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1 Introduction

The fine-grained entropy of any quantum system A entangled with its complement Ā satis-
fies the unitarity bound S(A) ≤ min{log dimHA, log dimHĀ} in terms of the dimensions of
the corresponding Hilbert spaces. In a holographic theory, the entropy may be geometrized
in terms of the areas of extremal surfaces in spacetime [1–6]. As the system evolves, en-
tanglement structure can change dynamically, and be reflected in exchange of dominance
between different extremal surfaces. Beautiful work has shown that this exchange can be
necessary for the satisfaction of the bound on S(A) as time evolves [4–17].

One example [13] involves holographic CFTs entangled in a thermofield double state
dual to eternal black holes connected behind their horizons by a wormhole. The entropy of
a pair of subregions in these theories is initially associated to an extremal surface passing
through the wormhole. The area of this surface grows in time, threatening violation of the
entropy bound, a fate avoided by a thermalization transition after which the two regions
no longer share mutual information. After this time, their entropy is geometrized by a pair
of disconnected extremal surfaces of constant area outside the horizons. A second example
occurs in the same setup of eternal black holes, this time coupled to reservoirs collecting the
Hawking radiation escaping the black holes [4–6, 8, 11]. In this case, at early times the en-
tropy of the radiation increases in time exactly as computed by Hawking. At the Page time,
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a nontrivial quantum extremal surface (QES) [1–3, 18] appears in the spacetime. This leads
to a saturation of the entropy by requiring us to include the interior Hawking modes in the
computation of the entropy. The nontrivial QES occurs due to the replica wormhole saddle
points in the quantum gravity path integral [8, 11]. It bounds an “island” and is responsible
for information recovery from Hawking radiation via access to the black hole interior.

In this paper, we study what occurs when one considers finite-sized portions of the
radiation. For sufficiently small portions, the radiation may thermalize before or after it
has a chance to encode the black hole interior. We will probe this competition between
thermalization and the island mechanism — realizing both examples discussed above in
the same physical system — by examining the time-dependence of entanglement entropy.
The various transitions can be predicted by a careful application of the unitarity bound
described above. In short, island regions will appear when the entropy of quantum fields
on the black hole background threatens the unitarity bound set by its Bekenstein-Hawking
entropy, whereas thermalization will occur when the entropy of the radiation approaches
the maximal amount dictated by the size of the radiation region’s Hilbert space. We
will exhibit a nontrivial phase structure transitioning between these possibilities in two
scenarios, which we now summarize.

Summary of results. Our first scenario, studied in section 2, involves finite regions in
two reservoirs coupled to a thermofield double black hole in AdS2, see figure 1 (the entropy
of infinite radiation regions in this model was studied in [7, 8]). The entropy initially grows
linearly as time evolves, then (depending on the region size and boundary conditions) there
may be a transition to half the initial rate, and finally the growth stabilizes; see figure 3.
If we treat the radiation as holographic in its own right, the transition between the initial
and the final phase involves an exchange between an extremal surface passing between the
reservoirs through the induced dimension, and a pair of disconnected extremal surfaces
of constant area, as in [13]; see figure 2. However the “island formula” (reviewed below)
dictates a new intermediate phase, which includes an island, although the entropy does
not stabilize but instead grows with only half the initial slope. The eventual stabilization
of entanglement entropy of finite intervals then happens not because of entanglement is-
lands, but because of the thermalization of the segments. When the entanglement entropy
saturates, the island is no longer accessible.

Our second scenario involves two holographic quantum dots at different temperatures,
each dual to an eternal AdS2 black hole, in local equilibrium with a finite radiation reservoir.
The reservoir is modeled by Rindler space, which acts as a heat engine maintaining local
equilibrium by redshifting warmer modes approaching the cooler black hole and vice versa;
see the beginning of section 3 and figure 4. The radiation theory will itself be holographic.
The phase structure includes transitions between an asymmetric wormhole (the “confined”
phase; see section 3.2 and figure 7) and two black holes of different temperature (the “decon-
fined” phase; see section 3.1 and figure 5). In the deconfined phase, many extremal surfaces
vie to dominate the entropy of reservoir regions in this model. This is studied in section 4;
see figure 9, 10, 11 for the case where we include one pair of thermofield double quantum
dots in the region whose entropy we are computing and figure 12, 13, 14 for the case where
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we do not. As time evolves, these surfaces exchange dominance to maintain the unitary
upper bound on entropy. In particular, unlike the single black hole case, in this model it is
possible to have both temporary island configurations and permanent island configurations.

2 An eternal black hole coupled to a reservoir

Consider an AdS2 eternal black hole with flat, non-gravitating radiation reservoirs glued to
the two boundaries (figure 1) [7, 8]. In the AdS2 region we have Jackiw-Teiltelboim (JT)
gravity, along with transparent boundary conditions for conformal matter in the black hole
and reservoirs. The action is:

I = −φ0
4π

[∫
Σ2
R+ 2

∫
∂Σ2

K

]
− 1

4π

[∫
Σ2
φ(R+ 2) + 2φb

∫
∂Σ2

(K − 1)
]

+ ICFT , (2.1)

where the first term is topological, the last term is a Conformal Field Theory (CFT) with
central charge c, φ0 gives the Bekenstein-Hawking entropy of the extremal black hole (we
have set 4GN = 1), and φb is the asymptotic value of the dilaton on Σ2, the region of
spacetime where gravity is dynamical. Varying (2.1) with respect to the dilaton fixes the
metric to be locally AdS2. Globally we consider the eternal black hole (figure 1), with each
of the two exterior regions described by

ds2
grav = 4π2

β2
−dt2 + dσ2

sinh2 2πσ
β

, t ∈ R , σ ∈ (−∞,−ε] . (2.2)

We glue the surface σ = −ε continuously to the reservoir [7], so the latter’s metric is:

ds2
bath = −dt

2 + dσ2

ε2
, t ∈ R , σ ∈ [−ε,+∞) . (2.3)

Varying with respect to the metric yields the dilaton equation of motion:

DµDνφ− gµν�φ+ gµνφ+ 2πTµν = 0 . (2.4)

With the stress tensor given by Tµν = c
24πgµν , the dilaton in the gravitational region (2.2) is

φ(σ) = 2πφr
β

coth 2πσ
β

, (2.5)

where φr is an integration constant.

