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1 Introduction

One important source of information about the dense partonic matter — the quark-gluon

plasma — created in the intermediate stages of ultrarelativistic heavy ion collisions at RHIC

and the LHC comes from studies of jets propagating through this dense medium and of

the associated modifications of the jet structure and properties. Generically known as

“jet quenching”, these modifications cover a large variety of phenomena and observables,

from more inclusive ones, like the energy loss by the jet (measured e.g. by the nuclear

modification factor RAA), to more detailed ones which probe the pattern of the in-medium

jet fragmentation (e.g. jet-substructure observables and the fragmentation function) or the

medium response to the jet (which influences the jet shapes).

On the theory side, various approaches and physical scenarios have been proposed.

They generally adopt a perturbative QCD (pQCD) picture for the high-virtuality part

of the parton showers, but differ in their treatment of the interactions between the jet

and the medium, and of the medium itself. Even the approaches assuming a weak QCD

coupling throughout most stage do still involve some non-perturbative aspects, like the

geometry of the medium and of the interaction region, or the transition from partonic to

hadronic degrees of freedom at very low virtualities. Besides, there are several pQCD-

based approaches, which differ in their assumptions about the dominant medium effects

and the best-suited approximation schemes. Notable differences concern the description

of the medium-induced radiation — triggered by the collisions between the partons in the

jet and those in the medium — and its interplay with the vacuum-like parton branchings

triggered by the virtualities.

It is therefore crucial to identify observables which probe different aspects of the in-

medium dynamics and can thus be used to test the physical ingredients and assumptions

underlying the various theoretical scenarios. In this paper, we focus on one such observable,

the nuclear modification of the jet fragmentation function, for which there are interesting

data at the LHC [1], but few dedicated conceptual studies (see however [2–8]). The the-

oretical framework that we use to address this (and related) observable(s) is the pQCD

approach recently developed in refs. [9, 10], in which vacuum-like emissions (VLEs) and

medium-induced emissions (MIEs) are factorised from each other via controlled approxima-

tions at weak coupling. This simple description is manifestly probabilistic, hence allowing

for an efficient Monte-Carlo implementation. In [10], we already successfully applied it to

two observables measured at the LHC: the jet RAA (the nuclear modification factor for

inclusive jet production) and the zg-distribution (reflecting the jet substructure in terms

of relatively hard splittings).

At a first sight, the fragmentation function looks like an ideal observable to study the

jet structure in terms of parton showers and its modifications by the interactions with the

medium. Indeed, the experimental results [1] in PbPb collisions at the LHC show an in-

teresting pattern with a strong nuclear enhancement of the jet fragmentation into hadrons

visible at both ends of the spectrum, that is, at both small x � 1 and largish x & 0.5

(with x ' pT /pT,jet the longitudinal momentum fraction of a hadron inside the jet.) One

should however be cautious as the jet fragmentation function is not a well-defined (“in-
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frared and collinear safe”) quantity in pQCD. This means that its theoretical predictions

are strongly sensitive to non-perturbative (confinement) physics like the modelling of the

hadronisation mechanism.

Another potential drawback of the fragmentation function, already recognised in the

literature [2, 7], is that the nuclear enhancement seen in the LHC data at x & 0.5 is not

necessarily an evidence for new physics in the jet fragmentation at large x, but merely a

consequence of the overall energy loss by the jet together with the bias introduced by the

initial spectrum for jet production via hard (nucleon-nucleon) scatterings. In that sense,

the physics of the in-medium jet fragmentation at large x is strongly correlated with that

of the jet RAA — a correlation that we confirm in this paper.

