten times larger than
|Vub|. This situation may seem unnatural, but it cannot be excluded.

The allowed parameter space can also be considerably reduced under more stringent
assumptions. For example, dashed lines in figure 16 indicate the boundaries of the excluded
area if ∆K = 0.1 is chosen in eq. (5.22) and the new contribution to D-mesons mass
difference is limited as one third of the experimental value (4.101). This means that precise
knowledge could define the allowed area.

In addition to flavour changing constraints, the result for Z-boson decay rate into
hadrons implies that (5.35):

|VL4u|2 < 2.0 · 10−3 , |VL4u| < 0.044 (5.40)

which is in the range of values needed to solve the CKM unitarity problem (for example,
at 95% C.L. |VL4u| = 0.043+0.011

−0.015 (4.8) using our conservative average for Vud (2.10)). This
means that also precision measurements of Z boson decay can exclude up-type weak singlet
as a good solution of the CKM unitarity problem.

In any case, it should be Mt′ . 5.8TeV with |Vt′d| = 0.03 and Mt′ . 4.4TeV with
|Vt′d| = 0.04 assuming for perturbativity |hu 1| . 1.

6 Extra weak isodoublet

Weak isosinglets can be investigated in order to solve the problem of lack of unitarity in
VCKM when Vud is extracted from superallowed beta decays and Vus from kaon decays.
However, between the results from kaon physics there is inconsistency. In particular, it
can be noticed that the lack of compatibility lies between vector and axial-vector couplings
in weak charged currents. In fact, determination B (2.13) is extracted from the axial-
vector coupling of leptonic kaon decays while determination A (2.3) results from the vector
coupling of semileptonic kaon decays. Besides, determination C (2.14) is obtained from
the vector coupling of beta decays. As displayed in figure 2, determination A and C are
deviated from the axial-vector determination in opposite directions. In fact, there is 2.3σ
discrepancy between determination B (2.13) and C (2.14) and 3σ discrepancy between
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determinations A (2.3) and B. As it will be shown, the insertion of an extra vector-like
isodoublet generates weak right currents which modify vector and axial-vector couplings
thus offering the possibility to explain both the gaps. However, also in this case FCNC
emerge at tree level and predictions for electroweak processes are modified, so experimental
limits must be checked.

Let us introduce the additional vector-like SU(2)-doublet family:

qL4 =
(
uL4
dL4

)
, qR4 =

(
uR4
dR4

)
(6.1)

New Yukawa couplings and mass terms should appear in the Lagrangian: yu′ij ϕ̃qLi′uRj +
yd′ijϕqLi

′dRj + miqLi
′qR4 + h.c. with i = 1, 2, 3, 4, j = 1, 2, 3. As regards the mass terms

miq′LiqR4 + h.c., since the four species of right-handed singlets q′Li have identical quantum
numbers, a unitary transformation can be applied on the four components q′Li so that
mi = 0 for i = 1, 2, 3. Then the Yukawa couplings and the extra mass term are:

4∑
i=1

3∑
j=1

[
yuijϕ̃qLiuRj + ydijϕqLidRj

]
+M4qqL4qR4 + h.c. (6.2)

The down quark mass matrix looks like:

dLim(d)
ij dRj + h.c. =

=
(
dL1 dL2 dL3 dL4

)


0
y(d)

3×3vw 0
0

yd41vw yd42vw yd43vw M4q



dR1
dR2
dR3
dR4

+ h.c. (6.3)

where vw = 174GeV and y(d)
3×3 is the 3 × 3 matrix of Yukawa couplings, and similarly for

the up-type quarks. The mass matrices can be diagonalized with positive eigenvalues by
biunitary transformations, as in (4.3) with mass eigenvalues md,s,b = yd,s,bvw and mu,c,t =
yu,c,tvw and Mq ≈ M4q. V (d,u)

L,R are unitary 4 × 4 matrices, as in (4.4) and analogously for
up-type quarks. The charged-current Lagrangian is changed in:

Lcc = g√
2

4∑
i=1

(uLiγµdLi)W+
µ + g√

2
u4Rγ

µd4RWµ+h.c.=

= g√
2

(
uL cL tL t′L

)
γµVCKM,L


dL
sL
bL
b′L

W+
µ + g√

2

(
uR cR tR t′R

)
γµVCKM,R


dR
sR
bR
b′R

W+
µ

+h.c. (6.4)

where VCKM,L = V
(u)†
L V

(d)
L is a 4× 4 unitary matrix:

V †CKM,LVCKM,L = VCKM,LV
†

CKM,L = 1 (6.5)

VCKM,L = V
(u)†
L V

(d)
L =


VLud VLus VLub VLub′

VLcd VLcs VLcb VLcb′

VL td VL ts VL tb VL tb′

VL t′d VL t′s VL t′b VL t′b′

 (6.6)
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In addition to that, in this case, as shown in eq. (6.4), the charged current Lagrangian
Lcc also involves non-diagonal right weak charged currents originated by the mixing of the
vector-like family with the SM families, with mixing matrix VCKM,R:

VCKM,R = V
(u)†
R diag(0, 0, 0, 1)V (d)

R =

=


V ∗R 4uVR 4d V

∗
R 4uVR 4s V

∗
R 4uVR 4b V

∗
R 4uVR 4b′

V ∗R 4cVR 4d V ∗R 4cVR 4s V ∗R 4cVR 4b V
∗
R 4cVR 4b′

V ∗R 4tVR 4d V ∗R 4tVR 4s V ∗R 4tVR 4b V ∗R 4tVR 4b′

V ∗R 4t′VR 4d V
∗
R 4t′VR 4s V

∗
R 4t′VR 4b V

∗
R 4t′VR 4b′

 =


VRud VRus VRub VRub′

VRcd VRcs VRcb VRcb′

VR td VR ts VR tb VR tb′

VR t′d VR t′s VR t′b VR t′b′

 (6.7)

where VR4α are the elements of the fourth row of the matrices V (d)
R , V (u)

R and we defined
the elements VRαβ . Clearly, VCKM,R is not unitary.

