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1 Introduction

The Swampland program [1–4] aims to characterize the effective field theories that can
arise as the low-energy limit of an Einsteinian theory of gravity. The strength of the
program comes from the myriad of string compactifications that support it, often in very
nontrivial ways. Another appealing feature that is slowly being uncovered shows that
Swampland constraints arise as consequences of general principles, such as absence of global
symmetries in quantum gravity, holography, or considerations about black hole dynamics.
Moreover the various Swampland criteria seem to form an inter-connected web of ideas
reinforcing one another and suggesting perhaps a unified set of principles. The large amount
of “experimental” evidence for Swampland constraints can be recast as evidence that these
general principles are probably correct. If so, we can apply them to situations which
are currently beyond reach of controlled string compactifications, such as SUSY breaking
situations like models of slow-rolling vacuum energy. This is how the Festina Lente (FL)
bound for charged particles in dS space came about [5]. The bound states that in dS space
the mass for every state of charge 1 under a U(1) gauge field with coupling g satisfies

m4

8πα ≥ V

wherem is the mass, α = g2

4π is the fine structure constant and V = Λ/8πG is the gravitating
vacuum energy density. The exact numerical coefficient of the bound was left undetermined
in [5]; in the present paper, we will see that consistency with the results of [6] fixes it to
the value quoted above.

The bound comes precisely from direct application of the principles behind the Weak
Gravity Conjecture (WGC) [7] to charged black holes in de Sitter space: Reissner-
Nordström-de Sitter black holes. In the context of dS space the consistency of the decay of
black holes much smaller than dS radius and avoiding super-extremality leads to the usual
WGC which puts an upper bound on the mass of charged elementary states: m < gMP .
Whereas if one considers large black holes whose size is comparable to dS radius and con-
sider their decay, avoiding superextremality leads to the FL bound which is a lower bound
on m. In other words (assuming the WGC state is charge 1) we have both an upper and
lower bound on its mass:

(8παV )1/4 < m < (8πα)1/2MP

This bound is nicely satisfied in our universe for the electron, giving a weak quantitative
prediction from Swampland principles. Note that aside from α the lower bound is close to
the neutrino mass scale and the upper bound is the Planck mass. It is interesting to note
that the lower and upper bounds on the mass together imply a lower bound on α,

8πα &
V

M4
P

.

Reassuringly this bound was previously proposed in [6] based on the magnetic form of
the WGC in dS space. This is a nice consistency check of the FL proposal. In other
words, the completeness of the magnetically charged spectrum (and the requirement that
the corresponding BH fit in dS) leads to this bound.
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The focus of [5] was mainly on the general relativistic computation motivating the
bound and only certain aspects of its phenomenological applications were touched upon.
The aim of this paper is twofold. On the one hand we would like to study the phenomeno-
logical implications in some more depth and on the other hand we wish to extend and
generalize the FL bound to other dimensions as well as non-trivial rolling scalar potentials
and dilatonic couplings. Along the way we find more motivation for the FL bound from
stringy considerations.

Any Swampland bound that applies to light particles is relevant for phenomenology,
and this is one of the main motivations behind our work. Since FL precludes the existence
of light charged fields, there cannot be a phase of the Standard Model where the weak
interaction is long range. As a consequence, there cannot be a local minimum at Φ = 0
for the Higgs potential. The other possibility consistent with non-abelian gauge fields and
FL, confinement, is realized by the gluons.

The scale set by the FL bound is tantalizingly close to the neutrino mass scale, but the
bound does not apply since the neutrinos are uncharged. We discuss a simple microscopic
scenario in which one can explicitly construct charged states satisfying the FL bound. In
addition to these, in this scenario we find that these charged states are accompanied by
neutral states at a similar mass scale. It would be interesting to see if this holds more
generally, potentially leading to an explanation of the neutrino mass scale. For other
connections between the Swampland principles and the neutrino mass scale see [8–16].

This paper is organized as follows. In section 2 we review the FL proposal and discuss
its generalizations to multi-field situations, towers of states, magnetic version, and discuss a
plausible microscopic scenario where an FL-like bound appears automatically. In section 3
we study the interplay of FL with dimensional reduction, and find that positive vacuum
energy together with FL suggests that to stabilize a quasi-dS solution from one in higher
dimension the stabilized radii should be smaller than Hubble scale. Section 4 discusses phe-
nomenological and model-building implications of the proposal, including neutrino physics
and statements about the requirement of instability at top of the Higgs potential. Sec-
tion 5 discusses the non-compact limit of FL, where gravity is decoupled. Section 6 studies
FL and the WGC in anti-brane uplift scenarios, where the branes are localized in a deep
throat of a compact geometry. We find that both statements are satisfied automatically,
as a consequence of the decoupling of the throat dynamics. But FL also constrains sectors
outside of the throat in the compact setup, which raises doubts about the basic logic un-
derlying anti-brane uplift scenarios which ignores the coupling of the anti-brane with the
bulk dynamics. Finally, we present our conclusions in section 7. Some computations and
additional results are relegated to appendices.

2 The Festina Lente proposal

The main character in this paper is the Festina Lente (FL) conjecture of [5], so we start
by reviewing the logic behind it, as well as its interplay with other Swampland constraints
in de Sitter such as TCC [17] and the de Sitter conjecture [18].
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Consider a long-lived de Sitter solution, meaning a positive vacuum energy configura-
tion in Einstein gravity such that there are no perturbative instabilities, and with a lifetime
of order the Hubble scale or longer (we do not expect it can be longer than (1/H) logH, as
this would violate the TCC [17]). We are interested in the case where the low-energy EFT
contains a long-range U(1) force. As we will explain below, there is no loss of generality in
considering the abelian case.

For simplicity, we start discussing a single U(1) gauge field with no dilaton coupling.
Extensions to the case of multiple U(1)’s and scalar fields are discussed further below. The
low-energy EFT for the gauge-gravity sector is just the d-dimensional Einstein-Maxwell
Lagrangian,

S =
∫
ddx
√
−g

[1
2M

d−2
p R− 1

4g2FµνF
µν − V

]
. (2.1)

Here, M2
p = 8π

G and V is the cosmological constant/vacuum energy, related to the de Sitter
radius ` ≡ 1/H as

(d− 1)(d− 2)
2`2d

= M2−d
p V. (2.2)

Such an EFT, if valid, assumes full moduli stabilisation.
It is by now a familiar fact that consistency with quantum gravity imposes nontrivial

constraints on the spectrum of charged states in the theory. In particular, we must impose
the Weak Gravity Conjecture (WGC), proposed in [7] and further studied in e.g. [19–23],
which bounds the charge-to-mass ratio of charged particles,

gq

m
≥

√
d− 3
d− 2M

− (d−2)
2

p for some charged state in the theory. (2.3)

Here, q is the integer-quantized electric charge of the particle. This bound is related to
the evaporation of small, near-extremal charged black holes [7]. On the other hand, the
arguments in [5] suggest that, for positive vacuum energy, we must impose the additional
condition

m4 & (gq)2V for every charged state in the theory. (2.4)

Equation (2.4) is the FL proposal. Note that the inequality (2.4) remains the same in any
number of dimensions, since the gauge coupling has units of Energy2−d/2. Also, in the
original analysis of [5], the O(1) factor is left undetermined, since it comes from the details
of the spectrum and the Schwinger effect at strong coupling. In section 2.2.3 of the present
paper, we will see how it can be fixed by consistency with the analysis of [6].

Just like the WGC, (2.4) is supported by arguments coming from black hole physics,
which we now review. For simplicity of the presentation we now carry on with d = 4.
The action (2.1) admits charged black hole solutions known as the Reissner-Nordström de
Sitter family:

ds2 = −U(r)dt2 + dr2

U(r) + r2dΩ2
2 , (2.5)

F2 = g2

4π
Q

r2dt ∧ dr , (2.6)
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Figure 1. The family of Reissner-Nordström-de Sitter black holes with the dimensionless parame-
ters M ≡ GM

`4
, Q2 ≡ Gg2Q2

4π`2
4

with `4 the dS length H−1. Sub-extremal solutions only exist inside
the shark-fin shaped region. The boundary of this allowed region has two branches: on the left
branch one has extremal RN-dS black holes, which have a AdS2×S2 horizon. On the right branch
one has charged Nariai black holes for which the black hole and cosmological horizons coincide and
become a dS2×S2. The orange dashed line is the “lukewarm line” Q = M , where the two horizons
have the same temperature. Picture taken from [24].

where
U(r) = 1− 2GM

r
+ G(Qg)2

4πr2 − r2

`24
. (2.7)

In contrast to Minkowski and AdS black holes, which can be arbitrarily large, there is a
maximum size that a black hole in de Sitter space can have. Physically, this limitation
comes about because a static black hole solution must fit within its own cosmological
horizon; this means that the black hole horizon is smaller than the cosmological one. See
figure 1.

The limit where the two approach each other is realized by a near-horizon geometry
of the form dS2 × S2, also known as the (charged) Nariai metric [25, 26]

ds2 = −
(

1− ρ2

`22

)
dτ2 +

(
1− ρ2

`22

)−1

dρ2 + r2
cdΩ2 , (2.8)

F2 = g2

4π
Q

r2
c

dρ ∧ dτ , (2.9)

where

`22 =
(

3− Gg2Q2

4π`24r4
c

)−1

`24 , rc = 1
6

(
1 +

√
1− 12Gg

2Q2

4π`24

)
`4 . (2.10)
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These charged Nariai solutions are a family of classically stable, “extremal” black hole
solutions [26].

The WGC implies that nonsupersymmetric charged black holes must be kinematically
allowed to evaporate [7] and FL comes from applying a similar principle to the Nariai
solutions. Including charged matter causes evaporation of the charged Nariai solutions as
analyzed in detail in [5, 27]. The decay is triggered by Schwinger pair production in the
near-horizon electric field, which is controlled by a rate

Γ ∼ exp
(
−m

2

qE

)
= exp

(
− m2

(gq
√
V )

)
. (2.11)

In the last inequality, we have substituted the typical electric field of the Nariai black
hole, which is of order gMPH = g

√
V . As shown in [5], the fate of the black hole is

very different depending on whether (2.11) is exponentially suppressed or not. There, it
was found that if the charged matter is very light, such that (2.4) is not satisfied, charged
Nariai black holes do not evaporate back to empty de Sitter space; instead, they crunch and
develop arbitrarily high curvatures in a time of order 1/H. This is because their electric
field is quickly screened by Schwinger pair production. By contrast, if (2.4) is satisfied,
then all black holes slowly evaporate towards empty de Sitter space in the usual fashion.
Demanding that the first case does not take place then leads to (2.4).

We do not usually throw away a theory just because a particular solution happens to
crunch or otherwise become singular. However, as studied in [5], charged Nariai black holes
crunching in this way are effectively becoming super-extremal, having more mass than that
of the neutral Nariai black hole — more mass than what can be fit in the de Sitter static
patch. For near-extremal black holes in Minkowski, avoidance of naked singularities and
superextremal solutions leads to the WGC [7]. Avoiding a similar pathology in dS suggests
that one should impose (2.4) as a Swampland constraint. Thus the FL bound, together
with the weak gravity bound, ensure that black holes never become super-extremal in de
Sitter space.

Nariai black holes are an essential ingredient in the derivation of the bound. They
always exist as solution to the equations of motion, and are continuously connected to
smaller black holes, so there is no obvious way to get rid of them without introducing an
arbitrary cut-off in charge or configuration space. On top of this, they can be produced
from the vacuum via nonperturbative effects. In particular, see the discussion around
page 15 of [28] and references therein, which describe a family of instanton solutions in
the pure Einstein-Maxwell theory that interpolate between empty dS space and charged
Nariai solutions. It would be interesting to study the fate of these instantons when light
charged matter is present.

Finally, we would like to offer a speculation. The WGC is connected to Weak Cosmic
Censorship (WCC) [29, 30], the idea that there should be no naked singularities that are
not cloaked by horizons. These would appear if an extremal black hole could evaporate
by emission of sub-extremal particles, becoming superextremal. Similarly, the Big Crunch
singularities in an overextremal Nariai solution are visible to every observer, and not cloaked
by a horizon (unlike the curvature singularity of a Schwarzschild black hole). So if an
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extension of WCC ideas forbids spacelike singularities outside horizons, that would provide
a rationale for the FL bound (and much more, as it would restrict the allowed set of initial
conditions in GR).

2.1 FL bound for runaway potentials

As explained above, in order to apply the FL bound we require the existence of a charged
Nariai black hole solution. Because of this [5], FL focused on the case of a quasi-de Sitter
background, with no perturbative instabilities and a lifetime of a Hubble time or larger,
such as our own universe.1 However, even a fast runaway scalar potential can still admit
Nariai solutions under certain conditions, as pointed out in [24] and we recall now. This
allows for a generalization of FL to certain cases with runaway potential.

Consider a four-dimensional theory with a scalar rolling in a potential V > 0 (an
inflaton or quintessence field) and a U(1) gauge field. Generically, the scalar φ will couple
to the gauge field and we obtain an action of the form2

S =
∫ √
|g|
(1

2M
2
pR−

1
2(∂φ)2 − 1

4f(φ)FµνFµν − V (φ)
)

+ matter . (2.12)

The construction, or even existence, of black hole solutions within such a theory can be
involved, see for instance [31]. In dS space the boundary of the diagram of black hole
solutions in dS space consists of (AdS2, Mink2, dS2) × S2 solutions with the Minkowski
solution forming the crossover from AdS2 to dS2. Similarly here, the boundary can be
explicitly constructed simply from an S2 compactification with electric and magnetic fluxes
(charges) as shown in [24]. The Nariai solutions would then correspond to the dS2 × S2

branch. If one is to choose freely both magnetic and electric black hole charges than there
will be always a Nariai branch, as long as the following inequality is fulfilled:∣∣∣∣V ′V

∣∣∣∣ < ∣∣∣∣f ′f
∣∣∣∣ . (2.13)

Note that this is a necessary requirement for application of FL and seems to be in tension
with dS conjecture [18]. However, it could be that this is still compatible with dS conjecture
as long as the right hand side of the above inequality is bigger than the O(1) number in
the statement of the dS conjecture.3

Even if we have a dS2 × S2 solution, we require it to be classically stable under scalar
perturbations for our arguments against the existence of light charged matter to apply. In
case the Nariai black hole is purely electric (when f ′ and V ′ have the same sign) perturbative
stability requires [24]

V ′′ >
V ′

f ′

(
f ′′ − 2f

′2

f

)
. (2.14)

1In such a scenario, the bad crunching singularity of the superextremal Nariai geometry is reached before
the instability of the parent dS vacuum can be triggered.

