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ABSTRACT: In this paper, we examine the leptonic flavor invariants in the minimal see-
saw model (MSM), in which only two right-handed neutrino singlets are added into the
Standard Model in order to accommodate tiny neutrino masses and explain cosmological
matter-antimatter asymmetry via leptogenesis mechanism. For the first time, we calculate
the Hilbert series (HS) for the leptonic flavor invariants in the MSM. With the HS we
demonstrate that there are totally 38 basic flavor invariants, among which 18 invariants
are CP-odd and the others are CP-even. Moreover, we explicitly construct these basic
invariants, and any other flavor invariants in the MSM can be decomposed into the poly-
nomials of them. Interestingly, we find that any flavor invariants in the effective theory
at the low-energy scale can be expressed as rational functions of those in the full MSM at
the high-energy scale. Practical applications to the phenomenological studies of the MSM,
such as the sufficient and necessary conditions for CP conservation and CP asymmetries
in leptogenesis, are also briefly discussed.
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1 Introduction

Neutrino oscillation experiments have firmly established that neutrinos are massive par-
ticles and the flavor mixing is significant in the leptonic sector [1, 2]. This compelling
evidence for neutrino masses and flavor mixing indicates that the Standard Model (SM) is
actually incomplete and new physics indeed exists. In order to accommodate tiny neutrino
masses in a natural way, one can extend the SM with N-generation right-handed (RH) neu-
trino singlets v, (for i = 1,2,..., N), for which the Majorana mass term is allowed. More
explicitly, the SU(2); ® U(1)y gauge-invariant Lagrangian responsible for lepton masses,
flavor mixing and CP violation reads

__ . - 1—
_zepton - ELYZHZR + gLYVHVR + §VPC{MRVR +h.c. ) (1'1)

where ¢, = (v,1)", H = ioyH* with H = (HJF,HO)T stand for the left-handed lepton
doublet and the Higgs doublet, respectively. In addition, Y; and Y,, are the charged-lepton
and Dirac neutrino Yukawa coupling matrices while My is the Majorana mass matrix of
RH neutrinos. Note that VS = C@T has been defined with C = iy?4" being the charge-
conjugation matrix.

After the Higgs field acquires its vacuum expectation value (HY) = v/v/2 with v ~
246 GeV, the SU(2); ® U(1)y gauge symmetry is spontaneously broken down, and the
lepton mass terms and the leptonic charged-current interation are given by

g — _
EZL’}/#VLWH + h.C. 5 (12)

_ - 1—
~Bepton = I Mylg + 7 Mprg + §VSMRVR -



where the charged-lepton mass matrix and the Dirac neutrino mass matrix are respectively
given by M, = Yjv/v/2 and My = Y,v/v/2, and g is the coupling constant of the SU(2);,
gauge group. If the mass scale of RH neutrinos is far above the electroweak scale Apy =
102 GeV, namely, O(Mg) > Agyw, one can integrate out heavy Majorana neutrinos and
obtain the low-energy effective theory, in which the effective Majorana mass matrix of
ordinary neutrinos is given by

M, = —Mp Mg MJ . (1.3)

In this canonical seesaw model [3-7], three light neutrinos are Majorana particles, namely,
they are their own antiparticles [8, 9]. Thus the effective Lagrangian governing lepton
masses, flavor mixing and CP violation at the low-energy scale becomes

%EWMVLWM_ +h.c.. (1.4)

V2

It is the mismatch between the diagonalizations of M; and M, that leads to flavor mixing

— 1
—Zg =l Mjlg + §7LMVVE -

and CP violation in the leptonic charged-current interaction. As one can easily verify, under
the unitary transformations of the lepton fields in the flavor space, the lepton mass matri-
ces in egs. (1.2) and (1.4) will certainly change. However, physical parameters, such as the
eigenvalues of lepton mass matrices corresponding to the lepton masses, are invariant under
the flavor transformations. The reason is simply that lepton masses are physical observ-
ables, which should be independent of the flavor basis. The flavor invariants constructed
from fermion mass matrices, which are basis-independent and contain only physical degrees
of freedom, have proved to be very useful in studying the flavor structures and CP violation
in the quark and leptonic sector [10-17].

In ref. [18], implementing the mathematical tool of Hilbert series (HS) and plethystic
logarithm (PL) from the invariant theory [19, 20], we have studied the algebraic structures
of the invariant ring in the low-energy effective theory with three massive Majorana neu-
trinos and explicitly constructed all the 34 basic flavor invariants. All the flavor invariants,
built upon the matrix polynomials of M, and M, in eq. (1.4), can be decomposed into the
polynomials of these 34 basic invariants. In the canonical seesaw model with three RH
neutrinos, the ungraded HS and the flavor invariants have been discussed in refs. [21, 22].
However, the HS is too complicated to be useful in the explicit construction of all the basic
invariants. In the present paper, we examine the flavor invariants in the minimal seesaw
model (MSM), in which the SM is extended with only two RH Majorana neutrinos [23-28].
See, e.g., refs. [29, 30], for recent reviews on the MSM. The main motivation for such an
investigation is two-fold.

e The MSM is the most economical scenario where tiny neutrino masses can be gen-
erated by the seesaw mechanism and the cosmological matter-antimatter asymmetry
can be explained via the leptogenesis mechanism [31]. Therefore, the algebraic struc-
ture of the invariant ring of the MSM is nontrivial on the one hand, and it is possible
to explicitly construct all the basic flavor invariants on the other hand. This is an
excellent example to explore the algebraic structure of the invariant ring in an ultra-
violet (UV)-complete model.



e Since the basic invariants in the low-energy effective theory have been found in
ref. [18], it is interesting to examine the basic invariants in the high-energy full the-
ory and to establish a connection between these two sets of basic invariants. For this
purpose, we start with the construction of flavor invariants directly from M,;, My, and
Mp in eq. (1.2) in the full MSM. By calculating the HS and PL, we find that there
are in total 38 basic invariants in the MSM, among which 18 invariants are CP-odd
and the others are CP-even. Moreover, we demonstrate that any flavor invariants
at the low-energy scale can be expressed as the rational functions of those at the
high-energy scale.