Regarding the LH particles, the matrices V (d)
L , V (u)

L can be parameterized with the
same parameterization as in eq. (4.11). However, in this scenario mixings in the left-handed
sector are much smaller and indeed negligible:

s̃u,dLi ≈ −
yu,di yu,d∗4i v2

w

M2
q

(6.8)

where ydi = yd,s,b, yui = yu,c,t, and V
(u,d)
Lij yu,d4j ≈ yu,d4i . As regards the right-handed sector,

without loss of generality, the basis can be chosen in which the mixing between the SM
three families has been diagonalized and V (d)

R can be parameterized as:

V
(d)
R =


VR 1d VR 1s VR 1b VR 1b′

VR 2d VR 2s VR 2b VR 2b′

VR 3d VR 3s VR 3b VR 3b′

VR 4d VR 4s VR 4b VR 4b′

 ≈


cdR1 0 0 −s̃dR1
−s̃dR2s̃

d∗
R1 cdR2 0 −s̃dR2

−s̃dR3s̃
d∗
R1 −s̃d∗R2s̃

d
R3 c

d
R3 −s̃dR3

s̃d∗R1 s̃d∗R2 s̃∗dR3 c
d
R1c

d
R2c

d
R3

 (6.9)

where cdRi are cosines and s̃dRi are complex sines of angles in the 1 4, 2 4, 3 4 family planes
parameterizing the mixing of the first three families with the vector-like doublet, defined
as in (4.12), and similarly for V (u)

R . As it can be seen by comparing the mass matrix in
eq. (6.3) with the matrix in eq. (4.2), in this case the angles parameterizing the mixing of
the first three families with the fourth family in the right-handed sector are analogous in
magnitude to the ones of the left-handed sector in the previous sections. The moduli of
elements of the last row (and also of the last column) in V (d)

R and V (u)
R correspond to the

mixing angles of the SM families with the vector-like one:

VR4d ≈ s̃d∗R1 ≈ −
yd41vw
Mq

, VR4s ≈ s̃d∗R2 ≈ −
yd42vw
Mq

, VR4b = s̃d∗R3 ≈ −
yd43vw
Mq

(6.10)

and anagolously for up-type.
Let us focus on the piece of the charged current Lagrangian Lcc in eq. (6.4) determining

the couplings of u-quark with down type quarks (which in the SM would correspond with
the determination of the first row of CKM matrix):

g√
2

(uLγµVLuddL + uRVRudγ
µdR)Wµ + g√

2
(uLγµVLussL + uRVRusγ

µsR)Wµ + h.c. =

= 1
2
g√
2
V̂ud uγ

µ
(
1− γ5kudA

)
d Wµ + 1

2
g√
2
V̂us uγ

µ
(
1− γ5kusA

)
s Wµ (6.11)
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where, from eq. (6.7):

VRud = V ∗R4uVR4d , VRus = V ∗R4uVR4s (6.12)

and similarly for the mixing with the bottom quark. The vector and axial-vector couplings
are respectively: V̂uα = VLuα + VRuα and kuαA V̂uα = VLuα − VRuα, with α = d, s, b. The
most precise determination of SM Vud comes from superallowed beta decays. Superallowed
0+-0+ beta decays are Fermi transitions, that is they uniquely depend on the vector part
of the hadronic weak interaction GV = GFVud. This means that the determination of the
weak coupling in superallowed beta decays gives |V̂ud| appearing in (6.11). Regarding |Vus|,
it is determined both from semileptonic kaon decays (K`3) and from the ratio of leptonic
kaon decays (Kµ2) and leptonic pion decays. It is assumed that only the vector current
contributes to semileptonic kaon decays, that is the coupling is given by V̂us in (6.11).
Leptonic decays instead depend on the axial-vector coupling, which corresponds to kusA V̂us
in (6.11). Then, in this scenario, the determinations of Vus obtained from eqs. (2.3), (2.5),
and (2.10) correspond to the following observables:

A : |VLus + VRus| = 0.22326(55) (6.13)

B : |VLus − VRus|
|VLud − VRud|

= 0.23130(49) (6.14)

C : |VLud + VRud| = 0.97362(26) (6.15)

As already stated (6.5), VCKM,L is a unitary matrix, so for the first row it holds that:

|VLud|2 + |VLus|2 + |VLub|2 = 1− |VLub′ |2 ≈ 1 (6.16)

In fact, VLub′ ∼ −s̃dL1 + s̃uL1 ∼ O(yu,d1 yu,d41 v
2
w/M

2
q ) is totally negligible, and also |VLub| has

almost no influence and the value of |Vub| as exctracted in the SM can be used. Hence, |VLud|
can be determined from |VLus| by using the unitarity relation (6.16). Then, the system of
the three different determinations A, B, C is exactly solved by three real parameters VLus,
VRud, VRus. Using the dataset (6.13), (6.14), (6.15), the solution gives:

VRus = V ∗R4uVR4s = −1.17(37)× 10−3 , VRud = V ∗R4uVR4d = −0.87(27)× 10−3 (6.17)

with VLus = 0.22443(35) and VLud = 0.97448(8). Figure 17 basically shows the interpreta-
tion of the determinations of Vus obtained from the three different processes in the scenario
with the extra isodoublet of quarks, as given in eqs. (6.13), (6.14), (6.15). The element
of the unitary matrix VCKM,L VLus lies in between determinations A and B, and the gap
among the two is explained by the splitting due to ±VRus (the shift of determination B
is dominated by VRus). On the other hand, VRud explains the apparent lack of unitarity.
In fact, the values of VLus and VLud are linked by the unitarity of VCKM,L, but the vector
coupling giving determination C includes the additional coupling VRud.

By substituting determination C with the determinations C1 or C2 (see table 1),
the needed value of VRus remains almost the same. Using determination C1: |Vud| =
0.97355(27) with the dataset (6.13), (6.14), the result would be VRus = −1.18(37)× 10−3,
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Figure 17. Explanation of the anomalies of Vus determinations in the SM extension with
an extra vector-like isodoublet (b′, t′). The three different determinations V Aus, V Bus and V Cus in
eqs. (2.3), (2.13), (2.14) are obtained from the experimental results in eqs. (2.3), (2.5), (2.10) using
CKM unitarity in the context of the SM. However, in presence of an extra isodoublet mixing with
SM families, the three observables would correspond to the couplings in eqs. (6.13), (6.14), (6.15).

VRud = −0.93(27)× 10−3 with VLus = 0.22444(35), while using determination C2: |Vud| =
0.97375(29), the solution is VRus = −1.16(37) × 10−3, VRud = −0.74(29) · 10−3 with
VLus = 0.22441(35).