The small-x part of the in-medium fragmentation function is further affected by the fact

that, in practice, one cannot distinguish the soft hadrons produced by the fragmentation

of the jet itself from those from the medium which are dragged by the wake of the jet and

are co-moving with it. This effect, know as the “medium response” should be included

in any realistic theoretical comparisons with the data at small x (see e.g. [3–6]). This is

however not the case of our current framework in which the medium is simply described as

a “brick” with a uniform value for the jet quenching parameter q̂, the rate for transverse

momentum broadening via elastic collisions. The absence of hadronisation in our framework

further limits our accuracy in the small-x region, even though this can to some extend be

probed by varying the transverse momentum cut-off of our partonic cascade. In view

of these limitations, our current study should be viewed as merely exploratory and we

shall not perform a direct comparison between our results and the data [1] for the nuclear

modification of the jet fragmentation.

Despite these simplifications, one should still hope that our framework captures (most

of) the qualitative features of the nuclear effects on the jet fragmentation and, in partic-

ular, those that are mainly driven by the medium effects included in our parton showers.

The results for the nuclear modifications of the fragmentation function that we obtain in

this paper are indeed encouraging. They show that despite the large uncertainties asso-

ciated with the poorly-controlled soft-physics effects, one can still use this observable for

physical considerations and provide a physical interpretation of some of their dominant

qualitative features.

First of all, we find that our Monte Carlo results for the nuclear effects on the jet

fragmentation function show the same qualitative behaviour as the respective LHC data [1].

Furthermore, the relative simplicity of our approach allows us to present semi-analytic

calculations, based on piecewise approximations, which clarify the physical interpretation

of the Monte Carlo results. We are thus able to identify the various physical mechanisms

contributing to a given nuclear effect — say, the enhancement in the nuclear fragmentation

function at small x — and quantify their relative importance.

Our physical picture at weak coupling includes three main medium-induced phenom-

ena, all originating from multiple elastic collisions off the medium constituents: transverse

momentum broadening, medium-induced radiation, and colour decoherence. These phe-

nomena lead to a variety of physical effects. For instance, the energy lost by a jet is associ-

ated with soft gluons which, after being produced via medium-induced multiple branchings,
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are deviated at angles larger than the jet radius by elastic collisions. Vice-versa, the rela-

tively hard medium-induced emissions propagate at small angles, inside the jet, and hence

contribute to the final jet multiplicity, both directly and indirectly via their subsequent

radiations. The analytic calculations in this paper, supported by numerical tests, show

that these phenomena are differently probed by the jet fragmentation at small and large x.

The interplay between the various phenomena is often subtle. For example, one may

think that the nuclear enhancement observed in the jet fragmentation function at small

x is due to the copious production of soft gluons via medium-induced emissions. This

is however not right since the soft gluons produced (via MIEs) inside the medium are

efficiently deflected outside the jet by elastic collisions and hence cannot contribute to the

jet multiplicity. In reality, the nuclear excess in the jet multiplicity at small x is a combined

effect of two phenomena: the colour decoherence, which opens the angular phase-space for

radiation outside the medium, and the presence of additional sources for this radiation, as

represented by relatively hard, intra-jet, MIEs.

We similarly discuss nuclear effects on the jet fragmentation at large x & 0.5. This

refers to jets which suffer relatively little evolution, so the leading parton is unambiguously

identified in the final state. As recognised in the literature [2], these are typically quark-

initiated jets, which are less suppressed by the dense medium than the gluon-initiated jets.

This argument takes into account the total energy loss by a jet together with the bias

introduced by its production spectrum, but it ignores possible nuclear modifications in

the fragmentation mechanism itself. To clarify this point, we perform analytic studies of

the in-medium jet fragmentation near x = 1. We identify several medium effects which

compete with each other. Notably, the two MIE effects already mentioned — energy loss

at large angles via soft emissions and energy redistribution inside the jet via semi-hard

MIEs — act in opposite directions and almost compensate each other, except possibly at

x > 0.9. We thus conclude that the strong nuclear enhancement seen in the LHC data

for the fragmentation function at large x > 0.5 is not teaching us much about the jet

fragmentation, but only about the jet global energy loss and its interplay with the bias

introduced by the steeply-falling initial spectrum.

