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1 Introduction

Photon self-interactions are absent in pure Maxwell’s theory, but are induced by photon-
matter interactions. Therefore, effective photon-photon interactions appear in generic low
energy Quantum Electrodynamics (QED) theories. The Euler-Heisenberg (EH) Lagrangian
is an example of such an effective theory, where the non-linear term arises at one loop, at
energies below the electron mass [1, 2], and preserves CP. CP violating (CPV) sources of
photon interactions, on the other hand, arise in the Standard Model (SM) only at multiple
loop level from the, CKM-suppressed, weak interactions, or are controlled by the tiny strong
CP phase, and are thus negligibly small [3]. Given the suppression of the SM contribution,
it should in principle be possible to probe (and possibly discover) CPV new physics in this
channel, without a significant SM background.

As suggested in [4], the QCD axion, or in general axion-like particles (ALPs), are well
motivated new sources of photon self-interactions. Depending on their mass and their cou-
pling to photons, the contributions of such particles to effective photon-photon interactions
— which are CP conserving (CPC) — may be comparable to that of the EH term or even
exceed it [5, 6]. CPV photon self-interactions are instead mediated by degrees of freedom
that are not CP-eigenstates. Scalars of this kind appear in theoretically motivated models
such as the complex Higgs portal [7] and the relaxion [8, 9]. These interactions could also
be induced by new fermions with non-vanishing electric and magnetic dipole moments. In
the following we will mostly adopt a model-independent approach, where the information of
the particular new physics providing photon self-interactions will be encoded in the Wilson
coefficients of the effective photon operators.
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Effective CPC and CPV photon self-interactions beyond the Standard Model (BSM)
can be indirectly constrained by the measured electronic magnetic dipole moment [10]
(see [11] for the SM theory calculation), and by the upper limit on the electronic electric
dipole moment [12]. As we will show, the corresponding bounds can be easily estimated at
energies above the electron mass, and yield relatively strong constraints on the scale of new
physics. In contrast, at energies below the electron mass, the reach of direct experimental
tests for the presence non-linear photon dynamics is, to date, much more limited. In fact,
as reviewed in section 2, current experiments, looking for vacuum birefringence (e.g. [13])
and the Lamb shift [14, 15], have probed only the CPC part of the photon self-couplings.
While their sensitivity is still about one order of magnitude above the EH contribution,
other experimental proposals such as [16–19] could be able to measure such a term, and
possibly constrain new physics contribution to light-by-light interactions.

In this paper we study the prospects of directly detecting CPV photon self-interactions
at energies below the electron mass, described by the effective operator FµνFµνFρσF̃ ρσ,
which has not been directly probed by any current experiment. In particular, we present
simple modifications to proposed and currently running experimental setups, such that they
can be made sensitive also to CPV phenomena. Crucially, our proposals will be able to
disentangle the CPV contribution from the CPC one, providing unique probes of the CPV
operator that, as mentioned, are free from the SM background. We will present prospective
bounds for these experiments, which could set the first model-independent bound on CPV
effective photon interactions at energies below the electron mass. For concreteness, we
will also discuss the expected bounds on the parameter spaces of two of the simplest BSM
theories that may provide CPV photon self-interactions, although they are likely to be
excluded by complementary constraints.

Our first proposal employs the production and detection of light-by-light interac-
tions in a superconducting radio frequency (SRF) cavity, extending the setup described
in [16, 17, 20]. In this configuration, the self-interactions of background resonance modes
pumped into the cavity act as a source, exciting another resonance mode of the cavity.
We demonstrate how a particular choice of the pump and signal modes and of the cavity
geometry allows singling out CPV photon self-interactions.

Photon nonlinearities are known to induce vacuum birefringence in the presence of
an external electromagnetic field. In particular, polarized light acquires a non-vanishing
ellipticity and rotation of the polarization plane [21, 22]. As a second probe, we discuss
an experimental configuration where this phenomenon happens in a ring cavity. While
inspired by the linear Fabry-Perot (FP) cavity of the PVLAS experiment [23], which is
essentially insensitive to CP-odd effects, we show that a ring cavity geometry is sensitive
to CPC and CPV photon interactions simultaneously, which can be distinguished by a
temporal analysis of the signal. A similar scheme has been proposed in [24], and applied
to CPV dark sectors.

The paper is organized as follows: in section 2 we define the photon Effective Field
Theory (EFT) at low energy and summarize the current direct and indirect bounds on
its coefficients. We also discuss the possible contributions to photon self-interactions from
simple new physics models. In section 3 we discuss the prospects of detection of CPV
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photon interactions using an SRF cavity. In section 4 we study the detection of vacuum
birefringence and dichroism in a ring cavity, and its implication for the CPV operator. We
conclude in section 5.

2 Photon EFT and current bounds

2.1 Agnostic EFT approach

At energies below the electron mass, interactions among photons are self-consistently de-
scribed by an effective Lagrangian involving the photon field only. Such a Lagrangian can
be conveniently expanded in powers of the two independent gauge invariant CP-even and
CP-odd operators, 1

2FµνF
µν = E2 −B2 and 1

4FµνF̃
µν = E ·B, where Fµν and F̃µν are the

photon field strength and its dual, and E (B) is the electric (magnetic) field. At leading
order, up to dimension-8, it reads (see e.g. [3])

LEFT =−1
4FµνF

µν+ a

4FµνF̃
µν+ b

4(FµνFµν)2+ c

16(FµνF̃µν)2+ d

8FµνF
µνFρσF̃

ρσ . (2.1)

Note that a has no physical effect being FµνF̃µν a total derivative. The coefficients b, c, d
are proportional to four inverse powers of the EFT UV-cutoff, Λ.

In the SM the coefficients b and c receive leading contribution from the EH effective
action [1, 2]

bEH = 2
45
α2

EM
m4
e

≈ (13 MeV)−4 , cEH = 7 bEH , (2.2)

where me is the electron mass and αEM is the fine-structure constant. The term
FµνF

µνFρσF̃
ρσ violates CP and obtains radiative contributions from the two CPV sources

of the SM. First, the contribution from the QCD θ-term has been estimated in chiral
perturbation theory in the large Nc limit in ref. [3]. Due to the smallness of θ . 10−10, it is
suppressed by at least 20 orders of magnitudes with respect to the EH CPC self-interactions
in eq. (2.2). A second contribution to d comes from the CPV phase of the CKM matrix.
Although never calculated, to the best of our knowledge it is expected to appear at least
at three loops and (due to the GIM mechanism) be extremely suppressed. Given eq. (2.2)
and the smallness of d, the UV cutoff Λ is therefore of order 10 MeV.

As discussed in the next section, the coefficients of the Lagrangian in eq. (2.1) could
obtain contributions from BSM physics. On theoretical grounds, they are subject to pos-
itivity constraints if LEFT comes from a causal UV theory with an analytic and unitary
S-matrix. In particular, b and c must be positive, and d must be bounded [25]

|d| < 2
√
bc . (2.3)

This provides a nontrivial consistency condition on LEFT, that requires the magnitude of
the CP-odd term to be bounded by the CP-even ones. In particular, if a violation of this
bound is measured, one would need to give up some of the fundamental principles in the
UV theory underlying the effective Lagrangian in eq. (2.1), such as analyticity, unitarity
or causality.
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Let us now review the current experimental limits on LEFT at energies below the EH
scale.1 The coefficients b and c are hardly constrained from direct light-by-light scatter-
ing [26, 27], which provides limits that are more than 10 orders of magnitude above the
EH prediction in eq. (2.2). The coefficient b induces a correction to the Coulomb potential
of the hydrogen atom [14] and a Lamb shift of its 1S and 2S energy levels. For the EH
Lagrangian, this correction to the energy levels has been calculated to be 3 × 10−4 times
the leading term [15], while the related measurements still have a precision of 3×10−3 [28].
Since the correction is linear with b, this therefore yields a bound of

|b| . 20 bEH , (2.4)

at 95% confidence level.
As explained in more detail in section 4, the combination c−4b induces a non-vanishing

ellipticity to polarized light passing through a region permeated by an external magnetic
field. This observable has been bounded by BMV [29] and PVLAS [23], and the latest
limit [13] corresponds to

c− 4b
cEH − 4bEH

= 4.8± 6.8 , (2.5)

where cEH − 4bEH = 3bEH. We obtain a bound on c by combining the 2σ intervals of
eqs. (2.4) and (2.5)