The remaining part of this paper is structured as follows. In section 2 we briefly
introduce the mathematical background of the invariant theory and explain the general
strategy to construct the flavor invariants in a complete model, which extends the SM
with N generations of RH Majorana neutrinos. Then, we calculate the HS in the MSM
and explicitly construct all the basic invariants in section 3. Some further discussions are
presented in section 4, where the relationship between the flavor invariants at high- and
low-energy scales is established and phenomenological applications of the flavor invariants
are also discussed, including the sufficient and necessary conditions for CP conservation
and the CP asymmetries in heavy Majorana neutrino decays. Finally, our main results and
conclusions are summarized in section 5.

2 Flavor invariants

2.1 Invariant theory and Hilbert series

In this subsection we sketch the indispensable mathematical ingredients of the invariant
theory. For a more detailed and pedagogical introduction, see, e.g., appendix B of ref. [18].

Given a theory with n parameters ¥ = (z,...,z,) and a symmetry group G, we are
interested in those quantities that are invariant under the group action, i.e.,

1(Z) = I (R(¢)T) , Ygeq, (2.1)

where R is a specific representation of G and I(Z) is a polynomial function of #. Since
all the invariants are closed under the addition and multiplication, they form a ring. For
a reductive group, including all the finite groups and semi-simple Lie groups, the ring is
finitely generated, in the sense that all the invariants in the ring could be expressed as the
polynomials of a finite number of basic invariants. Thus these basic invariants serve as the
generators of the ring.

It is worth noting that not all the basic invariants are algebraically independent, and
there may exist polynomial functions of the basic invariants that are identically equal
to zero [32, 33]. These non-trivial polynomial relations between the basic invariants are
known as syzygies. The maximal number of algebraically-independent invariants is the
Krull dimension of the ring and these algebraically-independent invariants are also called
primary invariants. A significant result is that the number of the primary invariants (also
the Krull dimension of the ring) equals the number of the physical parameters in the theory.



In general, the number of the basic invariants, denoted as m, is no smaller than that
of the primary invariants r. The special case of m = r corresponds to the free ring where
there is no syzygy at all. Furthermore, if the number of the syzygies equals m — r, then
the ring is a complete intersection, otherwise a non-complete intersection.

In the invariant theory, the HS and PL provide a convenient way to count the number
of basic invariants, as well as their degrees and the syzygies among them. The HS serves
as the generating function of the invariants

00
k=0

where ¢;, (with ¢, = 1) stand for the number of linearly-independent invariants at degree k
while ¢ is an arbitrary complex number satisfying |g| < 1. The HS can always be written
as the ratio of two polynomial functions [20]

A (q)

H(q) = Tq) ) (2.3)

where the numerator takes on the palindromic structure
N(Q)=14aq+...+a_1¢" + ¢, (2.4)

with a;, = a;_,. The particular case with .#7(¢) = 1 corresponds to the free ring. In
addition, the denominator has the general form

r

2(q) = [0 - q™), (2.5)

k=1

encoding the information of primary invariants [19, 20]. The total number of the factors r
equals the Krull dimension of the ring, or the number of the primary invariants, while the
power indices d; (for k =1,2,...,r) indicate the degree of each primary invariant.

The definition of the (ungraded) HS in eq. (2.2) can be generalized to the multi-graded
form in a straightforward way. Suppose that there are n independent building blocks to
construct the invariants, then the multi-graded HS is defined as

Hqgy, -y q,) = Z Z Chy .. knql ...qn , (2.6)

1=0 kn=0

where ¢; (for i = 1,2,...,n) label the degree of the i-th building block and satisfy |¢;| < 1,
while Chy.ken (with ¢p.o = 1) denote the number of linearly-independent invariants when
the n building blocks are at the degree of (ky,...,k,), respectively.

Given the HS, one can calculate its PL, which counts the number of the basic invariants

and the syzygies. The PL of an arbitrary function f(x,,...,z,) is defined as

n

PL[f(z,,...,2,

i“sf [ xﬁ)} (2.7)

k=1



where (k) is the Mobius function. It has been pointed out in ref. [34] that the leading
positive terms of PL correspond to the basic invariants while the leading negative terms
of PL correspond to the syzygies among these basic invariants. Moreover, the PL for
a complete intersection ring has only a finite number of terms while for a non-complete
intersection ring it is an infinite series.

Calculating HS from the definition is usually very difficult. A systematic method to
calculate HS is to make use of the Molien-Weyl (MW) formula [35, 36]

H(Qla"'?Qn):/[d/‘L]GPE(’Zlv'--’ZTO;qI)'"aq'n,) ) (28)

where [du], denotes the Haar measure of the symmetry group G and the integrand is the
plethystic exponential (PE) defined as

k kY k
X P Xg, (2102 ) 4
PE (21,..., 2,051, - - -1 y) = €XD ZZ ( z ) , (2.9)
k=1i=1
with z; (for ¢ = 1,2,...,ry) the coordinates on the maximum torus of G, r, the rank of

G and xp, the character function of G under the representation R,. The MW formula
reduces the computation of HS to several complex integrals, which can be performed by
virtue of the residue theorem.

2.2 Flavor transformations and flavor invariants

Then we consider the general seesaw model with N generations of RH Majorana neutrinos
and explain how to construct the flavor invariants in a systematic way.

The Lagrangian in the leptonic sector after the spontaneous symmetry breaking is
given by eq. (1.2) and is unchanged under the following unitary transformations in the
flavor space

lL — li = ULlL y lR — li{ = VRZR s v, — I/£ = ULVL s VR — VR = URVR y (210)

where Up, Vi € U(3) and Uy € U(N) are three arbitrary unitary matrices, if the lepton
mass matrices transform as

My, — M} = U MVii . Mp — M} =U MpUL , My — My = U MgU{, . (2.11)

Based on the transformation rules of the mass matrices in eq. (2.11) we can introduce the
“building blocks”, which transform as the adjoint representations of U(3) and U(N), for



constructing the flavor invariants, i.e.,!

