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1 Introduction

Despite the great consistency of the Standard Model with experimental data, it has several
unexplained shortcomings. Among the most pressings are the absence of any explanation
for the smallness of the masses of the neutrinos and the electron, and for the existence
of three fermion families, accompanied by its mixing. The huge fermion mass hierarchy,
which spreads over a range of 13 orders of magnitude, from the light neutrino mass scale
up to the top quark mass, lacks any explanation. Moreover, there is no assertion for the
smallness of the quark mixing angles, which contrasts with the sizable values of two of the
three leptonic mixing angles.

To tackle the limitations of the SM, various extensions, including larger scalar and/or
fermion sectors as well as extended symmetries, discrete and (or) continuous, with radiative
seesaw mechanisms, have been proposed in the literature [1–88]. Furthermore, several
theories with enlarged particle spectrum and symmetries have been constructed to explain
the experimental value of the muon anomalous magnetic moment [69, 80, 84, 87–153],
anomaly not explained by the SM and recently confirmed by the Muon g − 2 experiment
at FERMILAB [154].
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Recently, three of us proposed a model of fermion mass generation, where the fermion
mass hierarchy arises from the sequential loop suppression, as follows [155]:

t-quark→ tree-level mass from Yukawa couplings, (1.1)
b, c, τ, µ→ 1-loop mass; tree-level (1.2)

suppressed by a symmetry.
s, u, d, e→ 2-loop mass; tree-level & 1-loop (1.3)

suppressed by a symmetry.
νi → n-loop mass (n > 2); tree-level & lower loops (1.4)

suppressed by a symmetry.

with neutrino mass generated at 4-loop level (n = 4). However, this model has a low
cutoff scale, since it includes non-renormalizable Yukawa terms, needed to implement the
radiative mechanisms of the SM fermion mass generation (1.1)–(1.4). From the view-
point of model building, it is much more preferable to have a renormalizable setup with
a moderate amount of particle content and predicting a phenomenology beyond the SM
within the reach of future experimental sensitivities. With this in mind, we propose here
a renormalizable model implementing the sequential loop-suppression mechanism (1.1)–
(1.3) with the light active neutrino masses appearing at three loop level (n = 3). This
model has a much more economical field content compared to the similar renormalizable
models proposed in refs. [50, 79]. For instance, whereas the scalar sector of the model of
ref. [79] has 2 SU2L scalar doublets, 7 complex electrically neutral gauge singlet scalars and
5 electrically charged singlet scalar fields, thus amounting to 32 scalar degrees of freedom,
the model proposed here has three SU2L scalar doublets, 3 complex and 2 real electrically
neutral singlet scalars, which corresponds to 20 scalar degrees of freedom. Furthermore,
the scalar sector of the model of ref. [50] has three SU3L scalar triplets, three complex
electrically neutral singlet scalars and four electrically charged singlet scalar fields, thus
amounting to 32 scalar degrees of freedom, which is much larger than the number of scalar
degrees of freedom of our current model.

Moreover, our model can also successfully accommodate the electron and muon anoma-
lous magnetic moments, the observed Dark Matter relic density, as well the constraints
arising from charged Lepton Flavor Violating (LFV) processes.

Let us emphasize the difference of our proposed model with respect to recent publica-
tions based on radiative mass and hierarchy generation: in ref. [156] there is no mechanism
to generate the masses of the quarks of the first generation. In addition, the model de-
scribed in [156] does not provide an explanation for the SM lepton mass hierarchy. In
ref. [157], both the first and second generation SM charged fermion masses are produced
at one loop, whereas here we generate the lightest SM charged fermion masses at two loop
level. Moreover, in [157] the neutrinos remain massless.

The paper is organized as follows. In section 2 we outline the proposed model. In
section 3 we analyze the stability and describe the electroweak symmetry breaking of the
scalar potential of the model. The scalar mass spectrum of the model is discussed in
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section 4. The implications of our model with respect to the SM fermion-mass hierarchy
is discussed in section 5. In section 6 charged LFV decays as well as the constraints on
the charged scalar masses are considered. The implications of our model for the muon
and electron anomalous magnetic moments are discussed in section 7. The prospects with
respect to Dark Matter are analyzed in section 8. Our conclusions are given in section 9.

2 The model

Before providing a complete model setup, let us explain the motivations behind introduc-
ing extra scalars, fermions and symmetries needed for a consistent implementation of the
sequential loop suppression mechanism for generating the SM fermion hierarchies.

Our strategy is to ban certain operators, by imposing appropriate symmetries to en-
sure loop suppression, necessary to reproduce the observable hierarchy of the SM fermion
masses.

In our model the top quark mass arises at tree level from a renormalizable Yukawa
operator, with an order one Yukawa coupling, i.e.

qiLφ̃u3R, i = 1, 2, 3 . (2.1)

We denote the left-handed quarks by qiL and the right-handed up and down quarks by uiR
and diR, respectively, with i = 1, 2, 3 the family index. The SM like Higgs boson doublet
is denoted by φ.

To generate the bottom, charm, tau and muon masses at one loop level, it is necessary
to forbid the operators:

f iLHfR, fiL = qiL, liL, fR = u2R, d3R, l2R, l3R,

i = 1, 2, 3, with H =
{
φ̃ for fR = u2R,

φ for fR = d3R, l2R, l3R.
, (2.2)

at tree level and to allow the following operators, crucial to close the one loop level diagram
of the upper left panel of figure 1:

f iLΦFrR, F rLσfR, fiL = qiL, liL, fR =u2R,d3R, l2R, l3R,

i= 1,2,3, r=
{

1 for quarks,
2 for charged leptons.

, Φ =
{
η̃ for fR =u2R,

η for fR = d3R, l2R, l3R.
,

A
[(
φ†η

)
σ+h.c

]
, (yF )rF rLχFrR (2.3)

This requires to add an unbroken Z
(2)
2 symmetry as well as a spontaneously broken

Z
(1)
2 symmetry. Under the spontaneously broken Z(1)

2 symmetry, all the right handed SM
fermionic fields, excepting u3R are charged. Under this Z(1)

2 symmetry, the singlet scalar
field χ as well as the left-handed exotic fermionic field FrL are charged. Furthermore,
all SM fermionic fields are neutral under the unbroken Z

(2)
2 symmetry whereas the left-

handed and right-handed exotic fermionic fields FrL and FrR are charged under Z(2)
2 . The

inclusion of the spontaneously broken Z(1)
2 and unbroken Z(2)

2 symmetries is crucial for the
implementation of the radiative seesaw mechanism that produces one-loop level masses for
the bottom, charm, tau and muon without invoking soft-breaking mass terms. Notice that
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f̄iL fjRFrR F̄rL

×
v

Re η0, Im η0 Re σ, Im σ

×

vχ

f̄iL f̃jR
¯̃
F sL F̃ ′

sR

×

F̃sR

×

vζ

¯̃
F

′

sL

×
v

Re ϕ0, Im ϕ0 Re ξ, Im ξ

Re ρ, Im ρ

νi νjνsR νsRΩp Ωp

×

Ψk Ψk

Re σ, Im σ

Re ρ, Im ρ Re ρ, Im ρ

Re ϕ0, Im ϕ0 Re ϕ0, Im ϕ0

×
v
×

v

×
vζ

×
vχ

Figure 1. Loop diagrams contributing to the fermion mass matrices. Here fiL = uiL, diL, eiL
(i = 1, 2, 3), fR = u2R, d3R, l2R, l3R, f̃R = u1R, d1R, d2R, l1R. The electroweak singlet charged exotic
fermions, see (2.9), are denoted by FrR, FrL, F̃sR and F̃sL, where r = 1 for quarks, r = 2 for
charged leptons, s = 1 for up type quarks and charged leptons, and s = 2 for down type quarks
and neutrinos. Furthermore, in the neutrino loop diagram we have p, k ∈ {1, 2}.

the fermionic sector is enlarged by electroweak charged exotic fermions Fr, where r = 1 for
quarks and r = 2 for charged leptons, and that the Yukawa operators as well as the trilinear
scalar operator shown in eq. (2.3) correspond to the three vertices of the one loop level
diagram in the upper left panel of figure 1. Considering the simplest possibility, where such
charged exotic fermions Fr are SU2L singlets, the scalar sector has to be extended by the
inclusion of an extra SU2L scalar doublet η and an electrically neutral electroweak gauge-
singlet scalars σ and χ. The scalar fields η and σ are both charged under the preserved
Z

(2)
2 symmetry, whereas the scalar χ is neutral under this symmetry. The singlet scalar

field χ is needed to provide masses to the charged exotic fermions Fr. This scalar field χ
is assumed to be charged under the spontaneously broken Z

(1)
2 symmetry. Furthermore,

the Yukawa term (yF )r F rLχFrR, which involves the electroweak charged exotic fermions,
must also be included as well, in order to close the one loop level diagram of figure 1.
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Besides that, small masses for the light SM charged fermions, i.e., the up, down and
strange quarks as well as the electron, are generated at two loop level. This implies to
forbid the following operators that would give rise to tree and one-loop-level masses for
these particles:

f iLHfR, fiL = qiL, liL, fR = u1R, d1R, d2R, l1R, i = 1, 2, 3,

H =
{
φ̃ for fR = u1R,

φ for fR = d1R, d2R, l1R.
,

f iLΦFrR, F rLσfR, fiL = qiL, liL, fR = u1R, d1R, d2R, l1R,

i = 1, 2, 3, r =
{

1 for quarks,
2 for charged leptons.

