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1 Introduction and summary

A great deal has been learned about string theory from the exploration of special limits of
the theory. There are many examples. In the α′ → 0 limit, string theory predicts Einstein
gravity, extended to supergravity in ten dimensions, via the 1-loop beta functionals of the
worldsheet [1]. When compactified on a circle of radius R, T-duality relates the R → 0
limit of one string theory to the R→∞ limit of another. The strong coupling limit of the
type IIA theory leads to the eleven-dimensional description in terms of M-theory, from the
perspective of which we can view all the different dual versions of 10-dimensional string
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theories again as different limits [2, 3]. Another limit of M-theory is its low energy effective
theory, the eleven-dimensional supergravity [4].

Another interesting class of limits are those which decouple degrees of freedom, and
which may again lead to new geometric perspectives or to different dual descriptions (the
most famous example being the original derivation of the AdS/CFT correspondence [5]).
In this paper, we will focus on ‘critical’ limits of string theory and M-theory, in which the
10- or 11-dimensional geometry becomes non-relativistic [6–9]. Our goal is to study the
low energy effective description of M-theory in such a limit.

This builds on a recent revival of interest in non-relativistic versions of string theory,
see e.g. [10–27]. This has been inspired in part by holographic set-ups in which non-
relativistic geometries make an appearance, but also intrinsically motivated by the desire to
explore new, and potentially simpler, corners of the space of possible quantum gravitational
theories. The target space geometry that appears extends the generally covariant but
non-relativistic ‘Newton-Cartan’ (NC) geometry [28, 29] to what can be called a ‘stringy
Newton-Cartan’ (SNC) geometry. The full ten-dimensional Lorentz symmetry is absent,
and there is instead a split into two ‘longitudinal’ directions (including time) and eight
purely spatial ‘transverse’ directions which transform into each other only under Galilean
boosts. Correspondingly one can describe the target space geometry in terms of a pair of
mutually orthogonal vielbeins, τµA, hµa, such that τµAhµa = 0, where A = 0, 1 indexes
the longitudinal tangent space directions and a = 2, . . . , 9 indexes the transverse tangent
space directions. Introducing longitudinal and transverse flat metrics, one can instead work
with degenerate metric-like objects. In addition, the usual gauge fields such as the string
two-form will propagate. The beta functionals, (bosonic) background field equations and
target space action of these geometries have been studied in [18, 19, 21, 23, 26, 27].

Non-relativistic stringy geometries may be related via T-duality on a longitudinal
direction to relativistic string theory with a null isometry [16, 17]. This fact underlies
the existence of a straightforward embedding of these theories in the formally T-duality
symmetric formulation of supergravity known as double field theory (DFT) [30–32]. Here
the metric and B-field are treated as components of a generalised metric. It was previously
realised in [33–35] that this generalised metric admits ‘non-Riemannian parametrisations’
in which, instead of an invertible metric, a degenerate metric structure (for instance of
Newton-Cartan type) appears along with the B-field. This was exploited in [26, 36] to
study the equations of motion and action of non-relativistic strings and other theories of
non-Riemannian nature.

Now, the initial investigations of stringy non-relativistic limits [6–8, 37] were firmly
embedded within the M-theoretic duality web, and provided a variety of non-relativistic
limits involving different branes as well as the duality relationships between them. We
would expect to be able to understand this more completely by constructing the full co-
variant extended Newton-Cartan geometries and low energy effective dynamics i.e. the
non-relativistic limits of 11- and 10-dimensional supergravity. Note that lower dimensional
examples of non-relativistic supergravities have been studied in [38, 39].

From the perspective of duality symmetric formulations, the route to eleven-
dimensional non-relativistic supergravity was partially provided in [40] using exceptional
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field theory (ExFT) [41–44] (see [45] for a recent review of both ExFT and DFT). ExFT
provides a formally U-duality symmetric formulation of 11- and 10-dimensional SUGRA,
and generalises much of the structure of DFT. In [40] examples were provided of non-
Riemannian parametrisations of generalised metrics that would describe non-relativistic
11-dimensional geometries, however with only a partial analysis of the resulting dynamics.
Separately, more general p-brane Newton-Cartan geometries have been studied from the
worldvolume perspective in [37, 46–48], with in particular [37, 48] focusing on the M2 case
that reappears in this paper (also considered in passing in [49] using insights from ExFT).
A recent study of spacetime aspects is [50].

In this paper we will restrict to the bosonic sector of 11-dimensional SUGRA, and
exhibit a non-relativistic limit giving a ‘membrane Newton-Cartan’ (MNC) geometry in
eleven dimensions (this is the covariant version of the flat space ‘Galilean membrane’ (GM)
limit of [6]). Although we were initially inspired by the ExFT perspective of [40], deriving
this geometry and the (bosonic) dynamics of the theory turns out to be remarkably straight-
forward if one starts with an appropriate ansatz for the metric and three-form, inspired by
the form a 1/c expansion, and generalising both the flat non-relativistic membrane limit
of [6] and the very recent construction of the NSNS SNC spacetime action in [27].

The eleven-dimensional theory we construct has a number of interesting features:

• Membrane Newton-Cartan geometry (see section 2.1). The geometry has three ‘lon-
gitudinal’ and eight ‘transverse’ directions, which we can describe in terms of an
eleven-dimensional Newton-Cartan metric structure. This appears by taking the
eleven-dimensional metric and its inverse to have the form

ĝµν = c2ηABτµ
Aτν

B + c−1Hµν ,

ĝµν = cHµν + c−2ηABτµAτ
ν
B ,

(1.1)

where A = 0, 1, 2 labels the longitudinal Newton-Cartan vielbeins, or clock forms,
τµ
A, and Hµν and τµA are projective inverses obeying the Newton-Cartan complete-

ness relations

HµρHρν + τµAτν
A = δµν Hµντν

A = 0 = Hµντ
ν
A , τµAτµ

B = δBA . (1.2)

We also expand the three-form as

Ĉµνρ = −c3εABCτµ
Aτν

Bτρ
C + Cµνρ + c−3C̃µνρ . (1.3)

Here c is a dimensionless parameter whose c → ∞ limit can be interpreted as a
non-relativistic limit. It is the geometry that results from this limit that we refer
to as membrane Newton-Cartan. The powers of c in (1.1), along with the leading
order power in (1.3), follow the pattern of the powers of the harmonic function in the
M2 brane supergravity solution, which is a generic feature of p-brane non-relativistic
limits [6, 8]. (The minus sign in the c3 term in (1.3) is a choice of convention, and
matches with e.g. expressions in the SNC literature on dimensional reduction [27].)
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• Transverse self-duality (see section 2.2). Requiring singular terms to cancel in
the c → ∞ limit requires that the finite part Fµνρσ = 4∂[µCνρσ] of the four-form
field strength obey a self-duality constraint in the eight-dimensional transverse
space. This is a consequence of the presence of the Chern-Simons term in the
eleven-dimensional action.

• Dual degrees of freedom (see section 2.4). The subleading part C̃µνρ of the three-form
in the expansion appears in the dynamics with its equation of motion imposing the
self-duality constraint. The anti-self-dual transverse projection of the field strength
F̃µνρσ = 4∂[µC̃νρσ] of this subleading part can be identified with the totally longitu-
dinal part of the seven-form field strength dual to Fµνρσ. Hence the non-relativistic
limit involves what would normally be physical and dual degrees of freedom, however,
rather than being related to each other as would usually be the case, these degrees
of freedom get reorganised into separately self- and anti-self-dual parts.

• Dilatation invariance and a ‘missing’ equation of motion (see section 3.2). The
eleven-dimensional theory is invariant under a ‘dilatation’ symmetry which scales
each field with a weight inherited from the power of c that accompanies them in the
initial expansion. This is an ‘emergent’ local symmetry [27] and it has the effect of
removing a variational degree of freedom when we vary the finite part of the action.
Hence, at this order, there is a ‘missing’ equation of motion. This is a familiar feature
of non-relativistic theories, with the naively missing equation corresponding to the
Poisson equation for the Newtonian gravitational potential. However, we can identify
this missing equation by looking at the next order in the 1/c expansion [27, 51–53].
Indeed, here we identify this missing equation by extracting it from the dilatation
variation of the action at the next subleading order. In parallel with the situation
in the DFT description of the NSNS sector [26], we also find it directly from the
equations of motion of the exceptional field theory description.

• Boost invariance (see section 3.3). The eleven-dimensional theory is also invariant
under Galilean boost transformations of the form

δHµν = 2Λ(µ
Aτν)A , δτµA = −HµνΛνA , δCµνρ = −3εABCΛ[µ

Aτν
Bτρ]

C , (1.4)

where the (infinitesimal) boost parameter ΛµA satisfies τµAΛµB = 0. The slightly
unusual feature here is the transformation of the three-form itself. This transfor-
mation (1.4) is to be expected based on similar observations in the case of stringy
Newton-Cartan. There one can either introduce additional one-form gauge fields
transforming under boosts, and treat the two-form gauge field as invariant, or else
absorb the former into the latter via a sort of Stueckelberg gauge fixing [20, 27]. We
do not introduce additional one-forms and so generalise this second picture.

• Reduction to type IIA SNC (see section 4.1). Reduction of the theory on a longitu-
dinal isometry direction produces the full type IIA SNC theory, coupling the known
NSNS sector to RR fields.
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• Reduction to type IIA D2NC (see section 4.2) Reduction of the theory on a transverse
isometry directions produces a novel type IIA non-relativistic theory, that can be
associated to D2 branes rather than strings.

• Exceptional field theory embedding and U-duality (see section 5). Finally, the
11-dimensional MNC theory can be very naturally embedded within exceptional
field theory (which also manifestly breaks Lorentz invariance and treats original
and dual degrees of freedom together), demonstrating that the same exceptional Lie
algebraic structures that appear in the relativistic theory are preserved by the limit.
Furthermore, we can easily use ExFT to study transformations between relativistic
and non-relativistic geometries, and to obtain equations of motion which are
otherwise missing from the action of the non-relativistic theory. The achievement of
ExFT is to present a unified treatment of both 11- and 10-dimensional supergravities
in which Ed(d) symmetry is manifest. The metric and gauge field degrees of freedom
are reorganised into Ed(d) multiplets. For instance, the wholly d-dimensional
components of the metric and three-form (and possibly also of the dual six-form)
appear in a generalised metric. For the cases d = 3, 4, this has an expression

MMN = |ĝ|1/(9−d)
(
ĝij + 1

2 Ĉi
pqĈjpq Ĉi

kl

Ĉk
ij 2ĝi[kĝl]j

)
. (1.5)

If we adopt the same expansion as in equation (1.1), then in the limit c → ∞, we
obtain an alternative non-relativistic or non-Riemannian parametrisation1

MMN=Ω
2

9−d

(
Hij−εABCτ(i|

ACj)klτ
kBτ lC+CiklCjmnHkmτ ln −εABCτiAτkBτ lC+2CipqHp[kτ l]q

−εABCτkAτ iBτ jC+2CkpqHp[iτ l]j 2Hi[kτ l]j+2τ i[kHl]j

)
(1.6)

where Ω is a measure factor, and τ ij ≡ τ iAτ jBηAB. This alternative parametrisation
then changes the nature of the duality relationships encoded by the dynamics of the
generalised gauge fields of exceptional field theory. This allows the exceptional field
theory formulation to automatically capture the interesting reorganisation of degrees
of freedom implied by the non-relativistic limit. In addition, the missing equation of
motion is associated to variations which do not preserve the non-relativistic nature
of the parametrisation (1.6) of the generalised metric.

The outline of this paper is very simple. In section 2 we carry out the expansion at the
level of the bosonic action. In section 3 we discuss the equations of motion and symmetries.
In section 4, we carry out dimensional reductions to type IIA. In section 5, we discuss the
embedding in ExFT. We discuss our conclusions and conclude our discussions in section 6.
The appendix contains additional calculational details.

1The flat space limit of (1.1) was already studied in exceptional field theory in [40], and the general non-
Riemannian parametrisation of the SL(5) generalised metric worked out - this can be shown to be equivalent
to (1.6). However a full analysis of the Newton-Cartan interpretation and dynamics was not carried out.
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2 Membrane Newton-Cartan limit and 11-dimensional SUGRA

2.1 Setting up the expansion

Metric. We start by writing the 11-dimensional metric and its inverse as

ĝµν = c2τµν + c−1Hµν , ĝµν = cHµν + c−2τµν . (2.1)

We can view this simply as a field redefinition which introduces the 11-dimensional Newton-
Cartan variables alongside the (dimensionless) parameter c. We will seek to send c to
infinity and interpret the result as a non-relativistic limit. In principle, we can also think
of this ansatz as containing the first terms in an infinite expansion in c−3, and we will
occasionally allow such a perspective to influence our presentation. However, we leave
the development of the full non-relativistic expansion to future work. To see that the field
redefinition (2.1) makes sense in Newton-Cartan terms we look at the condition δνµ = ĝµρĝ

ρν ,
which gives at order c3, c0 and c−3 respectively the following three conditions:

τµρH
ρν = 0 , τµρτ

ρν +HµρH
ρν = δνµ , Hµρτ

ρν = 0 . (2.2)

We view these as the defining conditions for τµν , viewed as a longitudinal Newton-Cartan
metric (of Lorentzian signature), and Hµν , viewed as the corresponding orthogonal trans-
verse Newton-Cartan metric (of Euclidean signature).2 Letting A = 0, 1, 2 and a = 1, . . . 8
denote longitudinal and transverse flat indices, respectively, we can introduce projective
vielbeins such that

τµν ≡ τµAτνBηAB , τµν ≡ τµAτνBηAB , τµAτµ
B = δBA , (2.3)

Hµν ≡ hµahνbδab , Hµν ≡ haµhbνδab , hµah
b
µ = δba , (2.4)

and hence obeying the Newton-Cartan completeness relations following from (2.2). Here
ηAB is the flat three-dimensional Minkowski metric and δab is the flat Euclidean 8-
dimensional metric. We can then compute the determinant of the 11-dimensional metric:

det ĝµν = −c−2Ω2 , Ω2 ≡ − 1
3!8!ε

µ1...µ11εν1...ν11τµ1ν1τµ2ν2τµ3ν3Hµ4ν4 . . . Hµ11ν11 , (2.5)

where εµ1...µ11 denotes the 11-dimensional Levi-Civita symbol. Hence
√
−ĝ = c−1Ω and it

is Ω which will be used as the measure factor in the non-relativistic action. In terms of the
vielbeins, we can write

Ω =
∣∣∣∣ 1
3!8!ε

µνρσ1...σ8εABCεa1...a8τµ
Aτν

Bτρ
Cha1

σ1 . . . h
a8
σ8

∣∣∣∣ (2.6)

and note that
∂µ ln Ω = τνA∂µτν

A + hνa∂µh
a
ν . (2.7)

We can obtain further useful identities by substituting the expressions (2.1) into contrac-
tions of the Levi-Civita symbol and the metric. One that we will use later is

n!H [µ1|ν1 . . . H |µn]νn = −ε
µ1...µnλ1...λ11−nεν1...νnσ1...σ11−n

3!(8− n)!Ω2 τλ1σ1 . . . τλ3σ3Hλ4σ4 . . . Hλ11−nσ11−n .

(2.8)
2As in the stringy Newton-Cartan case, we could choose to include additional one-forms in the expan-

sion (2.1), however these can be eliminated by a Stueckelberg gauge fixing [20, 27].
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Three-form. For the three-form, let

Ĉ3 = C3 −
1
6c

3εABCτ
A ∧ τB ∧ τC + c−3C̃3 , (2.9)

so that
F̂4 = F4 −

1
2c

3εABCdτ
A ∧ τB ∧ τC + c−3F̃4 , (2.10)

where
F4 ≡ dC3 , F̃4 ≡ dC̃3 . (2.11)

Although C̃3 is subleading, it will explicitly appear in the action and dynamics of the non-
relativistic limit. Its equation of motion will impose a self-duality constraint on F4, and we
will be able to identify a certain projection of its field strength with the totally longitudinal
components of the dual seven-form field strength. We can therefore interpret the subleading
part of Ĉ3 as being ‘dual’ to the finite part. This is clearly a general fact: the Hodge star
itself has an expansion in powers of c and so inevitably mixes up the terms at different pow-
ers of c in any p-form it acts on. What is non-trivial is that the Chern-Simons term of the
11-dimensional theory will lead to both C3 and C̃3 playing a role in the non-relativistic limit.

2.2 Expanding the action

The action for the eleven-dimensional metric and three-form is

S =
∫

d11x

(√
|ĝ|
[
R̂(ĝ)− 1

48 F̂
µνρσF̂µνρσ

]
+ 1

1442 ε
µ1...µ11F̂µ1...µ4F̂µ5...µ8Ĉµ9µ10µ11

)
.

(2.12)
Here F̂4 = dĈ3. In form notation the Chern-Simons term is 1

6 F̂4 ∧ F̂4 ∧ Ĉ3, the equation
of motion of the three-form is d?̂F̂4 = 1

2 F̂4 ∧ F̂4 and its Bianchi identity is dF̂4 = 0. The
Hodge dual field strength is F̂7 = ?̂F̂4, which obeys the Bianchi identity dF̂7 = 1

2 F̂4 ∧ F̂4
and the equation of motion d?̂F̂7 = 0.

Chern-Simons term. We start with the expansion of the Chern-Simons term. Leaving
wedge products implicit, we can simply compute

1
6 F̂4F̂4Ĉ3 = 1

6F4F4C3 −
1
6(3c3F4F4 + 6F4F̃4)1

6εABCτ
AτBτC (2.13)

− 1
3d
(
c3F4C3

1
6εABCτ

AτBτC + 1
6εABCτ

AτBτC(F4C̃3 + C3F̃4)
)

+O(c−3) .

We drop the total derivative.

Kinetic term for three-form. First, let’s write the component expression

F̂µ1µ2µ3µ4 = −6c3T[µ1µ2
Aτµ3

Bτµ4]
CεABC + Fµ1µ2µ3µ4 + c−3F̃µ1µ2µ3µ4 (2.14)

where we introduce the Newton-Cartan torsion

Tµν
A ≡ 2∂[µτν]

A . (2.15)
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Any term involving three Hµν contracting the first term in (2.14) vanishes as one Hµν

must necessarily contract a τµA. As a result,√
|ĝ|ĝµ1µ4 . . . ĝµ4ν4F̂µ1...µ4F̂ν1...ν4

= Ω
(
c3
(
Hµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4 − 12Hµ1ν1Hµ2ν2Tµ1µ2

ATν1ν2
BηAB

)
− 24HµνTµρ

ATνσ
BτρAτ

σ
B − 12Hµ1ν1Hµ2ν2Fµ1µ2µ3µ4Tν1ν2

Aτµ3Bτµ4CεABC

+ 4Hµ1ν1Hµ2ν2Hµ3ν3τµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4

+ 2Hµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4F̃ν1ν2ν3ν4

)
+O(c−3) . (2.16)

Kinetic term/Chern-Simons cancellations and self-duality. We now examine the
O(c3) terms in (2.13) and (2.16) which involve a field strength F4, as well as the O(c0)
terms involving the subleading F̃4. These cannot possibly be cancelled by a contribution
from the expansion of the Ricci scalar. The relevant terms are:

− 1
2 · 4!ΩH

µ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4(c3Fν1ν2ν3ν4 + 2F̃ν1ν2ν3ν4) (2.17)

− 1
2 · 4!4!3!ε

µ1......µ11Fµ1µ2µ3µ4(c3Fµ5µ6µ7µ8 + 2F̃µ5µ6µ7µ8)εABCτµ9
Aτµ10

Bτµ11
C

To cancel the terms at order c3, we are led to require the following constraint:

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fν1ν2ν3ν4 = − 1
4!3!ε

µ1......µ11Fµ5µ6µ7µ8εABCτµ9
Aτµ10

Bτµ11
C .

(2.18)
This says that the totally transverse part of Fµνρσ is self-dual (or anti-self-dual). This is
self-consistent thanks to (2.8). We will refer to this as the self-duality constraint.