− 15 cEH . c . 19 cEH . (2.6)

Eqs. (2.4) and (2.6) correspond to the strongest direct bounds to date.
Currently, there is no direct experimental constraint on the coefficient d, although there

have been theoretical studies [3, 30] of its possible detection using vacuum birefringence.
On the other hand, from eqs. (2.4) and (2.6) we expect that the EFT is consistent according
to eq. (2.3) only if

|d| . 40
√
bEH cEH , (2.7)

which will be denoted as the EFT consistency bound.
At energies above the electron mass, the electron must be included in the EFT, and

the measurements of its electric and magnetic dipole moments put an indirect constrain on
the contributions of new physics to photon self-interactions. Indeed, in the electron-photon
EFT, a single insertion of the 4-photon operators generates a two loop contribution to the
magnetic and electric dipole operators

ae
4me

eψeσµνψeF
µν , − i2deψeσµνγ5ψeF

µν , (2.8)

(where ψe is the electron field and e ≡
√

4παEM is the electric charge) which could make
the coefficients ae and de deviate from their SM predictions. Although never evaluated

1Within the EFT in eq. (2.3) the Wilson coefficients b, c, d depend on the energy scale and are expected
to be subject to logarithmic running and mixing effects. Since the running is only logarithmic, we will
tacitly ignore this dependence. When discussing bounds, we will imply that the coefficients are evaluated
at the energy scale corresponding to the typical frequency of the experiment.
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directly, a crude estimate for the deviations induced by new physics via such a diagram is

e

4me
∆ae ' C1

e3

(16π2)2m
3
ebBSM , ∆de ' C2

e3

(16π2)2m
3
edBSM , (2.9)

where bBSM, cBSM and dBSM are the BSM contributions to the coefficients, and C1 and
C2 are order one factors. Assuming C1 and C2 of order one, and considering the current
bounds on |aexp − aSM

e |/aSM
e . 10−9 [11] and |de| < 1.1 × 10−29 e × cm [12], we obtain a

rough estimate for the bounds on the BSM contribution to the EFT coefficients as

bBSM, cBSM . 10−2 bEH , dBSM . 10−8 bEH . (2.10)

These are indirect bounds on bBSM, cBSM and dBSM that strongly constrain possible new
physics heavier than the electron. In the following, however, we will focus on constraining
these operators at energies below the electron mass, as the existing bounds of this type are
quite weak (see eqs. (2.4) and (2.6)). In particular, our proposals will be able to set the
first model-independent bound on the coefficient d at energies below the electron mass.

In principle, it should be possible to translate the bounds from the electric and mag-
netic dipole moments in eq. (2.10) (valid at energies above me) into bounds on the low
energy photon EFT in eq. (2.1), so that they can be applied to new physics lighter than
the electron. This however requires matching the photon EFT with the photon-electron
Lagrangian, and is beyond the scope of our work.

We finally note that light-by-light scattering has been observed at the LHC in Pb-Pb
collisions by the ATLAS and CMS collaborations [31–33]. The diphoton invariant mass
relevant to this measurement is above 6GeV, thus well beyond the scale at which the EFT
in eq. (2.1) is valid. At such energies the EFT coefficients for photon self-interactions,
including their CPV part, have been constrained to be bBSM, cBSM, dBSM . 10−10 GeV−4,
see [34].

2.2 Contributions from new physics

As we now show, new particles coupled to photons generically contribute to the effective
Lagrangian in eq. (2.1), and possibly to the CPV coefficient d.

As a first example, we consider a real scalar singlet under U(1)EM with mass mφ.
Even if not coupled to the photon at the renormalizable level, couplings to the photon field
strength are present in the dimension-5 Lagrangian:

Lφ ⊃
1
2(∂µφ)2 − 1

2m
2
φφ

2 + g̃

4φFµνF̃
µν + g

4φFµνF
µν . (2.11)

If both g and g̃ are nonzero, φ has no definite transformation properties under CP, and Lφ
breaks CP explicitly. When φ is integrated out, Lφ provides the contributions to b, c, d

bφ = g2

8m2
φ

, cφ = g̃2

2m2
φ

, dφ = gg̃

2m2
φ

, (2.12)

where dφ is proportional to the CPV combination gg̃. For ALPs, g = 0 (to leading or-
der) and g̃ provides a contribution to c. This contribution is larger than the EH term if
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g̃/mφ & α/m2
e ≈ 1/(10 MeV)2. The couplings g and g̃ arise simultaneously in models in

which the scalar is not a CP eigenstate. In particular, in relaxion models [8], the scalar
coupling g is nonzero and determined by the relaxion’s mixing with the Higgs [9], while
the pseudoscalar coupling g̃ is related to the shift-symmetric nature of the axion.

We observe that for small enough mφ the coupling g̃ is bounded by several probes,
including laboratory experiments and astrophysical considerations, see [35–37] for reviews.
The coupling g is stringently constrained from fifth force and equivalence principle tests,
see [38–40] and references therein. Nevertheless dφ in eq. (2.12) might easily dominate
over the SM contribution (this, for comparison, was estimated to be in its QCD part
dQCD . 10−27 MeV−4 where we used θQCD . 10−10 [3]). For scalars heavier than me, the
couplings g and g̃ are bounded by eq. (2.10), see also [41, 42] for the full calculation.

Another possibility is to consider a new SM gauge singlet fermion, ψ, which at
dimension-5 level will be coupled to photons via dipole operators as

Lψ ⊃ ψiγµ∂µψ −mψψψ +DψσµνψF
µν + iD̃ψσµνγ5ψF

µν , (2.13)

where D and D̃ are its magnetic and electric dipole moments respectively.2 The coefficients
b, c, d receive threshold corrections from one loop diagrams with four insertions of D and/or
D̃. In particular, bψ ∼ 4(D4 + D̃4)/(16π2) , cψ ∼ 64D2D̃2/(16π2) and dψ ∼ 32(D2 +
D̃2)DD̃/(16π2). As a result, the bounds in eqs. (2.4) and (2.6) for b and c already imply
an upper bound on the magnetic dipole moment, i.e. D, D̃ . 10−7 eV−1 for new singlet
fermions with mass eV . mψ . 10 MeV.3 Dipole operators of light neutral fermions are in
any case directly constrained by astrophysical observations (see e.g. [44]), as the operators
in eq. (2.13) induce plasmon decay and therefore additional cooling of stars, implying
D, D̃ . 4 × 10−11µB ≈ 10−18 eV−1, where µB = e/(2me).4 Contrary to the previous one,
this bound applies only for masses mψ up to few hundreds keV, corresponding to the core
plasma temperature of the stars. Moreover, for mψ & me such operators are indirectly
constrained by the electric and magnetic dipole moments of the electron in eq. (2.8). For
instance, a nonvanishing D̃ gives a contribution to de at two loops, which can be roughly
estimated as ∆de ' memψD̃

3e2/(16π2)2, and thus the previously mentioned bound on de
yields D̃ . 10−10 eV−1(mψ/MeV)−1/3.

We observe that, by including a single fermion ψ with the dipole operators in eq. (2.13),
a cosmological relic abundance for the fermion would be produced by freeze-in [46] and dark
matter overproduction would also largely constrain the coefficients D and D̃. This however
could be avoided by including additional matter content and/or additional operators to
make the fermion decay.

2Charged CPV fermions have been discussed in detail e.g. in [43].
3This mass range is required in order for the photon EFT to be applied. In particular, the lower bound

comes from the typical energy scale associated to the experiments leading to the constrained quoted in
eqs. (2.4) and (2.6).

4There is also a (weaker) bound, initially derived in [45], from supernova explosion.
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3 Isolating CP-violation in an SRF cavity

The photon self-interactions in eq. (2.1) introduce nonlinearities in Maxwell’s equations.
These nonlinearities act as a source for an electromagnetic field in the presence of back-
ground electromagnetic waves. In this section, we discuss the production and the detection
of this field in a superconducting radio frequency (SRF) cavity, and point out how the
contribution from CPV photon interactions can be singled out by an appropriate choice of
the background fields and the cavity dimensions.

