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1 Introduction

Substantial progress has recently been achieved in the study of subleading power corrections
in elementary scattering processes within the soft-collinear effective theory (SCET) [1–4]
framework. Next-to-leading power (NLP) leading logarithmic (LL) contributions to the
partonic cross sections were resummed to all orders in perturbation theory using renormal-
ization group (RG) techniques for event shape observables [5], and for the parton diagonal
channels of colour singlet production processes, such as qq̄ → γ∗ [6] and gg → H [7],
near the kinematic threshold.1 Progress beyond the current state of the art has been hin-
dered by the ubiquitous appearance of endpoint divergent convolution integrals [10–12] in

1NLP LL results were obtained using diagrammatic techniques in [8] and compared to SCET in [9].
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subleading power factorization formulas both at LL in the parton non-diagonal channels,
and at next-to-leading logarithmic (NLL) accuracy for the diagonal channels. These di-
vergences prohibit a straightforward application of the standard RG methods to perform
resummation. Solutions to this problem at LL accuracy have been found in particular cases
by employing consistency relations [13], refactorization conditions [14] and a combination
of operator refactorization and consistency relations [15]. At NLL accuracy a solution has
been obtained for the h → γγ decay mediated by light-quarks using diagrammatic meth-
ods [16] and within the SCETII framework [17, 18]. However, a universal solution to these
problems is not currently known.

By employing the basis of subleading N -jet operators constructed in [19–21],2 the
bare factorization theorem for the qq̄-initiated Drell-Yan (DY) process in the threshold
region3 was derived at general subleading powers in [12]. In particular, the next-to-leading
power factorization formula is proportional to the leading power (LP) hard function and to
convolutions between the generalized soft functions and their associated collinear functions,
the latter calculated to O(αs) in [12]. Formally, this result is only valid when the soft and
collinear functions are evaluated in exact d-dimensions before evaluating the convolution
integrals. However, after convolution, it is safe to expand in the d→ 4 limit.

Currently, the two-loop generalized soft functions are the only missing ingredients
which are required to validate the DY factorization theorem [12] up to NNLO at NLP
accuracy. The aim of the present article is to fill this gap by providing the calculation of
the generalized soft functions at O(α2

s) which is carried out while retaining the relevant
d-dimensional dependence of the results. We reduce the squared amplitudes to master
integrals (MIs) by employing the program LiteRed [27, 28] and we calculate the MIs using
the method of differential equations and the transformation to the canonical basis [29].
The results for the soft functions are validated at the cross-section level, after convolution
with the collinear functions, by directly comparing to results obtained by means of the
expansion-by-regions and diagrammatic methods [30–32]. We also find agreement with the
NLP contribution of the NNLO result in [33]. To achieve this, we sum the contributions
to the cross-section due to the soft functions with the remaining NNLO contributions
calculated in [12] and collected in appendix C. In the last step, we carry out the remaining
UV renormalization and remove the initial state collinear singularities at cross section level.

To the best of our knowledge, this is the first time that soft functions at NLP are
evaluated to O(α2

s). However, in the present work, we do not analyze the UV renormal-
ization and the RG evolution of the soft functions since any such procedure requires an
expansion around d → 4 which leads to the appearance of divergent convolution integrals
preventing naive renormalization attempts. Our intention is to provide more information
about the higher order structure of these soft functions which could give a hint towards
the solution of the divergent convolution problem, at least in the present case. However, it
should be noted that at NLP accuracy, calculations and studies of the renormalization and
evolution properties of the soft function needed for the h→ γγ decay process were recently

2A power suppressed operator basis in the label formulation of SCET can be found in [22–25].
3An extension of the standard threshold limit to include full collinear dynamics was studied in [26].
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presented at O(αs) in [34, 35]. In the context of the qT -subtraction method, calculations
at fixed-order accuracy, which required the evaluation of several new integrals, have been
recently carried out at NLP in QCD [36] without separating the different regions.

The paper is organized as follows. In section 2 we review the structure of the factorized
cross section which is one of the main results of [12]. In section 3 we describe in detail
the calculation of the two-loop soft functions. In particular, we discuss the evaluation
of the canonical master integrals using the differential equation method. In section 4 we
calculate the convolution integrals of the soft functions with the corresponding collinear
functions [12] which allows us to carry out a series of checks at the cross-section level
against the literature, [30, 31, 33], and against expansion-by-regions calculations, both at
NNLO and available results at N3LO [32]. In appendix A we list the analytic results for
the collinear functions calculated in [12], and in appendix B we provide expressions for
the relevant two-parton matrix elements used in this calculation. Useful cross-section level
results from [12] are collected in appendix C. Finally, appendix D contains the expressions
for the relevant Altarelli-Parisi splitting functions.

2 Factorization near threshold

In this section, we review the structure of the NLP factorization theorem for the DY process
in the threshold region [12], and we remind the reader of the operatorial definitions of the
NLP soft functions which are relevant for this work.

We consider the parton diagonal channel of the DY process, qq̄ → γ∗[→ `¯̀] +X in the
kinematic region z = Q2/ŝ → 1, where ŝ = xaxb s is the partonic centre-of-mass energy
squared, xa, xb are the momentum fractions of the partons inside the incoming hadrons and
Q2 is the invariant mass squared of the lepton pair. Up to NLP in the threshold expansion,
the cross-section differential in Q2 is given by

dσDY
dQ2 = 4πα2

em
3NcQ4

∑
a,b

∫ 1

0
dxadxb fa/A(xa)fb/B(xb)

(
σ̂ LP
ab (z) + σ̂NLP

ab (z) +O(λ4)
)

+O
(Λ
Q

)
,

(2.1)
where fa/A(xa) and fb/B(xb) are the usual parton distribution functions (PDFs), and σ̂(z)
with superscripts LP and NLP are the leading power and the next-to-leading power partonic
cross sections, respectively. Since we only focus on the qq̄-channel, we omit the indices a, b
in the following. The LP partonic cross section factorizes into a product of two functions

σ̂LP(z) = H(Q2)QSDY(Q(1− z)) , (2.2)

the hard function H(Q2) and the soft function

SDY(Ω) =
∫
dx0

4π eiΩx0/2 S̃0
(
x0
)
. (2.3)
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The LP position-space soft function is a vacuum matrix element of soft Wilson lines4 [38]

S̃0(x) = 1
Nc

Tr 〈0|T̄
[
Y †+(x)Y−(x)

]
T
[
Y †−(0)Y+(0)

]
|0〉 , (2.4)

where

Y± (x) = P exp
[
igs

∫ 0

−∞
ds n∓As (x+ sn∓)

]
. (2.5)

We now turn our attention to the NLP part of the factorization formula, which is un-
derstood to be formally valid only in d-dimensions, before renormalization. To facilitate
comparison with literature, we define the quantity ∆ related to the partonic cross section
as follows

∆(z) = 1
(1− ε)

σ̂(z)
z

. (2.6)

The NLP partonic cross section receives contributions from power corrections to the phase-
space, the so-called kinematic corrections, and from insertions of subleading power La-
grangian terms in time-ordered product operators, referred to as dynamical corrections.
We have

∆NLP(z) = ∆dyn
NLP(z) + ∆kin

NLP(z) . (2.7)

The ∆kin
NLP(z) term was presented in eq. (5.3) and eq. (5.11) of [12] at NLO and NNLO,

respectively. In this work, we focus on the calculation of the generalized soft functions
which appear in the factorization formula in the ∆dyn

NLP(z) contribution. The result for
∆dyn

NLP(z) takes the following form [12]

∆dyn
NLP(z) = − 2

(1− ε) Q
[(

/n−
4

)
γ⊥ρ

(
/n+
4

)
γρ⊥

]
βγ

×
∫
d(n+p)C A0,A0 (n+p, xbn−pB)C∗A0A0 (xan+pA, xbn−pB)

×
5∑
i=1

∫
{dωj} Ji,γβ (n+p, xan+pA; {ωj}) Si(Ω; {ωj}) + h.c. , (2.8)

where Ω = Q(1 − z). In the equation above, C A0,A0 is the hard matching coefficient of
the LP SCET current for the DY process. The Ji are the collinear functions and the Si
represent the generalized soft functions in momentum space, defined as

Si(Ω; {ωj}) =
∫
dx0

4π eiΩx0/2
∫ {

dzj−
2π

}
e−iωjzj−Si(x0; {zj−}) , (2.9)

4This object and its relation to other LP soft functions has been recently investigated in [37].
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in terms of the position-space multi-local soft functions, Si(x0; {zj−}). At NLP these are
given by

S1(x0; z−) = 1
Nc

Tr〈0|T̄
[
Y †+(x0)Y−(x0)

]
T
([
Y †−(0)Y+(0)

] i∂ν⊥
in−∂

B+
ν⊥

(z−)
)
|0〉 ,

(2.10)

S2;µν(x0; z−) = 1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1
(in−∂)

[
B+
µ⊥

(z−),B+
ν⊥

(z−)
])
|0〉 , (2.11)

S3(x0; z−) = 1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]])
|0〉 ,

(2.12)

SAB4;µν,bf (x0; z1−, z2−) = 1
Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
ba

×T
([
Y †−(0)Y+(0)

]
af
B+A
µ⊥

(z1−)B+B
ν⊥

(z2−)
)
|0〉 , (2.13)

S5;bfgh,σλ(x0; z1−, z2−) = 1
Nc
〈0|T̄

[
Y †+(x0)Y−(x0)

]
ba

×T
([
Y †−(0)Y+(0)

]
af

g2
s

(in−∂z1)(in−∂z2)q+σg(z1−)q̄+λh(z2−)
)
|0〉 .