2One may add to this action a term θ
8π2F ∧ F . In this case the bounds that follow also depend on θ,

see [24] for further details. One can then rewrite the equations in terms of τ = 2πif(φ) + θ
2π .

3Note that most of the evidence for dS conjecture comes from weak asymptotic regions of parameter
space and it is conceivable that the dS conjecture is replaced by TCC [17] more generally which would be
compatible with the above inequality.
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The generalization of these results to higher dimensions is straightforward, and is
carried out in appendix B. Here we merely quote the results: a d-dimensional theory has
Nariai-like solutions of the form dS2 × Sd−2 supported by electric flux through the dS2

only if the potential and gauge kinetic functions satisfy

V ′

V
< (d− 3)f

′

f
and sign(V ′) = sign(f ′) . (2.15)

Equation (2.14) on the other hand remains unchanged.
In particular, notice that (2.15) cannot be satisfied for d ≤ 3. As it is often the case

whenever gauge or gravitational fields are involved, the three-dimensional case is special
and set apart from the others; there are no Nariai solutions. For d ≥ 4, if a Nariai solution
exists because (2.15) is satisfied and if it is perturbatively stable because (2.14) is satisfied,
we can use the same argument against the existence of light charged matter arriving at the
FL bound (2.4). We therefore arrive at the full statement of the FL bound that we use in
this paper, and box it for easy referencing:4

The Festina Lente (FL) bound. If the signs of V ′ and f ′ are the same, and the
inequalities

V ′

V
≤ (d− 3)f

′

f
and V ′′ ≥ V ′

f ′

(
f ′′ − 2f

′2

f

)
(2.16)

are satisfied, there exist classically stable electric Nariai solutions to which we can
apply the bound that every particle of charge q and massmmust satisfy the inequality

m4 & 6(gqMPH)2 = 2(gq)2V. (2.17)

We finish with a technical note. For general d, the existence condition (2.13) comes
from analyzing an electric Nariai solution, with topology dS2 × Sd−2. For this solution
to exist, it is necessary that the signs of f ′ and V ′ are the same. It is often the case in
asymptotic limits in string compactifications that there is a limit where both the vacuum
energy and the gauge coupling vanish asymptotically [4, 32]. In the special case of four
dimensions, however, one can make the argument with both the electric and magnetic
U(1)’s. In this case, by considering solutions with magnetic charge, we can ensure there
is always a Nariai solution, irrespectively of the relative sign of V ′ and f ′ (if (2.13) is
obeyed). If the black hole has electric charge as well, and is comparable to the magnetic
one, the evaporation analysis of [5] still holds. Furthermore, in the case where only magnetic
fields are involved, a more heuristic argument involving instability via pair production of
magnetic dipoles can be made, with the same parametric behavior as (2.17) (see section 4).
To sum up, only in d = 4, the condition that f ′ and V ′ have the same signs in (2.17) can
be dropped, if we allow for consideration of dyonic black holes.

4Although it does not follow from the analysis we have presented so far, we have also substituted the
precise O(1) coefficient that follows from consistency with magnetic versions of the WGC in de Sitter, which
will be analyzed in section 2.2.3.
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2.2 Generalisations of the FL bound

As we discussed in the introduction, one of the main points of this paper is to give the
FL inequality the same treatment as any other Swampland constraint — and work out its
generalizations in various situations, such as multiple fields, or the magnetic version. We
discuss a few of these in the following:

2.2.1 FL-bound for a tower of charged particles

UV completions of effective field theories sometimes imply that a state in an EFT is
the lightest state of an infinite tower [2–4]. Hence it makes sense to check whether the
FL bound is changed in the presence of a tower of charged states. Intuitively, a tower
amplifies the Schwinger-pair process since more particles are taking part in the decay
process. For a single particle species, the Schwinger pair production rate is governed by the
exponential (2.11). But more generally, we should take into account every particle species,
and impose Γ � 1. In presence of a tower of unit charged particles with degeneracies
N(mi) per mass mi this becomes

Γ ∼
∑
i

N(mi)e
−

m2
i

qgHMp →
∫
dmρ(m)e−

m2
qgHMp � 1, (2.18)

where the last step introduces a density function in the continuum limit. Later in this paper
we will discuss string theoretic examples of the FL bound from dS constructions based on
warped throats and then this tower condition will be required since warping lowers the
mass of otherwise heavy particles within a tower.

2.2.2 Multi-field generalization

The FL bound can also be straightforwardly generalized to the case of several U(1) fields.
This multi-field generalization is discussed in more detail in appendix A and reads:

m4 � qAqB(f−1)AB(MpH)2 , (2.19)

where fAB appears in the gauge kinetic function, −1
4fAB(φ)FAFB, and qA is the electric

charge vector of the particle with mass m. Further extensions to multi-field theories with
dyonic particles can also be found in the appendix A.

2.2.3 Magnetic version of the FL inequality

The WGC comes in two versions: an electric version constraining the mass spectrum of
the theory, and a magnetic version constraining the cut-off scale of the EFT. Since the
FL inequality (2.17) constrains the masses of the particles in the theory, it resembles an
“electric” version. We now wish to formulate its magnetic version.

The magnetic version of the WGC [7] states that the UV cut-off scale of an EFT is
bounded by

ΛEFT ≤ gMP . (2.20)

This was originally argued by demanding that the monopole state of unit charge is
outside its own horizon, i.e. that it is not a black hole. In [6], this rationale for the magnetic
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WGC was extended to four-dimensional de Sitter space. By demanding that a monopole
of charge one should never be a (Nariai) black hole, (2.20) is modified in such a way that a
precise lower bound in the gauge coupling can be obtained. We now review the argument.5
Consider a magnetic monopole of mass M and radius 1/ΛEFT, given by the inverse cut-
off of the effective field theory. In [7] and [6] the estimate M ∼ ΛEFT/g

2 is used, which
introduces uncontrolled O(1) factors and neglects contributions coming from the core of
the monopole, which could be larger, or even negative, as the tension of orientifold planes
in string theory. In de Sitter space, as we will see, we can do better.

The basic argument behind the magnetic WGC in [7] is that the monopole of charge
one should be a fundamental particle, i.e. it should not be a black hole. As a result, the
exterior field of the monopole (beyond r ∼ 1/ΛEFT) should be described by a subextremal
magnetically charged Reissner-Nordstrom-dS solution (see section 2). Following [6], the
polynomial

P (r, M̃ , Q̃) ≡ −r2U(r) = r4

`24
+ 2M̃r − Q̃2n2 − r2 (2.21)

must be ≤ 0 when evaluated at r = Λ−1
EFT. We have defined

M̃ = GM, Q̃2n2 = G

4π
Q2
m

g2 = Gπ

g2 n
2 (2.22)

in terms of the integer monopole charge n. Setting n = 1, the extension of the magnetic
WGC argument to RN-dS black holes yields an implicit equation

P (Λ−1
EFT, M̃ , Q̃) ≤ 0. (2.23)

For a given M̃, Q̃, the above equation gives Λ−1
EFT implicitly, as the horizon radius of the

corresponding black hole in figure 1. This horizon radius is certainly larger than that of
the extremal black hole, and smaller than that of the Nariai black hole. So in de Sitter we
get both lower and upper bounds on the cut-off,

r+
`4

=
√

1
6

(
1−

√
1− 12Q̃2/`24

)
≤ 1

ΛEFT`4
≤
√

1
6

(
1 +

√
1− 12Q̃2/`24

)
= rNariaic

`4
. (2.24)

The lower bound becomes the usual magnetic WGC, if Q̃ is small enough. On the other
hand, for Q̃ large, the two bounds become comparable, and the magnetic WGC cut-off is
much smaller than its flat space counterpart. There is a sharp value, defined by

Q̃2

`24
= 1

12 , (2.25)

beyond which no magnetic Nariai solutions exist. This means that the coupling is so weak
that not even the fundamental magnetic monopole fits in the static patch. Thus, the

5The analysis in this section is different from that in [6], since they used the neutral Nariai black
hole instead of the magnetically charged one to estimate the radius. This produces the same parametric
dependence, so the qualitative conclusions are the same, but getting the factors right allows one to get a
precise bound on the gauge coupling, which we will use to fix the O(1) factors in FL.

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
0
0
9

magnetic WGC argument in dS produces a sharp bound on the gauge coupling, obtained
by rearranging (2.25), which is simply

g2 ≥ 3
2

(
H

MP

)2
. (2.26)

Parametrically, this is the same as the bound in [6], and it is also equivalent to demanding
that the ordinary flat-space magnetic WGC cut-off gMP should not be below the Hub-
ble scale.6

In the case of the WGC, the magnetic WGC scale argued as above also coincides
with the mass of the WGC particle, showing that the two are sides of the same coin.
Interestingly, the same happens with FL and (2.26), modulo O(1) coefficients. FL has to
be satisfied for every particle in the spectrum, and in particular it must be satisfied for a
WGC particle of unit charge, which has m . gMP . Combining these two, one gets

m . gMP and m2 & gMPH ⇒ g &
H

MP
, (2.27)

so we also recover (2.26). This provides a mild consistency check of the FL proposal,
since there is the same relationship between electric/magnetic arguments as there was for
electric/magnetic WGC. But more interestingly, it offers an opportunity to fix the undeter-
mined O(1) factor in the FL bound. Requiring that the derivation (2.27) reproduces (2.26),
together with a sharp formulation for electric WGC obtained from the exact extremality
condition of small electric RN black holes, which is M ≤

√
2gMPQ (and we remind the

reader that in our conventions M2
P = (8πG)−1), fixes the FL bound to

m2 ≥
√

6 gMPH. (2.28)

It would be very interesting to test this concrete prediction for the O(1) coefficient against
the result coming from a detailed analysis of the particle production process via the
Schwinger effect in the charged Nariai geometry. We also notice that

√
6gMPH coincides

with the electric field of the ultracold Nariai black hole, the one at the tip of the shark fin
in figure 1, where the extremal and Nariai branches meet. The physics of this point, which
has a local Mink2 × S2 near-horizon geometry, should be studied more thoroughly.

Expanding the left hand bound in (2.24) in Q̃2/`24 one finds

ΛEFT <
√

8gMP −
3
2

H2
√

8gMP

−O
(
H4

M3
P

)
. (2.29)

The leading term reproduces the flat space magnetic WGC (2.20). We can now interpret
the FL bound (2.17) as an upper bound on g and use this to obtain

ΛEFT <
2√
3
m2

H
− 3
√

3
4

H3

m2 −O
(
H7

m6

)
. (2.30)

6We thank Irene Valenzuela for pointing this out to us.
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We see that the EFT cut-off scale is bounded by the mass of the charge carriers in the
theory.7 If we fill in real world numbers for the electron m2

e ∼ 1011 eV2 and H ∼ 10−33 eV,
we find a bound ΛEFT ≤ 1035 GeV, far above the Planck scale. Even employing the
neutrino mass, the bound is a few orders of magnitude above Planck, so the bound (2.31)
lacks interest unless one has very light charged states in the theory. The bound (2.30) is
independent of g. Thus, we can entertain the idea of applying it even to spontaneously
broken symmetries, although we do not have a solid justification for this. For instance,
for ΛEFT ∼MGUT ∼ 1015 GeV, a particle saturating the bound would have a mass around
10−5 eV, a couple orders of magnitude below the neutrino mass scale. Requiring the left
hand bound in (2.24) to be real and using (2.17) as an upper bound on g, we obtain

m2 > 3H2 = V

M2
P

, (2.31)

the mass of the lightest charged particles must remain heavier than the Hubble scale for
the EFT to be sensible, a statement which is independent of g.

2.2.4 Rotating black holes

Nariai black holes that rotate instead of being charged are a good testing ground for the
general principle behind the Festina Lente idea. Morally speaking, a rotating Nariai black
hole is very similar to a charged electric one, except that electric charge is replaced by
angular momentum. The loss of electric charge via pair production is replaced by a loss of
angular momentum via emission of radiation, a process that can happen either classically
(superradiance) or quantum-mechanically. One might then worry that e.g. maybe the
orbital modes of the graviton, which have effective two-dimensional masses controlled by
H, might be enough to trigger quick discharge of the black hole. However, this is not
what happens; classically, superradiance shuts off in the Nariai limit [35, 36]. Quantum-
mechanically, there can still be pair-production of particles due to the time-dependent
metric, and these particles can take away angular momentum. The proper way to analyze
the problem is to decompose four-dimensional fields in spherical harmonics, and study
particle production in the effective two-dimensional geometry. Reference [35] did this, and
found that the equations of motion are very much the same as those for an electrically
charged particle in dS2, with an effective 2d electric field E ∝ H2 that scales like H2

instead of H as in the charged case. This means that, by following the same logic as in [5],
one can impose (2.4), but MpH gets replaced by H2. As a result, the bound becomes

m2d & H, (2.32)

and all 2d modes whose effective masses are & H satisfy the rotating version of the FL
bound (although a mass of order Hubble means the corresponding field is close to saturating

7This is reminiscent of the proposed bound ΛEFT ≤
√
gmMP for pure QED in [33, 34]. In this case

too the charge carriers provide a (much stronger) upper bound on the EFT cut-off scale, albeit stemming
from non-trivial assumptions about the scattering amplitudes. Note that the cut-off in [34] is dependent
on the complete particle spectrum of the theory and is for instance heavily modified going from QED to
electroweak theory.
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the bound; it would be interesting to explore how sharply the bound needs to be obeyed for
consistency). A mass of order H is also the lowest energy that can be measured in de Sitter
space; intuitively, to measure energies below H, one would need to set up an experiment
bigger than the cosmological horizon. Relatedly, modes whose effective mass is below H

are frozen by Hubble friction; and empty dS space has a thermal bath at temperature
H/2π [37]. Thus, on physical grounds, a bound like (2.32) is satisfied automatically in de
Sitter space.