We consider a free background field Aµp (satisfying ∂µFµνp = 0), and split the total field
as Fµνp + Fµν . At leading order in the photon self-couplings b, c and d, the equations of
motion of the Lagrangian in eq. (2.1) become a source-equation for the field Fµν , i.e.

∂µF
µν = (∇ ·E,∇×B− ∂tE) = Jν(Ap) , (3.1)

where the effective current Jµ is a function of the background field only, and reads

Jµ = Fµνp ∂ν

(
2bFpρσFp

ρσ + d

2FpρσF̃p
ρσ
)

+ F̃p
µν∂ν

(
c

2FpρσF̃p
ρσ + d

2FpρσFp
ρσ
)

= Fµνp ∂ν
(
4b
(
E2
p −B2

p

)
+ 2dEp ·Bp

)
+ F̃µνp ∂ν

(
c
(
E2
p −B2

p

)
+ 2dEp ·Bp

)
,

(3.2)

where in the second line we rewrote Fµνp in terms of its electric and magnetic fields Ep and
Bp. As a result, the induced field, Fµν , is generated proportionally to the cubic power of the
background fields. A similar effect occurs if the photon self-interactions are mediated by an
off-shell scalar φ with the Lagrangian in eq. (2.11). In this case, the effective current reads

Jµ =− gFµνp ∂νφ− g̃F̃pµν∂νφ , (3.3)

where, at leading order in g and g̃, φ is the solution of the Klein-Gordon equation (∂2 +
m2
φ)φ = Jφ ≡ −1

4gFpµνFp
µν − 1

4 g̃FpµνF̃p
µν , i.e. φ(t,x) =

∫
d3xdtGR(x,x′, t, t′)Jφ(t,x′),

where GR is the retarded Green’s function. The calculation of GR and φ is simplified if
mφ is much larger or much smaller than the typical frequency of the background field ω.
In these cases

φ∞= 1
m2
φ

[
−1

2g
(
B2
p−E2

p

)
+g̃Bp ·Ep

]
mφ�ω

φ0 = 1
4π

∫
d3x′

|x−x′|

[
−1

2g
(
B2
p(tR,x′)−E2

p(tR,x′)
)

+g̃Bp(tR,x′)·Ep(tR,x′)
]

mφ�ω

,

(3.4)

where tR ≡ t− |x− x′| is the retarded time. Note that the effective current in eq. (3.3) is
also cubic in the background fields and reduces to eq. (3.2) in the limit mφ � ω, with the
Wilson coefficients given in eq. (2.12).

As suggested in [16], an SRF cavity is a natural setup where the field Fµν can be
generated and amplified. We consider an SRF cavity, see figure 1, that is pumped simul-
taneously with two cavity modes, with corresponding electric fields E1, E2 and magnetic
fields B1, B2, at frequencies ω1 and ω2 respectively, with Fµνp = Fµν1 +Fµν2 (we discuss the
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Figure 1. Schematic picture of a cylindrical SRF cavity. Two cavity modes with frequency ω1
and ω2 are pumped into the cavity and source an additional mode at the frequency ωs > ω1, ω2
as a result of the photon self-interactions of eq. (2.1). The cavity geometry is chosen such that
ωs is a resonance mode and therefore amplified. In a small filtering region (F) the pump modes
are exponentially suppressed and only the signal mode ωs is detected (D). If the modes satisfy
eq. (3.10), the signal mode, ωs, will be automatically sourced only by the CPV part of the photon
interactions (see main text for more details).

possibility of pumping the cavity with a single mode at the end of this section). Since the
modes of Fµν that match resonances of the cavity are amplified by the cavity geometry,
the electric field produced in the cavity will mostly be sourced by the projection of J onto
these resonance modes. The resonant field Ef generated by exciting a cavity eigenmode
Ês, with a corresponding frequency ωs, can be written as [17]

Ef (x) = Qs
ωsV

Ês(x)
∫
d3x′ Ês(x′) · J(x′) , (3.5)

where V is the volume of the cavity, Qs is the quality factor for the frequency ωs and Ês

is dimensionless and normalized as
∫
d3x|Ês|2 = V .

Note that in order to excite the cavity resonance, one of the cavity resonance frequencies
must match one of the Fourier components of Fµν . Given the cubic dependence of J on
the pump fields, and assuming no other background sources, eq. (3.1) dictates that Fµν

can only have frequencies ±nω1±mω2, with m,n ≥ 0 and m+n = 3. The cavity geometry
must be therefore chosen such that there exists a resonance frequency ωs matching one of
these combinations (within the cavity’s bandwidth), while also verifying that the spatial
overlap of the corresponding resonance mode Ês and the effective current J (i.e. eq. (3.5))
is non-zero (and ideally maximal).

In principle, it should be possible to measure the power in the excited signal mode via
an output port critically coupled to the signal frequency ωs. However, this might require
a very efficient filtering of the pump fields, considering their magnitude [20]. If this is
not feasible with a realistic impedance-matched output port, one could additionally use
— as we will consider in the following — a smaller filtering cavity (of which ωs is still a
resonance mode), as is schematically shown in figure 1. Assuming ω1, ω2 < ωs, the filtering
cavity can be designed such that the frequencies of the pump fields are below its lowest
eigenmode, and are thus cut-off, while the power in the signal mode Ef is approximately

– 8 –
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preserved [16, 17, 20]. The expected number of signal photons is given by

Ns = 1
2ωs

∫
d3x |Ef (x)|2 . (3.6)

We will now show that, due to the intrinsically different structure of the CPC and
CPV couplings, it is possible to select the pump fields E1 and E2, and the signal mode Ês,
to single out CPV (or CPC) phenomena in the generated field of eq. (3.5).

First, we observe that the effective current can be written as Jµ = Fµν∂νf + F̃µν∂ν f̃ ,
where f and f̃ are quadratic functions of the pump fields and can be read off from eqs. (3.2)
and (3.3). In particular, the vector current is J = (E∂0 + B×∇)f + (B∂0 − E×∇)f̃ .
Let us consider a setup in which the signal mode Ês is parallel to E2, the pump fields
are orthogonally polarized, namely E1 · E2 = B1 · B2 = E1 · B1 = E2 · B2 = 0, and are
chosen such that either B1 ‖ E2 or (∇f)B1×E2 = 0 (with the notation (A)B we refer to
the component of A along B). With this choice, the scalar product entering in eq. (3.5)
simplifies considerably and reads

Ês · J = Ês ·
[
(E2∂0 + B2×∇)f + (B1∂0 −E1×∇)f̃

]
(3.7)

The expressions for f and f̃ are also simplified for the above choice of pump fields. From
eq. (3.2), schematically f ∼ bF 2

p +dFpF̃p and f̃ ∼ cFpF̃p+dF 2
p , and the choice of orthogonal

pump modes implies F 2
p ∼ E2

1 +E2
2−B2

1−B2
2 and FpF̃p ∼ E1 ·B2 +B1 ·E2. Plugging these

expressions into eq. (3.7), we see that the CPV terms (proportional to d) contain an odd
number of powers of the field ‘1’ and an even number of ‘2’, and vice-versa for the CPC
terms (proportional to b or c). This happens because, crucially, only the fields E1 and B1
(E2 and B2) enter in the term operating on f̃ (f) in eq. (3.7), thanks to the properties of
the pump modes. The same holds for the current in eq. (3.3), since only terms linear in
F 2 and FF̃ can appear in f and in f̃ .

As a result, for modes that satisfy the conditions above, the CPV part of the signal
field Ef will only have frequency components

ωCPV
s = ω1, 2ω2 ± ω1, 3ω1 , (3.8)

i.e. combinations of odd multiplicities of ω1, and even multiplicities of ω2. The opposite
holds for the CPC terms, which only provide the frequency components

ωCPC
s = ω2, 2ω1 ± ω2, 3ω2 . (3.9)

Therefore, one can distinguish between CPV and CPC photon self-interactions according
to the frequency of the component of Ef .