Three-form equation of motion. As a sanity check that requiring the constraint (2.18)
is sensible and necessary, let us at this point also take the limit at the level of the equation
of motion of the three-form gauge field. We will revisit the equations of motion, including
that of the metric, in more detail in section 3. For the three-form, we have originally:

∂σ(
√
|ĝ|ĝµλ1 ĝνλ2 ĝρλ3 ĝσλ4F̂λ1...λ4) = 1

2 · 4!4!ε
µνρσ1...σ8F̂σ1...σ4F̂σ5...σ8 . (2.19)

Inserting the expansion, one has firstly at O(c3) that

∂σ
(
ΩHµλ1Hνλ2Hρλ3Hσλ4Fλ1...λ4

)
= − 1

3!4!ε
µνρσσ1...σ7∂σ(Fσ1...σ4εABCτσ5

Aτσ6
Bτσ7

C) ,
(2.20)

which is the duality relation (2.18) under a derivative.
At O(c0) we have the finite equation of motion

∂σ
(
Ω
(
4H [µ|λ1H |ν|λ2H |ρ|λ3τ |σ]λ4Fλ1...λ4 − 6H [µ|λ1H |ν|λ2τ |ρ|Bτ |σ]CTλ1λ2

AεABC

+Hµλ1Hνλ2Hρλ3Hσλ4F̃λ1...λ4

))
= 1

2 · 4!4!ε
µνρσ1...σ8(Fσ1...σ4Fσ5...σ8 − 12εABCTσ1σ2

Aτσ3
Bτσ4

C F̃σ5...σ8) .

(2.21)

This will be reproduced from the action that we find below.
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Ricci scalar. Now we come to the Ricci scalar. A very quick way to take the limit is
to start with the explicit expression for the Ricci scalar in terms of the metric and its
derivatives:

R̂ = 1
4 ĝ

µν∂µĝρσ∂ν ĝ
ρσ − 1

2 ĝ
µν∂ν ĝ

ρσ∂ρĝµσ

− 1
4 ĝ

µν∂µ ln ĝ ∂ν ln ĝ − ĝµν∂µ∂ν ln ĝ − ∂µ ln ĝ ∂ν ĝµν − ∂µ∂ν ĝµν .
(2.22)

Calculating the expansion is trivial. One has R̂ = c4R(4) + cR(0) +O(c−2) with

R(4) = 1
4H

µν∂νH
ρσ∂µτρσ −

1
2H

µν∂νH
ρσ∂ρτµσ ,

R(0) = 1
4H

µν(∂µτρσ∂ντρσ + ∂µHρσ∂νH
ρσ) + 1

4τ
µν∂µτρσ∂νH

ρσ

− 1
2H

µν∂ντ
ρσ∂ρτµσ −

1
2H

µν∂νH
ρσ∂ρHµσ −

1
2τ

µν∂νH
ρσ∂ρτµσ

−Hµν∂µ ln Ω ∂ν ln Ω− 2Hµν∂µ∂ν ln Ω− 2∂µ ln Ω ∂νH
µν − ∂µ∂νHµν .

(2.23)

Recall that the measure
√
−ĝ introduces a further power of c−1. The singular piece can be

easily rewritten as

R(4) = −1
2H

µνHρσ(∂µτρA∂ντσB − ∂ρτµA∂ντσB)ηAB = −1
4H

µνHρσTµρ
ATνσ

BηAB .

(2.24)
This cancels exactly the remaining singular term appearing in the expansion (2.16) of the
kinetic term for the three-form. An entirely similar cancellation appeared in the NSNS
sector expansion of [27], and as noted there is reminiscent of what happens when taking
the Gomis-Ooguri limit on the string worldsheet. In the conclusions in section 6 we discuss
the comparison with this limit in more detail.

2.3 Result of expansion and covariant formulation

Action and constraint. Combining (2.13), (2.16) and (2.23) we obtain the expansion
of the 11-dimensional SUGRA action in the form S = c3S(3) + c0S(0) + . . . . The singular
part is:

S(3) =−
∫

d11x
1

2·4!Fµ1...µ4

(
ΩHµ1ν1 ...Hµ4ν4 + 1

4!3!ε
µ1...µ4ν1...ν7εABCτν5

Aτν6
Bτν7

C
)
Fν1...ν4 ,

(2.25)
and in order to have a good c→∞ limit, we impose the constraint

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fν1ν2ν3ν4 = − 1
4!3!ε

µ1......µ11Fµ5µ6µ7µ8εABCτµ9
Aτµ10

Bτµ11
C ,

(2.26)
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to ensure that S(3) vanishes.3 The finite part of the action is:

S(0) =
∫

d11xΩ
(
R(0) + 1

2H
µνTµρ

ATνσ
BτρAτ

σ
B

− 1
12H

µ1ν1Hµ2ν2Hµ3ν3τµ4ν4Fµ1µ2µ3µ4Fν1ν2ν3ν4

+ 1
4H

µ1ν1Hµ2ν2Fµ1...µ4εABCTν1ν2
Aτµ3Bτµ4C

− 1
·4! F̃ν1ν2ν3ν4

(
Hµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Fµ1µ2µ3µ4

+ 1
4!3!Ωε

ν1ν2ν3ν4µ1...µ7Fµ1µ2µ3µ4εABCτµ5
Aτµ6

Bτµ7
C
))

+ 1
6F4 ∧ F4 ∧ C3 , (2.27)

where R(0) is as defined in (2.23). The equation of motion of Cµνρ gives exactly (2.21), and
we will discuss the equations of motion of the Newton-Cartan fields in detail in section 3.
The equation of motion of C̃µνρ is (2.20), giving the constraint under a derivative. Alterna-
tively if we were just to take the action (2.27) at face value, forgetting about its origin via
an expansion of the three-form, we could make the choice to view F̃µνρσ as an independent
field, serving as a Lagrange multiplier imposing the constraint in its form (2.26).

Symmetries. The action is diffeomorphism invariant (as follows from the covariant
rewriting we carry out below), as well as gauge invariant under δC3 = dλ2, δC̃3 = dλ̃2. The
vielbeins haµ and τAµ transform under SO(8) and SO(1, 2) rotational symmetries respec-
tively, which are also symmetries of the action. The non-relativistic theory is also invariant
under Galilean boosts and a dilatation symmetry.

The Galilean boosts mix the longitudinal and transverse degrees of freedom. The
parameter for such a boost is denoted ΛaA. Letting ΛµA ≡ haµΛaA such that τµAΛµB = 0,
we can give the (infinitesimal) action of these symmetries as

δΛHµν = 2Λ(µ
Aτν)A , δΛτ

µ
A = −HµνΛνA , δΛCµνρ = −3εABCΛ[µ

Aτν
Bτρ]

C . (2.28)

The action S(0) is invariant under these transformations on using the self-duality constraint.
One way for the action to be exactly invariant would be to treat F̃µνρσ as an independent
field transforming as δΛF̃µνρσ = −4Λ[µ

AFνρσ]λτ
λ
A, or to have C̃µνρ transform in a way

leading to this transformation.
The dilatations are meanwhile induced by the expansion in powers of c, with the

dilatation weight of each field equal to the power of c which accompanies it in the expansion.
The (infinitesimal) action of dilatations is hence:

δλH
µν = +λHµν , δλHµν =−λHµν , δλτ

µ
A =−λτµA , δλτµ

A = +λτµA , δλCµνρ = 0 .
(2.29)

3Strictly speaking this is a sufficient condition for the vanishing of S(3), as we could alternatively integrate
by parts and use (2.20). However the full constraint (2.26) will follow from the expansion of the metric
equations of motion that we discuss in section 3.1, as well as in the expansion of the dual field strength
discussed in section 2.4, and also follows directly from the exceptional field theory formulation of section 5.
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Note δΩ = −λΩ. For λ coordinate dependent this is a symmetry of the action S(0) on using
the self-duality constraint (2.26). If we treat F̃µνρσ as an independent field transforming
as δλF̃µνρσ = −3λF̃µνρσ, then the action S(0) is exactly invariant. We will explicitly verify
the invariance of the action and study these symmetries in more detail in section 3.

Newton-Cartan connections and covariant rewriting. The way we obtained the ac-
tion (2.27) was by a straightforward computation at the level of the metric and three-form.
To better understand the result, we rewrite the action in a covariant way by introducing
the following connection

Γρµν = τρA∂µτν
A + 1

2H
ρσ (∂µHσν + ∂νHµσ − ∂σHµν) , (2.30)

whose covariant derivative we denote by ∇µ. This satisfies the following metric compati-
bility conditions:

∇ρHµν = 0 = ∇ρτµA , (2.31)

though it is not the unique solution.4 The antisymmetric component of (2.30) is the
torsion (2.15):

Γρ[µν] = 1
2τ

ρ
ATµν

A . (2.32)

It is also useful to define the ‘acceleration’ and its trace

aµ
AB ≡ −τρATBρµ , aµ ≡ aµABηAB , (2.33)

as well as its symmetric traceless component

aµ
{AB} ≡ aµ(AB) − 1

dL
ηABaµ , (2.34)

where dL is the dimension of the longitudinal space (which is dL = 3 here, but we will also
use this notation in the reduction to the dL = 2 case of SNC in section 4.1). The final
tensor that will appear is the extrinsic curvature defined by

KµνA = 1
2LτρAHµν , KA ≡ HµνKµνA , (2.35)

and obeying the following useful identities

τµ(AKµνB) = 0, ∇µτνA = HνρKµρA . (2.36)

Finally, let’s introduce some notation to make the expressions more compact. Given an
arbitrary tensor Mµν carrying lower indices, we will employ for convenience the following
short-hand notation:

Mµν ≡ HµρHνσMρσ , MAB ≡ τµAτνBMµν , ∇ρMAB ≡ ∇ρ (τµAτνBMµν) , (2.37)
4Here ∇ acts only on the curved indices. It would also be possible to define a connection covariant

under local SO(1, 2) transformations by replacing the partial derivative ∂µτνA term with a spin covariant
derivative.
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and similarly for tensors of arbitrary rank. The meaning of raised indices should then
hopefully clear from context — note that e.g. the field strengths, Newton-Cartan torsion
and covariant derivative are all naturally defined with lower curved indices so when they
appear instead with raised curved or longitudinal flat indices this uses the above notation.

The action can then be written in terms of these manifestly covariant quantities as

S =
∫

d11xΩ
(
L+ L

F̃
+ Ω−1Ltop

)
, (2.38)

with

L = R− aµABaµ(AB) + 3
2a

µaµ −
1
12F

µνρAFµνρA + 1
4εABCF

ABµνTµν
C ,

L
F̃

= − 1
4! F̃ν1...ν4

(
F ν1...ν4 + 1

4!3!Ωε
ν1...ν4µ1...µ7Fµ1...µ4εABCτµ5

Aτµ6
Bτµ7

C
)
,

Ltop = 1
6F4 ∧ F4 ∧ C3 = 1

6
1

3!4!2 ε
µ1...µ11Fµ1...µ4Fµ5...µ8Cµ9...µ11 ,

(2.39)

where the Ricci scalar R is defined in terms of the usual Riemann curvature tensor of the
connection (2.30) via

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ , R = RρµρνHµν . (2.40)

2.4 Dual field strength

The appearance of the two field strengths F4 and F̃4 in the finite action (2.27) may seem
rather exotic. In fact, we can relate the latter to components of the dual seven-form field
strength, revealing that the non-relativistic action involves a partially democratic treatment
of what are originally dual degrees of freedom. In 11-dimensional SUGRA, we have

F̂7 = dĈ6 + 1
2 Ĉ3 ∧ F̂4 , F̂7 = ?̂F̂4 . (2.41)

With our expansion, we can compute ?̂F̂4 in components:

(?̂F̂4)µ1...µ7 = Ωεµ1...µ7ν1...ν4

(
c3Hν1λ1 . . . Hν4λ4Fρ1...ρ4 +Hν1λ1 . . . Hν4λ4F̃λ1...λ4

+ 4Hν1λ1 . . . Hν3λ3τν4λ4Fλ1...λ4

− 6Hν1λ1Hν2λ2Tλ1λ2
Aτν3Bτν4CεABC

)
+O(c−3) .

(2.42)

We then search for an expansion of Ĉ6 that can reproduce the singular term and lead to a
sensible definition of the dual six-form in the non-relativistic theory. This is provided by

Ĉ6 = −1
2c

3C3 ∧
1
6εABCτ

A ∧ τB ∧ τC +C6 −
1
2 C̃3 ∧

1
6εABCτ

A ∧ τB ∧ τC +O(c−3) , (2.43)

leading to

F̂7 = −1
6c

3εABCτ
A∧τB∧τC∧F4+dC6+1

2C3∧F4−
1
6εABCτ

A∧τB∧τC∧F̃4+O(c−3) . (2.44)

The singular piece in (2.44) agrees with that in (2.42) on using the self-duality con-
straint (2.26) obeyed by F4. From the finite terms, we can define in the non-relativistic
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limit the quantity F7 ≡ dC6 + 1
2C3 ∧ F4 which obeys again dF7 = 1

2F4 ∧ F4. We could
also define this quantity directly in the non-relativistic theory after taking the limit by
starting with the equation of motion (2.21) of the gauge field. In that case, we would
define the dual seven-form field strength to be the quantity appearing under the exterior
derivative, including all terms on the left-hand side of (2.21) as well as that involving dτ
on the right-hand side. In components, this means

Fµ1...µ7 = 1
4!Ωεµ1...µ7ν1...ν4(Hν1λ1 . . . Hν4λ4F̃λ1...λ4 + 4Hν1λ1 . . . Hν3λ3τν4λ4Fλ1...λ4

− 6Hν1λ1Hν2λ2Tλ1λ2
Aτν3Bτν4CεABC

+ 1
4!3!Ω

−1εν1...ν4λ1...λ7εABCτλ1
Aτλ2

Bτλ3
C F̃λ4...λ7) .

(2.45)

Now, we can take the totally longitudinal contraction

Fµ1...µ4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
C = 1

4!Ωεµ1...µ4ν1...ν4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
CH

ν1λ1 . . . Hν4λ4F̃λ1...λ4

+ εABC F̃µ1...µ4 . (2.46)

Using (2.8), it can be shown that whereas the transverse part of Fµνρσ obeys a self-duality
constraint, the longitudinal part of Fµ1...µ7 obeys an anti-self-duality constraint:

ΩHµ1ν1 . . . Hµ4ν4Fµ1...µ4σ1σ2σ3τ
σ1
Aτ

σ2
Bτ

σ3
C (2.47)

= + 1
4!3!ε

µ1...µ4ν1...µ4λ1...λ3εDEF τλ1
Dτλ2

Eτλ3
FFµ1...µ4σ1σ2σ3τ

σ1
Aτ

σ2
Bτ

σ3
C .

The conclusion is that (2.46) shows that the totally longitudinal part of Fµ1...µ7 can be
identified with the anti-self-dual transverse part of F̃µνρσ. Notice that the longitudinal
part of the latter projects trivially out of the action, and in fact it is exactly the projection
as on the right-hand side of (2.46) which appears in (2.27). Hence we can re-express the
terms in the Lagrangian involving F̃µνρσ as

L
F̃

= −1
2

1
4!Fµ1...µ4λ1...λ3

1
6ε

ABCτλ1
Aτ

λ2
Bτ

λ3
C×

×
(
Hµ1ν1 . . . Hµ4ν4 + 1

4!3!Ωε
µ1...µ4ν1...ν7εDEF τν5

Dτν6
Eτν7

F
)
Fν1ν2ν3ν4 .

(2.48)

This appearance of (components of) both the four-form and its dual together in the action
is again reminiscent of exceptional field theory.

3 Equations of motion and symmetries

We have expanded the action, and now we turn our attention to the equations of motion,
and the role played by the non-relativistic dilatation and boost symmetries.

3.1 Equations of motion from expansion

To keep track of the equations of motion at each order, we will consider the result of
expanding the variation of the action. We will explicitly find that this gives the same results
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as varying the expansion of the action we considered previously. The reason we take this
approach is that it will provide a useful way to keep track of which parts of the expansion
of the eleven-dimensional equations of motion appear at which order. Recall that we view
our non-relativistic limit as arising from a field redefinition, and we do not consider possible
subleading terms which would occur in a true non-relativistic expansion. That said, we set
up the expansion below in a way that would be reminiscent of such an expansion.

The relativistic equations of motion are obtained from the variation of the action (2.12):

δS =
∫

d11x(
√
|ĝ|δĝµνGµν + δĈµνρEµνρ) , (3.1)

where
Gµν = Rµν −

1
12 F̂µρ1...ρ3F̂ν

ρ1...ρ3 − 1
2 ĝµν

(
R− 1

48 F̂
ρ1...ρ4F̂ρ1...ρ4

)
,

Eµνρ = −1
6

(
∂σ

(√
|ĝ|F̂µνρσ

)
− 1

2 · 4! · 4!ε
µνρσ1...σ8F̂σ1...σ4F̂σ5...σ8

)
.

(3.2)

We consider the non-relativistic expansion of the fields, in the form

ĝµν = cHµν + c−2τµν , ĝµν = c2τµν + c−1Hµν , Ĉµνρ = c3ωµνρ +Cµνρ + c−3C̃µνρ , (3.3)

where ωµνρ = −εABCτµAτνBτρC . Both G and E admit an expansion in powers of c3, with

G = c6G(6) + c3G(3) + c0G(0) + c−3G(−3) + . . . , E = c3E(3) + c0E(0) + c−3E(−3) + . . . . (3.4)

We now re-organise the variation of the action that results from (3.3), by inserting the
expressions (3.3) for the metric and three-form. We choose to consider the variations of
τµA and Hµν as independent, in terms of which

δωµνρ = −ωµνρτDλ δτλD − 3ωλ[µνHρ]κδH
λκ . (3.5)

The general result at order c3n following from (3.1) is that

δS(3n) =
∫

d11x
[
δHµν(ΩG(3n)

µν − 3ωµρσHλνEρσλ(3n−3))

+ δτµA(2τνAΩG(3n+3)
µν − τAµωρσλEρσλ(3n−3))

+ δCµνρEµνρ(3n) + δC̃µνρEµνρ(3n+3)

]
,

(3.6)

using
√
|ĝ| = Ωc−1. Hence, in general, if we expand the theory up to order 3k, for k ≤ n ≤ 2,

the equations of motion will be

G(3n)
〈µν〉 = 3Hλ〈µων〉ρσΩ−1Eλρσ(3n−3) , 2G(3n+3)

µA = τµAωρσλΩ−1Eρσλ(3n−3) , Eµνρ(3n) = 0 , (3.7)

with the understanding that G(9) = E(6) = 0. The angle bracket notation takes into account
that the variation of Hµν is constrained by δHµντµ

Aτν
B = 0. We can solve this constraint

by letting δHµν = Hρ(µHρσM
ν)σ such that the naive variation δHµνTµν implies instead

the equation of motion

T〈µν〉 = 1
2(HµρH

ρσT(σν) +HνρH
ρσT(µσ)) (3.8)
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which is symmetric and obeys τµAτνBT〈µν〉 = 0. Note that the equation of motion for C̃
at each order is exactly that of C at the previous order.

We should contrast the equations of motion (3.7) with the result of independently
expanding G and E . If we naively set each other of the expansion of the latter to zero,
we would find the equations G(3n) = 0 = E(3n) at any given order. However, in the non-
relativistic expansion, treating τµA and Hµν as independent fields, then equation (3.7) says
that we cannot simply expand the relativistic equations and set each order independently
to zero unless we consider the full expansion (potentially infinite if treating subleading
terms). A similar subtlety is the question of which equations of motion we are meant to
expand. For instance, in the relativistic theory both Eµνρ = 0 and gµσgρκgσλEσκλ = 0
are equivalent, but lead to different truncations to finite order in the 1/c expansion. Here
we have made the choice to expand the equations of motion that appear conjugate to the
variations δgµν and δCµνρ.

Let us look for example at the first two orders, c6 and c3. If we simply wanted to
expand the theory up to order c6 we would find the equation

(
G(6) − 3ωE(3)H

)
〈µν〉

= 0,
however if we proceed with expanding up to order c3 we find that the equation for the 3-
form tells us that E(3) = 0, so that we can safely impose the two equations G(6)

〈µν〉 = E(3) = 0
independently.

