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1 Introduction

The holographic principle states that the information contained in a region of space scales
with its area [3, 4]. This has been motivated from black hole thermodynamics, as the
entropy of a black object is equal to a quarter of its area [1, 2]. Now the black holes are
maximum entropy objects, so the maximum entropy of a region scales with its area. It
has been argued that the quantum fluctuations at the Planck scale can modify the relation
between the area and entropy of a black hole, and these can again be analyzed using the
holographic principle [5, 6]. It may be noted in such modifications, the entropy still scales
with some function of the area. However, the exact function of the area would be modified
by the quantum corrections to the geometry of space-time. As AdS/CFT correspondence
relates the string theory on AdS space-time to the conformal field theory on its boundary, it
is one of the most important realizations of the holographic principle. Thus, it has been used
to analyze perturbative corrections to the entropy of AdS black holes [7–11]. The extremal
limit of black holes has also been used to obtain such perturbative corrections [12, 13]. It
has been argued that such corrections can be obtained from the density of microstates of a
conformal field theory [14]. The quantum correction to the Cardy formula for black holes
has also been used to obtain such perturbative corrections [15]. Such corrections to the
entropy of a black hole have also been calculated using the Rademacher expansion [16].
Thus, the perturbative quantum corrections to the entropy of a black hole have been
thoroughly studied using various different approaches.

It may be noted that such perturbative corrections to the entropy of black holes can
also be obtained from thermal fluctuations [17–21]. It is possible to relate these thermal
fluctuations to quantum fluctuations using the Jacobson formalism [22]. This is because
in the Jacobson formalism, the geometry of space-time is an emergent structure, which
emerges from thermodynamics [22]. So, the quantum fluctuations in the geometry of space-
time can be obtained from the thermal fluctuations in thermodynamics [23, 24]. Thus,
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perturbative quantum corrections to various black holes have also been obtained from
thermal fluctuations [25–28]. Thus, it is possible to first obtain thermal fluctuations to the
thermodynamics of various different black holes, and then use the Jacobson formalism [22]
to obtain quantum corrections to the geometry of those black holes. It may be noted that
it has been proposed that the black hole thermodynamics can be analyzed using statistical
mechanics of microstates of black holes [29, 30]. Thus, it is possible to view these the
quantum corrections to the geometry occurring from the thermal fluctuations of these
mircostates of geometry of black holes.

It may be noted that when a black object is very large, the quantum corrections to
its metric can be neglected. Furthermore, we can also neglect the thermal fluctuations to
its thermodynamics. However, as this black object reduces in size, we cannot neglect its
quantum corrections. Due to this reduction in its size, its temperature also increases, and
we cannot also neglect the thermal fluctuations to its thermodynamics. At a sufficiently
small size, these corrections can be analyzed as perturbative corrections to the original
thermodynamics. However, when the size of the black hole is close to the Planck scale, non-
perturbative corrections become important, and cannot be neglected. It has been proposed
that such non-perturbative corrections can be expressed as the exponential function of the
original entropy, for any black object [31]. Such non-perturbative exponential corrections
have also been obtained using Kloosterman sums [32]. These corrections are obtained
using AdS/CFT correspondence for massless supergravity fields near the horizon [33, 34].
So, these non-perturbative corrections [31, 32] have been motivated from string theoretical
effects [33, 34]. Thus, it is important to analyze their effects on geometries motivated by
string theory, such as black branes [35–38].

It has been demonstrated that perturbative corrections to the entropy of black holes
can have important consequences for their thermodynamic stability [17–21]. So, it is ex-
pected that non-perturbative corrections would produce interesting modifications to the
thermodynamic stability of black objects. It is also known that black branes have interest-
ing thermodynamic behavior [39, 40]. So, we will study the effect of both the perturbative
and non-perturbative corrections on the thermodynamics of such black branes. As the
thermodynamic stability of black branes can be modified by such quantum corrections, we
will analyze the effects of such quantum corrections on the stability of such black branes.
It will be observed that both perturbative and non-perturbative corrections can produce
important modifications to the thermodynamic behavior of black branes.