(2.14)

In the above definitions, µ, ν are the Lorentz indices, σ, λ are the Dirac indices, and A,B
and a, b, f, g, h are adjoint and fundamental colour indices, respectively. The B±(q+) field
is a soft building block formed by a soft covariant derivative (soft quark field) and soft
Wilson lines

Bµ± = Y †± [iDµ
s Y±] , q± = Y †± qs . (2.15)

The soft functions in eqs. (2.10)–(2.14) are the fundamental objects of interest in this work.
Thus far, only partial results for these objects have been reported in the literature. The
O(αs) result for S1, expanded in ε, was given in [6], and with complete d-dimensional
dependence in [12]. At O(α2

s), results for virtual-real soft diagrams have been presented
in [12]. It was found that only the S1 soft function receives such contributions. In this
article, we complete the calculations of the bare soft functions at O(α2

s) by considering all
the diagrams with two-real soft parton emissions.

A quick inspection of the soft functions in (2.10)–(2.14) reveals that S1 and S3 are
conveniently defined as scalar objects. The remaining three functions, S2, S4 and S5,
contain instead a non-trivial dependence on Lorentz, Dirac, and adjoint and fundamental
colour indices. These indices are contracted with the corresponding indices carried by the
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respective collinear functions, which are reported for convenience in appendix A. We prefer
to work with scalar objects and, for this reason, we absorb the colour, spin and Lorentz
structures of the multi-local collinear functions into their corresponding soft functions S4
and S5. For example, making use of (A.8), the part of the factorization formula at O(α2

s)
which depends on S4 is given by,5

∆dyn(2)
NLP,S4

(z) = 4QH(0)(Q2)
∫
dω1dω2 J

µν,AB (0)
4;fb (xan+pA;ω1, ω2) SAB(2)

4;µν,bf (Ω;ω1, ω2). (2.16)

Focusing on the collinear and soft functions, we now redefine

J
µν,AB (0)
4;fb (n+p;ω1, ω2)SAB(2)

4;µν,bf (Ω;ω1, ω2) ≡
(
− 1
n+p

)
︸ ︷︷ ︸

=J(0)
4

S
(2)
4 (Ω;ω1, ω2), (2.17)

such that the new J
(0)
4 and S(2)

4 are scalar functions. The S5;bfgh,σλ soft function in eq. (2.14)
is redefined in an analogous way by factoring out the same scalar collinear function such
that J (0)

5 = J
(0)
4 . Additionally, in this case, the spin structures in the first line of (2.8) are

also absorbed into the soft function.
The S2;µν soft function is anti-symmetric under the exchange of the Lorentz indices µ, ν.

Since this is a vacuum matrix element, it must be proportional to the epsilon tensor εµν⊥
which is the only anti-symmetric structure which can carry two transverse Lorentz indices.
However, its appearance is forbidden due to parity conservation of QCD. Indeed, we checked
by direct calculation that S2;µν vanishes at O(α2

s).

3 Two-loop soft functions

We proceed with the main focus of this work by providing the calculation details of the
double real emission corrections to the soft functions defined in (2.10)–(2.14). Techniques
for solving integrals which appear in calculations of LP soft functions at NNLO have been
developed over the years and several examples exist in the SCET literature. In particular,
results for the exclusive soft function relevant for small transverse momentum resumma-
tion in DY was obtained in [39], the soft function for the production of an electroweak
boson at large transverse momentum was computed in [40], and the calculation of the soft
function relevant for boosted top-quark pair production was presented in [41]. However,
these methods are insufficient for the NNLO calculation of the NLP soft functions contain-
ing dependence on additional convolution variables. Therefore, we apply more advanced
techniques developed for fixed order calculations. Similar methods were used in [42] to
calculate the NNLO soft function for top quark pair production at threshold. The strategy
is straightforward: we first obtain the squared amplitudes at O(α2

s). Subsequently we use
LiteRed [27, 28] to reduce such expressions to a linear combination of master integrals
(MIs), and finally, we compute the necessary MIs by employing the differential equation
method. Each of these steps is expanded upon in the following sections.

5We indicate the perturbative order in αn
s with the corresponding superscript (n).

– 6 –



J
H
E
P
1
0
(
2
0
2
1
)
0
6
1

3.1 Reduction to master integrals

The two-loop expressions for the soft functions S1 and S3 are directly obtained from their
matrix element definitions. The soft functions S4 and S5 are computed after the redefinition
made in (2.17) by employing the NLP Feynman rules given in [20]. The expressions for
the squared matrix elements of all the soft functions are collected in the ancillary.pdf
file of the arXiv submission of this manuscript and they correspond to the diagrams in
figures 1–4. We use k1 and k2 to label the momenta of the partons crossing the cut.

3.1.1 Topologies

The calculation of the double real emission corrections to the soft functions includes two
types of phase space constraints. The first constrains the total energy radiated into the
final state, enforced by the δ(Ω− 2EX) condition, where EX is the total radiation energy.
The second type instead constrains specific light-cone components of the soft parton mo-
menta. Indeed, the NLP soft functions are also differential in ω, or ω1 and ω2, which are
the convolution variables that connect the soft functions to their corresponding collinear
functions, as prescribed by (2.8). We find that up to O(α2

s), three different constraints
of the second type are possible. Namely, the integrands of the soft functions depend on
δ(ω − n−k1),6 or δ(ω − n−k1 − n−k2) or δ(ω1 − n−k1) δ(ω2 − n−k2). These constraints,
along with the on-shell cut propagators conditions δ(k2

1) and δ(k2
2), are set in the LiteRed

program. We now define the auxiliary topologies, A, B, and C, which implement the
δ(ω − n−k1) constraint and only differ among themselves by the choice of one propagator.
Topology A is defined by the following set of seven propagators

P1 = (k1 + k2)2, P2 = n+k2, P3 = n−k2, (3.1)
P4 = k2

1, P5 = k2
2, P6 =

(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P7 =

(
ω − n−k1

)
,

where the last four propagators are cut propagators. This means that

1
P4
→ δ(k2

1) = 1
2πi

[ 1
k2

1 + i0+ −
1

k2
1 − i0+

]
, (3.2)

and equivalent relations hold for P5, P6 and P7. Topology B is obtained starting from the
list of propagators in (3.1) and replacing the single propagator P3 → n−(k1 + k2). Similarly,
topology C requires the substitution P3 → n+(k1 + k2). The integrals which appear in our
calculations are written as

ÎT (α1, α2, α3, α4, α5, α6, α7) = (4π)4
(
eγEµ2

4π

)2ε ∫ ddk1
(2π)d−1

ddk2
(2π)d−1

7∏
i=1

1
Pαi
i

, (3.3)

where the index T indicates the specific topology T ∈ {A,B, C, . . .}, and can be expressed
as a linear combination of the independent MIs. It turns out that all the MIs for the
topologies A and C are a subset of the MIs for the topology B. This is not surprising since

6In principle the δ(ω − n−k2) contribution can also appear, but it is mapped back to the structure
δ(ω − n−k1) by relabelling the momenta.
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(l)
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n+

z−

(m)

n−

n+

n−

n+

z−

(n)

Figure 1. Diagrams contributing to the S1 soft function. The part to the left (right) of the cut
corresponds to the time-ordered (anti-time-ordered) part of the diagram, and lines labeled by n±
with in (out)-going arrow correspond to soft Wilson lines Y∓(Y †∓). The filled square in this figure
stands for the soft covariant derivative and the Wilson lines contained in i∂⊥µ

in−∂
Bµ+ = i∂⊥µ

in−∂
Y †+[iDµ

s Y+].
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n−
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n−

n+

z−

(b)

n−

n+

n−

n+

z−

(c)