However also in this scenario flavour changing neutral currents appear at tree level.
The neutral current interactions in terms of the mass eigenstates are described by the
Lagrangian:

Lnc = g

cos θW
Zµ
(
gαLqαLγµqαL + gαβR qαRγµqβR

)
(6.18)

with qα = u, c, t, t′, d, s, b, b′, and:

gαL = Tα3 −Qα sin2 θW gαβR = Tα3 V
∗
R4αVR4β −Qα sin2 θW δαβ (6.19)

where Tα3 is the weak isospin and Qα is the charge in units of e. Clearly, FCNC arise from:

Lfcnc =1
2

g

cos θW
Zµ(uR4γµuR4 − dR4γµdR4) = g

cos θW
ZµTα3 V

∗
R4αVR4βqαRγµqβR (6.20)

Explicitly:

Lfcnc = 1
2

g

cos θW
Zµ
(
uR cR tR t′R

)
γµV

(u)†
R diag(0, 0, 0, 1)V (u)

R


uR
cR
tR
t′R

+

− 1
2

g

cos θW
Zµ
(
dR sR bR b′R

)
γµV

(d)†
R diag(0, 0, 0, 1)V (d)

R


dR
sR
bR
b′R

 (6.21)
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where

V
(u)†
R diag(0, 0, 0, 1)V (u)

R =


|VR 4u|2 V ∗R 4uVR 4c V

∗
R 4uVR 4t V

∗
R 4uVR 4t′

V ∗R 4cVR 4u |VR 4c|2 V ∗R 4cVR 4t V
∗
R 4cVR 4t′

V ∗R 4tVR 4u V ∗R 4tVR 4c |VR 4t|2 V ∗R 4tVR 4t′

V ∗R 4t′VR 4u V
∗
R 4t′VR 4c V

∗
R 4t′VR 4t |VR 4t′ |2



V
(d)†
R diag(0, 0, 0, 1)V (d)

R =


|VR 4d|2 V ∗R 4dVR 4s V ∗R 4dVR 4b V

∗
R 4dVR 4b′

V ∗R 4sVR 4d |VR 4s|2 V ∗R 4sVR 4b V
∗
R 4sVR 4b′

V ∗R 4bVR 4d V ∗R 4bVR 4s |VR 4b|2 V ∗R 4bVR 4b′

V ∗R 4b′VR 4d V
∗
R 4b′VR 4s V

∗
R 4b′VR 4b |VR 4b′ |2

 (6.22)

where, again, VR4α are the elements of the fourth row of the matrices V (d)
R , V (u)

R .

6.1 Limits from flavour changing neutral currents

The new operators in eq. (6.21), due to the mixing of the extra vector-like quark isodoublet
with SM families, give flavour changing processes at tree level. Therefore, they should
be compared with experimental constraints. In particular, the hadronic vector current
contribute to semileptonic mesons decays, while the hadronic axial-vector current gives
leptonic mesons decays. By comparing the Lagrangian in eq. (6.21) and the matrices
in eq. (6.22) with Lagrangians in eqs. (4.9), (5.7) and the matrix in eq. (4.10) (and the
analogous for up-type), it can be noticed that the same effective operators are generated,
with the substitution in the hadronic vector coupling:

− V ∗L4αVL4β → V ∗R4αVR4β (6.23)

and in the axial-vector coupling:

V ∗L4αVL4β → V ∗R4αVR4β (6.24)

It follows that there is a new contribution at tree level to the same flavour changing neutral
current processes examined in the previous sections and the same analysis can be applied
to the mixing elements of the matrices V (u)

R and V (d)
R . In fact, aside from the substitution

L → R, only the sign of the interference in semileptonic decays is modified, that is only
the phase dependence of the constraints from flavour changing semileptonic decays. In
particular, upper limits from flavour changing kaon decays are summarized in figure 18
(which is the analogous to figure 11). In order to not contradict any bound, it results that:

|VR4dV
∗
R4s| . (0.3÷ 1.3)× 10−5 (6.25)

depending on the relative phase δdR21 = Arg(VR4dV
∗
R4s).

Concerning K0 mixing, the new contribution from RH weak currents is:

Lright
∆S=2 ≈ −

GF√
2

(V ∗R4dVR4s)2
(

1 +
GFM

2
q

4
√

2π2

)
(dRγµsR)2 + h.c. =

= −GF√
2

(V ∗R4dVR4s)2
[
1 +

(
Mq

2.2TeV

)2
]

(dRγµsR)2 + h.c. (6.26)
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Figure 18. Upper limits on the product |V ∗R4sVR4d| from flavour changing kaon decays and neutral
kaon mixing, as a function of the relative phase δdR21, for the mass of the extra quarks Mq = 1TeV.

However, in this case also mixed L-R contributions can in principle be relevant. In fact,
the new contribution to the mixing mass term includes:

Mnew
12 ≈ 1

3f
2
KmK0BK

GF√
2

(V ∗R4dVR4s)2+

+ G2
F

4π2

[1
2M

2
q (V ∗R4dVR4s)2 − 27.5m2

W f(xq, xt)V ∗R4dVR4sV
∗
tdVts

]
(6.27)

where xq = M2
q /m

2
W , xt = m2

t /m
2
W , and f(xq, xt) ≈ 5 for Mq = 1TeV. Then, applying

the constraints |Mnew
12 | < |MSM

12 |, |ImMnew
12 | < 0.4 |ImMSM

12 | (4.81), (4.85), for Mq = 1TeV,
as shown in figure 18, it is obtained:

|V ∗R4dVR4s| < (1.3× 10−6)÷ (2.2× 10−4) (6.28)

depending on the relative phase of the elements. Together with the bounds from flavour
changing kaon decays, in order to not contradict any limit:

|VR4dV
∗
R4s| . (1.3÷ 5.1)× 10−6 (6.29)

We can consider that, if eq. (6.17) should be satisfied, the product V ∗R4dVR4s should be real
and positive (as can be seen by multiplying side by side the first equation with the complex
conjugate of the second). Then the constraint from flavour changing processes of kaons
would be:

|V ∗R4dVR4s| < 3.2× 10−6 (6.30)

for Mq = 1TeV.
The contribution to D0 mesons system is:

Lnew
∆C=2 ≈−

GF√
2

(V ∗R4uVR4c)2
[
1 +

(
Mq

2.2TeV

)2
]

(uRγµcR)2 + h.c. (6.31)
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giving the condition analogous to the results in eqs. (5.20), (4.105):

|V ∗R4uVR4c| < 1.3× 10−4
[
fq(1TeV)
fq(Mq)

]1/2 [ ∆mDmax
8.2 · 10−15

]
(6.32)

where

fq(Mq) = 1 +
(

Mq

2.2TeV

)2
(6.33)

6.2 Limits from Z-boson physics

In this model the deviation of the Z decay rate from the SM prediction is:

Γ(Z → had)− Γ(Z → had)SM = Γ(Z)− Γ(Z)SM ≈

≈ GFM
3
Z√

2π

[
−2

3 sin2 θW
(
|VR4u|2 + |VR4c|2

)
− 1

3 sin2 θW
(
|VR4d|2 + |VR4s|2 + |VR4b|2

)]
< 0

(6.34)

We can impose that this deviation is less than a chosen quantity ∆ΓZ :