2 Black brane

Now it is possible to analyze a black brane solution. Such black branes have translational
symmetry in spatial directions. Now we can write explicitly the such black brane solution,
which will be a solution to a supergravity action. Now for p ≤ 6, we can write a suitable
black brane metric as [39, 40],

ds2 = 1√
Dp(r)

(
−K(r)dt2 + dx2

‖

)
+
√
Dp(r)

(
dr2

K(r) + r2dΩ2
8−p

)
, (2.1)
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where Dp(r) is defined as

Dp(r) = 1 +
(
rH
r

)7−p
sinh2 β, (2.2)

and K(r) is defined as

K(r) = 1−
(
rH
r

)7−p
. (2.3)

For the boost parameter β, we can write sinh2 β as

sinh2 β = −1
2 +

√√√√1
4 +

(
cpgsN

(
ls
rH

)7−p)2

, (2.4)

where 2πl2s is the string tension, gs is the string coupling constant, and cp = (2π)5−pΓ[(7−
p)/2]. This black brane solution is the classical solution to the supergravity approximation
to string theory [39, 40]. It is interesting to go beyond the supergravity approximation
and analyze the quantum corrections to such a solution. Even though it is not known how
such non-perturbative quantum corrections can be explicitly obtained, it is known that
they would modify the relation between the area and entropy of black branes. In fact, the
perturbative [25–28] and non-perturbative [31, 32] corrections to the relation between area
and entropy for any black object have the same functional dependence on the original area
and temperature of that black object.

Thus, we will use this functional form for such perturbative and non-perturbative
corrections for such a black brane, and thus analyze the effect of such quantum corrections
on the stability of such a black brane. Now it is known that the perturbative quantum
corrections correct the relation between area entropy S = A/4 as [25–28]

Sc,per = α ln A

4G + 4Gλ
A

+ η + · · · , (2.5)

where α and λ are constants. Furthermore, it has been argued that the non-perturbative
correction to the relation between area and entropy is given by [31, 32]

Sc,non-per = ηe−
A
4G . (2.6)

Now, the total entropy can be expressed as a sum of the original entropy with both per-
turbative and non-pertubative corrections

SBH = A

4G + α ln A

4G + 4Gλ
A

+ ηe−
A
4G + · · · (2.7)

It may be noted that the value of (α, λ, η) control the relative strength of such corrections.
To explicitly derive their values, we need to calculate explicit quantum corrections to the
supergravity action, and then obtain the corrections to the geometry from such corrected
supergravity action. It is not known how to obtain such non-perturbative corrections to
supergravity approximation to string theory, and so it is not possible to explicitly calcu-
late them using low energy effective field theory. However, it has been argued that both
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perturbative [25–28] and non-perturbative [31, 32] quantum corrections to the entropy of
any black object is a well defined function of the original area. In fact, as this functional
form of the corrected entropy is known it can be used to analyze the quantum corrections
to the stability of black branes, without explicitly calculating the corrections to the low
energy effective action. However, in this analysis, we are not able to fix the value of the
parameter space of these corrections, (α, λ, η), and so here we will analyze the stability for
general values of these parameters.

3 Thermodynamics

It is known that in the Jacobson formalism [22] quantum fluctuations of its geometry.
can be obtained from thermal fluctuations to the thermodynamics [23, 24]. So, we will
first analyze corrections to the thermodynamics of black branes. We can use this general
functional form for quantum corrected entropy and analyze the effect of such quantum
corrections on the thermodynamic stability of the black brane. Now we can write the
temperature of the black brane as

T = 7− p
4πrH cosh β . (3.1)

Now we can expression the corrected entropy of this system in terms of the original entropy,
and write it as

SBH = Ω8−p
4G10−p

r8−p
H cosh β + α ln Ω8−p

4G10−p
r8−p
H cosh β

+ 4G10−pλ

Ω8−pr
8−p
H cosh β

+ ηe
−

Ω8−p
4G10−p

r8−p
H coshβ

. (3.2)

It may be noted that we have not corrected the original temperature. This is because it
is known that both the perturbative and non-perturbative corrections to the entropy of
any black object can be expressed in terms of the original temperature and entropy of that
black object. In fact, it has been even demonstrated using the AdS/CFT correspondence
that corrections to the entropy of a black hole can be expressed as functions of the original
entropy and temperature of that black hole [41–44].