Although our qualitative description of the LHC data for the jet fragmentation func-

tion in Pb+Pb collisions looks satisfactory, it would be still interesting to allow for more

precise, quantitative, comparisons between theory and data. Besides the current intrinsic

limitations of our approach — which could, at least in principle, be improved in the future

—, such comparisons are hindered by the infrared sensitivity of the fragmentation func-

tion. Motivated by that, we propose a new, infrared-and-collinear-safe, observable which

is directly probing the jet fragmentation. Instead of counting the hadrons inside the jet (in

bins of x), this new observable counts the primary subjets — i.e. the subjets generated by

partons directly emitted by the leading parton — which are hard enough, in the sense of

having a sufficiently large transverse momentum w.r.t. their emitter. This observable lies

on the same footing as other, perhaps more familiar, observables associated with the jet

substructure, such as the zg-distribution. We present our Monte Carlo predictions for this

new observables together with their physical interpretation. The associated nuclear effects

are rather pronounced and our respective predictions are under control both qualitatively

and quantitatively.
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The paper is organised as follows: in section 2 we provide a brief reminder of our

physical picture, introduced in refs. [9, 10]. Section 3 gives our Monte Carlo results for the

fragmentation function and discusses the physical mechanisms at play. We give additional

details and perform semi-analytic calculations in section 4 for the fragmentation function at

large x and in section 5 for small x. Section 6 introduces and discusses our new observable

based on subjets and section 7 concludes.

2 General picture and its Monte Carlo implementation

We first provide a brief reminder of the physical picture, and the corresponding imple-

mentation as a Monte-Carlo parton shower, as introduced in refs. [9, 10], that we need to

discuss our new results on nuclear effects for the fragmentation function.

In essence, our picture includes two types of radiation: standard vacuum-like emissions

(VLEs) triggered by the parton virtuality, as well as medium-induced emissions (MIEs)

triggered by collisions between the high-energy partons and the quark-gluon plasma. Our

description is correct to double-logarithmic accuracy within perturbative QCD, including

running-coupling and hard-collinear (DGLAP-like) branchings for the VLEs. We make the

assumption of a fixed (non-expanding) medium of length L. MIEs are treated as multiple

BDMPS-Z-like branchings, with a jet-quenching parameter q̂ that is fixed in time.

In the double-logarithmic approximation, we have shown [9, 10] that the partonic

cascade can be factorised in three steps:

1. a pure vacuum-like cascade with emission inside the medium: these corresponds to

emissions of angle θ and energy ω satisfying ω3θ4 > 2q̂ and θ > θc ≡ 2√
q̂L3

; these

emissions have a formation time tf = 2/ωθ2 much smaller than the medium size L;

2. each parton resulting from the above pure-VLE cascade travels through the medium

over a distance of order L and can thus source MIEs;

3. the resulting partons (VLEs from the first step and MIEs from the second step)

are the source to another cascade of VLEs outside the medium, i.e. in the region

ωθ2 < 2/L. For each of these cascades, the first emission can occur at any angle

(i.e. is not constrained by angular ordering), a consequence of the colour decoherence

following the interactions with the medium [11–14].

Our vacuum-like cascade is described as an angular-ordered shower, starting from a

maximal angle θmax and keeping only emissions with a relative transverse momentum w.r.t.

their emitter (k⊥ = ωθ for an emission of energy ω at an angle θ) above a cut-off k⊥min. For

the third step of the factorised cascade, the first emission can again happen up to angles

θmax.

To the accuracy of interest, the only medium effects on the VLEs occurring inside

the medium can be formulated as kinematic boundaries on the (ω, θ) phase-space. This

gives a vetoed region for VLEs which is represented pictorially in figure 1. Emissions with

ωθ2 > 2/L and θ < θc are formally produced inside the medium but lose energy coherently
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Figure 1. The phase-space for vacuum-like gluon emissions by a jet propagating through a dense

QCD medium, in logarithmic units. In the left plot, the variables are the gluon energy ω and its

emission angle θ. In the right plot, we rather use the relative transverse momentum k⊥ ' ωθ and

the inverse of the angle 1/θ.

with their emitter [11–13]. They can therefore be treated as if they happen outside the

medium.