GFM
3
Z√

2π

[2
3 sin2 θW

(
|VR4u|2 + |VR4c|2

)
+ 1

3 sin2 θW
(
|VR4d|2 + |VR4s|2 + |VR4b|2

)]
< ∆ΓZ

(6.35)

where QED+QCD corrections should also be included, that is a factor 1.050 for u, c-quarks,
1.041 for d, s-quarks and 1.021 for b-quark (there is additional correction for the bottom
quark due to a loop with the W boson and the top quark) [20]. As shown in eq. (6.34)
the prediction for the decay rate is lower than the SM expectation Γ(Z → hadr)SM. Then,
since the SM expectation (4.141) is below the experimental result (4.142), we can choose to
use the limit value of the SM prediction Γ(Z → had)SM = 1.7419GeV in eq. (6.35). Then,
at 95% C.L. of the experimental result we can impose:

|VR4u|2 + |VR4c|2 + 0.5
(
|VR4d|2 + |VR4s|2 + |VR4b|2

)
< 4.4× 10−3

[ ∆ΓZ
1.4× 10−3 GeV

]
(6.36)

This condition is compatible with the needed solution (6.17). However let us notice that,
even setting VR4c = VR4b = 0, this limit alone would rule out the possibility to explain the
CKM anomalies with the extra weak doublet with a reduction of a factor less than 2 of
the experimental error if the central values do not change. On the other hand, if the weak
isodoublet is the solution to the CKM anomalies, anomolous Z-boson couplings with light
fermions (in the “right” direction) should be detected if the error-bars are reduced by a
factor & 5.

As regards the couplings of b and c quarks, we can confront the new prediction with the
experimental partial rates for the decays Z → bb̄ and Z → cc̄ using data from PDG [20],
as reported in table 5. At 95% C.L. they give the limits: |VR4b| < 0.074, |VR4c| < 0.18.
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As in previous sections, constraints are expected also from Z-pole asymmetry analyses
of e+e− → ff̄ . processes. The presence of an additional isodoublet changes the couplings of
quarks with Z boson and consequently the predictions for the asymmetries are changed as:

Ab =
1− 4

3 s̄
2
b(1− |VR4b|2)− |VR4b|4

1− 4
3 s̄

2
b(1 + |VR4b|2) + 8

9 s̄
4
b + |VR4b|4

, Ac =
1− 8

3 s̄
2
c(1− |VR4c|2)− |VR4c|4

1− 8
3 s̄

2
c(1 + |VR4c|2) + 32

9 s̄
4
c + |VR4c|4

(6.37)

where s̄2
f are the effective weak angles which take into account EW radiative corrections.

Taking the data from Particle Data Group [20], also reported in table 5, regarding b-quark
final state, the mixing of the extra-doublet increases the prediction of Ab, thus not going to
the “right” direction with respect to the experimental determinations of Ab and especially
of A(0,b)

FB . However, with VR4b < 0.19 the expected value of Ab remains in the 95% C.L.
interval of the experimental result Ab = 0.923± 0.020.

Similarly, as regards c-quark final state, the prediction for Ac is increased by the mixing
of the extra-doublet. However, the expected value of Ac remains in the 95% C.L. interval
of the experimental determination Ac = 0.670± 0.027 with VR4c < 0.18. and it also stands
in the 95% C.L. interval of the determination Ac = 0.628 ± 0.032 (which can be obtained
from A

(0,c)
FB = 0.0707± 0.0035 using Ae = 0.1501± 0.0016) with VR4c < 0.11.

Constraints from Z-boson physics are summarized in table 8.

6.3 Limits from low energy electroweak observables

The insertion of the extra isodoublet also changes the diagonal couplings of weak neutral-
current interactions, as follows from eqs. (6.18) and (6.19). Then, predictions on low energy
electroweak precision observables are modified. At low momentum transfer (Q2 � M2

Z),
the parity violating part of four-fermion Lagrangian corresponding to e-hadron processes
with Z-boson exchange is written as [20]:

L = GF√
2
∑
q

[
geqAV ēγµγ

5eq̄γµq + geqV Aēγµeq̄γ
µγ5q

]
(6.38)

where in this case:

geuAV =−1
2(1+|VR4u|2)+ 4

3 sin2 θW gedAV = 1
2(1+|VR4d|2)− 2

3 sin2 θW (6.39)

geuV A =
(
−1

2 +2sin2 θW

)
(1−|VR4u|2) gedV A =−

(
−1

2 +2sin2 θW

)
(1−|VR4d|2) (6.40)

The weak charge of the proton, QpW , is proportional to gepAV = 2geuAV + gedAV , Q
p
W =

−2gepAV . In the SM we have gepAV,SM = −0.0357 (where, after including higher orders cor-
rections, geuAV,SM = −0.1888, gedAV,SM = 0.3419 [20]). Experimentally, the weak charge of
the proton can be extracted from the parity violating right-left asymmetry in e−p → e−p

scattering, from which it is obtained the constraint [20]:

gepAV,exp = 2geuAV + gedAV = 0.0356± 0.0023 (6.41)
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which is in agreement with the SM expectation. After considering the existence of the
extra isodoublet, the expected weak charge changes. In order to stay in the 95% C.L. of
the experimental value, it should be:

|∆gepAV | = | − |VR4u|2 + 1
2 |VR4d|2| < 0.0045 (6.42)

where ∆gepAV is the additional contribution to gepAV,SM. Nuclear weak charges QZ,NW can be
extracted from measurements of atomic parity violation. They are defined as [20]:

QZ,NW = −2[Z(gepAV + 0.00005) +N(genAV + 0.00006)]
(

1− α

2π

)
(6.43)

where Z and N are the numbers of protons and neutrons in the nucleus, gepAV = 2geuAV +gedAV ,
genAV = geuAV + 2gedAV , and α is the fine structure constant, α−1 ≈ 137.036. The most precise
measurement of atomic parity violation is in Cesium [20]:

Q55,78
W (Cs)exp = −72.82± 0.42 (6.44)

corresponding to the constraint 55gepAV + 78genAV = 36.45 ± 0.21, while the SM prediction
is Q55,78

W (Cs)SM = −73.23± 0.01 (55gepAV + 78genAV = 36.65). The contribution of the extra
isodoublet to the weak charge of cesium is:

∆Q55,78
W (Cs) = Q55,78

W (Cs)tot −Q55,78
W (Cs)SM ≈ −2 [−94|VR4u|2 + 105.5|VR4d|2] (6.45)

At 95% C.L. we have the condition:

− 0.0022
[ |∆QW (Cs)|

0.41

]
< |VR4u|2 − 1.12|VR4d|2 < 0.0066

[∆QW (Cs)
1.23

]
(6.46)

Other neutral current parameters include [20]:

(geuAV + 2gedAV )exp = 0.4927± 0.0031 (6.47)
(2geuAV − gedAV )exp = −0.7165± 0.0068 (6.48)

to be compared with the SM expectations geuAV + 2gedAV = 0.4950, 2geuAV − gedAV = −0.7195.
Regarding the quantity geuAV + 2gedAV , the mixing with the extra doublet brings an extra
contribution −1