, Φ =
{
η̃ for fR = u2R,

η for fR = d3R, l2R, l3R.

(2.4)

However the following operators are required to provide two loop level masses for the light
SM charged fermions:

f iLΞF̃sR, F̃ sL∆F̃ ′sR,
¯̃
F
′
sLζF̃

′
sR,

¯̃
F
′
sLΘf̃R,

fiL = qiL, liL, Ξ =
{
ϕ̃ for fR = u1R,

ϕ for fR = d1R, d2R, l1R.
, f̃R = u1R, d1R, d2R, l1R, i = 1, 2, 3

Θ =
{
ξ∗ for fR = u1R, d1R, d2R
ξ for fR = l1R.

, ∆ =
{
ρ∗ for F̃sL = T̃L, B̃sL
ρ for F̃sL = ẼL.

,

[(
φ†ϕ

)
ρξ + h.c

]
,

(
m
F̃

)
s
F̃ sLF̃sR,

(
y
F̃ ′

)
s

¯̃
F
′
sLζF̃

′
sR,

s =
{

1 for up-type quarks and charged leptons,
2 for down-type quarks.

(2.5)

Such operators are crucial to close the two-loop-level diagram of the upper right panel
of figure 1. For this to happen, the fermion sector is extended as well, by adding the
electroweak charged exotic fermions F̃s, F̃ ′s where s = 1 for up-type quarks and charged
exotic leptons and s = 2 for down-type quarks. The simplest choice is to assign these
charged exotic fermions F̃s, F̃ ′s to SU2L singlets. Then, in order to build the Yukawa
interactions that determine three of the four vertices of the two loop level diagram of
figure 1, we also need to add an extra SU2L scalar doublet ϕ and another electrically
neutral electroweak gauge-singlet scalars ρ, ξ and ζ. The scalar fields ϕ, ρ and ξ are
assumed to have complex charges under an additional spontaneously broken Z4 symmetry,
whereas the scalar ζ has a real charge under this Z4 symmetry. We further assume that the
Z4 symmetry is spontaneously broken down to a preserved Z2 symmetry, which implies that
the scalar fields ρ and ξ do not acquire vacuum expectation values whereas the scalar ζ does.
Furthermore, in order to close the aforementioned two loop diagram, one has to include
the mass term

(
m
F̃

)
s
F̃ sLF̃sR and the Yukawa interaction

(
y
F̃ ′

)
s

¯̃
F
′
sLζF̃

′
sR involving the

electroweakly charged exotic fermions. Notice that the Yukawa operators, as well as the
quartic scalar operator shown in eq. (2.5), correspond to the four vertices of the two loop
level diagram of the upper right panel of figure 1.
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In what regards the neutrino sector, we require that the light active neutrino masses
only appear at three-loop level. To this end, right-handed Majorana-neutrinos have to
be added in the fermionic spectrum. In addition, one should prevent the appearance of
tree, one and two-loop level masses for the light active neutrinos. Generating light active
neutrino masses at three-loop level, as in the Feynman diagram of the bottom left panel of
figure 1, requires the presence of the operators

ljLϕ̃νsR, νCsRσΩpR, νCsRσΩpR, ΩC
sRρΨpR, (mΨ)sp ΨsRΨC

pR,
(
ρ2χζ + h.c

)
, (2.6)

and forbidding:

ljLφνsR, mNνsRνCsR, ljLη̃νsR, (mΩ)sp ΩsRΩC
pR, (2.7)

where νsR, ΩsR and ΨsR (s = 1, 2) are gauge singlet right-handed Majorana neutrinos. By
an appropriate choice of charges (shown below) under the aforementioned Z(1)

2 ×Z
(2)
2 ×Z4

symmetry, the three-loop level radiative seesaw mechanism for light active neutrinos can
be implemented.

With the aim of implementing the sequential loop suppression mechanism that gener-
ates the pattern of SM fermion masses, we consider an extension of the inert 3HDM, where
the SM gauge symmetry is supplemented by a Z(1)

2 × Z(2)
2 × Z4 discrete symmetry and the

scalar sector is extended to include five SM scalar singlets, i.e., σ, ρ, ξ, χ and ζ. The reason
to consider this extra Z(1)

2 × Z(2)
2 × Z4 discrete symmetry is that it is the smallest cyclic

symmetry that allows us to realize the loop-suppression scenario (1.1)–(1.4) with n = 3 in
a renormalizable 3HDM setup without invoking soft symmetry breaking.

The scalar sector of the model consists of three SU2L scalar doublets, i.e., φ, η, ϕ and
five scalar singlets σ, ρ, ξ, χ and ζ, with the Z(1)

2 × Z(2)
2 × Z4 assignments:

φ ∼ (1, 1, 1) , η ∼ (1,−1, 1) , ϕ ∼ (1,−1,−1) , σ ∼ (1,−1, 1) , ρ ∼ (1,−1,−i) ,
ξ ∼ (1, 1,−i) , χ ∼ (−1, 1, 1) , ζ ∼ (−1, 1,−1) (2.8)

We assume that the Z(2)
2 symmetry is unbroken whereas the Z(1)

2 and Z4 symmetries are
spontaneously broken. We further assume that the Z4 symmetry is spontaneously broken
down to a preserved Z2 symmetry. These assumptions imply that the scalar fields η, ϕ,
σ, ρ, ξ, charged under the Z(2)

2 symmetry and (or) having complex Z4 charges, do not
acquire vacuum expectation values. This conditions are inevitable in the present setup for
implementing the scenario (1.1)–(1.4). Let us note that the SU2L scalar doublet φ is the
only scalar field that acquires a non-vanishing vacuum expectation value (VEV) equal to
about 246GeV and thus corresponds to the SM Higgs doublet.

A justification of the extension of the scalar sector of the model is provided in the
following. The SU2L inert scalar doublet η as well as the inert SM gauge singlet scalar σ
are introduced to generate the one-loop level masses for the bottom, charm quarks, tau
and muon leptons. The scalar singlets χ and ζ are introduced to provide masses to the
charged exotic fermions. Moreover, the implementation of the two-loop level radiative
seesaw mechanisms, generating the up, down, strange quark masses as well as the electron
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qjL u1R u2R u3R d1R d2R d3R TL TR T̃L T̃R T̃ ′L T̃ ′R BL BR B̃sL B̃sR B̃′sL B̃′sR

SU3c 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
SU2L 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
U1Y

1
6

2
3

2
3

2
3 −1

3 -1
3 −1

3
2
3

2
3

2
3

2
3

2
3

2
3 −1

3 −
1
3 −1

3 −1
3 −1

3 −1
3

Z
(1)
2 1 −1 −1 1 −1 −1 −1 −1 1 1 1 −1 1 −1 1 1 1 −1 1

Z
(2)
2 1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 −1 −1 1 1
Z4 1 −1 1 1 −1 −1 1 1 1 −1 −1 −i i 1 1 −1 −1 −i i

Table 1. Quark assignments under SU3c × SU2L × U1Y × Z(1)
2 × Z(2)

2 × Z4. Here j = 1, 2, 3 and
s = 1, 2.

mass, requires to introduce an extra SU2L inert scalar doublet, namely ϕ and inert SM
gauge singlet scalars, i.e., ρ and ξ. The particles ϕ and ρ are also crucial to give three-loop
level masses for the light active neutrinos. The three loop level neutrino mass diagram is
closed thanks to the gauge singlet scalars χ and ζ.