Figure 2. Diagrams contributing to the S3 soft function. Same conventions as in figure 1 are
used. Here, the filled square stands for the soft covariant derivatives and the Wilson lines contained
in 1

(in−∂)2

[
B+µ⊥ ,

[
in−∂B+

µ⊥

]]
.

n−

n+

n−

n+

z1−
z2−

(a)

n−

n+

n−

n+

z1−
z2−

(b)

Figure 3. Diagrams contributing to the S4 soft function. Same conventions as in figure 1 are
used. The filled squares stand for the soft covariant derivative and the Wilson lines contained in
B+µ⊥(z1−)B+

µ⊥
(z2−).

n−

n+

n−

n+

z1−
z2−

(a)

n−

n+

n−

n+

z1−
z2−

(b)

Figure 4. Diagrams contributing to the S5 soft function. Same conventions as in figure 1 are
used. The filled squares in this figure stand for the soft covariant derivative and the Wilson lines
contained in q+(z1−) q̄+(z2−).

the three topologies share most of the propagators. In particular, we find the following five
MIs for topology B

Î1(Ω, ω) ≡ ÎB(0, 0, 0, 1, 1, 1, 1), Î2(Ω, ω) ≡ ÎB(0, 0, 1, 1, 1, 1, 1),
Î3(Ω, ω) ≡ ÎB(1, 0, 0, 1, 1, 1, 1), Î4(Ω, ω) ≡ ÎB(1, 1, 0, 1, 1, 1, 1),
Î5(Ω, ω) ≡ ÎB(1, 1, 1, 1, 1, 1, 1) , (3.4)

where the integral Î1(Ω, ω) represents the phase space integral. The squared matrix el-
ements with the δ(ω − n−k1 − n−k2) constraint require four additional topologies to be
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reduced. The topology D is defined by the list of propagators

P1 = (k1 + k2)2, P2 = n+k2, P3 = n−k2, P4 = k2
1, (3.5)

P5 = k2
2, P6 =

(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P7 =

(
ω − n−k1 − n−k2

)
,

where P4 to P7 are cut. Topology E is obtained from (3.5) by replacing P3 → n−k1, topology
F by substituting P2 → n+k1, and the topology G by exchanging both P2 → n+k1 and
P3 → n−k1. After reduction, we find that only two additional MIs appear for the set of
topologies which implement the constraint δ(ω − n−k1 − n−k2):

Î6(Ω, ω) ≡ ÎE(0, 0, 0, 1, 1, 1, 1), Î7(Ω, ω) ≡ ÎE(1, 1, 1, 1, 1, 1, 1) . (3.6)

Two additional topologies are needed to reduce the integral expressions with a double
constraint given by δ(ω1 − n−k1) δ(ω2 − n−k2). We define the H topology as

P1 = (k1 + k2)2, P2 = n+k2, P3 = k2
1 P4 = k2

2, (3.7)
P5 =

(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P6 =

(
ω1 − n−k1

)
P7 =

(
ω2 − n−k2

)
,

where only the first two propagators of the list remain uncut. The topology I is related to
H by a replacement of the second propagator P2 → n+k1. Only one MI is found for these
last topologies

Î8(Ω, ω1, ω2) ≡ ÎH(0, 0, 1, 1, 1, 1, 1). (3.8)

In total we find eight new MIs which need to be computed to evaluate the O(α2
s) corrections

to the NLP soft functions.

3.1.2 Results after reduction

The integrals belonging to each of the topologies defined above can be reduced by employing
the program LiteRed. In this subsection we present the results for the soft functions in
terms of linear combinations of MIs. The soft function S1 carries an additional 2r0v
superscript since it is the only one that also receives a virtual-real (superscript 1r1v)
contribution. In the following expressions we omit for simplicity the Ω and ω (ω1,ω2)
dependence in the MIs and we find

S
(2)2r0v
1 (Ω, ω) = α2

s

(4π)2C
2
F

8
(
2− 9ε+ 9ε2

)
ε2 ω (Ω− ω)2 Î1

+ α2
s

(4π)2CFCA

[
(2−3ε)

(
−4Ω + ε (ω+19Ω) + 4ε2 (ω−7Ω)− 16ε3(ω−Ω)

)
ε2(1− 2ε)ωΩ (Ω− ω)2 Î1

−(1− 4ε2)
ε ωΩ Î2 + (3Ω− 10εΩ + 16ε2(ω + Ω))

2(1− 2ε)ωΩ Î3 + (Ω− 3ω)
2ω Î4

+ Ω Î5 + (9− 20ε+ 12ε2 − 2ε3)
ε2 (3− 2ε)ω2(Ω− ω) Î6 + (Ω− ω)Î7

]

− α2
s

(4π)2CF nf
4(1− ε)2

ε (3− 2ε)ω2(Ω− ω) Î6, (3.9)
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where ε = (4− d)/2. The S3 soft function has the following form in terms of MIs

S
(2)
3 (Ω, ω) = α2

s

(4π)2CFCA
2(1− ε)

(3− 2ε)ω2(Ω− ω) Î6 . (3.10)

S4 ans S5 originate from double insertions of O(λ) power suppressed Lagrangian contribu-
tions. We obtain

S
(2)
4 (Ω, ω1, ω2) = − α2

s

(4π)2CFCA
2(1− ε)ω2(ω1 − ω2)

(ω1 + ω2)4(Ω− ω1 − ω2) Î8 , (3.11)

and

S
(2)
5 (Ω, ω1, ω2) = α2

s

(4π)2

(
C2
F −

1
2CFCA

) 8(−1 + ε)ω2
(ω1 + ω2)3(Ω− ω1 − ω2) Î8. (3.12)

3.2 Master integrals

We begin by describing the calculation of the MIs for the topology B given in (3.4). Starting
from those expressions, it is convenient to make the variable change ω → rΩ, and redefine
the MIs by factoring out their mass dimensions in Ω

I ′1(r) = 1
Ω2

(Ω
µ

)4ε
Î1(Ω, r), I ′2(r) = 1

Ω

(Ω
µ

)4ε
Î2(Ω, r),

I ′3(r) =
(Ω
µ

)4ε
Î3(Ω, r), I ′4(r) = Ω

(Ω
µ

)4ε
Î4(Ω, r),

I ′5(r) = Ω2
(Ω
µ

)4ε
Î5(Ω, r) , (3.13)

where the prime integrals only depend on the variable r. We use Canonica [43] to guide us
in finding the canonical basis of MIs [29]. In particular, this is achieved by the following
transformations

I ′1(r) = 2(1− r)2

2− 9ε+ 9ε2 I1(r),

I ′2(r) = 2(r − 1)
1− 5ε+ 6ε2 I1(r)− 1

ε(1− 2ε)I2(r),

I ′3(r) = 1
ε2
I3(r),

I ′4(r) = − 1
ε2(1− r)I4(r),

I ′5(r) = 1
ε2r

I2(r)− 1
ε2r

I3(r)− 1 + r

2ε2(1− r)r I4(r) + 1
ε2r

I5(r) , (3.14)

where the canonical integrals are the ones without the prime. The system of differential
equations for the vector of integrals ~I(r) ≡

{
I1(r), I2(r), I3(r), I4(r), I5(r)

}
is given by

d~I(r)
dr

= εA(r) · ~I(r) , (3.15)
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where

A(r) =



−1
r + 3

1−r 0 0 0 0

2
r −2

r 0 0 0

2
r 0 −2

r 0 0

2
r 0 2

r
4

1−r 0

1
r 0 1

r
1
r −2

r


. (3.16)

We notice from the structure of A(r) that the integral I2(r) only couples to I1(r). The
alphabet simply reads {1 − r, r}. The A(r) matrix in eq. (3.16) is lower triangular and
can be solved iteratively. The integral I1(r), which is the starting integral of our system of
equations, is obtained by direct integration and we find

I1(r) = e2εγE
r−ε(1− r)−3εΓ(1− ε)

2Γ(1− 3ε) θ(r)θ(1− r) . (3.17)

We notice that I2(r) and I3(r) satisfy the same differential equation. Hence, they will lead
to identical results. Starting from the result for I1(r), it is possible to compute I3(r) (and
I2(r) = I3(r)) by solving the differential equation. The result is

I3(r) = r−2εe2εγE

(
C3(ε) + rε Γ(1− ε) 2F1(ε, 3ε, 1 + ε, r)

Γ(1− 3ε)

)
θ(r)θ(1− r) . (3.18)

The ε-dependent constant C3(ε) can be fixed by requiring that the integral of I3(r) in the
range r ∈ [0, 1] is equal to the parent integral where the δ(ω−n−k1) constraint is removed.
This latter integral is easily evaluated by direct integration. Specifically, we require that∫ 1