2.1 Radiation entropy

The island formula [4–6, 8, 11] says that the entanglement entropy of reservoir region A is

S(A) = min ext
I

[SCFT(A ∪ I) + Area(∂I)] , (2.6)

where I is an “island” in the gravitating region. In JT gravity the area term equals the
dilaton value on the corresponding surface plus the constant φ0, while, for a general 2d
CFT, the entropy on A ∪ I is related to the (generically non-universal) correlator of twist
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Figure 1. Penrose diagram of an eternal AdS2 black hole with flat reservoirs glued to the bound-
aries, and identical equal-time segments [p1, p2] and [p3, p4]. We compute the entanglement entropy
of the union of these segments.

operators. We take the CFT to be holographic following [6],1 and compute SCFT(A ∪ I)
through the Ryu-Takayanagi formula [1, 2] in a 3d gravity theory dual to this CFT on a
fixed curved background.

In Euclidean signature, the CFT on the 2d boundary of the 3d gravity theory is defined
on a Euclidean black hole attached to reservoirs with fixed metrics. The dynamical part
of the 2d boundary is referred to as a “Planck brane”, which corresponds to a cut-off
boundary of the 3d geometry. Given a specific dynamical 2d metric ds2

2 and stress tensor,
it is convenient to introduce a complex coordinate w on the 2d boundary so that Tww = 0
in the flat Weyl-transformed metric dwdw̄ [6]. Since the stress tensor vanishes, the dual
3d spacetime can be described by Poincaré coordinates in Euclidean AdS3:

ds2 = dwdw̄ + dz2

z2 . (2.7)

Writing the original boundary metric (before Weyl transformation) as

ds2
2 = Ω−2(w, w̄)dwdw̄ , (2.8)

the holographic relation
g(3)
µν

∣∣∣
bdy

= 1
ε2 g

(2)
µν (2.9)

leads to
dwdw̄

z(w)2 = 1
ε2 Ω−2(w, w̄)dwdw̄ ⇒ z(w) = εΩ(w, w̄) , (2.10)

which determines the embedding of the Planck brane in the 3d geometry [6]. Note that
the regulator ε is distinct from the 2d cutoff ε where the reservoir is glued to the AdS2
black hole.

Following [1, 2] the CFT entropies SCFT(A ∪ I) are computed by lengths of geodesics
in (2.7) ending on boundary points of A ∪ I, with z(w) treated as a cutoff. Physical
quantities will depend nontrivially on Ω, e.g., the entropy of a single interval between w1
and w2 is [27, 28]:

S(w1, w2) = c

6 log
(

|w1 − w2|2

ε1ε2Ω(w1, w̄1)Ω(w2, w̄2)

)
, (2.11)

1For further developments of the doubly holographic approach to the entanglement entropy of radiation,
see e.g. [14, 19–26], especially [20] for a pedagogical treatment.
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(a) (b)

(c) (d)

Figure 2. Extremal surfaces that extend into the 3d bulk from the Penrose diagram in figure 1
playing the role of the 2D boundary. (a) → (c) is a thermalization transition, which can be
interrupted by the island configuration (b). Surface (d) is always subleading.

To return to Lorentzian coordinates (2.2), we write w = e
2π
β

(σ+iτ) and Wick rotate τ = it.
The single interval entropy is universal for 2d CFTs [27] but we consider a union of intervals.
Typically, several combinations of geodesics end on such unions, with each geodesic length
given by (2.11). For fixed A ∪ I the minimal total geodesic length gives the entropy.
Thus, we identify possible 3d geodesic configurations computing SCFT(A ∪ I), extremize
the functional in (2.6) for each choice, and select the minimizing choice.

2.2 The entanglement entropy of finite segments

To compute the entropy of the region A = [p1, p2] ∪ [p3, p4] in figure 1, we will use a time
that continuously glues global AdS2 to the reservoirs, reversing Schwarzschild time t (2.2)
in one of the exterior regions of the black hole. Thus we choose endpoint coordinates

p1 = (b,−t+ iπ); p2 = (a,−t+ iπ); p3 = (a, t); p4 = (b, t) . (2.12)

Figure 2 shows 3d geodesics between interval endpoints p1,2,3,4 and a possible island in the
black hole region.2 The green curves are Ryu-Takayanagi surfaces, while red regions inside
the black hole are islands whose endpoints are the quantum extremal surfaces found by
extremizing (2.6).

Configuration (a): linear growth. Two 3d geodesics connect p1 ↔ p4 and p2 ↔ p3,
respectively. There are no islands and the entropy is given by

Sa = Sno island
connected(p1, p2; p3, p4) = 2 c3 log

[
π

β
cosh 2πt

β

]
. (2.13)

This expression grows approximately linearly in time.
2UV divergences are associated with endpoints of p1,2,3,4 and possible islands. The first kind are the

same for any choice of geodesic, so we omit them. The second kind renormalize φ0.

– 5 –



J
H
E
P
1
0
(
2
0
2
1
)
0
4
8

Configuration (b): island. This fully connected configuration includes an island in
the black hole region between [q1, q2]. The location is obtained by extremizing (2.6) with
respect to q1,2 = (x, tx) in their respective black hole exterior patches. The entropy is

Sisland
connected = 2

(
φ0+ 2πφr

β
coth

(
−2π
β
x

))
+ c

3 log

β
(
cosh

[
π
β (x−a)

]
−cosh

[
2π
β (t−tx)

])
π sinh

(
−2πx

β

)


+ c

3 log
[
π

β
cosh 2πt

β

]
. (2.14)

The extrema for the time and space decouple, and the time equation yields tx = t. The
solution for x is cumbersome, but in the regime φr

cβ � 1 there is a simplified expression

x ≈ a+ β

2π log
[
24πφr

cβ

]
,

φr
cβ
� 1 . (2.15)

The first line in (2.14) determines the time-independent island contribution. The second
line, which grows linearly with half the slope compared to the configuration (a), comes
from the long geodesic that goes across the Einstein-Rosen bridge.

Configuration (c): thermalization. This configuration gives the sum of thermalized
CFT entanglement entropies for the thermofield double copies of the reservoir segment:

Sthermalized = 2 c3 log
(
β

π
sinh π|a− b|

β

)
. (2.16)

Configurations (d): disconnected islands. Here two islands lie in exterior regions of
the black hole, connected with the RT geodesics to their respective copies of the radiation
segment. One can show that this configuration is always subleading compared to (c) while
also being time independent.

Summary. Varying the size of the reservoir regions with other parameters fixed, we see
in figure 3 that for large regions we have transitions (a) → (b) → (c), accessing an island
region for a finite period of time before losing it. For smaller regions we directly make the
thermalization transition (a) → (c) as in [13]. Thus, finite radiation segments give tempo-
rary access to the black hole interior, unlike infinite segments which give permanent access
at late times [7–9, 11]. This happens because during the entanglement evolution any finite
segment will eventually thermalize, scrambling information from the island. From the path
integral point of view the transition (a)→ (b) arises by including replica wormholes [7, 11],
and will be smoothed by also summing over replica non-symmetric manifolds [11, 29, 30].