As we are interested in observing and constraining CPV photon self-interactions, we
would like to amplify only the CP-odd contribution to field in the cavity (proportional
to d or gg̃). This can be done for the choice of pump fields proposed above, by setting
the cavity geometry such that there exists a cavity eigenmode Ês, parallel to E2, with
a frequency matching one of the possible CP-odd frequencies in eq. (3.8). In particular,
since for generic cavity geometries eigen-frequencies are not linear combinations of other
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eigen-frequencies, it should also be possible to make sure that the CP-even frequencies
in eq. (3.9) do not match any of the resonant modes of the cavity (therefore prevent-
ing contaminations of the signal from the CPC part). Summarizing, the conditions:

(i) Ês ‖ E2 ,

(ii) E1 ·E2 = B1 ·B2 = 0 ,
(3.10)

(iii) B1 ‖ E2 or (iv) (∇f)B1×E2 = 0 ,

together with the choice of ωs among ωCPV
s , are sufficient for isolating the CPV part of

the photon self-interactions from the CPC one, as the signal will be affected only by the
CPV part.

Following the proposal in [17], we now estimate the possible reach of the measurement
of d, and of the CPV combination

√
gg̃ of an off-shell scalar. We choose cavity modes sat-

isfying eq. (3.10) and normalize them as
∫
d3x|E1|2 =

∫
d3x|E2|2 = E2

0V . We parametrize
J = κE3

0 Ĵ, where E0 is the typical magnitude of the electric field of the pump modes, Ĵ is
dimensionless and κ has dimension −3. For the scalar mediator, we define κ = ωsgg̃/m

2
φ

for mφ � ωs and κ = gg̃/ωs for mφ � ωs. When working in the EFT limit, κ = 2ωsd.
The number of signal photons produced is then

Ns = Q2
sE

6
0V

2ω3
s

κ2K2 , with K ≡ 1
V

∫
d3x Ês · Ĵ , (3.11)

where K is an O(1) form factor of the cavity that depends on the pump and signal modes,
which will be computed in the following for explicit examples. We will use the notation
K∞ when describing the EFT limit, and K0 in the mφ � ωs case.

We obtain the expected bounds on the appropriate CPV parameters for the experimen-
tal phases proposed in [17]. Here we do not present a detailed design of the cavity, thus our
estimates below are valid up to O(1) factors. We treat the filtering region as a waveguide
filter, collecting a large fraction of the power in the signal mode and effectively filtering out
the pump modes. The background is then assumed to be dominated by thermal photons.
We neglect possible backgrounds from impurities of the cavities material, which can induce
a noise in the signal mode, see [18], as well as other sources of noise (coming for instance
from vibration of the cavity walls and mode leaking). We stress that, if such sources are
not under control in the experimental setup, the realistic sensitivities of the SRF cavity
may be order of magnitudes worse than our projections.

Following ref. [17], the projected bounds are obtained by comparing the expected power
in the signal field Ps, accumulated in the filtering cavity, to the thermal background, using
the Dicke radiometer equation [47, 48]

SNR = Ps
T

√
t

Bω
, (3.12)

where T is the cavity temperature (we assume T � ωs), t is the total measurement time,
Bω is the signal bandwidth, and SNR is the signal to noise ratio. The energy stored in the
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signal mode is given by the total number of signal photons Ns of eq. (3.11) times the photon
frequency ωs, and it is dissipated over the lifetime of the mode Qs/ωs, which leads to a
produced power Nsω

2
s/Qs. Since the signal field is produced in the region permeated by the

pump fields (of volume V ) and spreads over the entire cavity, the power measured in the fil-
tering region (of volume VF ) is reduced by approximately a factor of ηF ≡ VF /(V +VF ), i.e.

Ps ' ηF
Nsω

2
s

Qs
. (3.13)

The resulting expected upper limit on the CPV combination of the couplings of a
scalar field to photons,

√
gg̃, is given by

√
gg̃

lim. ∼

 2T
QsV ωsηFE6

0

√
Bω
t
SNR

 1
4

×

K
−1/2
0 ωs, mφ � ωs ,

K
−1/2
∞ mφ, mφ � ωs ,

(3.14)

We set SNR = 2 to obtain the bound at a 95% confidence level. The projected bounds on
the coefficient d of the generic EFT in eq. (2.1) is

dlim = 1
K∞

√√√√ T

2QsωsηFV E6
0

√
Bω
t
SNR . (3.15)

As a proof of principle, we consider a cavity with a right cylindrical geometry with
radius r = 0.5 m (see figure 1). The conditions in eq. (3.10) can be satisfied, for example,
for the orthogonal pump fields of the form F1 = TE0q1p1 and F2 = TM0p20, with the
signal mode Fs = TM0ps0 (see e.g. [54] for notation and analytic expressions). With this
choice, Ês is parallel to E2 and points to the z direction. For these modes, B1 × Ês ∝ ϕ̂,
where ϕ is the azimuthal angle. Since the system (fields and boundary conditions) is
azimuthally symmetric, condition (iv) of eq. (3.10) is also satisfied. Another class of modes
satisfying eq. (3.10) is TM0p10/TE0p2q2/TE0psqs . As in the previous mode choice, the
pump fields are orthogonal and Ês ‖ E2. However, for this choice, B1 ‖ E2, satisfying
condition (iii). In tables 2 and 3 of appendix A we list mode combinations of the form
TE0q1p1/TM0p20/TM0ps0 and TM0p10/TE0p2q2/TE0psqs that yieldO (0.1− 1) values forK∞
and K0, for ωs = 2ω2 − ω1.

In the following we will use eqs. (3.14)–(3.15) to estimate the projected bounds on
d and gg̃ achievable using our proposed method. We choose the TE021/TM050/TM060
modes configuration, representing the first type of mode combinations mentioned above.
As discussed before, by choosing the cavity geometry such that ωs = 2ω2−ω1, i.e. ωTM060 =
2ωTM050 − ωTE021 , only the CPV part of the Lagrangian will contribute to Ef . This is
achieved if the cavity length is h = 0.332r = 0.166m. For this mode choice, we find
K∞ = 0.25 and K0 = 0.26. We set the total length of the cavity with the filtering region
to be L = 2h, and assume the radius rF of the filtering cavity will be chosen such that Ef

corresponds to the lowest resonance mode of the filtering cavity. For the modes mentioned
above, we find that rF = 0.13r, and thus ηF = r2

f/(r2+r2
f ) ' 0.017. Note that the resulting

bound on d (
√
gg̃) scales like η1/2

F (η1/4
F ), and thus it depends only weakly on the precise

value of ηF .
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phase r [m] h [m] ωs [GHz] Qs Bω [Hz] t [days]
1 (a) 0.5 0.166 10.84 2.6× 108 2 1
1 (b) 0.5 0.166 10.84 2.6× 108 1/t 1
2 0.5 0.166 10.84 1012 1/t 20
3 2 0.664 2.71 1012 1/t 365

Table 1. The parameters the different phase of the SRF cavities. The modes pumped in the cavity
are assumed to be TE021/TM050/TM060. For all phases we assume T = 1.5K and E0 = 45MV/m.
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Figure 2. Prospective bound on the coefficient d of the effective operator FFFF̃ of eq. (2.1) as a
function of the total measurement time in the SRF cavity (solid lines). The different lines corre-
spond to the typical cavity parameters of the phases in proposed in [17], summarized in table 1. The
disk shows the total measurement time proposed in [17]. The upper dashed line is the consistency
bound d ≤ 2

√
bc for the photon EFT from eq. (2.3), with the current direct experimental limits

on b and c (see eqs. (2.4) and (2.6)). The lower dashed line corresponds to d ≤ 2
√
bEHcEH, which

would be the consistency bound on the CPV coefficient assuming the EH effect would be measured,
and thus represents the equivalent sensitivity to the EH scale.

We give our projections for four cases, following the four phases of ref. [17], where the
different operating parameters are given in table 1. For all cases we assume that the cavity
temperature is T = 1.5K and that E0 = 45MV/m.

