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1 Introduction

The study of scattering amplitudes in perturbative quantum field theories has led to a
plethora of new insights, not only with regard to its direct application to phenomenology,
but also in pure mathematics. Much of this progress did come from the analysis of ampli-
tudes in N = 4 super Yang-Mills theory and its planar limit (pSYM). Being the simplest
interacting four-dimensional gauge theory, it allows to recognize some of the underlying
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intricate mathematical structures more easily, which in some cases were also successfully
transferred to theories more closely aligned to nature, see e.g. [1, 2].

Explicit results as well as general arguments [3] (see however also [4] for certain sub-
tleties) suggest that the functions which describe the (appropriately normalised [5–8])
N = 4 pSYM amplitudes in the maximally helicity violating (MHV) or next-to-MHV
(NMHV) configurations are restricted to the class of multiple polylogarithms (MPLs), a
class of functions well-established in the mathematics literature [9–11]. They can be rep-
resented as iterated integrals over rational integration kernels, or conversely be defined
recursively with respect to their derivatives: An MPL Fw of weight w obeys

dFw =
∑
φα

F φαw−1d lnφα , (1.1)

with F φαw−1 being an MPL of weight w − 1 and MPLs of weight 1 being usual logarithms.
The letters φα encode the branch-cut and singularity structure of the function Fw. Based
on this definition, one recursively constructs the map S as

S [Fw] =
∑
φα

S
[
F φαw−1

]
⊗ lnφα . (1.2)

It maps an MPL of weight w to its symbol [12], an w-fold tensor product of logarithms of
the letters φα. The union of all the letters is called the symbol alphabet and is the starting
point of the cluster bootstrap, see [13] for a recent review.

Whereas in theory the symbol alphabet and the entire amplitude can be computed via
Feynman diagrams [14, 15], this method becomes unwieldy very quickly with increasing
loop number. Instead of directly computing the amplitudes, the cluster bootstrap attempts
to first obtain the alphabet of the amplitude’s symbol by some alternative way. Utilizing
the observation that an L-loop (N)MHV amplitude is given by a weight 2L MPL, the
space of all weight 2L symbols is then constructed from the alphabet. After fixing the
amplitude’s symbol from this space using consistency and physical constraints, the symbol
can be integrated to obtain the actual function.

A key insight for this boostrap program is the observation that the letters of n-particle
scattering are cluster A-variables of the cluster algebra associated to the Grassmannian
Gr(4, n) [16], following the emergence of these structures at the level of the integrand [3,
17]. Due to the dual conformal symmetry of the theory [18–22], a certain quotient of
the Grassmannian — the configuration space G̃r(4, n) of n points in complex projective
space P3 — corresponds to the space of kinematics of n-particle scattering, which can be
conveniently described in terms of momentum twistor variables [23].

In cluster algebras, see section 2 or [24–27] for more details, the A-variables are orga-
nized in overlapping sets, the clusters, which are connected by an operation called mutation.
Starting from an initial cluster, the cluster algebra and thus all of its A-variables are con-
structed by performing all possible mutations. In this way, the cluster algebra allows to
obtain the amplitude’s symbol alphabet and thus ultimately its symbol.

This boostrap program has been successfully applied to the six-particle amplitude with
up to seven loops [8, 28–36] (see also [37] for some more recent higher-loop results in its

– 2 –



J
H
E
P
1
0
(
2
0
2
1
)
0
0
7

codimension-1 double-scaling limit) and for the seven-particle amplitude with up to four
loops [38–41]. For many years however, two major obstructions prevented expanding the
program to higher multiplicity. First of all, the relevant cluster algebras become infinite
for n ≥ 8, that is they contain infinitely many variables. Whereas it is possible that
with increasing loop numbers ever more relevant discontinuities of the amplitude and thus
new letters appear, it is believed that the amplitude requires only a finite number of
letters, in line with finite number of its Landau singularities [42], as obtained by the
amplituhedron [43, 44]. Furthermore, cluster variables are always rational functions (in
momentum twistor variables), whereas also square-root letters are required to describe all
amplitudes, as is for example the case for the eight-particle two-loop NMHV amplitude [45].

Recently, in [46–49] it has been proposed that both of these obstructions can be over-
come by considering the tropical version of the configuration space G̃r(k, n) [50, 51], or
equivalently its dual geometric object [52]. The relevance of tropical Grassmannians for
scattering processes was first established in the context of tree-level amplitudes of gener-
alized biadjoint scalar theory [53, 54], see also [55–61] and references therein for recent
progress in this direction, as well as [62–68] for work on further connections between (du-
als of) tropical Grassmannians, cluster algebras, and scattering amplitudes. In essence,
the tropical version of the configuration space is obtained by replacing addition with the
minimum and multiplication by addition in the polynomials parameterising (the totally
positive) G̃r(k, n). The resulting structure is a fan, a collection of cones obtained as the
positive span of the rays, half lines emanating from the origin.

We can also associate such a fan with the cluster algebra, with each A-variable corre-
sponding to a ray and each cluster to a cone. It turns out that for finite cluster algebras
this cluster fan triangulates the fan of the positive tropical configuration space [51], that
is the former splits up the cones of the latter into simplicial cones. The cluster fan does
so using the rays of the tropical fan as well as redundant rays — additional rays that are
not required to describe the tropical fan. Moving to infinite cluster algebras, it is therefore
natural to expect that the nature of their infinities can be interpreted as an infinite num-
ber of redundant triangulations. With the tropical fan being inherently finite, removing
the redundant rays provides a tropical selection rule that can be used to obtain a finite
subset of A-variables from the infinite cluster algebra, in other words to truncate it. This
selection rule is also consistent with the case of finite cluster algebras, e.g. those describing
seven particle scattering and below (k = 4, n ≤ 7), where it selects all A-variables of the
cluster algebra.

The rays of the cluster algebra truncated in this way are only a subset of the tropical
rays for n ≥ 8. However, one of the main ideas behind the aforementioned works [47–
49], was that one may also access additional rays, and thus also the generalisations of
A-variables or letters associated with them, which turn out to contain square roots, by
also considering limits of infinite mutation sequences starting from within the truncated
cluster algebra. In particular these ideas were applied to the then first nontrivial case at
n = 8, where sequences of a rank-two affine or A(1)

1 subalgebra prove sufficient for obtaining
all limit rays. While there exists a one-to-one mapping between limit rays and square-root
letters, in [47] it was additionally noticed that by assuming a one-to-many mapping that
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also takes the direction of approach to the ray into account in a certain way, then one
astonishingly obtains precisely the 18 square-root letters found in the explicit expression
for the two-loop NMHV eight-particle amplitude [45].1

In this article, building on our previous work, we make an important step towards
generalising these exciting developments to arbitrary multiplicity n. First, we analyse
infinite mutation sequences of rank-two affine cluster algebras with general coefficients,
which allow us to trivially obtain predictions for square-root letters for any such subalgebra
of Gr(4, n). As a cross-check, we then apply our procedure to the known eight-particle case,
not only finding agreement with the earlier analysis, but also comparing it to more recent
predictions based on the closely related scattering diagram approach [69]. As essentially all
proposals for n-particle alphabets to date correspond to different compactifications of the
region of positive kinematics of G̃r(4, n), concretely this approach amounts to a refinement
of the tropical compactification, which at first sight seems to predict another 34 square-
root letters on top of the two-loop NMHV ones. Very interestingly, we find that almost
all of these naively square-root letters can be combined to yield rational ones that are
already contained in the alphabets of [47–49]: the only exceptions are the two cyclically
inequivalent realisations of the four-mass box square-root,

√
∆i,i+2,i+4,i+6 with i = 1, 2 and

i ∼ i mod 8, formed by eight massless legs, see e.g. [70].
Armed by this almost complete overlap between the two methods, we then move on

to apply our results to the nine-particle amplitude. There are several good reasons to
do so: first, because the associated cluster algebra Gr(4, 9) is significantly “more” infinite
than Gr(4, 8) [71], so it is not a priori certain that methods initially developed on the
ground of the latter will have more general applicability. Second, because for n = 8
there exist many subtleties in properly exploring the very interesting property of cluster
adjacency [72], dictating how different symbol letters are allowed to sit next to each other in
the symbol, see e.g. [73]. Last but not least, because the field of amplitudes, and its impact
to phenomenology, was shaped by carrying out initially very challenging computations,
with the insights gained by the explicit results allowing their subsequent trivialisation.

Combining the tropical selection rule for rational letters with the infinite mutation
sequence technology, we thus find a collection of 3,078 rational and 2,349 square-root
letters expected to appear in the nine-particle amplitude, associated to 3,078 and 324
tropical rays, respectively. As a nontrivial check of our proposal, we confirm that it also
contains the alphabet of the 2-loop NMHV nine-particle amplitude, whose symbol was
recently computed in [74].

As perhaps hinted by the leap in computational complexity between the Gr(4, 8) and
Gr(4, 9) cluster algebras, by comparing with other ways for obtaining the rays (which
however provide no information on the letters associated to them), we notice that there
also exist 27 rays of the minimal G̃r(4, n) tropicalisation respecting the symmetries of
the amplitude, which are not accessible by our procedure. We nevertheless find it very
intriguing that we only fall short by such a small margin. While understanding what

1Note that in the literature the square-root letters are sometimes referred to as non-rational or algebraic,
even though the rational part of the alphabet is of course algebraic as well.
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kind of generalisations of cluster variables could be associated to these rays, and whether
they are relevant for amplitude singularities,2 are open questions we leave for future work,
here we also touch on one possibility towards addressing them. In particular, we consider
more general infinite mutation sequences of higher rank (A(1)

m ) algebras, and present some
preliminary evidence that these may not be accessed by any type of infinite mutation
sequence starting from within the cluster algebra. As the scattering diagram approach
also relies on these sequences, this therefore seems to suggest that a radically different idea
might be needed to tackle these exciting questions, and calls for the generation of explicit
new amplitude data that will reveal it to us.

The plan of the rest of this article is as follows. In section 2, we first briefly review
some basic notions of the totally positive tropical Grassmannian, as well as the closely
related, partial tropicalisation of the configuration space G̃r(4, n) that will be relevant for
scattering amplitudes. We also review (Grassmannian) cluster algebras, focusing especially
on the formalism of coefficients, which will be advantageous for our purposes. In section 3
we present the mathematical foundation of our analysis, the general solution of infinite
mutation sequences in the affine rank-2 cluster algebra of type A(1)

1 . We then apply these
results to reobtain the eight-particle alphabet as a check, and also compare with the more
recent scattering diagram approach. Section 4 is devoted to our main application, new
predictions for the letters of the nine-particle amplitude. Section 5 discusses higher-rank
generalisations of infinite mutation sequences as well as their inherent limitations, and
finally section 6 contains our conclusions and outlook.

Results similar to those presented in this article were independently obtained in [75].

2 Tropical fans and cluster algebras

In this section we introduce the mathematical concepts utilized throughout the article.
We begin by reviewing the space of kinematics of N = 4 pSYM, the configuration space
G̃r(4, n) of n points in complex projective space P3, which is constructed as the quotient
of the Grassmannian Gr(4, n) over the complex torus. Following this, we discuss how the
configuration space is tropicalised and review the associated fan structures. Furthermore,
we briefly review cluster algebras with coefficients — a framework required for the analysis
of the infinite mutation sequences — and relate the cluster fan to the tropical fans, allowing
us to review the selection rule that will be used in section 4 to obtain a finite alphabet
from the infinite cluster algebra.

2.1 Grassmannians and configuration spaces

The Grassmannian Gr(k, n) can be defined as the space of k-dimensional planes through
the origin in an n-dimensional vector space. Since each of these planes is spanned by k

n-vectors, Gr(k, n) can be realized as k × n matrices modulo the GL(k) transformations
2For example, it is not clear if the missing rays are “just” associated to more intricate algebraic letters

beyond square roots, or point towards the need for significantly more complicated, elliptic generalisations
of MPLs starting to contribute at n = 9.
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corresponding to a change of basis. The minors of this matrix are the Plücker variables
〈i1 . . . ik〉 for ij = 1, . . . , n which satisfy the Plücker relations

〈i1 . . . ir[ir+1 . . . ik〉 〈j1 . . . jr+1]jr+2 . . . jk〉 = 0 , (2.1)

whereas the square brackets denote antisymmetrisation over the included indices. These
relations may also be used as an alternative starting point to contsruct the Grassmannian.
Starting with the ring of integer coefficient polynomials in the

D =
(
n

k

)
(2.2)

Plücker variables, we can identify Gr(k, n) with the set of solutions to the Plücker relations,
eq. (2.1), quotiened by the global scaling 〈i1 . . . ik〉 → t · 〈i1 . . . ik〉 for t ∈ C \ {0}, which
leaves the Plücker relations invariant.

Further to this scaling, the Plücker relations are also invariant under the local scaling
〈i1 . . . ik〉 → ti1 · · · tik · 〈i1 . . . ik〉 for ti1 , . . . , tik ∈ C \ {0}. If we also quotient by this
transformation, we obtain the configuration space G̃r(k, n), which for k = 4 is the space
of kinematics of n-particle N = 4 pSYM amplitudes considered in this article, expressed
in terms of momentum twistors Zi1 , . . . , Zin [23]. While the Grassmannian has dimension
k(n− k), the configuration space has dimension

d = (k − 1)(n− k − 1) . (2.3)

By further also restricting all ordered Plücker variables to be positive, we obtain the
positive configuration space G̃r+(k, n). This space can be parameterised in terms of the
so-called web-parameterisation, see [51] or the appendix of the authors’ previous arti-
cle [49]. In this parameterisation the Plücker variables are polynomials in the d web-
variables x1, . . . , xd, like for example for 〈25〉 of G̃r+(2, 5), whose web-parameterisation is
given in terms of the two independent coordinates x1, x2 by

〈25〉 = 1 + x1 + x1x2 . (2.4)

2.2 Partially tropicalised configuration space p̃Tr+(4, n)

Tropical geometry is essentially algebraic geometry over the tropical semifield — the real
numbers with taking the minimum as tropical addition ⊕, and addition as tropical multi-
plication ⊗, see e.g. the reviews [76–78]. In practice, at least concerning the application of
tropical geometry in this article, this means that we start with a geometric object that is de-
scribed in terms of polynomials and replace addition with the minimum and multiplication
with addition.3

3In the mathematically precise formulation of tropical geometry, see e.g. [50], the starting point is a
variety attached to a polynomial ideal, whose tropical variety is then constructed. Since we only need the
tropical version of the positive configuration space, we will make use of its web-parameterisation and review
only the neccessary mathematics following [51].
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Figure 1. Fan associated to the tropical polynomial Tr (〈25〉) = min (0, x1, x1 + x2). The rays
are depicted as dashed lines in blue, red and yellow, respectively. The cones are depicted in the
composite color of the two rays by which they are spanned.

Continuing the example of G̃r+(2, 5), we start with the web-parameterisation of the
Plücker variables and tropicalise the parameterisation polynomials, e.g.

〈25〉 = 1 + x1 + x1x2 → Tr (〈25〉) = min (0, x1, x1 + x2) . (2.5)

Note that by construction the numerical coefficients of the polynomials are mapped to
zero. These so-called tropical polynomials are piecewise linear functions whose domains of
linearity are cut out by the tropical hypersurfaces. They can be computed by setting two
of the terms in the minimum equal and smaller or equal than the remaining terms, e.g. for
eq. (2.5) we have

0 = x1 ≤ x1 + x2 , 0 = x1 + x2 ≤ x1 , x1 = x1 + x2 ≤ 0 . (2.6)

The regions cut out by these tropical hypersurfaces are actually convex cones — subsets
of Rd closed under linear combination with positive coefficients. The regions where d − 1
linearly independent hypersurfaces intersect are called rays — lines emanating from the
origin — which span the convex cones. Together, the rays and cones form a fan, the main
object of interest in this paper. For the example of 〈25〉 of G̃r+(2, 5), we obtain three
tropical hypersurfaces in R2 from eq. (2.6), which, due to the low dimension, are identical
to the rays. These three rays span three different cones. The fan is illustrated in figure 1.

To construct the entire positive tropical configuration space T̃r+(k, n), we tropicalise
all paramterised Plücker variables and obtain their tropical hypersurfaces resulting in a
fan in Rd for each of the Plücker variables. The fan Fk,n of T̃r+(k, n) is then given as
the common refinement — essentially the union — of the individual fans.4 Note that the
resulting fan is not just the union of rays and cones of the individual fans since the tropical
hypersurfaces of one fan might cut a cone of another fan into several cones. For more

4Note that while the tropical version of a variety is actually obtained as the intersection of all tropical
hypersurfaces, we have to take the common refinement here due to working with a parameterisation of the
variety in question, see [51].
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details, see also [49]. By using the tropicalised Plücker parameterisation, eq. (2.5), we can
alternatively obtain an embedding of the d-dimensional fan in RD.

Whereas this construction is the canonical way to tropicalise the positive configuration
space, we may choose to only tropicalise a subset of all Plücker variables. The resulting
fan is the common refinement of the corresponding subset of fans associated to the Plücker
variables and thus a coarser version of the fully tropicalised fan. This means that the
partial fan consists of less rays and cones with some of the cones of the full refining those
of the partial fan. In this paper we will be almost exclusively be focusing on the following
partial tropicalisation of the configuration space G̃r+(4, n),

p̃Tr+(4, n) : 〈ii+ 1jj + 1〉 → Tr (〈ii+ 1jj + 1〉) ,
〈ij − 1jj + 1〉 → Tr (〈ij − 1jj + 1〉) , i = 1, . . . , n , (2.7)

namely we only tropicalise the Plücker variables with indices either pairwise adjacent, or
forming an adjacent triplet. The associated fan will be denoted by pF4,n. This choice is
believed to be the most relevant for n-particle amplitudes in N = 4 pSYM, as it leads
to predictions for their singularities that agree with the known n = 6, 7 cases, and more
generally respects the parity symmetry of MHV amplitudes in a minimal way [47, 48, 63].
In contrast, T̃r+(4, n) is not parity invariant.