2 |VR4u|2 + |VR4d|2. Then, at 95% C.L. we obtain the constraint:

−0.0084 < −1
2 |VR4u|2 + |VR4d|2 < 0.0038 (6.49)

As regards the quantity 2geuAV − gedAV , the prediction is lowered with the extra doublet by
−|VR4u|2 − 1

2 |VR4d|2. Then, in the 2σ interval we have:

|VR4u|2 + 1
2 |VR4d|2 < 0.010 (6.50)

Constraints from low energy electroweak observables are summarized in table 8.
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Process Constraint
Z → hadrons, ΓZ |VR4u|2 + |VR4c|2 + 0.5

(
|VR4d|2 + |VR4s|2 + |VR4b|2

)
< 4.4× 10−3

QW (Cs) −0.0022 < |VR4u|2 − 1.12|VR4d|2 < 0.0066

QW (p)
∣∣∣−|VR4u|2 + 1

2 |VR4d|2
∣∣∣ < 0.0045

geuAV + 2gedAV −0.0084 < −1
2 |VR4u|2 + |VR4d|2 < 0.0038

2geuAV − gedAV |VR4u|2 + 1
2 |VR4d|2 < 0.010

Table 8. Limits on the mixing of the first three families with an extra vector-like isodoublet from
low energy electroweak observables and Z physics. For details see the text.

6.4 Summary of experimental limits

In this section we analyzed the scenario in which an extra vector-like weak doublet of quarks
(u4, d4)L,R is mixing with the SM families, with mixing matrices V (d,u)

R (6.9). Although
the presence of this extra species can in principle address the whole problem of CKM
anomalies, it is not possible to obtain an acceptable solution satisfying both eq. (6.17)
and the experimental constraints from kaons flavour changing processes (figure 18) and
electroweak observables (table 8) by introducing one extra isodoublet of quarks.

In order to show this, we can focus on the elements VR4u, VR4d, VR4s of the mixing
matrices V (d,u)

R , which are the elements affecting the first row of CKM and consequently
CKM anomalies (for our concern the other mixing elements can also be zero). Summarizing
all the results, the mixings of the fourth doublet of quarks with SM families should be large
enough in order to justify the anomalies between the different determinations of Vus, as
found in eq. (6.17):

|VRud| = |V ∗R4uVR4d| = 0.87(27)× 10−3 , |VRus| = |V ∗R4uVR4s| = 1.17(37)× 10−3 (6.51)

but at the same time they should not contradict the constraints from FCNC in kaon decays
and mixing in eq. (6.29) and from low energy electroweak quantities and Z-boson physics
in table 8:

|VR4u|2 + 0.50
(
|VR4d|2 + |VR4s|2

)
< 4.4× 10−3 , |VR4dV

∗
R4s| . (1.3÷ 5.1)× 10−6 (6.52)

where the first constraint comes from the decay rate of Z-boson into hadrons. Let us
underline that flavour changing conditions are obtained for the extra quarks mass Mq =
1TeV and they become more stringent for larger masses. Figure 19 shows the excluded area
in VR4u, VR4d parameter space, after adopting some conservative choices. In particular, as
it will be described below, it is shown that even by choosing the very conservative condition
|V ∗R4uVR4s| = 0.8× 10−3 and an indicative bound |VR4dV

∗
R4s| < 1.0 · 10−5, there remains no

allowed area in the parameter space.
The black curve shows the condition (6.17) |VRud| = |V ∗R4uVR4d| = 0.87(27) × 10−3,

obtained as solution of the dataset (6.13), (6.14), (6.15).
The orange area is excluded by each bound from low energy electroweak quantities,

as reported in table 8. Then, we should consider the strong restrictions coming from
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Figure 19. Excluded area in the |VR4d| and |VR4u| parameter space. The orange area is excluded
by the following low energy electroweak quantities: Z-boson decay rate (blue contour), QW (p)
(magenta), QW (Cs) (cyan), the couplings geuAV +2gedAV (green) and 2geuAV −gedAV (yellow). The black
curve is the needed solution |VRud| = |V ∗R4uVR4d| = 0.87(27) × 10−3 in eq. (6.17). A conservative
value |VRus| = |V ∗R4uVR4s| = 0.8×10−3 is used in order to satisfy the second relation of the solution
in eq. (6.17). Using this value, the blue area is excluded by the experimental determination of Z
decay rate, and the gray area is excluded by the constraint from flavour changing kaon processes,
using the indicative bound |VR4dV

∗
R4s| < 1.0 · 10−5 for the mass of the extra quark Mq = 1TeV.

flavor changing kaon decays. As obtained in eq. (6.25), the result is that the product
|VR4dV

∗
R4s| cannot exceed the limit |VR4dV

∗
R4s| . 10−5, which is obtained for specific values

of the relative phase δdR21 = Arg(VR4dV
∗
R4s), and the condition would be more stringent

considering constraints from neutral kaon mixing. On the other hand, the condition VRus =
V ∗R4uVR4s = −1.17(37) × 10−3 is needed in order to explain the discrepancy between the
determinations of Vus from leptonic and semileptonic kaon decays. In figure 19 we show
the excluded area (gray) adopting the conservative choices:{

V ∗R4uVR4s = −0.8× 10−3

|VR4dV
∗
R4s| . 1.0× 10−5 (6.53)

These conservative choices also imply |VR4u| = |VRudVRus|/|VR4dVR4s| & 0.2, which is
a limit value for perturbativity considering that (6.10) VR4u ≈ −

yu41vw
Mq

, Mq & 700GeV.
However, such a value largely contradicts Z decay experimental results. In fact, with the
same conservative choice for VRus, the blue area in figure 19 is excluded in order to have a
solution not contradicting experimental measurements of hadronic Z decay rate:{

V ∗R4uVR4s = −0.8× 10−3

|VR4u|2 + 0.50
(
|VR4d|2 + |VR4s|2

)
< 4.4× 10−3 (6.54)

It is clear that the values needed as solutions are unachievable without contradiction with
flavor changing experimental limits.
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Namely, by performing a fit of the values in eqs. (2.3), (2.5), (2.10), with real param-
eters VLus, VR4d, VR4s, VR4u, but constraining them with experimental limits from flavour
changing kaon decays and Z decay into hadrons, the best fit point (χ2 = 9) is obtained in
VLus = 0.22464 with:

VR4u = 6.6× 10−2 VR4d = −1.1× 10−2 VR4s = −0.98× 10−3 (6.55)

and consequently

VRus = V ∗R4uVR4s = −0.65 · 10−4 VRud = V ∗R4uVR4d = −0.71 · 10−3 (6.56)

In any case, in order to not violate FC constraints only one of the two discrepancies,
between determination B (2.13) and determination A (2.3) or between determination B
and determination C (2.14), can be solved.