Equation (2.32) in particular applies to the orbital modes of the graviton or a U(1)
gauge field, which will not trigger a catastrophic decay. Thus, the FL bound behaves very
much like the WGC, in the sense that there is no version of it involving angular momentum
instead of U(1) charge, because Kerr black holes can already decay towards sub-extremality
by emitting gravitational radiation.

The above arguments are qualitative. But [38] recently computed numerically the
spindown of an extremal Kerr black hole, taking into account quantum effects due to grav-
ity, scalar, and electromagnetic sources, finding that the black holes evaporate smoothly
towards empty de Sitter space, similarly to the quasistatic discharge of electric black holes
in [5]. These results confirm the arguments in this section.

2.3 The FL bound from domain wall dynamics

Above we described the “macroscopic” motivation for FL, coming from the decay of Nariai
black holes, as outlined in [5], making the similarities to the WGC apparent. Unlike
for the WGC, however, we do not understand the microscopic reasons for FL even in a
single example, because we do not have a controlled dS solution in string theory. There
is probably not a single, universal microscopic mechanism, just like for the WGC, which
is realized due to different microscopic reasons in each particular model. For instance, in
heterotic compactifications, the WGC can be traced to the −1 in the left-mover zero-point
energy of the heterotic worldsheet, or due to the size of the cycles wrapped by branes, for
RR U(1)’s [7].

In this subsection, we entertain a particular class of models where a microscopic deriva-
tion of the physics behind FL can be analyzed. While we do not expect it to be completely
general, it will cover some of the stringy evidence that we discuss in section 6 in particular
for anti-brane uplifting.

The scenario that we consider is that of a hypothetical quasi-de Sitter, supported by
a top-form flux. This means that the effective four-dimensional action contains a term

S ⊃ −1
2

∫
|F4|2, (2.33)

similarly to the Bousso-Polchinski scenario [39]. We can also allow for several top-forms,
but will restrict to one for simplicity. The 4-form F4 takes on a quantized vev, F4 = g3n,
and the vacuum energy is simply

V = 1
2g

2
3n

2, n ∈ Z. (2.34)
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In such a scenario, completeness of the spectrum [40] requires the presence of membranes
that mediate transitions

n→ n′ (2.35)
and which allow the top-form flux to discharge, via the Brown-Teitelboim nucleation pro-
cess [41], hence making the de Sitter space decay (see [42] for an effective potential de-
scription of the case where the transitions happen very quickly). When the critical radius
of the bubble is much smaller than the size of de Sitter, we can reliably use the flat-space
formula [43]

Γ ∼ exp
(
−27π2

2
T 4

(∆V )3

)
, (2.36)

where ∆V is the change in vacuum energy and T the tension of the bubble wall. This is
the four-dimensional result; in d dimensions, the action goes as T d/(∆V )d−1.

It is often the case in string theory that the membranes that mediate vacuum decay
have worldvolume fields of their own; for instance, if F4 is a RR flux, the domain wall will be
a D-brane, which will contain worldvolume gauge fields, and often these worldvolume gauge
fields can turn on additional spacetime charges on the membrane, due to the existence of
topological couplings in their worldvolume. This is the case we will be interested: consider
a membrane with a worldvolume U(1) gauge field Ã and a coupling∫

Membrane
A ∧ F̃ , (2.37)

in its worldvolume, where A is the bulk U(1) photon we are considering. By turning on
F̃ , a spherical membrane (wrapped on a contractible S2 in a spatial slice of de Sitter) gets
electric charge under the U(1), thus producing a kind of “membrane-particle”. This can
also be understood as the statement that the electrically charged particle can polarize into
a membrane via the Myers effect [44].8

We will now estimate the mass of this “membrane-particle” that can be obtained by
considering a spherical membrane with one unit of worldvolume flux included. Again, we
emphasize that in stringy setups, this is nothing but a polarized brane with finite size due
to the Myers effect. The charge prevents the membrane from collapsing, via its electrostatic
repulsion, and classically stabilizes it at a radius (in four dimensions)

R ∼
(
g2/2T

)1/3
. (2.38)

For small coupling, this radius is below the typical Compton wavelength of a membrane
state, T−1/3, which suggests that quantum effects will be important, and the classical
estimate for the mass of the membrane-particle will not be reliable. In any case, as long as
the typical size of the membrane-particle is much smaller than the Hubble scale (so that
T 1/3 � H), dimensional analysis forces a relation of the form

E ∼ g
α
4 T 1/3, (2.39)

8One can wonder whether this argument can be repeated in other dimensions since the right kind of
couplings might not exist. As explained in [45] NS5 (and KK5) branes in IIA/IIB tend to have various
forms of different ranks on their worldvolume that can be given a flux to provide the right kind of couplings
for brane polarisation effect to occur.
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for some value of α. For instance, using the classical electrostatic estimate for the en-
ergy of the membrane-particle coming from the electrostatic energy of a distribution with
radius (2.38) gives α = 16/3. Assuming that the vacuum decays via flux discharge, it
is natural to assume ∆V < V , since the latter corresponds to full discharge of the flux.
Stability under discharge then implies

T 4/3 & ∆V > V , (2.40)

and combining with equation (2.39) leads to a relation of the form

m4

V
& gα (2.41)

for some α. This is precisely the form of the FL inequality (2.17), for α = 2. The classical
value α = 16/3 produces a weaker bound; as we will see, in concrete examples where the
mass can be computed precisely, such as the KPV setup discussed in section 6, corrections
change the value of α to something ≥ 2. This establishes that a natural microscopic
mechanism which is familiar from string compactifications, brane polarization, naturally
leads to a relation of the FL type.

Another interesting aspect of this construction is that the charged states predicted
in this way are part of a larger tower of particles which would be obtained by quantizing
the membrane (similarly, but much more difficult, to what we do with the fundamental
string in perturbative string theory [46, 47]). Thus, in this scenario, the charged particles
satisfying FL are accompanied by neutral ones whose masses satisfy roughly the same
relation m4 ∼ V . We cannot help but notice that this is precisely the observed relation for
neutrino masses [8–16, 48, 49], and although the picture outlined here is very sketchy, with
many important details we have not addressed such as e.g. the lifetime of these neutral
particles, we feel it deserves further study.

Finally, we should remark that the mechanism outlined here, relying on the cou-
pling (2.37), probably only applies in four dimensions or lower, since the estimate (2.39)
produces a different power of T in higher dimensions, while (2.17) remains the same in any
dimension, and the agreement between the two is lost. This suggests that the “membrane-
particle” mechanism for higher-dimensional de Sitter is specific to four(or less)-dimensional
solutions with positive cosmological constant.

3 FL and dimensional reduction

Consistency of a Swampland bound under dimensional reduction can serve as both a strin-
gent consistency check and a fruitful avenue to learn new information about Swampland
conjectures [16, 50, 51]. We will now apply the same kind of logic to Festina Lente. To
keep things concrete, we will consider dimensional reduction of the pure gravity sector of
a theory in (d+ 1)-dimensions on a circle.

Our theory in (d+ 1) dimensions is simply Einsteinian gravity with positive cosmolog-
ical constant:

S = 1
8πGd+1

∫ √
|g| (R− 2Λd+1) . (3.1)

– 15 –



J
H
E
P
1
0
(
2
0
2
1
)
0
0
9

Reduction on S1 proceeds via the ansatz:

ds2
d+1 = e−2αφds2

d +R2
0e

2(d−2)αφ(dy −A)2. (3.2)

Here Aµ is the Kaluza-Klein vector. There is a single modulus φ, which parametrizes the
size of the additional circle. To canonically normalize the volume scalar φ, we chose

α = − 1√
2(d− 1)(d− 2)

. (3.3)

With this choice of α, the physical size of the circle in (d+ 1) dimensions is

R = R0 e
κφ,, κ ≡

√
d− 2

2(d− 1) , (3.4)

so that φ→∞ is the decompactification limit.
The effective action in d dimensions then reads [50]

S = 1
16πGd

∫ √
|g|
(
R− 1

2(∂φ)2−R
2
0

2 eγφFµνF
µν−2Λd+1e

−δφ−(16πGd)VCasimir(φ)
)
, (3.5)

where Gd = (2πR0)−1Gd+1 and

γ =
√

2(d− 1)
d− 2 , δ = γ

d− 1 = −2α. (3.6)

The KK photon above is not normalized canonically. The canonical normalization can
be obtained by demanding that charge (KK momentum) is integer quantized. With this
normalization, the right value of the gauge coupling in d dimensions is [50]

g2
KK = 8πGd

R2
0
e−γφ. (3.7)

In (3.5), we have also included a Casimir energy term VCasimir(φ), coming from a
one-loop contribution of the matter fields in the UV theory . This takes the form [15]

VCasimir(φ) = C
Rd0

e−
d
2γφ, (3.8)

where C is a function that counts the number of effectively massless bosonic vs. fermionic
degrees of freedom at the scale set by the inverse KK radius. It is locally constant, and
only changes when crossing mass thresholds of the parent (d+ 1)-dimensional theory.

The combined potential for the radion φ may or may not have a minimum, depending
on the details of the spectrum of the (d+1)-dimensional theory. For instance, the Standard
Model reduced on a circle famously has a minimum where the Casimir energy due to the
neutrinos can balance the contribution of the four-dimensional cosmological constant. A
minimum with positive vacuum energy is only possible near a mass threshold; for the SM
model on a circle, the neutrinos combine with the contribution of the 4d cosmological
constant to produce such a minimum around Vd+1 [15, 48].
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Let us check what conditions are imposed by FL on this scenario, where the radion has
been stabilized by the combined effect of Casimir and (d+ 1)-dimensional vacuum energies
to some value φmin. In d dimensions, we can apply the FL inequality to the Kaluza-Klein
U(1) so that (2.17) becomes a bound on the mass of KK modes. The gauge coupling
is9 (3.7) evaluated at φmin. Since the dilaton has been stabilized, we can ignore the first
condition in (2.17) and directly apply the bound on the spectrum of massive states. For a
mode with KK charge q, this becomes

m4
KK ≥

8πGd
R2

0
q2 e−γφminV. (3.9)

In particular, we may apply this to the Kaluza-Klein modes of the (d + 1)-dimensional
graviton itself, which are always present and have masses (in d-dimensional Planck units)

m2
KK ∼

n2

R2
0
e−γφmin . (3.10)

Combining with (3.9), and setting q = 1, we obtain a bound relating the stabilized value of
the radion field and the vacuum energy e−γφ & V . This can be rewritten purely in terms
of the physical KK scale in d-dimensional Planck units, as

MKK & V 1/2. (3.11)

Equation (3.11) is the main result of this section. It says that the cut-off of the d-
dimensional field theory must be above the d-dimensional Hubble scale. One could worry
that this is just a self-consistency condition of the FL picture, or even of dimensional re-
duction; but the computation based on the Schwinger effect works even when there is a
whole tower of light particles, one just needs to consider the tower version of the conjecture
we outlined in section 2.2.1.10 We also note that the interesting case of d+ 1 = 4 must be
excluded from the discussion since there are no charged Nariai black holes in three dimen-
sions. With this caveat, we conclude that (3.11) is a constraint that should be imposed for
consistency of a KK vacuum with positive vacuum energy, and that FL provides a modest
lower bound on the size of the extra dimensions.

The FL inequality is not saturated in the real world. The electron, the lightest charged
state, obeys the bound, but with a large margin. If we had a similar behavior for the KK
modes, it would suggest that a perturbatively stable de Sitter KK vacuum in d ≥ 4 is
naturally scale-separated, with MKK & V 1/2. This is to be contrasted to the behavior
of known string compactifications to AdS, which tend to not have scale separation [52],

9Reference [50] defines the gauge coupling in such a way that the dilaton dependence is stripped away.
In this paper we keep it, in line with [5].

10In this situation the tower bound provides only a very mild enhancement of charged particle production.
The mass of the KK mode fields goes as mn ∼ nMKK while their charge goes as qn ∼ nq. The particle
pair production is then enhanced as

∑∞
n=1 e

−nM2
KK/qE = 1/(eM

2
KK/qE − 1), which is only a very small

enhancement when m2/qE > 1 as required to satisfy the ordinary FL bound. We note however that the
presence of any other fields with mass lighter than the KK scale in the higher-dimensional theory, such as
a photon, will further enhance the FL bound.
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and the behavior predicted by the AdS distance conjecture [53]. This fits with the idea
that Minkowski vacua constitute a “great divide” with qualitatively different behavior on
each side.

We also comment briefly on the case where the radion is unstabilized. Consider the
asymptotic regime of large radius, φ→∞. The Casimir energy contribution decays faster
than that of the tree-level potential, and so without loss of generality, we can neglect its
contribution. Since the field dependence of the gauge coupling and vacuum energy have
opposite signs, there are no electric Nariai solutions in this limit. Magnetic solutions do
exist, but not at parametrically large radius, due to the fact that the Nariai black hole has
to fit in the cosmological horizon. The details depend on the interplay of Casimir versus
tree-level energy at large radius, and can potentially lead to constraints in the number of
massless fields contributing to the vacuum energy. We will explore this in future work.