By utilizing the unitarity bound discussed in section 1, the qualitative nature of these
transitions can be predicted without much computation. In particular, (a) and (b) will
eventually threaten the unitarity bound set by the size of the Hilbert space of our radiation
region, so must eventually transition. What about the transition (a) → (b)? Clearly this
need not come close to saturating the unitarity bound of our radiation region, since the
entropy continues to increase in phase (b) due to interior Hawking modes being captured
by the island while their exterior partners escape away into the infinite region of the bath.
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Figure 3. A. The entanglement entropy curves for the configurations (a), (b), (c) and (d) for
region size much larger than the distance from the interface and comparable to φr/c. B. The Page
curve of a finite segment, obtained by minimizing between the saddles shown in plot A.

However, the structure of the geodesics in figure 2(a) indicates that the mutual information
vanishes between (i) the gravitational region and the adjoining baths up to the radiation
region, and (ii) the rest of the complement of the radiation region A. In particular, this
means that each region of the complement is subject to its own unitarity bound. The
relevant bound here is the one set by the gravitational region (plus some of the adjoining
baths, which we take to be a small correction): once the entropy of this region comes close
to 2SBH, a transition must occur.

3 Two holographic quantum dots connected by a reservoir

The quantum-mechanical setup we consider next involves two thermofield double pairs of a
holographic quantum mechanical system (which we refer to as the quantum dot) interacting
through a common reservoir. The quantum dots are dual to JT gravity described by the
action (2.1). They are coupled to a CFT2 of central charge c, which lives in the reservoir.
We will not specify the exact Hamiltonian of the quantum dots; however a common example
of a quantum mechanical system holographically dual to JT gravity (in an appropriate
limit) is the SYK model [31–33].

The temperatures of the quantum dots are treated as independent parameters, and so
for this setup to be in the equilibrium, we have the reservoir working as a heat engine which
cools the matter CFT quanta being emitted from the hotter quantum dot and going into the
cooler one. The action of the heat engine is caused by the nontrivial metric in the reservoir.
Such a reservoir in Euclidean signature has a boundary consisting of two thermal circles of
different lengths (figure 4). One can write down a metric for such a reservoir as follows:3

ds2 = dr2 + f(r)2dτ2

ε2
, τ ∼ τ + 2πα , r ∈ (r1, r2) . (3.1)

Notice that the thermal periodicity changes from 2πf(r1)α/ε to 2πf(r2)α/ε. So, as adver-
tised, such a spacetime acts as a heat engine which equilibrates the radiation between the

3We include the regulator ε so that the metric in the gravity dual is manifestly continuous throughout
the spacetime, similarly to the discussion in section 2.
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Figure 4. Euclidean picture of the two quantum dots living on the thermal circles of different
lengths coupled by the conical reservoir.

two systems with different temperature. This is similar to considering different radial posi-
tions in a black hole in thermal equilibrium: the physical temperature for static observers
at each location is different, yet the entire system is in thermal equilibrium.

In the present paper we consider the simplest case and assume that f(r) = r and the
reservoir has the metric of a cone:

ds2
R = dr2 + r2dτ2

ε2
, τ ∼ τ + 2πα . (3.2)

The results in this model can be extended to a general f(r) in a straightforward man-
ner. The position-dependent temperature is precisely that of Rindler space, obtained by
continuing to Lorentzian signature τ → it.

By choosing an interval of size LR and inverse temperatures β1 and β2, we fix the radial
coordinates of boundaries in figure 4 and the solid angle of the cone. Choosing β2 > β1,
this yields the relations

r1 = LRβ1
β2 − β1

, r2 = LRβ2
β2 − β1

, α = β2 − β1
2πLR

. (3.3)

For α 6= 1 there is a conical singularity, although it is excised from the region we are
considering. The parameter α has a physical interpretation as the strength of the heat
engine which equilibrates the two sides, and it must be tuned as we vary the temperatures
or the distance over which we want to equilibrate the temperatures. Some formulas will be
simpler to write in terms of α, but fixing α and β1,2 fixes LR. The equal-temperature limit
can be realized by taking α→ 0 while keeping LR fixed, in which case r1,2 →∞. Physically
we are taking the strength of the equilibrator to zero (equal temperatures are already
equilibrated), but to keep finite-sized circles we need to scale the coordinates to infinity.

We can rewrite the cone metric as conformally flat:

ds2
R = ΩR(ξ)−2dξ

2 + dθ2

ε2
, ξ ∈ [0, L] , θ ∼ θ + 2π . (3.4)

Note that the dimensionless coordinate ξ plays the role of the spatial coordinate, and θ

plays the role of Euclidean time. The Weyl factor is given by the formula

ΩR(ξ) = 1
αr

= 2π
β1
e−αξ , r = r1e

αξ , L = α−1 log β2
β1
. (3.5)
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There are two possible two-dimensional gravitational duals for our Rindler reservoir coupled
to holographic quantum dots living on thermal circles at each end. We can either complete
the circular boundaries of the reservoir into a torus, or we can have independent disks at the
two boundaries. The first possibility represents a confined phase, described by a wormhole,
shown schematically in figure 7. The second possibility represents a deconfined phase,
described by independent thermofield double black holes, shown schematically in figure 4.

The partition sum of the theory will undergo transitions between these confined and
deconfined phases as the parameters change. We expect that the phase structure will be
similar to the one in [34]. The wormhole solution should be global AdS2 as in [34], except
that the dilaton profile will be a one-parameter generalization of the usual one: the solution
has a free constant that is usually fixed by the Z2 symmetry, but in our case this constant
will be fixed by the choice of temperatures. This allows us to cut the solution off at slightly
different coordinate values on either side of the wormhole, which leads to equal values of
φr, but with different temperatures. In other words, the boundary conditions from the
bulk perspective are given by

ds2
1,2 = du2

ε2
, u ∼ u+ β1,2 , φ1,2 = φr

ε
(3.6)

at leading order in ε. The other novelty is the Rindler region. As we reviewed above, a
Weyl transformation maps this to the usual case of a finite cylinder with constant ther-
mal periodicity. The Weyl anomaly then makes a contribution to the partition sum, but
since the transformation is the same in both solutions, the anomaly does not affect the
phase structure.