The fermion sector of the SM is extended by the SU2L singlet exotic quarks T , T̃ ,
T̃ ′, B, B̃, B̃′ and singlet leptons E, Ẽ, Ẽ′, νs (s = 1, 2), Ω, Ψ with electric charges
Q(T ) = Q(T̃ ) = 2/3, Q(B) = Q(B̃) = −1/3, Q(E) = −1. The Z(1)

2 ×Z
(2)
2 ×Z4 assignments

of the fermion sector are:

u1R ∼ (−1, 1,−1) , u2R ∼ (−1, 1, 1) , u3R ∼ (1, 1, 1) ,
d1R ∼ (−1, 1,−1) , d2R ∼ (−1, 1,−1) , d3R ∼ (−1, 1, 1) ,
l1R ∼ (−1, 1,−i) , l2R ∼ (−1, 1, i) , l3R ∼ (−1, 1, i) ,
qjL ∼ (1, 1, 1) , ljL ∼ (1, 1, i) , j = 1, 2, 3,
TL ∼ (−1,−1, 1) , TR ∼ (1,−1, 1) , T̃L ∼ (1,−1,−1) , T̃R ∼ (1,−1,−1) ,
T̃ ′L ∼ (−1, 1,−i) , T̃ ′R ∼ (1, 1, i) , BL ∼ (−1,−1, 1) , BR ∼ (1,−1, 1) ,
BL ∼ (−1,−1, 1) , BR ∼ (1,−1, 1) , B̃sL ∼ (1,−1,−1) , B̃sR ∼ (1,−1,−1) ,
B̃′L ∼ (−1, 1,−i) , B̃′R ∼ (1, 1, i) , EsL ∼ (−1,−1, i) , EsR ∼ (1,−1, i) ,
ẼL ∼ (1,−1,−i) , ẼR ∼ (1,−1,−i) , Ẽ′L ∼ (−1, 1,−1) , Ẽ′R ∼ (1, 1, 1) ,
νsR ∼ (1,−1,−i) , s = 1, 2, ΩsR ∼ (1, 1, i) , ΨsR ∼ (1,−1, 1) . (2.9)

The quark, lepton and scalar assignments under SU3c× SU2L×U1Y ×Z(1)
2 ×Z

(2)
2 ×Z4 are

shown in tables 1, 2 and 3, respectively.
Now, let us justify the exotic fermion content of our model. The gauge-singlet neutral

leptons νs, Ωs, Ψs (s = 1, 2) are introduced to generate the three-loop level masses for two
light active neutrinos. Let us note that the neutrino oscillation experimental data requires
to have at least two light massive active neutrinos [158]. Furthermore, note that the SU2L
singlet exotic quarks T , T̃ , T̃ ′, B, B̃, B̃′and singlet leptons Es (s = 1, 2), Ẽ, Ẽ′ introduced
in our model, correspond to the minimal amount of charged exotic fermion content needed
to yield one-loop level masses for the bottom, charm quarks, tau and muon leptons, as well
as two- loop level masses for the light up, down, strange quarks and the electron, without
including soft-breaking mass terms.
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ljL l1R l2R l3R EsL EsR ẼL ẼR Ẽ′L Ẽ′R νsR ΩsR ΨsR

SU3c 1 1 1 1 1 1 1 1 1 1 1 1 1
SU2L 2 1 1 1 1 1 1 1 1 1 1 1 1
U1Y −1

2 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0

Z
(1)
2 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 1

Z
(2)
2 1 1 1 1 −1 −1 −1 −1 1 1 −1 1 −1
Z4 i −i i i i i −i −i −1 1 −i i 1

Table 2. Lepton assignments under SU3c × SU2L × U1Y × Z(1)
2 × Z(2)

2 × Z4. Here j = 1, 2, 3 and
s = 1, 2.

φ η ϕ σ ρ ξ χ ζ

SU3c 1 1 1 1 1 1 1 1
SU2L 2 2 2 1 1 1 1 1
U1Y

1
2

1
2

1
2 0 0 0 0 0

Z
(1)
2 1 1 1 1 1 1 −1 −1

Z
(2)
2 1 −1 −1 −1 −1 1 1 1
Z4 1 1 −1 1 −i −i 1 −1

Table 3. Scalar assignments under SU3c × SU2L ×U1Y × Z(1)
2 × Z(2)

2 × Z4.

With the specified particle content, we have the following quark, charged lepton and
neutrino Yukawa terms invariant under the Z(1)

2 × Z(2)
2 × Z4 discrete symmetry

−L(U)
Y =

3∑
j=1

y
(u)
j qjLϕ̃T̃R+x(u) ¯̃

T
′
Lξ
∗u1R+

3∑
j=1

z
(u)
j qjLη̃TR+w(u)TLσu2R

+
3∑
j=1

y
(u)
j3 qjLφ̃u3R+yTTLχTR+m̃T T̃LT̃R+y

T̃ ′
¯̃
T
′
LζT̃

′
R+z

T̃ ′
T̃Lρ

∗T̃ ′R+h.c, (2.10)

−L(D)
Y =

3∑
j=1

2∑
s=1

y
(d)
js qjLϕB̃sR+

2∑
s=1

2∑
k=1

x
(d)
sk

¯̃
B
′
sLξ
∗dkR+

3∑
j=1

z
(d)
j qjLηBR+w(d)BLσd3R

+yBBLχBR+
2∑
s=1

m̃BsB̃sLB̃sR+
2∑
s=1

(
y
B̃′

)
s

¯̃
B
′
sLζB̃

′
sR+

2∑
s=1

(
x
B̃′

)
s
B̃sLρ

∗B̃′sR+h.c,

(2.11)

−L(l)
Y =

3∑
j=1

y
(l)
j ljLϕẼR+x(l)

1
¯̃
E
′
Lξl1R+

3∑
j=1

2∑
s=1

y
(l)
js ljLηEsR+

2∑
s=1

3∑
k=2

x
(l)
skEsLσlkR

+
2∑
s=1

yEsEsLχEsR+m̃EẼLẼR+y
Ẽ′

¯̃
E
′
LζẼ

′
R+z

Ẽ′
ẼLρẼ

′
R+h.c, (2.12)
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−L(ν)
Y =

3∑
j=1

2∑
s=1

y
(ν)
js ljLϕ̃νsR+

2∑
s=1

2∑
p=1

y(ν)
sp ν

C
sRσΩpR+

2∑
s=1

2∑
p=1

y(Ω)
sp ΩC

sRρΨpR

+
2∑
s=1

2∑
p=1

(mΨ)spΨsRΨC
pR+h.c. (2.13)

After electroweak gauge-symmetry breaking, the above-given Yukawa interactions yield
the SM fermion masses via sequential loop suppression. Furthermore, the non SM-like
scalars (excepting the scalar singlets χ and ζ) are not allowed to acquire VEVs for the
following reasons: firstly, in this way we avoid to generate tree-level masses for the SM
fermions lighter than the top quark. Secondly, we open the possibility to have stable scalar
Dark Matter candidates. Eventually we also avoid to encounter tree level Flavor Changing
Neutral Currents (FCNCs).