So far, we have discussed what happens for the KK U(1). Another possibility is that
one already has a gauge field in d + 1 dimensions, which becomes a U(1) gauge field in d
dimensions. We will now discuss briefly two such scenarios.

When there is an ordinary U(1) gauge field in (d+1) dimensions, the higher-dimensional
FL bound is

m4 & g2
d+1Vd+1, (3.12)

where g2
d+1 is the U(1) gauge coupling in (d + 1)-dimensions. It is related to the d-

dimensional gauge coupling gd as [50]

g2
d =

g2
d+1

2πR0
e−2αφ, (3.13)

where we have taken into account additional factors coming from the rescaling to Einstein
frame. In d-dimensions, the FL inequality for the dimensionally reduced U(1) is strongest
for the KK modes. A canonically normalized scalar field of mass m gets a mass me−αφ in
d dimensions, owing to the conformal factor. As a result, the d-dimensional version of FL
can be rearranged to

m4 & e2αφg2
d+1

Vd
2πR0

= g2
d+1Vd+1

(
e2αφ Vd

2πR0Vd+1

)
. (3.14)

This equation has interesting consequences. The FL inequality can get stronger or lower
after dimensional reduction, depending on the behavior of the term under parenthesis. If
we demand that FL is automatically preserved under dimensional reduction, the constraint
can only get weaker, and so

e2αφVd . Vd+1. (3.15)

In the case where the d-dimensional vacuum is not stabilized, we have Vd=(2πR0)Vd+1e
−δφ,

and since δ = −2α the inequality is saturated: FL is preserved under dimensional reduction.
The situation is more interesting in a vacuum stabilized by Casimir energy. As men-

tioned above, a simple analysis of the Casimir + tree level potential shows that, for constant
C, one can only have dS maxima or AdS minima. As a result, stabilized KK vacua of posi-
tive vacuum energy can only appear near mass thresholds. The minimum can arise due to
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an interplay between bosons and fermions, or due to an interplay with the vacuum energy,
as is the case for the Standard Model [15, 48]. We will just study this last case, where the
minimum happens at

R = R0e
κφ ∼ V

− 1
d+1

d+1 , Vd ∼ V
d
d+1
d+1 . (3.16)

Then, (3.14) implies that e(2α+κ)φmin > 1, or equivalently, φmin > 0. FL is also automati-
cally satisfied for the U(1) in this case, but more generally, it might constrain the spectrum
of light fields in the (d+ 1)-dimensional vacuum, simply from demanding that minima vi-
olating (3.14) do not occur. It would be interesting to explore this in more detail although
we must emphasize that, unfortunately, the phenomenologically most interesting case of
d+ 1 = 4 is excluded from our analysis since Nariai black holes do not exist in d = 3.

Finally, we will consider the case where the higher-dimensional U(1) comes from a
higher-dimensional gauge field. To keep the analysis short, we will only analyze a 2-form
field in (d + 1) dimensions, but the expressions we derive are valid for a (n + 1)-form in
(d + n) dimensions as well. We will start with a (d + 1)-dimensional Lagrangian which,
in addition to the cosmological and Einstein-Hilbert terms, also has a kinetic term for a
2-form B,

LB = − 1
12(gBd+1)2H

2, H = dB. (3.17)

Dimensional reduction produces a U(1) coming from the Wilson line of B on S1 [50]. The
resulting U(1) gauge field in d dimensions has gauge coupling

1
g2
d

= 1
(gBd+1)2 e

−2(d−3)αφ. (3.18)

The string charged under B, with tension T , can wrap the S1, and becomes a particle of
mass

m = e(d−3)αφ. (3.19)

Assuming as well that we are applying the FL bound asymptotically, so that the potential
is Vd+1e

−δφ, we obtain the inequality

T 4e−2(d−4)αφ & g2
d+1Vd+1. (3.20)

Interestingly, for d = 4, the powers of φ drop out, and we recover an inequality for the
tension directly in (d + 1)-dimensional terms, or more generally, for the tension of an n-
brane in 4+n dimensions. It is tempting to regard this as a generalization of the FL bound
to these higher-dimensional cases. This is an interesting point to be explored in the future.

4 Phenomenological applications

By far, the most exciting prospect of testing quantum gravity in quasi-de Sitter space is
testing its phenomenological implications, since our own universe is believed to be one .
Some of these were discussed in [5]; we review this discussion and point out several new
implications of FL which had not appeared before.

– 19 –



J
H
E
P
1
0
(
2
0
2
1
)
0
0
9

4.1 Standard Model and Higgs potential

The most straightforward application of FL to the Standard Model is to check that (2.17)
is satisfied by the spectrum of electrically charged states [5]. In particular, applying the
bound to W bosons one obtains a constraint

v2 &
1
g
MPH = V 1/2

g
, (4.1)

that partially explains the hierarchy between Planck and electroweak scales, given a positive
vacuum energy. More precisely, (2.17) can be recast as the statement that the cosmological
constant in Planck units has to obey the bound

Λ .
m4

4πα, (4.2)

where α is the corresponding fine structure constant and m is the mass of any electrically
charged state.

Although in the present section we are focused on the Higgs potential and the Standard
Model, if FL is correct, equation (4.2) is a universal bound in models involving Einsteinian
gravity and a positive cosmological constant. It explains partially the cosmological hierar-
chy problem, tying it to properties of the states of the effective field theory. Going back to
the real world, we may apply (4.2) to the lightest charged state, the electron. Then, the
bound becomes (again in Planck units)

Λ . 3 · 10−89, (4.3)

which does a reasonably good job in bridging the 120 orders of magnitude between the
Planck scale and the observed value of Λ ∼ 10−120.

We may also apply it to non-abelian gauge fields, like SU(3), which remains unbroken.
A non-abelian gauge theory automatically contains massless charged states, the gluons.
Nariai black holes can be constructed by embedding the standard Nariai solution in the
Cartan of the non-abelian gauge group, so massless non-abelian gauge fields are really in
contradiction with (2.17). In other words, FL predicts that in a de Sitter background
non-abelian gauge fields must confine or be spontaneously broken, at a scale above H.
Explicitly,

mGauge field & H, or ΛConfinement & H (4.4)

for non-abelian gauge fields. This is again satisfied in the real world, with SU(2) being
Higgsed, and SU(3) confining.

Similarly, the FL argument does not apply to massive vector fields whose mass is
above the Hubble scale.11 The fact that FL is satisfied for the electromagnetic U(1) in the
real world is suggesting that the photon is exactly massless, since otherwise there would
have been no reason to satisfy the FL bound. See [54] for other Swampland arguments
suggesting an exactly massless photon.

11More precisely, there can be no massless charged states whose mass is below V 2M2
P where V is the

contribution coming from the dark energy. This is satisfied today, but becomes a strong constraint on the
matter sector during inflation.
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Figure 2. On the left, we show the usual shape of the “Mexican hat” Higgs potential, which arises
from equation (4.5). However, only the region shaded in gray has been accessed experimentally. It is
conceivable that the region near Φ ≈ 0 has a different shape, for instance, that of the “cowboy hat”
potential depicted in the right panel. As shown in the main text, such a scenario is incompatible
with Festina Lente, unless extreme fine-tuning is carried out.

4.2 Bounds on the Higgs potential

Festina Lente also leads to non-trivial constraints on the Higgs potential. LHC measure-
ments have provided us with information about the Higgs mass and the quartic Higgs
coupling, which fully determine a renormalizable potential [55]:

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (4.5)

However, the measurements themselves do not tell us that the exact potential is of this
form. While we expect significant corrections for large Higgs vevs, coming from loops
of Standard Model and possibly new particles, we also do not have direct experimental
evidence of the form of the Higgs potential around Φ = 0. In particular, one could imagine
a situation like the one depicted in figure 2, where non-renormalizable terms are added
to (4.5) in such a way that the Higgs potential develops a local minimum at the origin,
and the potential looks more like a “cowboy hat” than the familiar “mexican hat” shape.

In the cowboy hat scenario, the electroweak symmetry is unbroken in the minimum at
the top of the hat. Without fine-tuning, the vacuum energy is of order the Higgs vev,

Vsym ∼ (250GeV)4, (4.6)

and the electron and other hypercharged states remain classically massless, therefore vio-
lating FL. In other words FL predicts that we must be in a broken phase: any long-lived
minimum of the Higgs potential must break the electroweak symmetry. The confinement
scale of the SU(3) gauge fields is also way below the vacuum energy, unless additional
fine-tuning is included. Thus, FL is incompatible with the “cowboy hat” scenario for the
effective potential.

The simple analysis above applies to the effective quantum potential for the Higgs field
in the IR, where all quantum effects have been integrated out. But it is also instructive
to figure out what are the constraints applying to the UV Higgs potential, defined at the
cut-off scale. To understand this, we must discuss the classical piece and quantum effects
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separately. This makes the full story subtler, as we will now explore,12 but we will still
conclude that also the UV potential cannot have a local minimum.

As explained e.g. in [56], in absence of a symmetric minimum, the quark bilinears
develop a condensate due to strong coupling effects in SU(3),

〈Qq̄〉 ∼ Λ3
QCD. (4.7)

Notice that the value of ΛQCD could be different to that in our vacuum. In particular, the
mere fact that the quark masses are set to zero will change ΛQCD by an O(1) factor; but
there could be additional sources that change this number.

Due to (4.7), the masses of the W and Z bosons are of order ΛQCD. To ensure compli-
ance with FL in the non-abelian sector, we just need

ΛQCD & H ∼
√
Vsym, (4.8)

where Vsym is the vacuum energy at the symmetric minimum. Unless extreme fine-tuning
takes place, we would expect Vsym to be of the order of the characteristic energy scale we
observed in the Higgs potential, so of order hundreds of GeV. In this case, H ∼ 10−8 eV
and (4.8) is amply satisfied with the observed value of ΛQCD.

The quark bilinear (4.7) has the same quantum numbers as the Higgs field, so it triggers
electroweak symmetry breaking SU(2) × U(1)Y → U(1). Let us call the local mass of the
Higgs field as µ, by analogy with (4.5); while in the usual renormalizable potential we have
µ2 < 0, in the “cowboy hat” scenario we have µ2 > 0. Integrating out the Higgs field of
mass µ2 will introduce non-renormalizable operators in the effective field theory, including
couplings

yeyq
µ2 (LeR)(Qq̄), (4.9)

where ye, yq are the electron and quark Yukawas. Assuming the Yuakwas are unchanged at
the symmetric point (an assumption that could also be challenged), the largest contribution
will come from the top quark. Then (4.7) turns the higher dimension term into a mass
term for the electron,

me ∼ yeyt|
Λ3
QCD
µ2 . (4.10)

This expression is valid when µ� ΛQCD; for µ ∼ ΛQCD, the Higgs cannot be integrated out.
QCD effects will generate a potential for it, and assuming the vacuum is not destabilized,
it is reasonable to expect an effective mass of order ΛQCD. Imposing the FL bound then
becomes a condition on µ2, the vacuum energy, and ΛQCD,

µ8 ≤ y4
ey

4
t

Λ12
QCD

gVsym
. (4.11)

Substituting Standard Model values on the right hand side, as well as Vsym of order a
hundred GeV, the above becomes

µ . 10−4 eV. (4.12)
12We are indebted to Matt Strassler for the argument in the main text.
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This is outside of the regime of validity of (4.10), so the effective mass for the electron will
be of order ΛQCD. This is still below the vacuum energy at a few hundred GeV.

Thus, assuming all other parameters remain equal, Festina Lente puts an upper bound
on the curvature of the “cowboy hat” at the top of the Higgs potential, in either its IR or
UV versions. It is so strong that, in practice, we go back to the usual Mexican hat potential.
So in a sense, Festina Lente predicts that the shape of the potential is the usual Mexican
hat one, but we should stress the assumptions that went into this for the UV discussion.
First, we assumed that all the relevant SM parameters do not change significantly between
our vacuum and the symmetric one; we also assumed that no new sectors/field directions
arise that might destabilize the potential, and we assumed a “natural” potential which is
not extremely fine-tuned. More generally, Festina Lente implies that there is no natural
(without large fine-tuning) nearby minimum to the SM vacuum, for 〈Φ〉 . 100GeV. Some
of the constraints obtained in this section are reminiscent of those in [14], which places
constraints on putative SM vacua with unbroken electroweak symmetry by demanding that
they do not lead to non-supersymmetric 3d AdS vacua, in order to comply with [8]. In
particular, [14] found that pions have to be massive enough in order to avoid the unwanted
3d vacua, in line with what FL demands.

4.3 Neutrino physics

The observed vacuum energy is tantalizingly close to the neutrino mass scale, and it is
natural to look for an explanation of this coincidence [8–16, 48, 49]. As observed in [5],
there is a straightforward connection to FL, since the lower bound to the mass of charged
states is roughly V 1/4. Unfortunately, one cannot apply the FL bound directly to the
neutrinos, since they do not have electric charge in the Standard Model. We now comment
on a couple of ways to connect the neutrino to FL that fail, and one that partially succeeds.

Our first attempt starts with the observation that neutrinos do not have electric charge,
but they do have magnetic dipole moments. One may wonder whether there is a bound
involving neutrinos and magnetic Nariai black holes. Recall that an electric Nariai black
hole has an electric field E ∼ gMPH. For a magnetic black hole, the powers of g work out
to give the same magnetic field:

B ∼ gMPH. (4.13)

This is in accordance with electric-magnetic duality, which swaps E ↔ B/g2 and g ↔ 1/g
when charges are involved, to preserve quantization properties.

