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ABSTRACT: We consider a non-relativistic limit of the bosonic sector of eleven-dimensional
supergravity, leading to a theory based on a covariant ‘membrane Newton-Cartan’ (MNC)
geometry. The local tangent space is split into three ‘longitudinal’ and eight ‘transverse’
directions, related only by Galilean rather than Lorentzian symmetries. This generalises
the ten-dimensional stringy Newton-Cartan (SNC) theory. In order to obtain a finite limit,
the field strength of the eleven-dimensional four-form is required to obey a transverse self-
duality constraint, ultimately due to the presence of the Chern-Simons term in eleven
dimensions. The finite action then gives a set of equations that is invariant under lon-
gitudinal and transverse rotations, Galilean boosts and local dilatations. We supplement
these equations with an extra Poisson equation, coming from the subleading action. Re-
duction along a longitudinal direction gives the known SNC theory with the addition of
RR gauge fields, while reducing along a transverse direction yields a new non-relativistic
theory associated to D2 branes. We further show that the MNC theory can be embedded
in the U-duality symmetric formulation of exceptional field theory, demonstrating that it
shares the same exceptional Lie algebraic symmetries as the relativistic supergravity, and
providing an alternative derivation of the extra Poisson equation.

KEYWORDS: M-Theory, String Duality, Supergravity Models, Space-Time Symmetries

ARrRX1v EPRINT: 2104.07579

OPEN AccCESS, © The Authors.

Article funded by SCOAP?, https://doi.org/10.1007/JHEP10(2021)015


mailto:christopher.blair@vub.be
mailto:a.d.gallegospazos@uu.nl
mailto:n.zinnato@uu.nl
https://arxiv.org/abs/2104.07579
https://doi.org/10.1007/JHEP10(2021)015

Contents

1 Introduction and summary 1
2 Membrane Newton-Cartan limit and 11-dimensional SUGRA 6
2.1 Setting up the expansion 6
2.2 Expanding the action 7
2.3  Result of expansion and covariant formulation 9
2.4 Dual field strength 12
3 Equations of motion and symmetries 13
3.1 Equations of motion from expansion 13
3.2 Dilatations and a ‘missing’ equation of motion 18
3.3 Boost invariance 22
4 Dimensional reductions and type ITA Newton-Cartan 23
4.1 Type ITA SNC 23
4.2 Type ITA D2NC 26
5 Dimensional decompositions and exceptional field theory description 28
5.1 Exceptional field theory 28
5.2  Obtaining the 11-dimensional Newton-Cartan theory via ExFT 33
5.3 Generalised metric and equations of motion 36
5.4 Generating non-relativistic generalised metrics via U-duality 40
5.5 Gauge fields and self-duality in SL(3) x SL(2) ExFT 41
6 Conclusions and discussion 42
A Dimensional decomposition of non-relativistic action for ExFT 45
B The SL(5) ExFT and its non-relativistic parametrisation 50

1 Introduction and summary

A great deal has been learned about string theory from the exploration of special limits of
the theory. There are many examples. In the o/ — 0 limit, string theory predicts Einstein
gravity, extended to supergravity in ten dimensions, via the 1-loop beta functionals of the
worldsheet [1]. When compactified on a circle of radius R, T-duality relates the R — 0
limit of one string theory to the R — oo limit of another. The strong coupling limit of the
type ITA theory leads to the eleven-dimensional description in terms of M-theory, from the
perspective of which we can view all the different dual versions of 10-dimensional string



theories again as different limits [2, 3]. Another limit of M-theory is its low energy effective
theory, the eleven-dimensional supergravity [4].

Another interesting class of limits are those which decouple degrees of freedom, and
which may again lead to new geometric perspectives or to different dual descriptions (the
most famous example being the original derivation of the AdS/CFT correspondence [5]).
In this paper, we will focus on ‘critical’ limits of string theory and M-theory, in which the
10- or 11-dimensional geometry becomes non-relativistic [6-9]. Our goal is to study the
low energy effective description of M-theory in such a limit.

This builds on a recent revival of interest in non-relativistic versions of string theory,
see e.g. [10-27]. This has been inspired in part by holographic set-ups in which non-
relativistic geometries make an appearance, but also intrinsically motivated by the desire to
explore new, and potentially simpler, corners of the space of possible quantum gravitational
theories. The target space geometry that appears extends the generally covariant but
non-relativistic ‘Newton-Cartan’ (NC) geometry [28, 29] to what can be called a ‘stringy
Newton-Cartan’ (SNC) geometry. The full ten-dimensional Lorentz symmetry is absent,
and there is instead a split into two ‘longitudinal” directions (including time) and eight
purely spatial ‘transverse’ directions which transform into each other only under Galilean
boosts. Correspondingly one can describe the target space geometry in terms of a pair of
mutually orthogonal vielbeins, THA, h*,, such that T#Ah“a = 0, where A = 0,1 indexes
the longitudinal tangent space directions and a = 2,...,9 indexes the transverse tangent
space directions. Introducing longitudinal and transverse flat metrics, one can instead work
with degenerate metric-like objects. In addition, the usual gauge fields such as the string
two-form will propagate. The beta functionals, (bosonic) background field equations and
target space action of these geometries have been studied in [18, 19, 21, 23, 26, 27].

Non-relativistic stringy geometries may be related via T-duality on a longitudinal
direction to relativistic string theory with a null isometry [16, 17]. This fact underlies
the existence of a straightforward embedding of these theories in the formally T-duality
symmetric formulation of supergravity known as double field theory (DFT) [30-32]. Here
the metric and B-field are treated as components of a generalised metric. It was previously
realised in [33-35] that this generalised metric admits ‘non-Riemannian parametrisations’
in which, instead of an invertible metric, a degenerate metric structure (for instance of
Newton-Cartan type) appears along with the B-field. This was exploited in [26, 36] to
study the equations of motion and action of non-relativistic strings and other theories of
non-Riemannian nature.

Now, the initial investigations of stringy non-relativistic limits [6-8, 37] were firmly
embedded within the M-theoretic duality web, and provided a variety of non-relativistic
limits involving different branes as well as the duality relationships between them. We
would expect to be able to understand this more completely by constructing the full co-
variant extended Newton-Cartan geometries and low energy effective dynamics i.e. the
non-relativistic limits of 11- and 10-dimensional supergravity. Note that lower dimensional
examples of non-relativistic supergravities have been studied in [38, 39].

From the perspective of duality symmetric formulations, the route to eleven-
dimensional non-relativistic supergravity was partially provided in [40] using exceptional



field theory (ExFT) [41-44] (see [45] for a recent review of both ExFT and DFT). ExFT
provides a formally U-duality symmetric formulation of 11- and 10-dimensional SUGRA,
and generalises much of the structure of DFT. In [40] examples were provided of non-
Riemannian parametrisations of generalised metrics that would describe non-relativistic
11-dimensional geometries, however with only a partial analysis of the resulting dynamics.
Separately, more general p-brane Newton-Cartan geometries have been studied from the
worldvolume perspective in [37, 46-48], with in particular [37, 48] focusing on the M2 case
that reappears in this paper (also considered in passing in [49] using insights from ExFT).
A recent study of spacetime aspects is [50].

In this paper we will restrict to the bosonic sector of 11-dimensional SUGRA, and
exhibit a non-relativistic limit giving a ‘membrane Newton-Cartan’ (MNC) geometry in
eleven dimensions (this is the covariant version of the flat space ‘Galilean membrane’ (GM)
limit of [6]). Although we were initially inspired by the ExFT perspective of [40], deriving
this geometry and the (bosonic) dynamics of the theory turns out to be remarkably straight-
forward if one starts with an appropriate ansatz for the metric and three-form, inspired by
the form a 1/c expansion, and generalising both the flat non-relativistic membrane limit
of [6] and the very recent construction of the NSNS SNC spacetime action in [27].

The eleven-dimensional theory we construct has a number of interesting features:

o Membrane Newton-Cartan geometry (see section 2.1). The geometry has three ‘lon-
gitudinal’ and eight ‘transverse’ directions, which we can describe in terms of an
eleven-dimensional Newton-Cartan metric structure. This appears by taking the
eleven-dimensional metric and its inverse to have the form

g,uzl = C2"7AB7';¢A7—VB + c'H

I
1.1
G = cHM™ + ¢ 2Bl 1V g, (L)

where A = 0,1,2 labels the longitudinal Newton-Cartan vielbeins, or clock forms,
T#A, and H*” and 7# 4 are projective inverses obeying the Newton-Cartan complete-
ness relations

H"H,, + 1,4 =6 H"r,A=0=H,"a, a7, =08. (1.2)

We also expand the three-form as

A

Clﬂlp - _CSGABCT/LATVBTpC + Cuyp + Ci36’/u/p . (13)

Here ¢ is a dimensionless parameter whose ¢ — oo limit can be interpreted as a
non-relativistic limit. It is the geometry that results from this limit that we refer
to as membrane Newton-Cartan. The powers of ¢ in (1.1), along with the leading
order power in (1.3), follow the pattern of the powers of the harmonic function in the
M2 brane supergravity solution, which is a generic feature of p-brane non-relativistic
limits [6, 8]. (The minus sign in the ¢® term in (1.3) is a choice of convention, and
matches with e.g. expressions in the SNC literature on dimensional reduction [27].)



o Transverse self-duality (see section 2.2). Requiring singular terms to cancel in
the ¢ — oo limit requires that the finite part Fj,,; = 40),C, )5 of the four-form
field strength obey a self-duality constraint in the eight-dimensional transverse
space. This is a consequence of the presence of the Chern-Simons term in the
eleven-dimensional action.

o Dual degrees of freedom (see section 2.4). The subleading part CN'WP of the three-form
in the expansion appears in the dynamics with its equation of motion imposing the
self-duality constraint. The anti-self-dual transverse projection of the field strength
F, wwpo = 4a[uéVpo} of this subleading part can be identified with the totally longitu-
dinal part of the seven-form field strength dual to F},,,,. Hence the non-relativistic
limit involves what would normally be physical and dual degrees of freedom, however,
rather than being related to each other as would usually be the case, these degrees
of freedom get reorganised into separately self- and anti-self-dual parts.

o Dilatation invariance and a ‘missing’ equation of motion (see section 3.2). The
eleven-dimensional theory is invariant under a ‘dilatation’ symmetry which scales
each field with a weight inherited from the power of ¢ that accompanies them in the
initial expansion. This is an ‘emergent’ local symmetry [27] and it has the effect of
removing a variational degree of freedom when we vary the finite part of the action.
Hence, at this order, there is a ‘missing’ equation of motion. This is a familiar feature
of non-relativistic theories, with the naively missing equation corresponding to the
Poisson equation for the Newtonian gravitational potential. However, we can identify
this missing equation by looking at the next order in the 1/c expansion [27, 51-53].
Indeed, here we identify this missing equation by extracting it from the dilatation
variation of the action at the next subleading order. In parallel with the situation
in the DFT description of the NSNS sector [26], we also find it directly from the
equations of motion of the exceptional field theory description.

o Boost invariance (see section 3.3). The eleven-dimensional theory is also invariant
under Galilean boost transformations of the form

0Huy =20, 1ya, 67Ma=—H"Aya, 6Cup=—3eapchy n ), (1.4)

where the (infinitesimal) boost parameter A,” satisfies 7#4A,” = 0. The slightly
unusual feature here is the transformation of the three-form itself. This transfor-
mation (1.4) is to be expected based on similar observations in the case of stringy
Newton-Cartan. There one can either introduce additional one-form gauge fields
transforming under boosts, and treat the two-form gauge field as invariant, or else
absorb the former into the latter via a sort of Stueckelberg gauge fixing [20, 27]. We
do not introduce additional one-forms and so generalise this second picture.

o Reduction to type IIA SNC (see section 4.1). Reduction of the theory on a longitu-
dinal isometry direction produces the full type ITA SNC theory, coupling the known
NSNS sector to RR fields.



o Reduction to type IIA D2NC (see section 4.2) Reduction of the theory on a transverse
isometry directions produces a novel type ITA non-relativistic theory, that can be
associated to D2 branes rather than strings.

o Exceptional field theory embedding and U-duality (see section 5). Finally, the
11-dimensional MNC theory can be very naturally embedded within exceptional
field theory (which also manifestly breaks Lorentz invariance and treats original
and dual degrees of freedom together), demonstrating that the same exceptional Lie
algebraic structures that appear in the relativistic theory are preserved by the limit.
Furthermore, we can easily use ExFT to study transformations between relativistic
and non-relativistic geometries, and to obtain equations of motion which are
otherwise missing from the action of the non-relativistic theory. The achievement of
ExFT is to present a unified treatment of both 11- and 10-dimensional supergravities
in which Eygy symmetry is manifest. The metric and gauge field degrees of freedom
are reorganised into FEy) multiplets. For instance, the wholly d-dimensional
components of the metric and three-form (and possibly also of the dual six-form)
appear in a generalised metric. For the cases d = 3,4, this has an expression

L 1jo—a) (Gi + 3CPChpg  CH
Man = |g|¢ )( J %’kij Jirq 2gilkgli | - (1.5)

If we adopt the same expansion as in equation (1.1), then in the limit ¢ — oo, we
obtain an alternative non-relativistic or non-Riemannian parametrisation®

M =sta (T AT G o e
—eapoTk T +2Ckqup[lTl]] 2 H kNI itk prlli

(1.6)
where € is a measure factor, and 7% = 7% 477 pnAB. This alternative parametrisation
then changes the nature of the duality relationships encoded by the dynamics of the
generalised gauge fields of exceptional field theory. This allows the exceptional field
theory formulation to automatically capture the interesting reorganisation of degrees
of freedom implied by the non-relativistic limit. In addition, the missing equation of
motion is associated to variations which do not preserve the non-relativistic nature

of the parametrisation (1.6) of the generalised metric.

The outline of this paper is very simple. In section 2 we carry out the expansion at the
level of the bosonic action. In section 3 we discuss the equations of motion and symmetries.
In section 4, we carry out dimensional reductions to type ITA. In section 5, we discuss the
embedding in ExFT. We discuss our conclusions and conclude our discussions in section 6.
The appendix contains additional calculational details.

!The flat space limit of (1.1) was already studied in exceptional field theory in [40], and the general non-
Riemannian parametrisation of the SL(5) generalised metric worked out - this can be shown to be equivalent
to (1.6). However a full analysis of the Newton-Cartan interpretation and dynamics was not carried out.



2 Membrane Newton-Cartan limit and 11-dimensional SUGRA

2.1 Setting up the expansion
Metric. We start by writing the 11-dimensional metric and its inverse as
Guv = 627_#1/ + C_IH,MV , g =cH" + AT (2.1)

We can view this simply as a field redefinition which introduces the 11-dimensional Newton-
Cartan variables alongside the (dimensionless) parameter c¢. We will seek to send ¢ to
infinity and interpret the result as a non-relativistic limit. In principle, we can also think

3. and we will

of this ansatz as containing the first terms in an infinite expansion in ¢~
occasionally allow such a perspective to influence our presentation. However, we leave
the development of the full non-relativistic expansion to future work. To see that the field
redefinition (2.1) makes sense in Newton-Cartan terms we look at the condition d,, = g,

which gives at order ¢, ¥ and ¢~ respectively the following three conditions:
TupH” =0, 7o + H pH™ =06, H,,m =0. (2.2)

We view these as the defining conditions for 7, viewed as a longitudinal Newton-Cartan
metric (of Lorentzian signature), and H*¥, viewed as the corresponding orthogonal trans-
verse Newton-Cartan metric (of Euclidean signature).? Letting A =0,1,2 and a =1,...8
denote longitudinal and transverse flat indices, respectively, we can introduce projective
vielbeins such that

Ty = T#ATVBT]AB , ™ = 7h 1V gt B T“ATuB =8, (2.3)
HMW = R kY 6% Hy = houhl6u, ARt =88 (2.4)

and hence obeying the Newton-Cartan completeness relations following from (2.2). Here

nap is the flat three-dimensional Minkowski metric and 4, is the flat FEuclidean 8-

dimensional metric. We can then compute the determinant of the 11-dimensional metric:
. _ 1

det G = =€ 292’ QQ = _@6/“.”“11€V1”.VHTmVlTNzIQTH3V3H#4V4 s H#11V11 s (2'5)

where e#1-#11 denotes the 11-dimensional Levi-Civita symbol. Hence v/—¢§ = ¢~ and it

is 2 which will be used as the measure factor in the non-relativistic action. In terms of the

vielbeins, we can write

1
Q= %6‘“’””1""78eABoealu_asTuATyBTpChalUl g (2.6)
and note that
0, InQ = 1% 40,7, + B 40, . (2.7)
We can obtain further useful identities by substituting the expressions (2.1) into contrac-
tions of the Levi-Civita symbol and the metric. One that we will use later is

€M1 Hn AL A1l —n (V1. V001011 —n

31(8 — n)I02

v v
n'H[’“| L, H"u"] "= Thioq - - -T/\gogH)\40'4 .. .H)\H_ngu_n .

(2.8)

2As in the stringy Newton-Cartan case, we could choose to include additional one-forms in the expan-
sion (2.1), however these can be eliminated by a Stueckelberg gauge fixing [20, 27].



Three-form. For the three-form, let

~ 1 ~
C3=0C5— 6636,4307‘4 ATBATC 4+ ¢73C5, (2.9)
so that )
Fy=F,— §c3eABcdrA ATBATC 4+ 3y, (2.10)
where
F4 = ng, ﬁ4 = dég (211)

Although Cy is subleading, it will explicitly appear in the action and dynamics of the non-
relativistic limit. Its equation of motion will impose a self-duality constraint on Fy, and we
will be able to identify a certain projection of its field strength with the totally longitudinal
components of the dual seven-form field strength. We can therefore interpret the subleading
part of 3 as being ‘dual’ to the finite part. This is clearly a general fact: the Hodge star
itself has an expansion in powers of ¢ and so inevitably mixes up the terms at different pow-
ers of ¢ in any p-form it acts on. What is non-trivial is that the Chern-Simons term of the
11-dimensional theory will lead to both C3 and Cs playing a role in the non-relativistic limit.