0
dr I3(r) = −e

2εγE 2 εΓ(1− ε)2

Γ(3− 4ε) , (3.19)

which fixes the ε-dependent constant of I3(r) to be

C3(ε) = −Γ(1 + ε)Γ(1− ε)
Γ(1− 2ε) . (3.20)

We now focus on the integral I4(r) that satisfies a differential equation which involves both
I1(r) and I3(r), as dictated by eq. (3.15). Its solution reads

I4(r) = (1− r)−4ε
[
C4(ε) + e2εγEεΓ(1− ε)

Γ(1− 3ε)

∫ r

1
dr′ (1− r′)ε(r′)−1−ε

×
(

1− 2ε(1− r′) 2F1(1, 1− 2ε, 2− 3ε, 1− r′)
1− 3ε

)]
θ(r)θ(1− r) . (3.21)

The most complicated part of the integration concerns the hypergeometric function which
we rewrite using its integral representation

2F1(1, 1− 2ε, 2− 3ε, 1− r′) ≡ Γ(2− 3ε)
Γ(1− 2ε) Γ(1− ε)

∫ 1

0
dt
t−2ε(1− t)−ε

1− t (1− r′) . (3.22)
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Then, we make the variable transformation r′ → 1 +R (r− 1) and integrate over the range
R ∈ [0, 1]. Finally, we carry out the integration over t and arrive at the result

I4(r) =− (1− r)−4ε e2εγE Γ(1− ε)
[2 Γ(1− 2ε)Γ(1 + ε)

Γ(1− 4ε)

+ ε r−1−ε(1− r)1+ε

(1 + ε)Γ(1− 3ε) 3F2

(
1, 1− ε, 1 + ε; 1− 3ε, 2 + ε; r − 1

r

)]
θ(r)θ(1− r) , (3.23)

which retains exact d-dimensional dependence. In the above equation the integration con-
stant has already been fixed following a similar procedure used for the integral I3(r). We
checked that the resulting expression for I4(r) satisfies its initial differential equation.

Finally, we consider the last and most difficult integral of topology B: I5(r). The
differential equation for I5(r) reads

dI5(r)
dr

= ε

[1
r
I1(r) + 1

r
I3(r) + 1

r
I4(r)− 2

r
I5(r)

]
, (3.24)

and the solution has the following structure

I5(r) = r−2ε
[
C5(ε) +

∫ r

1
dr′ fI5(r′, ε)

]
θ(r)θ(1− r) . (3.25)

We do not write explicitly the function fI5(r′, ε) since it is too lengthy, but we know its
exact expression in d-dimensions. Unfortunately, we are not able to directly integrate
fI5(r′, ε) in d-dimensions since it involves a 3F2 hypergeometric function. Nevertheless,
we devise a technique which allows us to retain the dependence on r−2ε terms, after r′

integration, which is the relevant information that is needed to regularize the convolution
integrals. Indeed these are the potential problematic contributions since the division by r
in the transformation to the non-canonical basis (see the last term of (3.14)) will generate
delta terms and plus distributions, after ε expansion, for the non-canonical integral I ′5(r).
Therefore, we need to treat these terms with care. We follow the strategy of expanding the
function fI5(r′, ε) in the limit r′ → 0 (up to finite order in r′) and add and subtract this
term in the following way∫ r

1
dr′ fI5(r′, ε) =

∫ r

1
dr′
(

lim
r′→0

fI5(r′, ε)
)

+
∫ r

1
dr′
[

lim
ε→0

(
fI5(r′, ε)− lim

r′→0
fI5(r′, ε)

)]
+O(ε4) , (3.26)

where the ε-limit in the above equation means that one needs to perform the ε → 0
expansion up to the relevant order. In eq. (3.26) we split the integral in two terms, the
first which we are able to integrate in d-dimensions exactly and the second which we need
to ε-expand before integration. For the first term, we find∫ r

1
dr′
(

lim
r′→0

fI5(r′, ε)
)

= 1
2e

2εγE
Γ(1 + ε)Γ(1− ε)

ε

[8ε3(r − 1)
Γ(2− 2ε)

− 3(rε − 1 + ε2(3(−2 + ε) + rε((7− 3ε)r − 1)))
(1− ε2)Γ(1− 3ε)Γ(ε)

]
. (3.27)
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The second term in (3.26) contains terms that are non-singular in the r → 0 limit and can
be expressed in terms of standard HPLs [44] as follows∫ r

1
dr′
(

lim
ε→0

fI5(r′, ε)− lim
ε→0

lim
r′→0

fI5(r′, ε)
)

=

ε2
(13

12π
2 + 13

2 (r − 1)− 13
2 H(0, 1; r)

)
+ ε3

(25
2 (1− r) + 21

2 r H(0; r)− 17
2 H(0, 0, 1; r)

− 21
2 H(0, 1, 0; r)− 55

2 H(0, 1, 1, r) + 15ζ3

)
+O(ε4) . (3.28)

We now have all the ingredients to construct the non-canonical integral I ′5(r) by using
the last equation of (3.14) which combines the canonical integrals I4(r) and I5(r). The
expression retains the exact d-dependence for terms of the type r−1−2ε and (1 − r)−1−4ε

which makes it suitable to be convoluted with O(αs) collinear functions avoiding undefined
convolutions at fixed-order accuracy. In total we find

I ′5(r) =
[
(1− r)−1−4ε 2e2εγE Γ(1− 2ε)Γ(1− ε)Γ(1 + ε)

ε2Γ(1− 4ε)

+ r−1−2ε
(

3
e2εγE

(
1 + 6ε2 − 3ε3

)
Γ(1− ε)Γ(1 + ε)

2(1− ε)ε2Γ(1− 3ε)Γ(2 + ε)

−
e2εγE

(
1− 2ε+ 8ε2

)
Γ(1− ε)Γ(1 + ε)

2ε2Γ(2− 2ε) + 13
12
(
π2 − 6

)
+ 30

12ε
(
6 ζ3 + 5

))
+ 1

6 ε(r − 1)r

(
6ε(6− 7r)Li2(r) + 48 ε(r − 1) ln2(1− r) + r

(
3 ε ln2 r + επ2 + 6 ln r

)
− 12 ln(1− r)

(
(r + 1)ε ln r + 2(r − 1)

))]
θ(r)θ(1− r) +O(ε) . (3.29)

One can also expand the boundary singular terms in ε→ 0 by using the relation

x−1−n ε = −δ(x)
(nε) +

[1
x

]
+
− (nε)

[ ln x
x

]
+

+ (nε)2

2!

[ ln2 x

x

]
+

+ . . . , (3.30)

to find the expression of I ′5(r) in terms of singular distributions in r and (1− r)

I ′5(r) =
[
− δ(1− r) + δ(r)

2ε3 + 1
ε2

(
2
[ 1

1− r

]
+

+
[1
r

]
+

)
+ 1

12ε

(
5π2δ(1− r)− π2δ(r)

− 96
[ ln(1− r)

1− r

]
+
− 24

[ ln r
r

]
+
− 48 ln(1− r)

r
− 12 ln r

1− r

)

+ ζ3
3
(
28δ(1− r)− 5δ(r)

)
− 5π2

3

[ 1
1− r

]
+

+ π2

6

[1
r

]
+

+ 16
[ ln2(1− r)

1− r

]
+

+ 2
[ ln2 r

r

]
+

+ 8ln2(1− r)
r

+ 2(1 + r)
r(1− r) ln(1− r) ln(r) + ln2 r

2(r − 1) −
7π2

6

+ (6− 7r)
(r − 1)r

(
Li2(r)− π2r

6

)]
θ(r)θ(1− r) +O(ε) . (3.31)
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In order to reproduce the cross section we need to integrate our results over r in the range
r ∈ [0, 1] and we obtain

∫ 1

0
dr I ′5(r) = − 1

ε3
+ 7π2

6ε + 62ζ3
3 + . . . . (3.32)

The integration constants are fixed similarly to I3 and I4. It turns out that they are zero
up to the finite order in ε.