We note that the original entropy decreases by increasing temperature (decreasing
radius). However, due to the perturbative logarithmic and non-perturbative exponential
corrections, the value of corrected entropy becomes negative at a sufficiently small radius.
So, the presence of the second order perturbative correction (with coefficient λ) is necessary
to have positive entropy. This entropy increases as the radius of the horizon become small.
It is possible to calculate the effect of these perturbative and non-perturbative corrections
to the specific heat of this system. Thus, we can write the corrected specific heat for this
system as

C = 8− p
ω0 cosh βr8−p

H

[
(ηe−ω0 coshβr8−p

H − 1)(r8−p
H )2ω2

0 cosh2 β − αω0 cosh βr8−p
H + λ

]
, (3.3)

– 4 –



J
H
E
P
1
0
(
2
0
2
1
)
0
5
0

where we have defined ω0 = Ω8−p
4G10−p

. We can now work in unit of ω0. It is clear that
in absence of perturbative or non-perturbative corrections (α = η = λ = 0), the original
specific heat C0 is given by

C0 = T
dS

dT
= −ω0(8− p)r8−p

H cosh β. (3.4)

This original specific heat is negative, and thus the model is thermodynamically unstable.
This hold, when the size of the black brane is large. However, for black branes at the
quantum scale, the perturbative and non-perturbative corrections cannot be neglected.
Thus, for quantum black branes, we cannot neglect the effects coming from terms with
coefficients α, η, and η. In order to analyze the effect of these quantum correction terms,
we plot figure 1. The behavior of the uncorrected specific heat (3.4) is investigated in
figure 1(a). It demonstrates that D0-brane has a large negative specific heat, and variation
of specific heat for a D6-brane is slower than other Dp-branes. Also, we can observe that, at
the small radius, there is the quantum corrections have similar effects for various differences
dimensions.

In figure 1(b), we observe the effect of the perturbative logarithmic corrections (α 6= 0,
while η = λ = 0). We use both the positive and negative values of α, and observe that
the system is stable at a small radius for the negative α. In figure 1(b) we plot the
behavior of specific heat for a D4-brane. Other Dp-branes will also have similar behavior
as mentioned by figure 1(a). By suitable choice of the coefficient, these branes can be made
thermodynamically stable at the quantum radius. For such stable systems, the specific heat
stays constant even after increasing the temperature.

In that case the logarithmic corrected specific heat is,

C(α) = (p− 8)
(
ω0 cosh βr8−p

H + α
)
, (3.5)

We can see that the logarithmic correction will be negligible for the larger radius, so the
first order approximation is dominates till

r8−p
H � α

ω0 cosh β . (3.6)

For example, our selected values of parameter yields to the domination range at rH < 0.75.
In figure 1(c), we add the effect of the second order perturbative corrections (λ 6= 0,

α 6= 0, while η = 0). Now for positive values of λ, the system becomes stable for branes
with a small radius. However, for negative values of λ the system remains unstable even
at a small radius. So, for such systems, the specific heat increases due to an increase in
temperature.

In that case the second order corrected specific heat is,

C(α) = (p− 8)

(
ω0 cosh βr8−p

H

)2
− λ

ω0 cosh βr8−p
H

, (3.7)

The second order term dominates till,

r
2(8−p)
H � λ

(ω0 cosh β)2 . (3.8)
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Figure 1. Specific heat in terms of horizon radius for β = 1.

For the selected values of parameter, we observe that this corresponds to the second order
term dominating till rH < 0.35, which is a smaller range than the first order correction.