Medium-induced emissions can occur anywhere inside the medium. They are generated

with the following emission rate [15–18]:

d2Γmed

dz dt
=
αs,medP (z)√

2π

1

tmed(x, z)
, (2.1)

with P (z) the splitting function and tmed the formation time for a MIE off a parent parton

with energy xE. Both depend on the partonic channel under consideration. For, say, a

g → gg channel one has

tmed(x, z) =

√
2z(1− z)xE

[1− z(1− z)]q̂
≈

√
2zxE

q̂
, (2.2)

where the approximate equality holds for z � 1. This spectrum is valid for soft emissions,

ω < ωc, where ω = zxE is the energy of the emitted gluon and ωc ≡ q̂L2/2 is the most

energetic such an emission, corresponding to a formation time tmed = L. Integrating (2.1)

over a time of order L we get the BDMPS-Z spectrum for soft emissions [19–23]

ω
dPmed

dω
=
αs,medNc

π

√
2ωc
ω

Θ(ωc − ω) (2.3)

In our Monte Carlo simulations, the QCD coupling αs,med in eqs. (2.1) and (2.3) is

kept fixed.1

After being produced at time t, MIEs propagate through the medium over a distance

L− t and thus acquire a transverse momentum broadening via random collisions. This is

1On physical grounds, one expects that the right momentum scale for the running should be the trans-

verse momentum k2
f =
√
q̂ω acquired during formation. This energy dependence would complicate the MC

implementation.
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parameters physics constants

Description q̂ [GeV2/fm] L [fm] αs,med θc ωc [GeV] ωbr [GeV]

default 1.5 4 0.24 0.0408 60 3.456

1.5 3 0.35 0.0629 33.75 4.134

similar RAA 2 3 0.29 0.0544 45 3.784

2 4 0.2 0.0354 80 3.200

Table 1. Table of medium parameters used in this paper. The default set of parameters is given

in the first line. The next 3 lines are parameters which give a similar prediction for RAA. The

physics scales are defined as θc = 2/
√
q̂L3, ωc = q̂L2/2, and ωbr = ᾱ2

sωc, with ᾱs = αs,medNc/π

and Nc = 3.

treated as a Gaussian distribution in k⊥, of width ∆k2
⊥ = q̂(L − t). A similar broadening

applies to the VLEs, for which one can safely take t ≈ 0 (since t ∼ tf � L).

Physically, one can identify two main regimes in the cascade of MIEs: (i) for

ωc � ω � ωbr ≡ (αs,medNc/π)2ωc, the probability for multiple emissions is small. This

corresponds to relatively rare semi-hard emissions at small angles (in particular at angles

which can remain inside a jet). (ii) for ω . ωbr multiple branchings are important. This

corresponds to a turbulent flow of soft emissions at large angles (larger than the jet radius),

which are the main cause for energy loss by the jet [17, 18, 24].

In this picture, the energy lost by a jet is driven by two mechanisms: first, the in-

medium vacuum-like cascade creates a sequence of emissions within the jet, then, each of

these emissions is the source of (soft) MIEs with ω . ωbr which propagate outside the jet.

The increase of the number of sources with the jet transverse momentum pT,jet is crucial

for explaining the almost-flat jet nuclear suppression factor RAA observed at high pT,jet at

the LHC [25].

In fine, our Monte-Carlo for parton cascades in the medium contains two “non-

physical” parameters: θmax which can be viewed as an uncertainty on our collinear re-

summation, and k⊥min which corresponds to a scale of order ΛQCD (or ∼ 1 GeV) at which

hadronisation should become important. It also has 3 “physical” parameters describing

the interaction with the medium: q̂, L and αs,med. From these 3 parameters one can ob-

tain the constants θc and ωc (which, in particular, control the size of the veto region in

figure 1), and ωbr which control the energy lost by a parton at large angles (and hence the

jet energy loss).