3 Stability and electroweak symmetry breaking of the Higgs potential

The renormalizable Higgs potential, invariant under the symmetries of the model, has the
form:

V =µ2
1

(
φ†φ

)
+µ2

2

(
η†η

)
+µ2

3

(
ϕ†ϕ

)
+µ2

4 |σ|
2+
[
µ2

5σ
2+h.c

]
+µ2

6 |ρ|
2+µ2

7 |ξ|
2+µ2

8χ
2+µ2

9ζ
2

+λ1
(
φ†φ

)2
+λ2

(
η†η

)2
+λ3

(
ϕ†ϕ

)2
+λ4

(
φ†φ

)(
η†η

)
+λ5

(
φ†φ

)(
ϕ†ϕ

)
+λ6

(
η†η

)(
ϕ†ϕ

)
+λ7

(
φ†η

)(
η†φ

)
+λ8

(
φ†ϕ

)(
ϕ†φ

)
+λ9

(
η†ϕ

)(
ϕ†η

)
+
[
λ10
2
(
φ†η

)2
+h.c

]
+
[
λ11
2
(
φ†ϕ

)2
+h.c

]
+
[
λ12
2
(
η†ϕ

)2
+h.c

]
+κ1 |σ|4+κ2 |ρ|4+κ3 |ξ|4+κ4χ

4+κ5ζ
4+κ6 |σ|2 |ρ|2+κ7 |σ|2 |ξ|2+κ8 |ρ|2 |ξ|2

+κ9 |ρ|2 |ξ|2+κ10χ
2ζ2+κ11 |σ|2χ2+κ12 |ρ|2χ2+κ13 |ξ|2χ2+κ14 |σ|2 ζ2+κ15 |ρ|2 ζ2

+κ16 |ξ|2 ζ2+κ17
(
ρ2ζχ+h.c

)
+κ18

(
ξ2ζχ+h.c

)
+α1

(
φ†φ

)
|σ|2+

[
α2σ

2+h.c
](
φ†φ

)
+α3

(
φ†φ

)
|ρ|2+α4

(
φ†φ

)
|ξ|2+α5

(
η†η

)
|σ|2+

[
α6σ

2+h.c
](
η†η

)
+α7

(
η†η

)
|ρ|2

+α8
(
η†η

)
|ξ|2+α9

(
ϕ†ϕ

)
|σ|2+

[
α10σ

2+h.c
](
ϕ†ϕ

)
+α11

(
ϕ†ϕ

)
|ρ|2+α12

(
ϕ†ϕ

)
|ξ|2

+α13
(
φ†φ

)
χ2+α14

(
φ†φ

)
ζ2+α15

(
η†η

)
χ2+α16

(
η†η

)
ζ2+α17

(
ϕ†ϕ

)
χ2+α18

(
ϕ†ϕ

)
ζ2

+
[
A
(
φ†η

)
σ+h.c

]
+[B (ρ∗ξ)σ+h.c]+γ

[(
φ†η

)
ρ∗ξ+h.c

]
+κ

[(
φ†ϕ

)
ρξ+h.c

]
. (3.1)

The scalar fields can be written as

φ=
(

φ+

1√
2
(
v+φ0

R+iφ0
I

) ) , η=
(

η+

1√
2
(
η0
R+iη0

I

) ) , ϕ=
(

ϕ+

1√
2
(
ϕ0
R+iϕ0

I

) ) , (3.2)

σ= 1√
2

(σR+iσI) , ρ= 1√
2

(ρR+iρI) , ξ= 1√
2

(ξR+iξI) , χ= vχ+χ̃, ζ = vζ+ζ̃.

(3.3)

From the condition to have a vanishing gradient of the potential with the neutral component
of the doublet φ getting a VEV v/

√
2 as well as the scalar singlets χ, ζ acquiring VEVs vχ
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and vζ , respectively, whereas all other VEVs are vanishing, we find the constraints on the
potential parameters:

µ2
1 = −λ1v

2 − α13v
2
χ − α14v

2
ζ , (3.4)

µ2
8 = −2κ4v

2
χ − κ10v

2
ζ − α13

v2

2 , (3.5)

µ2
9 = −2κ5v

2
ζ − κ10v

2
χ − α14

v2

2 , (3.6)

From the symmetry of the potential (3.1) we find that for positive quartic parameters
λ1, λ2, λ3, as well as κ1, κ2, κ3, κ4, κ5, the potential is bounded from below, that is, it
is stable. However, we also have to ensure that it provides the experimentally acceptable
electroweak symmetry breaking of SU(2)L × U(1)Y → U(1)em and gives the correct VEV
of about v ≈ 246GeV.

Let us emphasize that in general it is not sufficient to check that the potential has a
vanishing gradient, leading to the condition (3.4).

In particular, the corresponding local stationary point can correspond to a saddle point
or maximum, and not a minimum. Moreover, there can be deeper stationary points. A
systematic approach to find the global minimum for any 3HDM has been presented in [159].
The case of two Higgs-boson doublets accompanied by an arbitrary number of Higgs-boson
singlets has been also studied [160]. For the potential considered here we have, in addition
to the three Higgs-boson doublet fields φ, η, ϕ, also three complex singlet fields, σ, ρ and ξ
and two real scalars χ and ζ. We adopt the formalism of three doublets presented in [159]
to the case of additional Higgs-singlet fields that we have here.

The essential step is to introduce bilinears for the Higgs-boson doublets [161, 162]
and decompose the complex Higgs singlets into its real and imaginary parts. First, all
gauge-invariant scalar products of the three doublet fields φ, η, ϕ are arranged in a matrix,

K =

 φ†φ η†φ ϕ†φ

φ†η η†η ϕ†η

φ†ϕ η†ϕ ϕ†ϕ

 . (3.7)

This matrix can be expressed in a basis of matrices λα (α = 0, 1, . . . , 8), where λ0 =
√

2
313

is the conveniently scaled identity matrix and λa (a = 1, . . . , 8) are the Gell-Mann matrices.
In this basis we can write

K = 1
2

8∑
α=0

Kαλα. (3.8)

The real coefficients, called bilinears Kα, are obtained from

Kα = K∗α = tr(Kλα), α = 0, . . . , 8. (3.9)

We can invert this relation and express the gauge-invariant scalar products of the doublets,
which appear in the potential, in terms of the bilinears:

φ†φ = K0√
6

+ K3
2 + K8

2
√

3
, φ†η = 1

2 (K1 + iK2) , φ†ϕ = 1
2 (K4 + iK5) ,

η†η = K0√
6
− K3

2 + K8

2
√

3
, η†ϕ = 1

2 (K6 + iK7) , ϕ†ϕ = K0√
6
− K8√

3
.

(3.10)
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Further, we decompose the complex singlets into its real and imaginary parts,

σ = 1√
2

(σR + iσI) , ρ = 1√
2

(ρR + iρI) , ξ = 1√
2

(ξR + iξI) . (3.11)

With the replacements (3.10) and (3.11), the potential can be written in terms of the
bilinears as well as the real and imaginary parts of the singlets, V (K0, . . . ,K8, σR, σI , ρR,
ρI , ξR, ξI , χ, ζ).

All gauge degrees of freedom are systematically avoided and all fields and parameters
are real in this form.

We now look for all stationary points of the potential, in order to find the global mini-
mum, or in the degenerate case, the global minima. For a stable potential, the global min-
imum is given by the deepest stationary point. We now classify the stationary points with
respect to the rank of the matrix K. Any stationary point with rank 2 of K corresponds
to a fully broken electroweak symmetry, rank 0 to an unbroken electroweak symmetry,
and rank 1 to a physically acceptable breaking of SU(2)L × U(1)Y → U(1)em. The rank
conditions result in different sets of polynomial equations. Explicitly, the set of equations
corresponding to the rank 2 are,

∇K0,...,K8,σR,σI ,ρR,ρI ,ξR,ξI ,χ,ζ

[
V (K0, . . . ,K8, σR, σI , ρR, ρI , ξR, ξI , χ, ζ)− u det(K)

]
= 0,

2K2
0 −

8∑
a=1

KaKa > 0,

det(K) = 0,
K0 > 0. (3.12)

Here u denotes a Lagrange multiplier.
For the solutions with rank 0 ofK, we set all bilinears to zero and look for the stationary

points of the corresponding potential, that is, solutions of the set of equations,

∇σR,σI ,ρR,ρI ,ξR,ξI ,χ,ζV (K0 = 0, . . . ,K8 = 0, σR, σI , ρR, ρI , ξR, ξI , χ, ζ) = 0. (3.13)

With respect to rank 1 solutions of K, we can parametrize the matrix K in terms of
the three-component complex vector w =

(
w1, w2, w3

)T
,

K = K0

√
3
2ww†, (3.14)

getting for the bilinears

Kα(K0,w
†,w) = K0

√
3
2w†λαw, α = 0, . . . , 8. (3.15)

The potential can now be written as V (K0,w
†,w, σR, σI , ρR, ρI , ξR, ξI , χ, ζ) and the corre-

sponding set of polynomial equations reads

∇K0,w1,w2,w3,σR,σI ,ρR,ρI ,ξR,ξI ,χ,ζ

[
V (K0,w

†,w,σR,σI ,ρR,ρI , ξR, ξI ,χ,ζ)−u(w†w−1)
]

= 0,

w†w−1 = 0,
K0> 0, (3.16)
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where u again denotes a Lagrange mulitplier. We solve the three sets of equations (3.12),
(3.13), (3.16) and the solution with the lowest potential value is (are) the global minimum
(minima). A solution is only physically acceptable if it originates from the set (3.16),
corresponding to the observed electroweak symmetry-breaking. In addition, we have to
check that the vacuum gives the observed VEV v. Numerically, we accept solutions which
provide a vacuum-expectation value in the range 245 GeV < v < 247 GeV. The sets of
equations can be solved via homotopy continuation; see for instance [163]. The homotopy
continuation algorithms can be found implemented in the open-source software package
PHCpack [164]. We have numerically checked that there is large parameter space available
fulfilling the stationarity and stability conditions of the potential. Also the potential can
provide sufficiently heavy scalars, apart from the SM-like Higgs boson, in accordance with
the experimental constraints.