We analyze the effects of non-perturbative corrections from figure 1(d). This is done
by only analyze the effect of exponential corrected entropy on the system (η 6= 0 while
α = λ = 0). If we neglect the first and second order perturbative corrections, can obtain
thermodynamic stability at a small horizon radius with positive correction term, however
negative one yields to an unstable system. Thus, by decreasing the radius of the horizon,
specific heat becomes positive due to non-perturbative quantum corrections (with positive
coefficient). Hence Dp-branes may be thermodynamically stable at a small radius at the
quantum scale. Figure 1(d) has been plotted for p = 4. One can similarly analyze the
behavior for other Dp-branes. Here, the specific heat behaves as the specific heat in a
system with a Schottky-like anomaly. In this case, the specific heat corrected by non-
perturbative corrections can be expressed as

C(η) = −(p− 8)
(
ω0 cosh βr8−p

H

) (
η exp(ω0 cosh βr8−p

H )− 1
)
, (3.9)

hence, the non-perturbative term dominates till,

r
(8−p)
H � ln η

(ω0 cosh β) . (3.10)

For the selected values of parameters (η = 1.001, ω0 = β = 1), we observe that this
corresponds to the second order term dominating till rH < 0.16, which is a smaller than
the scale at which first and second order perturbative corrections dominate.
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Figure 2. Specific heat in terms of horizon radius for β = 1 and ω0 = 1.

Here, the non-perturbative corrections dominant at much smaller scales, than the
perturbative cases. Now even though this is expected from the general structure of the
perturbation theory, the non-pertubative corrections dominate at small radius. Thus, they
can change the thermodynamic stability of Dp-branes at quantum scales. This can have
important consequences in physical models for Dp-branes.

Figure 1(e), shows the effects of logarithmic and exponential corrections simultane-
ously. Using some specific values of coefficients, we can observe that D6-brane is unstable
even for a small radius. However, other configurations are stable at a small radius due to
quantum corrections. The system again resembles a system with a Schottky-like anomaly.
The specific heat for this system becomes constant at high temperatures. Finally, in
figure 1(f), we can see the combined effects of both first and second order perturbative
corrections along with the exponential non-perturbative correction. We observe that the
Dp-brane configuration is stable at a critical value of the radius of the horizon, and the
specific heat increases with temperature.

It may be interesting to compare the second order correction with the non-perturbative
one which yields to the following relation,

η

λ
= exp(ω0 cosh βr8−p

H )(
ω0 cosh βr8−p

H

)2 , (3.11)

which clearly demonstrates that at small radius the non-perturbative corrections dominate.
In order to compare the effects of correction terms we represent figure 2. We can see

that non-perturbative contribution decays at larger radius, and can be neglected for large
enough radius.

Now, we can obtain the Helmholtz free energy via the following general formula,

F = −
∫
SdT , (3.12)
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where we can use dT = dT
drH

drH to solve the integral. Using the temperature (3.1) and
entropy (3.2) we find,

F = ω0r
7−p
H

4π + Fα + Fλ + Fη, (3.13)

where we defined,

Fα ≡ −
(7− p)α

4πrH cosh β
(
ln (ω0r

8−p
H cosh β) + 8− p

)
,

Fλ ≡ −
λ(7− p)

4π(9− p)ω0r
9−p
H cosh2 β

,

Fη ≡

η(ω0 cosh β)−
7−p

2(8−p)−2
ω0

4π(2p− 15)

 e−ω0 cosh β
2 r8−p

H r
− 3p2−49p+200

2(8−p)
H X, (3.14)

here, X is given in terms of Whittaker function as,

X = −(8−p)
(
(8−p)ω0 coshβr8−p

H −(7−p)
)
WM

(
− 9−p

2(8−p) ,−
2p−15
2(8−p) ,ω0 coshβr8−p

H

)
+(7−p)2WM

( 7−p
2(8−p) ,−

2p−15
2(8−p) ,ω0 coshβr8−p

H

)
, (3.15)

As we can see from figure 3(a), Helmholtz free energy is positive in absence of quantum
corrections. It may be observed from a solid red line of figure 3(a), that the Helmholtz free
energy of D6-brane is linear for rH . There is a special radius (rH = 1), where Helmholtz
free energy of all Dp-branes are the same. For Dp branes, the Helmholtz free energy de-
creases with temperature. Effect of the logarithmic correction on the Helmholtz free energy
illustrated in figure 3(b). As expected, we can see that leading order correction is important
at small horizon radius. As we found in figure 1(b), stability at small radii obtained by
negative logarithmic correction coefficient, which is corresponding to the negative Helmoltz
free energy represented by green dashed line of figure 3(b).