The corresponding expected bound on the EFT coefficient d is plotted in figure 2.
We observe that such a cavity can easily probe values of d that are within the EFT con-
sistency region given by eq. (2.3), providing the first direct limit on this coefficient to
date. In particular, the reach could even be a few orders of magnitude below the value
2
√
bEHcEH ' 0.24α2

EM/m
4
e, which corresponds to the EFT consistency scale if b and c are

measured to be at the values predicted by the EH effect, and thus represents the equiv-
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Figure 3. Projected sensitivity to the CP-violating combination
√
gg̃ of the couplings of a scalar to

photons, with the Lagrangian in eq. (2.11), as a function of the mass mφ. We show in blue bounds
expected for the proposal presented in section 3 (SRF cavity), with the experimental parameters
and the integrated measurement times given in table 1. In red we show the bounds for the pro-
posal presented in section 4 (ring cavity), for the same experimental parameters as PVLAS. For
reference, we also plot the current best bound on

√
gg̃, obtained by combining the constraints on

g from fifth force [38, 39] and EP tests [49–52] (summarized in [40]) (5F/EP), and those on g̃ from
PVLAS/CAST [13, 53] and astrophysics (see e.g. [36]).

alent effective sensitivity associated with the EH scale. The projected sensitivity for the
CPV combination of scalar couplings

√
gg̃, presented in figure 3, is still however a few

order of magnitudes above the current best bounds on these couplings, but would provide
a strong complementary probe. Additionally, when applied to the fermion dipole operators
in eq. (2.13), our best bound on d would constrain D , D̃ . 5 × 10−8 eV−1, even in the
mass range few 100 keV . mψ . 10 MeV which is presently not directly constrained by
astrophysical observations.

We note that it is possible to disentangle the contribution of the CPC and CPV
coefficients using just a single pump mode (that self-interacts with itself) with orthogonal
electric and magnetic fields, i.e. Ep ·Bp = 0. In this case the scalar product in eq. (3.5) is

Ês · J = Ês ·
[
(Ep∂0 + Bp ×∇)f + (Bp∂0 −Ep ×∇)f̃

]
, (3.16)

where f ∼ b(E2
p−B2

p) and f̃ ∼ d(E2
p−B2

p) given that FpF̃p = 4Ep ·Bp = 0. Therefore if Ês

is chosen to be parallel to Ep (Bp) only the term containing f (f̃) survives in Ês ·J and the
signal will be affected only by b (d). In both cases, the cavity dimensions should be chosen
such that the signal resonance mode satisfies ωs = 3ωp in order for the signal be amplified
and isolated. This method is however unable to constrain effective CP-even interactions
of the form (FF̃ )2 (as could be generated by an ALP), since it requires FpF̃p 6= 0. For
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Figure 4. In the presence of photon self-interactions, an initially linearly polarized light (traveling
along the ẑ direction, perpendicular to the page) with polarization vector Ei acquires an elliptical
polarization and a rotation of the polarization plane after propagating an effective distance L/λ
through a region permeated by an external magnetic field B (parallel to the x − y plane). The
ellipticity Ψ and rotation ζ are defined as in the picture (see main text for more details).

concreteness, we have tested the CPV combination Fp = TM010 and Fs = TE011, and
found K∞ ∼ 0.09. It is possible that higher form factors are attainable, although they may
be harder to optimize, as suggested by the authors of [16].

4 CP-violation and vacuum birefringence

In this section, we discuss the effect of CP-odd photons self-interactions on the birefrin-
gence properties of the vacuum. In particular, we will show that a setup where vacuum
birefringence takes place in a ring cavity is sensitive to both CPC and CPV phenomena
separately.

Nonlinearities in Maxwell’s equations are known to introduce a nontrivial response of
the vacuum in the presence an external electromagnetic field (see e.g. [3, 21, 22, 55, 56]).
Consider a light beam with a frequency ω, linearly polarized along the x̂ axis and propa-
gating along the ẑ direction through a region of length L permeated by an external static
magnetic field B, which lies in the x− y plane (see figure 4). The external magnetic field
induces two different refractive indices, n1 and n2, along the two orthogonal directions v̂1
and v̂2, shown in figure 4. The magnitude of n1 and n2, and the orientation of the axes v̂1
and v̂2, are determined by B and the photon self-interactions.

As a result of the anisotropic refractive index, the components of the electric field Ei

of the beam along v̂1 and v̂2 evolve separately, inducing a change in the polarization vector
the probe [3, 22]. Below we consider two observables that are sensitive to an anisotropic
refractive index, both of which, as we will see, can be split into the sum of CP-even and
CP-odd components.

First, the propagation inside the birefringent region will cause the linearly polarized
beam to become elliptically polarized, as the projections of the field onto v̂1 and v̂2 prop-
agate at two different velocities (1/n1 and 1/n2), and thus acquire a phase difference δϕ
which varies along the propagation distance as δϕ = (n1 − n2)ωz. This can be easily seen
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by noticing that the evolution of the polarization vector is given by

E(t,x) = exp (iωt)
[
v̂1 exp

(
−iωn1k̂ · z

)
v̂1 ·Ei + v̂2 exp

(
−iωn2k̂ · z

)
v̂2 ·Ei

]
, (4.1)

where k̂ is the propagation direction of the beam, which we assume is either parallel or
anti-parallel to ẑ. The relative phase between the two components of the field is usually
quantified in terms of the ellipticity Ψ, which is defined by the ratio A1/A2 of the axes
of the polarization ellipse via tan Ψ ≡ A2/A1 (see figure 4). Equivalently, in terms of the
electric field in eq. (4.1), we may define sin 2Ψ = ik̂ · (E × E∗)/|E|2 [57]. As can be seen
from eq. (4.1), if the eigen-axis v̂1 forms an angle θ with respect to the initial direction of
polarization Êi, then in the limit ∆n ≡ n2−n1 � 1 the ellipticity acquired over a distance
L is given by (see also e.g. [13])

Ψ = ωL

2 ∆n sin 2θ . (4.2)

Second, as we will see shortly, in the presence of photon interactions with a light scalar,
the refractive index can acquire a anisotropic imaginary part, expressed in terms of the
absorption coefficients κ1 ≡ Im[n1] and κ2 ≡ Im[n2]. From eq. (4.1), this corresponds to an
anisotropic attenuation of the field, which can be interpreted as the decay of one component
of the photon field into the on-shell scalar. In particular, if κ1 6= κ2 the components of
the polarization vector along v̂1 and v̂2 are depleted differently, and the polarization ellipse
rotates by an angle ζ, defined as the angle between the major axis of the ellipse and the
initial polarization direction Ei (see figure 4). In the limit ∆κ ≡ κ2−κ1 � 1, the acquired
rotation over a propagation length L is given by (see also e.g. [13])

ζ = ωL

2 ∆κ sin 2θ . (4.3)

In the following, we will specialize the expressions of the ellipticity and rotation (written
before for generic refractive indices and v̂1, v̂2) to those induced by photon interactions in
the background of a magnetic field, mediated either by a light scalar with the Lagrangian
in eq. (2.11) or via the effective interactions in eq. (2.1). We will then show that both
the ellipticity and the rotation can be broken into a CP-even and a CP-odd component,
denoted by

Ψ = Ψe + Ψo , ζ = ζe + ζo , (4.4)

where the superscript e (o) is for the CP even (odd) component.
If the photon self-interactions are mediated by the effective Lagrangian in eq. (2.1), the

refractive indices n1 and n2 are real and read (see appendix B for the explicit derivation)

n1,2 = 1 + B2

2

(
4b+ c∓

√
(c− 4b)2 + 4d2

)
. (4.5)

Note that the difference in refractive indices is proportional to the square of the magnetic
field B and to the strength of the photon self-interactions.
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As mentioned earlier, the directions v̂1 and v̂2 are related to B and to the photon-self
interaction coefficients. In the absence of CP violation, i.e. for d = 0, it is easy to show
that v̂1 coincides with B̂. In this case, the orthogonal direction v̂2 is given by k̂i×B̂, where
ki is the momentum of the initial beam. Note that we define the positive direction of all
angles in the polarization plane as B̂× k̂i × B̂ = k̂i. Therefore, θ coincides with the angle
α between B and Ei. Instead, for d 6= 0, {v̂1, v̂2} are rotated with respect to {B̂, k̂i × B̂}
by the angle α��CP given by (see appendix B)

tan (2α��CP ) = −(k̂i · k̂) 2d
4b− c . (4.6)

As a consequence, if CP is broken, θ and α are different and related by θ = α − α��CP , as
shown in figure 4. In particular, according to our convention, the positive direction of α��CP
is constant and set by ki. As was pointed out in [3], flipping the propagation direction
while keeping the polarization vector constant — as is the case upon reflection off of a
mirror in a zero incidence angle — is equivalent to flipping the sign of the CPV spurion
d and therefore the sign of α��CP from eq. (4.6), as can be seen by the (k̂i · k̂) term (see
also eq. (B.12) of appendix B, which is invariant under k → −k and d → −d). This is
a direct consequence of parity violation, which is equivalent to CP violation since charge
conjugation is a symmetry of electrodynamics in vacuum.