4 The Higgs mass spectrum

Here we restrict ourselves to real parameters of the potential (3.1), that is, in particular we
consider a CP conserving scalar sector. Then, we find that the spectrum of the physical
CP even neutral scalars is composed of the 126GeV SM-like Higgs boson, i.e h, two heavy
CP even scalars H1 and H2 as well as the inert scalars transforming non-trivially under the
Z

(2)
2 symmetry and (or) having complex Z4 charges, namely ϕ0

R, ρR, ξR, S1 and S2. For the
sake of simplicity, we consider the scenario of the decoupling limit which is motivated by
the experimental fact that the couplings of the 126GeV SM-like Higgs boson are very close
to the SM expectation. In the decoupling limit φ0

R corresponds to the 126GeV SM-like
Higgs boson, i.e h. The squared masses of the φ0

R, ϕ0
R, ρR, ξR scalars are given by:

m2
h = 2λ1v

2, m2
ϕ0
R

=µ2
3+ 1

2 (λ5+λ8+λ11)v2+α17v
2
χ+α18v

2
ζ ,

m2
ρR

=µ2
6+α3

2 v2+κ12v
2
χ+κ15v

2
ζ+2κ17vζvχ, m2

ξR
=µ2

7+α4
2 v2+κ13v

2
χ+κ16v

2
ζ+2κ18vζvχ.

(4.1)
The scalar fields H1 and H2 are physical mass eigenstates of the following squared

scalar mass matrix written in the
(
χ̃, ζ̃

)
basis:

M2
H =

(
8κ4v

2
χ 4κ10vχvζ

4κ10vχvζ 8κ5v
2
ζ

)
, (4.2)

This matrix can be diagonalized as follows:

RTHM
2
HRH =

 4κ4v
2
χ+4κ5v

2
ζ+4

√(
κ4v2

χ−κ5v2
ζ

)2
+κ10v2

χv
2
ζ 0

0 4κ4v
2
χ+4κ5v

2
ζ−4

√(
κ4v2

χ−κ5v2
ζ

)2
+κ10v2

χv
2
ζ

,

RH =
(

cosθH −sinθH
sinθH cosθH

)
tan2θH = κ10vχvζ

κ4v2
χ−κ5v2

ζ

. (4.3)

Consequently, the physical scalar mass eigenstates states of the matrixM2
H are given by:(

H1
H2

)
=
(

cos θH sin θH
− sin θH cos θH

)(
χ̃

ζ̃

)
. (4.4)
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Their squared masses are:

m2
H1/2

= 4κ4v
2
χ + 4κ5v

2
ζ ± 4

√(
κ4v2

χ − κ5v2
ζ

)2
+ κ10v2

χv
2
ζ . (4.5)

The scalar fields S1 and S2 are physical mass eigenstates of the following squared scalar
mass matrix written in the

(
η0
R, σR

)
basis:

M2
H =

 µ2
2+ 1

2 (λ4+λ7+λ10)v2+α15v
2
χ+α16v

2
ζ

1√
2Av

1√
2Av µ2

4+2µ2
5+ 1

2 (α1+2α2)v2+κ11v
2
χ+κ14v

2
ζ

 ,
(4.6)

This matrix can be diagonalized as follows:

RTSM
2
SRS =

 AS+Bs
2 − 1

2

√
(AS −BS)2 + 4C2

S 0
0 AS+BS

2 + 1
2

√
(AS −BS)2 + 4C2

S

 ,
RS =

(
cos θS − sin θS
sin θS cos θS

)
,

AS = µ2
2 + 1

2 (λ4 + λ7 + λ10) v2 + α15v
2
χ + α16v

2
ζ ,

BS = µ2
4 + 2µ2

5 + 1
2 (α1 + 2α2) v2 + κ11v

2
χ + κ14v

2
ζ ,

CS = 1√
2
Av, tan 2θS = 2CS

AS −BS
. (4.7)

Consequently, the physical scalar mass eigenstates states of the matrixM2
S are given by:(

S1
S2

)
=
(

cos θS sin θS
− sin θS cos θS

)(
η0
R

σR

)
. (4.8)

Their squared masses are:

m2
S1/2

= AS +BS
2 ± 1

2

√
(AS −BS)2 + 4C2

S . (4.9)

Concerning the CP odd scalar sector, we find that it is composed of one massless
pseudoscalar state, i.e, φ0

I , which is identified with the neutral SM Nambu-Goldstone boson
G0
Z eaten up by the longitudinal component of the Z gauge boson, as well as four physical

pseudoscalar fields ϕ0
I , ρI , ξI , P1 and P2. The squared masses of the φ0

I , ϕ0
I , ρI scalars are

given by:

m2
φ0
I

= 0, m2
ϕ0
I

=µ2
3+ 1

2 (λ5+λ8−λ11)v2+α17v
2
χ+α18v

2
ζ ,

m2
ρI

=µ2
6+α3

2 v2+κ12v
2
χ+κ15v

2
ζ−2κ17vζvχ, m2

ξI
=µ2

7+α4
2 v2+κ13v

2
χ+κ16v

2
ζ−2κ18vζvχ.

(4.10)

The scalar fields P1 and P2 are the physical mass eigenstates of the following squared scalar
mass matrix written in the

(
η0
I , σI

)
-basis:

M2
P =

 µ2
2+ 1

2 (λ4+λ7−λ10)v2+α15v
2
χ+α16v

2
ζ − 1√

2Av

− 1√
2Av µ2

4−2µ2
5+ 1

2 (α1−2α2)v2+κ11v
2
χ+κ14v

2
ζ

 ,
(4.11)
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which can be diagonalized by the transformation:

RTPM
2
PRP =

 AP+BP
2 + 1

2

√
(AP −BP )2 + 4C2

P 0
0 AP+BP

2 − 1
2

√
(AP −BP )2 + 4C2

P

 ,
RP =

(
cos θP − sin θP
sin θP cos θP

)
,

AP = µ2
2 + 1

2 (λ4 + λ7 − λ10) v2 + α15v
2
χ + α16v

2
ζ ,

BP = µ2
4 − 2µ2

5 + 1
2 (α1 − 2α2) v2 + κ11v

2
χ + κ14v

2
ζ ,

CP = − 1√
2
Av, tan 2θP = 2CP

AP −BP
. (4.12)

Consequently, the physical scalar mass eigenstates P1,2 are given by:(
P1
P2

)
=
(

cos θP sin θP
− sin θP cos θP

)(
η0
I

σI

)
. (4.13)

Their squared masses are:

m2
P1 = AP +BP

2 + 1
2

√
(AP −BP )2 + 4C2

P , m2
P2 = AP +BP

2 − 1
2

√
(AP −BP )2 + 4C2

P .

(4.14)
In the charged scalar sector we find two massless Nambu-Goldstone states, φ±, ab-

sorbed by the longitudinal components ofW± gauge bosons, as well as four physical charged
scalars, η±, ϕ± with the masses:

m2
η± = µ2

2 + 1
2λ4v

2 + α15v
2
χ + α16v

2
ζ , m2

ϕ± = µ2
3 + 1

2λ5v
2 + α17v

2
χ + α18v

2
ζ . (4.15)

This completes the list of the scalar sector of our model.