H, = MM — H] = U, H,U} ,
Hp = Mp M, — H) = U HpU;
Hy = M} My — Hj = Ug HRU}: ,
Hp = MMy, — H}) = Ug HpU}L
G = M (A5)" My — GEY = UrGRAUL
G = M (H)" My, — G = U G\PUf
Gp = M} {---} My — Gp = URGpUy, | (2.12)

where n is a positive integer? and Gp denotes a class of building blocks. To be more
specific, the ellipses “---” stand for the products of ﬁf:k) and Gl(g)* to some power. Thus
the building blocks in eq. (2.12) can be divided into two categories, belonging to the adjoint
representation of U(3) and U(IV), respectively:

A— ULAUE ) A={H, Hp} ,
B — Uz BU} B = {Hy, i, G5, G, G} (2.13)

As a consequence, one can immediately write down two classes of flavor invariants

L= Tr(AFARAG--- ), A A Ay A
Iy ="Tr(BIB{B{---), B,B;,B,€B, (2.14)

where the non-negative integers {a,b,c,d,e, f} stand for the power indices of the corre-

“o

sponding matrices and the ellipses -7 denote the additional possible matrices in the
set A or B. As one can see, the structures of the building blocks in the seesaw model
are much more complicated than those in the low-energy effective theory, where all the
building blocks transform with the unique unitary matrix Uy, [18]. This reflects the fact
that richer leptonic flavor structures and a more complicated invariant ring exist in the full

seesaw model at the high-energy scale.

3 Hilbert series in the minimal seesaw model

Given the symmetry group and the representation of the building blocks under the group,
it is straightforward to calculate the HS using the MW formula in eq. (2.8). From eq. (2.11)

IThe invariants composed of other building blocks, such as M;Ml, which transforms as the adjoint
representation with Vg, are actually not independent due to the cyclic property of trace. For example, we
have Tr (M M,) = Tr (M,M]) = Tr (H,).

2Tt should be noted that for the building blocks as the adjoint representation of U(N), those with n > N
are no longer independent and can in fact be expressed as a linear combination of the building blocks with
n < N using the Cayley-Hamilton theorem. For the same reason, the power index of each building block
in eq. (2.14) must be smaller than N. These two constraints largely reduce the number of the independent
building blocks, rendering it possible to construct all the basic invariants explicitly.



one can observe that H; = MZMZT belongs to the adjoint representation of U(3), My to
the bi-fundamental representation of U(3) and U(NN), while My to the rank-two symmetric
tensor representation of U(NV), i.e.,

Hy:8;,®8f, Mp:3, @ Ng, Mj): Ny ®3j, My : (Ng ®Ng), , M : (Ng ® Ng), ,
(3.1)

where 3, (or Ny ) and 3; (or N ) denote respectively the fundamental and anti-fundamen-
tal representation of U(3) (or U(N)) and the subscript “s” refers to the symmetric part.
Recalling that the character functions of the fundamental and anti-fundamental represen-
tation of U(N) group are 3°iv ; z; and 3.~ | 27!, respectively, with z; being the coordinates
on the maximum torus of U(N) [18], one can calculate the character functions of any rep-
resentations via the tensor product decomposition. In the subsequent two subsections, we
will consider two concrete models, namely, the toy model with N = 1 and the realistic
MSM with N = 2.

3.1 Toy model

As a warm-up exercise, we start with the toy model where there is only one generation of
RH neutrino, i.e., N = 1. In this case, the character functions of My, H;, and My, read

Xr (71) = 21 + 212,
-1 -1 _
X1 (21522, 23) = (21 4+ 22 + 23) (Zl t 2zt 1) ;
Xp (21,22, 23,20) = (21 + 2+ 23) 25 L + (Zfl +2y Z§1> 24 (3:2)
where z,4 is the coordinate on the maximum torus of U(1) while z; (for i = 1,2, 3) are those

of U(3). Labeling the degrees of M,;, My and My by ¢, ¢ and ggr, respectively, one can
obtain the PE as below

PE (Zla 29y %235 245 41, QD>QR)
( oo x; (2, 28, 24) @ + xp (2, 25,24, 28) afy + xw () q{%)
= exp

2 ;

k=1
= [(1 — q?)g (1 — qZQzlzz_l) <1 — q?z22f1> (1 — q?zlzgl) (1 — q1223z1_1) (1 — q?zzzg_l)
X (1 - lezszQ_I) (1 - QDZ1Z4_1> (1 - QDZ421_1> (1 - QDZQZAL_I) (1 - QDZ4Z2_1>
X (1 - qu32Z1) (1 - qDZ4Z§1> (1 — quZ) (1 — quZ2)}_1 , (3.3)

while the Haar measure of U(3) ® U(1) reads

[iau _ 1 (1)4 f o dmy
HuEev® = 31\2mi) Jjm1 2z Jjeym1 22 So 2

dzg | (20— 21)% (23 — 21)% (23 — 22)?
« ﬁ [_ ] . (3.4)

2,22
J|=1 74 212523




Substituting eqgs. (3.3) and (3.4) into the MW formula in eq. (2.8) and performing the
complex integrals via the residue theorem, one gets the multi-graded HS

H (@, 9p- qr) = / [dﬂ]U(3)®U(1) PE (21, 29, 23, 243 415 4D 4R)
1

DO - -FR) —ad) -a)
from which we can calculate the PL
PL[H (q,qp,qr)] = ¢ + @b + @& + @ + 40D + @ + 4i'aD » (3.6)
and the ungraded HS
A (q) =H (4.0.0) = : , (3.7)

(1—¢%)° (1 —q")* (1 - ¢%)

where the last identity has been derived by identifying ¢, = ¢, = gy = ¢ in eq. (3.5). Some
comments on the results in egs. (3.6) and (3.7) are in order.

o The numerator of % (q) is simply one, implying that the invariant ring of the toy
model is free and there is no syzygy. In other words, all the primary invariants are
also the basic invariants in the generating set.

o From the denominator of J# (¢) we can observe that there are totally 7 primary
invariants. Correspondingly, there are also 7 physical parameters in the model, i.e.,
three charged-lepton masses, one RH-neutrino mass and the moduli of three elements
of the 3x 1 Dirac neutrino mass matrix Mp.> Furthermore, the degrees of the primary
invariants and the number of primary invariants at a certain degree can also be read
off from the denominator of .7 (¢) in eq. (3.7): there are three primary invariants of
degree 2, two of degree 4 and two of degree 6.

o The positive terms in eq. (3.6) show the structures of all the basic invariants and
their degrees as well. Then it is easy to construct explicitly all the basic invariants,
which are summarized in table 1. Note that the absence of any negative terms in

eq. (3.6) also implies the absence of any syzygies, as expected for a free ring.