2.2 Expanding the action

The action for the eleven-dimensional metric and three-form is

S= /dna: (\/@ |:R(§) - %Ful’poﬁ}wﬂa + 14142 emmmlFM1-~~M4Fusmlﬁsém#wuu)
(2.12)
Here F4 = dC’g. In form notation the Chern-Simons term is %F4 A F4 A ég, the equation
of motion of the three-form is d%ﬁl; = %F4 A 13’4 and its Bianchi identity is dﬁ4 = 0. The
Hodge dual field strength is 13’7 = %]311, which obeys the Bianchi identity dﬁ’7 = %13‘4 A F4
and the equation of motion dxF% = 0.

Chern-Simons term. We start with the expansion of the Chern-Simons term. Leaving
wedge products implicit, we can simply compute

1o aa 1 1 -1
G FaFiCs = S FuFiCy — 6(303F4F4 + 6F4F4)66ABCTATBTC (2.13)
1 1 1 - ~

— §d <63F4036€A30TA7'B7’C + EEABcTATBTC(F4C3 + 03F4)> + 0(073) .

We drop the total derivative.
Kinetic term for three-form. First, let’s write the component expression

[ 3 A_ B C 35

Fuipopsps = =6 Ty 10y T ™ Tpy) €ABC + Frypopgpa + € Fuypopspg (2.14)
where we introduce the Newton-Cartan torsion

T = 20,74 (2.15)



Any term involving three H*” contracting the first term in (2.14) vanishes as one H*¥
must necessarily contract a TNA. As a result,
‘§|§M1M4 st §M4V4F,ul...,u4FI/1...V4

— 3 H1V1 ITp2V2 TTU3V3 [ H4VA
—Q<C (H HFP2HPES H N E ) o s

Fvpvsvs — 12 M HMWTMWQATVWQBUAB)

— 24H" T,y T, P70 477 g — 12HM " HPY oy Ty 3P 7#4C e s g

4 4V FTH2V2 FTHBVS ppaVa FM1M2,LL3,M4 Fu1 Vs

+ 9 HM2V2HugygH#4U4FM1M2M3M4ﬁV1V2V3V4> + 0(673) ) (2.16)
Kinetic term/Chern-Simons cancellations and self-duality. We now examine the
O(c?) terms in (2.13) and (2.16) which involve a field strength Fj, as well as the O(c")
terms involving the subleading F;. These cannot possibly be cancelled by a contribution
from the expansion of the Ricci scalar. The relevant terms are:

1 R ~
_HQHululHM2V2HM3V3H,u4 4F#1/"‘2H3/—"4 (CSFV1V2V3V4 + 2F‘I/ll’2’/31/4) (217)

- Hleeenn “i1 3 ' A B C
9. 4|4,3‘6 Fipopspa (c Fuspsprns + 2Fu5ueu7u8)eABCT#9 Tuto Tpin

To cancel the terms at order ¢?, we are led to require the following constraint:

1
Hleeee 11 A B C
_4,7?),6 Fluspeurus€ABCTug” Tuyg ™ Tpna
(2.18)

This says that the totally transverse part of F),,,, is self-dual (or anti-self-dual). This is

11 212 3U3 2 —
QHMVH2v IV IR,

self-consistent thanks to (2.8). We will refer to this as the self-duality constraint.

Three-form equation of motion. As a sanity check that requiring the constraint (2.18)
is sensible and necessary, let us at this point also take the limit at the level of the equation
of motion of the three-form gauge field. We will revisit the equations of motion, including
that of the metric, in more detail in section 3. For the three-form, we have originally:

AN AU AUAD APAS AT A T .08 [ n
acr( |g’9u 1gV 29p dga 4F)\1-..)\4) = 9. 4!4!6/wp01 USF01~~G4F05~~08' (2'19)
Inserting the expansion, one has firstly at O(c?) that
1
0o (QH!M\IHV)\2HP>\3H0/\4FA1...A4) = _welwpgal.”0-780(Fal...a45ABCTU5ATJGB7—07c) >
(2.20)

which is the duality relation (2.18) under a derivative.
At O(c) we have the finite equation of motion

Dy (Q(4H[H|/\1H\V|>\2H|P|>\37-\UP\4F/\1._.)\4 _ 6H[M|/\1H|V\>\2TlPlBTld}CT)\l)\ZAGABC
+ HFM HV)\QHPMHUM]':V')\L“M)) (2.21)
1 -

A B C
- meul/mﬁ 78 <F0'1...0'4F0'5...0'8 - 12€ABC'T010'2 Tosz Toy Fo’5...a’g) .

This will be reproduced from the action that we find below.



Ricci scalar. Now we come to the Ricci scalar. A very quick way to take the limit is
to start with the explicit expression for the Ricci scalar in terms of the metric and its

derivatives:

N 1.
R = Zg””%gpaayg”" - 59“”8”9”"(%9“0
) (2.22)
- Zg“”au Ingo,Ing—§"0,0,In§ — 0,1In§0,5" — 0,0,5"" .

Calculating the expansion is trivial. One has R = ¢*R® 4 ¢R(©) 4 O(¢~2) with

1o 1 vn 100
RO = LHP 0, HP 0,700 — S H 0, HP O,

1 1
RO = ~ HW (9,700, + 0, H o0y HP?) + ~ 71 817,50, HP°
4 ( NT,OU vT + uilpo ) + 47' MTpO' v (223)

1 1 1
— §H“”8,,Tpoap7'w — §H“”8VHP‘76PHW — 57’“”8,,[{’”8,)7'”0
- H"0,InQ0,InQ —2H"0,,0,InQ —20,InQ 0, H" — 0,0, H"" .

Recall that the measure /—§ introduces a further power of ¢~!. The singular piece can be

easily rewritten as

RW = —%H“”Hp”(ﬁquA&,TgB - (%TMA&,TUB)?]AB = —%H“”H”UTWATWBnAB.
(2.24)
This cancels exactly the remaining singular term appearing in the expansion (2.16) of the
kinetic term for the three-form. An entirely similar cancellation appeared in the NSNS
sector expansion of [27], and as noted there is reminiscent of what happens when taking
the Gomis-Ooguri limit on the string worldsheet. In the conclusions in section 6 we discuss
the comparison with this limit in more detail.

2.3 Result of expansion and covariant formulation

Action and constraint. Combining (2.13), (2.16) and (2.23) we obtain the expansion
of the 11-dimensional SUGRA action in the form S = ¢35®) + 08 4 .. The singular
part is:

1 1
5(3) - _/aniFML..IM (QH#lyl o HE 6#1“.#4%MWGABCTusATVGBTV?C) Foi v

2-4! 413!
(2.25)
and in order to have a good ¢ — oo limit, we impose the constraint
) JJHMVL [TH2V2 F[TH3V3 FTH4aVe | — 1 ICEGE A B c
vivovsyy — _4,73,6 pspeprus CABCTug Tuio Tpir s
(2.26)



to ensure that S®) vanishes.? The finite part of the action is:

1
SO = / d"zQ (R<O> S H Ty 1o P 477

1
12

1
A_usB C
+ ZHMlVIHM2V2l:,u1...,u4€ABCjV1V2 THsBrha

H1V1 [TH2V2 [TH3V3 ~H4V4
H H H T FM1M2M3#4 FV1V21/3V4

1 ~
— H1VL FTH2V2 FTH3V3 [THAVA
.4'F,,11,2,,5,),,4 HFPVHPR2P2 HESPS HPAA R o s s

L1
41310

V1 V2U3V4 [T ... [T A_ B_ C
F i piopapna €ABCTus " Tug™ Tz

1
+ 6F4 ANFyNCly, (2.27)

where R(?) is as defined in (2.23). The equation of motion of C,,, gives exactly (2.21), and
we will discuss the equations of motion of the Newton-Cartan fields in detail in section 3.
The equation of motion of CV'WP is (2.20), giving the constraint under a derivative. Alterna-
tively if we were just to take the action (2.27) at face value, forgetting about its origin via
an expansion of the three-form, we could make the choice to view ﬁwpg as an independent
field, serving as a Lagrange multiplier imposing the constraint in its form (2.26).

Symmetries. The action is diffcomorphism invariant (as follows from the covariant
rewriting we carry out below), as well as gauge invariant under 60C5 = d\a, §C5 = d)Xg. The
vielbeins h%, and 74, transform under SO(8) and SO(1,2) rotational symmetries respec-
tively, which are also symmetries of the action. The non-relativistic theory is also invariant
under Galilean boosts and a dilatation symmetry.

The Galilean boosts mix the longitudinal and transverse degrees of freedom. The
parameter for such a boost is denoted A,#. Letting AMA = h* MAaA such that 7# AAMB =0,
we can give the (infinitesimal) action of these symmetries as

SaHu =20, )4, OaT'a=—H"Aya, 65Ciup = —3eapchy 107,

. (2.28)
The action S is invariant under these transformations on using the self-duality constraint.
One way for the action to be exactly invariant would be to treat F, uwpo @s an independent
field transforming as 5Af’w,po = —4A[MAFVM]/\T)‘A, or to have CV'WP transform in a way
leading to this transformation.

The dilatations are meanwhile induced by the expansion in powers of ¢, with the
dilatation weight of each field equal to the power of ¢ which accompanies it in the expansion.
The (infinitesimal) action of dilatations is hence:

(5,\H’W =4+NH" 5 5/\H,LLI/ = _)\H,uu ) (5)\7_MA = _)\Tﬁ ) 5)\TALA = +ATHA ’ 5/\CHVP =0.
(2.29)

3Strictly speaking this is a sufficient condition for the vanishing of $®, as we could alternatively integrate
by parts and use (2.20). However the full constraint (2.26) will follow from the expansion of the metric
equations of motion that we discuss in section 3.1, as well as in the expansion of the dual field strength
discussed in section 2.4, and also follows directly from the exceptional field theory formulation of section 5.
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Note 62 = —AQ. For A coordinate dependent this is a symmetry of the action S on using
the self-duality constraint (2.26). If we treat ﬁwp(, as an independent field transforming
as o Aﬁ’ Lpo = —3\F uvpos then the action S 0) ig exactly invariant. We will explicitly verify
the invariance of the action and study these symmetries in more detail in section 3.

Newton-Cartan connections and covariant rewriting. The way we obtained the ac-
tion (2.27) was by a straightforward computation at the level of the metric and three-form.
To better understand the result, we rewrite the action in a covariant way by introducing
the following connection

1
FZV = TpAauTyA + §Hpo. (8;,LHO'V + a’/HNU - aO'H;LV) ) (230)

whose covariant derivative we denote by V. This satisfies the following metric compati-
bility conditions:
V,H" =0=V,1,", (2.31)

though it is not the unique solution.?

torsion (2.15):

The antisymmetric component of (2.30) is the

1 A
Fﬁ,ﬂ/] = §TPAT;,LV . (232)
It is also useful to define the ‘acceleration’ and its trace

AB = —TpATB

oL ay = auABUAB ) (2.33)

au
as well as its symmetric traceless component

1
a, AP} = ¢ ,(AB) _ — pAB,

2.34
dL 18] ( )

Ui

where dy, is the dimension of the longitudinal space (which is d, = 3 here, but we will also
use this notation in the reduction to the d;, = 2 case of SNC in section 4.1). The final
tensor that will appear is the extrinsic curvature defined by

1
Kuwa = ichAH’W’ Ka= H“VIC/WA, (2.35)

and obeying the following useful identities
AR, B =0, VA = HPK,,A (2.36)

Finally, let’s introduce some notation to make the expressions more compact. Given an
arbitrary tensor M, carrying lower indices, we will employ for convenience the following
short-hand notation:

MW = HWPHY My, Map=1'am"BMu,, V,Map=V,(tFat"BMy,), (2.37)

“Here V acts only on the curved indices. It would also be possible to define a connection covariant
under local SO(1,2) transformations by replacing the partial derivative 8MTVA term with a spin covariant
derivative.
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and similarly for tensors of arbitrary rank. The meaning of raised indices should then
hopefully clear from context — note that e.g. the field strengths, Newton-Cartan torsion
and covariant derivative are all naturally defined with lower curved indices so when they
appear instead with raised curved or longitudinal flat indices this uses the above notation.
The action can then be written in terms of these manifestly covariant quantities as

S — /dﬂx Q (L4 L5+ L) (2.38)
with
L=TR-— a“ABau(AB) + ga“au — %FWPAFWPA + ieABcFABWTWc ,
£ = =B (P00 4 @B eanon i PrnC) L (239)
Liop= SFsAFAACy = e M E By g

where the Ricci scalar R is defined in terms of the usual Riemann curvature tensor of the
connection (2.30) via

Rlopy = Oy — 0,10y + T T0, —T0\Th, R =Ry H™ . (2.40)

2.4 Dual field strength

The appearance of the two field strengths F and Fj in the finite action (2.27) may seem
rather exotic. In fact, we can relate the latter to components of the dual seven-form field
strength, revealing that the non-relativistic action involves a partially democratic treatment
of what are originally dual degrees of freedom. In 11-dimensional SUGRA, we have

~ ~ 14 ~ ~ ~
Fr = dCg + 503 N Fy, F7 = %Fy. (2.41)

With our expansion, we can compute xF}y in components:

A

(‘)A(F4)u1...u7 _ Qe,uy‘.,u?l/lmm (C3HV1)\1 o HV4)\4FP1-~P4 + HM HV4>\4}~7)\1...)\4
+ 4HU1)\1 o HV3>‘3TV4)‘4F>\1__.>\4 (2.42)

— 6HV1/\1HVQ)‘QT)\I)\QATysBTV4CGABc) -+ 0(0_3) .

We then search for an expansion of Cg that can reproduce the singular term and lead to a
sensible definition of the dual six-form in the non-relativistic theory. This is provided by

N 1 1 1~ 1
Cg = —56303 A EGABCTA ATB ATC + Cg — 503 VAN EEABCTA ATB ATC + O(Cig) , (2.43)
leading to

A 1 1 1 ~
= —6036ABCTA/\TB/\TC/\F4+dCG+§C’3/\F4—EGABCTAATB/\TC/\FLL—FO(C*B) . (2.44)

The singular piece in (2.44) agrees with that in (2.42) on using the self-duality con-
straint (2.26) obeyed by Fj. From the finite terms, we can define in the non-relativistic
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limit the quantity F7; = dCs + %C’g A Fy which obeys again dF7; = %F4 A Fy. We could
also define this quantity directly in the non-relativistic theory after taking the limit by
starting with the equation of motion (2.21) of the gauge field. In that case, we would
define the dual seven-form field strength to be the quantity appearing under the exterior
derivative, including all terms on the left-hand side of (2.21) as well as that involving dr
on the right-hand side. In components, this means

1 A Mt T A 3A A
F#1~~-M7 = IQeuln.#?l’lmM(HVl v H™ Nt AHYAY | HY33 4 Y\
. 6HV1)\1 HVQ)\QT)\l)\2ATVSBTV4C€ABC (2.45)
1 ~
-1 U4 A A B C
B s Al S Y - T 5 Vs Vit s Vi DUV I8

413!

Now, we can take the totally longitudinal contraction

F

A PR
ul...,u4o'10'20'37_01A7—U2B7_U3C = EQE}LL..M4V1...V4O'10'20'3T01A7-0-2BTO—SCHV1 Lo H™ 4F>\1...)\4
+eaBcFuy .., - (2.46)

Using (2.8), it can be shown that whereas the transverse part of F),,,, obeys a self-duality
constraint, the longitudinal part of F),, ., obeys an anti-self-duality constraint:

QHMY . HY Y Fyy iov0s0, ™7 AT BT (2.47)

1
LAV B4 A D E F
- +4'73'6u1 part et PEDEFTA; Trs Ths FM1-~~M40102U37—01ATUZBTU?’C .

The conclusion is that (2.46) shows that the totally longitudinal part of F),, ., can be
identified with the anti-self-dual transverse part of ﬁwpg. Notice that the longitudinal
part of the latter projects trivially out of the action, and in fact it is exactly the projection
as on the right-hand side of (2.46) which appears in (2.27). Hence we can re-express the
terms in the Lagrangian involving EWM as

11 1,
BC_\ A As
£F: _imFyl...u4)\1.‘.)\36€ T 1AT ZBT JCX
' . (2.48)
D E F
X (H,u11/1 Co HPAYE 74‘3'(26”1 et V7€DEF7-1/5 Tve Tur >FI/1V21/3V4 .

This appearance of (components of) both the four-form and its dual together in the action
is again reminiscent of exceptional field theory.

3 Equations of motion and symmetries

We have expanded the action, and now we turn our attention to the equations of motion,
and the role played by the non-relativistic dilatation and boost symmetries.

3.1 Equations of motion from expansion

To keep track of the equations of motion at each order, we will consider the result of
expanding the variation of the action. We will explicitly find that this gives the same results
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as varying the expansion of the action we considered previously. The reason we take this
approach is that it will provide a useful way to keep track of which parts of the expansion
of the eleven-dimensional equations of motion appear at which order. Recall that we view
our non-relativistic limit as arising from a field redefinition, and we do not consider possible
subleading terms which would occur in a true non-relativistic expansion. That said, we set
up the expansion below in a way that would be reminiscent of such an expansion.