5 SM fermion mass hierarchy

The SM fermion mass matrices are generated in our model according to the diagrams in
figure 1, with the Yukawa interactions in (2.10)–(2.13). We write the mass matrices for
the charged fermions in the form

MU =


(
a

(u)
11

)3
l2
(
a

(u)
12

)2
l a

(u)
13(

a
(u)
21

)3
l2
(
a

(u)
22

)2
l a

(u)
23(

a
(u)
31

)3
l2
(
a

(u)
32

)2
l a

(u)
33

 v√
2
, MD =


(
a

(d)
11

)3
l2
(
a

(d)
12

)2
l2
(
a

(d)
13

)2
l(

a
(d)
21

)3
l2
(
a

(d)
22

)2
l2
(
a

(d)
23

)2
l(

a
(d)
31

)3
l2
(
a

(d)
32

)2
l2
(
a

(d)
33

)2
l

 v√
2

(5.1)

Ml =


(
a

(l)
11

)3
l2
(
a

(d)
12

)2
l
(
a

(l)
13

)2
l(

a
(l)
21

)3
l2
(
a

(d)
22

)2
l
(
a

(l)
23

)2
l(

a
(l)
31

)3
l2
(
a

(d)
32

)2
l
(
a

(l)
33

)2
l

 v√
2

(5.2)
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Here we have taken into account the loop level at which the columns of these matrices are
generated, in particular l ≈ (1/4π)2 is the loop suppression factor.

The powers of this loop factor in (5.1), (5.2), explicitly display the following picture that
we have in our model: the third column in MU is generated at the tree-level, engendering
mass to the top quark. The second and first columns of MU arise at the one and two-loop
levels, respectively, and are associated with the charm and up quark masses. The light
down and strange quark masses are also generated at two-loop level. On the other hand,
the third column of MD arise at one-loop level.

As for the SM charged lepton mass matrixMl, its first column, responsible for the elec-
tron mass, appears at the two-loop level, whereas its second and third columns, providing
masses to the muon and the tau lepton, respectively, are generated at one loop.

As we pointed out before, the objective of the model is to generate the observed
hierarchy of the fermion mass spectrum in terms of loop suppression. Therefore, it is
crucial that the quark masses and mixings predicted by the model are reproduced with
parameters a(u)

ij , a(d)
ij ∼ O(1) (i, j = 1, 2, 3), Let us check this essential point in detail: we

use the experimental values of the quark masses [165], the CKM parameters [166] and the
charged lepton masses [166]:
mu(MeV) = 1.24±0.22, md(MeV) = 2.69±0.19, ms(MeV) = 53.5±4.6,
mc(GeV) = 0.63±0.02, mt(GeV) = 172.9±0.4, mb(GeV) = 2.86±0.03,

sinθ12 = 0.2245±0.00044, sinθ23 = 0.0421±0.00076, sinθ13 = 0.00365±0.00012,
J = (3.18±0.15)×10−5 ,

me(MeV) = 0.4883266±0.0000017, mµ(MeV) = 102.87267±0.00021, mτ (MeV) = 1747.43±0.12,
(5.3)

where, J is the Jarlskog parameter.
By solving the eigenvalue problem for the mass matrices (5.1), (5.2) we find a solution

for the parameters that reproduces the values in eq. (5.3). It is given by

a
(u)
ij =


−0.688435 0.23427 0.574417
−0.433888 0.975784 0.575768
0.460125 0.299329 0.572606

 , (5.4)

a
(d)
ij =


0.496199 − 0.856786i 0.553843 − 0.956252i 0.988976 + 0.00132749i

0.0000811073 − 0.9244i 0.000107414 − 1.13112i 0.924773 + 0.0000767587i
0.00207731 + 0.985775i 0.00249437 + 1.15427i 0.987132 − 0.00207885i

 ,

(5.5)

a
(l)
ij =


−0.598992− 0.00493263i 0.00393775 − 0.916528i 0.77355 + 0.00318633i
0.000405292 + 0.675959i 0.000325396 + 0.880957i 0.676159 − 0.000407163i
0.00295785 + 0.801275i 0.0036143 + 0.898469i 0.801517 − 0.0029589i

 .

As we can see, all the entries (the absolute values) of the above matrices are of order unity
with rather mild deviations. This demonstrates that the proposed model is able to explain
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the existing pattern of the observed quark spectrum. via the sequential loop suppression
mechanism.

Finally, the small masses of the active neutrinos are generated at the three-loop level,
as follows from the last diagram of figure 1. Thus, for the neutrino mass matrix we can write

Mν = l3y6λ
v2

M
, (5.6)

with M denoting a common mass scale of the virtual scalars and fermions running in
the internal lines of the neutrino loop diagram in figure 1, y is a matrix of the neutrino
Yukawa couplings and λ is the quartic scalar coupling. Using M ∼ O (13)TeV, y ∼ 0.31,
and λ ∼ 0.1 in eq. (5.6) we find mν ∼ O (0.1) eV, thus showing that the model naturally
explains the smallness of the light active neutrino masses with respect to the EWSB scale.
Furthermore, from this estimate of the light neutrino masses it is to expect that exotic
scalars and fermions beyond the SM should have masses of O (13)TeV.

6 Charged lepton-flavor violation constraints

In this section we will derive constraints from the non-observation of the charged Lepton
Flavor Violating (LFV) process µ→ eγ. The dominant contribution to the decay li → ljγ

occurs in our model at one-loop level and, according to the diagram in figure 2, is mediated
by a virtual electrically charged scalar ϕ+, originating from the SU(2)L inert doublet ϕ, and
by the right-handed Majorana neutrinos νsR (s = 1, 2). There is also a contribution arising
from the charged exotic leptons E2 and the electrically neutral scalars Sk, Pk. However
this contribution is sub-leading since it only appears at the two loop level, as shown in
appendix A. Therefore, we can safely neglect it. Then we find for the branching ratio
corresponding to the diagram in figure 2 the following expression [167–170]

Br (li → ljγ) = 3 (4π)3 αem
4G2

F

∣∣∣∣∣∣
2∑
s=1

x
(ν)
is x

(ν)
js

2 (4π)2m2
ϕ±

F

(
m2
νsR

m2
ϕ±

)∣∣∣∣∣∣
2

Br (li → ljνiνj) ,

F (x) = 1− 6x+ 3x2 + 2x3 − 6x2 ln x
6 (1− x)4 . (6.1)

Here x(ν)
is =

∑3
k=1 y

(ν)
ks

(
V †lL

)
ik

and mϕ± are the masses of the charged scalar components
of the SU(2)L inert doublet ϕ, whereas mνsR (s = 1, 2) correspond to the masses of the
right-handed Majorana neutrinos νsR. To simplify our analysis we choose a benchmark
scenario where the right-handed Majorana neutrinos νsR are all degenerate with respect
to a common mass mN . In our numerical analysis we vary these masses in the following
ranges 1TeV6 mϕ± 6 30TeV and 10MeV. mN 6 100MeV. We also vary the dimension-
less couplings in the window 0.1 6 x

(ν)
is 6 1 (i = 1, 2, 3 and s = 1, 2). Let us note that we

scanned only over the MeV scale masses for the right-handed Majorana neutrinos νsR, since
these masses are generated at the two-loop level, as seen from the two-loop sub-diagram
of the third Feynman diagram of figure 1. This is the same loop level at which masses
of light and strange quarks, lying in the MeV region, are generated. The results of our
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Figure 2. Feynman diagram corresponding to the dominant contribution to the µ→ eγ decay.

analysis are displayed in figures 3 and 4. In figure 3 we plot the allowed parameter space
in the mϕ± − x

(ν)
js plane consistent with the existing µ → eγ experimental constraints.

This plot is obtained by randomly generating the parameters mN , mϕ± , x
(ν)
is and x(ν)

js in a
range of values where the µ→ eγ branching ratio is below its upper experimental limit of
4.2 × 10−13 [170]. As can be seen from figure 3, this condition is satisfied for the charged
scalar masses mϕ± larger than about 3.5TeV. We also find that in the same region of pa-
rameter space, our model predicts branching ratios for the τ → µγ and τ → eγ decays up
to 10−10, which is below their corresponding upper experimental bounds of 4.4× 10−9 and
3.3 × 10−9, respectively. Consequently, the model is compatible with the current charged
lepton-flavor-violating decay constraints. The branching ratio for the µ → eγ decay as a
function of the charged scalar mass mϕ± is shown in figure 4 for different values of the x(ν)

js

couplings. This figure shows that the branching ratio for the µ→ eγ decay decreases as the
charged scalar masses mϕ± acquire larger values. The horizontal line corresponds to the
experimental upper bound of 4.2×10−13 [170] for the branching ratio of the µ→ eγ decay.
Here we set mN = 50MeV. We have checked that the branching ratio for the µ → eγ

decay has a very low sensitivity to the mass mN of the right-handed Majorana neutrinos
νsR (s = 1, 2).