Matters are further complicated by a number of ‘off-shell’ identities obeyed by the
terms appearing in the expansion of G and E . These identities will feature heavily below,
and in fact are crucial for the consistency and symmetries of the non-relativistic truncation.

To put all these ideas together, we now look in detail at the first orders of the expansion
of (3.1).

Terms at O(c6). Here we encounter the leading terms in the expansions of G and E .
First of all, we have

G(6)
µν = 1

2τµν
(1

2T
A
ρ1σ1T

B
ρ2σ2ηABH

ρ1σ1Hρ2σ2 + 1
48H

ρ1σ1 . . . Hρ4σ4Fρ1...ρ4Fσ1...σ4

)
(3.9)

which obeys G〈µν〉 = 0 automatically. Hence the δHµν variation at order c6 does not imply
an actual equation of motion. One also has

Eµνρ(3) = −1
6∂σ

(
ΩHµλ1Hνλ2Hρλ3Hσλ4Fλ1...λ4 + 1

3!4!ε
µνρσσ1...σ7Fσ1...σ4εABCτσ5

Aτσ6
Bτσ7

C
)
.

(3.10)
This is the self-duality constraint under a derivative. It obeys τµAτνBEµνρ(3) = 0, and so also
the δτ variation at order c6 vanishes identically. This is however necessary for consistency:
the expansion of the action itself started only at order c3, i.e. S(6) ≡ 0. Hence at this order
we do not obtain any equations of motion.

Terms at O(c3). At this order, there was a non-zero S(3) given by (2.25), for which we
required the self-duality constraint (2.26) to set to zero. Let us see how this information
is reproduced. First of all, the variation of C3 coming from (3.6) at this order implies
E(3) = 0. The variation of τµA involves a contribution from E(0), which can be read off
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from the finite part of the expansion of the three-form equation of motion, which was (2.21).
For convenience, we repeat this here:

Eµνρ(0) = −1
6∂σ

(
Ω
(
4H [µ|λ1H |ν|λ2H |ρ|λ3τ |σ]λ4Fλ1...λ4 − 6H [µ|λ1H |ν|λ2τ |ρ|Bτ |σ]CTλ1λ2

AεABC

+Hµλ1Hνλ2Hρλ3Hσλ4F̃λ1...λ4

))
+ 1

2 · 3!4!4!ε
µνρσ1...σ8(Fσ1...σ4Fσ5...σ8 − 12εABCTσ1σ2

Aτσ3
Bτσ4

C F̃σ5...σ8) . (3.11)

What one finds then is that

2τνAΩG(6)
µν −τµAωρσλE(0)ρσλ (3.12)

= 1
2 ·4!τµ

AΩFν1...ν4

(
Hν1ρ1 . . .Hν4ρ4Fρ1...ρ4 + 1

Ω3!4!ε
ν1...ν4ρ1...ρ7Fρ1...ρ4εABCτρ5

Aτρ6
Bτρ7

C
)
,

which is proportional to the self-duality constraint. For the terms accompanying the δHµν

variation one finds

δHµν(ΩG(3)
µν − 3ω(µ|ρσHλ|ν)E

ρσλ
(0) )

= δHµν
( 1

4 · 4!2 εABCHλ1(µτν)
Aτλ2

Bτλ3
CFσ1...σ4Fσ5...σ8ε

λ1...λ3σ1...σ8

− Ω
12Fµρ1...ρ3Fν

ρ1...ρ3 + Ω
96HµνF

2
) (3.13)

such that after projecting using (3.8)

ΩG(3)
〈µν〉 − 3ω〈µ|ρσHλ|ν〉E

ρσλ
(0) = 1

8 · 4!2 εABCHλ1(µτν)
Aτλ2

Bτλ3
CFσ1...σ4Fσ5...σ8ε

λ1...λ3σ1...σ8

+ Ω
96HµνF

2 − Ω
12Hκ(µFν)ρσλF

κρσλ , (3.14)

using the obvious shorthand for raised indices and F 2 instead of writing Hµν multiple
times. This exactly reproduces the variation δS(3) of the leading part of the expansion of
the action (2.25). Then, after projecting and using the Schouten identity (3.13) or (3.14)
can be shown to again be proportional to the self-duality constraint (specifically: the time-
space projection of the first term combines with the time-space projection of the third
term, and the space-space projection of the second term combines with the space-space
projection of the third term).

Hence the sole equation of motion we obtain at this order is the self-duality constraint.
This is consistent with what we required from the expansion of the action.

Terms at O(c0). We next consider (3.6) with n = 0. First of all, the equation of motion
of C indeed gives E(0), as in (3.11), while that of C̃ gives the constraint in the form E(3). This
is exactly what we obtain from varying the finite action S(0) directly. Note that the longitu-
dinal projection of E(0) in conjunction with the self-duality constraint implies the equation

1
2ηABH

µρHνσTµν
ATρσ

B = − 1
48H

µ1ν1 . . . Hµ4ν4Fµ1...µ4Fν1...ν4 , (3.15)
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thereby reproducing the equation we would get by setting G(6) = 0 (compare (3.9)). Hence
although we could not set G(6) = 0 previously, the non-relativistic theory is not missing
this equation. Note that for generic non-vanishing F4, equation (3.15) is incompatible
with imposing foliation-type constraints on the MNC torsion such that the left-hand side
vanishes, however if F4 is also restricted to vanish (for example) one could require such
constraints (as is always possible in the NSNS sector case [27]).

Now we turn to the equations of motion following from the variations of τ and H. For
simplicity, we present here the independent equations of motion after projecting onto lon-
gitudinal (time) and transverse (space) components. The temporal and spatial projectors
are defined as

(∆T )µ ν = τµAτν
A, (∆S)µ ν = HµρHρν , (∆T )µ ν + (∆S)µ ν = δµν . (3.16)

We start with the equations of motion of τ . The trace of the time projection gives an
equation involving the Ricci scalar:

R = 7
3∇

µaµ + aµ{AB}aµAB + 7
6a

2 + 1
36FAνρσF

Aνρσ − 1
6εABCF

ABρσTρσ
C

+ 1
4! F̃µνρσ

(
Fµνρσ + 1

Ω4!3!εABCε
µνρσλ1...λ7Fλ1...λ4τλ5

Aτλ6
Bτλ7

C
)
.

(3.17)

The traceless part of the time-time projection is:

∇µaµ{AB}+aµaµ{AB}+aµ[C(A]a
µ
{B)D}η

CD (3.18)

=− 1
12FA

µνρFBµνρ+ε(A|CDF|B)
CµνTµν

D− ηAB3

(
− 1

12F
CµνρFCµνρ+εCDEF

µνCDTµν
E
)
.

The space projection is

∇ρTµρA + aρACT
µρC = 1

6F
µνρσFAνρσ −

1
2εABCF

µρσBTρσ
C (3.19)

Finally, consider the equations of motion of H. The space-space projection is:

R(µν)−aµABaν{AB}+ 1
6
(
aµaν−a2Hµν

)
(3.20)

= τρA∇(µT ν)
ρA+ 1

6H
µν∇ρaρ+ 1

4F
µρσAF νρσA−

1
36H

µνFAρσλFAρσλ

− 1
2εABCF

(µ|ρABT |ν)
ρ
C + 1

24H
µνεABCF

ρσABTρσ
C

+ 1
6F

(µ|ρσλF̃ |ν)
ρσλ−

1
48H

µνF ρσλκF̃ρσλκ

+ 1
2H

µν
(
−R+ 7

3∇
µaµ+aµ{AB}aµAB+ 7

6a
2 + 1

36FAνρσF
Aνρσ− 1

6εABCF
ABρσTρσ

C
)
.

Combining the trace of (3.20) with (3.17) we find that the self-duality constraint (2.26)
appears (contracted with F̃µνρσ).
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The time-space projection is (with εABC ≡ ηADεDBC)

R(µA)−aµBCaA(BC) + 1
2aBa

µBA (3.21)

= 1
4ε

A
BC∇ρFµρBC + 1

4ε
A
BCaρF

µρBC + 1
4εBCDaρ

ABFµρCD

+ 1
4F

ABρσFµBρσ + 1
4εBCDF

ABCρTρ
µD

+ 1
2a

ρBA∇ρτµB −
1
2∇

2τµA − aρ∇ρτµA −
1
2a

µBAKB + 1
2a

µKA

− 1
2∇Ba

µBA +∇Aaµ + 1
2T

µ
σB∇BτσA + 1

2∇ρ∇
µτρA − 1

2τ
ρ
B∇µaρAB

+ 1
6F

(µ
νρσF̃

A)νρσ − 1
4 · 4!2Ωε

A
BCτλ2

Bτλ3
CHµκHκλ1Fσ1...σ4F̃σ5...σ8ε

λ1...λ3σ1...σ8 .

We have verified that these are indeed exactly the equations of motions that one gets by
varying the finite part of the action, S(0), given in (2.27).

3.2 Dilatations and a ‘missing’ equation of motion

We already mentioned the existence of a dilatation transformation given by (2.29), whose
origin lay in the expansion in powers of c. There is evidently a freedom to rescale c by
some constant while simultaneously rescaling the component fields such that the eleven-
dimensional fields are unchanged. This rigid dilatation leaves the full action invariant.
Hence for an infinitesimal dilatation, with δλc = −λc, we have the transformations (2.29),
and clearly order-by-order for the action we should have

δλS
(6) = 6λS(6) , δλS

(3) = 3λS(3) , δλS
(0) = 0 · λS(0) , δλS

(−3) = −3λS(−3) , . . .

(3.22)
Recall that S(6) and δS(6) vanish identically, so the first of these is just 0 = 0.

A powerful consequence of the rigid dilatations is that if we know the equations of mo-
tion for the action S(3k) at a given order k 6= 0 we can immediately write down an action
that produces them (which will agree up to total derivatives with that arising from the
expansion). This works by applying the formula (3.6) for the variation and specialising to
the dilatation variation. This is guaranteed to produce 3kS(3k). This singles out the finite
order action as being special, as here knowing the equations of motion and dilatation sym-
metry is not enough to determine its form. Furthermore, for this case we can promote the
dilatation parameter to be coordinate dependent, and obtain a local dilatation symmetry.

Let’s verify these statements. Under a rigid dilatation with parameter λ, the variation
of the c3 part of the action is

δλS
(3) =

∫
d11xΩ

(
λG(3)

µνH
µν − λ

(
2(G(6))AA + 3εABCΩ−1EABC(0)

))
, (3.23)

where EABC ≡ τµ
Aτν

Bτρ
CEµνρ. It can be checked that G(3)

µνHµν = 0. Then, if we denote
the self-duality constraint by

Θµ1...µ4 ≡ Hµ1ρ1 . . . Hµ4ρ4Fρ1...ρ4 + 1
Ω3!4!ε

µ1...µ4ρ1...ρ7Fρ1...ρ4εABCτρ5
Aτρ6

Bτρ7
C (3.24)
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we have
2(G(6))AA + 3εABCΩ−1EABC(0) = 3 1

2 · 4!Fµ1...µ4Θµ1...µ4 , (3.25)

hence indeed referring to (2.25) for S(3) we indeed have

δλS
(3) = 3λS(3) . (3.26)

Next consider the finite part of the action, with:

δλS
(0) =

∫
d11xΩ

(
λG(0)

µνH
µν − λ

(
2(G(3))AA + 3εABCΩ−1EABC(−3)

)
+ Ω−1E(3)µνρδλC̃µνρ

)
.

(3.27)
Now we can show that

G(0)
µνH

µν −
(
2(G(3))AA + 3εABCΩ−1EABC(−3)

)
= −1

8 F̃µ1...µ4Θµ1...µ4 , (3.28)

such that using Eµνρ(3) = −1
6∂σΘµνρσ we have

δλS
(0) =

∫
d11x

(
−1

8λF̃µνρσΘµνρσ − 1
6∂σΘµνρσδλC̃µνρ

)
,

=
∫

d11x

(
−1

8λF̃µνρσΘµνρσ − 1
24ΘµνρσδλF̃µνρσ

)
,

(3.29)

after integrating by parts. For arbitrary local λ, we therefore have δλS(0) = 0 on imposing
the self-duality constraint, irrespective of the transformation of C̃µνρ. Alternatively, if we
require that

δλF̃µνρσ = −3λF̃µνρσ , (3.30)

then (3.29) vanishes identically without use of the constraint. This would mean accepting
a non-local transformation for C̃µνρ itself, which is not completely outlandish given the
discussion in section 2.4 suggests we may think of it as being a dual degree of freedom to C3.

What this means in practice is that the action S(0) is invariant under variations of
Hµν and τµA of the form (2.29). This implies that there is a ‘direction’ in the space
of variations which leaves the action S(0) unchanged (or at best produces the self-duality
constraint, which is not an independent equation of motion). Hence if we vary S(0) to obtain
the equations of motion of Hµν and τµA, we will find that we are ‘missing’ an equation of
motion. This is exactly as in the NSNS sector case [26, 27] and reflects a known difficulty,
even in the purely gravitational context, of obtaining the Poisson equation from an action
principle for non-relativistic theories [52, 53], at least at first order.

Thus, in order to obtain an equation of motion for this missing variation, we go one
step further in the expansion. The variation of S(−3), from (3.6), is:

δS(−3) =
∫

d11x
[
δHµν(ΩG(−3)

µν − 3ωµρσHλνEρσλ(−6)) + δτµA(2τνAΩG(0)
µν − τAµωρσλE

ρσλ
(−6))

+ δCµνρEµνρ(−3) + δC̃µνρEµνρ(0)

]
, (3.31)

For dilatations we have

δλS
(−3) =

∫
d11x

[
λ
(
HµνΩG(−3)

µν − 2Ω(G(0))AA − 3εABCEABC(−6)

)
+ δλC̃µνρEµνρ(0)

]
. (3.32)

– 19 –



J
H
E
P
1
0
(
2
0
2
1
)
0
1
5

With constant λ, equation (3.22) implies that

S(−3) =
∫

d11x (ΩN + C̃µνρEµνρ(0) ) , (3.33)

where we defined the combination

N ≡ 1
3(−HµνG(−3)

µν + 2(G(0))AA) + εABCΩ−1EABC(−6) . (3.34)

Crucially, (3.34) does not vanish on applying the self-duality constraint, unlike the com-
bination of terms (3.25) and (3.28) which appeared at the previous orders, and nor is it
a combination of any other equations of motion resulting from the finite action. It can
therefore be used as the equation of motion of the ‘dilatation mode’. (We are not really
interested in the C̃ variation appearing in (3.32), which multiplies something we have al-
ready taken into account as an equation of motion.) It involves the fully longitudinal part
of G(0), which has not yet appeared in the equations of motion. Hence, we identify it with
the ‘Poisson equation’, in which the longitudinal part of Cµνρ plays the role of the Newton
potential (as did the longitudinal part of the B-field in the Stueckelberg gauge-fixed NSNS
sector). This is because E(−6) is the first equation of motion which contains two derivatives
acting on the former. Explicitly,

Eµνρ(−6) = −1
6∂σ

(
Ω
(
4H [µ|λ1τ |ν|λ2τ |ρ|λ3τ |σ]λ4Fλ1...λ4 + 6H [µ|λ1H |ν|λ2τ |ρ|λ3τ |σ]λ4F̃λ1...λ4

)
+ 1

2 · 4!4!3!ε
µνρσ1...σ8F̃σ1...σ4F̃σ5...σ8 . (3.35)

Intriguingly, the combination of G(−3) and G(0) appearing in (3.34) has a somewhat murky
relationship to the ‘trace-reversed’ version of the metric equation of motion. The equation
Gµν = 0 in the original 11-dimensional theory can be simplified somewhat by taking its
trace and solving that for the Ricci scalar. This trace is

ĝµνGµν = −9
2R+ 1

32 F̂
2 (3.36)

and the equation of motion without the Ricci scalar is

Ḡµν ≡ Gµν −
1
9 ĝµν ĝ

ρσGρσ = Rµν −
1
12 F̂µ

ρσλF̂νρσλ + 1
144 ĝµνF̂

2 , (3.37)

for which

τµν Ḡ(0)
µν = 1

3(2τµνG(0)
µν −HµνG(−3)

µν ) , (3.38)

which is exactly the combination appearing in (3.34). Note the relative numerical factors
here are the same as the relative numerical factors in the powers of c in the expansion.
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Now, what exactly is the equation (3.34)? Expanding the metric equation contributions
and covariantising everything, one arrives at

τµν Ḡ(0)
µν =2τµA∇ρKµρA−∇AKA−

1
4a

ABCaABC−
1
2a

ABCaACB−aAaA

−εABCFDABρaρDC−
1
8F

ABµνFABµν+ 1
48 F̃

µνρσF̃µνρσ

+1
4εABC F̃

µνABTµν
C

−aAKA+KµνAKµνA−2τµAτνB∇νaµ[AB]−τµν∇µaν , (3.39)

εABCτµ
Aτν

Bτρ
CΩ−1Eµνρ(−6)=−1

6εABC∇
µFABCµ−

1
4εABC F̃

ABµνTµν
C

+ 1
2·4!2Ω

1
6ε

λ1...σ1...σ8F̃σ1...σ4F̃σ5...σ8εABCτλ1
Aτλ2

Bτλ3
C , (3.40)

hence the covariant Poisson equation is

N = −1
6εABC(∇µFABCµ + aµF

ABCµ + 3aµDAFBCDµ)− 1
8F

ABµνFABµν

+ 1
48 F̃

µνρσF̃µνρσ + Ω−1

2 · 4!23!ε
λ1...λ3σ1...σ8F̃σ1...σ4F̃σ5...σ8εABCτλ1

Aτλ2
Bτλ3

C

−∇AKA − aAKA −KµνAKµνA − 2aµ[AB]KµAB − 2τµν∇µaν

− aABC
(1

4aABC + 1
2aACB + ηBCaA

)
= 0 .

(3.41)

Note that this expression could equivalently be rewritten in terms of the Ricci tensor, using
the following identity:

RAA = τµνRµν = −∇AKA −KµνAKµνA − aµABKµAB . (3.42)

Remarkably, equation (3.41) transforms covariantly under local dilatations. Exactly this
equation will also be selected by the exceptional field theory description as an ‘extra’
equation of motion that one can not find from the variation of the finite part of the action.
Furthermore, under Galilean boosts (discussed in next subsection), it transforms into the
other equations of motions. All this is in keeping with the properties of the missing Poisson
equation in the NSNS sector [26, 27] and supports including equation (3.41) as an equation
of motion of the non-relativistic theory.

If we think in terms of the expansion it might seem strange to find the rest of the
equations of motion from the expansion at order c0 and this extra equation from order c−3.
Clearly, if we would vary the action S(−3) we would find additional O(c−3) contributions
to the finite equations of motion, and if we would vary the action S(−6) we would find
additional O(c−3) contributions to the equation of motion (3.41), i.e. it would become
N = O(c−3). The guiding philosophy is to find the lowest order non-zero equation of
motion resulting from the variations of the action. For the Poisson equation associated to
the degree of freedom that disappears into dilatations at the level of S(0), this happens to
arise at lower order than the other equations of motion.
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As a final remark, just as in the NSNS sector case [27], it is also possible to define
a covariant derivative that is covariant with respect to dilatations. Letting bµ denote
this dilatation connection, and simultaneously introducing ωµAB as the longitudinal spin
connection, we this new affine connection is defined by the following metric compatibility
conditions

∇̃µτνA = ∂µτν
A − ωµABτνB − bµτνA − Γ̃ρµντρA = 0 , (3.43)

∇̃µHρσ = ∂µH
ρσ − bµHρσ + Γ̃ρµλH

λσ + Γ̃σµλHρλ = 0 . (3.44)

The solution to these equations is

Γ̃ρµν = Γρµν − τρA
(
bµτν

A + ωµ
ABτνB

)
− 1

2H
ρσ (bµHνρ + bνHµρ − bρHµν) (3.45)

where the dilatation and spin connections are explicitly given by

bµ = 1
3aµ + 1

6τµ
AaA , ωµ

AB = −aµ[AB] + 1
2τµ

CaABC + τµ
[AaB] . (3.46)

3.3 Boost invariance

Now let’s consider the boost transformations defined in (2.28). The calculations are very
similar to those in the previous subsection. The variation of S(3) under (2.28) vanishes
identically. The variation of the finite action gives

δS(0) =
∫

d11x
[
− ΛρA

(
2HµρτνAΩG(3)

µν + 3εABCτµBτνCEµνρ(0)

)
+ δΛC̃µνρEµνρ(3)

]
, (3.47)

and the combination of G and E terms appearing here is

−2ΩG(3)
AµΛµA−3εABCEµAB(0) ΛµC = 1

6F
AµνρΛσAFσµνρ

− ε
λ1...λ3σ1...σ8

4 ·4!2Ω Fσ1...σ4Fσ5...σ8Λλ1
Aτλ2

Bτλ3
CεABC .