Then, in figure 3(c), we can analyze the effects of the second order perturbative correc-
tion. We can see that at smaller horizon radius the second order correction with positive
coefficient is dominant and may yields to instability of our system which is coincident with
result of figure 1(c).

In figure 1(d), we show effect of non-perturbative correction for the case of p = 4
(other dimensions yields to the similar result). Figure 3(e) show the effect of both the first
order perturbative and non-perturbative corrections. We can see that both stability and
instability at small radii can reach depends on the sign of coefficients. Finally, in figure 3(f)
we can see effect of all correction simultaneously. We can see that there are some situations
of complete stability or instability at small radii depends on the correction coefficient sign.

4 Near-extremal solution

Now, we can analyze the effect of perturbative and non-perturbative quantum corrections
on black branes near extremality. For such black branes, it has been observed that rH is
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Figure 3. Helmholtz free energy in terms of horizon radius for β = 1.

proportional to the energy density above extremality [40],

rH ∝ ε, (4.1)

where constant of proportionality is 8
√
πp−7G10Γ

(
7−p

2

)
. So, we can write the temperature

for such a system as
T ∼ cT ε

5−p
2(7−p) (4.2)

where cT is constant. Now, the corrected entropy for this system can be written as

SBH ∼ cSε
9−p

2(7−p) + α ln cSε
9−p

2(7−p) + λ

ε
9−p

2(7−p)
+ ηe−cSε

9−p
2(7−p)

, (4.3)

where λ = γ
4cS . The specific heat of near-extremal case can now be written as,

C = 9− p
5− p

cS

(
1− ηe−cSε

9−p
2(7−p)

)
ε

9−p
7−p + αε

9−p
2(7−p) − λ

ε
9−p

2(7−p)
. (4.4)

We observe that the near-extremalD6-brane is unstable in absence of perturbative quantum
corrections. However, exponential and second order corrections can make this system stable
at small quantum radius. Situation is different for the Dp-branes with p ≤ 4. We can obtain
the corrections to the internal energy of this system as

E = c0(9− p)ε
2(7− p) + Eα + Eλ + Eη, (4.5)
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Figure 4. Effect of logarithmic correction on the internal energy for cT = cS = 1.

where c0 = cT cS , and we have also defined,

Eα = α(9− p)
5− p cT ε

5−p
2(7−p) ,

Eλ = λ
cT
4 (9− p)ε−

2
7−p ,

Eη = c1ηε
− 9−p

2(7−p) (9− p)
12(7− p)(5− p)(8− p)(23− 3p)e

− cS2 e
9−p

2(7−p)
ε
− p

3−21p2+143p−315
4(9−p)(7−p)2 U, (4.6)

with c1 = cT c
− 23−3p

2(9−p)
S .

In the last expression of (4.6), U is given in terms of Whittaker function as,

U ≡ −
(
cS(9− p)ε

9−p
2(7−p) + 23− 3p

)
(9− p)WM

( 5− p
2(9− p) ,

2(8− p)
9− p , cSε

9−p
2(7−p)

)

+(23− 3p)2WM

( 23− 3p
2(9− p) ,

2(8− p)
9− p , cSε

9−p
2(7−p)

)
. (4.7)

In the absence of correction terms, the internal energy is linear for ε. This original internal
energy is denoted by E0. We find that quantum corrections are important for small ε, from
plots of figure 4, as they can change the value of the internal energy. It is also observed
that the situation may be different for p ≤ 4 and p = 6. Hence, we plotted two cases of
p = 0 in figure 4(a), and p = 6 in figure 4(b), to investigate the effects of the logarithmic
correction term.

In plots of figure 5 we can see effects of complete perturbative corrections. As expected,
we show that the second order correction is dominant at smaller ε.

Then, from figure 6(a), we show effect of non-perturbative correction. We can observe
the effects of all corrections together in figure 6(b), and compare them to the system
without such corrections (cyan lines of figure 6(a)). The logarithmic corrections increase
the value of the internal energy of D6-brane, while other corrections decrease its value.
Due to the combined effect of both perturbative and non-perturbative corrections, there is
a minimum value of the internal energy at high temperatures.
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Figure 5. Effect of perturbative corrections on the internal energy for cT = cS = 1.