Moreover, the LHC limit on extra vector-like quarks coupling to light quarks Mq &
700GeV [82] implies that |VR4u| ' 0.066 can be obtained if |yu41| ∼ 0.27, much larger than
the Yukawa constant of the bottom quark. Further, with |VR4u| ∼ 0.066, assuming (for the
perturbativity) |yu41| . 1, there is an upper limit on the extra doublet mass, Mq . 3TeV.

6.5 Possible extensions

Looking at the results of previous sections, we can conclude that the presence of one
single extra species cannot explain all the CKM anomalies without contradicting other
experimental constraints, in particular from flavour changing processes of kaons and Z
decay rate into hadrons. Then, in order to explain the Cabibbo angle anomalies, it can
be considered the case in which for example there exist two or more vector-like doublets
mixing with SM families. The Yukawa couplings and the mass terms can be written in the
following basis:

5∑
i=1

3∑
j=1

[
yuijϕ̃qLiuRj + ydijϕqLidRj

]
+M4qL4qR4 +M5qL5qR5 + h.c. (6.57)

Then, in order to avoid flavour changing effects, not all the couplings yu,dij should be non-
zero. Let us suppose that there can be a pattern of couplings, so that the first doublet has
negligible coupling with the second down-type flavour: yd41 6= 0, yd42 = 0, yu41 6= 0, while
the second doublet has negligible coupling with the first down quark: yd51 = 0, yd52 6= 0,
yu51 6= 0. For simplicity, we also take yd43, y

d
53 = 0 and yu4i, y

u
5i = 0 for i 6= 1. Then V

(d,u)
L,R

diagonalizing the mass matrices are unitary 5× 5 matrices.
The charged-current Lagrangian is changed in:

Lcc = g√
2

5∑
i=1

(uLiγµdLi)W+
µ + g√

2
u4Rγ

µd4RWµ+ g√
2
u5Rγ

µd5RWµ+h.c.=

= g√
2
W+
µ


(
uL cL tL t′L t

′′
L

)
γµVCKM,L


dL
sL
bL
b′L
b′′L

+
(
uR cR tR t′R t′′R

)
γµVCKM,R


dR
sR
bR
b′R
b′′R




+h.c. (6.58)
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where VCKM,L is unitary and the mixings of the first three famillies with the vector-like
isodoublets are negligibly small, while in this case VCKM,R is given by:

VCKM,R = V
(u)†
R diag(0, 0, 0, 1, 0)V (d)

R + V
(u)†
R diag(0, 0, 0, 0, 1)V (d)

R ≈

≈


V ∗R 4uVR 4d V ∗R 5uVR 5s 0 V ∗R 4uVR 4b′ V ∗R 5uVR 5b′′

0 0 0 0 0
0 0 0 0 0

V ∗R 4t′VR 4d 0 0 V ∗R 4t′VR 4b′ 0
0 V ∗R 5t′′VR 5s 0 0 V ∗R 5t′′VR 5b′′

 (6.59)

Then, the condition (6.17) is requiring:

V ∗R 5uVR 5s = −1.17(37)× 10−3 V ∗R 4uVR 4d = −0.87(27)× 10−3 (6.60)

The additional terms in the neutral current Lagrangian are:

Lfcnc = 1
2

g

cosθW
Zµ(uR4γµuR4−dR4γµdR4+uR5γµuR5−dR5γµdR5) =

= 1
2

g

cosθW
Zµ


(
uR cR tR t′R t′′R

)
γµV (u)

nc


uR
cR
tR
t′R
t′′R

−
(
dR sR bR b′R b′′R

)
γµV (d)

nc


dR
sR
bR
b′R
b′′R




(6.61)

where in this case the matrix V (d)
nc is:

V (d)
nc = V

(d)†
R diag(0, 0, 0, 1, 1)V (d)

R ≈

≈


|VR4d|2 0 0 V ∗R4dVR4b′ 0

0 |VR5s|2 0 0 V ∗R5sVR5b′′

0 0 0 0 0
V ∗R4b′VR4d 0 0 |VR4b′ |2 0

0 V ∗R5b′′VR5s 0 0 |VR5b′′ |2

 (6.62)

Therefore, at first order there are no FCNC between the first two SM families. Then, the
solution explaining the anomalies in the first row of CKM matrix in eq. (6.17), and equiv-
alently in eq. (6.60), can be obtained without contradiction with experimental constraints
on flavour changing phenomena. Regarding flavour conserving observables, the constraint
from Z-boson decay into hadrons gives (6.36):

|VR4u|2 + |VR5u|2 + 0.50(|VR4d|2 + |VR5s|2) < 4.4× 10−3 (6.63)

which can be satisfied together with the relations in eq. (6.60). However, let us notice that
a reduction of the experimental error by a factor less than 2, with the same central values,
would rule out the possibility to explain all the anomalies with this kind of solution. On
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the other hand, if the weak isodoublets are the solution to the CKM anomalies, anomolous
Z-boson couplings with light fermions (in the “right” direction) should be detected if the
error-bars are reduced by a factor of about & 4.

Again, the LHC limit on the mass extra vector-like quark mixing with light families
M & 700GeV [82] implies that |VR4d|, |VR5s|, |VR4,5u| ∼ 0.03 can be obtained if |yu,dij | ∼
0.12, much larger than the bottom Yukawa coupling. Moreover, in order to have (for
the perturbativity) |yu,dij | < 1, the mass of the extra quarks should be no more than
M4,5 ∼ 6TeV.

Alternatively it can be imagined that there exist a vector-like isodoublet together with
a down-type or up-type isosinglet, or both of them, assembling a complete vector-like fourth
family with the doublet, mixing with SM families:

qR4 =
(
uR4
dR4

)
, qL4 =

(
uL4
dL4

)
; dL5 , dR5 ; uL5 , uR5 (6.64)

The Yukawa couplings and the mass terms can be written in the basis:

yuijϕ̃qLiuRj + ydijϕqLidRj + yu4jϕ̃qL4uRj + yd4jϕqL4dRj + yui5ϕ̃qLiuR5 + ydi5ϕqLidR5

+MqqL4qR4 +Mt′′uL5uR5 +Mb′′dL5dR5 + h.c. (6.65)

with i, j = 1, 2, 3. In this way, the non-zero couplings of the doublet with SM families
yd42, y

u
41 6= 0 can cancel the discrepancy among the determinations of |Vus| obtained from

leptonic and semileptonic kaon decays and the mixing with the first family of a down-type
or up-type singlet (or both of them) yd15, y

u
15 6= 0 would remove the discrepancy between

the determination obtained from beta decays with the determinations from kaon decays.
The anomalies are explained with:

V ∗R4uVR4s = −0.97(36)× 10−3 , |VL5d|2 + |VL5u|2 = 1.78(55)× 10−3 (6.66)

with VLus = 0.22423(36). Here, analogously to eqs. (4.150), (6.10), we have:

VL5d ≈ −
yd∗15vw
Mb′′

, VL5u ≈ −
yu∗15vw
Mt′′

, VR4u ≈ −
yu41vw
Mq

, VR4s ≈ −
yd42vw
Mq

(6.67)

and similarly for the other elements. Then, also in this case the masses of the extra vector-
like family cannot exceed few TeV in order to mantain perturbativity. In fact, for example
in order to have |VR4u| ≈ |VR4s| & 0.025 it should be that Mq . 7TeV to have |yd,u15 | < 1.