A magnetic Nariai black hole will discharge slowly by pair-production of monopoles,
which are quite heavy. While electrically charged particles are not produced, they can still
lead to instabilities, coming from their magnetic moment. A particle of magnetic moment
µ properly oriented gets a contribution to its energy given by −µB. If these particles have
mass m, one might expect some sort of instability whenever

µB > m, (4.14)

so that is energetically favourable to pair-produce this particles and “fill the sea”.
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Avoiding (4.14) puts a bound on the magnetic moment

µ .
m

gMpH
(4.15)

for any particle. As a consistency check, notice that for a Dirac fermion, the magnetic
dipole moment is a kinematic property, and it is always given by µ = g/m plus small
corrections, where m is the particle mass and g is the coupling. Plugging back in (4.15),
we recover the FL bound

m2 & g2MPH. (4.16)

In contrast to FL, however, (4.15) can also be applied to neutral particles, as long as they
have a nonzero magnetic moment. As explained in [57], a Dirac neutrino gets an effective
magnetic moment in the SM augmented with right-handed neutrinos, from loop factors,
roughly

µSMν ∼ mν

M2
W

∼ 1
1014 GeV (4.17)

Imposing (4.15), we get that the masses drop out and the consistency condition is simply

M2
W > gMPH, (4.18)

which is correct, but which is already a consequence of ordinary electric FL [5]. If there is
new physics at some scale M below 1014 GeV, this could generate a magnetic moment of
1/M . Applying (4.15) we get the more interesting

m ≥ gMPH

M
. (4.19)

This is automatically satisfied again, since we know that M � m. We note in passing that
the electric and magnetic fields of Nariai black holes in our own universe are of order

ENariai ∼ 100V, BNariai ∼ 0.01G. (4.20)

These are comparable to electric and magnetic fields in the surface of the Earth. Thus,
we are very unlikely find any new constraints on particle properties, such as e.g. neutron
electric dipole moment, just from studying their decay — we would have seen them long ago.

Thus, our first attempt at explaining the neutrino mass via FL does not work. For our
second attempt, we observe that although the neutrino has no electric charge, it is charged
under electroweak interactions, and carries B −L charge. However, if B −L is gauged, its
coupling is experimentally constrained to be very weak, of order gB−L ∼ 10−24 [58] (and
from the ordinary magnetic WGC, we get gB−L ∼ 10−28, see [58]) . Therefore, although
FL would provide a lower bound in this case, we would lose the straightforward connection
to the vacuum energy. Another, closely related possibility is that B − L is spontaneously
broken in our vacuum, and that some version of FL applies to massive U(1) fields. The
argument involving Nariai black holes in [5] only works for vector fields whose mass is
of order Hubble or smaller, since otherwise the Nariai black holes will not be long-lived.
And our discussion about anti-branes in the KS throat showed that one can have very
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light states charged under a spontaneously broken symmetry in the non-compact scenario,
where gravity is decoupled.

Finally, we describe our last, and partially successful attempt. As emphasized near the
end of section 2, in the “membrane-particle scenario”, FL is satisfied because the domain
walls that trigger vacuum decay have worldvolume degrees of freedom that can induce
electric charge, and these states obey a relation of the FL form. In this scenario, there
are additional, neutral states, coming from neutral membrane “blobs”, which also satisfy
a relation of the form

m4 ∼ V. (4.21)

It would be natural to identify the neutrinos with these degrees of freedom. The right-
handed neutrinos could then naturally be the lowest step in a tower of states with m ∼ V 1/4,
leading to a scenario like the one proposed in [59] where the neutrino mass eigenstates
are nontrivial linear combinations of the left-handed neutrinos and the tower of right-
handed ones.

If this scenario is correct, it would provide a microscopic explanation of the tantalizing
match between the neutrino mass scale and the vacuum energy, an area that has been the
subject of intense recent research [8–16, 48, 49]. We should emphasize that the analysis
here is qualitative and that any quantitative improvement would need to address a num-
ber of pressing questions such as producing the right neutrino mass matrix, suppressing
appearance of effective non-unitarity.

4.4 Supergravity FI terms

When it comes to de Sitter model building lots of work has been done both top-down
and bottom-up. In this regard, swampland bounds are useful; for top-down research their
violation serves as a warning sign that something is not under control in the construction.
In bottom-up research they similarly provide warning signs that an eventual embedding
of the suggested EFT in quantum gravity will fail. In neither of the two cases does a
non-violation of Swampland bounds imply the model is consistent.

The dS top-down attempts suffer from not being entirely top-down [60]. The bottom-
up models are in worse shape since there is no a priori reason why any 4D supergravity
model with meta-stable dS can be lifted to string theory. It is surprising how constraining
it is to write supergravity theories with meta-stable dS vacua (see for instance [61]). The
current state of affairs is that there is no example in 4D of meta-stable dS in theories with
more than 8 supercharges. In theories with 8 supercharges (N = 2) examples have been
found and were hard to come by. A popular idea has been that more supersymmetry of
the Lagrangian increases the chances for it to descend from string theory.

In theories with 4 supercharges (N = 1) there is a common lore that FI terms are
the easiest road to meta-stable dS as well. The point we make here is that the bottom-
up models typically violate the FL bound together with either the magnetic weak gravity
conjecture or the no-global symmetry conjecture. This, once again, shows how Swampland
bounds form a tight web. We start with N = 1 supergravity and then discuss N = 2.
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In N = 1 SUGRA one gauges the R-symmetry to get constant (ie field independent)
Fayet Iliopolous (FI) terms, which help in providing meta-stable dS vacua since they con-
tribute the following term to the potential:13

VD = 1
2DaD

a Da = iKiX
i
a + ξa , (4.22)

where Xa = Xi
a∂zi is the holomorphic Killing vector on the scalar manifold that is being

gauged. Note that indices a are raised with the inverse gauge kinetic function. The
constants ξa are associated to gaugings of the R-symmetry. This gauge symmetry can be
spontaneously broken and if that is the case everywhere in field space we can redefine this
part of the D-term away in terms of an F-term by a Kahler gauge transformation. In what
follows we have in mind the situation where this is not the case.

The gravitino is a Majorana field and a gauge-invariant mass term for it does not exist.
But since the gravitino is charged under the R-symmetry, all these dS models with gauged
R-symmetry violate the FL bound:

Constant FI terms → violation of (2.17) . (4.23)

Interestingly, this affects a substantial class of models in the supergravity literature and
one can verify that the same models violate the magnetic WGC [63, 64] as well. So a
violation of the magnetic WGC seems to play together with a violation of the FL bound.

There is a deeper connection with the Swampland possibly explaining these issues;
Seiberg and Komargodski argued that field independent FI terms are in the Swampland [65]
because they require the theory to have a global ungauged symmetry:

Constant FI terms → global symmetry. (4.24)

The argument in [65] shows that there must be an exact global symmetry of the
supergravity lagrangian, although it is not clear it cannot be broken by non-perturbative
effects which do not have a lagrangian description. Here, we see that these considerations
align nicely with FL.

Concerning N = 2 supergravity, a common recipe is that one needs at least the ana-
logue of FI terms and non-compact gaugings [66]. Non-compact gaugings interestingly are
claimed to be in the Swampland based on arguments not related to cosmology [67, 68].
More recently, however, examples with compact gaugings were found in [69] and [64]. Both
models rely on gauging the R-symmetry and have charged gravitinos. The first model has
hypermultiplets and the second does not. For the model without hypers, reference [64]
computed that there is always a massless combination of gravitinos at the dS critical point
and they hence violate FL. They also violate the recently proposed Gravitino Distance
Conjecture [70, 71], since these points would be at finite distance. To date, there is no
proof that this will always happen since a priori one can write down gauge invariant mass
terms for gravitinos in N = 2 supergravity, but so far all examples have a massless charged
gravitino. The second class of models [72] unavoidably feature light gravitinos for meta-
stable dS vacua, with a mass of the order of the Hubble scale. Even more, [73] have found
evidence that the FL bound tends to be violated more generally.

13We follow reference [62] which contains a particular useful discussion about FI terms.

– 26 –



J
H
E
P
1
0
(
2
0
2
1
)
0
0
9

5 A speculation: the decoupling limit of Festina Lente?

So far, we have focused in applying the logic and tools that have been useful in the past
to learn about other Swampland constraints, notably the WGC [7]. We now turn to a
discussion that is particular to FL: the physics of the limit where gravity is decouped,
MP →∞. The FL inequality (2.17), as written originally in 4D in [5]

m2 > gqMpH (for all charged particles in the theory) (5.1)

has a feature which makes it unlike any other Swampland constraint: the naive MP →∞
at constant H seems to forbid any charged states. As pointed out in [5], this reasoning
is too quick, since we do not know how H behaves as gravity is decoupled. We do not
even know that the decoupling limit makes sense: one should expect de Sitter solutions
to correspond to isolated points in the landscape [18], far away from asymptotic limits.
Nevertheless, (5.1) can be recast as in (2.17)

m4 > g2q2V (for all charged particles in the theory) (5.2)

which becomes a nontrivial statement even when gravity is decoupled.14 This is to be
contrasted with the WGC, which in the limit MP →∞ becomes the trivial statement (as
long as g is kept constant)

m ≤ g · ∞. (5.3)

To analyze the FL bound in the limit of decoupling gravity, and thus non-compact
models in string theory, we need to address a few subtleties first:

• We need to define the vacuum energy V in situations without gravity, and there
is no canonical way to do this. One could even entertain the possibility of setting
V = 0 always, in which case FL would always be satisfied. However, in models
where supersymmetry is broken spontaneously it is natural to set V = 0 for the
supersymmetric minimum. The vacuum energy V is then uniquely defined for any
metastable supersymmetry-breaking state over this minimum. This is the only case
we consider.

• One can trivially violate (2.17) in field theory simply by having two completely de-
coupled, free sectors, one of which breaks supersymmetry and another one which
contains the gauge fields/charged matter. We will restrict FL to theories where all
sectors are coupled to each other (there is a single stress-energy tensor) below the
cut-off scale. More precisely, we demand that all couplings are O(1) in units of the
cut-off at the cut-off scale, in order to discard situations with two almost-decoupled
sectors.

• Finally, we will only consider theories with a single U(1) gauge field at low energies. In
general, when coupling a quantum field theory to gravity, relevant couplings become

14Notice that V is actually the same whether we work in Einstein or string frames, which makes (5.2)
well-defined (FL was argued for in the Einstein frame).
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the vevs of dynamical fields. In non-supersymmetric setups, these can have runaway
potentials, leading to instabilities and a violation of the inequalities in (2.17). What
we have found “experimentally” in string configurations, detailed below, is that while
setups with a single U(1) field do not necessarily lead to such deformations, multi-
U(1) setups can have them.

We will now see that, with the above caveats, (2.17) is satisfied in a number of field
and string theory examples. We will also see explicitly that (2.17) fails to hold in situations
with more than one U(1) in the deep IR. We will separate the discussion in two cases: pure
quantum field theories without a known stringy embedding, and QFT’s obtained explicitly
from 10-dimensional non-compact string backgrounds.

To be clear, we are not proposing (2.17) as a constraint on general quantum field
theories. Although there may well be a formulation of FL that holds in general QFT’s,
we do not have enough evidence, nor a purely field-theoretic motivation for doing so. In
particular, it is already clear that FL only applies to metastable vacua of QFT’s that will
not be destabilized significantly by coupling to gravity. As explained above, in examples
we have found that this is a problem whenever one has more than one U(1) field at low
energies, but it is unclear how general this is. Thus, the purpose of this section is to collect
some evidence for the bound in the decoupling limit, that we find somewhat nontrivial.

5.1 FL in pure QFT?

Equation (2.17) is automatically satisfied in any supersymmetric vacuum. To find exam-
ples where the conjecture becomes nontrivial, we need to consider supersymmetric QFT’s
with metastable non-supersymmetric vacua. The canonical examples are the vacua of ISS
in [74]. This reference showed that N = 1 SQCD with massive flavors exhibits dynamical
supersymmetry breaking. For Nf flavors and Nc colors, the IR dynamics is controlled
by a theory involving the following chiral fields; Φij , ϕic and ϕ̃ic with i, j = 1, . . . Nf and
c = 1, . . . Nf −Nc, and with a tree-level superpotential

W = hTr(ϕΦ ϕ̃)− hµ2Tr(Φ) , (5.4)

where h is a dimensionless coupling and µ a mass scale.
It is impossible to set the F-terms of this model to zero simultaneously, leading to

supersymmetry-breaking vacua.15 The resulting low-energy theory does not have U(1)
gauge fields, and so (2.17) is satisfied automatically. The theory has an exact, non-
anomalous global symmetry, baryon number B in [74], which can be weakly gauged without
affecting the IR dynamics of the strongly coupled sector. B is spontaneously broken in the
non-supersymmetric vacuum; the corresponding gauge field would become massive, pre-
cluding application of (2.17).

But on the other hand, the theory also has an exact, non-anomalous global symmetry,
baryon number B′ in [74], which can be weakly gauged without affecting the IR dynamics

15Supersymmetric vacua exist upon the inclusion of quantum effects.
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of the strongly coupled sector.16 The vacuum energy, V , is given up to O(1) factors as

V ∼ Λ2m2, (5.5)

where m is the typical scale of the quark masses, and Λ is the strong coupling scale of
the theory. The analysis in [74] is valid for m � Λ. The baryons have a mass ∼ Λ, and
therefore (2.17) is satisfied for any gauge coupling g . 1.

Notice that the theory described above has a single U(1) gauge field at low energies,
and hence satisfies our criteria. There is a simple variation of the above story, where one
just simply adds a completely decoupled sector including a U(1) gauge field and a light or
massless charged multiplet. Eq. (2.17) is clearly violated in this case, but this is against
the second point in our list above.