Plugging eq. (4.5) and θ = α − α��CP into the general expressions for the ellipticity
and the rotation in eq. (4.2) and eq. (4.3) respectively, we find that the rotation vanishes
(i.e. ζEFT = 0, as was also shown in [21, 22]), and the ellipticity has the finite value

ΨEFT = Ψe
EFT + Ψo

EFT = sin(2α− 2α��CP )ωL2 B2
√

(c− 4b)2 + 4d2 . (4.7)

As anticipated, the ellipticity in eq. (4.7) can be broken into the CP-even and CP-odd parts

Ψe
EFT = (c− 4b)ωL2 B2 sin (2α) , Ψo

EFT = −2(k̂i · k̂)dωL2 B2 cos (2α) . (4.8)

Similarly, if the photon interacts with a light scalar field with the couplings in eq. (2.11),
the acquired ellipticity Ψφ and rotation ζφ are given by (in the small Ψφ and ζφ limit,
see [22, 58, 59] for the explicit derivation)

Ψφ = B2 sin(2α− 2α��CP )ωL4
(g2 + g̃2)
m2
φ

(
1− sin x

x

)
, (4.9)

ζφ = B2 sin(2α− 2α��CP )ω2 (g2 + g̃2)
m4
φ

sin2
(
x

2

)
, (4.10)

where x ≡ m2
φL/(2ω). In this case tanα��CP =

(
k̂i · k̂

)
g/g̃, and as before it changes sign

under k → −k. The ellipticity and the rotation in eq. (4.9) and eq. (4.10) can again be
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broken into the CP-even and CP-odd parts

Ψe
φ = (g̃2−g2) sin (2α)

(
1− sin x

x

)
ωB2L

4m2
φ

, Ψo
φ = −2(k̂i · k̂)gg̃ cos (2α)

(
1− sin x

x

)
ωB2L

4m2
φ

,

(4.11)

ζeφ = (g̃2−g2)ω
2B2

m4
φ

sin (2α) sin2
(
x

2

)
, ζoφ = −2(k̂i · k̂)gg̃ω

2B2

m4
φ

cos (2α) sin2
(
x

2

)
.

(4.12)

Note that in the limit mφ/ω →∞ the scalar expression in eq. (4.9) consistently reproduces
the expression for the EFT in eq. (4.7) with the Wilson coefficients in eq. (2.12), while ζφ
as expected vanishes.

We note that the CP-even and CP-odd parts of the ellipticity and rotation in eqs. (4.8),
(4.11) and (4.12) have different dependencies on the angle α, and can therefore be studied
separately. However, as already noticed also in refs. [3, 22, 24, 59], while the former does
not depend on the relative direction of propagation of the beam, the latter changes signs
after switching the direction of propagation. Therefore, if the light beam is reflected within
a region permeated by a magnetic field, the total change in ellipticity and rotation after
a single round trip is (for perfect mirrors) respectively 2Ψe and 2ζe, and the CP-odd part
cancels out. As a result, after N trips, the total ellipticity increases by a factor of (2N + 1)
only in its CP-even part, while remains unchanged in its CP-odd part. A setup involving
multiple reflections can be therefore thought of as an optical path multiplier affecting
only the CP-even part of Ψ and ζ. In the PVLAS experiment [23] the CP-even signal is
enhanced in this way inside a linear FP cavity. Since there is no amplification of the CP-odd
component, the resulting sensitivity to CP-odd photon self-interactions is very weak.

The cancellation of the CP-odd contribution can be avoided by a modification of the
optical path such that only part of it will be inside the magnetic field. Therefore we are
motivated to consider a ring cavity instead of a linear cavity. If only the lower part of the
ring cavity is permeated by the magnetic field, both the CP-even and the CP-odd parts
of Ψ and ζ would be accumulated, as the interaction with the magnetic field takes place
exclusively for one propagation direction of the beam. A schematic design of the ring cavity
proposal in comparison to the PVLAS design is presented in figure 5. Note that the essential
difference between our ring cavity proposal and the PVLAS setup is the optical path.

Let us compare the PVLAS setup to the cavity ring proposal in more detail. In both,
a magnetic field is slowly rotating in the plane perpendicular to the wave vector of the
incoming light, with an angular frequency ωB � ω, such that the approximation of static
magnetic field holds. A linearly polarized light (by the polarizer P1) is fed into the cavity.
While in the PVLAS setup it bounces between the mirrors M1 and M2, where the optical
path is fully under the magnetic filed (left panel of figure 5), in the ring cavity setup the
light will be bouncing between four mirrors, M1,2,3,4, such that only part of the optical path
is inside the magnetic field (right panel of figure 5). In order to increase the amplitude of
the outgoing wave, a time-dependent ellipticity η = η0 cos(ωηt) is injected via a modulator,
Gη. In this way, the leading outgoing signal wave will be an interference between Ψ and
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Figure 5. Left: schematics of the PVLAS experiment. Linearly polarized light produced by the
polarimeter P1 enters the Fabry-Perot cavity where a background magnetic field induces an elliptic
polarization. The light bounces O(105) times between the mirrors M1 and M2, accumulating only
the CP-even part of the ellipticity (proportional to c−4b, see eq. (4.8)). A polarizer P2 is employed
to extract the orthogonal part of the polarization, collected in the detector D. Right: modification
of the PVLAS experiment. If the linear Fabry-Perot cavity is replaced by a ring cavity filled by the
magnetic field only in its lower part, also the CP-odd part of the ellipticity (proportional to d) is
accumulated over a round trip.

η, with a linear dependence on Ψ rather than quadratic. The light detector (D) finally
collects only the component of the polarization orthogonal to that of the incoming light,
selected by P2 (this component is nonzero thanks a nonvanishing ellipticity and rotation).
Thus, the ratio between the incoming (Iin) and outgoing (Iout) wave intensities is [3, 23]

Iout
Iin
≈ η(t)2 + 2η(t) [NeΨe (α (t)) +NoΨo (α (t))] , (4.13)

where α(t) is the angle between the polarization vector Ei and the magnetic field. The
number of roundtrips inside the cavity is related to the cavity finesse F by N ' F/π,
where for PVLAS F ' 7 ·105. While the amplification factors for PVLAS are Ne = 2N +1
and No = 1, for the ring cavity they are Ne = No = N + 1. As in PVLAS, to measure the
rotation ζ, one should insert a quarter-wave plate with one of its axes aligned along the
initial polarization, such that the rotation is converted to an ellipticity, and interferes with
η [13]. Thus, the signal becomes

Iout
Iin
≈ η(t)2 + 2η(t) [Neζ

e (α (t)) +Noζ
o (α (t))] . (4.14)

We note that although the polarization plane is not parallel to the mirrors in a ring
cavity (unlike in the linear cavity), assuming the mirrors are properly aligned, the polar-
ization vector Ei will not be shifted by the mirrors after a full round trip.5 Therefore, in a
ring cavity, the projected sensitivity for the CP-odd ellipticity and rotation could be similar
as to their CP-even counterparts. Importantly, since the CP-even and CP-odd signals vary
differently with α, see eqs. (4.4)–(4.8), in the case of a measurement the two can be disen-
tangled by a temporal analysis of the outgoing intensity in eqs. (4.13) and (4.14), see [3]
for this analysis. A similar idea has been proposed in [24], where instead the magnetic field
does not rotate and the CPV part of the photon self-interactions is selected by the choice
of the (time-independent) angle α.