Thus all the flavor invariants in the toy model with one generation of RH neutrino
can be decomposed into the polynomials of the 7 basic invariants in table 1. For example,
Tr ([:ID) = Tr (Hp) = Jygo and Tr (H,HE) = Tr (H,Hp) Tr (ﬁD) = Jyo0Jp20- A systematic
approach to decomposing an arbitrary invariant into the polynomial of the basic invariants
and to finding out all the syzygies at a certain degree is presented in appendix C of ref. [18].

3In the case of one-generation RH neutrino, all the phases in the Yukawa matrix can be absorbed by
the SM neutrino fields. As a result, there is no CP violation in the theory, which corresponds to the fact
that all the basic invariants in table 1 are CP-even.



flavor invariants degree | CP
Joo0 = Tr (H,)) 2 +
Jozo = Tr (Hp) 2 +
Jooz = Tr (Hp) 2 +
Jy00 = Tr (H? 4 +
Jao0 = Tr (H,Hyp) 4 +
Jooo = Tr (H}) 6 +
Jyo0 = Tr (HfHD) 6 +

Table 1. Summary of the basic flavor invariants in the generating set along with their degrees and
CP parities in the case of one-generation RH neutrino, where ¢;, ¢ and gy denote the degrees of
M,, My and My, respectively.

3.2 Minimal seesaw model

Now we proceed with the MSM with two generations of RH neutrinos, i.e., N = 2. In this
case, the character functions of My, H; and M, turn out to be

Xr (24, 25) = 23 + 22 + 2425 + 2 s L+ 202 4 252
Xi (21,22, 23) = (21 + 29 + 23) (21_1 +2 4 23_1) )
-1 -1 -1 -1 -1
XD (21, 29, 23, 24, 25) = (21 + 29 + 23) <z4 + 25 ) + (zl + 25 + 23 ) (z4+25), (3.8)

where z; (for j = 4,5) are the coordinates on the maximum torus of U(2) while z; (for
i=1,2, 3) are those of U(3). Then the PE becomes

PE (217 227 237 Z47 25; QIv dD> QR)

( s Xl (217Z§72§) +XD (Z{C7257Z§7254€725) QD +XR (Zi:vzé:) Q{?{>
= exp

2 ;

k=1

(=)’ (1= an) (1= ) (1- @) (- dtaer?) (1- o)
x(1=afzn') (1-aaz") (1-apzee!) (1= apzzt) (1- apzz )
x(1=apz2") (1= a2z t) (1-ap2i2 ) (1-apzser!) (1 ap2ez )

x (1=apz23") (1-apzzs ') (1 - ap2s7 1) (1-ar23) (1 = qrzazs) (1 - r#)
< (1-arz?) (L—anzr'= ) (1-anz?)] (3.9)

where the degrees of M;, M, and My are labeled by ¢;, g and ggr, respectively. The Haar
measure of the direct product of two groups U(3) ® U(2) can be written as

[l _1 (1>5 f oty dag dag A
HUEeve =19 \ami) Sl o1 21 Aalet 22 Sy 2 aer

d25 (ZQ — 21)2 (2’3 — 21)2 (2’3 — 2’2)2 z4 z5
Xj|{z [— ](2--).(3.10)

2,22
s|=1 %5 Z5 24




Inserting egs. (3.9) and (3.10) into the MW formula in eq. (2.8) and calculating the
complex integrals by virtue of the residue theorem, we get the multi-graded HS in the MSM

N (g, 4p, 9r)
H(leQDaQR):/[dN] PE(ZD227z3az4az5;QZaQD7QR): LD R ) (311)
U3)®U(2) D (qlv . qR)
where
N(leQDaQR) =

22 12 22 1 22 20 12 2 18 10 2 16 10 2 1 2 1 2
—4dpa9r 9 — QDBQ181(11 + qDoqR q; 0— QQDSQROQZ 0— QDﬁqRoql 0— quq%ql Ut qDG‘J}S{ql 0

+ab an g’ + a g’ — abak a® — 2ab aka” + ab'a al® — 2ah aha® + ab ana”

+ab'anal® — g aha® + 2ah abal® + ab'dhal® — 2ab i al® + ab'ar i’ — ab ahal®

+3an qiar® +3ab dka® — bR + 2050k — 05 Ra° — 20504 — b wa”°

+an qra’ +aban gt — abarat + abana”t + abana”t — 2anan gt + 20 aa

b arat + 20h arat — abarat + ab et — ara”t — R a” + abawa’
+atara”? + a gl + 3ab'anal? + abbaha? — ab'abal? — 3atabal? — dbabal”
—abahal® + 20 gkl — akal? — ddakal® + ab'al e + abtafal® — 2052 af ¢/°

+abana® + ab'afal’ + 3ab aha + adabal® — el al® — 3dbaka’ — ddakal®

—ab agq” — aDara’ + R + b AR — b IR + IDIRG — 295°984)
—apabal — 2aband} + 2abakd} — dbardl — adaral + abara’ — DR

4
—aanay + adatal + 2anakad + abatal — 2adabal + ab aral — 3abandl

-3¢} qrdl + abandd — addhdl +2abakdl — Bt — 2¢dabal + abal
+abagal — adandl — abanal + 2abara’ — adahdl + 2abakal — adanar
—aDaRa; — aDIRAL T IDIRT — IDI + IDIRA + 2aDaRG + dpan + 1,
D (QZv qD> QR) =
2
2 2 2 4 4 4 2 2 2 2

(1761;) (1 *qD) (1*qR> (1 *qz) (1 *qD) (1 *QR) (1*qqu) (1*QDQR)

6 4 2 2 4 2.2 2 4 2 4 2 2
x (1 - qz) (1 —q qD) (1 — 4 qD) (1 — 4 quR) (1 - quR) (1 —q quR)

4 4 2 8 4 2
X (1 —q QDQR) (1 —q QDQR> .

From the multi-graded HS in eq. (3.11) we can compute the PL

PL[H (g1 4p: qr)] =
(a7 +ab+ak) + (a +aPad +ab + abah + ait) + (af + alad + afady
+afabat + abak ) + (a'ab + a'abah + 267 abad + abah) + (3alabad
+atapyah + ataba ) + (afad + 2aabad + 2alabad + 20l abak ) + (aiabah
+2g0gbak + afabah — atabat — atabak) + (2a7abah + alabak — dfadad
—5qlaah — afabak — 207 abaf — 2q/abaf — abaR) + (ai°abah — afab'ah
~qfabah — 20! et — Safadak — aabaf — 6a' ahaf — 200 abat — FadaR)

~0 (lganar]™) (3.12)

~10 -



and the ungraded HS

(3.13)

with

N Q) =1+ ¢+ ¢* +2¢° +6¢° + 10¢"° + 18¢"* + 23¢™* + 28¢"0 + 31¢"® + 34¢™ + 32¢™
+34q24 + 31q26 + 28q28 + 23(]30 + 18q32 + 10(]34 +6q36 + 2q38 + q40 +q42 _|_q44 ,

710 = () (-0 () () (-a7) ()

From the results of egs. (3.12) and (3.13) we can extract very important information

and

about the primary and basic invariants. Some helpful comments are in order.