It would be very interesting to explore further evidence for FL in other proposals of
supersymmetric QFT’s with nonsupersymmetric vacua, such as those of [75–79] involving
fractional D3 branes. For instance, in the model described in [75], involving fractional
branes in the cone over dP1 and D7 branes that stabilize the runaway of the potential, the
quiver gauge theory has three gauge factors, one of which confines, and the other two are
fully Higgsed. Thus, FL is satisfied trivially, in the sense that all non-abelian gauge groups
are broken or gauged. It would be very interesting to explore this question in further detail.

5.2 Anti-branes in the Klebanov-Strassler throat

Consider the Klebanov-Strassler throat [80]. This is a supersymmetric, non-compact back-
ground of 10-dimensional supergravity with H3, F3 fluxes turned on. The 10d metric (in
string frame) can be written as

ds2 = e2Ads2
4 + e−2Ads2

6 (5.6)

ds2
6 is the CY metric and e2A the warpfactor and its inverse the CY conformal factor. The

tip of the throat is an S3 (also known as the A-cycle) that is supported by M units of flux
going through it and its radius is of the order

√
gsM such that V olA ∼ (gsM)3/2.

Because of supersymmetry, the four-dimensional vacuum energy vanishes exactly.
Putting D3 branes on this background breaks supersymmetry; this is the Kachru-Pearson-
Verlinde setup (KPV) [81]. For p anti-D3 branes with p/M small enough this background
was suggested to the dual dynamical SUSY breaking in the SU(2M−p)×SU(M−p) gauge
theory at the end of the Seiberg cascade.

The U(1) gauge field that we focus on will be the one coming from the anti-D3 world-
volume. For a single anti-D3 (the case of interest) we have

SD3 ⊃ −
1

4πeφ
∫
|F −B2|2. (5.7)

16Section 2 of [74] discussed a non-anomalous exact baryonic symmetry B, which is spontaneously bro-
ken in the metastable non-supersymmetric vacuum. In that vacuum however there is a second baryonic
symmetry B′, obtained by combining B with a Cartan generator of the SU(Nf ) flavor symmetry. This
symmetry remains unbroken, and is the one we gauge here.
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Figure 3. The bottom of the KS throat in which every point has a finite S3 attached to it due to
the A-cycle. The anti-D3 is pointlike and has M stretched string attached to the D3 wrapping the
full A-cycle (which is instead pointlike in 4D.) Those M strings are depicted in orange. We also
consider strings that start at the anti-D3 and leave the throat to end somewhere on a D7 in the
bulk. Such an example string is depicted in blue.

In the above action we have set the background value of the RR axion C0 to zero but
included the 10d B2 field to which the D3-brane couples to. Physically, this coupling
ensures that charged states are endpoints of strings.17

The computations in [81] were done instead with the S-dual worldvolume theory where
B2 is replaced with C2 implying D1 strings attach to this object instead; however, as
explained in [81] this was merely a computational trick to get a handle on the calculation.
In reality the regime of the theory is not in the magnetic phase but somewhere in between
and both fundamental strings and D1 strings can attach. Below we consider indeed both
magnetic and electric states. Although the computations by KPV relied on the S-dual
action in the “wrong regime”, the predictions of the model stood a highly non-trivial test
when identical results were rederived in the blackfold approach that is valid in the electric
regime [82]. We therefore take some confidence in the KPV results and rely on them from
here onwards.

The value of the vacuum energy is of the order

V ≈ 2pg−1
s e4A , (5.8)

in string units. The 4d gauge coupling depends on the value of the dilaton at the tip
but since the dilaton is roughly constant, we can take it to be the zero mode and hence
g2 = 4πgs. We can now check the validity of (2.17) for the states charged under this U(1);

We will consider the following states:

1. Strings that are attached to the anti-D3 branes and leave the throat (towards the
D7s in the bulk). They carry unit electric charge and are depicted in blue in figure 3.

2. D3 branes wrapped on the S3 at the tip of the throat (depicted as the red circle in
figure 3). Such D3 branes are pierced by F3 flux with quantum M and hence emit M
fundamental strings (depicted in orange) that can attach to the anti-D3. Therefore
the wrapped D3 brane is an electric state of charge M .

17The 4d zero mode of the B2 field is projected out by the orientifolds in compact models.
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In non-compact throats there is no other point for the strings leaving the throat to
end and the resulting states are infinitely massive, and satisfy FL in a trivial way. We will
reconsider them in the next section when we discuss compact models.

We hence turn to the “baryon particle” made from a D3 brane wrapped on the S3 at
the tip of the throat. The FL bound gives:

m4 = e4AT 4
D3(VolA)4 & pM2gsTD3e

4A → g2
sM

4 � p, (5.9)

since TD3 = 1/gs and VolA ∼ (gsM)3/2 (in string units) and we ignored factors of π.
In short, (2.17) becomes the constraint (5.9) on the parameters of the KS throat. A
consistency condition necessary for the validity of the supergravity description is that√
gsM � 1, and since M ≥ 1, we find that (5.9) is automatically satisfied in the regime of

validity of supergravity. Furthermore stability requires p/M to be small enough (smaller
than 0.08 at least.). So the FL bound for the baryon is essentially guaranteed by stability
of the anti-brane. Once coupled to gravity via a compact bulk, we gain the extra condition
for meta-stability [83]: √gsM > 6.8√p.

We can also consider keeping gs finite and set M → 0 instead. In this case, before
adding D3 branes, the supersymmetry is enhanced to N = 2, and adding the D3 just
breaks to N = 1. Being a supersymmetric background, FL is satisfied by trivial reasons.
In any case, notice that the (now massless) wrapped D3 branes are no longer charged under
the D3 worldvolume U(1) gauge fields.

When p > 1 there is a nontrivial vacuum manifold, and FL should be satisfied at the
minimum of the potential. This does not affect too much our naive above analysis proving
that the wrapped D3’s always satisfy FL. But we need to check that the p D3 branes
separate dynamically, as for instance argued for in [84]. The p antibranes will polarize into
an NS5 brane which can be understood as a Higgsing of the worldvolume U(p) gauge fields
down to the center of mass U(1). This is matched by the low-energy theory of the type
IIB NS5 brane, which includes a U(1) gauge field at low energies [85]. As described in [86],
the vacuum energy receives only small corrections for p�M , so the FL inequality in the
form (5.9) remains valid.

It is important to remark that the asymptotic version of FL (2.17) really requires a
massless U(1) to apply. At finite Mp one could argue that the mass of the vector should
at least be lighter than the Hubble scale. But in the decoupling limit this should turn into
the requirement it is exactly massless. The KPV setup provides an explicit example of
this. Consider the case of two antibranes (p = 2). The antibranes polarize to a sphere of
radius [81]

R2 ≈ 2π2Tr[Φ2] ≈ 12π2 gs
M
. (5.10)

This is the radius in warped down string units. Since this is the vev of the field (Tr[Φ2])
that gets a mass to describe the polarization, the above scale also the mass of the massive
gauge bosons in string units. The FL inequality would then become

g2
s/M

2 > 4π, (5.11)

which is just not true in the large M limit at fixed gs. In other words, the mass of the W
bosons can get much below V 1/4, although it is always above V 1/2 in Planck units.
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5.3 Confining gauge theory from D5 branes

We explained earlier how (2.17) required that the deep IR configuration of the metastable
supersymmetry-breaking state had a single U(1) at low energies. The KPV setup we just
described has this property; we will now show that it is actually required in stringy setups
as well, by studying the configuration discussed in [87]. The setup is a resolved conifold,
where the S2 has finite size. One can wrap N D5 branes around it, resulting in a 4d N = 1
theory without a moduli space. As discussed in [87], the SU(N) ⊂ U(N) of the theory
confines in the IR, and the U(1) ⊂ U(N) remains massless, with a gauge coupling equal to
the bare UV coupling of the theory divided by N , coming from the trace in U(N),

g2
U(1) = g2

YM

N
. (5.12)

This is a supersymmetric background, so FL is satisfied. A more interesting situation arises
when the size of the S2 varies from point to point, and there is more than one stack of
D5 branes. Consider two stacks, sitting on nearby S2 separated by a distance ∆, by a
potential barrier of height g∆3. This can be engineered by considering a non-compact CY
given by the hypersurface

uv = y2 +W ′(x)2 ⊂ C4 , (5.13)

where
W ′(x) = gx(x−∆). (5.14)

We will look at the vacuum where we have a single D5 branes at x = 0 and a single
D5 branes at x = ∆, and consider FL for the antidiagonal U(1). There are charged fields
coming from bifundamental strings, corresponding to W bosons and a bifundamental Higgs
field. The mass of this field is controlled by ∆, and for ∆ . 1 it is a tachyon — the usual
open string tachyon of a brane-antibrane pair [87] —. The resulting vacuum is unstable,
and (2.17) does not apply. But as we increase ∆, the tachyon becomes massive, and in
particular there is a phase transition at which it is exactly massless. At this point, or for
∆ slightly larger, the former tachyon is massive, but very light, while the vacuum energy
is given by the tension of the brane-antibrane pair,

g2
YMV = 16π − 4

π
g2
YM log

(Λ0
∆

)
, (5.15)

where the second term is a one-loop correction that can be made arbitrarily small by going
to weak coupling, and Λ0 an UV cut-off scale. It is clear that this theory violates (2.17)
for a finite range of ∆.

We have also checked cases with more than a single stack and more than one brane or
antibrane per stack. These correspond to a higher-order polynomial W ′(x) [87]. Perhaps
surprisingly, when one has exactly two stacks and N > 2, and the branes are far apart
enough that there is no tachyon, (2.17) is satisfied. The light fields coming from the
stabilized tachyon that became a problem before are now confined, as are the bifundamental
states; only baryonic states are free, and they satisfy (2.17). However, this property is
anecdotic, and it breaks down whenever one considers more than two stacks: already
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with three stacks one can violate (2.17), and with four or more stacks, it is possible to
violate (2.17) at large N .

The gauge kinetic function of the vectors can be computed exactly, see for in-
stance [87, 88]. Of course, all the setups in this section, except those with a single stack,
have deformations (the parameter ∆) that become dynamical one gravity is turned on. In
this case, we can see explicitly why we should be wary of applying the reasoning behind
FL in field theory situations with multiple U(1)’s. The multiple U(1)’s simply represent
the fact that there is more than one brane stack. The stacks have opposite charges, and
hence are attracted to each other; but since they wrap minimal size S2’s, the systems is
stable. The size of the S2’s and the separations between the stacks are encoded in W ′(x),
and correspond to non-normalizable modes in the supergravity description, acting as pa-
rameters [89]. Once gravity is coupled, however, all these parameters become dynamical
fields; the size of the S2 will shrink, and the separation of the different stacks will decrease,
since the moduli will not be stabilized. The vacuum we were looking at will be unstable,
and the branes will coalesce and annihilate. We regard the multiple U(1)’s as a proxy that
there are dangerous unstabilized moduli lurking around the corner, waiting to destroy the
vacuum as soon as gravity is coupled again.

6 Application to antibrane uplifting scenarios

We have given stringy evidence for the FL bound by looking at non-compact models,
which evade the problem of having to confront dS model building. We argued that in the
QFT limit we can evade the FL bound by having decoupled sectors. But for compact
models, ie at finite Mp, the FL bound should not be violated. This should imply that upon
“compactification”, decoupled sectors couple through gravity and induce instabilities that
lead to sufficient fast runaways, avoiding the application of the FL bound.

The two local models we considered were KPV [81] and ABSV [87]. When both these
mechanisms are used in compact models, KPV would correspond to anti-brane uplifting
in some moduli-stabilised AdS vacuum a la KKLT [81], whereas ABSV would correspond
to lifting via fluxes only, something that was suggested by Saltman and Silverstein [90].
Since anti-brane uplifting is the most concrete scenario we analyse below to what extend it
obeys the electromagnetic Swampland bounds.18 We will see that all bounds are satisfied
in warped models (within the regimes of control) in the simplest settings. We then argue
that a few extra complications, such as extra branes in the bulk, can violate the FL bound
if one makes the usual assumption that the SUSY-breaking dark sector can be decoupled
from the rest.

But before that, note there is a further (tower of) U(1)-vector(s) living down the throat.
It comes from integrating C4 along the S3 (taking into account that parts of that tower is
projected out by the orientifolds). These vectors are massive, but become massless in the

18The U(1) gauge field we rely on for checking Swampland bounds comes from the anti-D3 brane as in
our discussion of the flat space limit in the previous section. Note that this implies that the U(1) is not
further projected by orientifolds which can happen in fine-tuned situations [91].
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limit of infinite throat size. Since those vectors turn out to be heavier than the Hubble
scale the FL bound cannot be applied.

6.1 Throats in compact models

To compute masses and charges of the lightest states charged under the anti-D3’s U(1)
gauge field we need some of the details of warped throat metric in compact models.

We will assume a KS-like throat in a compact CY as in picture 4 below. The 10D
metric, in string frame, can be written as in the non-compact model (5.6). At the tip the
warpfactor reaches an exponentially small number:

e2A ≈ r−2
0 S2/3 , r0 =

√
gsM ls . (6.1)

Here S is the local conifold modulus and is stabilised at S ∼
√
Vol e−2π K

gsM , where K is
the NSNS flux quantum piercing the throat B-cycle and M the RR flux quantum piercing
the A-cycle. At the same time the CY metric near the tip scales as ds2

6 ≈ S2/3. Hence
the radius of the tip equals r0 and is fixed and independent of the volume. The total 10D
metric near the tip becomes:

ds2
10 = e2A0σ1/2g4 + r2

0

[
1
2dτ

2 + dΩ2
3 + τ2

4 dΩ2
2

]
, e2A0 = r−2

0 e
−4π K

3gsM . (6.2)

The total volume is denoted as σ =Vol2/3 and in case of a single Kähler CY σ is the
Kähler modulus. We will also need the physical volume VT of the throat. In [92] this was
approximated to be ∫

T
e−4A√g̃6 = VT ∼ (gsMK)3/2l6s . (6.3)

In an approximation where most of the volume is coming from away from the throat, the
Planck mass is [93]

2κ2
4 = 16π

M2
P

= g2
s l

2
s

2πσ3/2 . (6.4)

Recent investigations [94, 95] show that at least for the case of KKLT moduli stabilisation
this condition is not attainable and most of the volume is in fact occupied by the throat.
We have been careful in making sure that this does not effect the eventual bounds we have
verified in this paper.