5In addition, any misalignment can be accounted for by a control sample with the magnetic field turned
off, for instance.
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Figure 6. The expected bound on the coefficient d of the effective operator FFFF̃ from vacuum
birefringence in a ring cavity (solid red line), as a function of the experimental sensitivity to the
ellipticity Ψ, normalized for convenience to the current sensitivity on this observable in the PVLAS
experiment, (Ψe)lim

PVLAS = 8 · 10−12. The upper horizontal dashed line is the EFT consistency
bound d ≤ 2

√
bc with the current bounds on b and c, as in figure 2. The lower horizontal dashed

line corresponds to d ≤ 2
√
bEHcEH, which would be the consistency bound on the CPV coefficient

assuming the EH term would be measured. The pink dashed line corresponds to the prospective
consistency bound from the improvement in the bound on c considering only the measurement of
the CPC signal (using the same cavity). The vertical line corresponds to the sensitivity to Ψe

at which the EH contribution should be observed (analyzing the CP-even part of the signal). In
particular, for Ψe > ΨEH, the pink dashed line is plotted assuming that EH background can be
fully removed in the measurement of the CPC part of the signal.

By inverting eq. (4.8), we can express the reach of the ring cavity in the measurement
of d in terms of the minimum measurable ellipticity (Ψo)lim (acquired over the full set of
round trips) as

|dlim| = π

B2ωLF
(Ψo)lim . (4.15)

As a reference, the PVLAS sensitivity for the CP-even part of the ellipticity is (Ψe)lim
PVLAS =

2σPVLAS
Ψ = 8·10−12, which is the latest result, reported in [13], obtained over a measurement

time of 5×106 s. This value, using BPVLAS = 2.5T, LPVLAS = 0.82m and ωPVLAS = 1.2 eV,
provides the bound on c− 4b in eq. (2.5).

In figure 6 we present the potential reach of the ring cavity for the measurement of
d. We show the bound as a function of the minimum measurable ellipticity, normalized
for reference to the current bound on this observable by the PVLAS experiment (quoted
above). In the plot we assume that the same magnetic field, finesse and cavity length will
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be employed. If the dominant noise is independent of the finesse, the magnetic field and
the length (see [13] for a discussion on the validity of this assumption), the relative bound
on d compared to the PVLAS bound on c− 4b scales as

dring ∝ B2
PVLAS
B2

2FPVLAS
F

LPVLAS
L

(c− 4b)PVLAS , (4.16)

where the factor of 2 comes from the fact that the light traveling in the FP cavity crosses
the magnetic field twice at each round trip. In this case increasing either B or L could
greatly improve the bound.

Since the ring cavity would be sensitive also to the combination c− 4b, the bound on
this quantity could get stronger, and correspondingly that on c (obtained as in eq. (2.6),
assuming the same bound on b of eq. (2.4)). Therefore, we also present the prospective
EFT consistency condition of eq. (2.3) with this updated c. As the bound is presented as
a function of the improved sensitivity, in figure 6 we mark the value of (Ψe)lim

PVLAS /Ψ at
which the EH contribution to the photon self-interactions will be observed, and assume it
will be removed completely when deriving the bound. We observe that the left hand side of
eq. (2.3) is proportional only to

√
c. Thus, using a ring cavity, an increase in the sensitivity

for vacuum birefringence would improve both the bounds on c and on d, but (assuming
the same bound on b of eq. (2.4)) still probing values of c and d that are compatible with
the unitarity and causality of the UV theory.

A similar discussion applies to the ellipticity and rotation in eqs. (4.9) and (4.10)
generated by a light scalar, both of which, as mentioned, can be split into a CP-even and
CP-odd part. In a ring cavity the bound on

√
gg̃ is obtained both from the measurement

of the ellipticity and from the measurement of the rotation, and we show the strongest of
the two, i.e.

|gg̃|lim = π

B2F
Min


∣∣∣(Ψo)lim

∣∣∣
2
(
1− sinx

x

)
ωL

4m2
φ

,

∣∣∣(ζo)lim
∣∣∣

2 sin2 x
2
ω2

m4
φ

 , (4.17)

in figure 3 (red line). In plotting the bound we assumed that the ring cavity will be
able to get to the same sensitivity as PVLAS, i.e. (Ψo)lim = (Ψe)lim

PVLAS /2 = σPVLAS
Ψ

and (ζo)lim = (ζe)lim
PVLAS /2 = σPVLAS

ζ , with the same magnetic field and cavity length.
Notice that bound on

√
gg̃ from the rotation dominates at small masses and becomes mφ-

independent for mφ/ω � 1 (see figure 3), while the one from the ellipticity dominates at
higher masses, for which |gg̃| lim ∝ m2

φ (see eq. (4.17)). As expected, these limits are of
the same order as other laboratory bounds and not yet competitive with other current
bounds. For the fermionic dipole operators, our bound (assuming Ψ ≈ (Ψe)lim

PVLAS and
similar finesse) yields D , D̃ . 10−7eV−1.

5 Conclusions

In this paper, we considered the possibility that the photon is subject to CP violating (CPV)
self-interactions, encoded in the low-energy effective operator FµνFµνFρσF̃ ρσ, with (F̃µν)
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Fµν being the (dual) electromagnetic field strength, which are highly suppressed in the
Standard Model (SM) but could receive contributions from new physics.

We discussed two simple experimental approaches to isolate such interactions at ener-
gies below the electron mass. In particular, we estimated the corresponding sensitivities
of two table-top cavity experiments to the above non-linear operator — one using a su-
perconducting radio frequency (SRF) cavity and one using a ring Fabry-Perot (FP) cavity,
see figures 2 and 5. These are expected to give the first direct limit on CP violation in
non-linear Electromagnetism (EM) in vacuum.

In passing, we also qualitatively estimated the indirect bounds on the above CPV
operator at energies above the electron mass. We found that at these energies the indirect
bounds from the experimental limits on the electric and magnetic dipole moments of the
electron are stronger, and therefore provide more stringent constraints on possible generic
new physics if heavier than the electron.

In addition to considering an Effective Field Theory (EFT) approach towards the CPV
effects discussed above, we derived the corresponding bounds for the case where CPV pho-
ton interactions are mediated by light scalars and fermions. We found that the constraints
on the CPV combination of the couplings of a scalar to photons are not competitive with
fifth-force searches and searches for violation of the Equivalence Principle (EP). We further
found that our experimental setup would be able to reach world-record sensitivity to the
presence of new fermions with electric and magnetic dipole moments, provided that their
mass lies between few hundreds keV to 10MeV (as for smaller masses astrophysical bounds
become stronger). However, one can indirectly set a stronger bound on the corresponding
dipole interactions (at least for fermions heavier than the electron) using the constraints
associated with the electric dipole moment of the electron. Furthermore, we would like to
note that in the two SRF-cavities setup proposed in refs. [18, 19], it might be possible to
constrain the CPV part of the non-linear EM interactions, in a manner similar to this work.

Our main focus in this paper has been the prospects of directly probing CP violation
in photon self-interactions at low energies. As discussed above, there are very strong
indirect bounds on the presence of these interactions. We have intentionally not attempted
surveying or building further extensions of the SM that could be constrained by the above
probes, as these merit a separate study with different scope and focus.