2.3 Cluster algebras with coefficients

Another remarkable property of the Grassmannian Gr(k, n) is that its coordinate ring car-
ries the structure of a cluster algebra. A rank r cluster algebra consists of the so-called
A-variables — rational functions in r arguments — organized in overlapping sets of r
variables, the clusters, which are connected to each other by a birational transformation,
the mutation. Finally, for each cluster we have the adjacency matrix B, a r × r antisym-
metrisable matrix encoding the connection among the variables within the cluster. If the
adjacency matrix is antisymmetric, we can equivalently represent the cluster by a quiver,
where nodes correspond to cluster variables, and the absolute value and sign of the entries
of B corresponds to the number of arrows between nodes and their direction, respectively.

If we can generate only a finite number of distinct clusters and cluster variables with
mutation, the cluster algebra is called finite (and otherwise infinite). Finite cluster algebras
are completely classified in terms of the Cartan-Killing classification of semisimple Lie
algebras. In practice, this means that if a cluster algebra has a cluster whose quiver is
equivalent to a Dynkin diagram, the cluster algebra is of the corresponding type. For more
details, see e.g. [24–27].

In the physics literature [16], it is common to also consider additional frozen variables,
associated to frozen nodes in the quiver. The frozen variables behave like the A-variables
except that they are never mutated and that there are no arrows between them. The
A-variables and frozen variables together are referred to as A-coordinates. If we consider
M frozen nodes, the adjacency matrix is extended to a (r +M)× r matrix with the r × r
part encoding the connections between the r A-variables being the principal part. As an
example, the quiver of the initial cluster of Gr(2, 5) is depicted in figure 2. Note that the
A-variables are sometimes referred to as unfrozen variables.
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〈13〉 〈23〉

〈14〉 〈34〉

〈15〉 〈45〉

〈12〉

Figure 2. Initial seed of the rank-2 cluster algebra of Gr(2, 5). Each node corresponds to an A-
coordinate. The nodes surrounded by a box are associated to frozen variables, whereas the unboxed
nodes are associated to A-variables.

In the mathematics literature, there is another equivalent description using the so-
called coefficients [27]. As we will detail momentarily, in this formalism all frozen variables
connected to a given A-variable are grouped into a single coefficient, which also changes
under mutation and is associated to the A-variable. The main advantage of cluster algebras
with general coefficients is that they can be constructed once, and then specialized to any
particular choice of frozen variables at the very end. This allows for a unified treatment of
what would be several distinct computations in the language of frozen variables, and it will
be crucial in obtaining the singularities of eight- and nine-particle amplitudes, as described
in sections 3 and 4, in essentially one go.

We now consider a rank-r cluster algebra with r A-variables a1, . . . , ar and M frozen
variables ar+1, . . . , ar+M in the initial cluster. Denoting the components of the adjacency
matrix of the initial cluster — a (r+M)×r integer matrix — by b0

ij , we attach a coefficient
yi to each A-variable ai in the initial cluster via5

yi =
r+M∏
j=r+1

a
b0
ji

j . (2.8)

The special case that a cluster algebra of rank r has r frozen variables such that yi = ar+i
is referred to as principal coefficients. As can already be seen from eq. (2.8), the coefficients
are closely related to the X -variables of Fock and Goncharov [79], xi with i = 1, . . . , r. The
latter are defined, in any cluster of the cluster algebra, by

xi =
r∏
j=1

a
bji
j · yi . (2.9)

When mutating the cluster at one node, we obtain another cluster with mutated vari-
ables and coefficients. Hence, as is usually done in the formalism of cluster algebras with
coefficients, we label clusters by an index t and denote the variables of such cluster by ai;t,

5Since by construction there are no edges between frozen variables, the (r +M)× r extended adjacency
matrix is sufficient to describe all adjacencies in the quiver. In the framework of cluster algebras with
coefficients, we instead only consider the r × r principal part of that matrix and may use eq. (2.8) as the
definition of the extended adjacency matrix in any cluster.
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whereas the index i labels the position of the variable within the cluster. It is common
to label the initial cluster by t = 0 or to just drop the index, if it is clear from context.
Consider now the mutation of cluster t at node j resulting in the cluster t′. The mutation
rule for the A-variables is given by

aj;t′ =
yj;t
∏r
i=1 a

[btij]+
i;t +

∏r
i=1 a

[−btij]+
i;t(

1 ⊕̂ yj;t
)
aj;t

, (2.10)

where btij are the components of the adjacency matrix of cluster t, [x]+ = max (0, x),
and with all other A-variables remaining unchanged. In this formula, we have used the
cluster-tropical addition6 ⊕̂ , which is defined on the frozen variables as

r+M∏
i=r+1

acii ⊕̂
r+M∏
i=r+1

adii =
r+M∏
i=r+1

a
min(ci,di)
i . (2.11)

Similar to the A-variables, we also have a mutation rule for the coefficients, which is
given by

yl;t′ =

y
−1
j;t if l = j ,

yl;ty
[btjl]+
j;t

(
1 ⊕̂ yj;t

)−btjl if l 6= j .
(2.12)

Since this mutation relation implies that the coefficients are always monomials in the frozen
variables, which are the same in all clusters, cluster-tropical addition on the coefficients as
given by eq. (2.11) is well defined for all clusters. Note that the mutation rule for the X -
variables is the same as that of the coefficients except with normal addition instead of the
cluster-tropical addition. The mutation rule for the adjacency matrix remains unchanged
in comparison to the more familiar framework of frozen and unfrozen variables, and is
given by

bt
′
il =

{
−btil if i = j or l = j ,

btil + sign(btij)[btijbtjl]+ otherwise.
(2.13)

All mutation rules presented here are equivalent to those more commonly used in the
physics literature, as can be easily seen by inserting the definition of the coefficients in
terms of the frozen variables.

Another advantage of considering cluster algebras with coefficients instead of frozen
variables is that it makes the separation principle manifest. Using eq. (2.9) to express yj;t in
terms of the A- and X -variables of the cluster t, we can rewrite the mutation rule (2.10) as

aj;t′ = (aj;t)−1
r∏
i=1

a
[−btij]+
i;t · 1 + xj;t

1 ⊕̂ yj;t
. (2.14)

The consequence of this factored form of the mutation relation is that, in the cases relevant
to this article, any A-variable can be written in such a way: a monomial in the initial

6Note that although closely related, cluster-tropical and tropical addition are not quite the same and
hence denoted by ⊕̂ and ⊕, respectively. Essentially, cluster-tropical addition on the monomials of frozen
variables is given by tropical addition on the exponents of these variables.
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A-variables times some rational function in the initial X -variables divided by its cluster-
tropical version, that is we have

a =
r∏
i=1

agii;0 ·
F (x1;0, . . . , xr;0)
FT (y1;0, . . . , yr;0) , (2.15)

for some A-variable a and whereas FT denotes the function obtained by replacing addition
with cluster-tropical addition in the rational function F . In this way, we can associate a
unique g-vector, an integer vector in Zr whose components are the gi, to each A-variable,
for which we also can obtain a mutation rule from eq. (2.10), see e.g. [27].

However, for our purposes it is better to work with a modified version thereof. In
order to more closely align the rays associated to the A-variables to the rays of the totally
positive tropical configuration space, we use a modified mutation rule to compute these
cluster rays, see also [46, 49]. To construct this relation, we first attach a coefficient matrix
C to each cluster. In the initial cluster, it is given by C0 = 1r, whereas 1r is the r × r
identity matrix. The mutation rule is given by

ct
′
il =

{
−ctil if i = j or l = j ,

ctil − [ctij ]+btjl + ctij [btjl]+ otherwise.
(2.16)

Finally, we introduce the ray matrix G for each cluster, whose columns are the cluster rays.
By construction, in the initial cluster it is given by G0 = 1r. The mutation rule is given by

gt
′
il =

gtil if i = j or l = j ,

−gtil +
∑r

m=1

(
gtim[−btmj ]+ + b0

im[cmj ]+
)

otherwise.
(2.17)

The cluster fan, consisting of the cones spanned by the cluster rays in each cluster, is
combinatorially equivalent the one obtained from the actual g-vectors.

2.4 Fans of cluster algebras

Besides the tropical fans reviewed above, we may also associate a fan to any cluster algebra.
First, we construct the cluster polytope, which is closely related to the exchange graph of
the algebra,7 by associating each cluster of a rank-r cluster algebra to a vertex. If two
clusters are related by mutating one of their variables, they are connected by a line. This
1-dimensional face of the polytope may be alternatively described by fixing the r − 1 A-
variables that are unchanged in the mutation and that are thus shared between the two
clusters. Similarly, we obtain a l-dimensional face of the polytope by fixing r − l variables
that appear in a cluster together. The face is then bordered by all vertices that contain all
these r − l variables.

The fan of the cluster algebra is taken to be the normal fan of this polytope, that is its
rays are the inward-pointing normals to the codimension-1 faces of the polytope. In this
way, a l-dimensional face of the polytope becomes a (r − l) dimensional or codimension-l

7The exchange graph of the cluster algebra is the 1-skeleton of the cluster polytope.
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Algebra Polytope Fan
Dim. Type Dim. Type

Cluster 0 Vertex d Cone
Mutation 1 Line d− 1 Facet

...
...

...
A-variable d− 1 Facet 1 Ray

Table 1. Comparison of the faces of a cluster algebra of rank d, its polytope and the cluster fan.

(a) Finite case (b) Infinite case

Figure 3. Illustrative examples of the (redundant) triangulation of a tropical fan by a (a) finite
and (b) infinite cluster algebra. Each of the figures depicts two cones of a 3-dimensional fan
intersected with the unit sphere S2 in black. The cones and the redundant rays from the redundant
triangulation are drawn in red, those from the non-redundant triangulation in blue.

face of the fan. For example, the 0-dimensional vertices of the polytope correspond to the r-
dimensional cones and the r−1 dimensional faces associated to each A-variable correspond
to the rays of the fan. We thus have a one-to-one association of A-variables and rays of
the cluster fan, see also table 1. These rays are closely related to the g-vectors associated
to the variable and are obtained by a mutation rule, as sketched in the previous section.

Remarkably, as first observed in [51], for finite cluster algebras of Gr(k, n) the cluster
fan is a refinement of the fan of the totally positive tropical configuration space T̃r+(k, n).
That is, the cones of the cluster fan are all contained within cones of the tropical fan. Since
the cones of the cluster fan are all simplicial, it triangulates T̃r+(k, n).

In this triangulation, however, the cluster algebra sometimes introduces redundant rays
— rays of the cluster fan that are not tropical rays. Geometrically, redundant rays are not
on a 1-dimensional but a higher dimensional intersection of tropical hypersurfaces. Instead
they are the positive linear combination of two tropical rays spanning some cone. This is
illustrated on the left hand side of figure 3

If the cluster algebra is infinite, e.g. in our case of Gr(4, n) for n ≥ 8, it consists of
infinitely many A-variables and thus also rays. In the regions of the ambient space Rd that
are covered by the cluster fan, it again refines the fan Fk,n of the tropical configuration
space. Since the latter is by construction always finite, almost all of the cluster rays are
redundant. It is therefore natural to expect that the nature of the infinities of the cluster
algebra can be interpreted as a redundant triangulation of Fk,n with infinitely many cones
of the cluster fan containing redundant rays, as is illustrated on the right hand side of
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figure 3. Note that this (redundant) triangulation property also applies to the fan of any
partial tropicalisation of G̃r+(k, n), such as pF4,n, which is a coarser version of the fully
tropicalised fan and hence also triangulated by the cluster fan.

To tame the infinity of the cluster algebra, we utilize this relation between the cluster
fan and the fan pF4,n of the partially tropicalised positive configuration space and introduce
the following selection rule: whenever we encounter a cluster containing a redundant ray
we stop mutation in this direction and discard all such redundant clusters. Starting from
the initial cluster, which by construction does not contain redundant rays, and mutating
in this way, we obtain a finite subset of the infinite cluster algebra — the truncated cluster
algebra. Each of the rational A-variables in this subset is then by construction in one-to-one
correspondence to a tropical ray of pF4,n.

3 Infinite mutation sequences and square-root letters

In the previous section, we reviewed how the relation between (partially) tropicalised Grass-
mannians and Gr(4, n) cluster algebras always allows one to select a finite subset of A-
variables of the latter, even in the n ≥ 8 case where they are infinite. This selection rule is
then expected to yield the rational letters of the n-particle amplitude in N = 4 pSYM.

In the n ≥ 8 case, non-rational letters are also expected to appear, and a conceptual
advance for obtaining them was achieved in [47–49], building on earlier mathematical de-
velopments [80, 81]: the main idea, applied more concretely to Gr(4, 8), was to also consider
infinite mutation sequences of a rank-2 affine subalgebra, conventionally denoted as A(1)

1
in the corresponding Dynkin diagram classification, starting from the clusters singled out
by the aforementioned selection rule. For certain of these mutation sequences, the limiting
cluster ray does yield a ray of p̃Tr+(4, 8) that was not previously accessible by the selection
rule, as well as associated square-root letters.

When analysing these infinite mutation sequences, all but two nodes of the cluster
we start from may be considered as frozen. In order for this analysis to be able to cover
p̃Tr+(4, n) for any n, where the frozen nodes will have different structure, it is therefore
necessary to work out A(1)

1 sequences with general coefficients. We carry out this task,
which also has its intrinsic mathematical merit, in subsection 3.1.

As a check of our formalism, in subsection 3.2 we reapply it to the p̃Tr+(4, 8) case,
and confirm that it provides two rays associated to 18 square-root letters, as was previ-
ously found in [47]. Then, in subsection 3.3 we compare these results with a more recent
refinement of the works [47–49], based on the framework of wall-crossing and scattering dia-
grams [69]. While this approach naively predicts a large number of additional non-rational
letters, very interestingly we find that these are in fact only two: the inequivalent reali-
sations of the four-mass box Gram determinant by eight cyclically ordered massless legs,
∆1,3,5,7 and ∆2,4,6,8. In the next section, we will further apply the methods of section 3.1 to
p̃Tr+(4, 9), and thus obtain new predictions for the singularities of nine-particle amplitudes.
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y1;0

a1;0

y2;0

a2;0

y2;1

a2;1

y1;1

a1;1

· · ·
y1;j

a1;j

y2;j

a2;j

y2;j+1

a2;j+1

y1;j+1

a1;j+1

· · ·
µ1 µ1 µ1 µ1 µ1

Figure 4. Infinite mutation sequence in the affine rank-2 cluster algebra of A(1)
1 Dynkin type.

3.1 Mutation sequence of type A(1)
1 with general coefficients

In this subsection, we study the infinite mutation sequence of type A(1)
1 with general co-

efficients, depicted in figure 4. The coefficient-free and principal coefficients case was first
studied in [80] and [81], and they were later rediscovered in the context of amplitude al-
phabets, either as above or with a special case of frozen variables in [47–49]. For the
convenience of the reader, here we sketch the essential steps for the solution of the corre-
sponding recurrence relation, and defer the remaining proofs and detailed calculations to
appendix A.

Consider the rank-2 affine cluster algebra of A(1)
1 Dynkin type with 2 A-variables and

M frozen variables. The coefficients y1;0 and y2;0 are given in terms of the frozen variables
a3, . . . , aM and the adjacency matrix b0

ij of the initial cluster as

yj;0 =
M+2∏
i=3

a
b0
ij

i , j = 1, 2 . (3.1)

As depicted in figure 4, repeated mutation at node 1 gives rise to sequences of A-
variables ai;j and coefficients yi;j with initial values a1;0, a2;0 and y1;0, y2;0, respectively.8
Furthermore, we may also consider the sequence of associated X -variables, which are
given by x1;j = a−2

2;jy1;j and x2;j = a2
1;jy2;j . Using the general mutation rules, eqs. (2.10)

and (2.12), we obtain the following recursion relations for these sequences for j ∈ Z

a2;j+1 =
a2

2;j
a1;j

1 + x1;j

1 ⊕̂ y1;j
, a1;j+1 = a2;j , (3.2)

y1;j+1 =
y2;j y

2
1;j(

1 ⊕̂ y1;j
)2 , y2;j+1 = (y1;j)−1 , (3.3)

x1;j+1 =
x2;j x

2
1;j

(1 + x1;j)2 , x2;j+1 = (x1;j)−1 . (3.4)

Note that the mutation rule for the A-variables presented here is of the form of eq. (2.14)
and again the mutation rule of the X -variables is the same as that of the coefficients
with cluster-tropical addition replaced by normal addition. Further to these sequences, we
introduce the sequence βj of ratios of consecutive A-variables

βj = a2;j
a1;j

, (3.5)

which, by eq. (3.2), can equivalently be expressed as a1;j+1/a1;j or a2;j/a2;j−1.
8Recall that according to the notation introduced in section 2.3, we have found convenient to label all

variables with a pair of indices indicating their position i in a given cluster j, such that the mutation along
the sequence is always on position i = 1.
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Having obtained the recursion relations for the sequence, we will now turn to its
solution by linearizing eq. (3.2). Similar to [48, 82], we define the two quantities K1,j and
K2,j for each cluster. They are given by

K1,j =
(
γ0γ
−1
j β−1

0 βj

) [
1 + x1;j + x1;j (x1;j−1)−1

]
, (3.6)

K2,j =
(
γ0γ
−1
j β−1

0 βj

)2 [
x1;j (x1;j−1)−1

]
, (3.7)

where we have included a factor γ0β
−1
0 so as to normalize these quantities at j = 0 for later

convenience, and the auxiliary sequence γj is — up to the prefactors — the cluster-tropical
version of K1,j , defined as

γj = 1 ⊕̂ y1;j ⊕̂ y1;j (y1;j−1)−1 . (3.8)

Note that K1,j , K2,j and γj depend only on the data of the cluster j, as can be seen
by noting that due to eqs. (3.3)–(3.4), (x1;j−1)−1 = x2;j and (y1;j−1)−1 = y2;j . As follows
from the mutation relations, K1,j and K2,j are actually invariant along the sequence, see
appendix A. From now on they will be denoted by K1 and K2, respectively, and in terms
of the initial X -variables they are explicitly given by

K1 ≡ K1,0 = 1 + x1;0 + x1;0x2;0 , K2 ≡ K2,0 = x1;0x2;0 . (3.9)

Using the invariants, we can linearize the recursion relation of the A-variables, eq. (3.2),
to obtain

γ−1
j γ−1

j+1a1;j+2 − γ−1
0 β0K1 · γ−1

j a1;j+1 + γ−2
0 β2

0K2 · a1;j = 0 . (3.10)

By using a1;j+1 = a2;j , this recursion can be recast to give an equation for the variables of
cluster j + 1 in terms of variables of cluster j only. While this is a linear recurrence rela-
tion, the fact that it does not have constant coefficients makes its solution more intricate.
However, by considering the new sequence αj , defined by

αj = γ−1
0 γ−1

1 . . . γ−1
j−1 · a1;j (3.11)

for j ≥ 0 we obtain another recurrence relation given by

αj+2 − γ−1
0 β0K1 · αj+1 + γ−2

0 β2
0K2 · αj = 0 . (3.12)

Being a linear recurrence with constant coefficients, it may now be solved by standard
methods based on its characteristic polynomial,

P1 (t) = t2 − γ−1
0 β0K1 · t+ γ−2

0 β2
0K2 . (3.13)

The latter has two roots β± that are given by

β± = a2;0
a1;0

K1 ±
√
K2

1 − 4K2
2γ0

, (3.14)

and which correspond to the j → ∞ limit of both the ratio αj+1/αj and βj , as can be
seen by first observing that αj+1/αj = γ−1

j βj . Using that γj → 1 for j →∞, as proven in
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appendix A, it follows that, assuming convergence, the ratio αj+1/αj has the same limit
as βj . Furthermore, dividing the recurrence (3.12) by αj and taking the limit j → ∞, we
see that the limit of the α-ratio, and thus that of βj , is given by the roots of P1.