The relativistic equations of motion are obtained from the variation of the action (2.12):

58 = / A2(1/|3165" Gy + 6C pEH7P) | (3.1)

where

1 . A 1. 1
G = By — S Fupy . ps L7 — 59“” <R B 48Fp1 ! Fpl p4) ’

1 A
5’“"”__< (fFWPU) CRTRVTR 7 Fon. “4F"5"“’8)’

We consider the non-relativistic expansion of the fields, in the form

(3.2)

A

G = cH" + ¢ 20" G =+ ¢ Huy, Cuvp = Ewpnp + Cuvp + ¢ 3Chp s (3.3)

where w,,, = —€4 BCTNATVB Tpc. Both G and £ admit an expansion in powers of ¢®, with

G =G0 +3GB) + GO 473G L £ =B + Py +eTPE g ... (3.4)

We now re-organise the variation of the action that results from (3.3), by inserting the
expressions (3.3) for the metric and three-form. We choose to consider the variations of
7" 4 and H* as independent, in terms of which

Swpp = —WuwpTa 0T D — 3wy H ) OH . (3.5)
The general result at order ¢3" following from (3.1) is that

550 — [ da[SH" QG ~ 300 HaElf )

+ 67 A(ZTVAQQ(?/”+3) T AE(’;?,;J,)) (3.6)

+ 6C,p R 4 6CpE

(3n) <3n+3>}

using /9] = Qc~!. Hence, in general, if we expand the theory up to order 3k, for k < n < 2,
the equations of motion will be

(3n) Apo (3n+3) o\ v
Gy = 3Hn(uwiyoo ' Eim gy s 20,0 = Tuawonr 2 Eln 5y Elan =0, (3.7)

with the understanding that G = £6) = 0. The angle bracket notation takes into account
that the variation of H*" is constrained by d H*¥T, A B = 0. We can solve this constraint
by letting 0H* = H ”(“Hng ) such that the naive variation § H* T, implies instead
the equation of motion

I

1 o o
) = i(H,upHp T(O.V) + Hl,pHp T(/w')) (38)
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which is symmetric and obeys 7# 47" pT|,,, = 0. Note that the equation of motion for C
at each order is exactly that of C' at the previous order.

We should contrast the equations of motion (3.7) with the result of independently
expanding G and £ . If we naively set each other of the expansion of the latter to zero,
we would find the equations GG = 0 = £5™) at any given order. However, in the non-
relativistic expansion, treating 7# 4 and H*" as independent fields, then equation (3.7) says
that we cannot simply expand the relativistic equations and set each order independently
to zero unless we consider the full expansion (potentially infinite if treating subleading
terms). A similar subtlety is the question of which equations of motion we are meant to
expand. For instance, in the relativistic theory both £#*7 = 0 and guggpﬁggAgg“A =0
are equivalent, but lead to different truncations to finite order in the 1/c expansion. Here
we have made the choice to expand the equations of motion that appear conjugate to the
variations dg"” and 6C,,.

Let us look for example at the first two orders, ¢® and ¢®. If we simply wanted to

expand the theory up to order ¢® we would find the equation (Q(G) —3wEBH )( > =0,
Qv
however if we proceed with expanding up to order ¢ we find that the equation for the 3-

form tells us that £3) = 0, so that we can safely impose the two equations g<(2> =£BG) =0
independently.

Matters are further complicated by a number of ‘off-shell’ identities obeyed by the
terms appearing in the expansion of G and £. These identities will feature heavily below,
and in fact are crucial for the consistency and symmetries of the non-relativistic truncation.

To put all these ideas together, we now look in detail at the first orders of the expansion
of (3.1).

Terms at O(c®). Here we encounter the leading terms in the expansions of G and &.
First of all, we have

1 1 1
Gl — 57_“” (2T£01 TPB;UQTIABHPICH HP2o2 4 @legl - .HP4U4FP1,,_p4Fm...U4> (3.9)

which obeys G,y = 0 automatically. Hence the 6 H*" variation at order 8 does not imply
an actual equation of motion. One also has

1 1
Sw/p _ —*80 QH,u)\l HV)\Q Hp/\g HU)\4 Fz\l,..)\4 + Euypo-al...U7FO'1...O’4€ABCTO'5ATO'GBTO'7C

®) 6 314!
(3.10)
This is the self-duality constraint under a derivative. It obeys 7,47, E&V)p = 0, and so also
the 67 variation at order ¢ vanishes identically. This is however necessary for consistency:
the expansion of the action itself started only at order ¢3, i.e. S (6) = (. Hence at this order
we do not obtain any equations of motion.

Terms at O(c?®). At this order, there was a non-zero S©) given by (2.25), for which we
required the self-duality constraint (2.26) to set to zero. Let us see how this information
is reproduced. First of all, the variation of C3 coming from (3.6) at this order implies
&@3) = 0. The variation of 74 involves a contribution from &(), which can be read off
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from the finite part of the expansion of the three-form equation of motion, which was (2.21).
For convenience, we repeat this here:

1
€y’ =—500 (Q(4H[M|A1H'”WHIPMBT‘UWFM,,_M — 6H M v plelBLlolOpy ( Ae o

(0) —
4 HA VA2 [TPA3 [T A4 ﬁA1~~~A4))

1 ~

+ mﬁ/ﬂ/po’l..ﬂ'g (FO'1...O'4FO'5...0'8 - 12€ABCT010'2ATO-3BTU4CFO-5._.O.8) . (311)

What one finds then is that

2T”Aﬂgf§) —TMApr,\S(O)””)‘ (3.12)
1 1
- 2-4!T‘LLAQFU1MV4 (Hylpl '.'HV4P4FP1'“p4 + Q314! 6V1my4p1...p7FP1~~P4€ABCTP5ATPaBTmC) )

which is proportional to the self-duality constraint. For the terms accompanying the § H*”
variation one finds

v oA
OH" (le(fy) — 3w(u|paH)\|,,)g(po) )
1 ag (oF
=0H" <4 412 GABCH)\l(,uTu)ATAQBT}\3CFU1.‘.U4F05...086)\1m>\3 s (313)

Q

Q 2
B EFNPL--WFVPINPS + %HWF )

such that after projecting using (3.8)

3 T
Qgguz)ﬁ _3w(u|p0H/\\v>5(130) = mfABCH)\l(MTI/)AT)\QBT,\3CF01WU4F05M086)‘1 A301...08
Q ) \
+ %H/WF - EHH(MFV);)UAF’WU 5 (3.14)

using the obvious shorthand for raised indices and F? instead of writing H* multiple
times. This exactly reproduces the variation 65 () of the leading part of the expansion of
the action (2.25). Then, after projecting and using the Schouten identity (3.13) or (3.14)
can be shown to again be proportional to the self-duality constraint (specifically: the time-
space projection of the first term combines with the time-space projection of the third
term, and the space-space projection of the second term combines with the space-space
projection of the third term).

Hence the sole equation of motion we obtain at this order is the self-duality constraint.
This is consistent with what we required from the expansion of the action.

Terms at O(c®). We next consider (3.6) with n = 0. First of all, the equation of motion
of C indeed gives &), as in (3.11), while that of C gives the constraint in the form &(3)- This
is exactly what we obtain from varying the finite action S directly. Note that the longitu-
dinal projection of £ in conjunction with the self-duality constraint implies the equation

1 1
3 ABHMH" T, AT, B = —ZgHﬂlVl CCHMR P (3.15)
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thereby reproducing the equation we would get by setting G(® =0 (compare (3.9)). Hence
although we could not set G(® = 0 previously, the non-relativistic theory is not missing
this equation. Note that for generic non-vanishing Fj, equation (3.15) is incompatible
with imposing foliation-type constraints on the MNC torsion such that the left-hand side
vanishes, however if Fy is also restricted to vanish (for example) one could require such
constraints (as is always possible in the NSNS sector case [27]).

Now we turn to the equations of motion following from the variations of 7 and H. For
simplicity, we present here the independent equations of motion after projecting onto lon-
gitudinal (time) and transverse (space) components. The temporal and spatial projectors
are defined as

(AT)'u v = T“ATVAu (AS)M v = H'upHpVa (AT)M v+ (AS)M v = 55 (316)

We start with the equations of motion of 7. The trace of the time projection gives an
equation involving the Ricci scalar:

7 7 1 1
R = -Vta, + a“{AB}aMAB +—a® + fFA,,ngAVpU — feABcFABpUTp,,C
3 6 36 6
1~ AL A_ B_ C (3.17)
MR (FWU + Qg cABCe T T BN Lo o T T ) '
The traceless part of the time-time projection is:
VHa,apy +ata,apy +aueat (s oy (3.18)

1 v v AB 1 v 14
=15 " ? Fpyuwp+eaicpF e T - 777 (—HFC“ PFeuwp+ecpet™ CDTHVE) :

The space projection is
v, T+ ¢ = L puoo A FP BT, C (3.19)
P AT+ apac = 6 Avpo — §5ABC po .
Finally, consider the equations of motion of H. The space-space projection is:

1
R(“”)—a“ABa”{AB}+6 (a“a”—aQH”’”> (3.20)
1 1 1
- TPAv(uTV)pA + 6H.Wvﬂap + ZFWUAFVpoA _ %HWFAW)‘FAW)\
1 1
_ 56ABCF(M\/)ABTIV)pC + ﬂHuyfABCF'DUABTpa'C

1 ~ 1 ~
+ gF(Mlpm\Fly)poA _ @HHVFPU)\HFPU)\N

1 7 7 1 1
+ §HW ( —R+ gV“au +aMt B, ap + 6a2 + %FAVPUFA”’” — 6eABCFABP"Tng> .

Combining the trace of (3.20) with (3.17) we find that the self-duality constraint (2.26)
appears (contracted with ﬁ’u,,pg).
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The time-space projection is (with Apo = 77AD €DBC)

1
RWA) _ gt peaBC) 4 iaBa“BA (3.21)

= ieABCVpF”pBC + ieABcapF”pBC + ieBCDaPABF”pCD
n % FABro Ry 4 i epop FABCPT pD)
+ %apBAVpT”‘B - %VQT“A — aPV T — %a“BAICB + %a“lCA
- éVBa“BA + VAt + %T“UBVBT"A + éVpV“TpA - éTpBV“apAB

1 ~ 1 ~
+ gF(MVpUFA)VpU - 4. 4|QQ€ABCT)\QBT)\30HMHHK)\1Fol...o4F0'5...a'g6/\1”)\301”.0’8 .

We have verified that these are indeed exactly the equations of motions that one gets by
varying the finite part of the action, SO, given in (2.27).

3.2 Dilatations and a ‘missing’ equation of motion

We already mentioned the existence of a dilatation transformation given by (2.29), whose
origin lay in the expansion in powers of ¢. There is evidently a freedom to rescale ¢ by
some constant while simultaneously rescaling the component fields such that the eleven-
dimensional fields are unchanged. This rigid dilatation leaves the full action invariant.
Hence for an infinitesimal dilatation, with dy¢ = —Ac¢, we have the transformations (2.29),
and clearly order-by-order for the action we should have

5,90 = 65O 5,50 =3x15B) 5,80 =0. 15O 5,803 = 3253
(3.22)
Recall that S and 65 vanish identically, so the first of these is just 0 = 0.
A powerful consequence of the rigid dilatations is that if we know the equations of mo-

(k) at a given order k # 0 we can immediately write down an action

tion for the action S
that produces them (which will agree up to total derivatives with that arising from the
expansion). This works by applying the formula (3.6) for the variation and specialising to
the dilatation variation. This is guaranteed to produce 3kS®¥). This singles out the finite
order action as being special, as here knowing the equations of motion and dilatation sym-
metry is not enough to determine its form. Furthermore, for this case we can promote the
dilatation parameter to be coordinate dependent, and obtain a local dilatation symmetry.

Let’s verify these statements. Under a rigid dilatation with parameter A, the variation

of the ¢? part of the action is
5,53 = /dﬂm (MG E™ — A (2(6) 4 + Beapc ERPC)) . (3.23)

where £4BC = TMAT,,BTPCSH‘Vp. It can be checked that gft?,)HW = 0. Then, if we denote

the self-duality constraint by

Hiefid — FTH1P1 Hapa B[4 p1-..P7 A B_ C
C) =H ...H Ey o py + € Ey  pi€ABCT s Tps Tpr (3.24)

Q34!
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we have
1

2-4!
hence indeed referring to (2.25) for S®) we indeed have

2G04+ 3eapc QT EGPC = 30— Fpy 01 (3.25)

535G =3280 | (3.26)
Next consider the finite part of the action, with:

5,S© = / a1z 0 (Agg))HW —A (2(g<3>)A 4+ 3eapcQ L ELEC ) + Q—lg<3>wpaA6W) .

(3.27)
Now we can show that
1~
g;(f)V)HW - (2(9(3))AA + 3€ABC’Q_15(A_B;))C) = —gFM.,,M@’“”'““ , (3.28)
such that using 5&';’) = —éﬁg@’“’p" we have
5 (0) 11 L~ nvpo 1 PVPO S Y
)\S = d—x —g)\Fquo-@ — an-@ 5)\CMVP s
(3.29)

1.~ 1 ~
= /d11$ (—8)\ijpg@“ypg - %@MV’DU(S)\F;pr> )

after integrating by parts. For arbitrary local A, we therefore have 6,5 = 0 on imposing
the self-duality constraint, irrespective of the transformation of CN‘WP. Alternatively, if we
require that

\Eyvpor = —3NFwpo » (3.30)

then (3.29) vanishes identically without use of the constraint. This would mean accepting
a non-local transformation for Cv’m,p itself, which is not completely outlandish given the
discussion in section 2.4 suggests we may think of it as being a dual degree of freedom to Cj.

What this means in practice is that the action S is invariant under variations of
H" and 7+ 4 of the form (2.29). This implies that there is a ‘direction’ in the space
of variations which leaves the action S(©) unchanged (or at best produces the self-duality
constraint, which is not an independent equation of motion). Hence if we vary S (©) to obtain
the equations of motion of H*” and 7" 4, we will find that we are ‘missing’ an equation of
motion. This is exactly as in the NSNS sector case [26, 27] and reflects a known difficulty,
even in the purely gravitational context, of obtaining the Poisson equation from an action
principle for non-relativistic theories [52, 53], at least at first order.

Thus, in order to obtain an equation of motion for this missing variation, we go one
step further in the expansion. The variation of S(=3) from (3.6), is:

559 = / e |SHM™ (QG(" — Bwpr HaElg) + 07 427 A0GL0) — 74 100 E[75)

+ 0CuoEl"f) + 5CupEliy’] (3.31)

For dilatations we have

5,53 = / "z [\ (H 0GP — 20(G0)a? — BeancE ) + HCuplly’] . (3:32)
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With constant A, equation (3.22) implies that

S-3) = / AU (QN + Gy ) (3.33)

(0)

where we defined the combination

1
N =2 (—H"GLY +2(G)a™) + eapc LSS (3.34)

w

Crucially, (3.34) does not vanish on applying the self-duality constraint, unlike the com-
bination of terms (3.25) and (3.28) which appeared at the previous orders, and nor is it
a combination of any other equations of motion resulting from the finite action. It can
therefore be used as the equation of motion of the ‘dilatation mode’. (We are not really
interested in the C variation appearing in (3.32), which multiplies something we have al-
ready taken into account as an equation of motion.) It involves the fully longitudinal part
of GO, which has not yet appeared in the equations of motion. Hence, we identify it with
the ‘Poisson equation’, in which the longitudinal part of Cy,, plays the role of the Newton
potential (as did the longitudinal part of the B-field in the Stueckelberg gauge-fixed NSNS
sector). This is because 5(_6) is the first equation of motion which contains two derivatives
acting on the former. Explicitly,

1 ~
5(“_Vg) — _680 (Q(4H[M\)\1T|V\>\27\ﬂ|>\37|0]>\4p)\1.")\4 + 6H[u|>\1H\Vl/\2T\PP\3TIUP\4F)\1”./\4)
1

o s

HpoTLOSF o e o - (3.35)

Intriguingly, the combination of G(=3) and G(°) appearing in (3.34) has a somewhat murky
relationship to the ‘trace-reversed’ version of the metric equation of motion. The equation
G = 0 in the original 11-dimensional theory can be simplified somewhat by taking its
trace and solving that for the Ricci scalar. This trace is

9 1.
4Gy = ——R + — [ .
"G = =5 R+ o (3.36)

and the equation of motion without the Ricci scalar is

=] _ 1 A ADO 1 - o\ T 1 ~ 2
g,uy = g;w - §guugp gpo’ = R;w - ﬁFup Fl/pa)\ + mg/wF ) (3'37)
for which
- 1
Gl = gawggy — H" G, (3.38)

which is exactly the combination appearing in (3.34). Note the relative numerical factors
here are the same as the relative numerical factors in the powers of ¢ in the expansion.
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Now, what exactly is the equation (3.34)? Expanding the metric equation contributions
and covariantising everything, one arrives at

- 1 1
T“”gl(fy) :2T“AV”ICM)A—VAICA— ZaABCaABC—iaABCaACB—aAaA

1 1 ~ ~
_EABCFDABpapDC_éFABuVFABHV"F&FMVpO’F;LVpU

1 ~
+Z€ABCF'MVABT/.LVC
—CLAK:A—F’C'LWAICMVA—QT“ATVBVVCLH[AB]—T‘uyvuay, (3.39)
. 1 1 —upn
eapet i Pr,C0 15(‘11/5)2—66ABCV”FABC#—16ABCFAB” T ©
1 1 ~ ~
+m66/\1”.01WUSFa'l...0’4F0'5...O'86ABCT)\1AT)\QBT)\307 (340)

hence the covariant Poisson equation is

1 1
N = —EEABC(V”FABCM + a, FABOR 4 3q, pA FBODR) gFAB””FABW

| PSR 0! ~
@Fﬂ pUF,uZ/po' + 9. 4!23!GAIMASUI'”UsFol...0'4F<75...08€ABC7_)\1AT/\QBT)\;gC
— VAR A — a?Ka — KM a4 — 20" PIC, a5 — 277V 0, (3.41)
1 1

— a?B¢ <4aABc + iCLACB + 7730GA>

_|_

=0.