Nevertheless, we would like to make a few comments regarding the possibility of search-
ing for new physics mediated by degrees of freedom lighter than the electron. Note that
sub-eV new physics is expected to be highly constrained by EP and fifth-force tests, whereas
heavier mediators are probably better probed via the measurements of the dipole moments
of the electron. While the proposals we presented here, as well as EP tests, only involve
photons as external states, the measurements of the electron dipole moments require, of
course, on-shell electrons. Thus, there are stark differences between the former — direct
photon-based probes, and the latter — indirect electron-based probes, which are most sig-
nificant when considering new physics below the MeV scale and above the eV scale. First,
on the lighter side of this range, new processes involving the electron magnetic/electric
moments — if these proceed at the quantum level — are typically IR-safe. Namely, they
are not sensitive to the mass of the virtual particles in the loop that are lighter than the
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ω1 ω2 ωs 2h/R K0 K∞

TE011 TM040 TM060 0.39643 0.091 0.18
TE011 TM050 TM080 0.396798 0.45 0.13
TE021 TM050 TM060 0.165757 0.26 0.25
TE021 TM050 TM070 0.310411 0.31 0.30
TE023 TM040 TM050 0.930618 0.13 0.15
TE031 TM060 TM080 0.263649 0.25 0.39
TE033 TM050 TM060 0.790656 0.24 0.19
TE033 TM060 TM070 0.431223 0.20 0.11
TE033 TM060 TM080 0.790948 0.82 0.13
TE033 TM070 TM080 0.315526 0.783 0.10
TE035 TM050 TM060 1.31776 0.94 0.11

Table 2. TE/TM/TM mode combinations with K∞,K0 & 0.1 for CPV interactions.

electron. This is in contrast to our photon-based proposals, which are ultra sensitive to the
scale of degrees of freedom that couple to photons well below the electron mass, and up
to the typical frequency of the cavities considered (see e.g. eq. (3.14)). Second, while the
photon-based phenomena searched for by our proposals are essentially model-independent,
and well described by the EFT picture all the way through this energy range, the electron
dipole moments are very much sensitive to the details of the particular model. For example,
note that photon-self interactions must contribute at the loop level to these electron-based
phenomena. As such, it is possible to build natural models where these processes are sup-
pressed, while tree-level processes, which could be probed by the experiments proposed
here, are not (see for instance [60] for a recent discussion).
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A Cavity modes

We list a few mode choices achieving sizable form factors K0 and/or K∞ for a right cylin-
drical SRF cavity. Table 2 corresponds to TE0p1q1/TM0p20/TM0ps0 mode combinations,
and table 3 corresponds to TM0p10/TE0p2q2/TE0psqs combinations.
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ω1 ω2 ωs 2h/R K0 K∞

TM020 TE023 TE031 1.31175 0.15 0.35
TM030 TE012 TE033 0.162995 0.12 0.12
TM030 TE022 TE023 0.251037 0.20 0.26
TM030 TE022 TE033 0.20255 0.11 0.24
TM030 TE023 TE025 0.221669 0.12 0.13
TM030 TE023 TE031 0.731319 0.13 0.99
TM030 TE023 TE033 0.564125 0.31 0.32
TM030 TE023 TE035 0.198568 0.51 0.12
TM030 TE032 TE025 0.660409 0.14 0.22
TM030 TE032 TE035 1.07868 0.24 0.37

Table 3. TM/TE/TE mode combinations with K∞,K0 & 0.1 for CPV interactions.

B Derivation of the refractive indices

In this appendix we derive the refractive indices and the eigen-axes of propagation for a
linearly polarized light beam (with electric field E and magnetic field B) traveling through
a region permeated by a constant and homogeneous background magnetic field B0 (or-
thogonal to the beam), in the presence of the photon self-interactions with the Lagrangian
in eq. (2.1). We will assume that the light beam field is negligible with respect to the
background field, i.e. that E � B0 and B � B0. The derivation below mostly follows
refs. [3, 61].

The Euler-Lagrange equations of the Lagrangian in eq. (2.1) can be equivalently written
in terms of the electric and magnetic fields Ei ≡ F0i and Bi ≡ −1

2εijkF
jk as

∇ · B = 0 , ∇ ·D = 0 , (B.1)
∇×E = −∂tB , ∇×H = ∂tD , (B.2)

where D and H are defined by

D ≡ ∂LEFT
∂E , H ≡ −∂LEFT

∂B . (B.3)

In the setup under consideration, the fields are E = E and B = B + B0. From eqs. (2.1)
and (B.3) it follows that

D =−E + 4bB2
0E + d

2B
2
0B− 2cE ·B0B0 + 2dB ·B0B0 , (B.4)

H =−B + 4bB2
0B− d

2B
2
0E + 8bB ·B0B0 − 2dE ·B0B0 , (B.5)

where terms with higher powers of E or B were omitted since they are negligible with
respect to the last three terms of eqs. (B.4) and (B.5), given the assumption E� B0 and
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B� B0. Notice that eqs. (B.4) and (B.5) have the form

Di = εijEj + ψDB
ij Bj , (B.6)

Hi = µijBj + ψHE
ij Ej , (B.7)

where εij , µij , ψDB
ij and ψHE

ij are constant matrices that depend on B0 and on the photon
self-interaction coefficients (εij and µij are the equivalent of the electric permittivity and
magnetization tensors). These matrices can be read off of eqs. (B.4) and (B.5).

To solve eqs. (B.1) and (B.2) together with eqs. (B.4) and (B.5) for the light beam, we
consider the ansatz

E = Ẽ exp[i(ωt− k · x)] , (B.8)

which corresponds to a plane wave with momentum k and frequency ω. Substituting
eq. (B.8) and using ∂tB0 = 0, the first of eq. (B.2) becomes k× Ẽ = ωB̃, while the second
is k × (µB̃ + ψHEẼ) = −ω(εẼ + ψDBB̃). These two equations can be combined together
to eliminate B̃ to give, in matrix form,

n2k̂ ×
(
µk̂ × Ẽ

)
+ nk̂ ×

(
ψHEẼ

)
+ nψDBk̂ × Ẽ + εẼ = 0 , (B.9)

where we defined the refractive index n by n ≡ k/ω, see also eq. (4.1) in the main text.
From the explicit form of the matrices εij , µij , ψDB

ij and ψHE
ij we get

n2k̂ ×
((

4bB2
0 − 1

)
k̂ × Ẽ + 8bk̂ × Ẽ ·B0B0

)
+ 4bB2

0Ẽ− 2cẼ ·B0B0 (B.10)

− 2dnẼ ·B0k̂ ×B0 + 2dn
(
k̂ × Ẽ ·B0B0

)
= Ẽ .

We assume the light beam to travel perpendicularly to B0, i.e. B0 · k̂ = 0, and that
the beam’s momentum while propagating in the magnetic field is k̂ = ±k̂i, where k̂i is
the propagation direction of the initial beam. Therefore, { B̂0, k̂i × B̂0 } forms a constant
orthonormal basis spanning the polarization plane of the beam, where E lies. In this
convenient basis, eq. (B.10) can be brought into the matrix form

B2
0

4b
(
1− n2)− 2c −2dn

(
k̂ · k̂i

)
−2dn

(
k̂ · k̂i

)
4b
(
1− n2)− 8b

( Ẽ · B̂0

Ẽ ·
(
k̂i × B̂0

)) =
(
1− n2

)( Ẽ · B̂0

Ẽ ·
(
k̂i × B̂0

)) .

(B.11)

In the limit bB2
0 , cB

2
0 , dB

2
0 � 1, and expanding at leading order in n − 1, the previous

equation is simplified as 1 + cB2
0 B2

0d
(
k̂ · k̂i

)
B2

0d
(
k̂ · k̂i

)
1 + 4bB2

0

( Ẽ · B̂0

Ẽ ·
(
k̂i × B̂0

)) = n

(
Ẽ · B̂0

Ẽ ·
(
k̂i × B̂0

)) . (B.12)

The eigenvectors of the matrix in eq. (B.12) are the propagation eigenstates, denoted in
the main text as v̂1 and v̂2, in the basis { B̂0, k̂i × B̂0 }. Any vector proportional to one of
the propagation eigenstate solves eq. (B.12) (and therefore the initial equations of motion
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with ansatz in eq. (B.8)) provided the refractive index coincides with the eigenvalues of the
matrix above, which are n1,2 in eq. (4.5).

As mentioned in the main text, for d = 0 the eigenvectors { v̂1, v̂2 } coincide with
{ B̂0, k̂i × B̂0 } and are otherwise rotated with respect to { B̂0, k̂i × B̂0 } by the angle α��CP
in eq. (4.6), which positive direction is B̂0× k̂i× B̂0 = k̂i. Moreover, flipping the sign of k
is equivalent to d→ −d as eq. (B.12) remains invariant, and this corresponds to changing
the sign of α��CP , given eq. (4.6).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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