Using the roots of the characteristic polynomial, we obtain the most general solution
for the sequence a1;j as9

a1;j = (γ0γ1 · · · γj−1)
[
C+ (β+)j + C− (β−)j

]
, (3.15)

whereas we have used eq. (3.11) to express a1;j in terms of αj . Note that since γj becomes 1
for j ≥ J for some integer J , the prefactor becomes constant at some point. The coefficients
C± can be fixed via the initial conditions a1;0 and a1;1 = γ−1

0 a2;0 to be

C± = a1;0
±2∓K1 +

√
K2

1 − 4K2

2
√
K2

1 − 4K2
. (3.16)

In addition to the infinite mutation sequence of repeatedly mutating a1;j , we can also
consider the opposite direction, which amounts to repeatedly mutating a2;j . As is explained
in more detail in appendix A, the solution to this recurrence can be obtained in a similar
way and is given by

a2;−j = (γ0γ−1 · · · γ−j+1)−1
[
C̃+ (β−)−j + C̃− (β+)−j

]
, (3.17)

for j ≥ 0. As is demonstrated in appendix A, γ−j also becomes 1 for j ≥ J for some integer
J . The coefficients C̃± can again be obtained from the initial conditions and are given by

C̃± = a2;0
±2K2 ∓K1 +

√
K2

1 − 4K2

2
√
K2

1 − 4K2
. (3.18)

Finally, let us briefly comment on the associated limit ray. In the j → ∞ limit, the
ratio of consecutive cluster variables, eq. (3.14), obeys a generalized form of the separation
principle of eq. (2.15). That is, it factorizes into a monomial in the initial A-variables times
a ratio of algebraic function with a cluster-tropical sum, which can be interpreted as the
(generalized) cluster-tropical version of the algebraic function. In particular, as we have
explained above eq. (3.14), γ0 is the tropical version of K1, and it is natural to consider
it also as the (generalized) cluster-tropical version of

√
K2

1 − 4K2. Analogously to the
definition of g-vectors from the exponents of the A-coordinate representation of eq. (2.15),
from eq. (3.14) we may thus associate gβ = (−1, 1) to the limit. Indeed, considering
the sequence of g-vectors associated to the sequence of A-variables, we find that it does
converge to gβ . Note, however, that this is the limit ray with reference to the A(1)

1 cluster
algebra only. In practice, to obtain the limit ray of some embedding of such a cluster
algebra, we use the mutation relation for the cluster rays given by eq. (2.17).

9Note that this is in fact the general solution of the quantity αj of eq. (3.11): we have not attempted
to also find the general solution of the γj prefactor, since for our purposes only ratios where this prefactor
cancels will be needed.
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3.2 Application: p̃Tr+(4, 8) and the eight-particle alphabet

The remarkable feature of the infinite mutation sequences considered in the previous
subsection is that they yield quantities containing square roots, see eqs. (3.15), (3.16),
and (3.17), (3.18). The main idea of the works [47–49] was that these quantities thus
provide natural candidates for the non-rational letters of amplitudes, focusing on the then-
unknown frontier of multiplicity eight, related to the Gr(4, 8) cluster algebra. Note that
while the values of the above-mentioned quantities differ depending on the choice of coef-
ficients, square roots are always present.

In more detail, all three aforementioned papers identified A(1)
1 as an affine rank-2 sub-

algebra of the cluster algebra in question, and [49] analysed this subalgebra with principal
coefficients as a proof of concept. References [47] and [48] additionally found the generat-
ing functional of the mutation sequences, roughly equivalent to the general solutions (3.15)
and (3.17), for the particular case of frozen variables required to analyse the Gr(4, 8) cluster
algebra, from the tropical geometry and stringy canonical form approach, respectively.

If one assumes a one-to-one correspondence between tropical rays and letters of the
symbol alphabet, then the natural choice also respecting the natural symmetry of the latter
is the ratio β+/β−. This possibility cannot be currently excluded if one restricts to MHV
amplitudes, which are technically speaking the only ones having G̃r(4, n) as their space
of kinematics (beyond MHV, the analysis of the kinematic space is complicated by the
existence of rational functions on top of the transcendental ones studied here). Indeed,
through the currently known loop order L = 2, the eight-particle MHV amplitude only
contains rational letters [83, 84], so it could be that the only additional square-root letters
starting to appear at L ≥ 3 are those uniquely associated to tropical rays.

Nevertheless, in [47] it was further noticed that if the direction of approach to the limit
ray is also taken into account, such that many square-root letters are associated to each
limit ray in a particular fashion, then one in fact obtains the complete alphabet of the 2-
loop NMHV amplitude [45], which the unique association of letters to rays cannot account
for. Along with a complementary analysis based on plabic graphs [85–87], see also [88]
appearing simultaneously with this paper, this seems to suggest that despite the apparent
complications mentioned above for non-MHV amplitudes in N = 4 pSYM, the symbol
alphabet may be independent of the helicity configuration, at least at multiplicity n = 8.

In this paper, we will adopt the prescription of [47] for associating many square-root
letters to a given limiting ray associated to a given A(1)

1 subalgebra of the truncated Gr(4, n)
cluster algebra, which in the conventions of the previous subsection is given by10

φ0 ≡
C+
C−

= 2−K1 +
√
K2

1 − 4K2

−2 +K1 +
√
K2

1 − 4K2
, φ̃0 ≡

C̃+

C̃−
= 2K2 −K1 +

√
K2

1 − 4K2

−2K2 +K1 +
√
K2

1 − 4K2
, (3.19)

where the quantities appearing here have been defined in eqs. (3.9), (3.16) and (3.18).
The great merit of the analysis we carried out in the previous section, and of the above

formula, is that it can be directly applied to any such subalgebra for any n, not necessarily
10More precisely, when specialized to n = 8 the formulas below reduce to the negative inverse of those

provided in the latter reference, with this difference being immaterial at the level of symbol letters.
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equal to eight. All we need as input is the data of a given origin cluster, namely the cluster
containing a A(1)

1 cluster subalgebra from which the infinite mutation sequence starts, such
as for example the one depicted in figure 5 for n = 8.11

So our results can in principle be specialized to yield predictions for the symbol alpha-
bet of scattering amplitudes at any multiplicity n, and in the next section we will indeed
apply them to the n = 9 case. As a first cross check however, in the remainder of this
subsection we will use our method to confirm the results reported in [47] for the eight-
particle alphabet. Let us also comment that while the prescription (3.19) may currently
seem ad-hoc and only justified by the agreement of its symbol alphabet predictions with
explicit computations, in the next subsection we will provide further evidence about its
correctness by comparing it with a more recent approach based on scattering diagrams and
wall-crossing [69].

Focusing now on the case of eight-particle scattering, we find a total of 3,600 origin
clusters with a A(1)

1 cluster subalgebra in the 121,460 clusters of the cluster algebra of
Gr(4, 8) truncated by p̃Tr+(4, 8). The rays of the variables mutated in the infinite mutation
sequences starting at these origin clusters converge to four different limit rays. Interestingly,
only two of these limit rays are contained in p̃Tr+(4, 8), whereas the other two are contained
only in T̃r+(4, 8) and not its partially tropicalised version. Similar to the truncation rule
used to obtain a finite subset of rational cluster variables, we discard the limits of the origin
quivers whose limit rays are not contained in p̃Tr+(4, 8). This leaves us with a truncated
set of 2,800 origin clusters of which 56 for each of the two limit rays are unique,12 since
many of these clusters only differ in parts of the quiver that do not affect the A(1)

1 cluster
subalgebra and thus also not the limit of its infinite mutation sequence.

In this way, we find a total of 112 different origin clusters giving rise to 224 square-
root letters via eqs. (3.19). However, these 224 letters are not multiplicatively independent.
From the perspective of the alphabet — essentially the set of logarithms of these letters
— this means that not all of the letters are linearly independent and hence are redundant.
While the presence of square roots complicates the elimination of these redundancies, this
can be done using an approach similar to that of [89], which we will describe in more detail
in section 4.2, where it is used again. For the case at hand, we find that the aforementioned
224 letters reduce to 18 multiplicatively independent letters, which are equivalent to the
square-root letters reported in [47] and previously known to appear in the two-loop NMHV
eight-particle amplitude, as computed in [45].13

To summarise, in total we obtain all 274 tropical rays of p̃Tr+(4, 8) — 272 rays associ-
ated to one rational letter of the truncated cluster algebra each and 2 rays associated to 9
multiplicatively independent square-root letters obtained as the limits of infinite mutation

11More concretely, to apply the above formulas in this example, we only need to evaluate eq. (3.9) with
x1;0 → x1 and x2;0 → x9.

12The 800 origin clusters whose limit rays are only contained in T̃r+(4, 8) reduce to 32 different origin
clusters for each of the rays.

13Note that the 18 square-root letters can alternatively be obtained by solving polynomial equations
associated to certain plabic graphs [85, 86]. As soon as one attempts to also incorporate rational letters in
this approach, however, non-plabic graphs are required as well [87]. In this case the solution space includes
all cluster variables of Gr(4, 8), that is the alphabet becomes infinite again.
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sequences each. This 290-letter alphabet contains all letters previously known to appear
in the eight-particle MHV and NMHV amplitudes.

3.3 Comparison with the scattering diagram approach

A common element of the majority of different efforts to predict the symbol alphabet of n-
particle amplitudes in N = 4 pSYM, initially based on Grassmannian cluster algebras [16],
and more recently on tropical Grassmannians [47, 49] or stringy canonical forms [48], is
that they correspond to different compactifications of the positive part of the space of
kinematics G̃r(4, n). More recently, another such compactification refining the aforemen-
tioned works, and relying on the concepts of wall-crossing and scattering diagrams, has
been proposed [69].

Having discussed the predictions of the tropical geometry approach for the eight-
particle alphabet in the previous subsection, here we will compare them with those of
the scattering diagram approach. In a nutshell, while the latter yields 72 letters (36 per
limit ray of p̃Tr+(4, 8)), out of which 56 are naively non-rational, we will show that in
fact all of these letters are contained in the 290-letter octagon alphabet of the previous
subsection, except for the square roots of the two Gram determinants associated to the
four-mass box,

∆1,3,5,7 =
(

1− 〈1234〉 〈5678〉
〈1256〉 〈3478〉 −

〈1278〉 〈3456〉
〈1256〉 〈3478〉

)2
− 4〈1278〉 〈1234〉 〈3456〉 〈5678〉

(〈1256〉 〈3478〉)2 , (3.20)

∆2,4,6,8 =
(

1− 〈2345〉 〈1678〉
〈2367〉 〈1458〉 −

〈1238〉 〈4567〉
〈2367〉 〈1458〉

)2
− 4〈1238〉 〈2345〉 〈4567〉 〈1678〉

(〈2367〉 〈1458〉)2 , (3.21)

whereas ∆2,4,6,8 is related to ∆1,3,5,7 by the cyclic shift 〈ijkl〉 → 〈i+ 1 j + 1 k + 1 l + 1〉.
We view the almost complete overlap of the two approaches at multiplicity n = 8 as a

strong indication of their correctness, and will further comment on the presence or absence
of the extra letters, eqs. (3.20) and (3.21), from amplitudes and Feynman integrals. To
provide more general backing to this conclusion, later in this section we will also show that
the square-root letters obtained from the tropical geometry approach are always contained
in those of the scattering diagram approach for any n. But before this, let us briefly provide
some background information on scattering diagrams.

Basics of scattering diagrams. A scattering diagram can be thought of as a generali-
sation of the g-vector fan of the cluster algebra, as defined by eq. (2.15), that also contains
the limits of infinite mutation sequences. In the g-vector fan of a cluster algebra, each A-
variable is associated to one of the rays in the fan. The rays of all variables in a cluster then
form a cone, which intersects other cones that share some of the variables. A codimension-
1 intersection, or wall, between cones that share all but one variable corresponds to the
mutation of the variable that is not shared.

In the scattering diagram, we associate a variable xγi to each of the rays in a cone.
These cone variables are related to the X -variables of the cone in the following way. Con-
sider a wall of the cone and the X -variable xj that is mutated when passing through the
wall. Denote the (appropriately normalized) vector perpendicular to the wall and pointing
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x3 x2 x8

x1

x6 x4 x7

x9 x5

Figure 5. Principal part of the origin cluster in Gr(4, 8) utilized to find the square-root letters.
From this quiver, it is also evident that Gr(4, 8) ' E

(1,1)
7 in the extended affine Dynkin diagram

classification [71].

into the cone by γ⊥j = cjiγi, whereas the γi denote the canonical basis vectors. We then
have the relation

xj =
∏
i

(xγi)
cji . (3.22)

Alternatively, we can use the inverse of eq. (3.22) to express the variables xγi in terms of
the X -variables xi of the cone. Note that the labelling is such that the wall denoted by j
is that which is spanned by the rays associated to all A-variables ai except that of aj . As
we will see shortly, the advantage of using the cone variables is that they remain finite and
have a well-defined limit in the relevant infinite mutation sequences.

The mutation, or wall crossing, of the cone variables is implemented by multiplying
them with powers of a function f(xγ⊥j ) which is attached to each of the walls, whereas
the argument xγ⊥j is equal to xj or its inverse, depending on the side from which the
wall is approached. For walls that are part of the g-vector fan, this function is given by
f(xγ⊥j ) = 1 + xγ⊥j

. Together with eq. (3.22), this reproduces the mutation rule for the xi.
Extending the cluster algebra framework, the wall crossing function for walls that are not
part of the cluster algebra can be obtained by self-consistency conditions.

Eight-particle alphabet predictions and comparison with tropical geometry.
Let us now review and further analyse the predictions of the scattering diagrams framework
for the alphabet of the eight-particle amplitude [69], as well as compare them to the 290-
letter p̃Tr+(4, 8) alphabet discussed in the previous section. We will only discuss the
boundary structure around one of the two limit rays of Gr(4, 8), since the letters associated
to the other can be obtained by the cyclic shift 〈ijkl〉 → 〈i+ 1 j + 1 k + 1 l + 1〉.

In a first step, one mutates from the initial cluster to an origin cluster containing a
A(1)

1 subalgebra. Concretely, performing the mutations {1, 2, 4, 1, 6, 8} leads to the cluster
depicted in figure 5. The parameterisation of the X -variables xi in this cluster in terms of
Plücker variables as well as all other data required to reconstruct the non-rational alphabet
can be found in appendix B.

Next, one expresses the cone variables along the A(1)
1 sequence originating from this

cluster in terms of its X -variables xi by using the inverse of eq. (3.22). Compared to the
xi, the cone variables do converge to a finite function when taking the limit of the infinite
sequence. These limits correspond to the cone variables x0

γi of a cone asymptotically close
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to the limit ray, also known as an asymptotic chamber, and are given by

x0
γi = xi for i ∈ {2, 3, 4, 7} ,

x0
γi = xi

2

(
1 + x1 (1 + x9) +

√
∆′
)

for i ∈ {5, 6, 8} , (3.23)

x0
γ1 = 4x1∆′(

1 + x1 − x1x9 +
√

∆′
)2 , x0

γ9 = x9
4

(
1 + 1− x1(1 + x9)√

∆′

)2
,

where ∆′ = (1 + x1(1 + x9))2 − 4x1x9 . In contrast to just considering the cluster alge-
bra itself, one can now utilise wall crossing to find other asymptotic chambers and their
variables. This was carried out in [69] by means of an extensive computer search, yielding
a basis of 36 multiplicatively independent polynomials of the x0

γi , proposed to contain all
non-rational letters (in the original X - or Plücker variables) of the eight-particle amplitude.
It was also noticed that 10 of these polynomials depend only on the rational X -variables
xi for i ∈ {2, 3, 4, 7}, such that the set of non-rational letters is immediately reduced to (a
maximum of) 26 letters.

Very interestingly, we notice that for another 6 of these letters the square roots con-
tained in them cancel out, such that they are also secretly rational. What is more, there
are 10 multiplicative combinations of the remaining 20 letters that turn out to be rational
as well,14 see appendix B for details. All in all, this implies that the scattering diagram
approach in fact predicts 26 rational and 10 square-root letters for one of the two Gr(4, 8)
limit rays, and more concretely the latter ones may be chosen to be

f1 =
(
x0
γ1

)−1 (1− x0
γ1x

0
γ9

)2
, f2 = x0

γ9

(
1− x0

γ1x
0
γ9

)2
,

f3 =
1 + x0

γ5x
0
γ1x

0
γ9

1 + x0
γ5

, f4 =
1 + x0

γ8x
0
γ1x

0
γ9

1 + x0
γ8

, f5 =
1 + x0

γ2

(
1 + x0

γ8x
0
γ1x

0
γ9

)
1 + x0

γ2

(
1 + x0

γ8

) ,

f6 =
1 + xγ3

(
1 + x0

γ2

(
1 + x0

γ8x
0
γ1x

0
γ9

))
1 + xγ3

(
1 + x0

γ2

(
1 + x0

γ8

)) ,

f10 = x0
γ5

(
1− x0

γ1x
0
γ9

)
, (3.24)

together with f7, f8, f9 obtained from replacing x0
γ3 → x0

γ7 , x
0
γ2 → x0

γ4 , and x
0
γ8 → x0

γ6 . As
already mentioned, another 10 letters associated to the other limit ray may be obtained by
a cyclic shift of the momentum twistors.