Note that this expression could equivalently be rewritten in terms of the Ricci tensor, using
the following identity:

RAA = TMVRHV = —VAICA - ICHVA’C#Z/A - aHABIC;LAB . (342)

Remarkably, equation (3.41) transforms covariantly under local dilatations. Exactly this
equation will also be selected by the exceptional field theory description as an ‘extra’
equation of motion that one can not find from the variation of the finite part of the action.
Furthermore, under Galilean boosts (discussed in next subsection), it transforms into the
other equations of motions. All this is in keeping with the properties of the missing Poisson
equation in the NSNS sector [26, 27] and supports including equation (3.41) as an equation
of motion of the non-relativistic theory.

If we think in terms of the expansion it might seem strange to find the rest of the
equations of motion from the expansion at order ¢® and this extra equation from order ¢ 3.
Clearly, if we would vary the action S(—3) we would find additional O(¢=3) contributions
to the finite equations of motion, and if we would vary the action S(-% we would find
additional O(c3) contributions to the equation of motion (3.41), i.e. it would become
N = O(c™3). The guiding philosophy is to find the lowest order non-zero equation of
motion resulting from the variations of the action. For the Poisson equation associated to
the degree of freedom that disappears into dilatations at the level of S (), this happens to
arise at lower order than the other equations of motion.
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As a final remark, just as in the NSNS sector case [27], it is also possible to define
a covariant derivative that is covariant with respect to dilatations. Letting b, denote

AB a5 the longitudinal spin

this dilatation connection, and simultaneously introducing w,
connection, we this new affine connection is defined by the following metric compatibility

conditions

ﬁuT,,A = (‘Lﬂ'l,A — quBTZ,B — b#T,,A — quTpA =0, (3.43)

VH = 0,H" — b, H" + T H? + T7,H* = 0. (3.44)

The solution to these equations is

~ 1
F;pw = FZV —7P4 (buTuA + WMABTVB) - iHPU (b,uHup + buHup - bﬂH/w) (3~45)

where the dilatation and spin connections are explicitly given by

by=za,+ -1, aa, wy

1 1 1
3 G 4 4B — —au[AB} + 57'”0@’430 + TH[AaB] . (3.46)

3.3 Boost invariance

Now let’s consider the boost transformations defined in (2.28). The calculations are very
similar to those in the previous subsection. The variation of S®) under (2.28) vanishes
identically. The variation of the finite action gives

(55(0) = /dll.T[ - ApA (QHHPTVAQQE):/) + SGABCT/LBTVC(C/‘(%ISP) + 5Aé,uup£€§;p:| ’ (347)

and the combination of G and £ terms appearing here is

1
fZQgg’:A“A — 36,4305&;)43/\“0 = EFA”V’)AUAFUMVP
(3.48)

6)\1...)\30'1...0'8

A B C
4. 4120) FG’1...O‘4F0'5...O'8A>\1 Txo TXz €ABC -

Using A am'p = 0 and the Schouten identity this can be shown to be proportional to
the self-duality constraint. Hence the finite action S(©) is invariant under boosts up to a
total derivative and the self-duality constraint. To make the action boost-invariant off-shell
we must improve the transformations (1.4) by requiring F to transform as well, similarly
to (3.30). The improved boost transformations are

SAHuw =20, T4, oATHA = —H"Aya, (3.49)
6AC;U/p = _3€ABC’A[MATVBT;)]C7 5AF,u,l/pa = _47')\AF)\[,quA0']A

Furthermore, one can then check that the set of equations of motion presented in the
previous sections is boost-invariant (i.e. closed under boosts) as expected. This includes
the extra equation of motion (3.41), which under boosts transforms into the time-space
projection of the equation of motion of H*”, equation (3.21), as well as the self-duality
constraint. This further implies that it is consistent to include it on the same footing as
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the remaining equations of motion that can be derived by varying S(©. Indeed, one can
obtain the boost variation directly from that of S(—3), which is:
-3 11 A 0 B_C ~ v
553 = / x| = A, (28707 40G() + 3eapemyPr O ) + 0xCrunp€ly?] - (3.50)
The quantity in round brackets is exactly the time-space projection of the H*” equation
of motion. (As a side-remark, note that this means that the boost variation of S(=3) is not

identically zero, although it is zero on using the equations of motion following from the
finite action.)

4 Dimensional reductions and type ITA Newton-Cartan

In this section we will propose reductions from the 11-dimensional Newton-Cartan theory
to ten-dimensional type IIA Newton-Cartan theories. We have a choice of whether to
reduce on a longitudinal or a transverse direction. Reducing on a longitudinal direction
will lead to type ITA stringy Newton-Cartan with RR fields. Reducing on a transverse
direction will lead to a novel type IIA Newton-Cartan geometry which can be thought of
as arising from a non-relativistic limit associated to D2 branes rather than strings. Similar
reductions have been carried out in [37, 48] from the M2 worldvolume theory.

For comparison with the reduction ansatzes below, let us record here the usual decom-
position of the eleven-dimensional metric and three-form into ten-dimensional fields:

32, = e*®3(dy + A))2 + e 2%/3482,, Cy=As+ By Ady, (4.1)
where y denotes the direction on which we reduce.

Index book-keeping. In this section, we denote the 11-dimensional Newton-Cartan
fields and curved spacetime indices with hats, thus fzaﬂ, ﬁ;A, Q, and so on such that the
11-dimensional coordinates are z# = (xH,y), with p = 0,...,9. We assume that we have
an isometry in the y direction. The 11-dimensional three-forms are denoted Cj;p, éﬂgﬁ.

4.1 Type ITA SNC

Here we present a reduction ansatz which produces the known Stueckelberg gauge-fixed
form of the SNC NSNS sector action, supplemented with RR fields.

Reduction ansatz. We want to reduce on a longitudinal direction. We therefore split
the longitudinal index A = (A,2) with A = 0,1. Then we single out

72 = 2®B(dy + Aydat), (4.2)

thereby defining the dilaton ® and RR one-form A, that will appear in the reduced theory.
If we take 75 = e 2%/ 38y then the remaining pair of Newton-Cartan clock forms and vectors

must have the form

#A = eiq)/?’TuAd:c“ , TaA= e+©/3(T“A8M, —7"AAL0y) . (4.3)
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A compatible ansatz for the transverse vielbein is
ﬁaﬂ = (e_CD/gh““, 0), k', = (e®3n",, —e®Ph",A). (4.4)

These are such that TMA, A and h*,, h*, are ten-dimensional fields obeying the usual
stringy Newton-Cartan completeness identities. We can define 7, = TMATVBUAB, H,, =
h¢ #hb,,éab, and similarly for the projective inverses. We also have

A

Q= 6_8‘1)/39, Q= %&Euual'"08EABEalmagTHATthalUl o h®B g (4.5)
Finally, we make the traditional decomposition of the three-form and its field strength:

C3 = A3+BaNdy, Fy=Ga+HsN(dy+A1), Gy=dAs—A1NHz, Hs=dBs2, (4.6)
where A; = A, dx#, along with

63 = ﬁ3+§2/\dy, ﬁ4 = é4+7'~[3/\(dy+A1) , 6'4 = dgngl /\ﬁg, 7‘73 = dEQ. (4.7)

Interpretation as an expansion. Inserting the above ansatz into the original limit (1.1)

gives
A8, = B (dy + A1) + e 223(Pr, + ¢ LH,,)
) 1 L (4.8)
C3 = —CS§EABTA ATBAdy+ As + By Ady + 0_3(A3 + By Ady).

Hence according to (4.1) this translates into the following expansion of the ten-dimensional
type IIA string frame metric §,,, NSNS two-form, By, and dilaton ®:

.@,uzz = Cng/ + H,Lw )
By = —CEEABTA ATE 4+ By + cgzég , (4.9)
e? = c.e?,
where ¢; = ¢3/2. This is nothing but the limit leading to stringy Newton-Cartan. In
addition, we have an expansion of the RR fields:

/13 = A3+ 6;223 , Al = A, (410)

It is clear from these expressions that we can equivalently view this reduction as the result of
the usual M-theory to type ITA reduction using (4.1) followed by the SNC field redefinitions
of (4.9) and (4.10). At first glance, this is not completely general, given that the ansatz for
the RR 1-form A; does not involve a subleading term while the other gauge fields do. A
justification for the above ansatz is that it correctly produces the NSNS sector dynamics of
SNC. Modifications to the ansatz would involve relaxing the implicit Stueckelberg gauge-
fixing in 11-dimensions and comparing this to the possible 10-dimensional expansions. We
do not consider this in this paper.
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Constraint. The constraint (2.26) becomes
- 1
QHM7 HPRP HISS HI Gy g, = — ﬁem TG s s s GABTHQATHIO ® (4.11)
and so only involves the RR 4-form field strength. The field strength of the NSNS 2-form is
not constrained. This is to be expected, as the limit of the NSNS sector alone makes sense
without any constraint, and in the eleven-dimensional case the constraint arose as a conse-

quence of the Chern-Simons term, which is not present in the truncation to the NSNS sector.

Type ITA SNC with RR fields. The action obtained from the reduction ansatz (4.3)
and (4.4) is
Suasve = [ A% (2L + L+ 0 L) (4.12)

with
1 1
L=R—a"a, g} + (a* — 2D"®)(a, — 2D, ) — o Hywp — 5(-;ABTPA’HWTWB

1 1 1
_ *€2¢G#AGMA _ EGQ(I)GMVPAGMWJA + 762(I>€ABGABpO'Gp0-7

2 4
1~ 1
Eé - _@Gm..-m (Glll'“y4 + 4!2!961/1“'”4#1“'%Gm--‘MGABTusATuGB) )
1
Etop = 5(1143 ANdAs N Bs, (4.13)

using the field strengths defined in (4.6) and (4.7) along with G, = 20,4,). As before,
we write for convenience G* = HHPH"?(G .. The Ricci scalar and connection, torsion,
acceleration and so on are defined in the same way as before but for the SNC geometry. If
we ignore the RR fields, this is exactly the Stueckelberg gauge fixed action for NSNS SNC
(note that the subleading component Bs only appears in the definition of C~¥4). Furthermore,
one can check that the reduction of the Poisson equation agrees with the Poisson equation
for SNC, with of course additional contributions from the RR sector. The reduced Poisson
equation is found to be

1
- ieABv,ﬂ{AB# + VAKA — 27V, V,® + 277V 4, + eag HABPV @ — 20A V7D

1 1
+ KHAK A + a K + QaH[AB}’CyAB + a"BC <4aABc + 5 ACB + HBCGA)

1 1 1 1
+ MY g — easH <a#cA + 2au5é) + e (GABGAB + QGAB“”GABW> (4.14)

1

480

1/~ -
B 62¢Z8 <GWPUG/~Wpa +

A1 A1 .o ug Y ~ A B
€ Gm--.MG%.--MSEABTM Thg
=0.

In this case [27], it is the longitudinal components of the NSNS 2-form playing the role of
the Newton potential. It is also interesting to look at the reduction of the equation (3.15),
which was the equation of motion of the longitudinal components of the three-form. This
reduces to

1 1
inABH“pH”"TwATpaB = —@ewH’““ CHPG Gl (4.15)
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and in particular in the truncation to the NSNS sector the right-hand side is zero. This
allows imposing foliation constraints on the NSNS sector SNC torsion T, WA, such as those
discussed in [27].

4.2 Type ITA D2NC

General decompositions breaking local rotational invariance. The next reduction
we do involves reducing on a transverse reduction. This breaks part of the local SO(8)
rotational invariance. Accordingly, write the flat index a = (a,7), with a = 1,...,8 — ¢
and 7= 1...q. Simultaneously we can consider a different decomposition of the spacetime
coordinate index fi = (u,?) where g is n-dimensional and ¢ is (11 — n)-dimensional. We
then pick a lower triangular form for the vielbein fz“ﬁ such that

A h? 0
he. — R 4.1
" (Aukhlk h’i> (4.16)

The condition Baﬂf'ﬂ 4 = 0 implies
Wt a =0, hh(F'a+ A #1a) =0. (4.17)

The diagonal blocks in (4.16) will in general not be square. Two interesting examples
however are to take these blocks to be square and invertible. In this subsection, we will
take the lower right block to be a non-zero 1 x 1 matrix, and perform a reduction to a
novel type of type ITA Newton-Cartan geometry associated to D2 branes. In section 5, we
will take the upper left block to be an invertible (11 — d) x (11 — d) matrix, and offer a
description of the M-theory Newton-Cartan theory in terms of exceptional field theory.

Transverse reduction to type ITA. The dimensional reduction to type IIA corre-
sponds to taking n = 10, and ¢ = 1 above. We again label the coordinates again as
2 = (z#,y). In this case hY, is a scalar and we can identify it with the dilaton as
hY, = e*®/3.5 Using the conditions (4.17), the full Kaluza-Klein ansatz is:

3 e ®B3h2, 0 . e®/3pm 0
a _ i a

hep = (62(1)/314“ 020/ | h¥q = L ®BA R, 2003 (4.18)

T =e" 7, 0), #y=c THa —AuTV 4) 19
AHA <I>/3 p,A Af +q>/3 i A 4

plus the same definitions (4.6) and (4.7) for the three-forms and field strengths. We also
have

~ 1
Q= eiSCb/SQ, Q= ﬁe‘“’p‘”""’7eABceal._wTuAT,,BTpChalUl R (4.20)

SEnthusiasts of non-relativistic geometries could also consider null reductions of the already non-
relativistic theory.
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Interpretation as an expansion. Inserting the above ansatz into the original limit (1.1)
gives

défl = c_le4¢’/3(dy + A1)2 2<I>/3(0 Ty + € HW) ,
(4.21)

~ 1 ~ ~
C3:—C3e q)glEABCT /\7’ /\7' —1—A3—|—Bg/\dy—|—c (Ag—{—Bg/\dy).

Hence according to (4.1) this translates into the following expansion of the ten-dimensional
type IIA string frame metric g,,, RR three-form, ég, and dilaton ®:

“ 2 -2
Guv = DT + cp Hyw

C3 = —cheapce ®TANTB AT + C3 + 65453 , (4.22)

along with expansions for the NSNS two-form, Bs, and RR one-form, A;:
BQ = BQ + CB4§2, s 1211 = A1 y (4.23)

where ¢p = ¢3/4. This is an expansion and non-relativistic limit associated to the D2 brane
(the powers of cp appear in the same way as those of the harmonic function in the D2
brane SUGRA solution). We can refer to it as D2 Newton-Cartan (D2NC).

Constraint. The constraint (2.26) becomes

1
W1V1 ITH2V2 TTH3V3 [T H4VA D _p1...p10 A_ B C
QHM" H H H Guivovsvy = +3'3'6 € H s i1 €ABC g T Tuto

—® rrp1vy pypev2 Iypavs _ 1.1 A_ B C
Qe  "HMMHPV2HESYSHY oy = +——€ OG lapspopr EABCTus” Tug Turo > (4.24)

4131
which are equivalent. So now we have a duality relation between the RR 3-form gauge field
and the NSNS 2-form.

Type ITA D2 Newton-Cartan theory. The action obtained from the reduction
ansatz (4.18) and (4.19) is

Svave = [ %0 (e20L+ L5+ 0 Linp) (4.25)
with
wAB 3 Iz jz 9 Iz 1 prA
L=R—-a aM(AB)—i—?z a, — 5a D#<I>+§D CI)D#CD—JH Hywa

1 1 1
= 1€ C Gy — PG AGpn + 1€ G g T 0,

4
L~ — 1 6« QY1 1 - V1 Vafil.. i gy A B C
G~ _@ V1..14 n 3'296 € p1.-p3€ABC Ty Tus Tue
L 20 1 ® A_ B_ C
3' Hopoows (H7 = 4‘3196Jr eI TG i €ABCT s Tig” Tur |
L (= gy p1...p301...07 1 A B_ C
= *E Gul..,u4 - ge le...pge 3‘Q€ABCHV101 cee HZ/4O'4TO'5 Tog Tor
1 5 A_ B_ C
X (Gyl'"y‘l — 73‘296 6”1"'V4M1"'M6,Hu1...ugﬁABCT,uAL Tus Tus >
1
Etop = idAg A dAs N Bg, (4.26)
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where the field strengths are defined as in (4.6) and (4.7) with again G2 = dA;. Note that
we obtain what appears to be an extra contribution to the dilaton kinetic term due to the
e~? factor that in the expansion of C5 in (4.22). We could alter this by redefining the RR
fields in the reduced theory. In addition, the reduction of the Poisson equation (3.41) gives
1 1

s eanc (VMGABC“ + a, GABOr 4 3aMDAGDBC“) - geq)eABCGABC“VM@

+ VA4 — 377V, V,® — 3¢V 4@ + 2VABV 4 & — KAV 4P + 277V a,,

1 1
+ K AR 4 + aa + 20#4BIC, 4 + a?BC (aABc + saacs + UBC’CLA>

4 2
1 1 1 ~ ~ 1 ~ -
+ - P Hacu + g (G Gapy + 4G Gap) = 0 2 G G — 5 H Py
e 1 A cA =
te q>4!3!3!QGAIAQAMIWMGABCT)% 7')\237')\3 GuipaHys..pr = 0. (4.27)

As in the MNC case, the longitudinal components of the three-form gauge field play the
role of the Newton potential.

5 Dimensional decompositions and exceptional field theory description

5.1 Exceptional field theory

We will now discuss the exceptional field theory description of the 11-dimensional MNC
theory. ExFT automatically has a number of features in common with the non-relativistic
theory: breaking of 11-dimensional Lorentz symmetry, a geometry arising from mixing
metric and form-field components, and the inclusion of dual degrees of freedom. We will
see how it provides a unified framework treating the relativistic and non-relativistic theory
on an equal footing, which demonstrates that the same exceptional Lie algebraic structures
that underlie the relativistic theory are present in the non-relativistic one. In addition, the
ExF'T equations of motion include the additional missing Poisson equation.