(3.48)

Using ΛµAτµB = 0 and the Schouten identity this can be shown to be proportional to
the self-duality constraint. Hence the finite action S(0) is invariant under boosts up to a
total derivative and the self-duality constraint. To make the action boost-invariant off-shell
we must improve the transformations (1.4) by requiring F̃ to transform as well, similarly
to (3.30). The improved boost transformations are

δΛHµν = 2Λ(µ
Aτν)A , δΛτ

µ
A = −HµνΛνA ,

δΛCµνρ = −3εABCΛ[µ
Aτν

Bτρ]
C , δΛF̃µνρσ = −4τλAFλ[µνρΛσ]

A .
(3.49)

Furthermore, one can then check that the set of equations of motion presented in the
previous sections is boost-invariant (i.e. closed under boosts) as expected. This includes
the extra equation of motion (3.41), which under boosts transforms into the time-space
projection of the equation of motion of Hµν , equation (3.21), as well as the self-duality
constraint. This further implies that it is consistent to include it on the same footing as
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the remaining equations of motion that can be derived by varying S(0). Indeed, one can
obtain the boost variation directly from that of S(−3), which is:

δS(−3) =
∫

d11x
[
− ΛρA

(
2HµρτνAΩG(0)

µν + 3εABCτµBτνCEµνρ(−3)

)
+ δΛC̃µνρEµνρ(0)

]
. (3.50)

The quantity in round brackets is exactly the time-space projection of the Hµν equation
of motion. (As a side-remark, note that this means that the boost variation of S(−3) is not
identically zero, although it is zero on using the equations of motion following from the
finite action.)

4 Dimensional reductions and type IIA Newton-Cartan

In this section we will propose reductions from the 11-dimensional Newton-Cartan theory
to ten-dimensional type IIA Newton-Cartan theories. We have a choice of whether to
reduce on a longitudinal or a transverse direction. Reducing on a longitudinal direction
will lead to type IIA stringy Newton-Cartan with RR fields. Reducing on a transverse
direction will lead to a novel type IIA Newton-Cartan geometry which can be thought of
as arising from a non-relativistic limit associated to D2 branes rather than strings. Similar
reductions have been carried out in [37, 48] from the M2 worldvolume theory.

For comparison with the reduction ansatzes below, let us record here the usual decom-
position of the eleven-dimensional metric and three-form into ten-dimensional fields:

dŝ2
11 = e4Φ̂/3(dy + Â1)2 + e−2Φ̂/3dŝ2

10 , Ĉ3 = Â3 + B̂2 ∧ dy , (4.1)

where y denotes the direction on which we reduce.

Index book-keeping. In this section, we denote the 11-dimensional Newton-Cartan
fields and curved spacetime indices with hats, thus ĥaµ̂, τ̂µ̂A, Ω̂, and so on such that the
11-dimensional coordinates are xµ̂ = (xµ, y), with µ = 0, . . . , 9. We assume that we have
an isometry in the y direction. The 11-dimensional three-forms are denoted Cµ̂ν̂ρ̂, C̃µ̂ν̂ρ̂.

4.1 Type IIA SNC

Here we present a reduction ansatz which produces the known Stueckelberg gauge-fixed
form of the SNC NSNS sector action, supplemented with RR fields.

Reduction ansatz. We want to reduce on a longitudinal direction. We therefore split
the longitudinal index A = (A, 2) with A = 0, 1. Then we single out

τ̂2 ≡ e2Φ/3(dy +Aµdx
µ) , (4.2)

thereby defining the dilaton Φ and RR one-form Aµ that will appear in the reduced theory.
If we take τ̂2 = e−2Φ/3∂y then the remaining pair of Newton-Cartan clock forms and vectors
must have the form

τ̂A = e−Φ/3τµ
Adxµ , τ̂A = e+Φ/3(τµA∂µ,−τνAAν∂y) . (4.3)
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A compatible ansatz for the transverse vielbein is

ĥaµ̂ = (e−Φ/3haµ, 0) , ĥµ̂a = (eΦ/3hµa,−eΦ/3hνaAν) . (4.4)

These are such that τµA, τµA and hµa, haµ are ten-dimensional fields obeying the usual
stringy Newton-Cartan completeness identities. We can define τµν ≡ τµ

Aτν
BηAB, Hµν ≡

haµh
b
νδab, and similarly for the projective inverses. We also have

Ω̂ = e−8Φ/3Ω , Ω ≡ 1
2!8!ε

µνσ1...σ8εABεa1...a8τµ
Aτν

Bha1
σ1 . . . h

a8
σ8 . (4.5)

Finally, we make the traditional decomposition of the three-form and its field strength:

C3 = A3+B2∧dy , F4 = G4+H3∧(dy+A1) , G4 = dA3−A1∧H3 , H3 = dB2 , (4.6)

where A1 ≡ Aµdxµ, along with

C̃3 = Ã3+B̃2∧dy , F̃4 = G̃4+H̃3∧(dy+A1) , G̃4 = dÃ3−A1∧H̃3 , H̃3 = dB̃2 . (4.7)

Interpretation as an expansion. Inserting the above ansatz into the original limit (1.1)
gives

dŝ2
11 = c2e4Φ/3(dy +A1)2 + e−2Φ/3(c2τµν + c−1Hµν) ,

Ĉ3 = −c3 1
2εABτ

A ∧ τB ∧ dy +A3 +B2 ∧ dy + c−3(Ã3 + B̃2 ∧ dy) .
(4.8)

Hence according to (4.1) this translates into the following expansion of the ten-dimensional
type IIA string frame metric ĝµν , NSNS two-form, B̂2, and dilaton Φ̂:

ĝµν = c2
sτµν +Hµν ,

B̂2 = −c2
sεABτ

A ∧ τB +B2 + c−2
s B̃2 ,

eΦ̂ = cse
Φ ,

(4.9)

where cs ≡ c3/2. This is nothing but the limit leading to stringy Newton-Cartan. In
addition, we have an expansion of the RR fields:

Â3 = A3 + c−2
s Ã3 , Â1 = A1 , (4.10)

It is clear from these expressions that we can equivalently view this reduction as the result of
the usual M-theory to type IIA reduction using (4.1) followed by the SNC field redefinitions
of (4.9) and (4.10). At first glance, this is not completely general, given that the ansatz for
the RR 1-form A1 does not involve a subleading term while the other gauge fields do. A
justification for the above ansatz is that it correctly produces the NSNS sector dynamics of
SNC. Modifications to the ansatz would involve relaxing the implicit Stueckelberg gauge-
fixing in 11-dimensions and comparing this to the possible 10-dimensional expansions. We
do not consider this in this paper.
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Constraint. The constraint (2.26) becomes

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Gν1ν2ν3ν4 = − 1
4!2!ε

µ1...µ10Gµ5µ6µ7µ8εABτµ9
Aτµ10

B (4.11)

and so only involves the RR 4-form field strength. The field strength of the NSNS 2-form is
not constrained. This is to be expected, as the limit of the NSNS sector alone makes sense
without any constraint, and in the eleven-dimensional case the constraint arose as a conse-
quence of the Chern-Simons term, which is not present in the truncation to the NSNS sector.

Type IIA SNC with RR fields. The action obtained from the reduction ansatz (4.3)
and (4.4) is

SIIA SNC =
∫

d10xΩ
(
e−2ΦL+ L

G̃
+ Ω−1Ltop

)
(4.12)

with

L = R− aµABaµ{AB} + (aµ − 2DµΦ)(aµ − 2DµΦ)− 1
12H

µνρHµνρ −
1
2εABτ

ρAHρµνTµνB

− 1
2e

2ΦGµAGµA −
1
12e

2ΦGµνρAGµνρA + 1
4e

2ΦεABGABρσG
ρσ,

L
G̃

= − 1
4!G̃ν1...ν4

(
Gν1...ν4 + 1

4!2!Ωε
ν1...ν4µ1...µ6Gµ1...µ4εABτµ5

Aτµ6
B
)
,

Ltop = 1
2dA3 ∧ dA3 ∧B2 , (4.13)

using the field strengths defined in (4.6) and (4.7) along with Gµν ≡ 2∂[µAν]. As before,
we write for convenience Gµν ≡ HµρHνσGρσ. The Ricci scalar and connection, torsion,
acceleration and so on are defined in the same way as before but for the SNC geometry. If
we ignore the RR fields, this is exactly the Stueckelberg gauge fixed action for NSNS SNC
(note that the subleading component B̃2 only appears in the definition of G̃4). Furthermore,
one can check that the reduction of the Poisson equation agrees with the Poisson equation
for SNC, with of course additional contributions from the RR sector. The reduced Poisson
equation is found to be

− 1
2εAB∇µHABµ +∇AKA − 2τµν∇µ∇νΦ + 2τµν∇µaν + εABHABµ∇µΦ− 2aA∇AΦ

+KµνAKµνA + aAKA + 2aµ[AB]KµAB + aABC
(1

4aABC + 1
2aACB + ηBCaA

)
+ 1

4H
AµνHAµν − εABHCBµ

(
aµC

A + 1
2aµδ

A
C

)
+ 1

4e
2Φ
(
GABGAB + 1

2G
ABµνGABµν

)
− e2Φ 1

48

(
G̃µνρσG̃µνρσ + 1

48Ωε
λ1λ2µ1...µ8G̃µ1...µ4G̃µ5...µ8εABτλ1

Aτλ2
B
)

= 0 .

(4.14)

In this case [27], it is the longitudinal components of the NSNS 2-form playing the role of
the Newton potential. It is also interesting to look at the reduction of the equation (3.15),
which was the equation of motion of the longitudinal components of the three-form. This
reduces to

1
2ηABH

µρHνσTµν
ATρσ

B = − 1
48e

2ΦHµ1ν1 . . . Hµ4ν4Gµ1...µ4Gν1...ν4 , (4.15)
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and in particular in the truncation to the NSNS sector the right-hand side is zero. This
allows imposing foliation constraints on the NSNS sector SNC torsion TµνA, such as those
discussed in [27].

4.2 Type IIA D2NC

General decompositions breaking local rotational invariance. The next reduction
we do involves reducing on a transverse reduction. This breaks part of the local SO(8)
rotational invariance. Accordingly, write the flat index a = (a, ı̄), with a = 1, . . . , 8 − q
and ı̄ = 1 . . . q. Simultaneously we can consider a different decomposition of the spacetime
coordinate index µ̂ = (µ, i) where µ is n-dimensional and i is (11 − n)-dimensional. We
then pick a lower triangular form for the vielbein ĥaµ̂ such that

ĥaµ̂ =
(

ha
µ 0

Aµ
khı̄k h

ı̄
i

)
. (4.16)

The condition ĥaµ̂τ̂ µ̂A = 0 implies

ha
µτ̂

µ
A = 0 , hı̄i(τ̂ iA +Aµ

iτ̂µA) = 0 . (4.17)

The diagonal blocks in (4.16) will in general not be square. Two interesting examples
however are to take these blocks to be square and invertible. In this subsection, we will
take the lower right block to be a non-zero 1 × 1 matrix, and perform a reduction to a
novel type of type IIA Newton-Cartan geometry associated to D2 branes. In section 5, we
will take the upper left block to be an invertible (11 − d) × (11 − d) matrix, and offer a
description of the M-theory Newton-Cartan theory in terms of exceptional field theory.

Transverse reduction to type IIA. The dimensional reduction to type IIA corre-
sponds to taking n = 10, and q = 1 above. We again label the coordinates again as
xµ̂ = (xµ, y). In this case hȳy is a scalar and we can identify it with the dilaton as
hȳy ≡ e2Φ/3.5 Using the conditions (4.17), the full Kaluza-Klein ansatz is:

ĥaµ̂ =
(
e−Φ/3ha

µ 0
e2Φ/3Aµ e2Φ/3

)
, ĥµ̂a =

(
eΦ/3hµa 0
−eΦ/3Aνh

ν
a e
−2Φ/3

)
, (4.18)

τ̂µ̂
A = e−Φ/3(τµA, 0) , τ̂ µ̂A = e+Φ/3(τµA,−AντνA) , (4.19)

plus the same definitions (4.6) and (4.7) for the three-forms and field strengths. We also
have

Ω̂ = e−8Φ/3Ω , Ω ≡ 1
3!7!ε

µνρσ1...σ7εABCεa1...a7τµ
Aτν

Bτρ
Cha1

σ1 . . . h
a7
σ1 . (4.20)

5Enthusiasts of non-relativistic geometries could also consider null reductions of the already non-
relativistic theory.
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Interpretation as an expansion. Inserting the above ansatz into the original limit (1.1)
gives

dŝ2
11 = c−1e4Φ/3(dy +A1)2 + e−2Φ/3(c2τµν + c−1Hµν) ,

Ĉ3 = −c3e−Φ 1
3!εABCτ

A ∧ τB ∧ τC +A3 +B2 ∧ dy + c−3(Ã3 + B̃2 ∧ dy) .
(4.21)

Hence according to (4.1) this translates into the following expansion of the ten-dimensional
type IIA string frame metric ĝµν , RR three-form, Ĉ2, and dilaton Φ̂:

ĝµν = c2
Dτµν + c−2

D Hµν ,

Ĉ3 = −c4
DεABCe

−ΦτA ∧ τB ∧ τC + C3 + c−4
D C̃3 ,

eΦ̂ = c−1
D eΦ ,

(4.22)

along with expansions for the NSNS two-form, B̂2, and RR one-form, Â1:

B̂2 = B2 + c−4
D B̃2, , Â1 = A1 , (4.23)

where cD ≡ c3/4. This is an expansion and non-relativistic limit associated to the D2 brane
(the powers of cD appear in the same way as those of the harmonic function in the D2
brane SUGRA solution). We can refer to it as D2 Newton-Cartan (D2NC).

Constraint. The constraint (2.26) becomes

ΩHµ1ν1Hµ2ν2Hµ3ν3Hµ4ν4Gν1ν2ν3ν4 = + 1
3!3!e

−Φεµ1...µ10Hµ5µ6µ7εABCτµ8
Aτµ9

Bτµ10
C ,

Ωe−ΦHµ1ν1Hµ2ν2Hµ3ν3Hν1ν2ν3 = + 1
4!3!ε

µ1...µ10Gµ4µ5µ6µ7εABCτµ8
Aτµ9

Bτµ10
C , (4.24)

which are equivalent. So now we have a duality relation between the RR 3-form gauge field
and the NSNS 2-form.

Type IIA D2 Newton-Cartan theory. The action obtained from the reduction
ansatz (4.18) and (4.19) is

SD2NC =
∫

d10xΩ
(
e−2ΦL+ L

G̃
+ Ω−1Ltop

)
(4.25)

with

L = R− aµABaµ(AB) + 3
2a

µaµ − 5aµDµΦ + 9
2D

µΦDµΦ− 1
4H

µνAHµνA

− 1
4e

2ΦGµνGµν −
1
12e

2ΦGµνρAGµνρA + 1
4e

ΦεABCGABρσT
ρσ
C ,

L
G̃

= − 1
4!G̃ν1...ν4

(
Gν1...ν4 − 1

3!2Ωe
−Φεν1...ν4µ1...µ6Hµ1...µ3εABCτµ4

Aτµ5
Bτµ6

C
)

− 1
3!e
−2ΦH̃ν1...ν3

(
Hν1...ν3 − 1

4!3!Ωe
+Φεν1...ν3µ1...µ7Gµ1...µ4εABCτµ5

Aτµ6
Bτµ7

C
)
,

= − 1
4!

(
G̃ν1...ν4 −

1
3!e
−ΦH̃ρ1...ρ3ε

ρ1...ρ3σ1...σ7 1
3!ΩεABCHν1σ1 . . . Hν4σ4τσ5

Aτσ6
Bτσ7

C
)

×
(
Gν1...ν4 − 1

3!2Ωe
−Φεν1...ν4µ1...µ6Hµ1...µ3εABCτµ4

Aτµ5
Bτµ6

C
)
,

Ltop = 1
2dA3 ∧ dA3 ∧B2 , (4.26)
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where the field strengths are defined as in (4.6) and (4.7) with again G2 ≡ dA1. Note that
we obtain what appears to be an extra contribution to the dilaton kinetic term due to the
e−Φ factor that in the expansion of Ĉ3 in (4.22). We could alter this by redefining the RR
fields in the reduced theory. In addition, the reduction of the Poisson equation (3.41) gives

1
6e

ΦεABC
(
∇µGABCµ + aµG

ABCµ + 3aµDAGDBCµ
)
− 1

3e
ΦεABCG

ABCµ∇µΦ

+∇AKA − 3τµν∇µ∇νΦ− 3aA∇AΦ + 2∇AΦ∇AΦ−KA∇AΦ + 2τµν∇µaν

+KµνAKµνA + aAKA + 2aµ[AB]KµAB + aABC
(1

4aABC + 1
2aACB + ηBCaA

)
+ 1

4H
ABµHACµ + 1

8e
2Φ
(
GABµνGABµν + 4GAµGAµ

)
− e2Φ 1

48G̃
µνρσG̃µνρσ −

1
12H̃

µνρH̃µνρ

+ e−Φ 1
4!3!3!Ωε

λ1λ2λ3µ1...µ7εABCτλ1
Aτλ2

Bτλ3
CG̃µ1...µ4H̃µ5...µ7 = 0 . (4.27)

As in the MNC case, the longitudinal components of the three-form gauge field play the
role of the Newton potential.

5 Dimensional decompositions and exceptional field theory description

5.1 Exceptional field theory

We will now discuss the exceptional field theory description of the 11-dimensional MNC
theory. ExFT automatically has a number of features in common with the non-relativistic
theory: breaking of 11-dimensional Lorentz symmetry, a geometry arising from mixing
metric and form-field components, and the inclusion of dual degrees of freedom. We will
see how it provides a unified framework treating the relativistic and non-relativistic theory
on an equal footing, which demonstrates that the same exceptional Lie algebraic structures
that underlie the relativistic theory are present in the non-relativistic one. In addition, the
ExFT equations of motion include the additional missing Poisson equation.

We will focus particularly on the relatively unexceptional case of the SL(3) × SL(2)
ExFT [54]. This makes use of an (8 + 3)-dimensional split of the 11-dimensional space-
time. As such, it is a very natural fit for the (8 + 3)-dimensional split into transverse and
longitudinal directions present in the MNC expansion. The SL(3)× SL(2) ExFT includes
a Riemannian metric for the 8-dimensional part of the spacetime, but the 3-dimensional
part is described by an ‘extended geometry’ involving an SL(3)× SL(2) symmetric gener-
alised metric. By decomposing the 11-dimensional Newton-Cartan theory appropriately, we
will replace the transverse Newton-Cartan metric with an invertible 8-dimensional metric,
Ĥ µ̂ν̂ → gµν , and the longitudinal metric with an invertible 3-dimensional metric, τ̂µ̂ν → τij ,
which will be embedded into the generalised metric description. This drastic simplification
of the geometry is nonetheless sufficient to highlight the key features of the theory.

It would also be interesting to consider for example the opposite (3 + 8)-dimensional
split corresponding to the E8(8) ExFT, embedding the transverse metric into the E8(8) gen-
eralised metric. However as the known formulation of ExFT makes use of a Riemannian
metric for the unextended part of the spacetime, this is not immediately available for our
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purposes. Evidently, for any given Ed(d) ExFT, one can construct or imagine multiple
other ‘hybrid’ formulations depending on how one chooses to separate or mix the longi-
tudinal and transverse directions. More ambitiously, one could choose to work with the
recently fully constructed ‘master’ E11 ExFT [55], for which no coordinate decomposition
is necessary. Evidently this would eschew the technical difficulties of the latter in favour of
the technicalities associated to working with an infinite-dimensional algebra. In this paper,
although many features that we will see are quite general, we describe the explicit details
mainly for the d ≤ 4 cases.