How about the relation of the scattering diagram letters to the tropical 290-letter
eight-particle alphabet, discussed in the previous section? Starting with the 26 rational
scattering diagram letters, we find that they are all contained in the p̃Tr+(4, 8) alphabet.
As far as the square-root letters are concerned, as already pointed out in [69], 9 of them
(plus cyclic) are also contained in the p̃Tr+(4, 8) alphabet, and we also confirm this to be
the case. In the square-root letter basis (3.24), these in particular correspond to f1, . . . , f9.
So the final conclusion is that the only scattering diagram letter not contained in the
p̃Tr+(4, 8) alphabet is f10, which remarkably can be written as (see again appendix B)

f10 = 〈1256〉 〈3478〉
〈1278〉 〈3456〉

√
∆1,3,5,7 , (3.25)

14We thank Dima Chicherin for pointing out the existence of these additional relations to us.
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together with its cyclic image, where the square-roots associated to the four-mass box have
been defined in eqs. (3.20) and (3.21). Given that the factor in front of the square root is a
monomial in the rational letters, one could equally well redefine the letter so as to remove
it. For the interested reader, we provide the complete candidate eight-particle alphabet
consisting of the 292 letters coming from the union of the tropical geometry and scattering
diagram approaches in the ancillary file Gr48Alphabet.m, which is attached to the arXiv
submission of this article.

The fact that the two approaches overlap almost completely greatly reinforces the
expectation that all singularities of eight-particle amplitudes are contained in the afore-
mentioned candidate alphabet. In a sense, scattering diagrams provide a more systematic
framework for taking infinite mutation sequences into account, and especially for taking the
direction of approach to a given limit ray into account, thus justifying the particular choice
of eqs. (3.19) for assigning many symbol letters (or equivalently generalisations of rational
cluster variables) to it. On the other hand, while degenerate scattering diagrams have been
proposed as an analog of our method for selecting a finite subset of cluster variables with
the help of tropical Grassmannians, a stumbling block is currently the significant ambiguity
in their construction.15 It would be very interesting to further clarify the relation between
the two approaches. While our discussion so far has been restricted to the n = 8 case, we
will shortly show that their similarity extends to any n: in particular, that the tropical
square-root letters are always a subset of the scattering diagram square-root letters.

Let us also comment on the plausibility of the additional scattering diagram letters,
the square roots of the Gram determinants, eqs. (3.20) and (3.21), appearing as letters
of the eight-particle amplitude. On the one hand, ∆1,3,5,7 and ∆2,4,6,8 are always positive
inside the positive region [48], and so any arguments based on the expectation that am-
plitudes never have singularities in this region cannot exclude it. On the other hand, we
observe that these letters are not present in explicit two-loop results for the (appropriately
normalised) eight-particle amplitude in N = 4 pSYM. As an additional source of infor-
mation on this question, one could also consider the relation between the alphabet of the
latter, and that of five-particle amplitudes in Lorentz-invariant theories, recently estab-
lished in [90]. There, it was pointed out that while analogous square-root letters appear in
individual integrals contributing to the two-loop five-point amplitudes, these cancel out in
appropriately defined finite remainders, see also [91]. This analogy seems to suggest that
at a minimum, ∆1,3,5,7 and ∆2,4,6,8 may contribute to eight-point integrals contributing to
the N = 4 pSYM amplitude. Settling whether they survive in the final expression for the
latter calls for explicit higher-loop computations, however already this discussion points to
scattering diagrams as an attractive tool for studying singularities of Feynman integrals.
Their potential in this respect will be studied elsewhere [92].

Finally, it is interesting to note that the discrete symmetry of the eight-particle alpha-
bet respects some of the structure of the infinite cluster algebra of Gr(4, 8). In particular,
the group of automorphisms of the origin quiver, which can be traced back to the group of

15Note that the set of 26+26 rational letters that come as a byproduct of the scattering diagram analysis
is too small to contain the 2-loop (N)MHV eight-particle amplitude.
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automorphisms of the initial quiver, is given by the transformation

x2 ↔ x4 , x3 ↔ x7 , x6 ↔ x8 . (3.26)

By the general theory [93], this quiver automorphism extends to an automorphism of the
entire (infinite) cluster algebra. When replacing

xi → x0
γi , (3.27)

in the above equation, this is also a symmetry of the square-root letters. Furthermore, it
can be easily verified that the rational part of the alphabet is also symmetric under the
same transformation, implying that the truncation procedure as well as the procedure by
which we obtained the square-root letters from the scattering diagram are compatible with
this symmetry of the infinite cluster algebra. Note that this symmetry is specific to the
eight-particle alphabet since this automorphism only exists for Gr(4, 8).

Comparison of algebraic letters at any multiplicity. We now proceed to show that
the tropical square-root letters of eq. (3.19) are contained in the alphabet obtained from the
scattering diagram approach at any multiplicity n. In particular this adds further support
to our analysis of the n = 9 case in the next section, which has been carried out relying on
the aforementioned equation.

For simplicity, let us start by considering an A(1)
1 cluster algebra with principal coeffi-

cients. The cone variables along the infinite mutation sequence are given by

xγ1;j = (x1;j)1−j (x2;j)−j , xγ2;j = (x1;j)j (x2;j)1+j . (3.28)

We can now use that x1;j = a−2
2;jy1;j and x2;j = a2

1;jy2;j to express the cone variables in
terms of the A-variables and coefficients along the sequence. Due to working with principial
coefficients, it can be shown that (y1;j)1−j(y2;j)−j = y1;0 and (y1;j)j(y2;j)1+j = y2;0 such
that we can use eq. (3.15) to perform the limit j →∞, which is given by

x+
γ1 ≡ xγ1;∞ = y1;0

(
C̃−
)−2

, x+
γ2 ≡ xγ2;∞ = y2;0 (C+)2 , (3.29)

where C± and C̃± have been defined in eqs. (3.16) and (3.18), respectively. These are
the variables attached to the asymptotic chamber, which is the cone asymptotically close
to the limit ray that we land in when following the infinite mutation sequence in this
direction. Note that from the aforementioned equations it follows that these variables are
actually algebraic functions in the X -variables x1;0, x2;0 of the initial cluster only, since
x1;0 = a−2

2;0 · y1;0 and x2;0 = a2
1;0 · y2;0.

We can now use wall-crossing to obtain the variables of the asymptotic chamber ac-
cessed by following the other direction of the mutation sequence, that is by repeatedly
mutating a2;j . The function associated to the limiting wall of the scattering diagram that
separates the two asymptotic chambers accessed by following the two directions of the
mutation sequence is given by

f(xγ⊥) = y2;0
(C−)2 C̃−

C̃+
≡ 1
y1;0

(
C̃−
)2
C−

C+
, (3.30)
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such that the variables of the other asymptotic chamber can be obtained from

x+
γ1 −→ x−γ1 = x+

γ1 · f(xγ⊥)2 , x+
γ2 −→ x−γ2 = x+

γ2 · f(xγ⊥)−2 . (3.31)

From eqs. (3.29)–(3.31), we see that the four variables x±γi associated to the two asymp-
totic chambers are made up of the four coefficients C±, C̃± as well as the initial coefficients
y1;0, y2;0, which are monomials in the rational cluster variables. It then follows immedi-
ately that the algebraic letters of eqs. (3.19) are given as monomials in the multiplicative
basis formed by these four variables. To be precise, we have (φ0)2 = (x+

γ1x
−
γ1)−1 and

(φ̃0)2 = x+
γ2x
−
γ2(x+

γ1x
−
γ1)2. An equivalent statement also holds true when considering gen-

eral coefficients, since the generalized versions of eqs. (3.29)–(3.31) only differ by a further
monomial in the rational variables.

4 p̃Tr+(4, 9) and the nine-particle alphabet

In this section, we apply the techniques first introduced in [46, 47, 49], and further developed
in the previous sections, in order to obtain predictions for the symbol alphabet of the nine-
particle amplitude in N = 4 pSYM. In subsection 4.1, we first truncate the infinite
Gr(4, 9) cluster algebra with the help of the inherently finite partially tropicalised positive
configuration space p̃Tr+(4, 9) as reviewed in section 2.1, in order to obtain the rational
part of the alphabet, which we find consists of 3,078 letters in one-to-one correspondence to
tropical rays of p̃Tr+(4, 9). Then, in subsection 4.2 we study infinite mutation sequences
of A(1)

1 subalgebras of the truncated cluster algebra, and in this fashion determine an
additional 324 limit rays of p̃Tr+(4, 9). It is especially here, that our new results for
such subalgebras with general coefficients, presented in subsections 3.1 and 3.2, allow us to
associate to these rays square-root letters expected to appear in the amplitude, in particular
a total of 2,349 multiplicatively independent such letters. A new feature of the nine-particle
case is that the procedure we have described falls short of yielding 27 rays of p̃Tr+(4, 9).
The discussion of alternative ways for accessing these rays, and of their possible significance
for amplitudes, are presented in the next section.

Before moving on, let us briefly recall the discrete symmetries of N = 4 pSYM ampli-
tudes, which will be useful in what follows. Using the supersymmetry of the theory and
combining the amplitudes with different external states into a superamplitude, the latter
can be shown to be invariant under the transformations of the dihedral group [94]. This
symmetry group consists of the n cyclic permutations i → i + 1 of the integer indices of
the Plücker variables, which is equivalent to the cyclic permutation of the columns of the
4 × n matrix describing Gr(4, n), as well as the dihedral flip i → n + 1 − i. For MHV
amplitudes, the aforementioned symmetries straightforwardly carry over to the transcen-
dental functions appearing in them, and hence also to their alphabet. Note that in the case
discussed here n = 9 and throughout the text the identification i+ n ∼ i for the indices of
the Plücker variables is implied.
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〈1235〉 〈1245〉 〈1345〉 〈2345〉

〈1236〉 〈1256〉 〈1456〉 〈3456〉

〈1237〉 〈1267〉 〈1567〉 〈4567〉

〈1238〉 〈1278〉 〈1678〉 〈5678〉

〈1239〉 〈1289〉 〈1789〉 〈6789〉

〈1234〉

Figure 6. Initial seed of the cluster algebra of Gr(4, 9). The boxed variables are frozen and hence
not mutated.

4.1 Rational letters from the truncated cluster algebra

Similarly to the eight-particle case, we start mutating from the initial cluster of Gr(4, 9),
which is depicted in figure 6. To tame the infinity of the cluster algebra we stop mutating in
a given direction whenever the result of this mutation is a cluster variable whose associated
ray is redundant with respect to the totally positive (partially) tropicalised configuration
space — that is, the ray does not lie on a maximal intersection of tropical hypersurfaces.
By this truncation procedure, we obtain a finite subset of the infinite cluster algebra and
thus a finite collection of A-variables.

For computational purposes, we computed the truncated cluster algebra in two steps.
First, we performed the aforementioned finite number of mutations only on the adjacency
matrix, eq. (2.13), and cluster rays, eqs. (2.16)–(2.17). Being only matrix operations, this
can be done much more efficiently than factoring the rational expressions of the variables.
Having computed the truncated cluster fan, we scanned it for paths of mutations connect-
ing the initial cluster seed with a cluster containing a given ray. Due to the one-to-one
correspondence of A-variables and rays, we finally mutated the variables along these paths
to obtain all cluster variables.

We find that the truncated cluster algebra obtained from the partially tropicalised
totally positive configuration space p̃Tr+(4, 9) contains 3,078 rational A-variables in
24,102,954 clusters. These variables are all homogeneous polynomials in the Plücker vari-
ables of degree up to 6, see table 2. For comparison, we have also carried out the same
truncation procedure for the full positive tropical configuration space T̃r+(4, 9), this time
finding 12,645 A-variables distributed in 55,363,988 clusters, whose multiplicity per degree
are also listed in the same table.

As already mentioned in section 2.2, existing data and symmetry reasons point to
p̃Tr+(4, 9) as the minimal choice relevant for scattering amplitudes, so unless otherwise
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Degree 1 2 3 4 5 6 7 8 9 10 Total

p̃Tr+(4, 9) 117 576 1287 963 126 9 — — — — 3078

T̃r+(4, 9) 117 576 1854 3159 2943 1926 1296 531 180 63 12645

Table 2. Number of A-variables of the truncated cluster algebra of Gr(4, 9) grouped by their
(homogeneous) polynomial degree in the Plücker variables. At degree 1, all Plücker variables
appear when also including the frozen 〈i i+ 1 i+ 2 i+ 3〉 variables.

stated we will be focusing on the latter. Explicitly, the A-coordinates of degree up to three
that make up the rational part of our candidate nine-particle alphabet are schematically
given by16

• all single Plücker variables 〈ijkl〉,

• 64 cyclic (37 dihedral) classes of degree two consisting of 〈1i(jkl) ∩ (mno)〉 with
i ∈ {1, 2, 3, 5, 6, 7},

• 143 cyclic (74 dihedral) classes of degree three consisting of

◦ 8 classes of type
〈
(̄i) ∩ (jkl) ∩ (mno) ∩ (pqr)

〉
with i ∈ {2, 3, 4, 5, 7},

35 of type
〈
(̄i) ∩ (jkl) ∩ (m̄) ∩ (nop)

〉
with 2 ≤ i ≤ 7 and 4 ≤ m ≤ 9,

20 of type
〈
(̄i) ∩ (jkl) ∩ (m̄) ∩ (n̄)

〉
with i ∈ {1, 2, 4, 5}, 4 ≤ m ≤ 7, 6 ≤ n ≤ 9,

1 of type
〈
(2̄) ∩ (7̄) ∩ (5̄) ∩ (9̄)

〉
,

◦ 40 classes of type 〈i(12) ∩ (jkl)(mno) ∩ (pqr)〉 with 3 ≤ i ≤ 9,
2 of

〈
4(13) ∩ (896)(895) ∩ (6̄)

〉
and

〈
8(13) ∩ (5̄)(549) ∩ (679)

〉
,

2 of
〈
3(18) ∩ (8̄)(245) ∩ (267)

〉
and

〈
7(18) ∩ (235)(236) ∩ (5̄)

〉
,

◦ 30 classes of type 〈i(12) ∩ (klm)(no) ∩ (pqr)s〉 with o = n+ 1,
2 of

〈
4(12) ∩ (8̄)(68) ∩ (2̄)5

〉
and

〈
5(79) ∩ (2̄)(12) ∩ (4̄)6

〉
,

2 of
〈
4(13) ∩ (8̄)(67) ∩ (2̄)5

〉
and

〈
6(89) ∩ (2̄)(13) ∩ (5̄)7

〉
,

1 of
〈
8(14) ∩ (6̄)(56) ∩ (3̄)9

〉
.

We have included these, as well as the remaining higher-degree letters, in the ancillary
file Gr49RationalAlphabet.m attached to the arXiv submission of this article, where the
precise ranges of the indices not stated in the text may be found as well. Note that the
representation is not unique due to the many ways to equivalently express these polynomials
via the Plücker identities.

16In this list, all types of letters are to be read as disjoint sets, such that e.g. the 8 classes of type〈
(̄i) ∩ (jkl) ∩ (mno) ∩ (pqr)

〉
are meant to not include those of type

〈
(̄i) ∩ (jkl) ∩ (m̄) ∩ (nop)

〉
, etc. We

use notations where (ā) corresponds to the plane (a−1 a a+1) in momentum twistor space, the intersection
of a line and a plane is given by 〈I(ab) ∩ (cde)J〉 = 〈IaJ〉 〈bcde〉+ 〈IbJ〉 〈cdea〉 , and the intersection of two
planes by 〈I(abc) ∩ (def)J〉 = 〈IabJ〉 〈cdef〉 + 〈IbcJ〉 〈adef〉 + 〈IcaJ〉 〈bdef〉 for appropriate index sets
I, J ⊂ {1, . . . , 9}. See e.g. [95] for more details.
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In total, the rational part of our candidate nine-particle alphabet consists of 3,087
A-coordinates forming 3,078 dual conformally invariant letters, arranged in 342 cyclic
classes which always have multiplicity 9. If one also considers the dihedral flip trans-
formation, the alphabet consists of 9, 37, 74, 57, 7, and 1 dihedral classes of rational
letters of degree 1 to 6, respectively (the multiplicity of dihedral classes may be either 9
or 18, depending on whether a flip relates two cyclic classes or maps one back to itself).
Consequently, the proposed rational alphabet is dihedrally invariant.

Let us conclude this section with some further comparisons and remarks on the struc-
ture of the rational part of our candidate alphabet. First of all, we can compare it with the
explicit results for the symbol of the two-loop NMHV nine-particle amplitude, computed
recently in [74]. The latter contains 99 square-root letters, which we will discuss in the
next section, as well as 522 dual conformally invariant rational letters that are polynomials
in the Plücker variables of degree up to three. We find that all of these rational letters are
indeed contained in our alphabet, which serves as a first consistency check. Note that the
216 nine-particle MHV letters [83] are all rational and contained in the NMHV ones, and
hence our proposal trivially covers this helicity configuration as well.

To make the comparison more precise, the alphabet of [74] contains all degree one
letters of the alphabet proposed here except 〈1357〉 plus cyclic permutations. Further-
more, several cyclic classes of higher degree letters are missing compared to our alpha-
bet. Among those are 27 cyclic classes of degree two letters, 27 cyclic classes of the
type

〈
(̄i) ∩ (jkl) ∩ (m̄) ∩ (nop)

〉
as well as all but one of the 30 cyclic classes of the type

〈i(12) ∩ (klm)(no) ∩ (pqr)s〉 our proposal includes. Letters of the type 〈i(jk)∩(lmn)(opq)∩
(rst)〉 are not at all contained in the alphabet of the two-loop NMHV nine-particle ampli-
tude. Additional evidence in support of our proposal for the rational part of the alphabet
is that it agrees with the one obtained by other means in [75], appearing simultaneously
with this article.