In Planck units,19 antibranes contribute

VD3 ∼
g3
s

4π
e4A0

σ2
0
, (6.5)

to the 4d cosmological constant. Antibrane uplifting scenarios assume that VD3 is compa-
rable to that of the negative AdS energy such that eventually the total on-shell potential
is assumed to be

V = αVD3 , → HMp =
√
ασ0
gs

e2A0 , (6.6)

19By which we mean L ⊃M4
pV .
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Figure 4. The KS throat and its compactification.

where 0 < α < 1, but we do not assume that a finetuning α→ 0 is possible and hence we
take α to be order 1.

To compact throat models we can associate a global and a local (ie warped down) KK
scale. In string units they are m2

KK ≈ σ−1/2 and m2
warpedKK ≈ e2A0σ−1/2. In total we

have the following four distinct scales in four-dimensional Planck units,

H ∼ V 1/2 = g
3/2
s

σ0
e2A0 , mBulk

KK =
√
σ0
gs

, mThroat
KK =

√
σ0
gs

e2A0 , V 1/4 ∼ g
3/4
s√
σ0
eA0 (6.7)

The following hierarchy is then typically assumed:

H < mThroat
KK < V 1/4 < mBulk

KK , (6.8)

which implies that the throat KK modes are very light and there is no real decoupling
limit. Interestingly it is argued that the light throat modes only renormalise couplings and
can essentially be ignored in the anti-D3 EFT [96].

6.2 Swampland bounds for simple uplifts

We will consider the same states as discussed in the previous section, namely string stretch-
ing from the anti-D3 towards the bulk (ending on D7 branes) and baryon particles from
wrapped D3 branes.

We also consider their magnetic counterparts being D1 branes that are attached to the
anti-D3 brane and leave the throat, and D1 branes coming from a D3 brane wrapping the
B-cycle. The first carries a unit of magnetic charge, the second K units, with K the NSNS
flux quantum in the B cycle.

Let us start with the strings leaving the throat. The mass of the lightest strings can
be estimated from their probe action:

mq ≈
gs
σ1/2LtMp, (6.9)

where Lt is the length of a radial geodesic leaving the throat in a CY metric for the compact
space with unit volume.

Perhaps confusingly Lt is smaller for models with larger warping (ie big K). The
reason is that the CY metric ds2

6 (so with conformal factor taken out) scales as e2A0 . We
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therefore expect that Lt ∼ eA0 , so it is exponentially small and the electric WGC is well
obeyed.

Concerning the FL bound, we find that the scalings with σ and the exponential warping
drop out and the bound becomes:

2πL2
t �
√

4παe2A0 . (6.10)

This can easily be satisfied if Lt has a piece that does not scale as eA0 . This can happen if
the D7 branes are far enough away from the throat. Given recent developments this might
not be possible [94, 95] and we need to be more careful in our estimates. Using the form
of the 10D metric one expects Lt ∼ e

−2π K
3Mgs . This factor resides in the r.h.s. of (6.10) as

well, but there is an extra r−2
0 suppression. Ignoring numerical factors this boils down to

(string units)
(r0)2 �

√
α , (6.11)

which is well satisfied if r0 is large enough. The latter condition is a well-known requirement
for stability of anti-brane uplifting [83]. Note how the FL bound becomes an expression
independent of the total volume and hence the compactification effects.

Since a vibrating string generates a tower of modes, we need to verify the FL tower
version (2.18) by taking into account the vibrational modes. Assuming the string has
length Lt in string units, we would like to consider how many vibrational states it has
before reaching an energy scale Emax at which the string will oscillate wildly, potentially
leaving the throat region where this calculation might break down. Let us call this energy
scale Emax = Nmaxmq where mq is the energy of the string at rest. We can estimate
the number of states using Cardy’s formula, ρ(E) ≈ lse

√
ce−A0 ls∆E , where we took into

account that the local string scale is not l−1
s but eA0σ1/4l−1

s . From (2.18), we find for the
pair production rate

Γ ∼ e−A0

∫ E=Nmaxmq

E=mq
dEe

√
ce−A0σ−1/4lsEe−E

2/qgHMp . (6.12)

We wish to impose that this pair production rate is supressed. To be safe we will even
overestimate the integral, replacing E2 with its rest mass energy m = mq. Really, the
heaviest state we consider has a mass Nmaxmq. This changes the results by an O(Nmax)
numerical factor. We have

Γ <∼ e−m2
q/qgHMp

2e
√
ce−A0σ−1/4lsNmaxmq(

√
ce−A0σ−1/4lsmq − 1)

ce
+ 2
c

 , (6.13)

where we further dropped a negative term that is subleading, again overestimating the pair
production rate. To have the rate supressed, we must demand (6.13) � 1 and focussing
only on the exponential factors in this bound we get:

(r0)2 −
√
cNmaxαr0 �

√
α , (6.14)

A natural guess for Nmax would be that it roughly equals 2 since once the vibrational
energy becomes of order the rest energy the string wildly oscillates and potentially leaves
the throat, invalidating the assumptions. Hence we do not expect to violate (2.17).
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Next we consider the wrapped D3 states. A D3-brane wrapped on the S3 has charge
M due to a Freed-Witten anomaly: M strings leave the D3 and attach to the anti-D3.
From the 10d metric (6.2) it follows that the 4d mass of such D3 brane in string units is

mD3 ≈ g−1
s σ1/4eA0r3

0. (6.15)

The flat space WGC inequality then becomes

e
− 2πK

3gsM <

√
4πσ
gs

. (6.16)

This is trivially satisfied.20 The FL bound (with q = M) gives

r4
0 >
√

4παgs . (6.17)

Both the validity of the supergravity description and stability [83] require r0 � 1, so the
FL inequality is satisfied as well and again is volume independent.

Just like the string we discussed before this state is part of a tower of charged states
that lives down the throat. Hence, local excitations, which manifest themselves as differ-
ent particles in 4D, will also be light and we need to apply the tower version of the FL
bound (2.18). We investigate this now for states generated by the wrapped D3’s moving
along its homology class; an effective motion inside the local B-cycle (transverse to the
wrapped A cycle). We focus on the 7d dynamics of its center of mass as this will be a
good approximation at the bottom of the throat, as long as the eigenvalues of the energy
excitations are smaller than the mass m of the brane. This mass is obtained from the
kinetic term,

TD3

∫
D3
dV, dV3 = ω3 ∧ ds7 =

√
gµν ẋµẋνω3 ∧ dt, (6.18)

where ds7 is the seven-dimensional obtained from restricting the 10d metric to the product
of B-cycle and 4d transverse space. The only force comes from the fact that the D3 emits
M F1’s. We assume these F1’s are straight and in their fundamental state, and that they
contribute to the energy an amount comparable to their tension times their length.

The resulting potential term (in string units) is

M

∫
ds2 = MeA`(r)dt, (6.19)

where `(r) is the geodesic length from the bottom of the throat to a position at radius r,
measured in the physical metric.

One eventually finds that fluctuations near the tip are described by a non-relativistic
linear potential problem in quantum mechanics. Consequently, the energies are

En = m

(
1 +

(
n
gs
r4

0

)2/3
)
. (6.20)

20Note that flat space WGC is applicable if m4 � H2M2
p . This is the case.
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At n∗ = r4
0
gs

the approximation certainly breaks down since the kinetic energy becomes
order mass and non relativistic quantum mechanics does not apply. The tower FL bound
demands that Γ� 1. Since all masses up to n∗ are of the same order we roughly get (going
all the way to n∗):

r4
0
gs
e
−
r4

0
gs < 1 . (6.21)

Clearly the exponent wins and the inequality is satisfied.
The magnetic states can be treated along the identical lines and we have verified that

they all satisfy the WGC and FL inequalities upon assuming the usual conditions of long
throats and weak coupling.

One can wonder about the deeper lying reason the FL bound is satisfied in the above
context. In section 2 we derived that 4D particles made from small spherical membranes
in the theory tend to be light charged states with a mass scale set by the vacuum energy.
Then we derived a lower mass bound of a kind similar to the FL bound but with a different
(weaker) dependence on the gauge coupling. We now explain that the D3 particle can
really be thought of as a membrane-particle in the above context which we believe forms
the underlying reason the FL bound is satisfied. As explained by KPV [81] the spacetime
membrane that mediates the decay is an NS5 brane wrapping the whole A-cycle and its
tension is therefore

T ∼ Vol(S3)g−2
s (6.22)

in warped down string units. The baryon particle on the other hand has a mass; m ∼
g−1
s Vol(S3), in the same units. So up to a gs dependence this is like the relation between
particle mass and membrane tension for membrane-particles, which is enough to find a
lower bound on the mass as a consequence of vacuum stability. To make the connection
more precise we have to argue that the baryon puffs into a small spherical membrane
state in 4D. In fact this is easily done once one realises the puffing is almost identical to
the polarisation of the anti-D3 into a spherical NS5 wrapping a contractible S2 on the
A-cycle [81]. The main difference is that now the polarisation occurs in 4D non-compact
space as opposed to a process inside the compact dimensions. The coupling F2 ∧ C4 with
F2 some worldvolume flux on the NS5 membrane guarantees it induces the same D3 charge
on the A-cycle. Similary the usual DBI worldvolume coupling takes care of the tension.

6.3 Swampland conflicts with warped uplifts

We found that the longer the throat, the larger the CY volume and the weaker the coupling,
the better all bounds (electric & magnetic WGC and FL) are satisfied, and this makes
sense given the decoupling limit we analysed earlier. That these Swampland constraints
are automatically satisfied merely reflects the fact that the throat is very much decoupled
from the bulk CY and, in the case of FL, it also relies on the fact that the throat model is
KPV which, as explained in the previous section, satisfies a noncompact version of FL.

Since satisfying these Swampland bounds only speaks to the consistency of the throat,
it does not constitute evidence for the consistency of the uplift procedure in those limits.
One reason is that we do not expect these limits to be parametrically attainable in any
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Figure 5. In purple we have depicted D7 branes wrapping a distant 4 cycle in the bulk. Such
7-branes can support chiral matter and in the usual assumption that the SUSY breaking down the
throat decouples from the bulk, one finds a conflict with the FL bound.

globally consistent scenario, as hinted in a number of works [18, 97, 98]. But more to the
point here, FL is really a global bound, and even though it is satisfied in the throat, we
will see we can violate it by adding decoupled sectors far away from the throat that are
usually argued to be harmless. In the non-compact setups discussed earlier, we argued that
decoupled sectors typically lead to runaways, and the non-compact version of FL should
not apply; but the black hole arguments behind FL suggests it must apply to any compact
model, and so a violation signals a problem with the compactification.

Let us be more concrete. The premise of anti-brane uplifting down a warped throat
is that the anti-brane SUSY breaking decouples sufficiently from the bulk CY. In the bulk
CY one can then attempt to engineer interesting particle physics properties. We now argue
that such decoupling cannot be there as it can violate the FL bound.

To do this, one may consider for instance local F-theory constructions that generate
chiral matter [99, 100]. In our setup one can think of 7-branes wrapped on a distant divisor
as in picture 5. This divisor is not threaded by flux, so it contributes a 4d N = 1 sector to
the low-energy effective field theory, involving massless charged fields. To be fully concrete,
take the toy model of [100] where a stack of E6 7-branes wraps a Hirzebruch surface F1. As
analyzed there, at low energies the system is described by a 4d N = 1 theory with gauge
group Spin(10)× U(1). The matter fields in the theory are the N = 1 vector multiplet in
the adjoint, as well as a chiral spectrum of massless fields in the 16−3 and 16+3 of Spin(10),
with net chirality

n16 − n16 = 3(2a+ b), (6.23)

where a, b are integers of opposite signs quantifying the gauge bundle on the 7-brane stack.
In this theory, the fermions in the 16−3 and 16+3 violate FL for the U(1) factor. On the
other hand, it is often (but not always) the case that a U(1) factor like this gets a mass
from the Green-Schwarz mechanism [101]; in this case, the U(1) is rendered massive, and
FL does not apply. FL requires that this always happens for any local model similar to
this one, for a global model with positive vacuum energy.

On the other hand, the Spin(10) gauge fields can also violate FL if there are light
gluons, i.e. if the gauge fields do not confine in the deep IR. Using the NSVZ formula [102]
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(with vanishing anomalous dimensions, which is justified if the volume of the F1 is large
so that the 4d theory is weakly coupled), and assuming that nonchiral matter will pick a
mass, the theory will run towards weak coupling in the IR if

3TAdj −
(
T16|n16 − n16|

)
= 6 (4− |2a+ b|) < 0, (6.24)

where TR is the Dynkin index in representation R (which are 8 and 2 for the adjoint and
the 16, respectively). For e.g. a = −b = 3, the Spin(10) theory is weakly coupled in the
IR and deconfined, thus providing a sector that violates FL. The violation is twofold: on
one hand, the existence of massless Spin(10) gluons directly contradicts FL.