First, from the denominator of 7 (¢q) in eq. (3.13), we conclude that there are in total
14 primary invariants, where two of them are of degree 2, five of degree 4, four of degree 6,
one of degree 8, one of degree 10 and one of degree 14. On the other hand, without the loss
of generality one can always choose the flavor basis where the mass matrices of charged
leptons and RH neutrinos are real and diagonal, and then the Dirac neutrino mass matrix

My, = iv\/ﬁy}z\/ﬁ , (3.14)

where both the light and heavy Majorana neutrino mass matrices M\V = Diag {0, my, m3}
and M\R = Diag { M, M,} are real and diagonal.* The Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [38, 39] V can be decomposed as V = V' - Diag {1,€'?,1}, where V' is a
Cabibbo-Kobayashi-Maskawa (CKM)-like matrix that contains one Dirac-type CP phase
0 and three flavor mixing angles {64, 6,3,653}. In addition, the complex and orthogonal
matrix R, fulfilling the conditions RTR = Diag{1,1} and RR" = Diag{0,1,1}, can be
written as [37]

can be parametrized as [37]

0 0
R=] cosz —sinz | , (3.15)
+sinz £cosz

with z being an arbitrary complex number. From this parametrization it is clear that there
are 14 physical observables in the theory, i.e., three charged-lepton masses {m,, my, m.},
two RH neutrino masses {M;, My}, two light neutrino masses {my, ms}, three mixing
angles {05,063, 093}, one Dirac-type CP phase ¢, one Majorana-type CP phase o and the
real and imaginary parts of one complex parameter {Rez,Imz}. Therefore, we have verified
that the number of the primary invariants in the ring is equal to the number of the physical
parameters in the theory.

“Here we assume neutrino mass ordering to be normal, so the lightest neutrino mass m; = 0 is vanishing
in the MSM. Accordingly, there is only one Majorana CP-violating phase in the PMNS matrix, i.e., the
relative phase between two massive neutrino states. The case of inverted neutrino mass ordering can be
similarly analyzed.
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flavor invariants degree | CP | flavor invariants degree | CP
Iy00 = Tr (H)) 2 + | L= (GDRGZ(%)> 10 +
Togo = Tr (Hp) 2 |+ | 13 = ([, Hy) G 10 | -
Iooe = Tr (Hg) 2 + || Le2 = ( Hp, GlD} GDR) 10} -
Lgo = Tr (H}) 4 + || 1244 = Tr ([Hg, Gjp] Gpr) 10 | -
Iy90 = Tr (H,Hp) 4 + || Loeo = r( HDleD} Gl(l2))) 12 -
Ioyo = Tr (H}) 4 + | = ( Hg, Gipl G ) 12 -
lpgy =Tk ( ~DHR> 4 + | = (GlDGlDR) 12+
Ioos = Tr (HR) 4 + | Hg=Tr ({Hm GlD} GZDR) 127 -
Igoo = Tr (H}) 6 + | Iigy = Tx ({Hm ] ) 12 -
Iypo = Tr (H} Hyp) 6 + | 15k = T ([Hy, Gip] Gipp) 12 -
Iy = Tr (H,HR) 6 + | 5 =T ( Hpg, Gpgl GZ(Q)) 12 -
Iygp = Tr (HyGpp) 6 + || fsa2 = (GI(JQD)GI(]?)R> 14 +
loyp = Tr ([:IDGDR) 6 + || K= (_ﬁm Gz%)} GlDR) 4 -
Iyo = Tr (H} Hp) 8 + | Iy =T (:I_}Dv GZD} GZ(I2D)R> 4 -
Lygp =Tr (HRGZ(IQD)) 8 + | lpas =Tr (-HR’ Gl(l2))} GlDR) 14 -
15411)2 = Tr (GipGpr) 8 + Ia%)z =Tr (_ﬁDv Gl%)] Gl(IQD)R) 16 -
15421)2 =Tr ([HRv FID} GlD) 8 - Ia%)z =Tr (:Gle GZ(IZD)] GlDR) 16 -
loyg =Tr ([HRv HD} GDR) 8 = | lsaa =Tr (:HR7 Gz%)} GZ(IQD)R) 16 -
Lﬁ% = Tr (G;pGipr) 10 + || fio62 =Tr ([G1D7 G( ) Gl(]ZD)R) 18 -

Table 2. Summary of the basic flavor invariants in the generating set along with their degrees
and CP parities in the MSM with two-generation RH neutrinos, where ¢;, ¢ and g denote the
degrees of M;, My and My, respectively. Note that the commutator [A, B] = AB — BA of two
matrices has been defined. To simplify the notations, we have also defined G, = Gl%), Gpgr = Ggg{,
Gipr = MPT{G;‘“DMR and GZ%)R = Ml];\ (Gl%))* My. Among all the 38 basic invariants, 18 are CP-
odd and the others are CP-even.

Second, from the first positive terms of PL in eq. (3.12), there are totally 38 basic
invariants in the generating set and we have explicitly constructed them, which together
with their degrees and CP parities are summarized in table 2. Among them, 20 invariants
are CP-even and the others are CP-odd. On this point, it is worth emphasizing that
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for the multi-graded PL in the case of the non-complete intersection ring, the “leading
positive terms” should refer to all the positive terms before the first purely negative total
degree.’? This observation has not been made explicitly in the literature, to the best of our
knowledge, although it has been verified through several concrete examples in ref. [40].

Third, with the renormalization-group equations (RGEs) of M;, My and My in the
seesaw model [41, 42], it is straightforward to calculate the RGEs of all the flavor invariants.
In fact, we have derived the RGEs of the 38 basic invariants listed in table 2 and verified
that they form a closed system of differential equations. Such calculations strengthen our
belief in the completeness of the generating set. Furthermore, we have also checked the
independence of all the basic invariants using the method developed in appendix C of
ref. [18]. We find that none of the basic invariants can be written as the polynomial of the
other 37 invariants, indicating that there is no redundancy in the basic invariants in the
generating set.