We will focus particularly on the relatively unexceptional case of the SL(3) x SL(2)
ExFT [54]. This makes use of an (8 + 3)-dimensional split of the 11-dimensional space-
time. As such, it is a very natural fit for the (8 + 3)-dimensional split into transverse and
longitudinal directions present in the MNC expansion. The SL(3) x SL(2) ExFT includes
a Riemannian metric for the 8-dimensional part of the spacetime, but the 3-dimensional
part is described by an ‘extended geometry’ involving an SL(3) x SL(2) symmetric gener-
alised metric. By decomposing the 11-dimensional Newton-Cartan theory appropriately, we
will replace the transverse Newton-Cartan metric with an invertible 8-dimensional metric,
A g"¥, and the longitudinal metric with an invertible 3-dimensional metric, 7, — 74,
which will be embedded into the generalised metric description. This drastic simplification
of the geometry is nonetheless sufficient to highlight the key features of the theory.

It would also be interesting to consider for example the opposite (3 4+ 8)-dimensional
split corresponding to the Egg) ExFT, embedding the transverse metric into the Egg) gen-
eralised metric. However as the known formulation of ExF'T makes use of a Riemannian
metric for the unextended part of the spacetime, this is not immediately available for our
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purposes. Evidently, for any given Ey) ExFT, one can construct or imagine multiple
other ‘hybrid’ formulations depending on how one chooses to separate or mix the longi-
tudinal and transverse directions. More ambitiously, one could choose to work with the
recently fully constructed ‘master’ Fy; ExFT [55], for which no coordinate decomposition
is necessary. Evidently this would eschew the technical difficulties of the latter in favour of
the technicalities associated to working with an infinite-dimensional algebra. In this paper,
although many features that we will see are quite general, we describe the explicit details
mainly for the d < 4 cases.

ExFT ingredients. The basic idea behind ExFT is to replace d-dimensional vectors with
generalised vectors VM transforming in a specified representation of Eq4(4)- This representa-
tion is such that we can decompose VM under GL(d) as VM = (V?, Vij, Vijkim., - - - ) where Vi
is a d-dimensional vector, V;; and Vjjx, a two- and five-form, and the ellipsis corresponds
to higher rank mixed symmetry tensors that appear for d > 7.° Generalised vectors are
used to provide an Ejg)-compatible local symmetry of generalised diffeomorphisms. These
are defined in terms of a generalised Lie derivative which acts on a generalised vector VM
of weight \y as

suVM = LM = UNoN VM —VNoNUM Y MN oo UP VO + <)\V - 91d> oNUNVM

(5.1)
Here YMN pQ is constructed from invariant tensors of Ejq). This together with the weight
term with coefficient —1/(9—d) appear such that this generalised Lie derivative involves an
infinitesimal Ey(4), rather than GL(N) transformation. The partial derivatives written here
formally involve an extended set of coordinates y™. However, consistency requires the im-
position of a constraint YN PQOMON = 0 where the derivatives can act on a single field or a
product of fields. One solution to this constraint is to view the d-dimensional partial deriva-
tives as being embedded such that 0y = (0;,0,...,0). We always assume we have made
this choice below. (An alternative solution leads to a ten-dimensional type IIB description.)

Given this choice, for the d < 4 cases we will look at in detail, the action of
UM = (uf,N\;j) on VM = (Vi V;;) (both having generalised diffeomorphism weight
1/(9—d)) is LyVM = (Ly,V?, L,V =3V*dy\;;), where Ly, denotes the usual d-dimensional
Lie derivative. Identifying the two-form components A;; with the gauge transformation pa-
rameter of a three-form éijk, this means we can write VM = (VZ', ‘Z’j — Cijkvk), with IN/ij
gauge invariant. We use this to give explicit parametrisations for the ExFT fields.

The field content of ExFT is as follows. We now let u,v,... be (11 — d)-dimensional
indices. We then have an (11 — d)-dimensional metric, g,,, which is a scalar of weight
—2/(9 — d) under generalised diffeomorphisms. The Egy extended geometry is equipped
with a generalised metric, M sy, transforming as a rank two symmetric tensor of weight
zero under generalised diffeomorphisms. In addition, there is a ‘tensor hierarchy’ of gauge
fields, starting with an (11 — d)-dimensional one-form A, and continuing with p-forms
By, Cuwp, - .. in particular representations of Egq). This set of fields mimics and ex-

5This decomposition is relevant to the description of 11-dimensional SUGRA. There are also mutually
inequivalent GL(d — 1) decompositions relevant to the description of type II SUGRA.
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tends what appears in a dimensional decomposition (or reduction) of the bosonic fields of
supergravity.

Dimensional decomposition and field redefinitions. We describe now the dimen-
sional decomposition used to embed 11-dimensional SUGRA in the ExFT framework. We
split the 11-dimensional coordinates 2" = (x#,y%), making an (11 — d) + d split. The
supergravity degrees of freedom are then similarly decomposed under this split, classified
according to their nature from the point of view of (11 — d)-dimensional spacetime, and
then rearranged into multiplets of the exceptional groups E;4). We assume no restriction
on the coordinate dependence. This can be viewed as a partial fixing of the local Lorentz
symmetry in which we choose the 11-dimensional vielbein édﬁ and hence metric g, to be

P - ’¢’_2(91_d) ea,u 0 A _ |¢‘_ﬁguu + @bklAukAul QbikAzzl
e = e S G = . ; (52)
AL Y GjxAy Gij

where €2, is a vielbein for an (11 — d)-dimensional (Einstein frame) metric g,, and ¢'; is
a vielbein for a d-dimensional metric ¢;;, with |¢| = | det(¢;;)|. Normally one takes g, to
be Lorentzian, such that this corresponds to fixing the Lorentz symmetry as SO(1,10) —
SO(1,10 — d) x SO(d), however we can also take it to be Euclidean, such that SO(1,10) —
SO(11 —d) x SO(1,d — 1). The latter choice is relevant for the version of ExFT applicable
to the non-relativistic theory.

The ‘Kaluza-Klein vector’ 4, has a field strength defined by

Fu' =20,A," —2A,70;A,," . (5.3)

Letting L denote the d-dimensional Lie derivative, the Kaluza-Klein vector also appears
as the connection in the derivative D, = 0, — Ly, which is covariant with respect to
d-dimensional diffeomorphisms, using the transformation 0pA," = D, A" induced by the
action of 11-dimensional diffeomorphisms on (5.2).

For the three-form and its field strength, we define a succession of gauge field compo-
nents (denoted by bold font) via

. . . 1. 1. o
C3=C3+CoyDy" + icliijsz] + gcijkDley]Dyk (5.4)

where Dy = dy’ +Auidaz“, the subscripts on the right-hand side denote the form degree in
(11—d) dimensions, and we omit the implicit wedge products. Similarly, for Fy = dCs we let

P 1. R B o 1. o
F, = F4+F3iDyZ+§F2iijszj +?FlijkDley]DykJrEFijleysz]DykDyl , (5.5)

The persistence of hats reflects the fact that we still want to take the non-relativistic limit
of all these quantities. Explicit component expressions can be found in appendix A. We
can make similar redefinitions for the dual six-form and its field strength.
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Metric and generalised metrics. The metric g, appearing in (5.2) is directly used as
the (11 — d)-dimensional ExFT metric (the generalised diffeomorphism weight —2/(9 — d)
follows from the conformal factor in (5.2)).

The generalised metric My, or its generalised vielbein, may be defined as an Eg(q)
element valued in a coset Eqq)/Hy where Hy is the maximal compact subgroup (in the Eu-
clidean case) or a non-compact version thereof (in the Lorentzian case). Under generalised
diffeomorphisms it transforms as a rank two symmetric tensor of weight zero. It is normally
parametrised in terms of the wholly d-dimensional components of the eleven-dimensional
fields, ¢;; and C’ijk, in a manner consistent with its transformation under generalised dif-
feomorphisms. For d > 6, this parametrisation also includes internal components of the
dual-six form. For simplicity, we will restrict to d < 4, in which case the conventional
parametrisation of the generalised metric is given by

B SN Ye KTl C Kl
My = ||/ O <¢w %k;] jipa 2¢i[;¢”j> , (5.6)
The conformal factor here ensures that | det M| = 1.

In specific cases, we can find factorisations of the generalised metric leading to simpler
expressions. This includes the SL(3) x SL(2) ExFT. Here, generalised vectors VM =
(V4 V;;) transform in the (3,2) of SL(3) x SL(2), with i, j,... three-dimensional. We can
dualise V;; using the three-dimensional epsilon symbol, and define Vi= %eijkf/jk. Introduce
an SL(2) fundamental index, a = 1,2, and let VM = V@ with V! = V¢ and V2 = V', In
terms of this basis we have a factorisation

Myn = Mg jg = MijMag, (5.7)

where M;; = Mj; with |det M;;| = 1, and Myg = Mg, with |det Myg| = 1. When ¢;;
has Lorentzian signature, the expressions which reproduce (5.6) are

16172 — |g|712C" —|g|/2€C

_a-1/3 _
Mij = 19|35, Mag = ( |2 |12

> 5 é = %Gijkéij‘k, (58)
Gauge fields and dual degrees of freedom. Along with the Kaluza-Klein vector,
A#i, coming from the metric decomposition (5.2), the p-forms obtained from the decom-
position (5.4) of the three-form fit into F(g)-valued multiplets denoted Ay, By, Cuvp, - - - -
Their field strengths are denoted Fuu, Hpuvps Tywpo, ---- To obtain full Eyg) representa-
tions, we have to include here the set of p-forms obtained by decomposing the dual six-form.
This is unsurprising from the point of E;4) U-duality transformations, which mix electric
and magnetic degrees of freedom (e.g. M2 and M5 branes) coupling respectively to p-forms
and their duals.

For d = 3, this works as follows [54]. The ExFT gauge fields .A,fa, Buvis Cuvp®, Dngi
have weights 1/6,2/6,3/6,4/6 respectively, and their field strengths are denoted ]-"Wm,
Huvpi, Tuwvps® and ICWpU,\i (the latter does not appear in the action). Under generalised
diffeomorphisms, F'@ transforms as a generalised vector of weight 1/6, while H# and J
transform via the generalised Lie derivative acting as

LaHi = NPt + 0ighIPH;,  LAT™ = NPT — 0,50 T% + 0,505 7%, (5.9)
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These field strengths obey Bianchi identities:

3D[u]:l/p}ia = eijkeaﬁajﬁﬁwpk , (5.10)
4D My po)i + 3€ijk€a5f[uyja]:pa}kﬁ = Oia Tuvps” (5.11)
5D[ujupg)\]a + 10f[uuia7'[po/\}i = Eaﬂaiﬁlc,uupa)\i ’ (5‘12)

where D, = 0, — L4, The ExFT one-form can be simply identified as AMM =
(A%, 2€97C 451). The two-form By, transforms in the (3, 1) of SL(3) x SL(2) and is iden-
tified (up to a further field redefinition) with C,,;. However, rather than give the precise
field redefinitions for the potentials, it is simpler to work at the level of the field strengths.
These are all tensors under generalised diffeomorphisms, meaining in particular that they
transform in a particular way under d-dimensional three-form gauge transformations. This
allows us to decompose in terms of manifestly gauge invariant combinations

.7:/“/“ = Flwi s fMViQ = Eijk(ﬁw,jk — C’jklﬁuyl) y %uupi = _Fuupi y (513)

N

where Flwi ﬁ’uypi and FA’ij. are gauge invariant and can be exactly identified with the
quantities defined in (5.5) with F},,% as in (5.3).7

The three-form situation is then where it gets interesting. There is a single 8-
dimensional three-form € uvp Obtained from the 11-dimensional one. There is also a single
three-form C uwpijk coming from the 11-dimensional six-form. Together these form an SL(3)
singlet and SL(2) doublet, for which the field strength obeys a self-duality constraint repro-
ducing (in the relativistic case!) the correct duality relationship between the field strengths
F pvpo and F uvpoijk- This duality constraint, which has to be imposed by hand, involves the
eight-dimensional Hodge star acting on the 8-dimensional indices and the SL(2) generalised
metric acting on the SL(2) indices:

V09I Map T 7P = —A8keqge P72 7y 3P (5.14)

The coefficient & is fixed via the self-consistency of (5.14) (in both the cases where g,

has Lorentzian or Euclidean signature, with M,z having the opposite) to be x = iﬁ,

with the choice of sign being a matter of convention (equivalent to changing the sign of the
three-form in eleven dimensions). This is consistent with decomposing the SL(2) doublet

of four-form field strengths as

A A

eijk(ﬁuupoi]’k - Ciij,pra) . (515)

=

1 _ 1 2
j,u,upcr :F,uupcra j,uz/po -

Thus in general, ExFT treats simultaneously degrees of freedom coming from the three-
form with dual degrees of freedom coming from the six-form, encoding the duality relations
between them in its dynamics.

“The minus sign in H,.p: ensures that the ExF'T Bianchi identities (5.11) and (5.12) reproduce those
coming from SUGRA in (A. 18) and is otherwise simply a matter of convention in terms of what we call Byy;.
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Dynamics: SL(3) X SL(2) ExFT pseudo-action. The ExFT Lagrangian can be
uniquely fixed by the requirement of invariance under the local symmetries (generalised
diffeomorphisms, gauge transformations of the tensor hierarchy, and finally (11 — d)-
dimensional diffeomorphisms). When 11 — d is even, this gives a pseudo-action which
must be accompanied by a self-duality constraint such as (5.14). This includes the case
d = 3. The pseudo-action in this case can be written as S = [ ddz dﬁy\/ﬁﬁEXFT where
the Lagrangian has the (quite general) expression

-1
LuxrT = Rext(9) + Liin + Lint +1/|9]  Ltop (5.16)
Here, with D), = 8, — L 4,,, we have

Rext(g):%g’“’DMngD,,gp"—%g“"Dug’Mngua-i-%g’“’Dulnng,Ing—i—%Dulngl)yg“”, (5.17)
ckinz%DMMUD“MU%DMMQBWMM
—i/\/lij/\/laﬂfuym}—“yjﬁ—%Mij/)'-lw,pﬂ-l“ypj—%Maﬂjuypaajwp057 (5.18)
Lina= g MMV 00 MO Mgt MM 00y MO Dy Mo L MM N0y M P01 M
%aMMMNaNm g|—|—iMMN(8MgW8NgW—I—8M1n| gldnn|g|). (5.19)
The topological (Chern-Simons) term can be defined via its variation:
OLuop = K™ (= 6. Ap  eapTps. s Huoprpsi
+ 6AB,, o (€aﬁfu3u4m»7u5~-u86 - ;lﬁiijusuwstuﬁwwk)
+ AACu, pops " €ap (Dm \7#5~~-usﬁ + 4}—u4u5i5HM6mu8i)
— 010Dy s Ty ™) -

where the ‘improved’ A variation includes by definition contributions of variations of lower

(5.20)

rank gauge fields, for explicit expressions (which we do not require) see [54]. Finally, we
must impose the constraint (5.14) after varying the above pseudo-action.

5.2 Obtaining the 11-dimensional Newton-Cartan theory via ExFT

In this subsection, we perform a dimensional decomposition of the 11-dimensional MNC
variables, and use this to explain how exceptional field theory describes this theory.

Dimensional decomposition of 11-dimensional Newton-Cartan theory. We start
with the 11-dimensional coordinates labelled as z = (z#,y%) with p = 1,...,11 —d
and i = 1...,d. We keep all coordinate dependence on y* throughout. Thus this is a
decomposition rather than a reduction. In terms of the vielbein decomposition (4.16), we
take ¢ =d — 3 and n = 11 — d. The flat indices area=1,...,11—dand2=1,...,d — 3.
Explicitly, we take the SO(8) vielbein to have the form

__1 _1
BGA _ Q 97d?a’u q 7 ﬁﬂa _ Q?*de'u’a O : (521)
g AR WY —Q-ier, AR hi;
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with €2, an invertible vielbein for an (11 — d)-dimensional metric, g,, = €,€°,d.,. We
also have to take

A A i A _A N i

Th _(AM Ti 5T )7 T A—(O,TA). (522)

where 7;; = TiATjBnAB, with A = 0,1,2 as before. The conformal factor ) appearing
in (5.21) is defined by

1

9 —
31(d — 3)!