3.1 Black hole phase

The action is given in (2.1) and the solution that describes the geometry (figure 4) in-
volves two Euclidean copies of the gravitational solution in (2.2)–(2.5), with different
temperatures:

ds2
1 = 4π2

β2
1

dτ2
1 + dσ2

sinh2 2πσ
β1

; σ ∈ (−∞,−ε] , τ1 ∼ τ1 + β1 , (3.7)

ds2
2 = 4π2

β2
2

dτ2
2 + dσ2

sinh2
[

2πσ
β2
− L

] ; σ ∈
[
β2
2πL+ ε,+∞

)
, τ2 ∼ τ2 + β2 . (3.8)

The reservoir metric is given by (3.4), with L = α−1 log β2
β1

being the size of the reservoir
in the cylinder coordinates. The reservoir coordinate ξ is dimensionless, hence the extra
conversion factor of β2

2π . The dilaton profile in the disk regions is given by the equations

φ(σ)1 = −2π
β1
φr coth 2πσ

β1
; (3.9)

φ(σ)2 = 2π
β2
φr coth

(2πσ
β2
− L

)
. (3.10)

– 9 –
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Figure 5. The schematic picture of the black hole phase in the Euclidean signature. The spacetime
is two hyperbolic disks connected by the conical reservoir.

We can break up the on-shell partition function for this solution into two main pieces.
The first is the gravitational contribution on the disks; it is obtained by directly evaluating
the pure JT gravity part of the action on the solution, and reads

Zdisks,grav = e
2φ0+πφr

(
1
β1

+ 1
β2

)
. (3.11)

The second piece of the on-shell partition function comes from the matter CFT living on the
curved background. The spacetime metric can be written as ds2 = e2ωdŝ2

flat everywhere in
the spacetime, and so the nontrivial Weyl factor ω gives a Weyl anomaly contribution [35]:

Zanomaly = exp
[
c

24π

∫ √
ĝ (∂ω)2

]
. (3.12)

The computation of this partition function involves a step which will also be used in the
computations of entanglement entropy in this model, so we discuss it in detail.

Our spacetime is a closed manifold, so there are no physical boundaries to generate
boundary terms. We perform the conformal transformation from the disks and the conical
reservoir shown in figure 4 to the plane with metric of the form ds2 = e2ωdŝ2

flat. We write
the flat reference metric in polar coordinates:

dŝ2
flat = dwdw̄ = dρ2 + ρ2dϕ2 , (3.13)

where w = ρeiϕ is the complex coordinate, ρ ∈ [0,+∞) and ϕ ∼ ϕ+ 2π. The explicit form
of the conformal transformation is given by

Disk 1 : w = e
2π
β1

(σ+iτ1) ; (3.14)
Reservoir : w = eξ+iθ ; (3.15)

Disk 2 : w = e
2π
β2

(σ+iτ2)
. (3.16)

As shown in figure 6, the plane is divided into three regions where the Weyl factor ω is
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Figure 6. Euclidean geometry of two black holes coupled via a reservoir conformally mapped to a
plane. The shaded region is the reservoir.

given by different functions:

Disk 1 : eω1 = Ω−1
1 = 2

1−ρ2 , ρ∈
[
0,1− 2π

β1
ε

]
; (3.17)

Reservoir : eωbath = Ω−1
bath = β1

2περ
α−1 , ρ∈

(
1− 2π

β1
ε,

(
β2
β1

) 1
α
(

1+ 2πε
β2

))
; (3.18)

Disk 2 : eω2 = Ω−1
2 =

2
(
β2
β1

) 1
α

ρ2−
(
β2
β1

) 2
α

, ρ∈
[(

β2
β1

) 1
α
(

1+ 2πε
β2

)
,

(
β2
β1

) 1
α

Λ
]
, (3.19)

where the bottom line includes the Weyl factor from the Rindler geometry in the reservoir
defined in (3.5) written in terms of w = eξ+iθ, and Λ� 1 is the cutoff. The cutoff is defined
with the (β2/β1)1/α prefactor to ensure the ratio of radii defining disk 2 is independent of
β1, which means the contribution of disk 2 to the partition function will be independent of
β1 (see (3.21) below). We now compute the contributions from the three regions to (3.12)
separately.

Disk 1. We integrate from ρ = 0 to ρ = 1− 2π
β1
ε and get

Z1 = exp
[
cβ1

24πε + c

6 log 4πε
β1
− c

8

]
Z̃1 , (3.20)

where Z̃1 is the partition function of the theory on the portion ρ∈ [0,1–2πε/β1] of flat space.

Disk 2. We integrate from ρ =
(
β2
β1

) 1
α
(
1 + 2πε

β2

)
to ρ = Λ� 1 and get

Z2 = exp
[
cβ2

24πε −
c

6 log 4πε
β2
− c

24 + c

3 log Λ
]
Z̃2 , (3.21)
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where Z̃2 is the partition function of the theory on the portion ρ∈
[(

β2
β1

)1
α
(
1+ 2πε

β2

)
,
(
β2
β1

)1
α Λ
]

of flat space.

Reservoir region. Here we integrate from ρ = 1− 2π
β1
ε to ρ =

(
β2
β1

) 1
α
(
1 + 2π

β2
ε
)
and get

Zreservoir = exp
[
c(α− 1)2

12α log β2
β1

]
Z̃reservoir , (3.22)

where Z̃reservoir is the partition function of the theory on the portion ρ ∈
[
1−2πε/β1,

(
β2
β1

) 1
α

(1 + 2πε/β2)
]

of flat space. Combining (3.20)–(3.22) and using the normalization

Z̃1Z̃2Z̃reservoir = 1, we get the total result for the CFT anomaly contribution:

Zanomaly = exp
[
− c6 + c

12

(
α+ 1

α

)
log β2

β1
+ c(β1 + β2)

24ε + c

3 log Λ
]
. (3.23)

Next we combine this result with the gravitational partition function (3.11):

Z = exp
(

2φ0 −
c

6 + πφr

( 1
β1

+ 1
β2

)
+ c

12

(
α+ 1

α

)
log β2

β1

)
. (3.24)

This is the final result for the partition function of the disconnected black hole phase. We
removed two terms from (3.23): a 1/ε divergence proportional to the sum of lengths of
the boundary of the hyperbolic disk which was removed by a local counterterm, and a
divergence in Λ that is expected to renormalize φ0.4

3.2 Asymmetric wormhole phase

The asymmetric wormhole solution is a quotient of Euclidean AdS2 spacetime with the
metric [34, 36]

ds2 = dχ2 + dσ2

sin2 σ
, φ = −2πT traceless; bulk

σσ

(
γ − σ
tan σ + 1

)
, (3.25)

where χ ∼ χ + b is a periodic coordinate which plays the role of Euclidean time direction
and σ ∈ [ε1, π− ε2] is the spatial coordinate with ε1,2 being small cutoffs to be determined
below. The two boundaries of AdS2 are glued to the Rindler reservoir with the metric (3.4).
The spacetime is thus a conformally flat manifold with the topology of a torus, as shown
in figure 7.