Next, in search of interesting patterns, we may look at what part of the infinite Gr(4, 9)
cluster algebra is chosen by our tropical selection rule according to the degree of the A-
variable with respect to the Plücker variables. As shown in [96, 97], Gr(4, 9) contains
576 cluster variables of degree two, 2,421 of degree three, 8,622 of degree four, and 27,054
variables of degree five. A comparison with table 2 demonstrates that our alphabet contains
all possible quadratic cluster A-variables but only a subset of those of degree three or
higher.17 For example, the polynomials〈

4(56) ∩ (8̄)(78) ∩ (2̄)1
〉
,
〈
(127) ∩ (5̄) ∩ (13i) ∩ (8̄)

〉
, (4.1)

with i = 5 or i = 6, are cluster A-variables of degree three but are not associated to tropical
rays of p̃Tr+(4, 9), and hence are not selected by our procedure.

Also, the new data point we have achieved affords us the possibility to also study the
maximal Plücker degree of the letters as a function of the multiplicity n: considering the

17The same statement for degrees two and three in fact holds also for the eight-particle rational al-
phabet we proposed in [49], which contains all 120 quadratic but not all 174 cubic cluster variables of
Gr(4, 8) [87, 96, 97].
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cluster algebra truncated by p̃Tr+(4, n), we observe that the maximum degree of letters
for n = 6, 7, 8, and 9 is given by 1, 2, 3, and 6 for the same values of n, which interestingly
matches the first few values of the sequence

dmax (n) =
(
n− 5
bn−5

2 c

)
, (4.2)

where the brackets denote the binomial coefficient and bxc is the floor function. For
T̃r+(4, n), the same count is 1, 2, 5, and 10, which agrees with (n − 6)2 + 1. Given that
the subset of A-variables of fixed degree in the infinite cluster algebras of Gr(4, n) with
n ≥ 8 can be computed by other means [96, 97], knowing the maximal degree of those that
are chosen by our tropical selection rule could thus provide a more direct means for their
determination also at higher n.

As the approach we develop in this paper in principle applies to any n, let us con-
clude this section with some further general predictions. More precisely, the truncation
procedure for selecting a finite subset of Gr(4, n) cluster variables, as predictions for the
rational part of the symbol alphabet, is algorithmic (and similarly for our infinite mutation
sequence analysis yielding predictions for the square-root letters). While the constructive
determination of this finite subset has to be done separately for each value of n, and its
computational complexity increases with n, the initial cluster of Gr(4, n) will always be
selected. Hence the cluster variables it contains, namely the Plücker variables

〈1234〉 , 〈123i〉 , 〈12i− 1 i〉 , 〈1i− 2 i− 1 i〉 , 〈i− 3 i− 2 i− 1 i〉 with 5 ≤ i ≤ n , (4.3)

as well as their dihedral images (since our truncation procedure respects dihedral symme-
try) will always be included in our prediction for the rational part of the symbol of the
n-particle amplitude.

4.2 Square-root letters from infinite mutation sequences

Having obtained a candidate for the rational part of the alphabet of nine-particle ampli-
tudes in the previous subsection, here we will enlarge it so as to also include square-root
letters. The general procedure for doing so has been presented in section 3, and relies on
considering infinite mutation sequences starting from any origin cluster of the truncated
cluster algebra, that contains an A(1)

1 subalgebra. As with the eight-particle case, dis-
cussed in section 3.2, in the first instance we examine the limit of cluster rays along the
sequence, and only select it, along with its associated square-root letters (or generalised
cluster variables) if this limit coincides with a tropical ray of p̃Tr+(4, 9).

This step therefore requires knowledge of all tropical rays. While these may be obtained
with the help of dedicated software such as polymake [98], fortunately most of the work
has already been done in [62]. There, the dual fan of the tropical configuration space
T̃r+(4, 9) [51, 99], namely the Minkowski sum of the Newton polytopes P (4, 9) obtained
from the web-parameterisation of the Plücker variables, has been computed. Since all
p̃Tr+(4, 9) rays are contained in T̃r+(4, 9), we may thus extract them from the provided
P (4, 9) data. As a technical remark, in this data the rays (or facets, in the language of the
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dual polytope) are provided in the space of D = 126 Plücker coordinates 〈ijkl〉, however
it is easy to obtain its rays in the space of the d = 12 variables of the (tropicalised)
web-parameterisation we review in appendix C: one needs to simply express the Plücker
coordinates in terms of the d web-parameters, and solve for the latter after equating the
former to the value of the D-dimensional rays.

In this fashion, we find that out of the 19,395 T̃r+(4, 9) rays, a total of 3,429 is con-
tained in the partially tropicalised, totally positive configuration space p̃Tr+(4, 9). We
have already seen that 3,078 of these rays are associated to A-variables in the truncated
cluster algebra thus corresponding to rational letters. Next, we scan the cluster algebra of
Gr(4, 9) truncated by p̃Tr+(4, 9) and identify a total of 549,180 origin clusters, from which
we obtain the limit rays by numerically evaluating eq. (2.17) for a sufficient number of
mutations along the infinite sequence. This yields another 324 rays of p̃Tr+(4, 9) that are
not in the truncated cluster algebra.

After having obtained the limit rays, the next step is to associate two square-root
letters to each origin cluster they can arise from, according to eq. (3.19). As already
pointed out, the merit of the analysis of A(1)

1 sequences with general coefficients, that we
carried out in subsection 3.1, is that we can immediately obtain the square-root letters in
question by simply plugging in the X -coordinates of the A(1)

1 subalgebra of a given origin
cluster in eq. (3.9). It is important to bear in mind, however, that many of these letters are
identical, since mutating an origin cluster at a node not connected to the subalgebra will
not change the data relevant for the limit. Furthermore, the resulting distinct square-root
letters are not all multiplicatively independent, such that not all of them are required to
describe the symbol of the amplitude.

To obtain a basis of these letters, we adopt the following approach, which is similar to
that of ref. [89]. Given any set of letters, we first express them in terms of 12 independent
variables, for example with the help of the web-parameterisation. We then evaluate these
variables at some prime values, and find multiplicative relations of numerically evaluated
letters by sampling all possible such relations with a fixed total integer power.18 Having
reduced the letters to some smaller set, say of size m, we can verify whether no more
relations exist by evaluating the logarithm of the letters at m different evaluation points.
In this logarithmic form, multiplicative relations among the letters correspond to integer-
coefficient linear relations. Hence, if the rank of the m×mmatrix formed by the evaluations
of the letters is maximal, no further relations can exist.

For the case of the square-root letters obtained from A(1)
1 sequences, we find that there

is a one-to-one correspondence between the radicand of the square-root and the limit ray.
This implies that there can only be multiplicative relations among letters obtained from
sequences with the same limit ray. In total, we find 2, 349 multiplicatively independent
square-root letters in 36 cyclic (21 dihedral) classes associated to the 324 limit rays. Ar-
ranged according to the number of multiplicatively independent sets of letters per ray, or
equivalently per radicand, they consist of

• 6 cyclic (3 dihedral) classes of sets of 5 multiplicatively independent letters,
18Note that once we find a relation in this numeric evaluation, we can also verify it symbolically.
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• 8 cyclic (4 dihedral) classes of sets of 6 independent letters,

• 8 cyclic (4 dihedral) classes of sets of 7 independent letters,

• 6 cyclic (4 dihedral) classes of sets of 8 independent letters,

• 2 cyclic (1 dihedral) classes of sets of 9 independent letters,

• 5 cyclic (4 dihedral) classes of sets of 10 independent letters, and

• 1 cyclic (1 dihedral) class of a set of 11 independent letters.

Since the explicit expressions for these letters are quite complicated, we will re-
frain from quoting them here, and instead provide them in the ancillary file
Gr49AlgebraicAlphabet.m attached to the arXiv submission of this article. We now
briefly comment on some properties of this alphabet.

First of all, comparing the square-root letters presented in this article to those of the
two-loop nine-particle NMHV amplitude reported in [74], we find that the 9 × 11 letters
put forward in the aforementioned reference precisely correspond to the last cyclic class
of 11 multiplicatively independent letters of our proposed non-rational alphabet. Together
with a similar analysis we carried out in the previous section for the rational letters, this
implies that we obtain the entire two-loop nine-particle (N)MHV alphabet as part of our
approach, which thus passes a quite nontrivial consistency check.

Furthermore, as can be seen from the above presentation of the square-root letters, the
alphabet is invariant under the dihedral transformations. The dihedral flip transformation
maps a cyclic class with a given number of multiplicatively independent letters to another
class of the same size, whereas the letters obtained from φ0, eq. (3.19), get mapped to those
obtained from φ̃0 and vice versa.

Let us also comment on the structure of square roots appearing in our algebraic letters.
We can rewrite φ0 and φ̃0 into the form of (ai±

√
a2
i − 4bi)/2. As we saw in subsection 3.2,

in the case of eight-particle amplitudes the radicand ∆ = a2
i − 4bi ≡ K2

1 − 4K2 is always
proportional to one of the square-roots of the eight-point four-mass boxes ∆1,3,5,7 and
∆2,4,6,8, see in particular eqs. (3.20) and (3.21), and e.g. [70] for more details on the four-
mass boxes. However, in the non-rational alphabet for nine-particle amplitudes suggested
here, we find that only the radicands of the last cyclic class of 11 independent letters each
are proportional to the square-roots of the nine-point four-mass boxes, ∆1,3,5,7 and its
cyclic permutations (a total of nine), which are the square-root singularities obtained from
the Landau analysis at two loops [100]. For example, we also find square-root letters whose
radicand is given by

∆∝A2−4B , with (4.4)

A= 1− 〈6789〉 〈13(278)∩(246)〉2

〈1235〉 〈1289〉 〈3567〉 〈1679〉2
+ 〈1267〉 〈23(146)∩(178)〉 〈46(278)∩(129)〉

〈1235〉 〈1289〉 〈3567〉 〈1679〉2
, (4.5)

B = 〈1267〉 〈23(146)∩(178)〉 〈46(278)∩(129)〉
〈1235〉 〈1289〉 〈3567〉 〈1679〉2

, (4.6)
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which is not proportional to one of the four-mass boxes. Attributing the additional square
roots we find to particular integrals is a very interesting question we leave for future work.

As a further check of the nine-particle singularities we have obtained, the Landau
equations also predict that the branch points bi = 0 correspond to the zero loci of some
rational letters. And indeed, we confirm that this holds for all the square-root letters of
our candidate non-rational alphabet for nine-particle scattering. In fact, this is a general
property for all square-root letters obtained by the prescription of eq. (3.19), independent
of the particle number n, as we now show. Rewriting these in the form discussed in the
previous paragraph, we obtain b1 = −x1;0 for φ0 and b2 = −x2

1;0x2;0 for φ̃0, whereas
x1;0, x2;0 are the X -variables corresponding to the A(1)

1 cluster subalgebra in the origin
clusters. Since the X -variables are monomials in the cluster A-variables, the branch points
bi = 0 of all square-root letters are the zero loci of some letters from the rational alphabet.

To summarise, we have obtained 3,078 rational and 2,349 square-root letters. Whereas
the rational letters are in one-to-one correspondence to tropical rays of p̃Tr+(4, 9), the
square-root letters are associated to a total of 324 tropical rays, in sets containing between
5 and 11 letters per ray. This is very similar to the eight-particle case, where 9 square-root
letters are associated to each of the two limit rays.

A great qualitative difference between the eight- and the nine-particle case is that we
no longer obtain all tropical rays of p̃Tr+(4, 9) from the Grassmannian cluster algebra by
selection or an A(1)

1 mutation sequence: in particular we can access 3,402 out of the 3,429
such rays in this manner, so we fall short of 27 p̃Tr+(4, 9) rays. Given the great jump in
complexity between the Gr(4, 8) and Gr(4, 9) cluster algebras,19 perhaps the real surprise
is not that we cannot access all rays by our method, but that the number of rays we cannot
access is so small.

Nevertheless, in the next section we will explore more general infinite mutation se-
quences of A(1)

m Dynkin type as a possible means for obtaining the missing rays, as well
as touch on their implications for amplitude singularities. Before concluding, it’s also
worth mentioning that in its current state of development, neither the scattering diagram
approach [69] that we discussed in detail in subsection 3.3 can solve the mystery of the
27 missing rays, as it too relies on infinite mutation sequences starting from within the
cluster algebra.

5 One generalisation of infinite mutation sequences

For the case of eight-particle scattering we have seen that all rays of p̃Tr+(4, 8) can be
obtained from the Gr(4, 8) cluster algebra with the help of infinite mutation sequences of
type A(1)

1 , however an analogous statement is not true for nine-particle scattering. While
the square-root letters associated to the accessible rays agree with explicit two-loop results
for both multiplicities, it remains unclear whether the missing rays contribute additional
amplitude singularities in the latter case.

19In particular, while the cluster algebras of both Gr(4, 8) and Gr(4, 9) are infinite, the former one is of
finite mutation type, implying that it consists of only a finite number of different quivers, see e.g. [27, 71].
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For this reason, in this section we will study a generalisation of the considered mutation
sequences aiming to access the missing rays. The starting point is the observation that
the property allowing us to associate a sequence to a cluster algebra is the periodicity of
its quivers [82]. A quiver is said to be cluster-mutation periodic of period p, if there is
a sequence of p mutations resulting in a quiver isomorphic to the initial one. Consider
for example the quiver of the A(1)

1 cluster algebra, figure 4, which has period one since
mutating any of its two nodes flips the double-arrow resulting in the same quiver up to
relabelling the nodes.

If a quiver is periodic in this sense, we can repeat the same mutation infinitely many
times thus giving rise to an infinite mutation sequence. Since the rational functions,
eqs. (2.10) and (2.12), that realise the mutation are determined by the quiver, the pe-
riodicity allows us to write down a recurrence relation for all clusters along the sequence,

ai;j+1 = Mi (a1;j , . . . , ar;j ; y1;j , . . . , yr;j) . (5.1)

Unlike for generic cluster algebras, due to the periodicity of the quiver, the rational function
Mi does not depend on j but is the same for all clusters along the sequence.

Note that in general, while we may repeat the mutation infinitely many times, the
resulting sequence may be periodic, that is consisting of only a finite set of different A-
variables. This is the case whenever the considered cluster algebra is finite, like for example
for the cluster algebra of A2 Dynkin type, whose quiver is given by two nodes connected by
one arrow. The corresponding cluster algebra is finite with five clusters and five variables.

Periodic clusters have been studied and classified in [82] for period one and two. Us-
ing this perspective, in this section we consider cluster algebras of A(1)

m Dynkin type for
m ∈ N, which are the largest class of period one primitives, the building blocks of all
period one cluster algebras. To the best of our knowledge the analysis of their infinite
mutation sequences is new, and thus may be of intrinsic mathematical interest irrespective
of the question of the missing rays. Subsection 5.1 works them out in analogy to subsec-
tion 3.1, subsection 5.2 explores the possibility of using these sequences to obtain algebraic
letters beyond the A(1)

1 singularities, and subsection 5.3 discusses the inherent limitations
of accessing the limit rays from the Gr(4, n) cluster algebra for n ≥ 9. We again refer to
appendix A for details of the proofs which are omitted in the main text.

5.1 Mutation sequences in A(1)
m with general coefficients

The cluster algebras of A(1)
m Dynkin type are rank-(m+1) cluster algebras whose eponymous

quivers are depicted in figure 7. As can be easily seen, mutating at either the source or
sink (ie. the node of a1;j or am+1;j) leads to the same quiver with the labels of the nodes
rotated clockwise by one position. In this section, we will discuss the repeated mutation
at the source, that is we always mutate a1;j . For the other direction, see appendix A.

The A(1)
m cluster algebras can also be considered as arising from the surface A(m, 1),

which is the annulus with m marked points on the outer and one marked point on the inner
boundary. In this formalism, a cluster of the cluster algebra corresponds to a triangula-
tion of this surface, in which each arc connecting two marked points (or one with itself)
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· · ·

a1;j

a2;j · · · am;j

am+1;j am+1;j+1

a1;j+1 · · · am−1;j+1

am;j+1

· · ·
µ1 µ1 µ1

Figure 7. Clusters j and j + 1 along the considered mutation sequence of the cluster algebra of
A(1)

m Dynkin type. The coefficients are omitted in the figure.

Figure 8. Annulus with two marked points on the outer and one marked point on the inner
boundary. Corresponds to the initial cluster of the A(1)

2 cluster algebra.

corresponds to a variable of the cluster, see figure 8 for an example or [71] for details on
this relation.

The cluster algebras of A(1)
m Dynkin type are cluster-mutation periodic with period one.

From the geometric perspective of the annulus we described, this periodicity corresponds
to winding the arcs around the inner boundary, which can be considered as a redundancy
in the cluster algebra [101, 102]. We may remove this redundancy by replacing it with
quantities that are invariant under mutation or, geometrically speaking, a winding by 2π
along the sequence. For m = 1 these invariants are the building blocks of the square-root
letters for eight- and nine-particle scattering.