We still need to discuss the calculation of the two MIs in eq. (3.6) which imple-
ment the constraint δ(ω − n−k1 − n−k2) and the last MI in eq. (3.8) with the constraint
δ(ω1 − n−k1) δ(ω2 − n−k2). These integrals are carried out by direct integration in a
straightforward way. For completeness we report the results below

Î6(Ω, r) = Ω2
(
µ

Ω

)4ε
r1−2ε(1− r)1−2ε e

2εγE Γ(1− ε)2

Γ(2− 2ε)2 θ(1− r) θ(r), (3.33)

Î7(Ω, r) = 1
Ω2

(
µ

Ω

)4ε
r−1−2ε(1− r)−1−2ε θ(1− r) θ(r)

× 3 e
2εγE

ε2
Γ(1− ε)
Γ(1− 3ε) 3F2 (−ε,−ε,−ε;−3ε, 1− ε; 1) , (3.34)

Î8(Ω, r1, r2) = Ω
(
µ

Ω

)4ε (1− r1 − r2)1−2ε

rε1 r
ε
2

e2εγE

Γ(2− 2ε) θ(1− r1 − r2)θ(r1)θ(r2) , (3.35)

where r1 = ω1/Ω and r2 = ω2/Ω.

3.3 Results

In this subsection we collect the final expressions for the bare soft functions which constitute
the main results of our work. We retain the relevant d-dimensional dependence at the
integration boundaries to avoid divergent convolutions when combining the soft functions
with collinear functions [12] to fixed-order accuracy. We refrain from expanding our results
in d→ 4 since a consistent procedure for the renormalization of the soft functions beyond
LL accuracy is not yet available in the literature.

Starting from the reduced result for S(2)2r0v
1 in eq. (3.9) expressed in terms of non-

canonical MIs and using the transformations in eqs. (3.13) and (3.14), it is then necessary
to substitute the expressions for the canonical MIs in (3.17), (3.18), (3.23) and (3.29) to
obtain the explicit result for the real-real contribution to the S1 soft function. We do not
report the complete expression for S(2)2r0v

1 (Ω, ω) here due to its length, but it is possible
to easily reconstruct it from the information provided in the two subsections above. With
an analogous procedure we obtain the results for the S3, S4 and S5 soft functions

S
(2)
3 (Ω, ω) = α2

s

(4π)2CFCA

(
ω2(Ω− ω)2

µ4

)−ε 2
ω

(1− ε)
(3− 2ε)

×e
2εγE Γ(1− ε)2

Γ(2− 2ε)2 θ(Ω− ω)θ(ω) , (3.36)
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S
(2)
4 (Ω, ω1, ω2) =− α2

s

(4π)2CFCA

(
ω1 ω2(Ω− ω1 − ω2)2

µ4

)−ε 2ω2(1− ε)(ω1 − ω2)
(ω1 + ω2)4

× e2εγE

Γ(2− 2ε) θ(Ω− ω1 − ω2)θ(ω1)θ(ω2) , (3.37)

S
(2)
5 (Ω, ω1, ω2) =− α2

s

(4π)2

(
C2
F −

1
2CFCA

)(
ω1 ω2(Ω− ω1 − ω2)2

µ4

)−ε 8(1− ε)ω2
(ω1 + ω2)3

× e2εγE

Γ(2− 2ε) θ(Ω− ω1 − ω2)θ(ω1)θ(ω2) . (3.38)

In the above expressions the strong coupling constant is understood to be the renor-
malized coupling αs ≡ αs(µ) in the MS scheme obtained via the relation Zααsµ

2ε =
(4πe−γE )ε α0

s, where α0
s is the bare coupling constant and Zα = 1 − β0αs/(4πε) with

β0 = 11
3 CA −

4
6 nf . The discussion of the renormalization procedure for the soft functions

is outside the scope of this paper due to the aforementioned divergent convolution problem.
However, one should keep in mind that, according to coupling renormalization, contribu-
tions proportional to ZαS(1)

1 will appear at O(α2
s) and must be taken into account before

operator renormalization.

4 Comparison to fixed order results

4.1 Next-to-next-to-leading order: soft contributions

After presenting the main results of this work in the section above, we now proceed with
their validation through comparisons against cross-section level results which are available
in the literature. The soft functions calculated in this work carry a dependence on the
convolution variables ω or ω1, ω2. In order to evaluate their contributions to the cross
section, one needs to carry out the convolution integrals of the ω-dependent soft functions
with their respective collinear functions.

We begin with the contribution of S1 by considering the relevant part of the factoriza-
tion formula in (2.8) with the variable transformation r = ω/Ω. We have

∆dyn (2)2r0v
NLP−soft,S1

(z) = 4QΩH(0)(Q2)
∫ 1

0
drJ

(0)
1,1 (xa(n+pA); rΩ)S(2)2r0v

1 (Ω, r) . (4.1)

Inserting the result for the S(2)2r0v
1 (Ω, r) soft function and the tree-level collinear function

in (A.5), then integrating over the convolution variable r one finds to all orders in ε:7

∆dyn (2)2r0v
NLP−soft,S1

(z) = α2
s

(4π)2

(
Ω4

µ4

)−ε(
C2
F

32
ε3
e2εγE Γ(1− ε)2

Γ(1− 4ε) − 4CFCA
e2εγE Γ(1− ε)2

ε3(1− 2ε)2Γ(1− 4ε)

×
((

3−25ε+50ε2−23ε3
)

(3− 2ε) − 3Γ(2− 2ε)2

Γ(1−ε)Γ(1−3ε) 3F2(−ε,−ε,−ε; 1−ε,−3ε; 1)
)

−8CFnf
1
ε2

1
(1− 2ε)2(3− 2ε)

e2εγE Γ(2− ε)2

Γ(1− 4ε)

)
. (4.2)

7We note that this result is accurate to all orders in ε, whereas the part proportional to I5(r) above is
obtained only to finite order in the ε expansion. This is not surprising since here we are only interested in
the final results after convolution, hence we can switch the order of integration and perform the convolution
integral first. We checked that the two results agree in the ε expansion.
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Setting the soft scale to Ω = Q(1−z), the scale µ = Q, and finally expanding in ε we arrive
at the following expression

∆dyn (2)2r0v
NLP−soft,S1

(z) = α2
s

(4π)2

{
C2
F

[32
ε3
− 128

ε2
ln(1− z) + 1

ε

(
256 ln2(1− z)− 112π2

3

)
+ 32

3
(
− 32 ln3(1− z) + 14π2 ln(1− z)− 62ζ3

)]
+CFCA

[ 8
ε3
− 4

3ε2
(
24 ln(1− z)− 11

)
− 16

9ε
(
− 36 ln2(1− z)

+33 ln(1− z) + 6π2 − 16
)
− 256

3 ln3(1− z) + 352
3 ln2(1− z)

+ 128
3 π2 ln(1− z)− 1024

9 ln(1− z)− 616ζ3
3 − 154π2

9 + 1484
27

]
+CFnf

[
− 8

3ε2 + 32
9ε
(
3 ln(1− z)− 2

)
+ 4

27
(
− 144 ln2(1− z)

+ 192 ln(1− z)− 122 + 21π2
)]

+O (ε)
}
. (4.3)

We recall that the complete contribution to S1 proportional to CFCA comprises an addi-
tional term, which stems from diagrams involving virtual-real corrections. Such contribu-
tion can be found in eq. (5.10) of [12], and reads

∆dyn (2)1r1v
NLP−soft,S1,CF CA

(z) = α2
s

(4π)2 CFCA

[
− 8
ε3

+ 32 ln(1− z)
ε2

− 64 ln2(1− z)
ε

+ 28π2

3ε

+256
3 ln3(1− z)− 112

3 π2 ln(1− z) + 448ζ3
3 +O(ε)

]
. (4.4)

It is interesting to notice that the leading logarithmic contribution proportional to CFCA
cancels at cross section level when summing the double real, eq. (4.3), and virtual-real,
eq. (4.4), corrections. Such cancellation is expected, given that at order n in αs the leading
logarithms in the cross-section are proportional to CnF [6].