It remains to compute T traceless; bulk
σσ and fix γ. Ignoring the curved metric for a moment,

the torus has circumferences b and d = π + (2πα)−1b log β2
β1

along the χ and σ directions
of the AdS2 bulk, and along the θ and ξ directions of the reservoir, respectively. For the
wormhole solution to exist, we take b > d. If we consider a holographic CFT on this

4Note that if we chose the cutoff in the plane as Λ instead of (β2/β1)1/αΛ, it would modify the coeffi-
cient of the term α−1 log β2

β1
and give the wrong answer in the equal-temperature limit where α → 0 and

α−1 log β2
β1
→ 2πLR/β, where we denote the limiting value of β1 and β2 as β.
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Figure 7. Schematic of the wormhole phase. The asymmetry of the wormhole is caused by the
different sizes of the thermal circles which are glued to the regulated AdS2 boundaries. Correspond-
ingly, the two boundary regulators are different.

background, and quantize along the χ direction of the AdS2 (θ direction of the reservoir),
we are in the vacuum. The vacuum stress tensor on such a cylinder of circumference d,
evaluated for a torus with the flat metric ĝµν is therefore:

T ĝσσ = −T ĝχχ = − πc

6d2 = − c

6π
1(

1 +
b log β2

β1
2π2α

)2 . (3.26)

Now recall that the gravitational part of the manifold has a curved metric (3.25) of the
form gµν = e2ω ĝµν , where ĝµν is the flat metric. This gives an anomalous contribution to
the stress tensor which has a traceless piece and a piece proportional to the metric. The
traceless piece coming from the combination of the flat torus and the anomaly is what
enters in the dilaton solution above and is given as

T traceless; bulk
σσ = −T traceless; bulk

χχ = − c

6π
1(

1 +
b log β2

β1
2π2α

)2 + c

24π . (3.27)

Unlike previous works we have a free parameter γ in the solution for the dilaton; without
this free parameter the solution would only exist for equal temperatures on the two sides.
We want to match the lengths of the different thermal circles at the interfaces between
the wormhole and the Rindler bath while maintaining equal φr values (see eq. (3.6)). This
requires asymmetric cutoffs σ1 = ε1 � 1, π − σ2 = ε2 � 1:

b

ε1,2
= β1,2

ε
=⇒ ε1,2 = b

β1,2
ε , φ

∣∣
σ1

= φ
∣∣
σ2

=⇒ γ = πβ2
β1 + β2

. (3.28)

So the choice of temperatures β1, β2 dictates the cutoffs σ1, σ2 and the dilaton solution.
In the symmetric case β1 = β2 we would find γ = π/2. The dilaton boundary condition
fixes b through

φ
∣∣
σ1

= φr
ε

=⇒


c

3
(

1 +
b log β2

β1
2π2α

)2 −
c

12

 = φrb(β1 + β2)
πβ1β2

. (3.29)

– 13 –



J
H
E
P
1
0
(
2
0
2
1
)
0
4
8

Having established the dilaton solution, we are now ready to discuss the full partition
function of the wormhole phase. We can break up the partition function in this phase into
three pieces:

(i) The gravitational contribution from the AdS2 wormhole, computed using the ac-
tion (2.1) evaluated on the solution (3.25).

(ii) The CFT anomaly from the Weyl transform from cylinder χ ∈ [0, b), σ ∈ [ε1, π − ε2]
to the AdS2 metric in the gravitational region. It is computed using equation (3.12)
with eω = 1

sinσ .

(iiia) The contribution of the CFT on a torus of lengths d and b. Recall that we assume
b > d to project onto the vacuum for a holographic CFT. Under this assumption
the partition function is the thermal partition function of a CFT on the circle of size
d = π + (2πα)−1b log β2

β1
.

(iiib) The CFT anomaly from Weyl transforming from the cylinder to the cone in the
reservoir region with the Weyl factor given by (3.5).

Altogether we get

Z =Z(i)Z(ii)Z(iii) = exp


−φrb

2

4π

( 1
β1

+ 1
β2

)
︸ ︷︷ ︸

(i)

− cb

24︸ ︷︷ ︸
(ii)

+ c

6
b

1+
b log β2

β1
2π2α︸ ︷︷ ︸

(iiia)

+ cα

12 log β2
β1︸ ︷︷ ︸

(iiib)


. (3.30)

Note that the contribution (i) is accompanied by a 1/ε-divergence proportional to the
length of AdS boundaries, which is identical to the 1/ε-divergence that appeared in (3.23)
in the disconnected phase and is removed in the same way. Note that the equation (3.29)
can be reproduced by extremizing (3.30) over b.

The contribution (iiib) is the same between the two phases, and can hence be ignored
in determining which phase is dominant. The phases are easy to compare in two limits for
which the equation (3.29) has a simple solution. In the first limit we have (trading α for LR)

LR�φr/c : b≈ β1β2cπ

4φr(β1+β2) (3.31)

=⇒ ZWH ≈ exp
(

β1β2c
2π

64φr(β1+β2) +IR
)
, ZBH ≈ exp

(
2φ0+

( 1
β1

+ 1
β2

)
πφr+IR

)
, (3.32)

where IR = c
24π

β2−β1
LR

log β2
β1

is the contribution from the reservoir which is common for the
two phases. Equating the two expressions, we find that the wormhole dominates for

β1β2
β1 + β2

&
128φrφ0
c2π

. (3.33)
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In the second limit we have

LR�φr/c : b≈ π(β2−β1)
LR log β2

β1

(3.34)

=⇒ ZWH ≈ exp

 cπ(β2−β1)
24LR log β2

β1

+IR

 , ZBH ≈ exp

2φ0−
πcLR log β2

β1

6(β2−β1) +IR

 . (3.35)

Equating the two expressions, we find that the wormhole dominates for

β2 − β1

log β2
β1

&
48LRφ0
cπ

. (3.36)

Notice that in this limit it is sufficient to take β2 large at any value of β1 for the wormhole
to dominate.

4 Page curves of two connected black holes

We can now analyze the structure of entanglement entropy in our model to ask when island
configurations appear, and whether and how they compete with other quantum extremal
surfaces to saturate the entropy.

A priori, we can study this question in either of the two phases discussed in the previous
section. However, we will argue that the wormhole phase does not have any island saddles.
First we show that, for a holographic theory, we have to be in the vacuum channel, i.e. in
the doubly holographic picture the three-dimensional bulk filling in the torus is thermal
AdS3. To see this, if we were instead in the vacuum in the dual channel, i.e. the three-
dimensional bulk filling in the torus being the BTZ black hole, this would imply a positive
stress-energy tensor. Such a stress tensor would not consistently solve the equation of
motion (2.4) with the boundary conditions needed for the dilaton. This is the familiar
statement that we need a negative stress-energy to support the wormhole [36, 37].5 To
complete the argument, note that in the vacuum channel the 2d entanglement entropy is
O(c) and constant for intervals in the bath and their thermofield double partners. Any
nontrivial QES will come with a cost of φ0, which we assume to be much larger than the
CFT central charge c. Hence the nontrivial QES will never dominate. In the rest of this
section we therefore focus on the phase with two black holes.