Consider now the infinite mutation sequence depicted in figure 7, which starts at the
initial cluster j = 0. We can immediately write down the mutation relations for the
variables and coefficients along this sequence by applying eqs. (2.10) and (2.12) to the
depicted clusters. They are given for any j ∈ Z by

am+1;j+1 = a2;jam+1;j
a1;j

1 + x1;j

1 ⊕̂ y1;j
, (5.2)

y1;j+1 = y2;j y1;j(
1 ⊕̂ y1;j

) , ym;j+1 = ym+1;j y1;j(
1 ⊕̂ y1;j

) , ym+1;j+1 = (y1;j)−1 , (5.3)

x1;j+1 = x2;j x1;j
(1 + x1;j)

, xm;j+1 = xm+1;j x1;j
(1 + x1;j)

, xm+1;j+1 = (x1;j)−1 . (5.4)

Note that as in the case of A(1)
1 sequences (and, in fact, for any cluster algebra) the mutation

rule of the X -variables is that of the coefficients with tropical addition changed to normal
addition. Also similar to the case of A(1)

1 , we used that the X -variable associated to a1;j is
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given by x1;j = (a2;jam+1;j)−1 y1;j to arrive at eq. (5.2). The other variables and coefficients
are not mutated but only shifted in their first index by

ai;j+1 = ai+1;j for i 6= m+ 1 , (5.5)
yi;j+1 = yi+1;j for i /∈ {1,m,m+ 1} , (5.6)
xi;j+1 = xi+1;j for i /∈ {1,m,m+ 1} . (5.7)

In [82], infinite mutation sequences of type A(1)
m without coefficients20 were analysed

by linearising the recursion relations. Following this approach, which we have also used in
section 3, we first introduce the sequence βj of ratios, which is defined as

βj = am+1;j
a1;j

. (5.8)

Again this is the ratio of the sink-variable over the source-variable. Furthermore, we can
again express βj also as a1;j+m/a1;j and other equivalent ways by using eq. (5.5). We also
define the auxiliary sequence γj as

γj = 1 ⊕̂ y1;j ⊕̂ y1;j (y1;j−m)−1 . (5.9)

Having defined the generalisations of βj and γj for any m, we continue by also defining the
two quantities

K1,j =
(
γ0γ
−1
j β−1

0 βj

) [
1 + x1;j + x1;j (x1;j−m)−1

]
, (5.10)

K2,j =
(
γ0γ
−1
j β−1

0 βj

)(
γ0γ
−1
j−m+1β

−1
0 βj−m+1

) [
x1;j (x1;j−m)−1

]
, (5.11)

whereas we inserted the factor γ0β
−1
0 to normalise these quantities at j = 0 for later

convenience. We also may express K1,j , K2,j and γj in terms of the variables of cluster
j only. Using the mutation rules in the opposite direction, ie. mutating at am+1;j , see
appendix A, we can express x1;j−m in terms of cluster j as

(x1;j−m)−1 = x2;j (1 + x3;j (1 + · · ·xm;j (1 + xm+1;j))) . (5.12)

Equivalently, we obtain the same relation for y1;j−m by replacing xi;j by yi;j and addition
by cluster-tropical addition. Using the original definition, eq. (5.10), and the mutation
rules, eqs. (5.2)–(5.4), it can be shown that K1;j and K2;j are in fact invariant along the
sequence and are thus given in terms of the initial cluster variables as

K1 ≡ K1,0 = 1 + x1;0 (1 + x2;0 (1 + x3;0 (1 + · · ·xm;0 (1 + xm+1;0)))) , (5.13)
K2 ≡ K2,0 = x1;0x2;0 (1 + x3;0 (1 + · · ·xm;0 (1 + xm+1;0))) . (5.14)

Using these invariants we can linearise the recursion relation (5.2). As before, the
homogeneous, linear recurrence obtained when considering the sequence a1;j , given by

γ−1
j γ−1

j+ma1;j+2m − γ−1
0 β0K1 · γ−1

j a1;j+m + γ−2
0 β2

0K2 · a1;j = 0 , (5.15)
20The cluster algebra without coefficients can be obtained from that with general coefficients by setting

the initial coefficients to one. Due to the mutation relations, the coefficients and (1 ⊕̂ y1;j) will then be
equal to one in every cluster and will not influence the other mutation relations.
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does not have constant coefficients. Hence, we define the new variable αj for j ≥ 0 by

αj = γ−1
jmodmγ

−1
(jmodm)+m · · · γ

−1
j−2mγ

−1
j−m · a1;j . (5.16)

Note that this is to be read that for 0 ≤ i < m we have αm+i = γ−1
i · a1;m+i, and

α2m+i = γ−1
i γ−1

m+i ·a1;2m+i, and so on. In terms of this sequence, the recurrence is given by

αj+2m − γ−1
0 β0K1 · αj+m + γ−2

0 β2
0K2 · αj = 0 , (5.17)

with initial values α0, . . . , α2m−1, which in turn can be expressed in terms of the variables
and coefficients of the initial cluster via the mutation relations, eqs. (5.2)–(5.4). Observing
that αj+m/αj = γ−1

j βj and that γj → 1 for j →∞, as proven in appendix A, we see from
this recurrence that, assuming convergence, the respective limit of βj is obtained as the
solution of the equation

β2 − γ−1
0 β0K1 · β + γ−2

0 β2
0K2 = 0 , (5.18)

which has the two solutions β± given by

β± = β0
K1 ±

√
K2

1 − 4K2
2γ0

. (5.19)

Similar to before, we now turn to discussing the solution of the recurrence (5.17), using
standard methods based on its characteristic polynomial,

Pm(t) = t2m − γ−1
0 β0K1 · tm + γ−2

0 β2
0K2 . (5.20)

Its 2m roots are given by β1/m
± ηim for i = 0, . . . ,m − 1 and whereas ηm is the m-th root

of unity. To see this, note that we may first solve for the roots in terms of tm resulting in
tm = β±. Accordingly, the most general solution to the recurrence is given by

αj =
[
c+

0 + c+
1 η

j
m + · · ·+ c+

m−1η
(m−1)j
m

]
(β+)

j
m +

[
c−0 + c−1 η

j
m + · · ·+ c−m−1η

(m−1)j
m

]
(β−)

j
m .

(5.21)
The 2m coefficients c±i for i = 0, . . . ,m − 1 can be obtained from the initial values
α0, . . . , α2m−1 and can thus ultimately be expressed in terms of the quantities of the ini-
tial cluster. Note that since ηm is m-periodic, the overall coefficients multiplying (β±)j/m,
denoted by C±(j), only depend on (jmodm), implying that they assume a total of m
different values.

5.2 Beyond A(1)
1 singularities?

Having obtained the general solution of the infinite mutation sequences of type A(1)
m , let

us now discuss how we could attribute algebraic letters, or generalised cluster variables, to
their rays.

Similar to the discussion of the m = 1 case, if we were to take the direction of approach
to the ray into account, then the m ≥ 1 analog of eq. (3.19) would mean to assign 2m letters
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defined as C+(i)/C−(i) and C̃+(i)/C̃−(i) for i = 0, . . . ,m − 1 to each ray. As is discussed
in appendix A, these are given by

φi ≡
C+(i)
C−(i) =

(
K1 −

√
K2

1 − 4K2

K1 +
√
K2

1 − 4K2

)i/m
2Fi −K1 +

√
K2

1 − 4K2

−2Fi +K1 +
√
K2

1 − 4K2
, (5.22)

φ̃i ≡
C̃+(i)
C̃−(i)

=
(
K1 −

√
K2

1 − 4K2

K1 +
√
K2

1 − 4K2

)i/m
2F̃iK2 −K1 +

√
K2

1 − 4K2

−2F̃iK2 +K1 +
√
K2

1 − 4K2
, (5.23)

for i = 0, . . . ,m− 1 and whereas Fi and F̃i are rational functions of the X -variables of the
initial cluster j = 0, which are given by

F̃i = Km+1−i
Km+1

, Fi =
{

1 if i = 0 ,
K1 −Ki+1 otherwise.

(5.24)

In the definition of these rational functions, we used Ki, which is a generalisation of the
invariants, eqs. (5.13) and (5.14), and defined for 1 < i ≤ m+ 1 as

Ki = x1;0 · · ·xi;0 (1 + xi+1;0 (1 + · · ·xm;0 (1 + xm+1;0))) . (5.25)

Note that since F0 = F̃0 = 1, the expressions (5.22) and (5.23) simplify for i = 0 to those
of eq. (3.19), evaluated with the generalised invariants of eqs. (5.13) and (5.14).

However, the non-rational letters obtained from the above formulas for m > 1 qualita-
tively differ from those with m = 1. For m = 1 we observe a one-to-one association of the
radicand, K2

1 − 4K2, to the limit ray of the sequence. Since such non-rational letters with
the same radicand can have multiplicative relations among each other, this allows the re-
duction of the letters associated to any such ray to a smaller, multiplicatively independent
set. For m > 1, however, this is no longer true, as we observe that these radicands are
different for every origin cluster irrespective of the limit ray, implying the multiplicative
independence of all such letters. Considering for example just the letters obtained from
eqs. (5.22) and (5.23) with m = 2 and i = 0, one would obtain 2912 additional, multiplica-
tively independent square-root letters for eight-particle scattering, where all p̃Tr+(4, 8) rays
have already been determined.21

The fact this large number of additional letters is not encountered in the existing
amplitude computations, seems to suggest their irrelevance. We stress again that they
arise as a generalisation of the prescription of eq. (5.22), which may not be applicable
to higher m. Nevertheless, we find it interesting that it is possible to obtain additional
algebraic letters in this fashion.

5.3 The limitations of infinite mutation sequences

Finally, let us turn to the question of whether infinite mutation sequences more general
than A(1)

1 can account for the missing p̃Tr+(4, 9) rays. Scanning the approximately 24
million clusters of the cluster algebra of Gr(4, 9) truncated by p̃Tr+(4, 9), we find that

21We find sequences with up to m = 4 in the cluster algebra of Gr(4, 8) truncated by p̃Tr+(4, 8).
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a1 a2

Figure 9. Example for an infinite cluster algebra.

Figure 10. Sketch of the fan of the cluster algebra with two nodes connected by three arrows. The
cluster algebra is infinite with two infinite sequences approaching the two rays highlighted in red.

they contain cluster subalgebras of type A(1)
m with up to m = 5. Unfortunately, however,

the limit rays of these sequences are only a subset of the 324 limit rays of A(1)
1 ones. In

addition, we have checked all primitives of period one with rank up to 622 and found that
they also do not account for these missing rays.

These results are in fact in line with an inherent limitation on accessing all tropical
rays from within the cluster algebra, as we will now discuss. For infinite cluster algebras,
e.g. for those of the Grassmannians with k = 4, n ≥ 8, the cluster fan is not complete (see
eg. [103, Remark 3.2]). This means that the fan does not cover the entire ambient space
Rd, with d the rank of the cluster algebra, and thus also cannot triangulate the entire
p̃Tr+(k, n). An example for such an infinite cluster algebra of rank two, also considered
in [81, 104, 105], is depicted in figure 9.

The fan of this cluster algebra is two-dimensional with the rays of the initial clusters
being the canonical unit vectors. In it, there are two infinite mutation sequences — re-
peatedly mutating at either the sink or the source of the quiver — which converge to two
different rays, as depicted in figure 10. The two-dimensional gap of the fan is also clearly
visible in this figure. If a cluster algebra contains such an algebra as a subalgebra, its fan
is expected to also be incomplete.

In the case of eight particles, the truncated cluster algebra only contains clusters with
infinite mutation sequences whose fans leave one-dimensional gaps, which could be taken
care of by including the limit ray of the sequence. This is no longer the case for nine
particles, since the truncated cluster algebra also contains clusters with nodes connected
by three arrows, such as the one depicted in figure 11.

Due to the existence of such clusters, it is expected that the cluster fan for nine particles
contains higher-dimensional gaps. This might suggest that (some of) the 27 missing rays
are located in the interior of such gaps, explaining why they could not be reached by

22In the notations of [82], these correspond to the quivers labelled by P (2)
i for i = 4, 5, 6 and P (3)

6 .
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a7a2 a8

a5a9 a1

a10 a12

a3a4 a6

a11

Figure 11. Example of a cluster in the truncated cluster algebra of Gr(4, 9) containing nodes
connected by three arrows. The A-variables ai correspond to certain rational nine-particle letters.
The frozen variables are omitted in order to avoid clutter.

any limiting procedure from within the cluster algebra. Note that the truncation of these
infinite cluster algebras by the selection rule provided by the partially tropicalised positive
configuration space creates further gaps in the cluster fans.

Having motivated an explanation for the inaccessibility of certain tropical rays starting
from the Gr(4, n) cluster algebra, some the most important open questions that remain
include whether there exist alternative ways for obtaining these rays, that also associate
some form of generalised cluster variables to them, and whether the latter provide any
further information on the singularities of amplitudes. Perhaps the inaccessibility of the
missing rays of the cluster algebra is related to the appearance of functions beyond multiple
polylogarithms in N = 4 pSYM n-particle amplitudes: indeed, while it is known that such
functions certainly appear at n = 10 [106], the possibility that these in fact also appear
at lower n is currently not excluded. If this turns out to be true, then the appropriate
generalisation of cluster algebras may go hand in hand with a corresponding generalisation
of the notion of symbol letters along the lines of [107]. We leave these exciting questions
for future work.

6 Conclusions & outlook

In this article, we have developed a general procedure for obtaining a finite collection
of rational and square-root letters expected to appear in the symbol of N = 4 pSYM
amplitudes for arbitrary multiplicity n, and we have concretely applied it for the first time
to the case n = 9. Our work builds on the earlier observation that the amplitude symbol
letters coincide with the variables of the Gr(4, n) cluster algebra for n = 6, 7 [16], and on
the proposal for curing the infinity of the cluster algebra in question for n ≥ 8 with the help
of geometric objects known as (duals of) tropical Grassmannians [46–49]. In particular,
focusing on the then first nontrivial case n = 8, the latter papers showed that tropical
Grassmannians select a finite subset of rational variables of the Gr(4, n) cluster algebra,
as well as motivate the inclusion of certain generalisations of cluster variables that contain
square roots, and are related to infinite mutation sequences of a rank-two (A(1)

1 ) subalgebra
of the cluster algebra.
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The precise form of these generalisations of cluster variables, or equivalently square-
root letters, also depends on certain Gr(4, n) cluster variables that appear as so-called
coefficients of the rank-two subalgebra. Therefore in order for the aforementioned analysis
to be applicable to arbitrary multiplicity n, it is necessary to work out A(1)

1 sequences with
general coefficients. In this work we fill this gap, and in fact we study infinite mutation
sequences of larger class of rank-(m + 1) cluster algebras, denoted as A(1)

m in the affine
Dynkin diagram classification, with general coefficients. As a cross-check of our results,
after specialising to m = 1 we first apply them to the known Gr(4, 8) case, not only finding
perfect agreement with the earlier proposal for the symbol alphabet of the eight-particle
amplitude, but also comparing them with a more recent, alternative proposal based on the
closely related approach of [69]. Very interestingly, we find that the two approaches have a
highly non-obvious, almost complete overlap in their predictions, the only additional letters
provided by scattering diagrams being the two square roots associated to the four-mass
box, eqs. (3.20) and (3.21).

With the confidence gained by this comparison, we then move on to the main appli-
cation of our results, the generation of new predictions for the symbol alphabet of the
nine-particle amplitude with the help of cluster algebras and tropical geometry. First, our
tropical selection rule picks a finite subset of 3, 078 Gr(4, 9) cluster variables as a candi-
date for the rational part of the alphabet, arranged in over 24 million clusters. Then,
the analysis of infinite rank-two mutation sequences with general coefficients contained in
the aforementioned clusters yields another 2, 349 square-root letters expected to appear in
the symbol. We have confirmed that our thus obtained collection of nine-particle letters
passes all available consistency checks; namely it respects the discrete symmetries of the
amplitude, it agrees with requirements on the position of branch points coming from the
Landau equations, and it contains all letters found in an explicit 2-loop calculation of the
NMHV nine-particle amplitude [74].

At the same time, our analysis reveals new qualitative features starting at n ≥ 9, which
call for further inquiry. Both the selected Gr(4, n) cluster variables and their square-root
generalisations are associated to building blocks of the tropical Grassmannian, known as
tropical rays. While all of these could be accessed from the cluster algebra when also
including A(1)

1 infinite mutation sequences for n = 8, this is no longer the case at n = 9,
where 27 out of 3,429 tropical rays are left unaccounted for. In subsection 5.3 we presented
evidence suggesting the existence of an obstruction independent of the type of infinite
mutation sequence chosen, and commented on the potential physical significance of the
missing rays for amplitude singularities.

As a complementary direction for addressing some of these open questions, it is in-
teresting to note that all eight-particle square-root letters can be obtained by considering
the Schubert problem [95] of the corresponding four-mass box kinematics in momentum
twistor space [108]. Namely, one first considers the four non-intersecting lines formed by
the pairs of momentum twistors parameterising these kinematics, and finds the two lines
that intersect them. Then, the square-root letters turn out to correspond to cross ratios
formed by the four points on any of these six lines. A generalisation of this analysis to nine
points could provide yet another means of comparison with our results and provide hints
for the (ir)relevance of the missing rays.

– 39 –



J
H
E
P
1
0
(
2
0
2
1
)
0
0
7

Independent of the latter question, our results also raise a practical issue: predictions
for the alphabet of an amplitude have been essential input for actually computing it via the
cluster bootstrap programme, which has been very successful at multiplicity six and seven.
This is achieved by first constructing the finite-dimensional function spaces expected to
contain each loop correction to the amplitude, which arise as solutions to linear systems
whose size and sparsity depends on the number of letters and their form as functions of the
independent variables parameterising the kinematics, respectively. Based on an alphabet of
(at least) 5,427 letters, some of which are for example polynomials with over 50,000 terms
in the web-parameterisation, the nine-particle amplitude bootstrap would pose a serious
challenge to current linear algebra technology. Aside from evolutionary progress on the
latter, could the size of linear systems be reduced by restrictions on the specific subsets of
letters appearing at each slot in the symbol, stemming from adjacency/extended Steinmann
relations [36, 72] or the Q̄-equation [109]? The integration of the latter has been the main
source of explicit two-loop amplitude computations at multiplicity n ≥ 8, is it feasible to
push it to higher loops? Alternatively, the Wilson loop OPE predicts amplitudes at any
multiplicity as an expansion around the collinear limit [110–122], and has been successfully
evaluated [113, 115] and resummed [123–126] in the six-particle case. Could we hope for
similar progress also for more legs, once the final ingredient of this approach, known as the
matrix part, is better understood? It would be very interesting to address these questions
in the future.
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A Proofs for mutation sequences of type A(1)
m

In this appendix we present the calculations and proofs required for the solution to the
infinite mutation sequences of type A(1)

m that have been omitted in the main text. We first
discuss the source direction, that is the sequence obtained by repeatedly mutating a1;j . To
avoid repetition, we often point to the relevant formulas in the main text. Finally, we turn
to the sink direction, the repeated mutation of am+1;j .