Uedd Jleeddm. . o o o
€ € Tirjr Tinga Tinjs Hiaja - - - Higjy » (5.23)

and related to that of the 11-dimensional theory by { = (det e)Qfﬁ. It is useful to write
down the full transverse and longitudinal metrics:

FI;}A _ <Q92dg#,/ + HklA“kA,/l ijAMk> Foo — <A“kAyl7'kl A#k’]’k]‘>
Y H AP H;; ’ e ATy Tij ’
2 2 4 (5.24)
[f[[u? _ ( Qz—dgul/ _Qg—ngMPApJ ) 7@/219 _ <0 0) .
_nguaAoi Hij + ngpaApiAUj ’ 0 TY

In this way all the degenerate structure is encoded in the d-dimensional part of the space-
time, with a degenerate d-dimensional metric H;; = h*;h? j077. This ensures that the metric
9w can be identified with the metric appearing in exceptional field theory, while the degen-
erate Newton-Cartan metric structure will appear in the generalised metric. In addition, we
redefine the three-form and its field strength according to (5.4) and (5.5), now without hats:

1 o o
03:C3+C2iDyl+§Cliijszj+§CijkDley]Dyk, (5.25)
1 o o 1 o
F4:F4+F3iDyl+§F2iijZDy]+gFlijkDyszjDyk"i‘IFijleysz]DykDylv (5.26)

where again Dy’ = dy' + A,'dz". We carry out an analogous decomposition for Cs
and Fy, and for Cg and Fr. Finally, we can consider the Newton-Cartan torsion: with
Tﬂ,;A = 28m7°,;]‘4 we have

TijA = TijA = 2a[i7j]A s Tm’A = Tm’A — AMjTji = DMTZ'A R

: ( } S wi , (5.27)
Tow® = Ty = 2T " Ay + AL ATy = FuJ 737

Embedding the limit in ExFT. Let’s start by considering the expansions (1.1)
and (1.3) of the original 11-dimensional metric and three-form. We make use of the de-
compositions (5.24) and (5.25) for the Newton-Cartan variables and three-form appearing
in the decomposition, and then use these to work out the decomposition (5.2) of the 11-
dimensional metric and that (5.4) of the three-form. The potentially singular terms as ¢ —
oo then appear in the d-dimensional components of the metric and of the three-form, with

2 -1 ~ 3 A_B_C —3
qbij =C'Tijt+c HZ‘]’, Cijk = —C€ABCT Tj Tk + Cijk +c ka (5.28)

The metric g, and Kaluza-Klein vector A,f appearing in (5.2) are then exactly those ap-
pearing in H w in (5.24). The redefined form components carrying an (11 — d)-dimensional
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index are all non-singular, so Cuij =Cj + O(c™3), and so on. One point of danger is
that C"ijk still appears in the field strengths (5.5) of these fields. However, consulting the
more explicit expressions (A.17), one sees that the field strength FHVM appearing in ExF'T
in fact involves the combination F,;; = ﬁ’,wij — C’iijWk, which is in fact independent
of éijka such that ﬁ,ut/ij - éiijuuk = F,um'j - Ciijuyk.

For the generalised metric (5.6), inserting the expressions (5.28) one finds that all
terms at leading order in ¢ cancel, and sending ¢ — oo one has a manifestly finite and

boost invariant expression:®

Mars :Qg%i (Hz‘j *éABCT(i|ACI;j)I'c}l;J;iTZC+Cilej'mnHkm7_ln —eABOT: A_kB lc+2_Ciqup[le]q
—eapeT AT B TIC 420 1  HPIIT 2H ki 4 o7ilk plli
(5.29)
The parametrisation (5.29) can be viewed as a non-Riemannian parametrisation of the
generalised metric, and viewed simply as an alternative possibility to taking the usual
form (5.6). The reason why this is a non-Riemannian parametrisation is most clearly
seen by looking at the inverse generalised metric M™Y. In the Riemannian case, the
parametrisation (5.6) implies that the d x d block M% is given by M = |p|~1/(9=d)gii
and therefore corresponds to the inverse spacetime metric. Assuming this block is invertible
then uniquely fixes (given the definition of the generalised metric as a particular coset ele-
ment obeying certain properties) the rest of the parametrisation. In the non-Riemannian
case, we instead have M¥ = Q_ﬁH i which is non-invertible. This leads instead to
an alternative parametrisation. This is exactly as in the DFT case [35], which was gen-
eralised to ExFT in [40]. The expression (5.29) can be checked to be equivalent to the
non-Riemannian SL(5) generalised metric worked out from first principles in [40]. In fact,
from this point of view, one need not even go through the complications of taking the limit,
but simply write down (5.29), insert it into the ExFT and study the resulting dynamics.
Returning to the embedding of the expansion in ExFT, we also need to worry about
the singular pieces in the expansion of the dual gauge field Cs. This inevitably appears in
the tensor hierarchy for all exceptional field theories. From (2.43), we have Cg ~ ¢3C3 AT A
TAT+..., and so given the decomposition according to (5.22) and (5.25), any component
of C’6 carrying three d-dimensional indices will be singular, i.e. C v pijks C pvijkly C pigkim
Cijklmn~ The claim is that, remarkably, all such singularities cancel automatically thanks
to the precise combinations of Cs and Cj that appear in the ExFT fields. For d = 3,4,
this is most straightforwardly checked at the level of the ExFT field strengths.? One sees
from (5.15) for SL(3) x SL(2) (and from (B 12) for SL(5)) that the components of Fy always
appear in the combinations Fw,pm]k C’Uka,po and Fw,p”kl + 4C[ka|WpJ|l] exactly
such that the singularity coming from CU . cancels that coming from P, which was written
down in (2.44). That the ExFT gauge potentials themselves are non-singular can further

8Proving this requires the fact that H" Y = 0 when HY has rank 1. For d > 4 this would suggest
we would have problems, however starting at d = 5 the representation on which Masn acts enlarges and
the structure of the generalised metric therefore changes. Note for d > 5 it will also explicitly contain
components of the dual six-form.

9Only the field strengths appear in the equations of motion, and the action can also be defined solely
in terms of the field strengths by rewriting the Chern-Simons term in a standard way as an integral over a
higher-dimensional spacetime.
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Fix Lorentz

11-d SUGRA ExFT (rel. param)
Non-rel limit E ' Non-rel limit
Non-rel SUGRA Fix non-Lorentz ExFT (non-rel. param)

Figure 1. Relationship between non-relativistic limit and non-relativistic parametrisation of ExFT

be verified by hunting down the correct field redefinitions that relate the ExFT gauge fields
to the 11-dimensional ones. Note that for d > 6 the components C’ijklmn are present and
appear in the generalised metric itself: we have not verified explicitly but the expectation
would be that it does so in a way that ensures the generalised metric remains finite.

Summary. From the above we can conclude that the fields used in ExFT are manifestly
non-singular in the non-relativistic limit (equivalently this shows that the fields which are
U-duality covariant in a genuine dimensional reduction are non-singular). We can also view
the distinction between the relativistic and the non-relativistic 11-dimensional theory as
being solely governed by the choice of parametrisation of the generalised metric. Having
picked a generalised metric parametrisation, it is then consistent to directly identify the
ExFT gauge fields and metric g,, with the gauge field components and metric of the
decomposed relativistic or non-relativistic theory.

This is summarised in figure 1. The upper triangular half of this diagram corresponds
to first embedding the relativistic fields in ExFT in the usual manner, with a Riemannian
parametrisation of the generalised metric, and then taking the non-relativistic limit giving
a non-Riemannian parametrisation. The lower triangular half corresponds to first taking
the non-relativistic limit for the original 11-dimensional fields, and then embedding these
into ExFT, giving the same non-Riemannian parametrisation. In both cases, one needs
to make the appropriate dimensional decomposition of the fields of the Newton-Cartan
theory, corresponding to fixing the local tangent space (non-Lorentzian) symmetry.

Inserting the non-Riemannian parametrisation into the ExFT action or equations of
motion will then reproduce the finite action and equations of motion results from taking the
limit, after decomposing. For the action, we calculate this decomposition in appendix A.
What we will show next is that, remarkably, the ExFT equations of motion also automat-
ically reproduce the Poisson equation (3.41).

5.3 Generalised metric and equations of motion

We now take a closer look at the consequences of using the non-relativistic parametrisation
of the generalised metric. We focus on the d = 3 SL(3) x SL(2) ExFT. For the d = 3
Newton-Cartan geometry, H” and H;; have rank zero and so are identically zero. The
longitudinal metric 7;; is a three-by-three matrix and in fact invertible, with 0% = —detr.
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The resulting non-Riemannian parametrisation of the generalised metric (5.7) is

_ 20 1 1 ..

Comparing (5.30) and (5.8), we can note that (5.30) is the most general possible SL(2)
non-Riemannian parametrisation (up to the sign of the off-diagonal components), as this is
completely fixed by requiring Mos = 0 which prevents us from interpreting that component
as the determinant of a standard three-dimensional spacetime metric.

Normally, the generalised metric M3 encodes two degrees of freedom. It is clear that
the non-Riemannian parametrisation given by (5.30) is restricted and is missing one degree
of freedom. We may identify this missing degree of freedom with the overall scale of the
longitudinal metric, as the latter only appears in the combination | det 7'|_1/ 371-]', which is
conformally invariant. This makes the dilatation invariance trivial in this formulation.

If we insert this parametrisation into the SL(3) x SL(2) pseudo-action, with La-
grangian (5.16), we find that Ly as defined in (5.19) vanishes, while

1
4

1

iy 1 . .
Dy MIDHM;; + ZDMMagD“Maﬁ = ZDH(QQ/?’T”)D“(Q‘Q/“TU). (5.31)

This reproduces exactly the expected terms in the d = 3 case of (A.27) and (A.28).

Notice that the kinetic terms for M,z completely drop out. So if we insert the non-
relativistic parametrisation into the action, and then vary with respect to ¢, we will never
find an equation involving D#D,,p, i.e the Poisson equation. However, instead we can
consider the equations of motion of the generalised metric, which can be evaluated inde-
pendently of its choice of parametrisation. These will provide the missing Poisson equation.
This is exactly analogous to the situation in DFT, see the discussions in [26, 36]. One has
to make a choice about whether you allow the equations of motion that follow from varia-
tions of the generalised metric that do not preserve the non-Riemannian parametrisation.
In both the DFT SNC case, and the present case, there is exactly one such independent
variation, which provides an additional equation of motion beyond what is obtained by
varying the fields of the parametrisation themselves.

Let’s see how this works. Naively, the result of varying the generalised metric Mg in
the action is

55 = / Bz dY /GEM P Ko, (5.32)
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with

11

P Iz _ A0

175 (PHVID" Mas) = Mo Mg Dy (V5" M)

1 - ; 1

+ ZMaWMﬁzSMijfuulvfuyja + %MQVMB(Sjquo"YJMVpO’é

1 .

M (0400 MM M+ By M0 Mo + Dot 9 Dy1)9"™ )

1, 1 ij

— QM ]aiaajﬂ lng + ﬁ&;(a\(\/ﬁajm)M ]) (5-33)

1

= MY (0,0 M 0y Mij + Dy M0 M)

1 g g
+ ﬁ(aw(\/g/\/l”/\/lwaj(a/\/lmg) — Mv(aMg)(;@j,i(\/§M”MEW,~6M”5)

1 . -
- %(am(@M”MwajéMaﬁ) — Moy Mps0;(\/GMIMFDj, MT?) .

Now, the variation 6M®? cannot be arbitrary but must preserve that | det M| = 1. This
ensures that one gets two rather than three independent equations, corresponding to the

Kas = —

usual two degrees of freedom encoded in M,g. The true equation of motion taking this

into account is: 1
Rap = Kap — 5/\4043/\475/@5 =0. (5.34)

This can be thought of as the vanishing of a generalised Ricci tensor, R,g. For the non-
Riemannian parametrisation (5.30), the two independent equations are

RQQ = ICQQ = O, RH — 2(,07—\),22 = lCll — 290K12 =0. (5.35)
Setting 0;1 = 9;, J;2 = 0, we have explicitly that
1 - o1

Koz = + 3 MijFuu F™ + Ge Fpe B0 = 0. (5.36)

This is the equation of motion (3.15) arising as the totally longitudinal part of the equation
of motion of the three-form. This is consistent with its appearance here as the equation of
motion of ¢, which is indeed the totally longitudinal part of the three-form.

The other equation of motion is (after using (5.36))

0=Ki1—2¢Ki2

11,
- _ﬁékau(\/ﬁg“”ijk)
1 k l v 1 v 1 ik 1
— g./\/l "M nFW/leM mn T %Fuypaiiju P 1mn 3!3!6U e (537)

1 .. 1 .
+ MY (M0, My + 01,039 ) - SMIGMH DM

- 5./\/1 ]8,-8]- lng — %81(\/@3]/\/1 ]).

Here we have Fx = D,Cijx — 30;C|ux, having used DMy = DMy —
eijkaiAmleg. We can then identify (5.37) as the Poisson equation for ¢ = %eijkCijk,
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as it has the form ﬁD“(\/gD“go) + ... =0. It is conjugate to the variation s M. For
the non-Riemannian parametrisation, M = 0, so allowing this variation corresponds to
allowing variations that do not respect the parametrisation. In terms of the expansion of
MP in powers of 1 /¢, this variation is subleading in origin. Finally, one can precisely check
that this equation (5.37) is indeed exactly the Poisson equation (3.41), which we found at
subleading order in the expansion of the relativistic theory, and here is rewritten in terms
of ExFT variables after making the dimensional decomposition of all the fields. (It can
be easily checked that the gauge field terms match, using (A.30) to relate the seven-form
components appearing here to those of Fy, and a patient calculation shows that inserting

the dimensional decomposition of the eleven-dimensional fields matches perfectly.)

Structure of generalised Ricci tensor. Geometrically, R, should be thought of as
(the SL(2) part of) a generalised Ricci tensor. It is a symmetric generalised tensor of
weight 0 and obeys M*R,5 = 0. When we take the relativistic parametrisation (5.8) of
the generalised metric, it can therefore be parametrised as

1(1C\ (1¢]'"*Ry Rc 10
o = = . 5.
Ras =5 (o 1) ( Re  |¢|7/?*Ry) \€ 1 (538)

with Ry and R¢ tensors of three-dimensional weight 0, such that the variation of the action

leads to
8. 16 oo/ C1/25p
) —/d xd’y /g |¢’1/2 Ry + || 0CRc (5.39)

Let’s examine what happens to the components of R,g in the non-relativistic limit. We
have |4|!/2 = Qc?, C = —3Q+ C + ¢ 3C. This leads to the expression

1(1C\ (3QRy—Re) Re— Ry 10
R.oo= = 5.40
o 2(0 1)( Re—Ry 3R, \C 1 (5.40)
So in principle the independent equations are still R¢ and Ry. However, we already know
that this generalised Ricci tensor has no leading parts in ¢ when we take the limit (because
none of the ExFT fields contain singular terms). If we expand

Ry =cRY + RY + PRV Re = ARE + PRY + ¢ RE? (5.41)

it must be that we have Rf) = R(g), Ré)o) = Rg)), viewed as off-shell identities, and the

independent equations of motion, i.e. those appearing as the actual finite entries of Rz,

are actually

3 -3 -3
R =0, RGP -REY =0. (5.42)

The former is conjugate to §M?? and the latter to the SM?!! that is forbidden if we insist
on keeping a non-Riemannian parametrisation. We can go back to the variation (5.39) and

expand that:

58 = — / 2% /G (S QRy — Re) + Q7' 35CRe) | (5.43)
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hence the first non-zero variations are
55 = — / x5 (5 m RS -~ REY) + o7 sorE) . (5.44)

We see again that we get the longitudinal equation of motion for the three-form at finite
order, and the extra Poisson equation of motion comes from a subleading variation associ-
ated to the variation of the volume factor €2, which otherwise has no dynamics associated
to it in this formulation.

5.4 Generating non-relativistic generalised metrics via U-duality

Non-trivial U-duality transformations act as SL(2) transformations on the generalised met-
b
ric Myg, via M — M’ = UT MU with detU = 1. Parametrising U = <a d) the trans-
c

formation of the non-relativistic parametrisation (5.30) gives

;o < 2a(ap +c¢) 2abp + ad + bc)
aff — ’

5.45
2abp + ad +be  2b(byp + d) (5:45)

and this remains in the non-relativistic form only if b = 0, or else if ¢ is constant and
d = —bp. In the former case, the effect of the transformation is ¢ — a(ay + ¢) and so
amounts to a scaling and shift of the three-form.

The genuine non-geometric U-dualities correspond to the SL(2) inversion symmetry
with a =d =0, bc = —1. If ¢ < 0, this takes us from the non-relativistic parametrisation
to a relativistic one with

(Z)Z‘j = —% (det T) Tij Cijk = —%ij . (546)
These obey | det ¢| = C? which corresponds to a ‘critical’ three-form.
We can apply this to a real supergravity background along the lines of [33, 40|, namely

the M2 brane solution in the form
ds? = f=2Bndy'dy’ + 136, datda” . Cip = (F71 + 7)eijn » (5.47)

where the harmonic function f obeys 0,0"f = 0 and 7 is a constant. This has constant
exceptional field theory 8-dimensional metric, g, = d,,, while

—(f+2v) —(1+ ’Yf)>
—(1+~f) —f '

Sending f — 0 corresponds exactly to the original limit (1.1). Alternatively, we can

Mij =mni5, Mag = ( (5.48)

formally U-dualise along the 3* directions (including time) to obtain a solution with

—f L+~f
Vg = , 5.49
Mas (1 +vf —(f+ 27)) (5:49)

The standard M2 solution has v = —1 and f = 1+ %, with r? = §,,xtz”. In this case,
the generalised metric (5.49) corresponds to the negative M2 solution [56]:

ds? = f_z/?’mjdyidyj + f1/35wdx“dm”, Cijr = (f_l —Deyjre, f=1- 7%. (5.50)
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This solution has a naked singularity at f =0« f—2=0. Evidently the generalised
metric (5.49) is non-singular everywhere and at f = 0 becomes non-relativistic. This
suggests [22] interpreting such backgrounds as containing a singular locus at which the
geometry degenerates to a non-relativistic one.

If we alternatively take v = 0 then the generalised metric (5.49) has the non-relativistic
form everywhere, with ¢ = —% f. If we now reconsider the equation of motion (5.37) which
can only be found by varying the generalised metric before inserting the parametrisation,
then this is exactly the equation V2f = 0 obeyed by the harmonic function. Finally, we
can reconstruct the full 11-dimensional MNC geometry:

. PP, oM 0 1
74 = (0,64, HM = < 0 0) » Coz=—5/. (5.51)

5.5 Gauge fields and self-duality in SL(3) x SL(2) ExFT

Now let’s look at what happens in the gauge field sector of the SL(3) x SL(2) ExFT. Let’s
repeat the parametrisations (5.13) and (5.15) now for the field strength components of the
non-relativistic theory:

il i
Fuw' = Fu',

K:Pl
R
-
no
I

" (Fuvjk — CiF '), MHuvpi = —Fuvpi,  (5.52)

jw/pol =Fupo, jul/p02 Eijk(praijk - Ciijqua) . (5.53)

[N I NG

Then the kinetic terms (5.18) in the SL(3) x SL(2) ExFT pseudo-action (5.16) are

_iMijMQﬁfuyiafuujﬂ_%Mijq_l#upi%uupj:_iQ—WSTZjFuuiijlFﬂukl_%92/3TijpﬂupiFuupj7
(5.54)
which matches the corresponding terms in the decomposition (A.27) of the non-relativistic
action.
To discuss the three-form gauge field, consider the SL(3) x SL(2) ExFT equation of
motion obtained from the pseudo-action by varying C,,“:

Da(\/@Maﬁj SGOE 281-&(@/\41'1%“”%)

| (5.55)
_ 48’€EQBG,LLVP0'1--~U5 (Dg—ljag..-0'55 + 4‘F010'2ZBH0'30'4U5'£> =0.