After summing eqs. (4.3) and (4.4) we obtain the complete contribution of S1 to the
partonic cross section at NNLO

∆dyn (2)
NLP−soft,S1

(z) = α2
s

(4π)2

{
C2
F

[32
ε3
− 128

ε2
ln(1− z) + 1

3ε
(
768 ln2(1− z)− 112π2

)
+32

3
(
− 32 ln3(1− z) + 14π2 ln(1− z)− 62ζ3

)]
+CFCA

[ 44
3ε2 −

4
9ε
(
132 ln(1− z)− 64 + 3π2

)
+ 2

27

(
1584 ln2(1− z)

−1536 ln(1− z) + 72π2 ln(1− z) + 742− 231π2 − 756ζ3

)]
+CFnf

[
− 8

3ε2 + 32
9ε
(
3 ln(1− z)− 2

)
+ 4

27
(
− 144 ln2(1− z)

+192 ln(1− z)− 122 + 21π2
)]

+O (ε)
}
. (4.5)
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In addition to S1, we need to take into account the contributions due to the other soft
functions S3, S4, and S5, which can be obtained integrating over the convolution variables
the corresponding term in (2.8), similarly to what written in (4.1). S3 and S4 read

∆dyn (2)2r0v
NLP−soft,S3

(z) = −∆dyn (2)2r0v
NLP−soft,S4

(z)

= 4 α2
s

(4π)2 CFCA

(
Ω4

µ4

)−ε 1
ε

(1− ε)
(1− 2ε)2(3− 2ε)

e2εγE Γ(1− ε)2

Γ(1− 4ε) . (4.6)

Expanding in ε with Ω = Q(1− z) and µ = Q we obtain

∆dyn (2)2r0v
NLP−soft,S3

(z) = −∆dyn (2)2r0v
NLP−soft,S4

(z)

= α2
s

(4π)2 CFCA

[ 4
3ε −

4
9
(
12 ln(1− z)− 11

)
+O (ε)

]
. (4.7)

After convolution with the corresponding collinear function, S3 and S4 gives opposite con-
tributions to the partonic cross section, such that they effectively cancel each other at this
order. The last contribution to the partonic cross section is given by the term involving
S5, and reads

∆dyn (2)2r0v
NLP−soft,S5

(z) = 8 α2
s

(4π)2

(
C2
F −

1
2CFCA

) (Ω4

µ4

)−ε (1− ε)
ε(1− 2ε)2

e2εγE Γ(1− ε)2

Γ(1− 4ε) . (4.8)

Setting Ω = Q(1− z), µ = Q and expanding in ε we find

∆dyn (2)2r0v
NLP−soft,S5

(z) = α2
s

(4π)2

(
C2
F −

1
2CFCA

) [8
ε
− 32 ln(1− z) + 24 +O(ε)

]
. (4.9)

We point out that the contributions to the cross section due to the soft functions starting at
O(α2

s), namely S3, S4, and S5, in (4.7) and (4.9), do not contain leading logarithmic terms.
This confirms an assumption made in [6], where it was claimed that a logarithmically
enhanced off diagonal mixing of these soft functions with the single gluon soft function
does not occur.

Results concerning the calculation of soft gluon contribution to the partonic Drell-Yan
cross section within a diagrammatic approach have been presented in [31]. The contri-
bution due to double real soft radiation is provided in eq. (5.2) of [31] and contains the
contribution due to ∆dyn (2)2r0v

NLP−soft presented here in eq. (4.3). However, a direct comparison
is not straightforward, because the expression in eq. (5.2) of [31] contains also NLP cor-
rections due to the expansion of the phase space from the integration of the LP matrix
element squared. In the present approach, these are a part of the kinematic correction
in eq. (2.7) discussed in [12]. Similarly, the contribution due to virtual-real soft radiation
given in eq. (4.4) of this paper is included in eq. (4.6) of [31]. However, the two contribu-
tions cannot be compared directly, as eq. (4.6) of [31] contains also the contribution due to
hard and collinear loops. The problem can be overcome by comparing with the individual
terms giving rise to eq. (4.6) and (5.2) of [31], provided by one of us, and we confirm that
the whole contribution to the cross section due to the soft function S1 in (4.5) agrees with
the cross-section level diagrammatic calculation of [31]. Moreover, the contribution due
to S5 has not been considered in [31], and we validate its expression against an in-house
calculation performed with the expansion-by-regions method [45].
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4.2 Next-to-next-to-leading order: complete contribution

The results obtained in this paper, together with the results given in [12], can be compared
with the reference [33] which gives the full NNLO contribution to the Drell-Yan process.
To this end, we recall that within the present approach the full partonic cross section is
given according to eq. (2.7), that is, as the sum of a dynamic and a kinematic contribution.
Writing explicitly all the terms contributing to the cross section, we have8

∆(2)
NLP = ∆kin (2)

NLP (z) + ∆dyn (2)
NLP−coll(z) + ∆dyn (2)

NLP−hard(z) + ∆dyn (2)
NLP−soft(z). (4.10)

The first three terms have been calculated in [12], and are reported explicitly in
eqs. (C.1), (C.2) and (C.3) of appendix C. The last term is given by the sum of the S1, S3,
S4 and S5 contributions given in (4.5), (4.7) and (4.9) respectively. Explicitly, it reads

∆dyn (2)
NLP−soft(z) = α2

s

(4π)2

{
C2
F

[32
ε3
− 128

ε2
ln(1− z) + 1

3ε
(
768 ln2(1− z) + 24− 112π2

)
+8

3
(
− 128 ln3(1− z)− 12 ln(1− z) + 56π2 ln(1− z) + 9− 248ζ3

)]
+CFCA

[ 44
3ε2 −

4
9ε
(
132 ln(1− z)− 55 + 3π2

)
+ 2

27
(
1584 ln2(1− z)

−1320 ln(1− z) + 72π2 ln(1− z) + 580− 231π2 − 756ζ3
)]

+CFnf

[
− 8

3ε2 + 32
9ε
(
3 ln(1− z)− 2

)
+ 4

27
(
− 144 ln2(1− z)

+192 ln(1− z)− 122 + 21π2
)]

+O (ε)
}
. (4.11)

Substituting this result along with expressions in eqs. (C.1), (C.2) and (C.3) into (4.10),
we arrive at the full NLP NNLO correction for the qq̄ partonic channel of the Drell-Yan
process at threshold

∆(2)
NLP(z) = α2

s

(4π)2

{
C2
F

[
− 16
ε2

(
4 ln(1− z) + 1

)
+ 1

3ε
(
576 ln2(1− z)− 336 ln(1− z)

−564− 32π2
)

+ 4
3
(
− 224 ln3(1− z) + 306 ln2(1− z) + 285 ln(1− z)

+72π2 ln(1− z)− 288− 14π2 − 384ζ3
)]

+CFCA

[ 44
3ε2 −

4
9ε
(
132 ln(1− z)− 166 + 3π2

)
+ 2

27
(
1584 ln2(1− z)

−3714 ln(1− z) + 72π2 ln(1− z) + 1402− 267π2 − 756ζ3
)]

+CFnf

[
− 8

3ε2 + 8
9ε
(
12 ln(1− z)− 14

)
+ 4

27
(
− 144 ln2(1− z)

+336 ln(1− z)− 164 + 21π2
)]

+O (ε)
}
. (4.12)

8We recall that we drop the indices qq̄, namely, ∆(2)
NLP ≡ ∆(2)

qq̄ NLP.

– 19 –



J
H
E
P
1
0
(
2
0
2
1
)
0
6
1

This is the non-singlet contribution to the qq̄ unrenormalized partonic cross section, ex-
pressed in terms of the bare coupling constant. To compare with [33] we need to write it
in terms of the UV-renormalized coupling constant and remove the initial state collinear
singularities at cross-section level. These procedures amount to adding the following coun-
terterms to the full NNLO cross section:

∆(2)
ren(z) = ∆(2)(z) +

(
αs
4π

)2[
− 1

2ε2
(
P 0
qq ⊗ P 0

qq − P 0
qqβ0

)
+ 1

2ε

(
P 1,NS
qq

+ 2P 0
qq ⊗∆(1)(z)|ε0 − 2∆(1)(z)|ε0β0

)
− 2P 0

qq ⊗∆(1)(z)|ε + 2∆(1)(z)|εβ0

]
, (4.13)

when both sides are evaluated in terms of the renormalized coupling constant, for µf =
µr = Q. In this equation the symbol ⊗ indicates convolution:9

(f1 ⊗ f2)(x) =
∫ 1

0
dx1 dx2 δ(x− x1 x2)f1(x1)f2(x2), (4.14)

furthermore, by ∆(1)(z)|ε0 and ∆(1)(z)|ε we indicate respectively the coefficient of the ε0 and
ε terms of the NLO qq̄ Drell-Yan correction, and P 0

qq and P 1,NS
qq represent the one- and two-

loop Altarelli-Parisi splitting functions, that we provide for completeness in appendix D.
We note that eq. (4.13) is valid to all powers in (1− z). Expanding all terms in (1− z) and
selecting the NLP contribution we finally get the finite partonic cross section

∆(2)
NLP, ren(z) = α2

s

(4π)2

{
C2
F

[ 4
3
(
− 96 ln3(1− z) + 186 ln2(1− z) + 213 ln(1− z)

+16π2 ln(1− z)− 96− 16π2 − 192ζ3
)]

+CFCA

[ 4
27
(
396 ln2(1− z)− 1461 ln(1− z) + 36π2 ln(1− z)

+701− 84π2 − 378ζ3
)]

(4.15)

+CFnf

[ 8
27
(
− 36 ln2(1− z) + 132 ln(1− z)− 82 + 6π2

)]
+O (ε)

}
,

which agrees with the NLP content of eq. (B.7) in [33], for µf = µr = Q, namely ∆(2),CA
qq̄ +

∆(2),CF
qq̄ + ∆(2)

qq̄,A2 + 2∆(2)
qq̄,AC expanded to NLP. These terms are provided explicitly in [33]

in eqs. (B.30)–(B.33).