A.1 The source direction

The key observation in the discussion of the infinite mutation sequences of type A(1)
m is

the existence of the invariants, eqs. (5.10) and (5.11). Before proving their invariance, we
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first establish that they and γj can be written in terms of the quantities of cluster j only,
hence also proving eqs. (5.13) and (5.14). For this, it suffices to prove eq. (5.12), that is to
express x1;j−m in terms of the variables of cluster j. To do so, we consider the mutation
sequence depicted in figure 7 in reverse. Since mutation is an involution, we can go from
cluster j + 1 to cluster j by mutating the former at node m + 1. The relevant mutation
relations are given by

xm+1;j = xm;j+1 (1 + xm+1;j+1) , x1;j = (xm+1;j+1)−1 , (A.1)
xi;j = xi−1;j+1 for i /∈ {1, 2,m+ 1} . (A.2)

As can be seen from these relations, mutating from the cluster j to the cluster j−m along
the sequence automatically results in a parmeterisation of x1;j−m in terms of the variables
of cluster j. From these, we can immediately conclude that

xm;j−m+i = xm−1;j−m+i+1 = · · · = xi;j , (A.3)

for 2 ≤ i ≤ m. With these relations in place, we can express the X -variable x1;j−m in
terms of the variables of cluster j as

x−1
1;j−m = xm+1;j−m+1 = xm;j−m+2 (1 + xm+1;j−m+2)

= x2;j (1 + xm;j−m+3 (1 + xm+1;j−m+3)) = · · · (A.4)
= x2;j (1 + x3;j (1 + · · ·xm;j (1 + xm+1;j))) ,

with the equivalent relation for y1;j−m again obtained by replacing the X -variables by
coefficients and addition by cluster-tropical addition. Having established this relation, we
now turn to the prove of invariance. For this, consider the following lemma.

Lemma A.1. The two quantities K1,j and K2,j, defined as

K1,j =
(
γ0β

−1
0 γ−1

j βj

) [
1 + x1;j + x1;j (x1;j−m)−1

]
, (A.5)

K2,j =
(
γ0β

−1
0 γ−1

j βj

)(
γ0β

−1
0 γ−1

j−m+1βj−m+1

) [
x1;j (x1;j−m)−1

]
, (A.6)

are invariant along the infinite mutation sequence, whose mutation relations are given by
eqs. (5.2)–(5.4).

Proof. First of all, from eqs. (5.2) it follows that the ratio βj changes as follows

βj+1 = am+1;j+1
a1;j+1

= am+1;j
a1;j

1 + x1;j

1 ⊕̂ y1;j
= 1 + x1;j

1 ⊕̂ y1;j
βj , (A.7)

whereas we used that a1;j+1 = a2;j . On the other hand, it follows from eqs. (5.4) that

x1;j+1 (x1;j−m+1)−1 = x1;jx2;j
x1;j−m+1 (1 + x1;j)

= x1;jxm;j−m+2
x1;j−m+1 (1 + x1;j)

(A.8)

= (1 + x1;j)−1 (1 + x1;j−m+1)−1
[
x1;j (x1;j−m)−1

]
, (A.9)
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whereas we have used eqs. (5.7) to write

x2;j = x3;j−1 = · · · = xm;j−m+2 . (A.10)

This also implies that

1 + x1;j+1 + x1;j+1 (x1;j−m+1)−1 = (1 + x1;j)−1
[
1 + x1;j + x1;j (x1;j−m)−1

]
As is a general property of cluster algebras, the corresponding relations for the coefficients
can be obtained from those of the X -variables by replacing them with the coefficients and
addition by cluster-tropical addition. We thus also have that

γj+1 =
(
1 ⊕̂ y1;j

)−1
γj . (A.11)

This implies that γ−1
j+1βj+1 = (1 + x1;j)γ−1

j βj such that the lemma follows. Note that this
holds for all j ∈ N.

Having established the invariance of K1 and K2, we now turn to the limit of γj and
prove that it converges to 1. In order to deal with the cluster-tropical addition, let us
remind ourselves how the coefficients are related to the frozen variables. We consider
the rank-(m + 1) cluster algebra of type A(1)

m with M frozen variables denoted by zi for
i = 1, . . . ,M . In any cluster, the coefficients are given as a monomial in the frozen variables,
see eq. (2.8) and the mutation rule eq. (2.12), which demonstrates that this property holds
in all clusters. We thus rewrite the coefficients as

yj =
M∏
i=1

z
cij
i . (A.12)

Using that cluster-tropical addition, eq. (2.11), is defined on such monomials in the frozen
variables, we rewrite the recursion relation of y1;j , eqs. (5.3), in terms of the new sequences
cij . For this, consider first that

y1;j+1 = y1;jy2;j(
1 ⊕̂ y1;j

) = y1;jy1;j−m+1

y1;j−m
(
1 ⊕̂ y1;j

) (
1 ⊕̂ y1;j−m+1

) , (A.13)

whereas we have used the equivalent of eq. (A.10) for the coefficients. This implies that
the corresponding relation for the cij is given by

cij+1 = cij + cij−m+1 − cij−m −min
(
0, cij

)
−min

(
0, cij−m+1

)
(A.14)

Using the notation [x]+ = max(0, x) = −min(0,−x) and x = [x]+ − [−x]+, this results in
the recursion relation

cij+1 + cij−m =
[
cij
]

+
[
cij−m+1

]
+ . (A.15)

While the appearance of [x]+ on the right hand side of this recurrence makes solving it
analytically complicated, we can prove the following property of this sequence.
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Lemma A.2. Fix m ∈ N>0 and consider the sequence cn for n ≥ 1 with initial values
c1, . . . , cm+1 ∈ Z and recurrence relation

cn+1 + cn−m = [cn] + [cn−m+1]+ . (A.16)

There exists a N ∈ N such that for all n ≥ N

cn ≥ cn−m ≥ 0 . (A.17)

Proof. To prove the lemma, we introduce an auxiliary sequence ∆n defined by

∆n = cn − cn−m . (A.18)

By continuing the recurrence for cn to n ≤ 0, we can use this definition for all n ≥ 1. We
now establish some key properties of these sequences.

Positivity/Negativity. Assume there exists a N ∈ N such that ∆n ≥ 1 for all n ≥ N . By
construction, we can write cn = ∆n + cn−m for any n and thus get for any j ≥ 0 and
i = 0, . . . ,m− 1 that

cN+j·m+i =
j∑
l=1

∆N+l·m+i + cN+i ≥ j + cN+i . (A.19)

Note that we have included the shift by i because N + j ·m + i = n for any n ≥ N and
appropriate choice of i and j. Hence, for j ≥ max(0,−cN+i) we conclude that cN+j·m+i ≥ 0.
To summarize, this implies that if there is a N ∈ N such that ∆n ≥ 1 for all n ≥ N , then

cn ≥ 0 , ∀n ≥ max
i=0,...,m−1

{N + max (0,−cN+i) ·m+ i} . (A.20)

If we instead assume that there exists a N ∈ N such that ∆n ≤ −1 for all n ≤ N , we get
by the same reasoning as before that

cn < 0 , ∀n ≥ max
i=0,...,m−1

{N + max (0, 1 + cN+i) ·m+ i} . (A.21)

Monotonicity. From the recursion relation of cn, eq. (A.16), we obtain a corresponding
relation for the sequence ∆n, which is given by

∆n+1 = ∆n + [−cn]+ + [−cn−m+1] , (A.22)

whereas we used x = [x]+ − [−x]+ to arrive at this result. Since [x]+ ≥ 0, this relation
implies that

∆n+1 ≥ ∆n , (A.23)

that is, ∆n is a monotonically increasing sequence. Further to that, the relation for ∆n+1
also gives us the following extended monotonicity property

∆n+1 = ∆n ⇐⇒ cn ≥ 0 ∧ cn−m+1 ≥ 0 , (A.24)

which follows because [−x]+ is positive and zero if and only if x is positive.
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Boundedness. We now prove that ∆n is bounded. For this, assume ∆n to not be bounded.
Since ∆n is a monotonically increasing sequence, this implies that there exists some N ∈ N
such that ∆n ≥ 1 for all n ≥ N . Hence, due to the positivity property proven above, this
implies that there also exists some N ′ ∈ N such that cn ≥ 0 for all n ≥ N ′. Thus, by the
extended monoticity property, eq. (A.24), this also implies that ∆n+1 = ∆n for all n ≥ N ′,
which is a contradiction to the assumption of ∆n to not be bounded.

Convergence. Since ∆n is monotonically increasing and bounded, it converges to some
constant K. Because c1, . . . , cm+1 ∈ Z we also have cn ∈ Z and thus ∆n ∈ Z for all n,
such that K ∈ Z and, together with monotonicity, ∆n = ∆N ≡ K for all n ≥ N and some
N ∈ N. This implies that ∆N ≥ 0. To see why, assume the opposite. Since ∆n ∈ Z, this
means we assume ∆n ≤ −1. By the negativity property, this would imply that cn < 0 for
all n ≥ N ′ and some N ′ ∈ N. However, by the extended monotonicity property, we also
have cn ≥ 0 for all n ≥ N , which is a contradiction.

Summary. Taking all this together, we see from the convergence property that there
exists a N ∈ N such that ∆n = ∆N ≥ 0 and thus cn ≥ 0 for all n ≥ N by the extended
monotonicity property. Furthermore, since cn = ∆n+cn−m, we also see that cn ≥ cn−m ≥ 0
for all n ≥ N +m.

Consider now the consequence of this lemma on the sequence γj . Rewriting it in terms
of the cij , we get

γj = 1 ⊕̂ y1;j ⊕̂ y1;j (y1;j−m)−1 =
M∏
i=1

z
min(0,cij+min(0,−cij−m))
i . (A.25)

From the previous lemma, we know that for some N ∈ N we have cn ≥ cn−m ≥ 0 for all
n ≥ N and thus for j ≥ N

min
(
0, cij + min

(
0,−cij−m

))
= min

(
0, cij − cij−m

)
= 0 , (A.26)

proving that γj = 1 for j ≥ N .
With this property proven, we have established all parts and, together with the argu-

ments in the main text, obtain the most general solution to the recurrence (5.17) as

αj =
[
c+

0 +c+
1 η

j
m+ · · ·+c+

m−1η
(m−1)j
m

]
(β+)j/m+

[
c−0 +c−1 η

j
m+ · · ·+c−m−1η

(m−1)j
m

]
(β−)j/m ,

(A.27)
which we have repeated here for the further discussion of the associated non-rational letters.
We denote the overall coefficients of β± in this equation as

C±(j) = c±0 + c±1 η
j
m + · · ·+ c±m−1η

(m−1)j
m . (A.28)

As discussed before, due to the peridocity of the m-th root of unity, these satisfy C±(j +
m) = C±(j). Since in the limit j →∞, the term of β+ dominates that of β−, we associate
the m quantities

φi = C+(i)
C−(i) (A.29)
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for 0 ≤ i ≤ m − 1 to this sequence. These coefficients can be obtained in terms of the
variables of the initial cluster by the initial conditions of the sequence αj . They are, again
for 0 ≤ i ≤ m− 1, given by

αi = ai+1;0 , αm+i = ai+1;0 · γ−1
0 β0Fi , (A.30)

whereas the Fi are rational functions in the initial X -variables. In order to express them
in a convenient way, we define analogs for K1 and K2 by

Ki = x1;0 · · ·xi;0 (1 + xi+1;0 (1 + · · ·xm;0 (1 + xm+1;0))) . (A.31)

In terms of these expressions, the functions Fi are given by

F0 = 1 , Fi = K1 −Ki+1 . (A.32)

These initial conditions together with the general solution, eq. (A.27), form a system of
two linear equations for the coefficients C±(i) for any 0 ≤ i ≤ m− 1. It is solved by

C±(i) = ai+1;0 (β±)−i/m ±2Fi ∓K1 +
√
K2

1 − 4K2

2
√
K2

1 − 4K2
. (A.33)

Using the definition (A.29) this proves eq. (5.22) for the non-rational expressions associated
to this sequence.

It remains to prove the initial conditions, eqs. (A.30). While the first of these can be
seen by noting that αi = a1;i and using eq. (5.5), to prove the second condition — and to
determine the Fi — we first observe that αm+i = γ−1

i a1;m+i and hence again by eq. (5.5)
that αm+i = γ−1

i am+1;i. For i = 0, this immediately implies that αm = γ−1
0 am+1;0 and

hence F0 = 1. For i ≥ 1, we can use the mutation rule (5.2) and eq. (A.11) to get

αm+i = a2;i−1γ
−1
i−1βi−1 (1 + x1;i−1) = ai+1;0γ

−1
0 β0 ·

i∏
j=1

(1 + x1;i−j) , (A.34)

whereas we have repeatedly applied the relation γ−1
j+1βj+1 = (1+x1;j)γ−1

j βj in the last step,
proving the second initial condition with Fi being the product over the X -variables. To
express Fi in terms of the variables of the initial cluster, we observe that by the mutation
rules, eqs. (5.4) and (5.7), we have

1 + x1;i−1 = (1 + x1;i−2)−1 (1 + x1;i−2 (1 + x2;i−2)) (A.35)
= (1 + x1;i−2)−1 (1 + x1;i−2 (1 + xi;0)) (A.36)
= (1 + x1;i−2)−1 (1 + x1;i−3)−1 (1 + x1;i−3 (1 + xi−1;0 (1 + xi;0))) (A.37)
= . . . (A.38)

=
i∏

j=2
(1 + x1;i−j)−1 · (1 + x1;0 (1 + x2;0 (1 + · · ·xi−1;0 (1 + xi;0)))) . (A.39)

Using this relation in eq. (A.34) and noting that (1 + x1;0 (1 + · · ·xi−1;0 (1 + xi;0))) = K1−
Ki+1 completes the proof.
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A.2 The sink direction

In the previous section and the main text, we have analysed the infinite mutation sequence
obtained by repeatedly mutating a1;j in the A(1)

m cluster algebra. However, this corresponds
to only one of the two possible directions. As discussed before, the mutation of the sink-
variable am+1;j+1 is the inverse to the mutation of a1;j and thus takes us from cluster j+ 1
to j along the sequence, ie. the opposite direction. We now discuss its solution.

First of all, note that using the mutation relations (5.5) we can rephrase the linearised
recursion relation (5.15) in terms of the sink variable as

γ−1
j+mγ

−1
j+2mam+1;j+2m − γ−1

0 β0K1 · γ−1
j+mam+1;j+m + γ−2

0 β2
0K2 · am+1;j = 0 . (A.40)

Since all relations required to arrive at this equation are valid for all j ∈ N, so is this
recurrence. In theory, we could now go on and apply the same techniques as for the source
direction to solve this. However, we now have to consider the limit j → −∞, since the sink
direction takes cluster j + 1 to j. Accordingly, we define the new variable α̃j via

α̃j = γ−(jmodm)γ−(jmodm)−m · · · γ−j+2mγ−j+m · am+1;−j , (A.41)

such that for this variable, the limit j →∞ is the correct one to consider. In terms of this
sequence, the recurrence (5.17) can be expressed as

γ−2
0 β2

0K2 · α̃j+2m − γ−1
0 β0K1 · α̃j+m + α̃j = 0 , (A.42)

with the initial values α̃0, . . . , α̃2m−1.
Before we obtain the solution of this recurrence via its characteristic polynomial, let

us first discuss γ−j and its limit as j goes to infinity. This sequence is again governed by
eq. (A.15), and is given in terms of the variable dn = c−n, which describes γ−j , by

dn−1 + dn+m = [dn]+ + [dn+m−1]+ . (A.43)

Since this holds for all n, we may shift the index by n′ = n + m − 1, which, due to the
symmetry, reduces this equation to the original form of eq. (A.15). Hence, we may apply
lemma A.2 to this case as well, proving that γ−j = 1 for j ≥ J for some J ∈ N.

The characteristic polynomial of the recurrence (A.42) is given by

P̃m(t) = t2m − γ0β
−1
0
K1
K2
· tm + γ2

0β
−2
0 K−1

2 . (A.44)

Its roots are given by β̃1/m
± ηim for i = 0, . . . ,m − 1, with ηm again being the m-th root of

unity and whereas

β̃± = γ0
K1 ±

√
K2

1 − 4K2
2β0K2

. (A.45)

Note that we have β̃± = β−1
∓ . Similar to before, we may use the roots to write down the

most general solution for α̃j and thus get

α̃j =
[
c̃+

0 + c̃+
1 η

j
m+ · · ·+ c̃+

m−1η
(m−1)j
m

]
(β−)−

j
m +

[
c̃−0 + c̃−1 η

j
m+ · · ·+ c̃−m−1η

(m−1)j
m

]
(β+)−

j
m ,

(A.46)
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whereas we have expressed this in terms of β± but have labelled the coefficients c̃±i in terms
of β̃±. The same analysis as before applies to the overall coefficients C̃±(j), which again
can be obtained from the initial conditions. For this direction they are given by

α̃i = am+1−i;0 , α̃m+i = am+1−i;0 · γ0β
−1
0 F̃i , (A.47)

whereas the F̃i are now given by

F̃i = Km+1−i/Km+1 . (A.48)

With these initial conditions, we again obtain a system of two linear equations from the
general solution, eq. (A.46), which we can solve in terms of the C̃±(i), resulting in

C̃±(i) = am+1−i (β∓)i/m ±2K2Fi ∓K1 +
√
K2

1 − 4K2

2
√
K2

1 − 4K2
. (A.49)

Using the definition φ̃ = C̃+/C̃− this proves eq. (5.23) for the non-rational expressions
associated to this sequence.