Regarding weak charged currents, both LH and RH states interact with W -boson,
with mixing matrices VCKM,L and VCKM,R, which are not unitary. VCKM,R is generated
by the mixing of the first three RH families with the vector-like weak doublets, as in the
previous case. As regards VCKM,L, analogously to eq. (5.8), the fifth row of the enlarged
CKM matrix has mixing elements:

VLt′′d ≈ −VL5u , VLt′′s ≈ −VL5uVLus − VL5cVLcs − VL5tVLts , VLt′′b ≈ −VL5t (6.68)

generated by the mixing of the first three LH families with the vector-like up-type isosinglet.
As for the elements of the fifth column, analogously to eq. (4.18), (4.19), (4.20), the elements
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Process Constraint
K+ → π+νν̄ |V ∗R4sVR4d + V ∗L5sVL5d| < 1.9× 10−5

KL → π0νν̄ |Im(V ∗R4sVR4d + V ∗L5sVL5d)| < 2.2× 10−5

KL → π0e+e− |Im(V ∗R4sVR4d + V ∗L5sVL5d)| < 1.7× 10−5

KL → µ+µ− −0.3× 10−5 < |Re(V ∗L5sVL5d − V ∗R4sVR4d)| < 1.1× 10−5

KS → µ+µ− |Im(V ∗L5sVL5d)− V ∗R4sVR4d)| < 4.8× 10−5

B± → π±`+`− |VL5bV
∗
L5d + VR4bV

∗
R4d| < 2.5× 10−4

B0 → µ+µ− |VL5bV
∗
L5d − VR4bV

∗
R4d| < 2.2× 10−4

Z → bb̄ |VL5b|2 + 0.18|VR4b|2 < 1.0× 10−3

Table 9. Limits on the mixing of the SM three families with the extra vector-like weak doublet
qL4, qR4 and the weak singlets uL5, uR5, dL5, dR5. See the text for constraints obtained from neutral
mesons mixing and Z decay into hadrons.

generated by the mixing of the first three LH families with the vector-like down-type
isosinglet are:

VLub′′ ≈ −V ∗L5d , VLcb′′ ≈ −V ∗L5dVLcd − V ∗L5sVLcs − V ∗L5bVLcb , Vtb′′ ≈ −V ∗L5b (6.69)

while the mixings VLαb′ , VLt′α with the vector-like isodoublet are negligibly small.
As regards experimental constraints, the upper bounds from flavour changing decays

of mesons are the same as in section 4, 5, 6, applied to vector and axial couplings of
semileptonic and leptonic decays respectively, as shown in table 9. Regarding neutral
mesons mixing, tree level and loop level contributions from both LH and RH currents are
present, including mixed contributions. By taking Mb′′ = Mt′′ = Mq = M for simplicity,
the new additional terms in mixing mass of K̄0 → K0 transition would be:

Mnew
12 = 1

3f
2
KmK0

{
GF√

2

[
(V ∗L5dVL5s)2 + (V ∗R4dVR4s)2 − 27.5(V ∗R4dVR4s)(V ∗L5dVL5s)

]
+

G2
F

16π2M
2
[
(V ∗L5dVL5s)2 + 2(V ∗R4dVR4s)2 − 54.9(V ∗R4dVR4s)(V ∗L5dVL5s)+

+
(
|VL5u|2VLus + V ∗L5uVL5c + V ∗L5uVL5tVLts

)2
]}

(6.70)

(where we neglected terms growing logarithmically with the mass of the extra quarks) and
for D0 mesons system:

MD
12 new = 1

3f
2
DmD0

{
GF√

2

[
(V ∗L5uVL5c)2 + (V ∗R4uVR4c)2 − 3.65(V ∗R4uVR4c)(V ∗L5uVL5c)

]
+

G2
F

16π2M
2
[
(V ∗L5uVL5c)2 + 2(V ∗R4uVR4c)2 − 7.3(V ∗R4uVR4c)(V ∗L5uVL5c)+

+
(
|VL5d|2V ∗Lcd + V ∗L5dVL5s + V ∗L5dVL5bV

∗
Lcb

)2
]}

(6.71)
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Figure 20. Excluded area in the |VR4u| and |VR4s| parameter space. The blue area is excluded
by experimental constraints from Z-boson decay rate into hadrons (6.72) using |VL5d|2 + |VL5u|2 =
1.2× 10−3. The blue curve indicates where the bound is shifted if the condition |VL5d|2 + |VL5u|2 =
1.78× 10−3 (6.66) is used. The black curve stands for the solution |V ∗R4uVR4s| = 0.97(36)× 10−3 in
eq. (6.66).

and similarly for neutral B-mesons systems. Therefore, in this case there can also be
cancellations. However, also constraints on flavour conserving processes should be taken
into account. The results on Z-boson decay rate into hadrons give the bound (see sec-
tions 4.4, 5.3, 6.2):

|VR4u|2 + |VR4c|2 + 0.50(|VR4s|2 + |VR4d|2 + |VR4b|2)+
+ 2.72(|VL5d|2 + |VL5s|2 + |VL5b|2) + 2.24(|VL5u|2 + |VL5c|2) < 4.4× 10−3 (6.72)

Figure 20 shows the parameter space in a simplified case in which yd41 = yd25 = yu42 =
yu25 = 0 in eq. (6.65), corresponding to VR4d = VL5s = VR4c = VL5c = 0. The blue area is
excluded by the condition (6.72) using the conservative choice |VL5d|2 +|VL5u|2 = 1.2×10−3

for the solution in eq. (6.66). The solution |V ∗R4uVR4s| = 0.97(36) × 10−3 in eq. (6.66) is
indicated by the black curve. In this scenario with VR4d = VL5s = VR4c = VL5c = 0, the
constraint from neutral D-mesons mixing would give (4.105):

|VLub′′V ∗Lcb′′ | ≈ |VL5d|2|Vcd| < 3.9× 10−4
[1TeV
Mb′′

]
, |VL5d| < 0.042

[1TeV
Mb′′

]1/2
(6.73)