After varying, we must also impose the constraint (5.14). This constraint involves the
generalised metric, and so it is sensitive to whether we are describing the relativistic or
non-relativistic theory. However, in either case, using the constraint in the equation of
motion of C“,,p2 in fact produces the Bianchi identity (5.12) for j“l,pgl = Fp0. In the
relativistic case, with the Riemannian parametrisation (5.8) of the generalised metric (or
its Euclidean version), we could go on to use the constraint to eliminate jw,pg2 from the
equation of motion of CWPQ. The result would be the equation of motion of the three-form
C ., following from the decomposition of 11-dimensional SUGRA.

Now let’s consider the situation where the generalised metric admits the non-relativistic
parametrisation (5.30). In this case, choosing the minus sign for x, the constraint (5.14)
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implies that

\/EFWpa — _%ewpa/\l.../\élF)\lmM , \/§praijk _ +%€WW/\1"'A4F>\1...>\4z’jk: ) (5.56)
So we can no longer eliminate F',,, ,5i; in favour of F',, ;. This is clearly as expected for the
MNC theory for which the former indeed appears explicitly in the action and equations of
motion (note it is related to ﬁ‘w,po via (A.30)). We therefore see that the ExFT constraint
gives not only the expected constraint (2.26) that the original four-form field strength
becomes self-dual, but also the duality condition with opposite sign which is obeyed by
the dual seven-form (2.47). Thus the SL(3) x SL(2) ExFT contains the expected degrees
of freedom of the non-relativistic theory, and efficiently rearranges them into self-dual and
anti-self-dual parts automatically on the non-Riemannian parametrisation.

6 Conclusions and discussion

Comparison with the Gomis-Ooguri or SNC string. The behaviour we found in
eleven-dimensional supergravity can be seen to be extremely similar to that which happens
on the worldsheet for the Gomis-Ooguri or SNC string [6, 10, 21]. To see this, let’s revisit
the derivation of this worldsheet action by considering the SNC expansion

gl“/ = 027'!”, —+ Hl“’ R B,ul/ = —CQEABT“ATVB + B“l/, (61)
in the worldsheet Polyakov action
1 ~ ~ N A A
5=-3 / P20(90 X0 KY Gy — P01 05X7 B . (6.2)

We have set the effective tension to one and are in conformal gauge. If we also expand the
target space coordinates!'?

XM= XM 4 2XH (6.3)

we get
1
s 2 /d2U(C2TMAaa;(u(nABTuBaa;iV 6OZ'BGABTl/BaB;C/)

+ 27,20, X* (nag T, B XY + e“Peppt, Bz X") (6.4)
+ 0a X1O* XV H,ypy — €*P0, X" 05XV By -

This is exactly analogous to the result of the expansion of the 11-dimensional SUGRA
action. Here the Wess-Zumino coupling to the B-field plays the role of the Chern-Simons
term, and the singular piece can be cancelled by imposing a sort of twisted self-duality
constraint on F,A = T#Aé?aX“, namely that nABFaB + e“BEABFgB = 0. This then appears
as the equation of motion imposed by F A= TuAé?a)? # and the latter can be seen to only
appear in its anti-self-dual projection. This corresponds to the familiar rearrangement of
the longitudinal directions into chiral and anti-chiral directions (as seen usually in lightcone

10This was similarly done in [20] however only for the Nambu-Goto action, for which the subleading
coordinates do not appear in the finite action as the leading part of the expansion cancels identically.
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coordinates). The numbers of degrees of freedom are preserved as the ‘dual’ degrees of
freedom in X" are similarly constrained.

Normally one derives the finite part of the action (6.4) by rewriting the action in an
equivalent form using auxiliary degrees of freedom, such that the limit can be performed
without singularities. After the limit, one finds these auxiliary degrees of freedom corre-
spond to F'QA, and impose the chirality /anti-chirality conditions on the longitudinal degrees
of freedom. This is also what happens in the doubled sigma model approach (e.g. [33, 57]),
which starts with coordinates X and duals X, related by a self-duality constraint involving
the generalised metric of double field theory. Taking the SNC limit in this set-up then
leads to the situation as above where the longitudinal X and X are no longer related, but
separately obey chiral/anti-chirality constraints. The doubled sigma model action then
reproduces the finite terms in (6.4). This then is analogous to the exceptional field theory
description of the limit of 11-dimensional SUGRA.

It could be conjectured that the appearance of (self)-duality constraints is a generic
feature of non-relativistic limits of theories with topological or Chern-Simons terms, as a
requirement for cancelling singular terms arising from the topological term against those
arising from the kinetic term. Schematically given a Lagrangian £ ~ FAxF + F AG with a
non-relativistic expansion leading to a term ¢"F* (xF +G), then we would take xF'+G = 0
as a constraint. It would be interesting to explore this mechanism in other contexts.

Subleading terms. Our derivation of the MNC geometry made use of a field redefinition
involving the parameter ¢ which we then sought to send to oo and interpret as a non-
relativistic limit. This could be extended to a full non-relativistic expansion, including first
of all further subleading terms in the metric, with g, = CQTuV+C_1HMV+C_4XMV+. ..o Itis
possible to check that doing so does not affect the expansion of the action up to order ¢, and
it would be expected on general grounds [58] that the first appearance of the first subleading
terms simply re-imposes the equations of motion already encountered (as we saw with Cs
and the equations of motion of C3). In addition, we could reformulate the expansion by
introducing additional one-form gauge fields (as for this case in [48]), accompanied by a shift
symmetry, such that the three-form C,,, does not transform under boosts. The resulting
more general expansion could then be attacked order-by-order without necessarily sending
¢ — oo or truncating as we did. Here it would be interesting to compare with the approach
of [53], inputting the eleven-dimensional three-form as matter. A complicating feature,
relative to usual 1/c expansions of general relativity leading to Newton-Cartan [51, 52, 58]
for example, is that the longitudinal vielbein appears in both the metric and three-form
and does so at different orders in c.

Supersymmetry and non-uniqueness of non-relativistic 11-dimensional super-
gravity. We limited ourselves to an analysis of the bosonic geometry in this paper. The
supersymmetric extension presumably exists and should be constructed. At the level of
supersymmetric double and exceptional field theory, the logic would again be that changing
the parametrisation of the generalised vielbein is all that is needed to arrive at the desired
theory, and this seems to be possible without obstacles [57].
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Note that in this paper we started with a non-relativistic expansion tailored to the M2.
There should be a similar expansion based on the M5, in which we have six longitudinal
and five transverse directions. (This should reduce to the dual NSNS six-form expansion
discussed in the conclusions of [27].) This would then give a second non-relativistic version
of 11-dimensional supergravity, so although this is the unique maximal supergravity in
eleven dimensions, this uniqueness would then no longer hold in the non-relativistic setting.

Duality web and branes. An obvious goal for which this paper should be useful is
the study of the spacetime actions for the non-relativistic duality web [6] in 11- and 10-
dimensions. This can proceed both by applying standard dimensional reduction and dual-
isation to our 11-dimensional action, and by applying similar methods to individual super-
gravities by taking covariant non-relativistic limits associated to each p-brane present in the
theory. Here, we performed a dimensional reduction to type IIA, but we did not discuss the
expected T-duality relationship to type IIB, for example. Similarly, there is presumably a
heterotic SNC which could be obtained by reducing non-relativistic M-theory on a longitu-
dinal interval, although it is not immediately obvious what the result of reducing on a trans-
verse interval should be. Note that the appearance of the original and dual field strength
together in the 11-dimensional theory suggests that the appropriate formalism for describ-
ing generalisations of Newton-Cartan geometries in type 1I should be the formalism where
the RR p-forms are treated ‘democratically’ [59], accompanied by a self-duality constraint.

Here the double and exceptional field theory formulation may again prove a useful
guide. Beyond the usual suspects, exceptional field theory also offers a way to handle the
vast number of mixed symmetry tensors that appear coupling to exotic branes [60, 61].
It may not be unreasonable to suggest using the E7; ‘master’ ExF'T recently constructed
in [55], as this presumably provides scope to construct an infinite number of brane scaling
limits. Here there is no need to artificially split the coordinates and one can work with
11/10-dimensional quantities throughout, albeit at the obvious price of dealing with a very
infinite algebra.

The ExFT description in this paper demonstrates that the non-relativistic theory is also
controlled by the same exceptional Lie algebraic symmetries that appear in the relativistic
case. A distinction can be made between these symmetries as they are used in ExFT and
the actual U-duality symmetries present on toroidal reduction. As we saw in section (5.4),
U-duality transformations can ‘rotate’ between relativistic and non-relativistic theories.
This is also the case for T-duality of non-relativistic strings [16]. A non-trivial U-duality,
corresponding to an SL(2) inversion transformation in the SL(3) x SL(2) case, acts on
three directions in spacetime. To make a systematic study of U-duality of non-relativistic
theories, it would therefore be necessary to consider U-duality transformations acting on
0,1, 2 or 3 longitudinal directions and to check which of these do or do not take you back to
a relativistic theory. The SL(3) x SL(2) ExFT description of section (5.4) only allowed for
U-duality transformations acting on all three longitudinal directions, while the SL(5) ExFT
description presented in appendix B would allow for transformations acting on two or three
longitudinal directions. A precise group to consider would then be the Fgg) case which
can accommodate all possible types of U-dualities acting on the MNC geometry, with some
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subgroup corresponding to the strict U-duality symmetries of the non-relativistic theory.
This analysis is left for future work.

Another interesting question is to understand the consequences of the non-relativistic
limit on the brane spectrum of M-theory (and hence also of type IIA, after reducing).
The ‘decoupling’ of the transverse components of Fy and the longitudinal components F%
presumably means something at the level of the M2 and M5 branes coupling to the three-
and six-form: the analysis of [62] should be pertinent here. One could similarly enquire
about whether the duality constraint in the type IIA SNC theory can be seen at the level of
the string spectrum resulting from the quantisation of the non-relativistic superstring [63]

Obtaining brane solutions of the non-relativistic theory, whether by directly solving
the equations of motion or using U-duality as in section 5.4, is also an interesting ques-
tion. Interestingly, membrane solutions of 11-dimensional SUGRA with transverse self-
dual field strength were constructed in [64] and perhaps can be adapted or used in the
non-relativistic setting. Even the ‘flat’ spacetime solution may have interesting properties
including infinite-dimensional isometries as for the string case [14, 21, 57].
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A Dimensional decomposition of non-relativistic action for ExFT

Decomposition of R(®. Consider the part of the scalar curvature R(® as defined
in (2.23) not involving the longitudinal metric, but just the transverse metrics H a0 and
H™ and the measure factor . In the dimensional decomposition used in exceptional field
theory, the latter two factorise as

A N P

Hyp = UpPUp® Hyo,  H' = (U),MUY)"H” (A1)

5 5.0 A7 _ G 0 _ G" 0
= 4 = . HW = . A2
Vs ( 0 5#) ' K < 0 Hij) ( 0 H”) (A-2)

Here G*" is the inverse of G ,,,, but HY and H;; are not invertible. The idea is to completely

with

factor out the matrix U from derivatives of G. Defining

c%ﬁ”ﬁ = UA(%(U*l);\ﬁ(U*l)gﬁah&j‘k (A.3)
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we have the relatively simple expressions
a7 o D,uGVp HleuAul a7 o 8iGYz/p HklaiAul
8H#17f7 = = k = ) H“A’ﬁ - k
H;jD,A) D,Hj H;0;A%  0;Hjy,

— s [ DuG  —G"D AR\ . [ 9GP —GYOAS
OHT = (—GP"DHAOJ' D, H* ) - oI = (—GW&AJJ 0; H¥ (4.5)

o))

(A4)

where ]__7“ =0, — A,/’ai. For instance, consider the following terms in the scalar curvature:
L e —
EH“”GHM&(?H,;W — iHﬂyaHupaaH,}W. (A.6)
A fairly straightforward calculations shows that these equal
1 1 1 . | g
ZG“”D#GPJD,,G”" — iG’“’DMGWDPGW — ZGWGPUHMFWZFMJ + ZG”“D,LHUD,,H”
1. 1 ..
+ L HY (0iGpo0;G" + 0 Hyy0 H) — 5JjwainlakHj,
1 . y _ y
- 50+ HYHj,)D, A 0,G™ + G" HY Hjp A, R0, A (A7)
where FWi = 2D[uAl,f, D, = 0, — La,, and acting on G, and G*”, we have D), = Du‘
Next, consider the part of R(?) that involves 7

1 .- POU PO JoN
ZH“”E)ﬂ%ﬁ&c‘)ﬁp" + Z%“”aﬂTﬁgapHpo - 5%””&]1”"8,3@& —

Similar calculations to above give

1 g ‘ 1. _
LG Durig Dyt + g T 0. A, 0 A — ST Dy A OGH
A9

+1Hij8‘7' 9. 7% 1 7y, aAHkl_l 0o,  H 9, + _EHija ko, . (59)
4 iTk1O; T + 47- i Tk1Oj 2T ' kTil 9 7T OkTil

The terms involving Tika]‘ on the first line here combine with the terms involving H* H kj

in the last line of (A.7) and sum up to give 5;- = Hikaj +7‘ik7'kj, after which point the rest

of the calculation proceeds identically to that normally used in exceptional field theory.
Finally one has the terms

— GP9, 0 Q85 In Q4 29, n QIG,A” — 9,0,GF” — GF7 9,9, In (A.10)

where Q) has weight 1, and in the final two terms éu = D#, 0; = 9;. Note D, nQ) =
D“ In$) — &-Aui. We let ) = 0/|G[, where Q has weight 1 under internal diffeomor-
phisms. Straightforward manipulations allow one to rewrite (A.10) in the decomposition
and combine with (A.7) and (A.9) After dropping a total derivative, the final result is:

. 1 A )
RO(H,#) = Rext(G) + RO(H, 7) — 2 Fu' Fp? GM0 G i
1 . .
+ 1G" (D Hi;DyHY + Dy7ii Dy + Dy, In 02D, In Q?) (A.11)

4 iHij(&-GwajGW 4 0,1 |G|0;n |G))
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where

1 1 1
Rexi(g) = {G* DyuClpe DG — SG* DG DyGhg — G Dy In |G| D, In| G|

- D,In|G|D,G" - G"D,D, n |G| - D,D,G"", (A.12)
R(O)(H, T) = —l—%HijaiTkl@kal + %TijaiTklaijl — %Tijaijlakm — %Hijakalakm
- %Hiﬂ'aiﬂklajml — %Hifajﬂklakﬂﬂ — iHijailn 0%9,In Q2
— 0iln Q*0;H"Y — 0,0, H — H"9;0;,ln Q*. (A.13)
The measure factor is ) = Q/|G[. To obtain an Einstein frame action, we let
G = Q T4, . (A.14)

Gauge fields. The compact expressions (5.4) and (5.5) are equivalent to

Ciop = U AU 20505, 5, (415
Fpops = (U DM aU )2 U2 (U DM E, 5,
giving in components
Ciji = Cir, Clij = Chij — A Cijy.
C i = Cuvi — 2417 Cij + A A Cigye (A.16)
Cuvp = Cuvp — 3A[uicvp}i + 3A[uiAVij}ij - AﬂiAVjAPkCij’f )
Frinpg = 401 Cpg) » Frmnp = DpCranp = 393 C)ujnp]
Fpymn = 2D3Cjmn + F " Cpmn + 20mC)pun) »
Fvpm = 3D Copm + 3F 1" Cppmn = 0mCuup (A.17)

F,u,l/po = 4D[Mcypa] + GF[MVmeU]m7

where F),," is as defined in (5.3). The original Bianchi identity dFy = 0 becomes a set of

equations
D Fnpg = 405 F g »

2D F vy = =30 Fpuinp) = Flw* Fgmnp »
3D Fy pmn = 201 F uvpjn) + 3Fu”F plpmn » (A.18)
ADyFypolm = —OmF uvpo + 6F1" F poimp »
5D, Fypor) = 10F),," F poxim -
The above formulae are applicable to any dimensional reduction. In particular for the 11-
dimensional MNC theory they allow us to easily decompose the terms in the action (2.27).