Having obtained the general solution for the infinite mutation sequence of type A(1)
m

in the sink direction, it remains to prove the initial conditions, eqs. (A.47). The first
follows directly from α̃i = am+1;−i = am+1−i;0, as can be seen from eq. (5.5). For the
other condition, we first observe that α̃m+i = γ−iam+1;−i−m and hence by eq. (5.5) that
α̃m+i = γ−iβ

−1
−i · am+1;−i = γ−iβ

−1
−i · am+1−i;0. For i = 0 we can immediately conclude that

F̃i = 1. For i ≥ 1, by again using the relation γ−1
j+1βj+1 = (1 + x1;j)γ−1

j βj , we arrive at

α̃m+i = am+1−i;0γ0β
−1
0 (1 + x1;−i) · · · (1 + x1;−1) (A.50)

= am+1−i;0γ0β
−1
0

(1 + xm+1;1−i) · · · (1 + xm+1;0)
xm+1;1−i · · ·xm+1;0

, (A.51)

whereas we have used eq. (A.1) for the last step. This already proves eq. (A.47), with F̃i
being the fraction of the X -variables. To obtain an expression in terms of the variables of
the initial cluster, we note that xm+1;j−i = xm+j−i;0 (1 + xm+1;j−i+1) such that we get

F̃i =
i−1∏
j=0

(xm+1−j;0)−1 · (1 + xm+1;1−i) . (A.52)

Similar to eq. (A.4), we obtain from the mutation relations, eq. (A.1), that

1 + xm+1;1−i =
m∏
j=i

(xm+1−j;0)−1 ·Km+1−i , (A.53)

such that we can conclude that
F̃i = Km+1−i

Km+1
, (A.54)

completing our analysis of the infinite mutation sequences in cluster algebras of type A(1)
m .
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aI1 : 〈1235〉 aI4 : 〈1245〉 aI7 : 〈1345〉 〈2345〉

aI2 : 〈1236〉 aI5 : 〈1256〉 aI8 : 〈1456〉 〈3456〉

aI3 : 〈1237〉 aI6 : 〈1267〉 aI9 : 〈1567〉 〈4567〉

〈1238〉 〈1278〉 〈1678〉 〈5678〉

〈1234〉

Figure 12. Initial seed of the cluster algebra of Gr(4, 8).

x3 x2 x8

x1

x6 x4 x7

x9 x5

Figure 13. Principal part of the origin cluster in Gr(4, 8) utilized to find the square-root letters.

B Full non-rational alphabet of eight-particle scattering

In this section, for completeness, we present the entire non-rational alphabet of eight-
particle scattering obtained from the perspective of scattering diagrams, see [69] or sec-
tion 3.3. We begin with the initial cluster of the cluster algebra of Gr(4, 8), which is
depicted in figure 12. In there, we included our convention for the unfrozen variables aIi of
this cluster.

We can use eqs. (2.8) and (2.9) to immediately read off the X -variables associated to
each A-variable. They are given by

xI1 = 〈1234〉 〈1256〉
〈1245〉 〈1236〉 , xI4 = 〈1235〉 〈1456〉

〈1345〉 〈1256〉 , xI7 = 〈1245〉 〈3456〉
〈2345〉 〈1456〉 , (B.1)

xI2 = 〈1235〉 〈1267〉
〈1256〉 〈1237〉 , xI5 = 〈1236〉 〈1245〉 〈1567〉

〈1235〉 〈1456〉 〈1267〉 , xI8 = 〈1256〉 〈1345〉 〈4567〉
〈1245〉 〈3456〉 〈1567〉 , (B.2)

xI3 = 〈1236〉 〈1278〉
〈1267〉 〈1238〉 , xI6 = 〈1237〉 〈1256〉 〈1678〉

〈1236〉 〈1567〉 〈1278〉 , xI9 = 〈1267〉 〈1456〉 〈5678〉
〈1256〉 〈4567〉 〈1678〉 . (B.3)

Mutating along the mutation sequence {1, 2, 4, 1, 6, 8}, that is sequentially mutating
the nodes with the corresponding index, we arrive at the A(1)

1 origin quiver depicted in
figure 13. Note that since we only require the X -coordinates for the computation of the
non-rational alphabet, in the quiver we only show those, labelled by xi in the origin quiver,
and omit the (frozen and unfrozen) A-variables.
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Performing the sequence of mutations given above, we land in the origin quiver whose
X -variables xi are rational functions in the original variables xIi of the initial cluster. These
functions are given by

x1 =
(
1+xI6 +xI1

(
1+xI4

)(
1+xI6

(
1+xI2

)))(
1+xI8 +xI1

(
1+xI2

)(
1+xI8

(
1+xI4

)))
xI1x

I
2x
I
4

, (B.4)

x9 =
(
1+xI1

(
1+xI2

)(
1+xI4

))
xI6x

I
8x
I
9(

1+xI6 +xI1
(
1+xI4

)(
1+xI6

(
1+xI2

)))(
1+xI8 +xI1

(
1+xI2

)(
1+xI8

(
1+xI4

))) , (B.5)

x5 = xI1x
I
2x
I
4x
I
5

1+xI1
(
1+xI2

)(
1+xI4

) , (B.6)

x8 =
1+xI1

(
1+xI2

)
xI8
(
1+xI1

(
1+xI2

)(
1+xI4

)) , (B.7)

x6 =
1+xI1

(
1+xI4

)
xI6
(
1+xI1

(
1+xI2

)(
1+xI4

)) , (B.8)

x2 = xI4x
I
8

1+xI8 +xI1
(
1+xI2

)(
1+xI8

(
1+xI4

)) , (B.9)

x4 = xI2x
I
6

1+xI6 +xI1
(
1+xI4

)(
1+xI6

(
1+xI2

)) , (B.10)

x3 = xI1x
I
2x
I
3

1+xI1
(
1+xI2

) , (B.11)

x7 = xI1x
I
4x
I
7

1+xI1
(
1+xI4

) . (B.12)

As is discussed in section 3.3 and [69], from this origin quiver we perform the limit of
the infinite A(1)

1 mutation sequence. Working within the framework of scattering diagrams,
we first construct the cone variables and take their limit, which is well-defined and finite,
so that we land in an asymptotic chamber around the limit ray23

r∞ = (1,−1, 0,−1, 0, 1, 0, 1,−1) . (B.13)

The limits of the cone variables along the sequence, ie. the cone variables of the asymptotic
chamber, can be

x0
γi = xi for i ∈ {2, 3, 4, 7} , (B.14)

x0
γi = xi

2

(
1 + x1 (1 + x9) +

√
∆′
)

for i ∈ {5, 6, 8} , (B.15)

x0
γ1 = 4x1∆′(

1 + x1 − x1x9 +
√

∆′
)2 , x0

γ9 = x9
4

(
1 + 1− x1(1 + x9)√

∆′

)2
, (B.16)

∆′ = (1 + x1(1 + x9))2 − 4x1x9 . (B.17)
23This is one of the two tropical rays of p̃Tr+(4, 8) that is not contained in the fan of the truncated cluster

algebra, the other being (0, 1, 0, 1, 0,−1, 0,−1, 0). Since the variables obtained from this limit ray can be
obtained by a cyclic shift 〈ijkl〉 → 〈i+ 1 j + 1 k + 1 l + 1〉 we limit our analysis to the quantities around
the first limit ray only.
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The entire non-rational alphabet is obtained from the variables of all asymptotic cham-
bers around the limit ray. As is outlined in [69], a computer search yields a basis of 36
multiplicatively independent polynomials. It consists of the 20 polynomials given by

f̃1 = x0
γ1 , f̃2 = x0

γ9 , f̃3 = 1− x0
γ1x

0
γ9 , (B.18)

f̃4 = x0
γ5 , f̃5 = 1 + x0

γ5 , f̃6 = 1 + x0
γ5x

0
γ1x

0
γ9 , (B.19)

f̃7 = x0
γ8 , (B.20)

f̃8 = 1 + x0
γ8 , f̃9 = 1 + x0

γ2 f̃8 , f̃10 = 1 + x0
γ3 f̃9 , (B.21)

f̃11 = 1 + x0
γ8x

0
γ1x

0
γ9 , f̃12 = 1 + x0

γ2 f̃11 , f̃13 = 1 + x0
γ3 f̃12 , (B.22)

f̃14 = x0
γ6 , (B.23)

f̃15 = 1 + x0
γ6 , f̃16 = 1 + x0

γ4 f̃15 , f̃17 = 1 + x0
γ7 f̃16 , (B.24)

f̃18 = 1 + x0
γ6x

0
γ1x

0
γ9 , f̃19 = 1 + x0

γ4 f̃18 , f̃20 = 1 + x0
γ7 f̃19 . (B.25)

as well as 16 more polynomials given by

f̃21 = x0
γ2 , f̃22 = x0

γ3 , (B.26)
f̃23 = 1 + x0

γ2 , f̃24 = 1 + x0
γ3 , (B.27)

f̃25 = 1 + x0
γ3 f̃23 , f̃26 = 1 + x0

γ2 f̃8f̃11 , f̃27 = 1 + x0
γ3 f̃26 , (B.28)

f̃28 = 1 + x0
γ2 f̃27 + x0

γ3

(
1 + x0

γ2

(
f̃7 + f̃11

))
, (B.29)

f̃29 = x0
γ4 , f̃30 = x0

γ7 , (B.30)
f̃31 = 1 + x0

γ4 , f̃32 = 1 + x0
γ7 , (B.31)

f̃33 = 1 + x0
γ7 f̃31 , f̃34 = 1 + x0

γ4 f̃15f̃18 , f̃35 = 1 + x0
γ7 f̃34 , (B.32)

f̃36 = 1 + x0
γ4 f̃35 + x0

γ7

(
1 + x0

γ4

(
f̃14 + f̃18

))
. (B.33)

As can be seen from eq. (B.14) and eqs. (B.4)–(B.12), the variables x0
γi are rational

for i ∈ {2, 3, 4, 7} and hence so are 10 of the polynomials of the above basis. In fact, by
parameterising the Plücker variables in terms of the web-parameterisation and evaluating
the web-variables with prime values, it is easy to see that the polynomials f̃21 to f̃36 are
rational, that is the square-roots cancel. Even more than that, these 16 polynomials are
actually contained in the 272-letter rational alphabet of [47–49] and can be expressed as

f̃21 = R157
R163

, f̃22 = R9
R2

, f̃23 = R2R143
R163

, f̃24 = R3
R2

, (B.34)

f̃25 = R164
R163

, f̃26 = R2R194
R9R157

, f̃27 = R192
R157

, f̃28 = R2R146
R163

, (B.35)

f̃29 = R36
R42

, f̃30 = R97
R10

, f̃31 = R10R34
R42

, f̃32 = R43
R10

, (B.36)

f̃33 = R44
R42

, f̃34 = R10R93
R36R97

, f̃35 = R91
R36

, f̃36 = R10R89
R42

, (B.37)

whereas Ri refers to the i-th rational letter in the alphabet provided in the attached
file Gr48Alphabet.m.

Since 16 of these polynomials are contained in the 272-letter rational alphabet, we are
left with the 20 letters given by f̃1 to f̃20. While these 20 letters can be numerically checked
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to actually contain square-roots, we find 10 multiplicative combinations that are contained
in the rational alphabet. They are given by

f̃1f̃2f̃
2
4 = R222

R9R97
,

f̃7

f̃4
= R2R97

R157
,

f̃14

f̃4
= R9R10

R36
, (B.38)

f̃5f̃6 = R4R131
R9R97

, f̃8f̃11 = R163R197
R9(R157)2 , f̃15f̃18 = R42R94

(R36)2R97
, (B.39)

f̃9f̃12 = (R2)2R147
R9R163

, f̃16f̃19 = (R10)2R90
R42R97

, (B.40)

f̃10f̃13 = R196
R163

, f̃17f̃20 = R96
R42

, (B.41)

whereas again Ri corresponds to the i-th rational letter in the rational alphabet. Using
these 10 relations, we can further reduce the square-root letters to the basis of 10 multi-
plicatively independent letters given by

f1 =
(
x0
γ1

)−1 (1− x0
γ1x

0
γ9

)2
, f2 = x0

γ9

(
1− x0

γ1x
0
γ9

)2
, f3 =

1 + x0
γ5x

0
γ1x

0
γ9

1 + x0
γ5

,

f4 =
1 + x0

γ8x
0
γ1x

0
γ9

1 + x0
γ8

, f5 =
1 + x0

γ2

(
1 + x0

γ8x
0
γ1x

0
γ9

)
1 + x0

γ2

(
1 + x0

γ8

) ,

f6 =
1 + xγ3

(
1 + x0

γ2

(
1 + x0

γ8x
0
γ1x

0
γ9

))
1 + xγ3

(
1 + x0

γ2

(
1 + x0

γ8

)) , (B.42)

f7 =
1 + x0

γ6x
0
γ1x

0
γ9

1 + x0
γ6

, f8 =
1 + x0

γ4

(
1 + x0

γ6x
0
γ1x

0
γ9

)
1 + x0

γ4

(
1 + x0

γ6

) ,

f9 =
1 + xγ7

(
1 + x0

γ4

(
1 + x0

γ6x
0
γ1x

0
γ9

))
1 + xγ7

(
1 + x0

γ4

(
1 + x0

γ6

)) ,

f10 = x0
γ5

(
1− x0

γ1x
0
γ9

)
.

It can be easily demonstrated that the set of 112 A(1)
1 -letters obtained in section 3.2 for

the limit ray r∞, eq. (B.13), is equivalently described by the basis of the 9 multiplicatively
independent square-root letters given by f1 to f9 of eqs. (B.42).

In summary, we see that the non-rational alphabet obtained from the scattering dia-
gram adds one further letter f10 = x0

γ5

(
1− x0

γ1x
0
γ9

)
per limit ray compared to the previously

known 9 letters, see section 3.2 or [45, 47]. Using eqs. (B.14) and (B.16), we can simplify
this letter and find that

f10 = x5
√

∆′ . (B.43)

With x5 being one of the X -variables of the origin quiver, this already demonstrates that
f1 corresponds to the square-root up to a monomial in the rational alphabet. In fact,
this square-root is proportional to the square-root ∆1,3,5,7 of one of the two eight-particle
four-mass boxes. In terms of the four-mass box, we can write the additional letter as

f10 = 〈1256〉 〈3478〉
〈1278〉 〈3456〉

√
∆1,3,5,7 , (B.44)
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whereas we have

∆1,3,5,7 =
(

1− 〈1234〉 〈5678〉
〈1256〉 〈3478〉 −

〈1278〉 〈3456〉
〈1256〉 〈3478〉

)2
− 4〈1278〉 〈1234〉 〈3456〉 〈5678〉

(〈1256〉 〈3478〉)2 . (B.45)

The square-root ∆2,4,6,8 of the other eight-particle four-mass box appears in a similar way
in the non-rational alphabet of the other limit ray, which is obtained by the cyclic shift
i→ i+ 1 on the indices of the Plücker variables.

C Web-parameterisation of Gr(4, n)

As we have reviewed in section 2.1, the totally positive configuration space G̃r+(k, n) can
be constructed as the space of all Plücker variables, restricted to non-negative values, up
to some scalings. The space has dimension d = (k−1)(n−k−1) and can be parameterised
in terms of d independent parameters by the web-parameterisation [51]. In this appendix
we briefly discuss how this parameterisation is constructed and present it explicitly for
G̃r+(4, 8) and G̃r+(4, 9).

Instead of parameterising the individual Plücker variables, it is more convenient to
instead obtain a parameterisation of the momentum twistors instead, see e.g. [47]. The
Plücker variables can in turn be obtained as the minors of the k × n matrix Z whose
columns are the momentum twistors. When parameterised, this matrix is of the form

Z = (1k|M) (C.1)

with the k×k identity matrix 1k. The entries mij of the k× (n−k) matrixM are given by

mij = (−1)i
∑
λ∈Yij

k−i∏
m=1

λm∏
l=1

xml , (C.2)

whereas Yij denotes the multi-dimensional range 0 ≤ λk−i ≤ · · · ≤ λ1 ≤ j − 1 and the xml
are an alternative labeling of the web-parameters.

The explicit web-parameterisation of G̃r+(4, 8) and G̃r+(4, 9) can be found in the
ancillary file WebParameterisation.m attached to the arXiv submission of this article.
For n = 8, the columns m1,m2,m3 of the 4× 4 matrix M are given by

m1 =


1
−1
1
−1

 , m2 =


−1− x1 (1 + x2 (1 + x3))

1 + x1 (1 + x2)
−1− x1

1

 , (C.3)

m3 =


−1− x1 (1 + x4 + x2 (1 + x4 (1 + x5)) + x3 (1 + x4 (1 + x5 (1 + x6))))

1 + x1 (1 + x4 + x2 (1 + x4 (1 + x5)))
−1− x1 (1 + x4)

1

 , (C.4)
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and the components of the fourth column m4 are given by

m41 =− 1− x1 − x1x2 − x1x2x3 − x1x4 − x1x2x4 − x1x2x3x4 − x1x2x4x5 − x1x2x3x4x5

− x1x2x3x4x5x6 − x1x4x7 − x1x2x4x7 − x1x2x3x4x7 − x1x2x4x5x7

− x1x2x3x4x5x7 − x1x2x3x4x5x6x7 − x1x2x4x5x7x8 − x1x2x3x4x5x7x8

− x1x2x3x4x5x6x7x8 − x1x2x3x4x5x6x7x8x9 , (C.5)
m42 = 1 + x1 + x1x2 + x1x4 + x1x2x4 + x1x2x4x5 + x1x4x7 + x1x2x4x7 + x1x2x4x5x7

+ x1x2x4x5x7x8 , (C.6)
m43 =− 1− x1 − x1x4 − x1x4x7 , (C.7)
m44 = 1 . (C.8)

The first four columns of the parameterised 4× 5 matrix M for n = 9 are the same as that
for n = 8. The components of the last column m5 are given by

m51 =m41 − x1x4x7x10 − x1x2x4x7x10 − x1x2x3x4x7x10 − x1x2x4x5x7x10

− x1x2x3x4x5x7x10 − x1x2x3x4x5x6x7x10 − x1x2x4x5x7x8x10

− x1x2x3x4x5x7x8x10 − x1x2x3x4x5x6x7x8x10 − x1x2x3x4x5x6x7x8x9x10

− x1x2x4x5x7x8x10x11 − x1x2x3x4x5x7x8x10x11 − x1x2x3x4x5x6x7x8x10x11

− x1x2x3x4x5x6x7x8x9x10x11 − x1x2x3x4x5x6x7x8x9x10x11x12 , (C.9)
m52 =m42 + x1x4x7x10 + x1x2x4x7x10 + x1x2x4x5x7x10 + x1x2x4x5x7x8x10

+ x1x2x4x5x7x8x10x11 , (C.10)
m53 =m43 − x1x4x7x10 , (C.11)
m54 = 1 . (C.12)
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