4.3 Next-to-next-to-next-to-leading order

Recently, partial results for the NLP expansion of the C3
F contribution to the N3LO Drell-

Yan cross section were calculated in [32] using the expansion-by-region method. We are
able to compare to this result by combining the result of the collinear function J

(1)
1,1 at

O(αs) [12] and the calculation of the O(α2
s) soft function S(2)

1 obtained in this paper. To
9We use the program MT [46] to evaluate convolutions of plus distributions.
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this end, we now focus on the following part of the factorization formula expanded to the
third order in the coupling constant

∆dyn (3)
NLP−coll, C3

F
(z) = 4Q

∫ Ω

0
dω J

(1)
1,1 (xa n+pA;ω)S(2)

1,C2
F

(Ω;ω) . (4.16)

For the one-loop collinear function we use the CF part of the result given in (A.10) after the
colour generator and Dirac-index Kronecker-symbol are removed. The relevant two-loop
soft function piece reads

S
(2)2r0v
1,C2

F
(Ω, ω) = 8 α2

s

(4π)2 C
2
F

(
ω (Ω− ω)3

µ4

)−ε 1
ω

1
ε2
e2εγE Γ(1− ε)

Γ(1− 3ε) θ(Ω− ω)θ(ω). (4.17)

We perform the convolution according to (4.16) and arrive at the following d-dimensional
result

∆dyn (3)
NLP−coll, C3

F
(z) = 32 α3

s

(4π)3C
3
F

(
QΩ5

µ6

)−ε 1
ε4

(−4 + 7ε+ ε2)

×e
3εγE Γ(1 + ε)Γ(1− ε)2Γ(1− 2ε)

Γ(1− 5ε)Γ(3− 2ε) . (4.18)

Setting Ω = Q(1− z) and µ = Q, and expanding in ε we find

∆dyn (3)
NLP−coll, C3

F
(z) = α3

s

(4π)3C
3
F

[
− 64
ε4

+ 80(4 ln(1− z)− 1)
ε3

+ 16
ε2

(
− 50 ln2(1− z)

+25 ln(1− z) + 7π2 − 6
)

+ 1
ε

(4000
3 ln3(1− z)− 1000 ln2(1− z)

−560π2 ln(1− z) + 480 ln(1− z) + 2624ζ3 + 140π2 − 128
)

−5000
3 ln4(1− z) + 5000

3 ln3(1− z) + 1400π2 ln2(1− z)

−1200 ln2(1− z)− 700π2 ln(1− z) + 640 ln(1− z)

+ζ3(3280− 13120 ln(1− z)) + 62π4

5 + 168π2 − 192
]
. (4.19)

Our expanded result in the equation above agrees with eq. (45) of [32] up to the finite con-
stant terms which are not reported there and a factor of two accounting for the anticollinear
contribution.

4.4 Cusp anomalous dimension

In addition to the checks performed at the cross-section level in the two sections above, we
use the leading pole of the two-loop soft function S1 to extract the first diagonal entry of
the anomalous dimension matrix defined in eq. (3.50) of [6] finding agreement. Currently,
the resummation beyond LL is hampered by the appearance of endpoint divergent convo-
lutions [12]. However, once cured, the results obtained in this work will be useful to extract
the soft anomalous dimension matrix beyond LL accuracy.

– 21 –



J
H
E
P
1
0
(
2
0
2
1
)
0
6
1

5 Conclusions

In this article, we calculated the real-real contributions to the NLP generalized soft func-
tions, which enter the bare factorization theorem for the Drell-Yan process in the threshold
region [12]. This allowed us to complete the comparison of the NNLO Drell-Yan cross-
section up to NLP against existing fixed-order results.

The generalized soft functions, listed in eqs. (2.10)–(2.14), contain a dependence on
additional convolution variables ω or ω1, ω2 with respect to the LP soft function. We carried
out the calculation by employing methods developed for fixed-order calculations such as
the reduction to MIs and the use of the differential equations for the direct evaluation of the
MIs. Our results retain the exact d-dimensional dependence on the convolution variables
at the integration boundaries which allows us to perform the convolution integrals with
collinear functions at fixed-order accuracy. Given the current issues stemming from the
expansion in d→ 4 of the soft and collinear functions before the convolution is performed,
we leave the non-trivial study of the renormalization procedure of the generalized soft
functions for future work.

We showed that combining the soft functions with their respective collinear functions,
as prescribed by the NLP factorization theorem, and performing the d-dimensional integrals
yields the correct NNLO cross-section expressions up to NLP in the threshold expansion. In
addition, we reproduced partial N3LO results available in the literature. We also confirmed
the result for the diagonal entry of the anomalous dimension computed in [6], and explicitly
validated to NNLO the assumption made in [6] that the soft functions beginning at O(α2

s)
do not contribute to the LL series. This is the first time that NLP soft functions are
calculated to O(α2

s) and we hope that further investigations of their intricate structure can
shed light on the endpoint divergent convolution problem currently prohibiting the NLP
resummation of the threshold logarithms beyond LL accuracy for the Drell-Yan process.
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A Collinear functions

For completeness, we provide the results for the collinear functions, Ji in (2.8), obtained
in [12]. The J1(n+p, xa n+pA;ω) collinear function can be decomposed in terms of two
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scalar components in the following way

J1;γβ (n+p, xa n+pA;ω) = δγβ

[
J1,1 (xan+pA;ω) δ(n+p− xan+pA)

+ J1,2 (xan+pA;ω) ∂

∂(n+p)
δ(n+p− xan+pA)

]
. (A.1)

The tree-level collinear functions corresponding to insertions of power suppressed La-
grangian terms at a single position are given by

J
(0)
1;γβ(n+q, n+p;ω) = δβγ

(
− 1
n+p

δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
, (A.2)

J
µν,(0)
2;γβ (n+q, n+p;ω) = −1

2
1
n+p

[
γµ⊥γ

ν
⊥
]
γβ
δ(n+q − n+p) , (A.3)

J
(0)
3;γβ(n+q, n+p;ω) = δβγ

(
− 1
n+p

δ(n+q − n+p) + 2 ∂

∂n+q
δ(n+q − n+p)

)
. (A.4)

Making use of the definition in (A.1), the scalar tree-level collinear function components
of J (0)

1;γβ(n+q, n+p;ω) are given by

J
(0)
1,1 (n+p;ω) = − 1

n+p
, (A.5)

J
(0)
1,2 (n+p;ω) = 2 . (A.6)

Next, we write the tree-level collinear functions with two ωi variables, corresponding to
two time-ordered product insertions of the O(λ) Lagrangian terms. We have

J
µν,AB (0)
4;γβ,fb (n+q, n+p;ω1, ω2) = 2gµν⊥

n+p (ω1 + ω2)2

(
ω1 TATB + ω2 TBTA

)
fb

× δ(n+q − n+p) (A.7)
≡ J

µν,AB (0)
4;fb (n+p;ω1, ω2) δγβδ(n+q − n+p), (A.8)

and

J
fk1k2e (0)
5;γσλβ (n+q, n+p;ω1, ω2) =−TA

fk2TA
k1e

1
n+p

ω2
(ω1 + ω2)

/n−γη
2 γµ⊥,ησγ⊥µ,λβ δ(n+q − n+p)

+ 2 TK
feTK

k1k2

ω1ω2
(ω1 + ω2)2 /n−λσδγβ

∂

∂n+q
δ(n+q − n+p) . (A.9)

We also give the one-loop collinear function corresponding to the only soft function starting
at O(αs). The result is

J
(1)
1;γβ (n+q, n+p; ω) = αs

4πδγβ
1

(n+p)

(
n+pω

µ2

)−ε eε γE Γ[1 + ε]Γ[1− ε]2

(−1 + ε)(1 + ε)Γ[2− 2ε]

×
(
CF

(
−4
ε

+ 3 + 8ε+ ε2
)
− CA

(
−5 + 8ε+ ε2

))
δ(n+q − n+p).