For example, using the Einstein frame metric to raise indices, the kinetic terms for the field
strength are:

1 An A an A A A
_7HM1V1 HM2V2 HM3I/37_M4V4FA

12 u1112ﬂ3114Fl71ﬁ293174
1 _ iq v 1 — 1] v
= —EQG/(Q Drid FrPF 0 — 194/(9 DHIHE 0 F ) (A.19)
1 g 1 ..
— 192/ O o PR o FY 1 — ZH”H’“Hm"qu15‘1-,“7”,1«“]-[%.
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Similar manipulations apply to the rest of the action. Let us also indicate how the fac-
torisation applies to an equation of the form 95 X”7P% = ©"”P where X has weight 1, and
both X and © admit a factorisation via U~! in terms of quantities X and © independent
of bare A/ﬂ'. This is of course the form of the gauge field equation of motion (2.21). After
decomposing, one has the simple expression

N _ ... 3 S o
D, XMP7 4 gy X100ty §FH>\161[“X””]”’\ = 0P, (A.20)
Constraint. The constraint (2.26) decomposes in terms of the redefined strengths:

6 1 PO |
o9—a k A_B_C
\/EQQ_dgﬂlyl"‘g#4V4FI/1...I/4:_76H1 paps--vat 66ABCT7; Tj Tk FI?1...l747

4!
4 . 1 N 1
o A_B_C
\/§Q Q—dg/illll.”g#SVSHUFVIVQIjsj:_EEIJII p3 V4qu6€ABCTp Tq Ty Fﬁ1...ﬁ47
2 .. .. A ~
VgQIa gt ghe UL R R, :_%6‘““22”2“'"MWéEABCTpATqBTrCFm...mv
» » 1 .1 "
3]s 4307 ... B_C
\/§9M1V1 2 KRN & KENE] FVj1j2j3 :_Iﬁﬂ’bl 13V1 V4pqr66ABCTp 7o FI91--.194>
2 . o 1 . .. . 1 ~
—5— A_B_C
\/§Q 9-d H“Jl---HZ4]4Fj1j2j3j4:_I€“ 141 V4PqT6€ABC7—p Tq Tr Fl91-..l74'
(A.21)
For instance, when d = 3 only the first of these is non-zero, giving:
1 o1
a1 .. gk A_B_C
\/gQgﬂlyl .. 'gu4y4FV1...V4 = _*'6“1 VL. VAt —~€ABCT; Tj Tk Fyl...w“
* 6 (A.22)
— _ZEM~--H4V1-~V4QFV1WV4 .
When d = 4 only the first two are non-zero:
QQ Hivi Havs o _ 1 m---mm...uglijkl AL B_CE
\/.a 59 ... g Vi...V4 — _56 éeABcTi Tj Tk vivavsl s
, - 1 ' 1 B o (A.23)
\/.ang'ulyl e 'gMBVSHUmeVBj = _Eeul.”NSWLNMPQTEGABCTP Tq Tr FVl...V4 y
or if we take %EijkleABcTiATjBTkChl = () these are
1 1 1
\/§Q5g,ul’/1 . -9M4V4Fy1...u4 — 7776#1~--#4V1-~V3h Flllllzljgl ,
3 (A.24)
.. . 1
14 1% (] V...V, 1 =
\/ggﬂl T .gus 3 H szql/ngj — E776#1 H3v1 4l Q5FV1.,.V4 .

Here HY = h'h7 (as it has rank 1), and so both of these are equivalent.

Result. Putting everything together, the dimensional decomposition of the finite action
SO is:

50 — / A"~ A%\ /g(Rext(9) + Liin + Lint + L5+ /9 ' Lcs) - (A.25)
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Here, using ¢g"” to raise (11 — d)-dimensional indices, we have
Rext(g):ig"”DugpoDug””—%g“”Dug”nger%g“”DulngDulng
—i—%D#lngD,,g’“’, (A.26)
Lyin= i (D#Hij D"H;j+D, 7" D”Tij—gidD“anQD“thQ) %DHT,CATA’“DNTZBTBl
+-HYF eapc DP A rB 710 — iHU HMTPUF i, F g
Q71 (= Fp P Hyj 4 F iy e Ao B0 —HI M FPY )

1
— 5 S F y FPP (A.27)

+

I NN

and
- R v 1.2 i O— 52
Qo=d L1 = ZH J (81'9“ 8]-9“1, + 0;1n géj In g) + §Q9ﬂi az(H IQ 9*d)3j lng
1 .. 1 .. 1 .. 1 ..
+ ZH”(%TMOJ-TM + 1szaiTkl8ijl — §szaijl8kTil — iHljﬁkalakTil

1 .. 1 ..
+ ZH”ainla»Hkl — 5H”8~H“8kHil
1 d—7

- HY9;In 0?01 92—781 0*0;HY
Tio—ay " " 9 aom
1
4HZ]Hlemnquszmijlnq + HzmHjank’leABCTmn TkBTlC
1
—G—QH”TU.CAT ATl TB (A.28)

The term L consists of a sum of contractions of ﬁ'm,pa, ﬁ'm,pi, etc. (following analogous
redefinition of the components) with the constraints as decomposed in (A.21). For instance,
when d = 3,

Ly = —% Fups (\/9799“”’1 gy ixem'"WI"'MQF”'“”) A
In this case the relationship between the dual seven-form field strength and pra gives
éeiijul...uujk = (ﬁ‘m---/m + i!\/§€u1---u4m---V4ﬁ1ylmy4) ‘ (A.30)
When d = 4,
J. _% (Fuwzuszh _ /B A Aa0 08 i' \}gg‘”’“ . .gg3u31~7‘xl..,,\4>

1 (A.31)
% (\/§Q§9mu1 g F oy — 94!6”1"'“3V1"'V4FV1...V4) ,

Using (2.46) we can rewrite (A.31) in terms of the dual seven-form field strength directly as

1 g 1 ; 1
Lﬁ? == +wFM1...,u3ijk‘l€Z]kl (\/EQ—sgﬂlVl .. 'gu3y3h]Fl/1V21/3j 76111 HsvL- V4F1/1...1/4>

41
(A.32)
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Finally, the Chern-Simons term can be worked out by taking wedge products of (5.5)
and (5.4), we do not display this explicitly.

B The SL(5) ExFT and its non-relativistic parametrisation
In the d = 4 case, more of the degenerate Newton-Cartan structure is preserved.

Elements of SL(5) ExFT. For d = 4, generalised vectors VM = (V? V;;) transform in
the 10 of SL(5), with ,j,... now four-dimensional. This representation is the antisym-
metric representation, and we can see this more clearly as follows. Let M, N, ... denote
fundamental five-dimensional indices of SL(5). Then we can equivalently write a gener-
alised vector as carrying an antisymmetric pair of such indices, VM = YMN — _yN, M
and on writing M = (i,5) we can identify V® = V¢ and V¥ = %eijklvkl. The generalised
Lie derivative acting on vectors of weight Ay is explicitly

1 1
LAVMN = 5APQaPQvMN + 20po APMYNIQ | S+ w)opoAPeVMN - (B.1)

The section condition is eMNP2KYH,, NOpo = 0, and below we work with the M-theory
solution, where splitting M = (4, 5) the derivatives 0;; are viewed as identically zero, and
the derivatives 0;5 are identified with the 4-dimensional partial derivatives.

In this case, the generalised metric admits a factorisation

Mumnpa = —(mmpmon — maompy) (B.2)

where the ‘little metric’ maqns is symmetric and has unit determinant. The overall sign
in this expression needed for the ExFT action to reproduce SUGRA correctly when we
include timelike signatures in the generalised metric, according to the conventions of [40].

The gauge fields, A,M, B, CWPM and Do m have weights 1/5, 2/5, 3/5 and
4/5 respectively, with field strengths denoted .7-"WM s HuvpMs j#ypgN and KCppporns. Under
generalised diffeomorphisms, FM transforms as a generalised vector of weight 1/5, while
‘H and J transform via the generalised Lie derivative acting as

1 1
Eattrm = iApgaPQHM +HpomoAP?,  LATM = 0pg (2APQ~7M> — OpogATM T

(B.3)
They obey Bianchi identities:

1

3Dy, Fy M = 56MN7’Q’<37>QHW,C, (B.4)
3

4D[uHupa]M + ZGMNPICEGaﬁ‘F[,uVNPFpJ}KE - aNMjpupaNa <B5)

1
5D Tpor’™ + 10F,, N H o = 5 MV PR K i por ok - (B.6)

2
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The dynamics follow from the variation of an action S = [ d"z d'OyLegpr where Lpgpr
has the same form as (5.16), with Rey again as defined in (5.17), and [65]

1
EmMN Howp M P e (B.7)

1 1 1
Lint(m,g) = EMMNﬁMMKLaNMKL — §MMN8MMKL8KMLN + EaMMMNaN In|g|

1 1
Liin = +EDMMMNDMMMN— Z_/\/l]\/[NJ'_‘WIZ\/IJ—_‘;UJN_

1
+ZMMN (001 9,wONG"™ +OprIn|g|On1n|g]) . (B.8)

The topological term can be defined via its variation (again up to a choice of sign equivalent
to changing the sign of (5 in eleven-dimensional SUGRA):

1
6 - 4!

0Ltop = — Hh (25-’4u1 HpopgpnaM M ps ez + 6F g o AB, s MH s p e N

X 8NMACH1M2H3N~7M4---#7M) . (B_Q)

We refer to the original paper [65] or the review [45] for explicit details.

Review of 11-dimensional SUGRA embedding. We start with the little metric,
ma- The parametrisation reproducing (5.6) is

m — | 4|1/10 ( |¢|_1/2¢ij _|¢’|_1/2(Zsz'ké}C ) i L kg
My = 9] ~ o _ kot € =5 Chn
—[¢l 72w C 0] 2 (1) + |67 2onCC 3

(B.10)
For the gauge fields, we can again identify A/]y = (4,5, C uij)- However, we already req}lire
dualisations when treating the two-forms. We get four 7-dimensional two-forms, C,;
and a single three-form C’uyp. The latter can be dualised into an extra two-form, CN'W
(identifiable with the components C wvijkl of the six-form in eleven-dimensions) such that
B ~ (C’uw-, C~'W) gives a five-dimensional representation of SL(5). Meanwhile, we can
view C'Wp together with the four four-forms C uvpijk @s comprising the conjugate five-
dimensional representation. The equations of motion of the SL(5) ExFT then imply that
the field strengths of these two- and three-forms are related by duality. This involves the
seven-dimensional Hodge star acting on the seven-dimensional indices and the generalised
metric acting on the SL(5) indices:

1
\g\mMPHpr _ _Eeuupal...m;jglmml/\/l (Bll)

Again, the field strengths are all tensors under generalised diffeomorphisms, we may make
the (usual) identifications consistent with the Bianchi identities [45]

. . .. 1 .. ~ N A
]:,uzzzs = Fuuza ]:,uzlw = §EZ]kl(Fuukl - CklmF;wm) )
N 1 .00 =~ “ ~
,H,pri = _F,u,upiy ,H,pr5 = _IEUkl(Fuupijkl - 4F,u1/picjkl) ) (Blz)
~ . 1 .. ~ A N
jm/pas = —Fuvpo s Juvpo' = +§€Z]kl(FWpUjkl — CjiF yvpo) -
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Generalised metric. The distinction between Riemannian and non-Riemannian
parametrisations can be seen at the level of the unit-determinant five-by-five little gen-
eralised metric. For an M-theory parametrisation, this can be written as:

mii M5 1 . .
RO ) ,  mssdet(mi;) — fmi5mj5elklmequkapmlqmmr =1. (B.13)

e 6

M5 M55
If det(m;;) # O this leads to the Riemannian parametrisation (B.10) encoding a four-
dimensional metric, g;;, and a three-form, éijk. However, we can also have det(m;;) = 0
with m;; of rank 3 and this leads to a non-Riemannian parametrisation which was worked
out in [40]. We can rediscover this parametrisation by taking the non-relativistic limit
of (B.10) using (5.28). The resulting expression for maqn is
Tij %Hikeklm”eABCTlATmBTnC—TikC'k
ijekzmneABCTlATmBTnc_Tjkck Tijcicj_éejklmeABcHikaATlBTmCCi) )
(B.14)
in terms of four-dimensional Newton-Cartan variables and C* = %eijklcjkl. The unit

maun=0"4° (1
6

determinant constraint implies that

1.
ZfretagdieJan o o — ()2
— 3 € Tirj1 TingaTings Hinja = 7, (B.15)

which is the definition of Q2 in this case. As H;; has rank 1, we can introduce a projective
vielbein h; such that H;; = h;h; and we take

1.
EEijl6ABCTiATjBTkChl =1, (B.16)

choosing to fix an arbitrary sign (by sending A — —rAif necessary) which could appear
here (2 is assumed positive). Then (B.14) can be written as

" —Qh; — 7,C*
— 45 Tij i ik
MMN (—Qh ,

S . B.17
; — 7ixC* 1,;C'CI + 20N, C" (B.17)

which in this form can be checked to correspond to the parametrisation written down in [40]
from first principles. Note that the boost invariance, acting as

Shi = WAArs, 6C = —QNARIT,, TaAB =0, (B.18)

corresponds to a shift symmetry of the parametrisation (B.17) pointed out in [40]. This
generalises the Milne shift redundancy of the DFT non-Riemannian parametrisation [35].
Here we introduced the inverse vielbeins A’ and 7% 4 obeying the obvious relations

hihi =1, 7iar?+hh; =6, Tahi=0 740 =0, rar®=65.  (B.19)

The generalised metric in the 10 x 10 representation followng from the little metric (B.14)
can be seen to take the form (5.29), after rewriting in the basis where generalised indices
run over vector and two-form indices, and using the identities

€i1...i3k€j1---j3lTkl _ _3!92(le[i17_i2|j2|Hi3]j3 4 pizlia pielisl grislin Tj3[i17i2\j1|Hi3}jz) 7

€i1-..i3k€j1---j3lHkl — 31021l pizld2] fislis] (B.20)
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It is useful to record the explicit expression for the inverse little metric:

i — 90 tplicd) —Q-1p
mMN — 4/5 ( e 0 ) ) (B.21)

Clearly, variations dm™¥ with §m?> # 0 do not preserve this parametrisation. This means
that if we look at the equations of motion Ry = 0 of the generalised metric, we expect
that Rs5 = 0 provides an additional equation of motion that we would not find by varying
the action evaluated on the non-relativistic parametrisation.

Field strengths and self-duality in SL(5) ExFT. Our field strengths (B.12) are now

. . . 1 ..
»F,uyls = F,ulfla F,uu” = iewkl(Fuukl - CklmF;wm) )
1 ..
Hw/pi = _F;u/pi ) ,Huup5 _Eeljkl(Fuz/pijkl - 4F;wpicjkl) ) (B22)
. 1 ..
jquUE) = —FLps, juwwl = +§6wkl(FWp0jkl - Cjlequa) :

The kinetic terms (B.7) in the SL(5) ExFT action are:

1

_ZMMNFNVM‘F/M/N _ mMNH'quM/H#VpN

12
1 . . . . o
= -9 (Hig F™ Fp = PO st " P By + 76 CHE FY 3 F )

1 .
ZejklmFlijklm (B.23)

%94/5TijFuupiFij + %Q—l/\")hiFuupi
which match exactly the corresponding terms in (A.27) and (A.31), including the appear-
ance of components of the dual seven-form field strength.

We see again that the ExF'T description automatically contains the correct dual fields
to reproduce the non-relativistic action immediately. It’s worthwhile to go into some detail
about the appearance of dual fields in the relativistic case. As mentioned above, the decom-
position of the 11-dimensional three-form in the (7+4)-dimensional split produces four two-
forms, C wi and a single three-form, C uvp- We exchange the latter for an additional two-
form, C,,, in order to obtain the five-dimensional SL(5) multiplet Byyp = (C i, Cou)-
This is normally done by mtroducmg the two-form into the action as a Lagrange multlpher
enforcing the Bianchi 1dent1ty for FWPU When this is done, the terms involving F, in the
action are schematically Fynxr Fy—Con (dF4+. .. )+F4 A X3, where X3 denotes whatever
appears alongside Fy in the decomposition of the Chern-Simons term. Integrating by parts
one defines a field strength Hs ~ dC5 + X3 and treating F'4 then as an independent field,
one can integrate that out of the action to produce a kinetic term for Hz. The latter is
then the M = 5 component of the ExFT field strength H,,, 0, and in this way the ExEF'T
action matches the partially dualised SUGRA action.

In the non-relativistic theory, there is already no kinetic term for F4 in the decomposed
action, as seen from (A.27). It only appears (linearly) in the constraint term (A.31),
schematically in the form F'y A (*7%‘4 + nghi). So instead if we carry out the same
procedure, we find that F'y equation of motion sets H3 = *7%‘4 + nghi, which in this case
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exactly corresponds to the relationship between the dual seven-form and Fy as expressed
by (2.46). Hence now it is this H3 that we identify with H,, i1 via the above arguments.
All this exactly mirrors what happened for the SL(3) x SL(2) case.

We finish with a brief look at the equations of motion. The field strength 7., of the
gauge field C,,, only appears in the topological term. This gauge field also appears in the
field strength H,,,. Its equation of motion has the form dx4 NOHPN = (0 where

1
grveM = | SgmMPHIPp Ie*‘”""l"""*jal...m”’ : (B.24)

Meanwhile the equation of motion of B, A is

1 1
Dol(am™ ) + G PO Opo (VoM p T )
B.25

2
_Eeuy}\l.“)\5‘7:>\1>\2MNH>\3.-.A5N =0.

The M = 5 component combines with the M = 5 component of the Bianchi identity (B.6)
to give DPHWPE’ = 0. Hence we integrate and set §**?PM = (0. Let’s examine the content of
this constraint. Firstly, the 6**#5 component implies

) 1
QNG 0y — eI F o, gy =0 (B.26)

This is the 11-dimensional self-duality constraint (2.26) on the transverse part of the four-
form field strength, here decomposed as in (A.23). Secondly, setting §#vrt — CigHvP> = ()
and projecting gives

VIQUTVEFRP %6ﬂupalma44h[i|Fal...a4|jkl] =0,
4/5 _3A gpuvp . l LVpo]...04 Al 17kl o (B27)

VP TR, 4!6 T; 3!6 Fg, .k =0.

The first of these is part of the self-duality condition (2.47) obeyed by the totally lon-
gitudinal part of the dual-seven form. The second is part of the duality between the
partly longitudinal four-form and the rest of the seven-form. We see again that the ExFT
rearrangement of degrees of freedom exactly captures the novel features of the eleven-

dimensional non-relativistic limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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