Given that future experiments, such as Mu2e and COMET [171], are expected to
measure or at least constrain lepton-flavor conversion in nuclei with much better precision
than the radiative lepton LFV decays, we proceed to derive constraints imposed on the
model parameter space by µ − e conversion in nuclei. The µ− − e− conversion ratio is
defined [170] as:

CR (µ− e) = Γ (µ− + Nucleus (A,Z)→ e− + Nucleus (A,Z))
Γ (µ− + Nucleus (A,Z)→ νµ + Nucleus (A,Z − 1)) (6.2)

Using an Effective Lagrangian approach for describing LFV processes, as done in [172],
and considering the low momentum limit, where the off-shell contributions from photon
exchange are negligible with respect to the contributions arising from real photon emission,
the dipole operators shown in ref. [172] dominate the conversion rate, thus, yielding the
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Figure 3. Allowed parameter space in the mϕ± − x(ν)
js plane consistent with the charged lepton

flavor-violating constraints.
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Figure 4. Branching ratio for the µ → eγ decay as function of charged scalar masses mϕ±

for different values of the x(ν)
js couplings. The horizontal line corresponds to the experimental

upper bound of 4.2 × 10−13 [170] for the branching ratio of the µ → eγ decay. Here we have set
mN = 50MeV.
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following relations [170, 172]:

CR (µTi→ eTi) ' 1
200Br (µ→ eγ) CR (µAl→ eAl) ' 1

350Br (µ→ eγ) (6.3)

Notice that the aforementioned relations are valid for the case of photon dominance in
the µ− − e− conversion, which applies to our model due to the absence of tree-level fla-
vor changing neutral scalar interactions. Therefore, experimental upper bounds on the
conversion rates (6.2) will translate in our model to upper limits on Br(µ→ eγ).

The sensitivity of the CERN Neutrino Factory, which will use a Titanium target [173],
is expected at the level of ∼ 10−18. The expected sensitivities of the next generation
experiments such as Mu2e and COMET [171], with an Aluminum target, are expected to
be about ∼ 10−17. Thus, according to eqs. (6.3), the future limits will result in about three
order of magnitude improvement in Br(µ→ eγ).

In figure 5 we show the CR(µTi→ eTi ) (top plot) and CR(µAl→ eAl) (bottom plot),
as function of the charged scalar mass mϕ± for different values of the dimensionless cou-
plings x(ν)

js (j = 1, 2, 3, n = 1, 2). The black horizontal lines correspond to the expected
sensitivities ∼ 10−18 (top plot) of the CERN Neutrino Factory [173] and ∼ 10−17 (bottom
plot) of the next generation of experiments such as Mu2e and COMET [171]. In these plots
we have set mN = 50MeV. The plots show that the next generation experiments, where ti-
tanium and aluminium will be used as targets, can rule out the part of the model parameter
space where the charged scalar masses are lower than about 10TeV for x(ν)

js ' O(0.1).

7 Muon and electron anomalous magnetic moment

The results of the experimental measurements of the anomalous magnetic dipole moments
of electron and muon ae,µ = (ge,µ − 2)/2 show significant deviation from their SM values

∆aµ = aexp
µ − aSM

µ = (2.51± 0.59)× 10−9 [56, 154, 174–179] (7.1)
∆ae = aexp

e − aSM
e = (−0.88± 0.36)× 10−12 [180], (4.8± 3.0)× 10−13 [181] (7.2)

Here the value of aexp
µ is a combined result of the BNL E821 experiment [182] and the

recently announced FNAL Muon g-2 measurement [154], showing the 4.2σ tension between
the SM and experiment. The last positive value for ∆ae corresponds to the recently
published new measurement of the fine-structure constant with an accuracy of 81 parts
per trillion [181]. In this section we analyze predictions of our model for these observables.
The leading contributions to ∆ae,µ arising in the model are shown in figures 6, 7.

For simplicity we set θS = θP = θ and y(l)
22 = x

(l)
22 = y

(ν)
21 = y

(ν)
22 = y (for the definitions

see eqs. (2.12), (2.13), (4.7) and (4.12)). Furthermore, we work on a simplified benchmark
scenario with a diagonal SM charged lepton mass matrix, where the charged exotic leptons
Ẽ, Ẽ′; E1 and E2, only contribute to the electron, muon and tau masses, respectively.
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Figure 5. CR(µTi→ eTi) (top plot) and CR(µAl→ eAl) (bottom plot) as function of the charged
scalar masses mϕ± , for different values of the x(ν)

js couplings (j = 1, 2, 3, n = 1, 2). The black
horizontal line in each plot corresponds to the expected sensitivities of the next generation of
experiments that will use titanium [173] and aluminum [171] as targets, respectively. Here we have
set mN = 50MeV.
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Figure 6. Feynman-loop diagrams contributing to the muon anomalous magnetic moment. Here
k = 1, 2.
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Figure 7. Leading Feynman-loop diagram contributing to the electron anomalous magnetic mo-
ment. Here k = 1, 2.

Then, the contribution to the muon anomalous magnetic moment takes the form

∆aµ =
y2m2

µ

8π2 [IS (mE1 ,mS1)− IS (mE1 ,mS2) + IP (mE1 ,mP1)− IP (mE1 ,mP2)] sin θ cos θ

−
y2

2m
2
µ

16π2m2
ϕ±

2∑
s=1

F

(
m2
νsR

m2
ϕ±

)
, (7.3)

where the loop integral F (x) is defined in eq. (6.1) and was previously computed in
ref. [167], whereas IS(P ) (mE ,m) has the form [170, 183–186]

IS(P ) (mE ,m) =
∫ 1

0

x2
(
1− x± mE

mµ

)
m2
µx

2 +
(
m2
E −m2

µ

)
x+m2 (1− x)

dx. (7.4)

In our numerical analysis we consider a benchmark scenario with θ = π
4 , mν1R = mν2R =

50MeV, MP1 = MS1 = 0.5 TeV, MP2 = 0.6TeV, MS2 = 1TeV and mϕ+ = 4TeV. The
mass of the charged exotic lepton E1 has been varied in the ranges 6TeV 6ME1 6 8TeV.
Note that these masses for the right-handed Majorana neutrinos νsR (s = 1, 2) and for the
electrically charged scalar ϕ+ are consistent with the constraints arising from the charged
lepton flavor processes µ → eγ, τ → µγ and τ → eγ, as shown in the previous section.
Considering that the muon anomalous magnetic moment is constrained to be in the range
shown in (7.1), we plot in figure 8 the muon anomalous magnetic moment as a function of
the charged exotic lepton mass ME1 . Figure 8 shows that the muon anomalous magnetic
moment decreases when the charged exotic lepton mass is increased.

The anomalous magnetic moment of the electron ∆ae can be computed in an analogous
way as ∆aµ. The difference is that the neutral (pseudo-)scalars and exotic charged leptons
contribution to the ∆ae appears at two-loop level, as shown in appendix A, and is therefore
sub-leading. Thus, ∆ae is dominated by the effective vertex diagram in figure 7, involving
the electrically charged scalar ϕ+, which couples to the right-handed Majorana neutrinos
νsR (s = 1, 2). From this diagram we find in an approximate form [167]

∆ae ≈ −
y2

1m
2
e

16π2m2
ϕ±

2∑
s=1

F

(
m2
νsR

m2
ϕ±

)
. (7.5)
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Figure 8. Muon anomalous magnetic moment as a function of the charged exotic lepton massME2 .

Consequently, our model predicts negative values for this observable in accordance
with [180]. However, in order to reproduce either [180] or [181], the experimental val-
ues shown in (7.2), we need that the mass of the electrically charged scalar ϕ± lies in the
interval 100GeV . mϕ± . 150GeV. These values are incompatible with the µ → eγ con-
straints analyzed in section 6. The latter require mϕ± ≥ 3.5TeV, which will yield in this
case a bit too small value for the electron anomalous magnetic moment, which nonetheless
are consistent with the above mentioned 2σ experimentally allowed range.

8 Dark Matter relic density

In this section we provide a discussion of our model in view of Dark Matter (DM). We do
not intend to provide a sophisticated analysis of the DM constraints, which is beyond the
scope of the present paper. Note that due to the preserved Z(2)

2 discrete symmetry and to
the residual Z2 symmetry (arising from the spontaneous breaking of the Z4 subgroup), our
model has several stable scalar DM candidates. As follows from the scalar assignments to
the Z(2)

2 × Z4 symmetry, given by eq. (2.8), we can assign this role to any of the following
scalar particles: ϕ0

R, ρR, ξR, S1, S2, ϕ0
I , ρI , ξI , P1 or P2. Furthermore, our model has a

fermionic dark matter candidate, which can be the lightest among the two right-handed
Majorana neutrinos νsR (s = 1, 2), since in our model they are the only right-handed
Majorana neutrinos whose masses appear at two-loop level.