ExFT ingredients. The basic idea behind ExFT is to replace d-dimensional vectors with
generalised vectors VM transforming in a specified representation of Ed(d). This representa-
tion is such that we can decompose VM under GL(d) as VM = (V i, Vij , Vijklm, . . . ) where V i

is a d-dimensional vector, Vij and Vijklm a two- and five-form, and the ellipsis corresponds
to higher rank mixed symmetry tensors that appear for d ≥ 7.6 Generalised vectors are
used to provide an Ed(d)-compatible local symmetry of generalised diffeomorphisms. These
are defined in terms of a generalised Lie derivative which acts on a generalised vector VM

of weight λV as

δUV
M = LUVM ≡ UN∂NVM−V N∂NU

M+YMN
PQ∂NU

PV Q+
(
λV −

1
9− d

)
∂NU

NVM .

(5.1)
Here YMN

PQ is constructed from invariant tensors of Ed(d). This together with the weight
term with coefficient −1/(9−d) appear such that this generalised Lie derivative involves an
infinitesimal Ed(d), rather than GL(N) transformation. The partial derivatives written here
formally involve an extended set of coordinates yM . However, consistency requires the im-
position of a constraint YMN

PQ∂M∂N = 0 where the derivatives can act on a single field or a
product of fields. One solution to this constraint is to view the d-dimensional partial deriva-
tives as being embedded such that ∂M = (∂i, 0, . . . , 0). We always assume we have made
this choice below. (An alternative solution leads to a ten-dimensional type IIB description.)

Given this choice, for the d ≤ 4 cases we will look at in detail, the action of
UM = (ui, λij) on VM = (V i, Vij) (both having generalised diffeomorphism weight
1/(9−d)) is LUVM = (LuV i, LuV

ij−3V k∂[kλij]), where Lu denotes the usual d-dimensional
Lie derivative. Identifying the two-form components λij with the gauge transformation pa-
rameter of a three-form Ĉijk, this means we can write VM = (V i, Ṽij − ĈijkV

k), with Ṽij
gauge invariant. We use this to give explicit parametrisations for the ExFT fields.

The field content of ExFT is as follows. We now let µ, ν, . . . be (11 − d)-dimensional
indices. We then have an (11 − d)-dimensional metric, gµν , which is a scalar of weight
−2/(9 − d) under generalised diffeomorphisms. The Ed(d) extended geometry is equipped
with a generalised metric, MMN , transforming as a rank two symmetric tensor of weight
zero under generalised diffeomorphisms. In addition, there is a ‘tensor hierarchy’ of gauge
fields, starting with an (11 − d)-dimensional one-form AµM , and continuing with p-forms
Bµν , Cµνρ, . . . in particular representations of Ed(d). This set of fields mimics and ex-

6This decomposition is relevant to the description of 11-dimensional SUGRA. There are also mutually
inequivalent GL(d− 1) decompositions relevant to the description of type II SUGRA.
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tends what appears in a dimensional decomposition (or reduction) of the bosonic fields of
supergravity.

Dimensional decomposition and field redefinitions. We describe now the dimen-
sional decomposition used to embed 11-dimensional SUGRA in the ExFT framework. We
split the 11-dimensional coordinates xµ̂ = (xµ, yi), making an (11 − d) + d split. The
supergravity degrees of freedom are then similarly decomposed under this split, classified
according to their nature from the point of view of (11 − d)-dimensional spacetime, and
then rearranged into multiplets of the exceptional groups Ed(d). We assume no restriction
on the coordinate dependence. This can be viewed as a partial fixing of the local Lorentz
symmetry in which we choose the 11-dimensional vielbein êâµ̂ and hence metric ĝµ̂ν̂ to be

êâµ̂ =
(
|φ|−

1
2(9−d) ea

µ 0
Aµ

kφı̄k φı̄i

)
, ĝµ̂ν̂ =

(
|φ|−

1
9−d gµν + φklAµ

kAν
l φikAν

l

φjkAν
k φij

)
, (5.2)

where ea
µ is a vielbein for an (11 − d)-dimensional (Einstein frame) metric gµν and φı̄i is

a vielbein for a d-dimensional metric φij , with |φ| ≡ | det(φij)|. Normally one takes gµν to
be Lorentzian, such that this corresponds to fixing the Lorentz symmetry as SO(1, 10) →
SO(1, 10− d)× SO(d), however we can also take it to be Euclidean, such that SO(1, 10)→
SO(11− d)× SO(1, d− 1). The latter choice is relevant for the version of ExFT applicable
to the non-relativistic theory.

The ‘Kaluza-Klein vector’ Aµi has a field strength defined by

Fµν
i = 2∂[µAν]

i − 2A[µ|
j∂jA|ν]

i . (5.3)

Letting L denote the d-dimensional Lie derivative, the Kaluza-Klein vector also appears
as the connection in the derivative Dµ = ∂µ − LAµ which is covariant with respect to
d-dimensional diffeomorphisms, using the transformation δΛAµ

i = DµΛi induced by the
action of 11-dimensional diffeomorphisms on (5.2).

For the three-form and its field strength, we define a succession of gauge field compo-
nents (denoted by bold font) via

Ĉ3 = Ĉ3 + Ĉ2iDy
i + 1

2Ĉ1ijDy
iDyj + 1

3!ĈijkDy
iDyjDyk (5.4)

where Dyi ≡ dyi+Aµ
idxµ, the subscripts on the right-hand side denote the form degree in

(11−d) dimensions, and we omit the implicit wedge products. Similarly, for F̂4 = dĈ3 we let

F̂4 = F̂ 4 + F̂ 3iDy
i+ 1

2 F̂ 2ijDy
iDyj+ 1

3! F̂ 1ijkDy
iDyjDyk+ 1

4! F̂ ijklDy
iDyjDykDyl , (5.5)

The persistence of hats reflects the fact that we still want to take the non-relativistic limit
of all these quantities. Explicit component expressions can be found in appendix A. We
can make similar redefinitions for the dual six-form and its field strength.
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Metric and generalised metrics. The metric gµν appearing in (5.2) is directly used as
the (11− d)-dimensional ExFT metric (the generalised diffeomorphism weight −2/(9− d)
follows from the conformal factor in (5.2)).

The generalised metric MMN , or its generalised vielbein, may be defined as an Ed(d)
element valued in a coset Ed(d)/Hd where Hd is the maximal compact subgroup (in the Eu-
clidean case) or a non-compact version thereof (in the Lorentzian case). Under generalised
diffeomorphisms it transforms as a rank two symmetric tensor of weight zero. It is normally
parametrised in terms of the wholly d-dimensional components of the eleven-dimensional
fields, φij and Ĉijk, in a manner consistent with its transformation under generalised dif-
feomorphisms. For d ≥ 6, this parametrisation also includes internal components of the
dual-six form. For simplicity, we will restrict to d ≤ 4, in which case the conventional
parametrisation of the generalised metric is given by

MMN = |φ|1/(9−d)
(
φij + 1

2Ĉi
pqĈjpq Ĉi

kl

Ĉk
ij 2φi[kφl]j

)
. (5.6)

The conformal factor here ensures that | detM| = 1.
In specific cases, we can find factorisations of the generalised metric leading to simpler

expressions. This includes the SL(3) × SL(2) ExFT. Here, generalised vectors VM =
(V i, Vij) transform in the (3,2) of SL(3)× SL(2), with i, j, . . . three-dimensional. We can
dualise Vij using the three-dimensional epsilon symbol, and define Ṽ i ≡ 1

2ε
ijkṼjk. Introduce

an SL(2) fundamental index, α = 1, 2, and let VM ≡ V iα with V i1 ≡ V i and V i2 ≡ Ṽ i. In
terms of this basis we have a factorisation

MMN =Miα,jβ =MijMαβ , (5.7)

whereMij =Mji with | detMij | = 1, andMαβ =Mβα with | detMαβ | = 1. When φij
has Lorentzian signature, the expressions which reproduce (5.6) are

Mij = |φ|−1/3φij , Mαβ =
(
|φ|1/2 − |φ|−1/2Ĉ

2 −|φ|−1/2Ĉ

−|φ|−1/2Ĉ −|φ|−1/2

)
, Ĉ ≡ 1

3!ε
ijkĈijk , (5.8)

Gauge fields and dual degrees of freedom. Along with the Kaluza-Klein vector,
Aµ

i, coming from the metric decomposition (5.2), the p-forms obtained from the decom-
position (5.4) of the three-form fit into Ed(d)-valued multiplets denoted Aµ, Bµν , Cµνρ, . . . .
Their field strengths are denoted Fµν , Hµνρ,Jµνρσ, . . . . To obtain full Ed(d) representa-
tions, we have to include here the set of p-forms obtained by decomposing the dual six-form.
This is unsurprising from the point of Ed(d) U-duality transformations, which mix electric
and magnetic degrees of freedom (e.g. M2 and M5 branes) coupling respectively to p-forms
and their duals.

For d = 3, this works as follows [54]. The ExFT gauge fields Aµiα, Bµνi, Cµνρα, Dµνρσi
have weights 1/6, 2/6, 3/6, 4/6 respectively, and their field strengths are denoted Fµνiα,
Hµνρi, Jµνρσα and Kµνρσλi (the latter does not appear in the action). Under generalised
diffeomorphisms, F iα transforms as a generalised vector of weight 1/6, while H and J
transform via the generalised Lie derivative acting as

LΛHi = Λjβ∂jβHi + ∂iβΛjβHj , LΛJ α = Λjβ∂jβJ α − ∂jβΛjαJ β + ∂jβΛjβJ α . (5.9)
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These field strengths obey Bianchi identities:

3D[µFνρ]
iα = εijkεαβ∂jβHµνρk , (5.10)

4D[µHνρσ]i + 3εijkεαβF[µν
jαFρσ]

kβ = ∂iαJµνρσα , (5.11)
5D[µJνρσλ]

α + 10F[µν
iαHρσλ]i = εαβ∂iβKµνρσλi , (5.12)

where Dµ ≡ ∂µ − LAµ . The ExFT one-form can be simply identified as AµM =
(Aµi, 1

2ε
ijkCµjk). The two-form Bµνi transforms in the (3̄,1) of SL(3)× SL(2) and is iden-

tified (up to a further field redefinition) with Ĉµνi. However, rather than give the precise
field redefinitions for the potentials, it is simpler to work at the level of the field strengths.
These are all tensors under generalised diffeomorphisms, meaining in particular that they
transform in a particular way under d-dimensional three-form gauge transformations. This
allows us to decompose in terms of manifestly gauge invariant combinations

Fµνi1 ≡ Fµνi , Fµνi2 ≡
1
2ε

ijk(F̂ µνjk − ĈjklF̂ µν
l) , Hµνρi ≡ −F̂ µνρi , (5.13)

where Fµνi, F̂ µνρi and F̂ µνjk are gauge invariant and can be exactly identified with the
quantities defined in (5.5) with Fµνi as in (5.3).7

The three-form situation is then where it gets interesting. There is a single 8-
dimensional three-form Ĉµνρ obtained from the 11-dimensional one. There is also a single
three-form Ĉµνρijk coming from the 11-dimensional six-form. Together these form an SL(3)
singlet and SL(2) doublet, for which the field strength obeys a self-duality constraint repro-
ducing (in the relativistic case!) the correct duality relationship between the field strengths
F̂ µνρσ and F̂ µνρσijk. This duality constraint, which has to be imposed by hand, involves the
eight-dimensional Hodge star acting on the 8-dimensional indices and the SL(2) generalised
metric acting on the SL(2) indices:√

|g|MαβJ µνρσβ = −48κεαβεµνρσλ1...λ4Jλ1...λ4
β . (5.14)

The coefficient κ is fixed via the self-consistency of (5.14) (in both the cases where gµν
has Lorentzian or Euclidean signature, withMαβ having the opposite) to be κ = ± 1

2·(24)2 ,
with the choice of sign being a matter of convention (equivalent to changing the sign of the
three-form in eleven dimensions). This is consistent with decomposing the SL(2) doublet
of four-form field strengths as

Jµνρσ1 ≡ F̂ µνρσ , Jµνρσ2 ≡ 1
6ε

ijk(F̂ µνρσijk − ĈijkF̂ µνρσ) . (5.15)

Thus in general, ExFT treats simultaneously degrees of freedom coming from the three-
form with dual degrees of freedom coming from the six-form, encoding the duality relations
between them in its dynamics.

7The minus sign in Hµνρi ensures that the ExFT Bianchi identities (5.11) and (5.12) reproduce those
coming from SUGRA in (A.18) and is otherwise simply a matter of convention in terms of what we call Bµνi.
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Dynamics: SL(3) × SL(2) ExFT pseudo-action. The ExFT Lagrangian can be
uniquely fixed by the requirement of invariance under the local symmetries (generalised
diffeomorphisms, gauge transformations of the tensor hierarchy, and finally (11 − d)-
dimensional diffeomorphisms). When 11 − d is even, this gives a pseudo-action which
must be accompanied by a self-duality constraint such as (5.14). This includes the case
d = 3. The pseudo-action in this case can be written as S =

∫
d8x d6y

√
|g|LExFT where

the Lagrangian has the (quite general) expression

LExFT = Rext(g) + Lkin + Lint +
√
|g|
−1
Ltop , (5.16)

Here, with Dµ = ∂µ − LAµ , we have

Rext(g)= 1
4g

µνDµgρσDνgρσ−
1
2g

µνDµgρσDρgνσ+1
4g

µνDµlngDν lng+1
2DµlngDνgµν , (5.17)

Lkin= 1
4DµM

ijDµMij+
1
4DµMαβDµMαβ

−1
4MijMαβFµνiαFµνjβ−

1
12M

ijHµνρiHµνρj−
1
96MαβJµνρσαJ µνρσβ , (5.18)

Lint= 1
4M

MN∂MMkl∂NMkl+
1
4M

MN∂MMαβ∂NMαβ−
1
2M

MN∂MMKL∂KMLN

+1
2∂MM

MN∂N ln|g|+1
4M

MN (∂Mgµν∂Ngµν+∂M ln|g|∂N ln|g|). (5.19)

The topological (Chern-Simons) term can be defined via its variation:

δLtop = κεµ1...µ8
(
− δAµ1

iαεαβJµ2...µ5
βHµ6µ7µ8i

+ 6∆Bµ1µ2i

(
εαβFµ3µ4

iαJµ5...µ8
β − 4

9ε
ijkHµ3µ4µ5jHµ6µ7µ8k

)
+ 4∆Cµ1µ2µ3

αεαβ
(
Dµ4Jµ5...µ8

β + 4Fµ4µ5
iβHµ6...µ8i

)
− ∂iα∆Dµ1...µ4

iJµ5...µ8
α
)
,

(5.20)

where the ‘improved’ ∆ variation includes by definition contributions of variations of lower
rank gauge fields, for explicit expressions (which we do not require) see [54]. Finally, we
must impose the constraint (5.14) after varying the above pseudo-action.

5.2 Obtaining the 11-dimensional Newton-Cartan theory via ExFT

In this subsection, we perform a dimensional decomposition of the 11-dimensional MNC
variables, and use this to explain how exceptional field theory describes this theory.

Dimensional decomposition of 11-dimensional Newton-Cartan theory. We start
with the 11-dimensional coordinates labelled as xµ̂ = (xµ, yi) with µ = 1, . . . , 11 − d

and i = 1 . . . , d. We keep all coordinate dependence on yi throughout. Thus this is a
decomposition rather than a reduction. In terms of the vielbein decomposition (4.16), we
take q = d− 3 and n = 11− d. The flat indices are a = 1, . . . , 11− d and ı̄ = 1, . . . , d− 3.
Explicitly, we take the SO(8) vielbein to have the form

ĥaµ̂ =
(

Ω−
1

9−d ea
µ 0

Aµ
khı̄k hı̄i

)
, ĥµ̂a =

 Ω
1

9−d eµa 0
−Ω

1
9−d eρaAρ

k hiı̄

 , (5.21)
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with ea
µ an invertible vielbein for an (11 − d)-dimensional metric, gµν = ea

µe
b
νδab. We

also have to take
τ̂µ̂
A = (AµiτiA, τiA) , τ̂ µ̂A = (0, τ iA) . (5.22)

where τij = τi
Aτj

BηAB, with A = 0, 1, 2 as before. The conformal factor Ω appearing
in (5.21) is defined by

Ω2 = − 1
3!(d− 3)!ε

i1...idεj1...jdτi1j1τi2j2τi3j3Hi4j4 . . . Hidjd , (5.23)

and related to that of the 11-dimensional theory by Ω̂ = (det e)Ω−
2

9−d . It is useful to write
down the full transverse and longitudinal metrics:

Ĥµ̂ν̂ =
(

Ω−
2

9−d gµν +HklAµ
kAν

l HjkAµ
k

HikAν
k Hij

)
, τ̂µ̂ν̂ =

(
Aµ

kAν
lτkl Aµ

kτkj
Aν

kτki τij

)
,

Ĥ µ̂ν̂ =

 Ω
2

9−d gµν −Ω
2

9−d gµρAρ
j

−Ω
2

9−d gνσAσ
i H ij + Ω

2
9−d gρσAρ

iAσ
j

 , τ̂ µ̂ν̂ =
(

0 0
0 τ ij

)
.

(5.24)

In this way all the degenerate structure is encoded in the d-dimensional part of the space-
time, with a degenerate d-dimensional metric Hij ≡ hı̄ih̄jδı̄̄. This ensures that the metric
gµν can be identified with the metric appearing in exceptional field theory, while the degen-
erate Newton-Cartan metric structure will appear in the generalised metric. In addition, we
redefine the three-form and its field strength according to (5.4) and (5.5), now without hats:

C3=C3+C2iDy
i+1

2C1ijDy
iDyj+ 1

3!CijkDy
iDyjDyk, (5.25)

F4=F 4+F 3iDy
i+1

2F 2ijDy
iDyj+ 1

3!F 1ijkDy
iDyjDyk+ 1

4!F ijklDy
iDyjDykDyl, (5.26)

where again Dyi ≡ dyi + Aµ
idxµ. We carry out an analogous decomposition for C̃3

and F̃4, and for C6 and F7. Finally, we can consider the Newton-Cartan torsion: with
T̂µ̂ν̂

A ≡ 2∂[µ̂τ̂ν̂]
A we have

Tij
A ≡ T̂ijA = 2∂[iτj]

A , Tµi
A ≡ T̂µiA −Aµj T̂ji = Dµτi

A ,

Tµν
A ≡ T̂µνA − 2T̂[µ|i|

AAν]
i +Aµ

iAν
j T̂ij = Fµν

jτj
A .

(5.27)

Embedding the limit in ExFT. Let’s start by considering the expansions (1.1)
and (1.3) of the original 11-dimensional metric and three-form. We make use of the de-
compositions (5.24) and (5.25) for the Newton-Cartan variables and three-form appearing
in the decomposition, and then use these to work out the decomposition (5.2) of the 11-
dimensional metric and that (5.4) of the three-form. The potentially singular terms as c→
∞ then appear in the d-dimensional components of the metric and of the three-form, with

φij = c2τij + c−1Hij , Ĉijk = −c3εABCτi
Aτj

Bτk
C + Cijk + c−3C̃ijk . (5.28)

The metric gµν and Kaluza-Klein vector Aµi appearing in (5.2) are then exactly those ap-
pearing in Ĥµν in (5.24). The redefined form components carrying an (11−d)-dimensional
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index are all non-singular, so Ĉµij = Cµij + O(c−3), and so on. One point of danger is
that Ĉijk still appears in the field strengths (5.5) of these fields. However, consulting the
more explicit expressions (A.17), one sees that the field strength FµνM appearing in ExFT
in fact involves the combination Fµνij = F̂ µνij − ĈijkFµν

k, which is in fact independent
of Ĉijk, such that F̂ µνij − ĈijkFµν

k = F µνij −CijkFµν
k.