4.1 The two black hole setup

We are interested in the temporal behavior of the entanglement entropy of the two ther-
mofield double copies of a segment that includes some portion of radiation in the reservoir
and may or may not include one of the quantum dots dual to black holes. The metric of the
exterior regions of the black hole is given by the Lorentzian version of the solution (3.7)–
(3.8). We rescale the coordinates in such a way that they are dimensionless and continuous

5The spacetime wormhole can be converted into an (eternally) traversable spatial wormhole by analytic
continuation, e.g. in equation (3.25) continue χ→ it.

– 15 –



J
H
E
P
1
0
(
2
0
2
1
)
0
4
8

Figure 8. The Penrose diagram for two eternal black holes with different inverse temperatures
β1, β2 connected by two copies of the reservoir (shown by the shaded regions) with the conical
metric (3.4). The arrows show the direction of the coordinate time in the external regions of the
black holes. The diagram is identified across the dashed line which goes through the bifurcation
surface of the second black hole.

across the pairs of exterior regions connected to their corresponding reservoirs. The metric
in the external black hole region then reads:

ds2
1 = −dt

2 + dξ2

sinh2 ξ
; ξ ∈

(
−∞,−2π

β1
ε

]
(4.1)

ds2
2 = −dt2 + dξ2

sinh2(ξ − L)
; ξ ∈

[
L+ 2π

β2
ε,+∞

)
, (4.2)

and the reservoir metric is the Lorentzian continuation of the metric (3.4):

ds2
R = β2

1
4π2 e

αξ−dt2 + dξ2

ε2
, ξ ∈

[
−2π
β1
ε, L+ 2π

β2
ε

]
. (4.3)

Note that temperature dependence is now contained in the cutoffs for ξ. Thus the lengths
of thermal circles on the boundaries in the Euclidean continuation of the metric are the
same and are equal to β1,2/ε. The dilaton solution in these rescaled coordinates reads

φ(σ)1 = −2π
β1
φr coth(−ξ) ; (4.4)

φ(σ)2 = 2π
β2
φr coth (ξ − L) . (4.5)

In terms of the Schwarzschild-like coordinate t, the right side of the TFD evolves forward
and the left side evolves backward, as indicated by arrows in figure 8. This setup gen-
eralizes the eternal black hole version of the information paradox discussed in [7, 8, 11]
and in section 2 of the present paper to the case of two eternal black holes instead of one.
Correspondingly, at late times we can expect islands to appear in both black hole regions.
Similar models were considered in [11, 25, 26]. See [38, 39] for a discussion of entanglement
between disjoint gravitating universes.

To compute the generalized entropy functional, we again assume that the matter CFT
is holographic and dual to some asymptotically AdS3 geometry, and we follow the approach
explained in section 2.1. The CFT entanglement entropy can be computed by (2.11) using
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Figure 9. We collect the radiation in the bold blue segments of radiation that include the boundary
duals (quantum dots) of the second eternal black hole.

the conformal transformation to the plane from section 3.1. This transformation maps
a pair of black hole exterior regions connected by a reservoir on the same side of the
thermofield double (in Euclidean signature) to the complex w-plane with the conformally
flat metric Ω−2(w, w̄)dwdw̄, with the Weyl factor Ω in the three regions given by (3.17)–
(3.18):

Black hole 1 : Ω1 = 1− |w|2
2 ; (4.6)

Black hole 2 : Ω2 =
|w|2 −

(
β2
β1

) 2
α

2
(
β2
β1

) 1
α

; (4.7)

Reservoir : Ωbath = 2π
β1
|w|1−α . (4.8)

Finally, to compute the area terms in the island formula (2.6) we need also the dilaton
profile, which is given by equations (3.9)–(3.10).

4.2 Entanglement entropy of segments including the second black hole

We begin by treating the second black hole as a detector which collects the radiation from
the first black hole. This detector also radiates back into the reservoir, at a rate which
creates an equilibrium with the reservoir heat engine. The Hilbert space available to the
black hole detector is finite, but nevertheless it is large enough to be comparable to the
Hilbert space of the first black hole. This means that it should be able to gain access to
the island.

In the microscopic description, we want to compute the entanglement entropy of
a quantum dot and its thermofield double partner, plus some of their adjoining baths
(figure 9). The coordinates of the reservoir endpoints in terms of the ξ, t variable are
chosen as

p2 = (a,−t+ iπ); p3 = (a, t) . (4.9)

In the two-dimensional effective gravitational description we need to search for QESs which
extend the regions into the bulk, plus possible QESs in the other gravitational region which
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(a) (b) (c)

Figure 10. Configurations of the RT geodesics extending into the 3d bulk which determine the
competing generalized entropy channels with the second black hole included in the region being
probed. The drawings are identified across the dashed line which goes through the bifurcation
surface of the second black hole. Multiple-island configurations, which turn out to be always
subleading, are not shown. For the connected configurations (a) and (b) the blue segments join
across the bifurcation surface and the QES is empty surface.

bound islands. Three configurations6 can dominate the Page curve; they are shown in
figure 10 (other configurations are subleading). As we assume the CFT is holographic, it is
straightforward to identify the channels in the CFT entanglement entropy which define the
competing generalized entropy functionals and quantum extremal island configurations.

Configuration (a): linear growth. This is a fully connected no-island configuration,
with a trivial (empty) QES in the second black hole region. The endpoints p2 = (a,−t+iπ)
and p3 = (a,t) are connected by a geodesic in the 3D bulk. With this in mind, the entan-
glement entropy of the configuration (a) is given just by one geodesic shown in figure 10(a),
and reads

Sa = Sno island
conn. (p2, p3) = c

3 log
(
β1e

αa

π
cosh t

)
. (4.10)

Configuration (b): the island. This is a fully connected configuration that includes an
island in the first black hole region and an empty QES in the second black hole region. The
location of the island [q1, q2] is again defined by the QESs. Since the points p2 and p3 are
located symmetrically with respect to the bifurcation surface of the first black hole, that
means that the QES points will have the same coordinates q1,2 = (x, tx). The generalized
entropy is

Sb = Ext
q1

Sisland
gen (q1, p2) + Ext

q2
Sisland
gen (q2, p3) , (4.11)

where the generalized entropy functional reads

Sisland
gen (q2, p3) = φ0 + 2πφr

β1
coth (−x)

+ c

6 log
(
β1e

αa (cosh(x− a)− cosh (t− tx))
π sinh (−x)

)
. (4.12)

Extremizing tx gives tx = t, and so the island contribution is time-independent.