4 Further discussions

With all the basic invariants in the MSM, we explore their relations to the flavor invariants
in the low-energy effective theory in this section. Furthermore, we also discuss some phe-
nomenological applications of the flavor invariants in the MSM, such as the sufficient and
necessary conditions for CP conservation and the CP asymmetries in the decays of heavy
Majorana neutrinos.

4.1 Connection between low- and high-scale invariants

In ref. [18], we obtain all the basic flavor invariants {I;,I,..., I3} in the low-energy
effective theory of three generations of light Majorana neutrinos. Here the notations of
flavor invariants in ref. [18] in the low-energy effective theory are followed. An intriguing
question is how the basic flavor invariants in the full seesaw model are related to those in
the low-energy effective theory.

In the MSM, all the flavor invariants are built upon the charged-lepton mass matrix
M;, the Dirac neutrino mass matrix My, and the RH neutrino mass matrix Mp. As the
seesaw scale is usually much higher than the electroweak scale, one can integrate out RH
neutrinos and thus obtain the effective neutrino mass matrix in eq. (1.3), which, together
with M, serves as the building blocks of the flavor invariants in the low-energy effective
theory. Interestingly, we find that all the flavor invariants at the low-energy scale can be
expressed as the rational functions of those at the high-energy scale. This can be realized
by simply replacing M,, with the right-hand side of eq. (1.3) and utilizing the following
identity

o1 2T (A) 15 — 4]
 Tr(A)? — Tr (42)

, (4.1)

SFor example, in eq. (3.12), the first purely negative total degree is 20. The reason is that for any total
degree lower than 20 there are positive terms at the same degree, whereas all the terms with total degree
of 20 are negative.
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with A being an arbitrary 2 x 2 non-singular matrix and 1, being the two-dimensional
identity matrix. For instance, I, = Tr (H,) = Tr (MZ,MD can be rewritten as

:Tr{ﬁD M (Er;g)*l MR}_I}
=2 (IOOQIgQO - 2'[020'[022 + I042> / ('[302 - I004> . (42)

As for I; = Tr (H2), we have

—1
Iy = Tr | Mp Mg MEM; (M) M

-1 -1
Iy = Tr | Mp Mg MEMy, (M) MbMp M Mg M (M) M,

_1}
2
= [1004 (—7320 - Io40> + I (31820 - —7040) (—7320 + -7040) — 4 (2190122 — Tos2)

X (21002—7320 = 2lp0 Loz + —7042)} / (—7302 - Ioo4>2 ‘ (4.3)

From the perspective of effective theories, the matching conditions for the flavor in-

:Tr{gD i () ] [ ()

variants in eqgs. (4.2)—(4.3) are valid at the seesaw scale. Below the seesaw scale where the
RH neutrinos have been integrated out, the running behaviors of the flavor invariants are
governed by those of M, and M;. To obtain the values of flavor invariants at the elec-
troweak scale, one needs to solve the RGEs of {I;,..., I3}, which have been calculated in
ref. [18]. Therefore, once the UV-complete model is specified, the matching conditions will
be used to determine the initial values of the flavor invariants in the effective theory. With
the RGEs of the basic invariants in table 2 in the full theory and the matching conditions
at the seesaw scale, we have given a complete description of the running behaviors of the
invariants in the low-energy effective theory.

Using the Casas-Ibarra parametrization in eq. (3.14), it is possible to extract all the
physical parameters from the basic invariants in table 2. This goal can be achieved as
follows. First of all, the lightest active neutrino is massless in the MSM, so we have
I, = m3 +m3 and I, = m3 + m3, from which one can extract the masses of the active

1 1
mi=3 (b 26— 8) . mi= (b 2L 8) (4.4)

where I, and I are given by egs. (4.2)—(4.3). The masses of two heavy Majorana neutrinos
are determined by Iy, = Tr (Hy) = M + M3 and Iy, = Tr (HE) = M} + M3, i.e.,

1 1
]\412 = 5 ( 002 — \/ 2—7004 - 1302) ’ ]\422 = 5 (Ioo2 + V 2—7004 - 1302) : (4-5)

As for the masses of charged-leptons, one can use Iy, = Tr (H,) = m2 + mi +m2, Ijgy =
Tr (H?) = myg +mj, + my and Igg = Tr (H}) = mf +m$, + mf, leading to

neutrinos

2 _ T300 — 315001400 + 200 m2 = 300 — Taoo . m2= Iéég ’ (4.6)

‘ 3 (Z300 — La00) 7 ! 2];63
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where the hierarchical limit m_ > m, > m, has been applied. In addition, the real and
imaginary parts of the complex parameter z = x + iy can be solved from the following
identities

Tooo =Tr(Hp) = 5 [(M;y — M,) (my — mg) cos (2x) + (M; + My) (my + mg) cosh (2y)],

N

~ 1
Iy = Tr(HDHR) =3 KM?—M;’) (mgy — mg) cos (2z) + (Mf’ + Mg’) (mgy 4+ m3) cosh (2y)} .
More explicitly, we have

Togg — Tooo (M — My M, + M3)
MMy (My — My) (mgy — my)
—Iogo + Loog (M + M M,y + M3)
M My (M + My) (my +mg)

cos (2z) =

cosh (2y) =

(4.7)

where the masses of RH neutrinos are assumed to be non-degenerate, i.e., M; # M,. The
latest global-fit analysis of neutrino oscillation data [43] indicates Am3; = m3 — m? ~
2.51 x 1073 eV? and Am3, = m3 — m? ~ 7.42 x 107°eV?, from which one can verify that
my # mg in the MSM with m; = 0. Therefore, the first identity in eq. (4.7) is valid.
Substituting eqs. (4.4) and (4.5) into eq. (4.7) and doing some arithmetical computations,

one can further reexpress the results completely in terms of the flavor invariants, namely,