For the generalised metric (5.6), inserting the expressions (5.28) one finds that all
terms at leading order in c cancel, and sending c → ∞ one has a manifestly finite and
boost invariant expression:8

MMN = Ω
2

9−d

(
Hij−εABCτ(i|

ACj)klτ
kBτ lC +CiklCjmnH

kmτ ln −εABCτiAτkBτ lC +2CipqH
p[kτ l]q

−εABCτkAτ iBτ jC +2CkpqH
p[iτ l]j 2Hi[kτ l]j +2τ i[kHl]j

)
.

(5.29)
The parametrisation (5.29) can be viewed as a non-Riemannian parametrisation of the
generalised metric, and viewed simply as an alternative possibility to taking the usual
form (5.6). The reason why this is a non-Riemannian parametrisation is most clearly
seen by looking at the inverse generalised metric MMN . In the Riemannian case, the
parametrisation (5.6) implies that the d × d block Mij is given by Mij = |φ̂|−1/(9−d)φ̂ij

and therefore corresponds to the inverse spacetime metric. Assuming this block is invertible
then uniquely fixes (given the definition of the generalised metric as a particular coset ele-
ment obeying certain properties) the rest of the parametrisation. In the non-Riemannian
case, we instead have Mij = Ω−

2
9−dH ij , which is non-invertible. This leads instead to

an alternative parametrisation. This is exactly as in the DFT case [35], which was gen-
eralised to ExFT in [40]. The expression (5.29) can be checked to be equivalent to the
non-Riemannian SL(5) generalised metric worked out from first principles in [40]. In fact,
from this point of view, one need not even go through the complications of taking the limit,
but simply write down (5.29), insert it into the ExFT and study the resulting dynamics.

Returning to the embedding of the expansion in ExFT, we also need to worry about
the singular pieces in the expansion of the dual gauge field Ĉ6. This inevitably appears in
the tensor hierarchy for all exceptional field theories. From (2.43), we have Ĉ6 ∼ c3C3∧τ ∧
τ ∧ τ + . . . , and so given the decomposition according to (5.22) and (5.25), any component
of Ĉ6 carrying three d-dimensional indices will be singular, i.e. Ĉµνρijk, Ĉµνijkl, Ĉµijklm,
Ĉijklmn. The claim is that, remarkably, all such singularities cancel automatically thanks
to the precise combinations of Ĉ6 and Ĉ3 that appear in the ExFT fields. For d = 3, 4,
this is most straightforwardly checked at the level of the ExFT field strengths.9 One sees
from (5.15) for SL(3)×SL(2) (and from (B.12) for SL(5)) that the components of F̂7 always
appear in the combinations F̂ µνρσijk − ĈijkF̂ µνρσ and F̂ µνρijkl + 4Ĉ [ijkF̂ |µνρσ|l] exactly
such that the singularity coming from Ĉijk cancels that coming from F̂7, which was written
down in (2.44). That the ExFT gauge potentials themselves are non-singular can further

8Proving this requires the fact that Hi[kHl]j = 0 when Hij has rank 1. For d > 4 this would suggest
we would have problems, however starting at d = 5 the representation on which MMN acts enlarges and
the structure of the generalised metric therefore changes. Note for d > 5 it will also explicitly contain
components of the dual six-form.

9Only the field strengths appear in the equations of motion, and the action can also be defined solely
in terms of the field strengths by rewriting the Chern-Simons term in a standard way as an integral over a
higher-dimensional spacetime.
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11-d SUGRA ExFT (rel. param)

ExFT (non-rel. param)Non-rel SUGRA

Fix Lorentz

Fix non-Lorentz

Non-rel limitNon-rel limit

Figure 1. Relationship between non-relativistic limit and non-relativistic parametrisation of ExFT
.

be verified by hunting down the correct field redefinitions that relate the ExFT gauge fields
to the 11-dimensional ones. Note that for d ≥ 6 the components Ĉijklmn are present and
appear in the generalised metric itself: we have not verified explicitly but the expectation
would be that it does so in a way that ensures the generalised metric remains finite.

Summary. From the above we can conclude that the fields used in ExFT are manifestly
non-singular in the non-relativistic limit (equivalently this shows that the fields which are
U-duality covariant in a genuine dimensional reduction are non-singular). We can also view
the distinction between the relativistic and the non-relativistic 11-dimensional theory as
being solely governed by the choice of parametrisation of the generalised metric. Having
picked a generalised metric parametrisation, it is then consistent to directly identify the
ExFT gauge fields and metric gµν with the gauge field components and metric of the
decomposed relativistic or non-relativistic theory.

This is summarised in figure 1. The upper triangular half of this diagram corresponds
to first embedding the relativistic fields in ExFT in the usual manner, with a Riemannian
parametrisation of the generalised metric, and then taking the non-relativistic limit giving
a non-Riemannian parametrisation. The lower triangular half corresponds to first taking
the non-relativistic limit for the original 11-dimensional fields, and then embedding these
into ExFT, giving the same non-Riemannian parametrisation. In both cases, one needs
to make the appropriate dimensional decomposition of the fields of the Newton-Cartan
theory, corresponding to fixing the local tangent space (non-Lorentzian) symmetry.

Inserting the non-Riemannian parametrisation into the ExFT action or equations of
motion will then reproduce the finite action and equations of motion results from taking the
limit, after decomposing. For the action, we calculate this decomposition in appendix A.
What we will show next is that, remarkably, the ExFT equations of motion also automat-
ically reproduce the Poisson equation (3.41).

5.3 Generalised metric and equations of motion

We now take a closer look at the consequences of using the non-relativistic parametrisation
of the generalised metric. We focus on the d = 3 SL(3) × SL(2) ExFT. For the d = 3
Newton-Cartan geometry, H ij and Hij have rank zero and so are identically zero. The
longitudinal metric τij is a three-by-three matrix and in fact invertible, with Ω2 = − det τ .
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The resulting non-Riemannian parametrisation of the generalised metric (5.7) is

Mij = Ω−2/3τij , Mαβ =
(

2ϕ 1
1 0

)
, ϕ ≡ 1

3!ε
ijkCijk , (5.30)

Comparing (5.30) and (5.8), we can note that (5.30) is the most general possible SL(2)
non-Riemannian parametrisation (up to the sign of the off-diagonal components), as this is
completely fixed by requiringM22 = 0 which prevents us from interpreting that component
as the determinant of a standard three-dimensional spacetime metric.

Normally, the generalised metricMαβ encodes two degrees of freedom. It is clear that
the non-Riemannian parametrisation given by (5.30) is restricted and is missing one degree
of freedom. We may identify this missing degree of freedom with the overall scale of the
longitudinal metric, as the latter only appears in the combination | det τ |−1/3τij , which is
conformally invariant. This makes the dilatation invariance trivial in this formulation.

If we insert this parametrisation into the SL(3) × SL(2) pseudo-action, with La-
grangian (5.16), we find that Lint as defined in (5.19) vanishes, while

1
4DµM

ijDµMij + 1
4DµMαβDµMαβ = 1

4Dµ(Ω2/3τ ij)Dµ(Ω−2/3τij) . (5.31)

This reproduces exactly the expected terms in the d = 3 case of (A.27) and (A.28).

Notice that the kinetic terms for Mαβ completely drop out. So if we insert the non-
relativistic parametrisation into the action, and then vary with respect to ϕ, we will never
find an equation involving DµDµϕ, i.e the Poisson equation. However, instead we can
consider the equations of motion of the generalised metric, which can be evaluated inde-
pendently of its choice of parametrisation. These will provide the missing Poisson equation.
This is exactly analogous to the situation in DFT, see the discussions in [26, 36]. One has
to make a choice about whether you allow the equations of motion that follow from varia-
tions of the generalised metric that do not preserve the non-Riemannian parametrisation.
In both the DFT SNC case, and the present case, there is exactly one such independent
variation, which provides an additional equation of motion beyond what is obtained by
varying the fields of the parametrisation themselves.

Let’s see how this works. Naively, the result of varying the generalised metricMαβ in
the action is

δS =
∫

d8x d6Y
√
gδMαβKαβ , (5.32)
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with

Kαβ = −1
4

1
√
g

(
Dµ(√gDµMαβ)−MαγMβδDµ(√gDµMγδ)

)
+ 1

4MαγMβδMijFµνiγFµνjδ + 1
96MαγMβδJµνρσγJ µνρσδ

+ 1
4M

ij
(
∂i(α|Mkl∂j|β)Mkl + ∂i(α|Mγδ∂j|β)Mγδ + ∂i(α|gµν∂j|β)g

µν
)

− 1
2M

ij∂iα∂jβ ln g + 1
√
g
∂i(α|(

√
g∂j|β)Mij)

− 1
2M

ij
(
∂i(α|Mkl∂k|β)Mlj + ∂i(α|Mγδ∂jγM|β)δ

)
+ 1

2√g (∂iγ(√gMijMγδ∂j(αMβ)δ)−Mγ(αMβ)δ∂jκ(√gMijMεγ∂iεMκδ)

− 1
4√g (∂iγ(√gMijMγδ∂jδMαβ)−MαγMβδ∂iε(

√
gMijMεκ∂jκMγδ) .

(5.33)

Now, the variation δMαβ cannot be arbitrary but must preserve that | detM| = 1. This
ensures that one gets two rather than three independent equations, corresponding to the
usual two degrees of freedom encoded in Mαβ . The true equation of motion taking this
into account is:

Rαβ ≡ Kαβ −
1
2MαβMγδKγδ = 0 . (5.34)

This can be thought of as the vanishing of a generalised Ricci tensor, Rαβ . For the non-
Riemannian parametrisation (5.30), the two independent equations are

R22 = K22 = 0 , R11 − 2ϕR22 = K11 − 2ϕK12 = 0 . (5.35)

Setting ∂i1 ≡ ∂i, ∂i2 = 0, we have explicitly that

K22 = +1
4MijFµν

iFµνj + 1
96F µνρσF µνρσ = 0 . (5.36)

This is the equation of motion (3.15) arising as the totally longitudinal part of the equation
of motion of the three-form. This is consistent with its appearance here as the equation of
motion of ϕ, which is indeed the totally longitudinal part of the three-form.

The other equation of motion is (after using (5.36))

0 = K11 − 2ϕK12

= − 1
√
g

1
6ε

ijkDµ(√ggµνF νijk)

− 1
8M

kmMlnF µνklF
µν
mn + 1

96F µνρσijkF
µνρσ

lmn
1

3!3!ε
ijkεlmn

+ 1
4M

ij
(
∂iMkl∂jMkl + ∂igµν∂jg

µν
)
− 1

2M
ij∂iMkl∂kMjl

− 1
2M

ij∂i∂j ln g − 1
√
g
∂i(
√
g∂jMij) .

(5.37)

Here we have F µijk = DµCijk − 3∂[iC |µ|jk], having used DµM11 = DµM11 −
εijk∂iAµjkM12. We can then identify (5.37) as the Poisson equation for ϕ ≡ 1

6ε
ijkCijk,
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as it has the form 1√
gDµ(√gDµϕ) + · · · = 0. It is conjugate to the variation δM11. For

the non-Riemannian parametrisation, M11 = 0, so allowing this variation corresponds to
allowing variations that do not respect the parametrisation. In terms of the expansion of
Mαβ in powers of 1/c, this variation is subleading in origin. Finally, one can precisely check
that this equation (5.37) is indeed exactly the Poisson equation (3.41), which we found at
subleading order in the expansion of the relativistic theory, and here is rewritten in terms
of ExFT variables after making the dimensional decomposition of all the fields. (It can
be easily checked that the gauge field terms match, using (A.30) to relate the seven-form
components appearing here to those of F̃4, and a patient calculation shows that inserting
the dimensional decomposition of the eleven-dimensional fields matches perfectly.)

Structure of generalised Ricci tensor. Geometrically, Rαβ should be thought of as
(the SL(2) part of) a generalised Ricci tensor. It is a symmetric generalised tensor of
weight 0 and obeysMαβRαβ = 0. When we take the relativistic parametrisation (5.8) of
the generalised metric, it can therefore be parametrised as

Rαβ = 1
2

(
1 Ĉ

0 1

)(
|φ|1/2Rφ RC
RC |φ|−1/2Rφ

)(
1 0
Ĉ 1

)
(5.38)

with Rφ andRC tensors of three-dimensional weight 0, such that the variation of the action
leads to

δS ⊃ −
∫

d8x d6y
√
g

(
δ|φ|1/2

|φ|1/2
Rφ + |φ|−1/2δĈRC

)
(5.39)

Let’s examine what happens to the components of Rαβ in the non-relativistic limit. We
have |φ|1/2 = Ωc3, Ĉ = −c3Ω + C + c−3C̃. This leads to the expression

Rαβ = 1
2

(
1 C

0 1

)(
c3Ω(Rφ −RC) RC −Rφ
RC −Rφ c−3Ω−1Rφ

)(
1 0
C 1

)
(5.40)

So in principle the independent equations are still RC and Rφ. However, we already know
that this generalised Ricci tensor has no leading parts in c when we take the limit (because
none of the ExFT fields contain singular terms). If we expand

Rφ = c3R(3)
φ + c0R(0)

φ + c−3R(−3)
φ , RC = c3R(3)

C + c0R(0)
C + c−3R(−3)

C , (5.41)

it must be that we have R(3)
φ = R(3)

C , R(0)
φ = R(0)

C , viewed as off-shell identities, and the
independent equations of motion, i.e. those appearing as the actual finite entries of Rαβ ,
are actually

R(3)
φ = 0 , R(−3)

φ −R(−3)
C = 0 . (5.42)

The former is conjugate to δM22 and the latter to the δM11 that is forbidden if we insist
on keeping a non-Riemannian parametrisation. We can go back to the variation (5.39) and
expand that:

δS = −
∫

d8x d6y
√
g
(
δ ln Ω(Rφ −RC) + Ω−1c−3δCRC

)
, (5.43)
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hence the first non-zero variations are

δS = −
∫

d8x d6y
√
g
(
c−3δ ln Ω(R(−3)

φ −R(−3)
C ) + Ω−1δCR(3)

C

)
. (5.44)

We see again that we get the longitudinal equation of motion for the three-form at finite
order, and the extra Poisson equation of motion comes from a subleading variation associ-
ated to the variation of the volume factor Ω, which otherwise has no dynamics associated
to it in this formulation.

5.4 Generating non-relativistic generalised metrics via U-duality

Non-trivial U-duality transformations act as SL(2) transformations on the generalised met-

ric Mαβ , via M →M′ = UTMU with detU = 1. Parametrising U =
(
a b

c d

)
the trans-

formation of the non-relativistic parametrisation (5.30) gives

M′αβ =
(

2a(aϕ+ c) 2abϕ+ ad+ bc

2abϕ+ ad+ bc 2b(bϕ+ d)

)
, (5.45)

and this remains in the non-relativistic form only if b = 0, or else if ϕ is constant and
d = −bϕ. In the former case, the effect of the transformation is ϕ → a(aϕ + c) and so
amounts to a scaling and shift of the three-form.

The genuine non-geometric U-dualities correspond to the SL(2) inversion symmetry
with a = d = 0, bc = −1. If ϕ < 0, this takes us from the non-relativistic parametrisation
to a relativistic one with

φij =
(
− 1

2ϕ

)2/3
(det τ)−1/3τij , Cijk = − 1

2ϕεijk . (5.46)

These obey | detφ| = C2 which corresponds to a ‘critical’ three-form.
We can apply this to a real supergravity background along the lines of [33, 40], namely

the M2 brane solution in the form

ds2 = f−2/3ηijdy
idyj + f1/3δµνdx

µdxν , Cijk = (f−1 + γ)εijk , (5.47)

where the harmonic function f obeys ∂µ∂µf = 0 and γ is a constant. This has constant
exceptional field theory 8-dimensional metric, gµν = δµν , while

Mij = ηij , Mαβ =
(
−γ(f + 2γ) −(1 + γf)
−(1 + γf) −f

)
. (5.48)

Sending f → 0 corresponds exactly to the original limit (1.1). Alternatively, we can
formally U-dualise along the yi directions (including time) to obtain a solution with

Mαβ =
(
−f 1 + γf

1 + γf −γ(f + 2γ)

)
. (5.49)

The standard M2 solution has γ = −1 and f = 1 + q
r6 , with r2 ≡ δµνx

µxν . In this case,
the generalised metric (5.49) corresponds to the negative M2 solution [56]:

ds2 = f̃−2/3ηijdy
idyj + f̃1/3δµνdx

µdxν , Cijk = (f̃−1 − 1)εijk , f̃ = 1− q

r6 . (5.50)
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This solution has a naked singularity at f̃ = 0 ⇔ f − 2 = 0. Evidently the generalised
metric (5.49) is non-singular everywhere and at f̃ = 0 becomes non-relativistic. This
suggests [22] interpreting such backgrounds as containing a singular locus at which the
geometry degenerates to a non-relativistic one.

If we alternatively take γ = 0 then the generalised metric (5.49) has the non-relativistic
form everywhere, with ϕ ≡ −1

2f . If we now reconsider the equation of motion (5.37) which
can only be found by varying the generalised metric before inserting the parametrisation,
then this is exactly the equation ∇2f = 0 obeyed by the harmonic function. Finally, we
can reconstruct the full 11-dimensional MNC geometry:

τ̂µ̂
A = (0, δiA) , Ĥ µ̂ν̂ =

(
δµν 0
0 0

)
, C012 = −1

2f . (5.51)

5.5 Gauge fields and self-duality in SL(3)× SL(2) ExFT

Now let’s look at what happens in the gauge field sector of the SL(3)× SL(2) ExFT. Let’s
repeat the parametrisations (5.13) and (5.15) now for the field strength components of the
non-relativistic theory:

Fµνi1 ≡ Fµνi , Fµνi2 ≡
1
2ε

ijk(F µνjk −CjklF µν
l) , Hµνρi ≡ −F µνρi , (5.52)

Jµνρσ1 ≡ F µνρσ , Jµνρσ2 ≡ 1
6ε

ijk(F µνρσijk −CijkF µνρσ) . (5.53)

Then the kinetic terms (5.18) in the SL(3)× SL(2) ExFT pseudo-action (5.16) are

−1
4MijMαβFµνiαFµνjβ−

1
12M

ijHµνρiHµνρj=−
1
4Ω−2/3τijF

µνiεjklF µνkl−
1
12Ω2/3τ ijF µνρiF

µνρ
j ,

(5.54)
which matches the corresponding terms in the decomposition (A.27) of the non-relativistic
action.

To discuss the three-form gauge field, consider the SL(3) × SL(2) ExFT equation of
motion obtained from the pseudo-action by varying Cµνρα:

Dσ(
√
|g|MαβJ µνρσβ)− 2∂iα(

√
|g|MijHµνρj)

− 48κεαβεµνρσ1...σ5
(
Dσ1Jσ2...σ5

β + 4Fσ1σ2
iβHσ3σ4σ5i

)
= 0 .

(5.55)

After varying, we must also impose the constraint (5.14). This constraint involves the
generalised metric, and so it is sensitive to whether we are describing the relativistic or
non-relativistic theory. However, in either case, using the constraint in the equation of
motion of Cµνρ2 in fact produces the Bianchi identity (5.12) for Jµνρσ1 = F µνρσ. In the
relativistic case, with the Riemannian parametrisation (5.8) of the generalised metric (or
its Euclidean version), we could go on to use the constraint to eliminate Jµνρσ2 from the
equation of motion of Cµνρ2. The result would be the equation of motion of the three-form
Cµνρ following from the decomposition of 11-dimensional SUGRA.

Now let’s consider the situation where the generalised metric admits the non-relativistic
parametrisation (5.30). In this case, choosing the minus sign for κ, the constraint (5.14)
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implies that

√
gF µνρσ = − 1

4!ε
µνρσλ1...λ4F λ1...λ4 ,

√
gF µνρσ

ijk = + 1
4!ε

µνρσλ1...λ4F λ1...λ4ijk . (5.56)

So we can no longer eliminate F µνρσijk in favour of F µνρσ. This is clearly as expected for the
MNC theory for which the former indeed appears explicitly in the action and equations of
motion (note it is related to F̃ µνρσ via (A.30)). We therefore see that the ExFT constraint
gives not only the expected constraint (2.26) that the original four-form field strength
becomes self-dual, but also the duality condition with opposite sign which is obeyed by
the dual seven-form (2.47). Thus the SL(3) × SL(2) ExFT contains the expected degrees
of freedom of the non-relativistic theory, and efficiently rearranges them into self-dual and
anti-self-dual parts automatically on the non-Riemannian parametrisation.