Based on eqs. (4.1) and (4.10) of section 3, we take ρI as our scalar Dark Matter
candidate. To guarantee the stability of ρI , we assume that this field is lighter than the
charged exotic fermions, and in this way its decay modes into exotic and SM charged
fermions are kinematically forbidden.

The relic density of the Dark Matter in the present Universe is estimated as follows
(cf. refs. [166, 187])

Ωh2 = 0.1 pb
〈σv〉

, 〈σv〉 = A

n2
eq

, (8.1)
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where 〈σv〉 is the thermally averaged annihilation cross section, A is the total annihilation
rate per unit volume at temperature T and neq is the equilibrium value of the particle
density, which are given in [187]

A = T

32π4

∞∫
4m2

ϕ

∑
p=W,Z,t,b,h

g2
p

s
√
s− 4m2

ρI

2 vrelσ (ρIρI → pp)K1

(√
s

T

)
ds,

neq = T

2π2

∑
p=W,Z,t,b,h

gpm
2
ρI
K2

(
mρI

T

)
, (8.2)

with K1 and K2 being the modified Bessel functions of the second kind of order 1 and 2,
respectively [187]. For the relic density calculation, we take T = mρI/20 as in ref. [187],
which corresponds to a typical freeze-out temperature.

The scalar DM candidate ρI annihilates mainly into WW , ZZ, tt, bb and hh, via a
Higgs portal scalar interaction

(
φ†φ

)
ρIρI , where φ is the SM Higgs doublet. The corre-

sponding annihilation cross sections are given by [188]:

vrelσ (ρIρI →WW ) = α3
32π

s

(
1 + 12m4

W
s2 − 4m2

W
s

)
(
s−m2

h

)2 +m2
hΓ2

h

√
1− 4m2

W

s
,

vrelσ (ρIρI → ZZ) = α3
64π

s

(
1 + 12m4

Z
s2 − 4m2

Z
s

)
(
s−m2

h

)2 +m2
hΓ2

h

√
1− 4m2

Z

s
,

vrelσ (ρIρI → qq) =
Ncα

2
3m

2
q

16π

√(
1− 4m2

f

s

)3

(
s−m2

h

)2 +m2
hΓ2

h

,

vrelσ (ρIρI → hh) = α2
3

64πs

(
1 + 3m2

h

s−m2
h

− 2α3v
2

s− 2m2
h

)2√
1− 4m2

h

s
, (8.3)

where
√
s is the centre-of-mass energy, Nc = 3 is the color factor, mh = 125.7GeV and

Γh = 4.1MeV are the SM Higgs boson h mass and its total decay width, respectively; α3
is the quartic scalar coupling corresponding to the interaction α3

(
φ†φ

) (
ρ†ρ
)
.

Figure 9 displays the relic density Ωh2 as a function of the mass mρI of the scalar field
ρI , for several values of the quartic scalar coupling α3. The curves from top to bottom
correspond to α3 =1, 1.2 and 1.5, respectively. The horizontal line corresponds to the
experimental value Ωh2 = 0.1198 of the relic density. Figure 9 shows that the relic density
is an increasing function of the mass mϕ and a decreasing function of the quartic scalar
coupling α3. Consequently, an increase in the mass mρI of the scalar field ρI will require
a larger quartic scalar coupling α3, in order to account for the measured value of the Dark
Matter relic density, as indicated in figure 10.

It is worth mentioning that the Dark Matter relic density constraint yields a linear
correlation between the quartic scalar coupling α3 and the mass mρI of the scalar Dark
Matter candidate ρI , as shown in figure 10. We have numerically checked that in order to
reproduce the observed value, Ωh2 = 0.1198 ± 0.0026 [189], of the relic density, the mass
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Figure 9. Relic density Ωh2, as a function of the mass mρI of the ρI scalar field, for several values
of the quartic scalar coupling α3. The curves from top to bottom correspond to α3 = 1, 1.2, 1.5,
respectively. The horizontal line shows the observed value Ωh2 = 0.1198 [189] for the relic density.
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Figure 10. Correlation between the quartic scalar coupling α3 and the mass mρI of the scalar Dark
Matter candidate ρI , consistent with the experimental value Ωh2 = 0.1198 for the Relic density.

mρI of the scalar field ρI has to be in the range 400GeV6 mρI 6 800GeV, for a quartic
scalar coupling α3 in the range 1 6 α3 6 1.5.

In what concerns prospects for the direct DM detection, the scalar DM candidate
would scatter off a nuclear target in a detector via Higgs boson exchange in the t-channel,
giving rise to a constraint on the coupling of the

(
φ†φ

)
ρIρI interaction.
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9 Conclusions

We have constructed an extension of the 3HDM based on the Z(1)
2 × Z(2)

2 × Z4 symmetry,
where the SM particle content is enlarged by two inert SU2L scalar doublets, three inert
and two active electrically neutral gauge singlet scalars, charged vector like fermions and
Majorana neutrinos. These fields are introduced in order to generate the SM fermion mass
hierarchy from a sequential loop suppression mechanism: tree-level top quark mass; 1-loop
bottom, charm, tau and muon masses; 2-loop masses for the light up, down and strange
quarks as well as for the electron; and 3-loop masses for the light active neutrinos. In our
model, the Z(2)

2 symmetry is preserved, whereas the Z(1)
2 symmetry is completely broken

and the Z4 symmetry is broken down to a conserved Z2 symmetry, thus allowing the
stability of the Dark Matter as well as a successful implementation of the aforementioned
sequential loop suppression mechanism, without the inclusion of soft symmetry breaking
terms. For studying the electroweak symmetry breaking in our model we applied the
bilinear formalism of the 3HDM.

We demonstrated that our model successfully accommodates the current fermion mass
spectrum and fermionic mixing parameters, the electron and muon anomalous magnetic
moments, as well as the constraints arising from charged lepton flavor violating processes.

We have also shown that in our model the branching ratios of the decays µ → eγ,
τ → µγ and τ → eγ can reach values of the order of 10−13, which is within the reach of
the future experimental sensitivity, thus making our model testable by the forthcoming
experiments.

Finally, we have examined the scalar DM particle candidate of the model and have
shown that the prediction is compatible with the observed DM relic density abundance for
scalar masses in the range 400GeV6 mρI 6 800GeV.
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A Exotic leptons and neutral scalar contribution to leptonic LFV decays

Let us show that the contribution to li → ljγ decay of the charged exotic leptons E2 and
the electrically neutral scalars Sk, Pk vanishe at one loop. Their one-loop contribution is
given by the first two diagrams in figure 6, with one µ replaced by e.

In the mass eigenstate basis l̃i the corresponding contribution to the branching fraction
is given by:

Br
(
l̃a→ l̃bγ

)1-loop

scalar
'κ

3∑
j=1

3∑
k=1

(
V †lL

)
aj

[ 2∑
s=1

y
(l)
js x

(l)
sk (δk2+δk3)

]
(VlR)kb (1−δab)F1loop

= κ

G1loop
v√
2

3∑
j=1

3∑
k=1

(
V †lL

)
aj
M

(l)
jk (VlR)kb (1−δab)F1loop

= κ

G1loop
v√
2

3∑
j=1

3∑
k=1

(mµδa2δb2+mτδa3δb3)(1−δab)F1loop = 0, (A.1)

what was to be shown. Here we have taken into account that the SM charged lepton mass
matrix has the form:

M
(l)
jk =

[ 2∑
s=1

y
(l)
js x

(l)
sk (δk2+δk3)G1loop+y(l)

j x
(l)
1 δk1G2loop

]
v√
2
'

2∑
s=1

y
(l)
js x

(l)
sk (δk2+δk3)G1loop

v√
2

(A.2)
and satisfies

V †lLM
(l)VlR =

(
M (l)

)
diag

(A.3)

where j, k = 1, 2, 3, with G1loop and G2loop being the corresponding one and two loop
functions, respectively.

The SM fermionic fields in the mass (f̃(L,R)) and interaction (f(L,R)) eigenstate bases
are related as

f(L,R) = Vf(L,R)f̃(L,R) . (A.4)
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