(A.10)
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B Matrix elements

To generate our starting cross-section level expressions we require the following results for
the power suppressed matrix elements

〈gK1(k1)gK2(k2)|T
[
Y †−(0)Y+(0) i∂µ⊥

in−∂
B+
µ⊥

(z−)
]
|0〉 =

g2
sTK2 TK1 1

(n−k1)
nη2
−

(n−k2)

[
kη1

1⊥ −
k2

1⊥
(n−k1)n

η1
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k1

+g2
sTK1 TK2 1

(n−k2)
nη1
−

(n−k1)

[
kη2

2⊥ −
k2

2⊥
(n−k2)n

η2
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k2

−g2
sTK2 TK1 1

(n−k1)
nη2

+
(n+k2)

[
kη1

1⊥ −
k2

1⊥
(n−k1)n

η1
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k1

−g2
sTK1 TK2 1

(n−k2)
nη1

+
(n+k1)

[
kη2

2⊥ −
k2

2⊥
(n−k2)n

η2
−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k2

g2
s if

K1K2KTK 1
n−(k1 + k2)

(
−
(
kη2

1⊥ + kη2
2⊥
)
nη1
−

(n−k1) +
(
kη1

1⊥ + kη1
2⊥
)
nη2
−

(n−k2)

−
nη1
− n

η2
−

n−(k1 + k2)(n−k1)(n−k2)
[
(n−k1)

(
k2

1⊥ + k1⊥ · k2⊥
)

−(n−k2)
(
k2⊥ · k1⊥ + k2

2⊥

) ])
ε∗η1(k1)ε∗η2(k2) eiz−(k1+k2)

+g2
s if

K1K2KTK 1
(n−(k1 + k2))2

1
(k1 + k2)2

([
nη1
− (2k1 + k2)η2

−nη2
− (k1 + 2k2)η1 − gη2η1(n−(k1 − k2))

]
(k1⊥ + k2⊥)2

+
[
(kη1

1⊥ + kη1
2⊥)(−2k1 − k2)η2 + (kη2

1⊥ + kη2
2⊥)(k1 + 2k2)η1

+gη2η1
(
k2

1⊥ − k2
2⊥
)]

(n−(k1 + k2))
)
ε∗η1(k1)ε∗η2(k2) eiz−(k1+k2), (B.1)

〈q(k1)q̄(k2)|T
[
Y †−(0)Y+(0) i∂µ⊥

in−∂
B+
µ⊥

(z−)
]
|0〉 =

g2
s

1
(n−(k1 + k2))2 TB

(
n−(k1 + k2)(k1⊥ν + k2⊥ν)− (k1⊥ + k2⊥)2n−ν

)
× 1

(k1 + k2)2 ū(k1)TBγνv(k2) eiz−(k1+k2), (B.2)
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and

〈cK1(k1)c̄K2(k2)|T
[
Y †−(0)Y+(0) i∂µ⊥

in−∂
B+
µ⊥

(z−)
]
|0〉 =

g2
s

1
(n−(k1 + k2))2 if

K1BK2TB
(
n−(k1 + k2)(k1⊥ν + k2⊥ν)− (k1⊥ + k2⊥)2n−ν

)
× 1

(k1 + k2)2 k
ν
1 e

iz−(k1+k2) . (B.3)

We also require the LP amplitudes

〈0|T̄
[
Y †+(0)Y−(0)

]
|gK1(k1)gK2(k2)〉 =

g2
s n

η1
− n

η2
−

( 1
n−k2

1
n−(k1 + k2)TK2 TK1 + 1

n−k1

1
n−(k1 + k2)TK1 TK2

)
εη1 (k1)εη2 (k2)

+g2
s n

η1
+ n

η2
+

( 1
n+k2

1
n+(k1 + k2)TK1 TK2 + 1

n+k1

1
n+(k1 + k2)TK2 TK1

)
εη1 (k1)εη2 (k2)

+g2
s

(
−nη1
− n

η2
+

1
n−k1

1
n+k2

TK1 TK2 − nη1
+ n

η2
−

1
n+k1

1
n−k2

TK2 TK1

)
εη1 (k1)εη2 (k2)

− g2
s

(
i fK1K2K TK

) 1
n−(k1 + k2)

1
(k1 + k2)2

×
(
− nη1

− (2k1 + k2)η2 + gη1η2 n−(k1 − k2) + nη2
− (2k2 + k1)η1

)
εη1 (k1)εη2 (k2)

+ g2
s

(
i fK1K2K TK

) 1
n+(k1 + k2)

1
(k1 + k2)2

×
(
− nη1

+ (2k1 + k2)η2 + gη1η2 n+(k1 − k2) + nη2
+ (2k2 + k1)η1

)
εη1 (k1)εη2 (k2), (B.4)

〈0|T̄
[
Y †+(0)Y−(0)

]
|q(k1)q̄(k2)〉= g2

s TA 1
(k1 + k2)2

×
(
− n+ν
n+(k1+k2) + n−ν

n−(k1+k2)

)
v̄(k2)TAγνu(k1), (B.5)

and

〈0|T̄
[
Y †+(0)Y−(0)

]
|cK1(k1)c̄K2(k2)〉 = g2

s if
K1K2A TA

×
(

n+k2
n+(k1 + k2) −

n−k2
n−(k1 + k2)

) 1
(k1 + k2)2 . (B.6)

For S3 we need

〈gK1(k1)gK2(k2)| 1
(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
|0〉 =

g2
s if

K1K2KTK 1
(n−(k1 + k2))2

[
(n−k1 − n−k2)gη1η2

⊥

+(n−k2)
(n−k1)k

η2
1⊥n

η1
− −

(n−k1)
(n−k2)k

η1
2⊥n

η2
− + kη1

2⊥n
η2
− − k

η2
1⊥n

η1
−

−
(
k1⊥ · k2⊥
n−k1

− k1⊥ · k2⊥
n−k2

)
nη1
− n

η2
−

]
ε∗η1(k1)ε∗η2(k2)eiz−(k1+k2). (B.7)
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C Terms contributing to the NNLO cross section

We report in this appendix the terms contributing to (4.10), which have been calculated
in [12]. First of all one has the contribution to the partonic cross section due to the
kinematic correction at NNLO:

∆kin (2)
NLP (z) = α2

s

(4π)2

[
C2
F

(16
ε2
− 192 ln(1− z) + 96

ε
+ 512 ln2(1− z)

+ 192 ln(1− z)− 40π2 − 256
)

+ CFCA

(88
3ε −

352 ln(1− z)
3

− 8π2

3 + 476
9

)
+ CFnf

(
− 16

3ε + 64 ln(1− z)
3 − 56

9

)
+O(ε)

]
. (C.1)

The terms contributing to the dynamic corrections with a collinear and a hard loop

∆dyn (2)
NLP−coll(z) = α2

s

(4π)2

[
C2
F

(
− 16
ε2

+ 48 ln(1− z)− 20
ε

−72 ln2(1− z) + 60 ln(1− z) + 8π2 − 24
)

+CFCA

(20
ε
− 60 ln(1− z) + 8

)
+O(ε)

]
, (C.2)

and

∆dyn (2)
NLP−hard = α2

sC
2
F

(4π)2

[
− 32
ε3

+ 64 ln(1− z)− 16
ε2

+
−64 ln2(1− z) + 32 ln(1− z) + 80

3
(
π2 − 3

)
ε

− 8
3
(
− 16 ln3(1− z) + 12 ln2(1− z)

+ 20
(
π2 − 3

)
ln(1− z)− 56ζ3 − 5π2 + 48

)
+O(ε)

]
, (C.3)

respectively.

D Altarelli-Parisi splitting functions

We list in this appendix the Altarelli-Parisi splitting functions needed for the mass renor-
malisation of the bare partonic cross section given in section 4.1. The one-loop splitting
function P 0

qq reads

P 0
qq(z) = 4CF

{
2
[ 1

1− z

]
+
− 1− z + 3

2δ(1− z)
}
. (D.1)
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The two-loop non-singlet splitting function P 1,NS
qq reads

P 1,NS
qq (z) = nfCF

{
δ(1− z)

[
− 2

3 −
16
3 ζ2

]
− 80

9

[ 1
1− z

]
+
− 8

3
1 + z2

1− z ln z − 8
9 + 88

9 z
}

+C2
F

{
δ(1− z)

[
3− 24ζ2 + 48ζ3

]
− 161 + z2

1− z ln z ln(1− z)

− 4(1 + z) ln2 z − 8
(

2z + 3
1− z

)
ln z − 40(1− z)

}
+CACF

{
δ(1− z)

[17
3 + 88

3 ζ2 − 24ζ3

]
+
(536

9 − 16ζ2

)[ 1
1− z

]
+

+ 41 + z2

1− z ln2 z + 8(1 + z)ζ2 −
4
3

(
5 + 5z − 22

1− z

)
ln z

+ 4
9
(
53− 187z

)}
. (D.2)
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