6We omit the usual UV divergences in the generalized entropy functionals and other formulae for the
entanglement entropy as we did in section 2.
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Figure 11. Page curves for the radiation segments plus the second black hole. We fix the physical
reservoir size LR = 0.5, physical location of p2,3 endpoints r = r1 + 0.01LR, β1 = 1, φ0 = 10 c6 and
φr = c

6 . (A) β2 = 2. The no-island phase dominates at late times. (B) β2 = 1.3. The island phase
dominates at late times.

Configuration (c): disconnected QES configuration. This configuration corre-
sponds to two times the entropy of the segment. The corresponding generalized entropy
functional reads

Sgen(p3, p4) = φ0 + 2πφr
β2

coth
(
y − α−1 log β2

β1

)

+ c

6 log

2β1e
αa+y β2

β1

1/α [cosh (y − a)− cosh(t− ty)]

π

(
e2y −

(
β2
β1

)2/α
)

 , (4.13)

where (y, ty) are the coordinates of the QES p4. The total entropy in this configuration
reads

Sc = 2× Ext
p4

Sgen(p3, p4) . (4.14)

It is worth noting that for this configuration the QES points p1,4 end up at finite distance
between the AdS2 boundary and the horizon in the corresponding external regions of the
second black hole. This quantity is also time-independent.

4.2.1 Page curves

The possible behaviors in the case of the black hole detector involve a competition between
the two phases of constant entanglement entropy at late times — namely, between config-
urations (b) and (c). Let us fix the physical size of the reservoir LR. Then we can have
a transition between (b) and (c) at late times if we vary the temperature ratio β2/β1 or
the physical position of the points p2,3 at the Rindler coordinate r = β1

2παe
αa. We show

this transition in figure 11 for the case when we vary the temperature of the “detector” β2
while keeping r fixed. We see that adjusting this temperature can reveal the island of the
first black hole. A similar results were obtained in [23, 26].

This transition has a simple interpretation, if we think of the island configuration (b)
as the entanglement entropy of the first black hole plus the segments [0, a]. It competes
against configuration (c), which is the entropy of the second black hole plus segments [a, L].
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Figure 12. We consider the radiation in the bold blue segments of the reservoir.

Then the island of the first black hole reveals itself if the entropy of the first black hole
becomes smaller than the entanglement entropy of the probed system (which includes the
second black hole and the radiation segment [a, L]). This means that this system, which
we can think of as a detector, has enough room to effectively accommodate all states of the
radiation. If the detector’s entropy is not large enough, however, it effectively thermalizes
before gaining access to the island, which is expressed by the phase (c). In other words,
the no-island phase 9(c) and the island phase 9(b) can be interpreted, respectively, as the
island phase and the no-island phase of the computation of entanglement entropy of the
complementary subsystem. Note that the key property in the evolution of the entanglement
entropy of radiation regions which include one of the black holes is that the Hilbert space of
the radiation is large. Because of this, there are no finite size effects that would introduce
an intermediate phase into the Page curve for any choice of parameters, as we saw in
the case of a single black hole in section 2. Below, we exclude both black holes from the
radiation region, so that the radiation segment belongs to the interior of the reservoir only.
We will then see that the Page curve structure becomes richer.

4.3 Entanglement entropy of segments in reservoir

We compute the entanglement entropy of the union of two identical segments A = [p1, p2]∪
[p3, p4] positioned inside corresponding copies of the reservoir, as shown in figure 12. The
coordinates of these endpoints are chosen as:

p1 = (b,−t+ iπ); p2 = (a,−t+ iπ); p3 = (a, t); p4 = (b, t) . (4.15)

We now have 5 possible generalized entropy configurations which can dominate, shown in
figure 13.

Configuration (a): linear growth. This is a fully connected no-island configuration,
where two RT geodesics connect the endpoints p1 ↔ p4 and p2 ↔ p3, respectively. The
entanglement entropy of this configuration is given by the formula

Sa = Sno island
conn. (p1, p2; p3, p4) = 2 c3 log

β1e
α(a+b)

2

π
cosh t

 . (4.16)

This expression grows in time approximately linearly, and in the general case the entropy
depends on the segment location when α 6= 0.
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(a) (b) (c)

(d) (e)

Figure 13. Configurations of the RT geodesics extending into the 3d bulk which determine the
competing generalized entropy channels. The drawings are identified across the dashed line which
goes through the bifurcation surface of the second black hole. Multiple-island configurations that
are always subleading are not shown.

Configuration (b): two islands. This is a fully connected configuration that includes
an island in every black hole region. The location of the islands [q1,3, q2,4] is defined by
the QESs, obtained by extremizing the generalized entropy functionals. These generalized
entropy functionals are exactly the same ones as (4.12) for the island in the first black
hole and (4.13) for the island in the second black hole. We write down the corresponding
formulae for the QESs on the right side of the thermofield double, the points q2 = (x, tx)
and q3 = (y, ty). The QESs q1 and q4 on the left are determined analogously.

Sisland
gen (q2, p3) = φ0 + 2πφr

β1
coth (−x)

+ c

6 log
(
β1e

αa (cosh(x− a)− cosh (t− tx))
π sinh (−x)

)
; (4.17)

Sisland
gen (q3, p4) = φ0 + 2πφr

β2
coth

(
y − α−1 log β2

β1

)

+ c

6 log

2β1e
αb+y β2

β1

1/α [cosh (y − b)− cosh (t− ty)]

π

(
ey −

(
β2
β1

)2/α
)

 . (4.18)

The total entropy in this configuration is given by the sum of the two island contributions,
or four quantum extremal surfaces:

Sb = Ext
q2

Sisland
gen (q2,p3)+Ext

q3
Sisland
gen (q3,p4)+Ext

q4
Sisland
gen (q4,p1)+Ext

q1
Sisland
gen (q1,p2) . (4.19)

The two-island contribution is time-independent, and tx = ty = t.