6 Conclusions and discussion

Comparison with the Gomis-Ooguri or SNC string. The behaviour we found in
eleven-dimensional supergravity can be seen to be extremely similar to that which happens
on the worldsheet for the Gomis-Ooguri or SNC string [6, 10, 21]. To see this, let’s revisit
the derivation of this worldsheet action by considering the SNC expansion

ĝµν = c2τµν +Hµν , B̂µν = −c2εABτµ
Aτν

B +Bµν , (6.1)

in the worldsheet Polyakov action

S = −1
2

∫
d2σ(∂αX̂µ∂αX̂ν ĝµν − εαβ∂αX̂µ∂βX̂

νB̂µν) . (6.2)

We have set the effective tension to one and are in conformal gauge. If we also expand the
target space coordinates10

X̂µ = Xµ + c−2X̃µ (6.3)

we get
S = −1

2

∫
d2σ

(
c2τµ

A∂αX
µ(ηABτν

B∂αXν + εαβεABτν
B∂βX

ν)

+ 2τµA∂αX̃
µ(ηABτν

B∂αXν + εαβεABτν
B∂βX

ν)
+ ∂αX

µ∂αXνHµν − εαβ∂αXµ∂βX
νBµν

)
.

(6.4)

This is exactly analogous to the result of the expansion of the 11-dimensional SUGRA
action. Here the Wess-Zumino coupling to the B-field plays the role of the Chern-Simons
term, and the singular piece can be cancelled by imposing a sort of twisted self-duality
constraint on FαA ≡ τµ

A∂αX
µ, namely that ηABF

αB + εαβεABFβ
B = 0. This then appears

as the equation of motion imposed by F̃αA ≡ τµA∂αX̃
µ, and the latter can be seen to only

appear in its anti-self-dual projection. This corresponds to the familiar rearrangement of
the longitudinal directions into chiral and anti-chiral directions (as seen usually in lightcone

10This was similarly done in [20] however only for the Nambu-Goto action, for which the subleading
coordinates do not appear in the finite action as the leading part of the expansion cancels identically.
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coordinates). The numbers of degrees of freedom are preserved as the ‘dual’ degrees of
freedom in X̃µ are similarly constrained.

Normally one derives the finite part of the action (6.4) by rewriting the action in an
equivalent form using auxiliary degrees of freedom, such that the limit can be performed
without singularities. After the limit, one finds these auxiliary degrees of freedom corre-
spond to F̃αA, and impose the chirality/anti-chirality conditions on the longitudinal degrees
of freedom. This is also what happens in the doubled sigma model approach (e.g. [33, 57]),
which starts with coordinates X and duals X̃, related by a self-duality constraint involving
the generalised metric of double field theory. Taking the SNC limit in this set-up then
leads to the situation as above where the longitudinal X and X̃ are no longer related, but
separately obey chiral/anti-chirality constraints. The doubled sigma model action then
reproduces the finite terms in (6.4). This then is analogous to the exceptional field theory
description of the limit of 11-dimensional SUGRA.

It could be conjectured that the appearance of (self)-duality constraints is a generic
feature of non-relativistic limits of theories with topological or Chern-Simons terms, as a
requirement for cancelling singular terms arising from the topological term against those
arising from the kinetic term. Schematically given a Lagrangian L ∼ F ∧?F +F ∧G with a
non-relativistic expansion leading to a term cnF ?(?F +G), then we would take ?F +G = 0
as a constraint. It would be interesting to explore this mechanism in other contexts.

Subleading terms. Our derivation of the MNC geometry made use of a field redefinition
involving the parameter c which we then sought to send to ∞ and interpret as a non-
relativistic limit. This could be extended to a full non-relativistic expansion, including first
of all further subleading terms in the metric, with ĝµν = c2τµν+c−1Hµν+c−4Xµν+. . . . It is
possible to check that doing so does not affect the expansion of the action up to order c0, and
it would be expected on general grounds [58] that the first appearance of the first subleading
terms simply re-imposes the equations of motion already encountered (as we saw with C̃3
and the equations of motion of C3). In addition, we could reformulate the expansion by
introducing additional one-form gauge fields (as for this case in [48]), accompanied by a shift
symmetry, such that the three-form Cµνρ does not transform under boosts. The resulting
more general expansion could then be attacked order-by-order without necessarily sending
c→∞ or truncating as we did. Here it would be interesting to compare with the approach
of [53], inputting the eleven-dimensional three-form as matter. A complicating feature,
relative to usual 1/c expansions of general relativity leading to Newton-Cartan [51, 52, 58]
for example, is that the longitudinal vielbein appears in both the metric and three-form
and does so at different orders in c.

Supersymmetry and non-uniqueness of non-relativistic 11-dimensional super-
gravity. We limited ourselves to an analysis of the bosonic geometry in this paper. The
supersymmetric extension presumably exists and should be constructed. At the level of
supersymmetric double and exceptional field theory, the logic would again be that changing
the parametrisation of the generalised vielbein is all that is needed to arrive at the desired
theory, and this seems to be possible without obstacles [57].
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Note that in this paper we started with a non-relativistic expansion tailored to the M2.
There should be a similar expansion based on the M5, in which we have six longitudinal
and five transverse directions. (This should reduce to the dual NSNS six-form expansion
discussed in the conclusions of [27].) This would then give a second non-relativistic version
of 11-dimensional supergravity, so although this is the unique maximal supergravity in
eleven dimensions, this uniqueness would then no longer hold in the non-relativistic setting.

Duality web and branes. An obvious goal for which this paper should be useful is
the study of the spacetime actions for the non-relativistic duality web [6] in 11- and 10-
dimensions. This can proceed both by applying standard dimensional reduction and dual-
isation to our 11-dimensional action, and by applying similar methods to individual super-
gravities by taking covariant non-relativistic limits associated to each p-brane present in the
theory. Here, we performed a dimensional reduction to type IIA, but we did not discuss the
expected T-duality relationship to type IIB, for example. Similarly, there is presumably a
heterotic SNC which could be obtained by reducing non-relativistic M-theory on a longitu-
dinal interval, although it is not immediately obvious what the result of reducing on a trans-
verse interval should be. Note that the appearance of the original and dual field strength
together in the 11-dimensional theory suggests that the appropriate formalism for describ-
ing generalisations of Newton-Cartan geometries in type II should be the formalism where
the RR p-forms are treated ‘democratically’ [59], accompanied by a self-duality constraint.

Here the double and exceptional field theory formulation may again prove a useful
guide. Beyond the usual suspects, exceptional field theory also offers a way to handle the
vast number of mixed symmetry tensors that appear coupling to exotic branes [60, 61].
It may not be unreasonable to suggest using the E11 ‘master’ ExFT recently constructed
in [55], as this presumably provides scope to construct an infinite number of brane scaling
limits. Here there is no need to artificially split the coordinates and one can work with
11/10-dimensional quantities throughout, albeit at the obvious price of dealing with a very
infinite algebra.

The ExFT description in this paper demonstrates that the non-relativistic theory is also
controlled by the same exceptional Lie algebraic symmetries that appear in the relativistic
case. A distinction can be made between these symmetries as they are used in ExFT and
the actual U-duality symmetries present on toroidal reduction. As we saw in section (5.4),
U-duality transformations can ‘rotate’ between relativistic and non-relativistic theories.
This is also the case for T-duality of non-relativistic strings [16]. A non-trivial U-duality,
corresponding to an SL(2) inversion transformation in the SL(3) × SL(2) case, acts on
three directions in spacetime. To make a systematic study of U-duality of non-relativistic
theories, it would therefore be necessary to consider U-duality transformations acting on
0,1, 2 or 3 longitudinal directions and to check which of these do or do not take you back to
a relativistic theory. The SL(3)× SL(2) ExFT description of section (5.4) only allowed for
U-duality transformations acting on all three longitudinal directions, while the SL(5) ExFT
description presented in appendix B would allow for transformations acting on two or three
longitudinal directions. A precise group to consider would then be the E6(6) case which
can accommodate all possible types of U-dualities acting on the MNC geometry, with some
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subgroup corresponding to the strict U-duality symmetries of the non-relativistic theory.
This analysis is left for future work.

Another interesting question is to understand the consequences of the non-relativistic
limit on the brane spectrum of M-theory (and hence also of type IIA, after reducing).
The ‘decoupling’ of the transverse components of F4 and the longitudinal components F7
presumably means something at the level of the M2 and M5 branes coupling to the three-
and six-form: the analysis of [62] should be pertinent here. One could similarly enquire
about whether the duality constraint in the type IIA SNC theory can be seen at the level of
the string spectrum resulting from the quantisation of the non-relativistic superstring [63]

Obtaining brane solutions of the non-relativistic theory, whether by directly solving
the equations of motion or using U-duality as in section 5.4, is also an interesting ques-
tion. Interestingly, membrane solutions of 11-dimensional SUGRA with transverse self-
dual field strength were constructed in [64] and perhaps can be adapted or used in the
non-relativistic setting. Even the ‘flat’ spacetime solution may have interesting properties
including infinite-dimensional isometries as for the string case [14, 21, 57].
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A Dimensional decomposition of non-relativistic action for ExFT

Decomposition of R(0). Consider the part of the scalar curvature R(0) as defined
in (2.23) not involving the longitudinal metric, but just the transverse metrics Ĥµ̂ν̂ and
Ĥ µ̂ν̂ and the measure factor Ω̂. In the dimensional decomposition used in exceptional field
theory, the latter two factorise as

Ĥµ̂ν̂ = Uµ̂
ρ̂Uν̂

σ̂H̄ρ̂σ̂ , Ĥ µ̂ν̂ = (U−1)ρ̂µ̂(U−1)σ̂ ν̂H̄ ρ̂σ̂ , (A.1)

with

Uµ̂
ν̂ =

(
δµ
ν Aµ

j

0 δi
j

)
, H̄µ̂ν̂ =

(
Gµν 0

0 Hij

)
, H̄ µ̂ν̂ =

(
Gµν 0

0 H ij

)
. (A.2)

Here Gµν is the inverse of Gµν , butH ij andHij are not invertible. The idea is to completely
factor out the matrix U from derivatives of Ĝ. Defining

∂µ̂Ĥν̂ρ̂ = Uµ̂
σ̂Uν̂

λ̂Uρ̂
κ̂∂H σ̂λ̂κ̂ , ∂µ̂Ĥ

ν̂ρ̂ = Uµ̂
σ̂(U−1)λ̂

ν̂(U−1)κ̂ρ̂∂hσ̂ λ̂κ̂ (A.3)
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we have the relatively simple expressions

∂Hµν̂ρ̂ =
(

D̄µGνρ HklD̄µAν
l

HjlD̄µAρ
k D̄µHjk

)
, ∂H iν̂ρ̂ =

(
∂iGνρ Hkl∂iAν

l

Hjl∂iAρ
k ∂iHjk

)
(A.4)

∂Hµ
ν̂ρ̂ =

(
D̄µG

νρ −GνσD̄µAσ
k

−GρσD̄µAσ
j D̄µH

jk

)
, ∂H i

ν̂ρ̂ =
(

∂iG
νρ −Gνσ∂iAσk

−Gρσ∂iAσj ∂iH
jk

)
(A.5)

where D̄µ ≡ ∂µ−Aµi∂i. For instance, consider the following terms in the scalar curvature:

1
4H̄

µ̂ν̂∂H µ̂ρ̂σ̂∂H ν̂
ρ̂σ̂ − 1

2H̄
µν∂Hµ

ρσ∂Hρνσ . (A.6)

A fairly straightforward calculations shows that these equal

1
4G

µνDµGρσDνG
ρσ − 1

2G
µνDµG

ρσDρGνσ −
1
4G

µνGρσHijFµρ
iFνσ

j + 1
4G

µνDµHijDνH
ij

+ 1
4H

ij(∂iGρσ∂jGρσ + ∂iHkl∂jH
kl)− 1

2H
ij∂iH

kl∂kHjl

− 1
2(δik +H ijHjk)D̄µAν

k∂iG
µν +GµνH ijHjk∂lAµ

k∂iAν
l (A.7)

where Fµνi ≡ 2D̄[µAν]
i, Dµ = ∂µ − LAµ , and acting on Gµν and Gµν , we have Dµ = D̄µ.

Next, consider the part of R(0) that involves τ :

1
4Ĥ

µ̂ν̂∂µ̂τ̂ρ̂σ̂∂ν̂ τ̂
ρ̂σ̂ + 1

4 τ̂
µ̂ν̂∂µ̂τρ̂σ̂∂ν̂Ĥ

ρ̂σ̂ − 1
2 τ̂

µ̂ν̂∂ν̂H
ρ̂σ̂∂ρ̂τ̂µ̂σ̂ −

1
2Ĥ

µ̂ν̂∂ν̂ τ̂
ρ̂σ̂∂ρ̂τ̂µ̂σ̂ (A.8)

Similar calculations to above give

1
4G

µνDµτijDντ
ij + gµντ ikτkj∂iAµ

l∂lAν
j − 1

2τ
ikτkjD̄µAν

k∂iG
µν

+ 1
4H

ij∂iτkl∂jτ
kl + 1

4τ
ij∂iτkl∂jH

kl − 1
2τ

ij∂jH
kl∂kτil −

1
2H

ij∂jτ
kl∂kτil

(A.9)

The terms involving τ ikτkj on the first line here combine with the terms involving H ikHkj

in the last line of (A.7) and sum up to give δij = H ikHkj +τ ikτkj , after which point the rest
of the calculation proceeds identically to that normally used in exceptional field theory.

Finally one has the terms

− Ḡµ̂ν̂ ∂̄µ̂ ln Ω̂ ∂̄ν̂ ln Ω̂ + 2∂̄µ̂ ln Ω̂ ∂Gν̂
µ̂ν̂ − ∂µ̂∂ν̂Ĝµ̂ν̂ − Ĝµ̂ν̂∂µ̂∂ν̂ ln Ω̂ (A.10)

where Ω̂ has weight 1, and in the final two terms ∂̄µ ≡ D̄µ, ∂̄i ≡ ∂i. Note Dµ ln Ω̂ =
D̄µ ln Ω̂ − ∂iAµ

i. We let Ω̂ = Ω
√
|G|, where Ω has weight 1 under internal diffeomor-

phisms. Straightforward manipulations allow one to rewrite (A.10) in the decomposition
and combine with (A.7) and (A.9) After dropping a total derivative, the final result is:

R(0)(Ĥ, τ̂) = Rext(G) +R(0)(H, τ)− 1
4Fµν

iFρσ
jGµρGνσHij

+ 1
4G

µν(DµHijDνH
ij +DµτijDντ

ij +Dµ ln Ω2Dν ln Ω2)

+ 1
4H

ij(∂iGµν∂jGµν + ∂iln |G|∂j ln |G|)

(A.11)
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where

Rext(g) = 1
4G

µνDµGρσDνG
ρσ − 1

2G
µνDµG

ρσDρGνσ −
1
4G

µνDµ ln |G|Dν ln |G|

−Dµ ln |G|DνG
µν −GµνDµDν ln |G| −DµDνG

µν , (A.12)

R(0)(H, τ) = +1
4H

ij∂iτkl∂jτ
kl + 1

4τ
ij∂iτkl∂jH

kl − 1
2τ

ij∂jH
kl∂kτil −

1
2H

ij∂jτ
kl∂kτil

+ 1
4H

ij∂iHkl∂jH
kl − 1

2H
ij∂jH

kl∂kHil −
1
4H

ij∂iln Ω2∂j ln Ω2

− ∂iln Ω2∂jH
ij − ∂i∂jH ij −H ij∂i∂j ln Ω2 . (A.13)

The measure factor is Ω̂ = Ω
√
|G|. To obtain an Einstein frame action, we let

Gµν = Ω−
2

9−d gµν . (A.14)

Gauge fields. The compact expressions (5.4) and (5.5) are equivalent to

C µ̂ν̂ρ̂ = (U−1)λ̂1
µ̂(U−1)λ̂2

ν̂(U−1)λ̂3
ρ̂Cλ̂1...λ̂3

,

F µ̂ν̂ρ̂σ̂ = (U−1)λ̂1
µ̂(U−1)λ̂2

ν̂(U−1)λ̂3
ρ̂(U−1)λ̂4

σ̂Fλ̂1...λ̂4
,

(A.15)

giving in components

Cijk ≡ Cijk , Cµij ≡ Cµij −AµkCijk ,
Cµνi ≡ Cµνi − 2A[µ

jCν]ij +Aµ
jAν

kCijk , (A.16)
Cµνρ ≡ Cµνρ − 3A[µ

iCνρ]i + 3A[µ
iAν

jCρ]ij −AµiAνjAρkCijk ,
Fmnpq = 4∂[mCnpq] , F µmnp = DµCmnp − 3∂[mC |µ|np]

F µνmn = 2D[µCν]mn + F µν
pCpmn + 2∂[mC |µν|n] ,

F µνρm = 3D[µCνρ]m + 3F [µν
nCρ]mn − ∂mCµνρ , (A.17)

F µνρσ = 4D[µCνρσ] + 6F [µν
mCρσ]m ,

where Fµνi is as defined in (5.3). The original Bianchi identity dF4 = 0 becomes a set of
equations

DµFmnpq = 4∂[mF npq] ,

2D[µF ν]mnp = −3∂[m|F µν|np] − FµνqF qmnp ,

3D[µF νρ]mn = 2∂[m|F µνρ|n] + 3F[µν
pF ρ]pmn ,

4D[µF νρσ]m = −∂mF µνρσ + 6F[µν
pF ρσ]mp ,

5D[µF νρσλ] = 10F[µν
mF ρσλ]m .

(A.18)

The above formulae are applicable to any dimensional reduction. In particular for the 11-
dimensional MNC theory they allow us to easily decompose the terms in the action (2.27).
For example, using the Einstein frame metric to raise indices, the kinetic terms for the field
strength are:

− 1
12Ĥ

µ̂1ν̂1Ĥ µ̂2ν̂2Ĥ µ̂3ν̂3 τ̂ µ̂4ν̂4Fµ̂1µ̂2µ̂3µ̂4Fν̂1ν̂2ν̂3ν̂4

= − 1
12Ω6/(9−d)τ ijF µνρ

iF µνρj −
1
4Ω4/(9−d)H ijτklF µνikF

µν
jl

− 1
4Ω2/(9−d)H ijHklτpqF µikpF

ν
jlq −

1
4H

ijHklHmnτpqF ikmpF jlnq .

(A.19)
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Similar manipulations apply to the rest of the action. Let us also indicate how the fac-
torisation applies to an equation of the form ∂σ̂X

µ̂ν̂ρ̂σ̂ = Θµ̂ν̂ρ̂ where X has weight 1, and
both X and Θ admit a factorisation via U−1 in terms of quantities X̄ and Θ̄ independent
of bare Aµi. This is of course the form of the gauge field equation of motion (2.21). After
decomposing, one has the simple expression

DσX̄
µ̂ν̂ρ̂σ + ∂lX̄

µ̂ν̂ρ̂l + 3
2Fκλ

lδ
[µ̂
l X̄

ν̂ρ̂]κλ = Θ̄µ̂ν̂ρ̂ . (A.20)

Constraint. The constraint (2.26) decomposes in terms of the redefined strengths:

√
gΩ

6
9−d gµ1ν1 ...gµ4ν4F ν1...ν4 =− 1

4!ε
µ1...µ4ν̂1...ν̂4ijk 1

6εABCτi
Aτj

Bτk
CF ν̂1...ν̂4 ,

√
gΩ

4
9−d gµ1ν1 ...gµ3ν3H ijF ν1ν2ν3j=−

1
4!ε

µ1...µ3iν̂1...ν̂4pqr 1
6εABCτp

Aτq
Bτr

CF ν̂1...ν̂4 ,

√
gΩ

2
9−d gµ1ν1gµ2ν2H i1j1H i2j2F ν1ν2j1j2 =− 1

4!ε
µ1µ2i1i2ν̂1...ν̂4pqr 1

6εABCτp
Aτq

Bτr
CF ν̂1...ν̂4 ,

√
ggµ1ν1H i1j1 ...H i3j3F νj1j2j3 =− 1

4!ε
µi1...i3ν̂1...ν̂4pqr 1

6εABCτp
Aτq

Bτr
CF ν̂1...ν̂4 ,

√
gΩ−

2
9−dH i1j1 ...H i4j4F j1j2j3j4 =− 1

4!ε
i1...i4ν̂1...ν̂4pqr 1

6εABCτp
Aτq

Bτr
CF̂ ν̂1...ν̂4 .