Kaon mixing would receive a real contribution at loop level giving the constraint (5.23):

|VLt′′dV ∗Lt′′s| ≈
∣∣∣|VL5u|2VLus + VL5uV

∗
L5tVLts

∣∣∣ < 5.2× 10−4
[1TeV
Mb′′

]
(6.74)

which together with the constraints from B-mesons decays and mixing (5.31) gives:

|VL5u| . 0.049
[1TeV
Mt′′

]1/2
(6.75)

This means that, in order to have |VL5d|2 + |VL5u|2 > 1.2 × 10−3 (6.66), it should be for
example Mb′′ ≈Mt′′ < 3.5TeV.
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7 Conclusion

Present situation of the determination of the CKMmatrix elements is very intriguing. From
one side, there is a controversy in the determination of |Vus|. Namely, given the present
experimental accuracy in kaon leptonic and semileptonic decays and present theoretical
precision in the calculation of form factors (lattice QCD), there is about 3σ tension between
the |Vus| values extracted from K`3 (determination A) and Kµ2 (determination B) decays,
as discussed in section 2. Although the recent high precision calculations in the kaon decays
K`3 [38] and Kµ2 [35] demonstrate that the radiative corrections should not be responsible
for it, this tension per sè cannot be considered that alarming since still there can be some
theoretical loopholes in the interpretation of the lattice QCD results, or perhaps some
unfixed systematics in the measurements of the kaon decay rates. In this case, the real
value of |Vus| could be near the average A+B between the two above determinations.

On the other side, the recent calculations of the short distance radiative corrections in
the neutron β-decay with improved hadronic uncertainties [26, 27] leads to higher accuracy
in the determination of |Vud| from superallowed 0+−0+ nuclear transitions (determination
C). The obtained |Vud| value, in combination with the determinations of |Vus|, indicates
towards a violation of the CKM unitarity at about 3σ level. Namely, there appears a
significant deficit δCKM in the first row unitarity, as given by eq. (2.1).

These anomalies, if confirmed with future high precision data, would indicate towards
some new physics beyond the Standard Model. In ref. [1] we pointed out that the anomalies
could be originated by mixing of ordinary light quarks to some extra vector-like quarks
with masses at the TeV scale. In this paper we gave more detailed study of these sce-
narios, analyzing one by one the implications of vector-like quarks in the weak isosinglet
or isodoublet representations. By introducing a weak isosinglet quark of the up (U -type)
or down (D-type) quarks, one can explain the CKM unitarity anomaly, i.e. deficit of the
first row unitarity (2.1), but the tension between the two determinations of |Vus| cannot be
explained in this case. However, if the latter discrepancy is taken seriously one has to look
for a solution addressing the whole situation. By introducing a weak isodoublet (Q-type)
of quarks one could potentially explain both anomalies.

However, there are strong phenomenological limits on the hypothetical vector-like
quarks: participation of vector-like quark species in the quark mixing induces flavor chang-
ing effects at the tree level as well as via box diagrams involving heavy species. In fact, we
show that the latter give a bigger contribution than the tree level one if the masses of heavy
quarks are larger than 3TeV or so. However, tree level effects are independently testable
in Z-boson physics since Z-boson acquires small flavor non-diagonal couplings with quarks
while also its flavor-diagonal couplings get weak isospin violating contributions which can
be confronted with the limits on many observables related to Z-boson physics.

Two approaches to the above anomalies can be considered. The incompatibility be-
tween two determinations A and B from kaon physics may be attributed to some uncertain-
ties which perhaps will disappear with more precise calculations. Neglecting this problem,
one can focus instead on the unitarity violation problem, i.e. on the unitarity deficit which
emerges by confronting the average A + B value of |Vus| obtained from kaons, with the
value of |Vud| extracted from superallowed nuclear transitions.
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The just mentioned scenarios involving extra isosinglets quarks are on this line. Namely,
the CKM problem can be solved provided that the first family of quarks has a mixing
|Vub′ | ' 0.04 with extra D-type quark b′, or alternatively the same size mixing Vt′d with
U -type quark t′. For this scenario the most severe limits come from the flavor changing phe-
nomena, but comparable limits emerge from the precision data on Z-boson decays. There
still remains some available parameter space, although not very large. In fact, we show that
constraints from K0 −K0 and D0 −D0 systems become more stringent for larger masses
of b′ or t′. In particular, e.g. for Mb′ > 1.5TeV they would exclude the possibility of having
extra mixing as large as |Vub′ | ∼ 0.04 if the unitarity deficit is due to a down-type species or,
in the case of up-type extra quark, Mt′ > 2.5TeV would exclude the possibility of having
the extra mixing |Vt′d| ∼ 0.04 (see sections 4.5, 5.4). Therefore, we claim that if the CKM
unitarity anomaly is due to the mixing with extra isosinglet (U or D type) quarks, then
“4th family” states b′ or t′ should be discovered with a mass below a couple of TeV or so.

As we noted above, both Vus and CKM unitarity anomalies can be solved by intro-
ducing Q-type extra quarks having substantial mixings with both 1st and 2nd families
of the normal quarks. In fact, kaon semileptonic decays K`3 measure the quark vector
current coupling to W -boson while leptonic decays Kµ2 measure the axial current cou-
pling. While both vector and axial couplings should be identical in the SM frames where
W -boson couples solely to LH quarks, their difference can be induced via the mixing with
weak isodoublet Q-type quarks. The latter in fact induces some small W -boson couplings
with the RH quarks which can be at the origin of the discrepancy between the two de-
terminations A and B of |Vus| element. However, we show that this solution with only
one Q-type species is fully excluded by the flavor changing limits together with Z boson
physics and electroweak low energy observables (section 6.4).

This brings us to conclude that the full solution cannot be achieved by introducing
the only one species of extra Q-type quarks: it should be complemented by isosinglet
quarks of U or/and D type, or by another isodoublet species. In this case somewhat
larger available parameter space can be found with the present limits on flavor-changing
phenomena and on anomalous Z-couplings. However, these scenarios are testable with the
future experimental limits (section 6.5). In particular, in the scenario with two isodoublets,
flavour changing limits can be softened, and then the masses of the extra quarks would not
be strictly constrained, apart from a perturbativity bound (Yukawa couplings less than 1),
which implies Mq < 7TeV or so. However, in this case the main issue would come from
limits in Z-boson physics. In the case of one extra isodoublet with isosinglets (up or/and
down type), also constraints from flavour changing phenomena should be considered. We
conclude that if the CKM anomalies are due to extra vector-like quarks, then “4th family”
quarks should be discovered with masses of few TeV, and anomalous Z-couplings should
be detected by improving the experimental precision.

For the minimality reasons, we did not consider extra vector-like species of leptons.
However, if they also exist at the TeV scale and have the same size mixings with the
electron and muon, then the experimental limits from the flavor changing phenomena
involving leptons or limits on Z-boson flavor-nondiagonal couplings as Zeµ would be much
more stringent.
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