Configuration (c): generalized thermalization. This is a disconnected configura-
tion, which is the sum of the CFT entanglement entropy for the two thermofield double
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copies of the reservoir segment. The entanglement entropy of a copy is given by the formula

Sdisc.(p1, p2) = c

3 log
(
β1e

α(a+b)

π
sinh |a− b|2

)
. (4.20)

This configuration can be interpreted as describing the extension of the notion of thermal-
ization to the case of the varying temperature. The entropy of the segment on the left of
TFD [p3, p4] is given by an analogous formula, and the total entropy in this configuration
is given by

Sc = Sdisc.(p1, p2) + Sdisc.(p3, p4) . (4.21)

Configurations (d) and (e): single island. In these configurations we have an island
in one of the black holes while the other black hole still produces linear growth:

Sd = Ext
q4

Sisland
gen (q4, p1) + Ext

q3
Sisland
gen (q3, p4) + c

3 log
(
β1e

aα

π
cosh t

)
; (4.22)

Se = Ext
q1

Sisland
gen (q1, p2) + Ext

q2
Sisland
gen (q2, p3) + c

3 log
(
β1e

αb

π
cosh t

)
. (4.23)

These expressions grow linearly with half the slope of configuration (a).
Let us note that there are also configurations that have two islands in black hole

regions, similarly to the case (d) in section 2 (see figure 2). Just as in that case of a single
eternal black hole, such configurations are always subleading, so we do not consider them.

4.3.1 Page curves

We have four qualitatively different possibilities for the Page curve, which are determined
by the competition between the two-island phase (b) and the disconnected phase (c) at
very late times, and by the possibility of one of the two single-island phases (d) or (e)
dominating for a finite time between the early and very late times.

First, let us consider the equal-temperature case, which is achieved in the limit α→ 0,
β2
β1
→ 1 with L = 2πLR/β fixed. The four qualitatively different Page curves are shown in

figure 14. More specifically, we plot the contributions of the five phases (a)–(e) described
above.

• In figure 14A the linear growth generated by the connected no-island phase (a) transi-
tions into the two-island phase (b), which keeps the entanglement entropy constant.
The segment is large enough so that the island phase saturates the entanglement
entropy before the disconnected phase (c) has a chance to become relevant.

• In figure 14B the connected phase (a) also dominates at early time, but because of
the de-centered position of the segment in the reservoir, at some time the transition
to the mixed phase (e) happens. This phase has an island in the first black hole but
continues to grow linearly with halved slope due to the active remaining ER bridge
across the second black hole. At later times, another transition happens, where the
entanglement entropy is completely saturated by the two-island phase. Thus, the
single-island phase persists only for finite time.
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Figure 14. Page curves for the radiation segments in the reservoir in the equal temperature case
with β1 = β2 = 1. (A) a = 0.12L, b = 0.88L. (B) a = 0.02L, b = 0.78L. (C) a = 0.24L, b = 0.76L.
(D) a = 0.04L, b = 0.52L. We have set c

6φ0 = 20 and πφr

3 = 10.

• In figure 14C, the segment is small enough so that the entanglement entropy is
saturated by the disconnected phase (c) before any islands get involved.

• In figure 14D, the early-time growth (a) transitions into the mixed phase (e) with
slower growth and an island in one of the black holes. However, later the entanglement
entropy is saturated by the disconnected phase (c) again, so the island is no longer
accessible. Thus, this behavior only allows for temporary access to an island.

When the temperatures are different, β1 6= β2, the qualitative behavior is the same. The
main difference is that now temporary single-island phases are possible even for segments
centered in the reservoir, because there is an additional non-uniform contribution in the
entanglement entropy arising from the heat engine, which is represented, e.g., by the second
term in (4.20). Because of this, a Page curve for any fixed pair of segments can include a
temporary single island phase if we adjust the temperature difference and/or the reservoir
size and positions of endpoints of A.

By utilizing the unitarity bound S(A) ≤ min{log dimHA, log dimHĀ} discussed in
section 1 and applied at the end of section 2, the qualitative nature of these transitions can
be predicted. In our setting, both dimHA and dimHĀ are finite, and so these Hilbert spaces
enforce distinct unitarity bounds. When the former is threatened, there is a thermalization
transition (c), whereas when the latter is threatened, we are led to the two-island phase (b).
There is also the possibility of transition to one-island phases (d) or (e), which have growing
entropy and therefore are not explained by the simple unitarity bound. As in section 2,
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this case can be explained by a unitarity bound applied to the two gravitational regions
(plus the adjoining baths up to the radiation region A) separately. When the entropy of
this region approaches the entropy of the two black holes in the given gravitational region
2SBH , a transition must occur.

5 Discussion

We have investigated the effects of competition between the thermalization mechanism and
the island information recovery mechanism in the time evolution of entanglement entropy
of Hawking radiation. We considered finite radiation regions in the classic example of a
thermofield double black hole coupled to two semi-infinite baths. We also introduced a new
model, where we have two pairs of thermofield double black holes at different temperatures
radiating into a finite shared bath (and its thermofield double). To maintain equilibrium
this required a Rindler-like bath which operated as a heat engine equilibrating the two
sides. A summary of our results can be found in section 1.

The two-temperature system provides a tunable parameter which models thermal loss
from engineered quantum dots in the lab, such as the SYK system. In relation to this, it
should also be possible to write down an explicit coupling between two SYK systems at
different temperatures leading to asymmetric wormholes, generalizing the Maldacena-Qi
solution [36].7

It would be interesting to study the generalization of our two-temperature model to
higher dimensions. In two dimensions we saw that we can have transitions from the asym-
metric wormhole (the “confined” phase) to two thermofield double black holes (the “decon-
fined” phase). In higher dimensions, by picking the bath and boundary CFTs appropriately,
one can more cleanly probe the confining structure of the model as the temperatures are
varied through an order parameter like center symmetry [43], which does not have much
meaning in (0 + 1) dimensions. In the two-temperature model considered in this paper,
the fate of one of the thermofield double quantum dots was tied to the other one, since
the confining phase was a gravitational solution which linked the two systems. In higher
dimensions, however, the confining phase of a single thermofield double boundary pair is
two copies of thermal AdS, and it need not link to the other thermofield double. Thus
we can have one of the thermofield double boundary pairs in the confined phase while the
other pair is in the deconfined phase. It would be interesting to work out whether this
actually occurs, and, if so, what the doubly holographic solution looks like; it would need to
have nontrivial topology to accommodate the change from confined to deconfined phases.

The computations of entanglement entropy in the black hole phase would also take
on a different structure in higher dimensions. The closest analogy to our results would
be obtained by taking the bath CFTd to be placed on Rd and considering infinite strips,

7There are avatars of the asymmetric wormhole in contexts where it is not the leading saddle of a path
integral; for example in the matrix model description of JT gravity [40, 41] it is an off-shell configuration
captured by 〈Z(β1)Z(β2)〉, while in systems with multiple uncoupled SYK dots there may exist subleading
saddles which link the various systems (such subleading saddles have been exhibited for the case of equal
temperatures in [42]).
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which would allow the “halfway” surfaces seen in two dimensions, as in figure 2(b). Such
surfaces would not appear for compact regions. One way to see this is to note that in
figure 2(b) the two endpoints of an interval are treated differently, which would not work
for the boundary of a higher-dimensional ball, which is connected.
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