(A.21)
For instance, when d = 3 only the first of these is non-zero, giving:

√
gΩgµ1ν1 . . . gµ4ν4F ν1...ν4 = − 1

4!ε
µ1...µ4ν1...ν4ijk 1

6εABCτi
Aτj

Bτk
CF ν1...ν4 ,

= − 1
4!ε

µ1...µ4ν1...ν4ΩF ν1...ν4 .
(A.22)

When d = 4 only the first two are non-zero:

√
gΩ

6
5 gµ1ν1 . . . gµ4ν4F ν1...ν4 = − 1

3!ε
µ1...µ4ν1...ν3lijk 1

6εABCτi
Aτj

Bτk
CF ν1ν2ν3l ,

√
gΩ

4
5 gµ1ν1 . . . gµ3ν3H ijF ν1ν2ν3j = − 1

4!ε
µ1...µ3iν1...ν4pqr 1

6εABCτp
Aτq

Bτr
CF ν1...ν4 ,

(A.23)

or if we take 1
6ε
ijklεABCτi

Aτj
Bτk

Chl = Ω these are

√
gΩ

1
5 gµ1ν1 . . . gµ4ν4F ν1...ν4 = 1

3!ηε
µ1...µ4ν1...ν3hlF ν1ν2ν3l ,

√
ggµ1ν1 . . . gµ3ν3H ijF ν1ν2ν3j = 1

4!ηε
µ1...µ3ν1...ν4hiΩ

1
5 F ν1...ν4 .

(A.24)

Here H ij = hihj (as it has rank 1), and so both of these are equivalent.

Result. Putting everything together, the dimensional decomposition of the finite action
S(0) is:

S(0) =
∫

d11−dx ddy√g(Rext(g) + Lkin + Lint + L
F̃

+√g−1LCS) . (A.25)
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Here, using gµν to raise (11− d)-dimensional indices, we have

Rext(g)= 1
4g

µνDµgρσDνg
ρσ−1

2g
µνDµg

ρσDρgνσ+1
4g

µνDµlngDν lng

+1
2DµlngDνg

µν , (A.26)

Lkin= 1
4

(
DµH

ijDµHij+Dµτ
ijDµτij−

1
9−dDµlnΩ2DµlnΩ2

)
+1

2Dµτk
AτA

kDµτl
BτB

l

+1
2H

ijF µiklεABCD
µτj

AτkBτ lC−1
4H

ijHklτpqF µikpF
µ
jlq

+1
4Ω

2
9−d
(
−FµνiFµνjHij+F µνklF

µνmεABCτ
A
mτ

kBτ lC−H ijτklF µνikF
µν
jl

)
− 1

12Ω
4

9−d τ ijF µνρiF
µνρ

j (A.27)

and

Ω
2

9−dLint = 1
4H

ij (∂igµν∂jgµν + ∂i ln g∂j ln g) + 1
2Ω

2
9−d∂i(H ijΩ−

2
9−d )∂j ln g

+ 1
4H

ij∂iτkl∂jτ
kl + 1

4τ
ij∂iτkl∂jH

kl − 1
2τ

ij∂jH
kl∂kτil −

1
2H

ij∂jτ
kl∂kτil

+ 1
4H

ij∂iHkl∂jH
kl − 1

2H
ij∂jH

kl∂kHil

+ 1
4

d− 7
(9− d)2H

ij∂i ln Ω2 ∂j ln Ω2 − 1
9− d∂i ln Ω2 ∂jH

ij

− 1
4H

ijHklHmnτpqF ikmpF jlnq + 1
4H

imHjnF ijklεABCTmn
AτkBτ lC

+ 1
2H

ijTik
AτkATjl

Bτ lB . (A.28)

The term L
F̃

consists of a sum of contractions of F̃ µνρσ, F̃ µνρi, etc. (following analogous
redefinition of the components) with the constraints as decomposed in (A.21). For instance,
when d = 3,

L
F̃

= − 1
4! F̃ µ1...µ4

(√
gΩgµ1ν1 . . . gµ4ν4F ν1...ν4 + 1

4!ε
µ1...µ4ν1...ν4ΩF ν1...ν4

)
, (A.29)

In this case the relationship between the dual seven-form field strength and F̃ µνρσ gives
1
6ε

ijkF µ1...µ4ijk = Ω
(

F̃ µ1...µ4 + 1
4!
√
gεµ1...µ4ν1...ν4F̃

ν1...ν4
)
. (A.30)

When d = 4,

L
F̃

= − 1
3!

(
F̃ µ1µ2µ3ih

i − Ω1/5ελ1...λ4σ1...σ3 1
4!

1
√
g
gσ1µ1 . . . gσ3µ3F̃ λ1...λ4

)

×
(√

gΩ
4
5 gµ1ν1 . . . gµ3ν3hjF ν1ν2ν3j − Ω 1

4!ε
µ1...µ3ν1...ν4F ν1...ν4

)
,

(A.31)

Using (2.46) we can rewrite (A.31) in terms of the dual seven-form field strength directly as

L
F̃

= + 1
3!4!F µ1...µ3ijklε

ijkl
(√

gΩ−
1
5 gµ1ν1 . . . gµ3ν3hjF ν1ν2ν3j −

1
4!ε

µ1...µ3ν1...ν4F ν1...ν4

)
.

(A.32)
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Finally, the Chern-Simons term can be worked out by taking wedge products of (5.5)
and (5.4), we do not display this explicitly.

B The SL(5) ExFT and its non-relativistic parametrisation

In the d = 4 case, more of the degenerate Newton-Cartan structure is preserved.

Elements of SL(5) ExFT. For d = 4, generalised vectors VM = (V i, Vij) transform in
the 10 of SL(5), with i, j, . . . now four-dimensional. This representation is the antisym-
metric representation, and we can see this more clearly as follows. Let M,N , . . . denote
fundamental five-dimensional indices of SL(5). Then we can equivalently write a gener-
alised vector as carrying an antisymmetric pair of such indices, VM ≡ VMN = −V NM,
and on writingM = (i, 5) we can identify V i5 ≡ V i, and V ij ≡ 1

2ε
ijklVkl. The generalised

Lie derivative acting on vectors of weight λV is explicitly

LΛV
MN = 1

2ΛPQ∂PQVMN + 2∂PQΛP[MV N ]Q + 1
2(1 + λV + ω)∂PQΛPQVMN . (B.1)

The section condition is εMNPQK∂MN∂PQ = 0, and below we work with the M-theory
solution, where splittingM = (i, 5) the derivatives ∂ij are viewed as identically zero, and
the derivatives ∂i5 are identified with the 4-dimensional partial derivatives.

In this case, the generalised metric admits a factorisation

MMN ,PQ = −(mMPmQN −mMQmPN ) (B.2)

where the ‘little metric’ mMN is symmetric and has unit determinant. The overall sign
in this expression needed for the ExFT action to reproduce SUGRA correctly when we
include timelike signatures in the generalised metric, according to the conventions of [40].

The gauge fields, AµM , BµνM, CµνρM and DµνρσM have weights 1/5, 2/5, 3/5 and
4/5 respectively, with field strengths denoted FµνM , HµνρM, JµνρσN and KµνρσλM . Under
generalised diffeomorphisms, FM transforms as a generalised vector of weight 1/5, while
H and J transform via the generalised Lie derivative acting as

LΛHM = 1
2ΛPQ∂PQHM +HP∂MQΛPQ , LΛJM = ∂PQ

(1
2ΛPQJM

)
− ∂PQΛPMJQ .

(B.3)
They obey Bianchi identities:

3D[µFνρ]
MN = 1

2ε
MNPQK∂PQHµνρK , (B.4)

4D[µHνρσ]M + 3
4εMNPKLεαβF[µν

NPFρσ]
KL = ∂NMJµνρσN , (B.5)

5D[µJνρσλ]
M + 10F[µν

MNHρσλ]N = 1
2ε
MNPQK∂NPKµνρσλQK . (B.6)
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The dynamics follow from the variation of an action S =
∫

d7x d10yLExFT where LExFT
has the same form as (5.16), with Rext again as defined in (5.17), and [65]

Lkin = + 1
12DµMMNDµMMN − 1

4MMNFµνMFµνN −
1
12m

MNHµνρMHµνρN (B.7)

Lint(m,g) = 1
12M

MN∂MMKL∂NMKL−
1
2M

MN∂MMKL∂KMLN + 1
2∂MM

MN∂N ln |g|

+ 1
4M

MN (∂Mgµν∂Ngµν +∂M ln |g|∂N ln |g|) . (B.8)

The topological term can be defined via its variation (again up to a choice of sign equivalent
to changing the sign of Ĉ3 in eleven-dimensional SUGRA):

δLtop = − 1
6 · 4!ε

µ1...µ7
(
2δAµ1

MNHµ2µ3µ4MHµ5µ6µ7N + 6Fµ1µ2
MN∆Bµ3µ4MHµ5µ6µ7N

× ∂NM∆Cµ1µ2µ3
NJµ4...µ7

M
)
. (B.9)

We refer to the original paper [65] or the review [45] for explicit details.

Review of 11-dimensional SUGRA embedding. We start with the little metric,
mMN . The parametrisation reproducing (5.6) is

mMN = |φ|1/10

 |φ|−1/2φij −|φ|−1/2φikĈ
k

−|φ|−1/2φjkĈ
k |φ|1/2(−1)t + |φ|−1/2φklĈ

k
Ĉ
l

 , Ĉ
i ≡ 1

3!ε
ijklĈjkl .

(B.10)
For the gauge fields, we can again identify AMµ = (Aµi, Ĉµij). However, we already require
dualisations when treating the two-forms. We get four 7-dimensional two-forms, Ĉµνi

and a single three-form Ĉµνρ. The latter can be dualised into an extra two-form, C̃µν
(identifiable with the components Ĉµνijkl of the six-form in eleven-dimensions) such that
BµνM ∼ (Ĉµνi, C̃µν) gives a five-dimensional representation of SL(5). Meanwhile, we can
view Ĉµνρ together with the four four-forms Ĉµνρijk as comprising the conjugate five-
dimensional representation. The equations of motion of the SL(5) ExFT then imply that
the field strengths of these two- and three-forms are related by duality. This involves the
seven-dimensional Hodge star acting on the seven-dimensional indices and the generalised
metric acting on the SL(5) indices:√

|g|mMPHµνρP = − 1
4!ε

µνρσ1...σ4Jσ1...σ4
M (B.11)

Again, the field strengths are all tensors under generalised diffeomorphisms, we may make
the (usual) identifications consistent with the Bianchi identities [45]

Fµνi5 = Fµν
i , Fµνij = 1

2ε
ijkl(F̂ µνkl − ĈklmF̂ µν

m) ,

Hµνρi = −F̂ µνρi , Hµνρ5 = − 1
4!ε

ijkl(F̂ µνρijkl − 4F̂ µνρiĈjkl) ,

Jµνρσ5 = −F̂ µνρσ , Jµνρσi = + 1
3!ε

ijkl(F̂ µνρσjkl − ĈjklF̂ µνρσ) .

(B.12)
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Generalised metric. The distinction between Riemannian and non-Riemannian
parametrisations can be seen at the level of the unit-determinant five-by-five little gen-
eralised metric. For an M-theory parametrisation, this can be written as:

mMN =
(
mij mi5
mj5 m55

)
, m55 det(mij)−

1
6mi5mj5ε

iklmεjpqrmkpmlqmmr = 1 . (B.13)

If det(mij) 6= 0 this leads to the Riemannian parametrisation (B.10) encoding a four-
dimensional metric, gij , and a three-form, Ĉijk. However, we can also have det(mij) = 0
with mij of rank 3 and this leads to a non-Riemannian parametrisation which was worked
out in [40]. We can rediscover this parametrisation by taking the non-relativistic limit
of (B.10) using (5.28). The resulting expression for mMN is

mMN=Ω−4/5
(

τij
1
6Hikε

klmnεABCτl
Aτm

Bτn
C−τikCk

1
6Hjkε

klmnεABCτl
Aτm

Bτn
C−τjkCk τijC

iCj− 1
3ε
jklmεABCHijτk

Aτl
Bτm

CCi

)
,

(B.14)
in terms of four-dimensional Newton-Cartan variables and Ci ≡ 1

3!ε
ijklCjkl. The unit

determinant constraint implies that

− 1
3!ε

i1...i4εj1...j4τi1j1τi2j2τi3j3Hi4j4 = Ω2 , (B.15)

which is the definition of Ω2 in this case. As Hij has rank 1, we can introduce a projective
vielbein hi such that Hij = hihj and we take

1
6ε

ijklεABCτi
Aτj

Bτk
Chl = Ω , (B.16)

choosing to fix an arbitrary sign (by sending τiA → −τiA if necessary) which could appear
here (Ω is assumed positive). Then (B.14) can be written as

mMN = Ω−4/5
(

τij −Ωhi − τikCk

−Ωhj − τjkCk τijC
iCj + 2ΩhiCi

)
, (B.17)

which in this form can be checked to correspond to the parametrisation written down in [40]
from first principles. Note that the boost invariance, acting as

δhi = hjΛjAτiA , δCi = −ΩΛjAhjτ iA , τ iAΛiB = 0 , (B.18)

corresponds to a shift symmetry of the parametrisation (B.17) pointed out in [40]. This
generalises the Milne shift redundancy of the DFT non-Riemannian parametrisation [35].
Here we introduced the inverse vielbeins hi and τ iA obeying the obvious relations

hih
i = 1 , τ iAτj

A + hihj = δij , τ iAhi = 0 τi
Ahi = 0 , τ iAτi

B = δBA . (B.19)

The generalised metric in the 10× 10 representation followng from the little metric (B.14)
can be seen to take the form (5.29), after rewriting in the basis where generalised indices
run over vector and two-form indices, and using the identities

εi1...i3kεj1...j3lτkl = −3!Ω2(τ j1[i1τ i2|j2|H i3]j3 + τ j2[i1τ i2|j3|H i3]j1 + τ j3[i1τ i2|j1|H i3]j2) ,
εi1...i3kεj1...j3lHkl = −3!Ω2τ i1[j1|τ i2|j2|τ i3|j3] . (B.20)
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It is useful to record the explicit expression for the inverse little metric:

mMN = Ω4/5
(
τ ij − 2Ω−1h(iCj) −Ω−1hi

−Ω−1hj 0

)
. (B.21)

Clearly, variations δmMN with δm55 6= 0 do not preserve this parametrisation. This means
that if we look at the equations of motion RMN = 0 of the generalised metric, we expect
that R55 = 0 provides an additional equation of motion that we would not find by varying
the action evaluated on the non-relativistic parametrisation.

Field strengths and self-duality in SL(5) ExFT. Our field strengths (B.12) are now

Fµνi5 = Fµν
i , Fµνij = 1

2ε
ijkl(F µνkl −CklmF µν

m) ,

Hµνρi = −F µνρi , Hµνρ5 = − 1
4!ε

ijkl(F µνρijkl − 4F µνρiCjkl) ,

Jµνρσ5 = −F µνρσ , Jµνρσi = + 1
3!ε

ijkl(F µνρσjkl −CjklF µνρσ) .

(B.22)

The kinetic terms (B.7) in the SL(5) ExFT action are:

−1
4MMNFµνMFµνN −

1
12m

MNHµνρMHµνρN

= −1
4Ω2/5

(
HijF

µνiFµν
j − εABCτiAτBjτCkFµνiF µνjk + τ iCτ

jCHklF µν
ikF µνjl

)
− 1

12Ω4/5τ ijF µνρ
iF µνρj + 1

6Ω−1/5hiF µνρ
i

1
4!ε

jklmF µνρjklm (B.23)

which match exactly the corresponding terms in (A.27) and (A.31), including the appear-
ance of components of the dual seven-form field strength.

We see again that the ExFT description automatically contains the correct dual fields
to reproduce the non-relativistic action immediately. It’s worthwhile to go into some detail
about the appearance of dual fields in the relativistic case. As mentioned above, the decom-
position of the 11-dimensional three-form in the (7+4)-dimensional split produces four two-
forms, Ĉµνi and a single three-form, Ĉµνρ. We exchange the latter for an additional two-
form, Ĉµν , in order to obtain the five-dimensional SL(5) multiplet BµνM = (Ĉµνi, Ĉµν).
This is normally done by introducing the two-form into the action as a Lagrange multiplier
enforcing the Bianchi identity for F̂ µνρσ. When this is done, the terms involving F̂ 4 in the
action are schematically F̂ 4∧?7F̂ 4−Ĉ2∧(dF̂ 4+. . . )+F̂ 4∧X3, where X3 denotes whatever
appears alongside F̂ 4 in the decomposition of the Chern-Simons term. Integrating by parts
one defines a field strength H3 ∼ dĈ2 +X3 and treating F̂ 4 then as an independent field,
one can integrate that out of the action to produce a kinetic term for H3. The latter is
then theM = 5 component of the ExFT field strength HµνρM, and in this way the ExFT
action matches the partially dualised SUGRA action.

In the non-relativistic theory, there is already no kinetic term for F 4 in the decomposed
action, as seen from (A.27). It only appears (linearly) in the constraint term (A.31),
schematically in the form F 4 ∧ (?7F̃ 4 + F̃ 3ih

i). So instead if we carry out the same
procedure, we find that F 4 equation of motion sets H3 = ?7F̃ 4 + F̃ 3ih

i, which in this case
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exactly corresponds to the relationship between the dual seven-form and F̃4 as expressed
by (2.46). Hence now it is this H3 that we identify with Hµνρijkl via the above arguments.
All this exactly mirrors what happened for the SL(3)× SL(2) case.

We finish with a brief look at the equations of motion. The field strength Jµνρσ of the
gauge field Cµνρ only appears in the topological term. This gauge field also appears in the
field strength Hµνρ. Its equation of motion has the form ∂MN θ

µνρN = 0 where

θµνρM ≡ √gmMPHµνρP + 1
4!ε

µνρσ1...σ4Jσ1...σ4
M . (B.24)

Meanwhile the equation of motion of BµνM is

Dρ(
√
gmMNHµνρN ) + 1

8ε
MPQKL∂PQ(√gMKL,K′L′FµνK

′L′)

− 2
4!ε

µνλ1...λ5Fλ1λ2
MNHλ3...λ5N = 0 .

(B.25)

TheM = 5 component combines with theM = 5 component of the Bianchi identity (B.6)
to give Dρθµνρ5 = 0. Hence we integrate and set θµνρM = 0. Let’s examine the content of
this constraint. Firstly, the θµνρ5 component implies

Ω−1/5√ghjF µνρ
j −

1
4!ε

µνρσ1...σ4F σ1...σ4 = 0 (B.26)

This is the 11-dimensional self-duality constraint (2.26) on the transverse part of the four-
form field strength, here decomposed as in (A.23). Secondly, setting θµνρi − Ciθµνρ5 = 0
and projecting gives

√
gΩ−1/5F µνρ

ijkl + 1
4!ε

µνρσ1...σ44h[i|F σ1...σ4|jkl] = 0 ,
√
gΩ4/5τ iAF µνρ

i −
1
4!ε

µνρσ1...σ4τAi
1
3!ε

ijklF σ1...σ4jkl = 0 .
(B.27)

The first of these is part of the self-duality condition (2.47) obeyed by the totally lon-
gitudinal part of the dual-seven form. The second is part of the duality between the
partly longitudinal four-form and the rest of the seven-form. We see again that the ExFT
rearrangement of degrees of freedom exactly captures the novel features of the eleven-
dimensional non-relativistic limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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