\/QIOQOM — 21021020 + 21022
\/m (\/1002 — \/M— \/1002 + \/m>

y V2
NN TR R RN T
h (29) \/5—7020\/ 1255 — Tooa + 210021020 — 21022
cosh (2y) =

v/ 1305 — Loos (\/1002 —\/2Io0a — I3y + \/1002 + 1/ 20004 — I&p)
y V2
\/12 —\/2I5 — 13 + \/12 + /215 — I2

where the explicit expressions of flavor invariants I, and I5 can be found in eqgs. (4.2)—(4.3).
Finally, the flavor mixing angles {65,603, 093} and CP phases {d,0} in the PMNS matrix
can be extracted from {1}, I,, ... I3, } as shown in ref. [18], which in turn can be recast into
the rational functions of the basic invariants in table 2 by virtue of eq. (4.1). Therefore, we
have successfully extracted all the physical parameters from the basic invariants in the MSM
as promised. Complemented with the RGEs of the flavor invariants, the above relations
offer a basis-independent way to describe the running behaviors of physical parameters.

cos (2z) =

(4.8)
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4.2 Conditions for CP conservation

In ref. [17] we have found three sufficient and necessary conditions for CP conservation
in the leptonic sector in the MSM. As a simple application of the flavor invariants, we
show that those conditions can be written in a basis-independent form with only the basic
invariants in table 2.

In the assumption that the masses of heavy Majorana neutrinos are not degenerate,
there are totally three CP-violating phases in the theory. In the present case, we choose
three CP-violating parameters to be y, d and o, implying that three CP-odd invariants are
needed to eliminate them. First, the lowest-order CP-odd invariant [y, can be used to get
rid of y via

Iy =Tr ({HR, E’D} GDR) =iMiMG (Ml2 — MQQ) (m% - mg) sin (2x) sinh (2y) ,  (4.9)

the vanishing of which results in y = 0.5 To separate the Dirac-type CP phase § from the
Majorana-type CP phase o, we recall the Jarlskog-type invariant in the low-energy effective
theory

Tr ([Hl, Hl,]d) = 2imim3 (mg — m%) AL, A A 815C19593C93513C 3 5ind ,  (4.10)

‘[25 = ep—utT

where A 5 = ma—m% (for o, 8 = e, u, 7), ¢;; = cosb;; and s;; = sin0,; (for ij = 12,13, 23).
Thus the vanishing of I55 enforces § = 0. Our task is to express I,5 in the form of those
basic invariants in table 2. Replacing M, with —Mp Mg 'M{ in I, and taking advantage

of eq. (4.1) repeatedly, one obtains

—161 2 ]
——————ImTr {G;D) [Ho20Hr — Gpr — (Lo20L002 — Lo22) 12] Hp
(Z502 — Looa)

X [[020HR - GDR - ([020[002 - 1022) 12] GlD [IOQOHR - GDR - (IOZOIOOZ - 1022) 12]} .
(4.11)

25 —

In order to decompose the flavor invariants in eq. (4.11) into the polynomials of the basic
invariants, the Cayley-Hamilton theorem should be used. The final result turns out to be
lengthy

3
-725 = f/ (—7302 - —7004) ) (4-12)

with

5The special values of z = 0 or /2 also lead to the vanishing of Iy.4. In these two cases, the orthogonal
matrix R will be reduced to a rotation matrix with a purely-imaginary rotation angle. However, it can
be shown that the phase of 7/2 in R is actually unphysical and can be absorbed into other phases [17].
Therefore, Ipy4 = 0 can indeed eliminate one CP phase.
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7=

—2Ig30 (31802 — 21004) Igh + Iho [513021660 — I (615421)21420 + 61,00 1453) — 515 + 51(%2)
1002 (20—’2(421)2[422 +20I02 {3} + 12050153 — 19]0041660) + Ioos (415421)2]420 + Alyoo 1) — Iig)
JFIe(s?z)} + I {1302 (7‘[262]420 — 5153 T1a0 — 5Loa0 133 + ThooIigh — BlouoIih — 6‘[022[660>
—2I o2 [1022 (612(421)2[420 + 61500135 + 915 — 91(%)2) -2 (124018121 + Logqd4a0 + 210421&)2)

+9 <1222L§§)2 + 12621422) -7 (12(}1)2[45131)2 + Iz(i)zfii)zﬂ — 6159 (12441420 + 515 L1py + 5Ly 1)
+1220LL2121) — 812,15 + Ioga (12621420 — I Liag — Thaso L) + ToooLigh — TouoL8s)
+3810221660) + 4oas (Ta221420 — T2201422) } + To20 {9130210401660 + Lo, {6 <I262I440 + Toao I {g)
—2Ip451560) + Loao (212(?1)2[420 + 205001435 + BIh — 516(52)2)} + Ioo2 {3]040 (212(?1)2[422

+2050 15} — 3—’004—’%0) — 61pg, (‘[2621420 — B3I Luao — BLauoli3) + InagIS5) — 41040]((531)2)
—2Ipyy (Iéi)21420 + IngoI§3) + A1) — 41(%)2) -8 (12621181)2 + Iéi)zfi?z)] + 41599 (10441481)2
‘1‘[042[3121) + 24155, (Iéi)zlzxzo + Igo 1§53 + Iigh — Ié?z) + 2129 (1312621422 + 13155, 12)
—1BIL IS — 1515 I55) — 16]04216(5411)2> + Inos [410421660 — Toao (215421)2]420 +2L500 143, — Iig)
+Ié§)2)} +4lo4o (12441420 — I — 1222I£i)2> - 4104412(411)21420} — 21, [12621420 + IpooLig)
-5 <I§i)21440 + 1240143)2)} — 2499 {IOO2 {5 (1262[440 + LoaoI§gh + ToaoI§eh — 104016(2)2)
—6145T60] + 61502 T040T660 + Toao (512(421)2]422 + 51550155 — 6IOO4I6GO> — Ioaz (12(421)2]420
+lono i) + 205 — 2153?2) -2 <I262LE421)2 + Iézll)zlg)z)} — 1215221660 — Loao (102 — Looa)

2 3 2 1
X (12621420 - 154)21440 - 12401454)2 + 1220LE6)2 - IO4OI(§4)2) ’

which though tedious is straightforward to verify. Therefore, we have written I,5 as the
rational function of the basic invariants in table 2 as expected. The last step is, after using
egs. (4.9) and (4.12) to eliminate y and ¢, to find another CP-odd invariant 12(31)2: namely,

133 = T ([ Hy, Hp| Gip)

=5=0 i .
z §M1M2 <M22 - MIQ) (my — mg) \/MgMmgcy3sin 2z [(Aeu
+A. + A, cos 2623) 812813 + A7 ¢19 810 2«923} sino , (4.13)

which is proportional to sino. Obviously, the vanishing of Iéi)z ultimately removes all the
CP phases in the theory.