Figure 6. Effect of non-perturbative corrections on the internal energy for cT = cS = 1. Cyan
lines are corresponding to α = λ = η = 0 for p = 0 (dotted) and p = 6 (solid).

Now, we can obtain the corrected Helmholtz free energy for this system as

F = −c0(5− p)ε
2(7− p) + Fα + Fλ + Fη, (4.8)

where we have defined,

Fα ≡
α

5− pcT e
5−p

2(7−p) ln ε
[
9− p− (5− p) ln

(
cSεe

− (5−p) ln ε
2(7−p)

)]
,

Fλ ≡ λ
cT
4 (5− p)ε−

2
7−p ,

Fη ≡ −
c2ηY

6p2 − 88p+ 322ε
p3−27p2+239p−693

(9−p)(7−p)2 e−
cS
2 e

9−p
2(7−p)

, (4.9)

with c2 = cT c
− 2p2+30p−112

(9−p)(7−p)
S . Here, Y is given in terms of Whittaker function as,

Y = −
(
cS(9− p)ε

9−p
2(7−p) − 2(7− p)

)
(9− p)WM

(
− 2

9− p,
23− 3p
2(9− p) , cSε

9−p
2(7−p)

)
+4(7− p)2WM

(7− p
9− p,

23− 3p
2(7− p) , cSε

9−p
2(7−p)

)
. (4.10)
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Now, if we neglect the perturbative corrections, the Helmholtz free energy of D6-brane
will become negative at small ε. It will also become negative for Dp-brane, with p ≤ 4 at
small ε, even after quantum corrections. So, the quantum corrections can have important
consequences for the behavior of the Helmholtz free energy of Dp branes.

5 Quantum corrected geometry

It may be noted that geometry emerges from thermodynamics in the Jacobson formal-
ism [22]. So, the thermal fluctuations to the geometry of black branes occur due to quantum
fluctuations of its geometry. So, such quantum corrections to the geometry of black holes
can be explicitly constructed from their thermal fluctuations [23, 24]. Now in Jacobson
formalism [22], one can choose a two-surface element P any point p. Here a Killing field χa

generates orthogonal boosts such that the temperature T is the Unruh temperature. This
Unruh temperature can be expressed as T = ~κ/2π with the acceleration of the Killing
orbit represented by κ. The boost-energy current Tabχa is used to obtain the heat flow.
We also consider a local Rindler horizon through p. It is generated by χa and its future
points to the energy carried by matter. It may be noted that the past pointing heat flux
through P, can be denoted by H. Now we can write

δQ =
∫
H
Tabχ

adΣb, (5.1)

Here ka a tangent vector to the horizon, and dΣa = kadλdA. The affine parameter λ
vanishing at P, with negative values to the past of P. The area element is denoted by dA,
and using this area element, we can write

δQ = −κ
∫
H
λTabk

akbdλdA, (5.2)

As the entropy is assumed to be proportional to the horizon area. Using the expansion of
the horizon generated by θ, we obtain

δA = −κ
∫
H
θdλdA, (5.3)

The Einstein equations can be obtained by expanding the θ terms. We note that the
Raychaudhuri equation, they vanish at P by a suitable choice of the local Rindler horizon

dθ

dλ
= −1

2θ
2 − σ2 −Rabkakb. (5.4)

Now integrate this equation, we can write

δA = −
∫
H
λRabk

akbdλdA, (5.5)

Thus, we observe that δQ = TdS = (~κ/2π) ξδA holds, if Tabkakb = (~ξ/2π)Rabkakb for
all null ka. Thus, we obtain (2π/~ξ)Tab = Rab + fgab for a suitable function f . Now using
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conservation laws and the Bianchi, we can write f = −R/2 + Λ for some constant Λ. So,
we obtain Einstein equations from thermodynamics of this system

Rab −
1
2 + Λgab = 2π

~ξ
Tab . (5.6)

Here ξ is related to Newton constant as G = (4~ξ)−1. Thus, we will try to obtain modified
metric, such that the modified metric reproduce the corrected entropy obtained in eq. (3.2).
We first note that the modified metric for black branes can be written as

ds2 = 1√
Dp(r)