This picture ignores the SUSY-breaking backreaction sourced by the antibrane at the
end of the throat. A priori, this could trigger e.g. Higgsing, breaking Spin(10) completely
and avoiding a contradiction with FL, if the induced masses for the gauge bosons are above
the Hubble scale. But this is precisely the point we want to emphasize: the decoupling
scenario, where the antibrane can be safely neglected, is in contradiction with Festina
Lente. FL is a global constraint; satisfying it means turning on interactions between far
away and seemingly decoupled sectors. Perhaps this is in the same spirit as the recent
findings of [94] and [95] where the limit of control on anti-brane SUSY breaking in a KKLT
scenario implies either that the bulk becomes completely singular, or if resolved, it affects
the whole bulk geometry.

At the risk of belaboring the point, we emphasize again that the scenario we have
depicted here, where we imagine one can find a distant divisor where additional D7 branes
can be wrapped safely, is far from concrete. Indeed, we do not believe it can happen! But
it is a plausible scenario, similar to the KKLT or LVS scenarios [103, 104], where we see
that by combining several locally consistent ingredients in a seemingly reasonable way we
end up with an effective field theory which violates Swampland principles. The fact that
by following the same logic as a generic antibrane uplift model we find inconsistencies hints
at the possibility that the basic logic itself is flawed due to the lack of decoupling whenever
gravity is involved.

7 Conclusions

In this paper we have extended the Festina Lente bound [5] for charged particles in quasi-
dS space in various directions, including its formulation in higher dimensions, a magnetic
version, an extension with multiple gauge and scalar fields, even including runaway poten-
tials. This allowed us to explore some of its implications for particle physics and string
phenomenology. We furthermore provided some evidence for it coming from its nontriv-
ial decompactification limit. From this we drew several interesting conclusions, which we
summarize below.

The formulation of the magnetic WGC in dS space leads to a lower (non-zero) bound
on the gauge coupling in terms of the ratio between Hubble and Planck scale [6] and we
found that

• The same condition, g > H/Mp, can be found from applying the FL bound to the
WGC particles.

– 40 –



J
H
E
P
1
0
(
2
0
2
1
)
0
0
9

If we combine the FL proposal to dimensional reduction, we have shown, in the case
of a circle compactification, that

• A de Sitter vacuum must be minimally scale-separated, MKK & Λ1/2.

What we mean precisely is that if the KK vacuum (stabilized due to contributions of
Casimir energies) of a (d+ 1)-dimensional theory with positive vacuum energy itself has a
positive vacuum energy, then it must be scale-separated in the sense above. This behavior
is opposite to that of known string constructions with negative cosmological constant.

This conclusion came out of applying FL to the KK photon. We also analyzed how
the FL inequality behaves under dimensional reduction, i.e. when a (d + 1)-dimensional
theory with positive vacuum energy an U(1) gauge fields is compactified on a circle. We
found that, if the radius of the S1 is left unstabilized,

• FL is preserved under dimensional reduction.

That is, the lower-dimensional theory obeys FL if and only if the higher-dimensional one
does as well. In the case where the size of the circle is stabilized by Casimir energy, FL is
easily, but not automatically, satisfied. It is possible that analyzing this interplay in detail
could result in bounds on the spectrum of light fields of the (d+ 1)-dimensional theory, as
has been done with other Swampland constraints [50].

The main appeal of an inequality like FL is that it has the potential to produce interest-
ing phenomenological constraints. FL requires that when we have a quasi-dS background

• All non-abelian gauge fields are confined or broken spontaneously at a scale above
Hubble, just like the real world SU(3) and SU(2) fields.

• We have found that FL can ameliorate the hierarchy problem, has potential connec-
tions to neutrino physics, and can be used to exclude a symmetric minimum at Φ = 0
in the Higgs potential. This is an experimental prediction, even if a modest one.

• In a particular scenario, the FL proposal also leads to neutral particles with a relation
m4 ∼ V . It is natural to speculate that these may be related to neutrinos, although
the current picture is qualitative at best.

We have only started to scratch the surface in the arena of phenomenological implications
of the FL proposal, which can lead to nontrivial restrictions for dark matter or inflationary
scenarios.

Concerning dS model building in supergravity we observed that

• Bottom-up gauged supergravity dS constructions tend to violate FL.

This extends some recent observations made in [63, 64]. Although there was no reason to
expect that these bottom-up constructions could not be embedded in string theory, FL puts
a sharp obstacle to this being the case and we found a link with the no-global symmetry
conjecture.

We have finally explored potential evidence for FL in string theory, coming from the
fact that it has a nontrivial flat space limit, where gravity is decoupled. There, FL becomes
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a statement about the spectrum of charges and particles of metastable nonsupersymmetric
vacua of quantum field theory arising from brane constructions in string theory. One needs
to make several caveats in the application of FL to systems where gravity is decoupled, in
order to ensure stability under small coupling to gravity. But once these are made, we find
that the resulting metastable vacua do comply with what we propose might be a flat-space
version of the FL bound. In particular, and most importantly for phenomenology,

• The U(1) worldvolume gauge field of a D3 brane at the tip of a Klebanov-Strassler
throat satisfies the non-compact version of FL.

We have used this result to check that

• Both FL and the WGC are satisfied by the D3 U(1) in antibrane uplift scenarios.

This is essentially because in the antibrane uplift scenario, the antibrane lives in a decoupled
throat, and so the problem reduces to the noncompact one, so that Swampland constraints
are satisfied automatically. Even if the antibrane is OK with Festina Lente, the decoupling
of the throat and the rest of the compactification space is problematic. We gave explicit
examples of local sectors outside of the warped throat which, if present, would violate the
FL inequality. From the low-energy point of view, there seems to be nothing wrong with
these decoupled sectors, and indeed, they are often included to introduce additional gauge
fields or chiral matter; but if FL is correct, the possible existence of these sectors would
raise questions for the ability to incorporate uplift scenarios in a compact setup.

As we have seen, if correct, the FL proposal leads to very rich implications both in
particle physics and string phenomenology. We have explored some of the more salient ones,
but a more systematic study is desirable. It is imperative to check whether FL is satisfied
in some recent new proposals for dS model building in string theory, such as [105, 106].
This can be used to check both the FL statement, the principles behind it, and the dS
constructions themselves.

We can also do better with the conjecture itself. It would be nice to check the pre-
diction of

√
6 for the O(1) coefficient for the FL bound, which we obtained by demanding

agreement with the analysis of magnetic Nariai black holes, against a direct calculation
of black hole decay in the strongly coupled Schwinger regime. But there are plenty other
questions to address. How is FL modified in the presence of other non-trivial interactions?
Can the conjecture be related to general properties of entanglement entropy in quasi-dS
space [107–109] and black holes, just like the WGC can [110]? Is it possible to come up
with complementary evidence in string theory that can support or disprove the conjecture?
What are the minimal requirements that FL puts on inflation? Can the argument be gen-
eralized to other kinds of black holes, possibly to directly produce constraints on the scalar
potential? These are all interesting questions we hope to revisit in upcoming work.

At this point it is useful to summarize how much evidence we have for the FL bound.
First, the original argument [5] demands that black hole evolution behaves well in the sense
that black holes should be able to evaporate completely. This is how the ordinary electric
WGC was found in flat space and in dS space it simply leads to a second inequality. Second,
we can equally reach the same conclusion by applying the magnetic WGC and demanding
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the cut-off is above the Hubble scale as we have explained. This is evidence from an a-priori
unrelated argument. This shows the usual behavior of Swampland conjectures; they form
a tied self-consistent web. Thirdly we have found circumstational evidence from string
theory and supergravity models. For instance violating the no-global symmetry conjecture
in supergravity allows constant FI terms [65], which directly tend to violate the FL bound.
Similarly local stability constraints of anti-brane uplifting point exactly in the direction
of the FL bound, whereas the assumption of decoupling SUSY-breaking from the bulk
violates it. This makes much sense in light of general Swampland ideas concerning a lack
of decoupling due to light towers. So it supports the picture in two directions; note that
decoupling is not a necessary requirement for consistently achieving dS vacua, but it does
make it much easier to verify its consistency. So we argue that if consistent anti-brane
uplifting is possible, the model is highly constrained. Lastly, we have argued that even
pure QFT models obtained from a decoupling limit potentially support this picture.

Finally, FL and all of its far-reaching consequences are the result of applying “black
hole arguments” beyond the controlled realm of supersymmetric string compactifications.
This illustrates why is it so important to understand these black hole arguments fully; they
not only provide nice insight or explanations as to why Swampland conjectures are true,
but also they tell us how to proceed in situations where string theory cannot directly be
of help. It is an exciting prospect to consider what other constraints on low-energy EFTs
might come from bold applications of similar well-established general principles!
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A Multi-field FL bound

String compactifications typically generate multiple U(1) gauge fields and so we are natu-
rally lead to considering Nariai black holes charged under the multiple gauge groups. So
we seek here the extension of the FL inequality to that case. Our guiding principle will be
multi-field covariance.

Consider the general Lagrangian

e−1L = M2

2 R−
1
2Gij(φ)∂φi∂φj − 1

4fAB(φ)FAFB − V (φ) . (A.1)

where we ignore theta angles and assume that the scalars are not charged for simplicity.
The FL bound (2.17) then generalises to

m4 � qAqB(f−1)AB(MpH)2 . (A.2)
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Where qA is the charge vector for a particle with mass m. For magnetic or even dyonic
particles the further extension is then also easily guessed:

m4 �
(
(f−1)ABqAqB + fABp

ApB
)

(MpH)2 , (A.3)

with qA, pB the electric-magnetic charge vector.
In case the scalar potential has only a runaway then there can still be charged Nariai

solutions and the FL bound can be applied under conditions that generalise the single field
condition (2.13). Going through the identical analysis done in [24] one finds the following
consistency condition

Gij
∂iV ∂jV

V 2 ≤ Gij ∂iQ
2∂jQ2

(Q2)2 , (A.4)

where we defined:
Q2 = (f−1)ABQeAQeB + fABQ

A
mQ

B
m . (A.5)

The QeA, QBm are the black hole electric and magnetic charges. After some algebra this can
be shown to become Q-independent and one obtains the following generalisation of (2.13):

Gij
∂iV ∂jV

V 2 ≤ −Gij∂ifAB∂jfAB . (A.6)

The scalar positions in the above inequality are determined by the following equations [24]:

∂iV + 1
2R4∂iQ

2 = 0 , (A.7)

R4 = −G
ij∂iV ∂jQ2

2Gij∂iV ∂jV
. (A.8)

With R the radius of the Nariai solution. A final consistency condition for the existence of
the solution is that VQ2 < 2.

B Stability of d-dimensional Nariai solutions with runaway potential

In this appendix, we derive (2.15) of the main text, generalizing the analysis in [24]. We
start with a d-dimensional Einstein-Hilbert-scalar system, with action (we work in Planck
units 8πGd = 1)

S =
∫ √
|g|
(1

2R−
1
2(∂φ)2 − 1

4f(φ)FµνFµν − V (φ)
)
, (B.1)

which is a consistent truncation of the full theory. We look for dS2 × Sd−2 solutions,
supported by an electric field21 ∫

Sd−2
(f ∗ F ) = Ωd−2Qe. (B.2)

21Magnetic solutions produce higher-dimensional de Sitter configurations which are perturbatively un-
stable, as analyzed in [24]. Only for d = 4 magnetic solutions provide a viable Nariai branch, too.
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where Ωd−2 is the volume of unit radius Sd−2. Following [24], we choose a metric

ds2 = h(t)[−dt2 + dr2] +R2dΩd−2, (B.3)

and electric field
F = E dr ∧ dt, E = Qe

h

fRd−2 = hQ√
fRd−2 . (B.4)

Plugging back this ansatz in the action (B.1), we obtain the following effective action in
one dimension (we neglect r-dependence)

S =
∫
dt

[
(d− 2)(d− 3)Rd−4(h− Ṙ2)−Rd−2 d

dt

(
ḣ

h

)
+ hRd−2

(
φ̇2

2 − V
)
− hQ2

2Rd−2

]
(B.5)

For d = 4, this reduces to the result of [24] for electric fields only.22 The equation of
motion for Rd−2 is (taking into account that we are looking for static solutions, and thus
set Ṙ = φ̇ = 0)

R2 = 1
h

d

dt

(
ḣ

h

)
= V − Q2

2R2d−4 −
(d− 3)(d− 4)

R2 . (B.6)

The equation of motion for h is

V Rd−2 + Q2

2Rd−2 − (d− 2)(d− 3)Rd−4 = 0, (B.7)

and the equation of motion for φ is

0 = V ′ + (Q2)′
2R2(d−2) . (B.8)

Importantly, notice that for d = 3, (B.7) has no solution. For d > 3, we can substitute (B.8)
and (B.7) into (B.6), to obtain

R2 = 2V
d− 2

(
(d− 3) + V ′

V

Q2

(Q2)′

)
. (B.9)

Thus, existence of an electric Nariai solution requires that V ′/V and f ′/f have opposite
signs, and also that ∣∣∣∣V ′V

∣∣∣∣ ≤ (d− 3)
∣∣∣∣f ′f
∣∣∣∣ . (B.10)

This is consistent with the analysis in appendix C of [24], by taking the dual p = d − 2-
form potential, although strictly speaking the derivation in [24] does not work for the
two-dimensional case.

To study stability of the Nariai solution, we only need to consider the φ field — the
radial mode is fixed by the Hamiltonian constraint of GR [24] —. We obtain that stability
is equivalent to

V ′′(φ) ≥ V ′

f ′

(
f ′′(φ)− 2f ′2(φ)

f(φ)

)
. (B.11)

22It seems that the kinetic term for R has the wrong sign, but the dynamics is more complicated since
the equation of motion for h provides a constraint.
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Taking V = V0e
δφ and f = f0e

γφ, One gets

δ2 ≥ − δ
γ
γ2 , (B.12)

which is automatically satisfied when both δ and γ have the same sign.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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