To conclude, the vanishing of eqs. (4.9), (4.12) and (4.13) in the MSM gives the suffi-
cient and necessary conditions for CP conservation in the leptonic sector. These conditions,
put in the form of only the basic invariants in table 2, are dependent on neither the chosen
flavor basis nor the parametrization of M.
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4.3 CP asymmetries in leptogenesis

Apart from naturally generating tiny Majorana masses of neutrinos, the seesaw model
provides an elegant possibility to explain the matter-antimatter asymmetry of our Universe
by the leptogenesis mechanism [31], where the lepton number asymmetries in the CP-
violating and out-of-equilibrium decays of heavy Majorana neutrinos can be converted into
the baryon number asymmetry via the sphaleron processes. The links between the leptonic
CP violation and the flavor invariants in the leptogenesis were first discussed in ref. [44]
and subsequently examined in several other works [45, 46]. In this subsection, we show
that the CP asymmetries in the decays of heavy Majorana neutrinos can be expressed in
a simple form with only the basic invariants.

For simplicity, we consider the scenario where the one-flavor approximation for lepto-
genesis is working well. Therefore, only the CP asymmetries summed over lepton flavors
are relevant

Za[F(ViRﬁéa—i—H)—F(ViR%Q—kﬁ)} ny
€ = .

S T, Wity s T .

where I' (v, = ¢, + H) and T’ (I/Z-R — E—Fﬁ) stand respectively for the decay rate of

(2
vig — o + H and that of v,z — ¢, + H, with £, (for a = e,u,7) and H being the
CP-conjugated states of the lepton and Higgs doublets. In the MSM, the CP asymmetries
arise from the interference between the tree- and one-loop-level decay amplitudes and are
given by [47]

€ ;Zlm

) dnvs (ﬁD)ii 7

(o)

M?
F J) (fori=1,2), (4.15)
<M3
where the loop function is defined as

f(x)E\/:EF_x—l—(l—i-m)ln(lf_m)] .

1—=x

First, we insert the parametrization of My in eq. (3.14) into Hp in eq. (4.15) and thus

obtain
1 My (m% — m3) sin (2z) sinh (2y) M3
€ = —=
L™ 4702 (mg — ma3) cos (2z) + (ma + mg3) cosh (2y)~ \ M2 )~
1 My (m% —m3) sin (2z) sinh (2y) M} (4.16)
€9 = Vel .
27 4702 (mg — m3) cos (2z) — (mg + ms3) cosh (2y) M3

Then, recalling the extraction of the physical parameters in egs. (4.4) and (4.7) and substi-
tuting them into eq. (4.16), we get the CP asymmetries in the form of the basic invariants

€ — —idyyy F %22
U 8l My My (I gy — M3Ig20)" \ M2 )’

*11044 ]\412
€ = Fl=L], 4.17
27 8mv2 My My (I gy — M7 Tn20) <M22 (4.17)
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where M, and M, are given by eq. (4.5). Note that the imaginary unit in the expressions
of ¢ (for i = 1,2) in eq. (4.17) will be canceled out by the imaginary unit in the flavor
invariant Iy, (cf. eq. (4.9)), ensuring that the CP asymmetries are real. In particular,
when the mass spectrum of heavy Majorana neutrinos is hierarchical with M, > M;, only
the CP asymmetry ¢; from the lighter one is relevant. The formula of the CP asymmetry
in this case is greatly simplified

o 31 Togy
L7 16702 Toog (Tges — Tooalyeo)

(4.18)

where it is evident that only the basic flavor invariants are involved. As we have mentioned
in the previous subsection, the vanishing of I, eliminates one CP-violating parameter, so
the CP asymmetry €; here vanishes accordingly.

5 Summary

In this paper, we investigate the flavor invariants in the minimal seesaw model by using
the Hibert series and the plethystic logarithm. Complementary to the previous work [18],
in which the flavor invariants in the low-energy effective theory have been studied, the
explicit construction of flavor invariants in a complete seesaw model is accomplished. Our
main results and conclusions are summarized below.

First, the Hilbert series for the flavor invariants in the minimal seesaw model has been
computed for the first time, as shown in egs. (3.11) and (3.13). Then, with the help of the
Hilbert series and the plethystic logarithm we explicitly construct all the basic invariants,
which have been listed in table 2. We find that there are in total 38 basic invariants, among
which 18 invariants are CP-odd and the others are CP-even. Any flavor invariants in the
minimal seesaw model constructed from the matrix polynomials of M;, M and My can be
decomposed into the polynomials of these 38 basic invariants. All the physical parameters
can also be extracted from the basic invariants.

Furthermore, we investigate the relationship between the flavor invariants in a UV-
complete model and those in the corresponding low-energy effective theory. As explained
in section 4.1, any flavor invariants at the low-energy scale can be written as the rational
functions of those at the high-energy scale. These rational functions serve as the matching
conditions and supply a UV-complete description of the running behaviors of the flavor
invariants in the effective theory. We have also discussed some phenomenological applica-
tions of the flavor invariants in the minimal seesaw model. We reexamine the sufficient and
necessary conditions for CP conservation in the leptonic sector as well as the CP asymme-
tries in the decays of heavy Majorana neutrinos. All these physically interesting quantities
have been successfully expressed in terms of only the basic invariants in table 2.

Thus far it remains unknown how neutrino masses and lepton flavor mixing are gen-
erated, and different theories at the high-energy scale may lead to the same low-energy
effective theory. In this sense, it is necessary to study different complete theories that
exhibit distinct flavor structures and invariant rings. Our formalism for the minimal type-I
seesaw model can be easily generalized to other complete theories, such as the minimal
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type-(I4+1I) seesaw model, which extends the SM with one RH neutrino and one scalar
triplet [48]. As we have seen, the invariant theory and the flavor invariants are extremely
useful in studying the flavor structures of fermions as well as the CP violation in the quark
and leptonic sector. Moreover, they also provide a novel way to establish the relationship
between the complete theories and their low-energy effective counterparts. The applica-
tions of invariant theory to flavor physics are in the very early stage, and more dedicated
studies are desired.
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