(
−K(r)dt2 + dx2

‖

)
+
√
Dp(r)

(
dr2

K(r) + r2dΩ2
8−p

)
, (5.7)

where Dp(r) is defined as

Dp(r) = Dp(r) +
2
√
Dp(r)

Ω8−pr
8−p
H

α ln

√
Dp(r)

4G10−p
+

2
√
Dp(r)

Ω8−pr
8−p
H

ηe
−

Ω8−p
√
Dp(r)

4G10−p +
32G2

10−p

(Ω8−pr
8−p
H )2

λ, (5.8)

Here Dp(r) is defined by (2.2) and K(r) is defined by (2.3). The area of the event horizon
(A) of the quantum corrected geometry can be described by the modified metric (5.7). So,
we can write the area for the quantum corrected geometry as

A = Ω8−pr
8−p
H

√
Dp(rH). (5.9)

Now for the constants α, η, and λ, we can expand above expression, and to the first order
approximation write this area as

A = Ω8−pr
8−p
H

√
Dp(rH)Z, (5.10)

where

Z ≈ 1 +
α ln
√
Dp(rH)

4G10−p

Ω8−pr
8−p
H

√
Dp(rH)

+ ηe
−

Ω8−p
√
Dp(rH )

4G10−p

Ω8−pr
8−p
H

√
Dp(rH)

+
16G2

10−p

Ω2
8−p(r

8−p
H )2

√
Dp(rH)

λ . (5.11)

Here the second order terms of the coefficients for the quantum corrected geometry have
been neglected. Now, from using the fact that Dp(rH) = cosh β (from eq. (2.2)), we can
reproduce the entropy (3.2) as,

SBH = A
4G10−p

. (5.12)

Thus, it is possible to use these quantum corrections to the thermodynamics of the black
branes to construct the geometry of the quantum corrected black branes. It may be
noted that the exact form of the non-perturbative corrections cannot be directly obtained
from modifying the action for this system. However, here we have argued using the Ja-
cobson formalism [22], that such non-perturbative quantum corrections to the geometry
can be obtained from non-perturbative corrections to the thermodynamics of these black
branes [23, 24].
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6 Conclusion

In this paper, we have analyzed the thermodynamics of black branes at quantum scales.
This will be done by analyzing the effects of both perturbative and non-perturbative correc-
tions. The perturbative corrections correct this system by a logarithmic correction. Apart
from this logarithmic correction term, we also analyze next the leading order perturbative
correction to the entropy of this system. The non-perturbative corrections occur in the
form of the exponential function of the area. These correction terms correct the specific
heat of this system. This in turn corrects the thermodynamic stability of this system.
Thus, we have analyzed the effects of perturbative and non-perturbative quantum correc-
tions on the stability of Dp branes. It is observed that the behavior of D6 branes is different
for other Dp branes, with p < 6. We also calculate the corrections to the Helmholtz free
energy and internal energy of this system. It is observed that the behavior of perturbative
corrections is different from the behavior of non-perturbative corrections. We also used
the Jacobson formalism [22] to argue that these corrections to the thermodynamics should
corrected the geometry of black branes. In fact, we explicitly obtained the corrections to
the metric corresponding to both perturbative and non-perturbative quantum corrections.

It will be interesting to investigate the effect of such perturbative and non-perturbative
quantum corrections on different black holes. It may be noted that the effect of perturbative
quantum corrections on various black holes has been analyzed [25–28]. However, the effect
of non-perturbative quantum corrections on such black holes has not been discussed. As
we have observed that such non-perturbative corrections can have important consequences
for the stability of black branes, we expect that they will also have important consequences
for the stability of different black holes. This is because such non-perturbative quantum
corrections will modify the relation between area and entropy, and this modification would
in turn correct the specific heat of various black holes. This corrected specific heat would
modify the stability of such black holes. Thus, we expect these non-perturbative corrections
to have important consequences for the stability of various black holes. So, it would
be interesting to investigate the effects of non-perturbative quantum corrections on AdS
black holes. Such non-perturbative effects can also be investigated using the AdS/CFT
correspondence.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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