In ref. [10], we found a series of parameters led to a good description of the LHC data

for the jet RAA, as measured by ATLAS [25]. These parameters are listed in table 1. It

was also shown in [10] that the above picture provides a qualitatively-correct description

of the zg distribution.

Our goal in this paper is to extend our study to the jet fragmentation function. The

first set of parameters from table 1 will be our default choice throughout this paper and

the other three will be used to probe the sensitivity of the fragmentation function to the

medium parameters beyond what is provided by the measurement of RAA.

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
4

3 Monte Carlo results for the in-medium fragmentation function

In this section, we present our Monte Carlo results for the in-medium modification of the

jet fragmentation function together with a discussion of their physical interpretation. This

interpretation is supported by the analytic calculations described in the next sections.

3.1 Definitions and general set-up

In order to describe pp and PbPb collisions at the LHC, we consider jets with an initial

spectrum given by a pp collision2 with centre-of-mass energy
√
s = 5.02 TeV computed at

leading-order, i.e. with Born-level 2→ 2 partonic hard scatterings. A key property of this

initial parton (or dijet) spectrum is that it is steeply falling with the partons’ transverse

momentum pT0: dNhard/dpT0 ∝ 1/pnT0 with n & 5. For each event, both final partons are

showered using our Monte Carlo. Jets are reconstructed using the anti-k⊥ algorithm [26]

as implemented in FastJet v3.3.2 [27]. The final jets are characterised by their transverse

momentum pT,jet, which is generally different from the initial momentum pT0, in particular

for jets in PbPb collisions which suffer energy loss. The pp baseline is obtained by using

the vacuum limit of our Monte Carlo.

We denote the final jet spectrum by dNjets/dpT,jet and use the upper scripts “med” and

“vac” to distinguish between jets in the medium (PbPb collisions) and jets in the vacuum

(pp collisions), respectively. The jets can be initiated by either a quark or a gluon. In

practice, one often considers the jet yield integrated over an interval in pT,jet, that is,

Njets(pT,min, pT,max) =

∫ pT,max

pT,min

dpT,jet
dNjets

dpT,jet
. (3.1)

For a given jet with transverse momentum pT,jet, we characterise its fragmentation in terms

of the longitudinal momentum fraction

x ≡ pT cos(∆R)

pT,jet
, (3.2)

where pT is the transverse momentum of a constituent of the jet and ∆R =√
(∆y)2 + (∆φ)2, with ∆y and ∆φ the differences between the jet axis and the parti-

cle direction in rapidity and azimuth. Note that since our Monte Carlo does not include

hadronisation, the jet constituents are partons.

The jet fragmentation function D(x) and its nuclear modification factor R(x) are

defined as

D(x) =
1

Njets

dN

dx
, R(x) =

Dmed(x)

Dvac(x)
, (3.3)

with Njets the number of jets (in the considered pT,jet range) and dN/dx the number of jet

constituents with a given momentum fraction x.

2For simplicity, we have used the same hard-scattering spectrum for both the pp baseline and the PbPb

sample. This means that we neglect the effects of nuclear PDF, which can sometimes be as large as 15-20

% and can be added in a more phenomenologically-oriented study.
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(b) Variations in q̂, L and αs,med.

Figure 2. The variability of our MC results for the ratio R(x) w.r.t. changes in the “unphysical”

(left) and “physical” (right) parameters. The 4 sets of values for the “physical” parameters are

correlated in that they provide similarly good descriptions of the LHC data [25] for the “standard”

nuclear modification factor for jets RAA (see the discussion in [10]).

For later conceptual studies, we shall also consider “monochromatic jets” produced by

a well identified parton, quark or gluon, with a fixed initial transverse momentum pT0. In

such a case, we denote the fragmentation function by Di(x|pT0), where i ∈ {q, g} refers to

the flavour of the leading parton. The corresponding medium/vacuum ratio is defined as

Ri(x|pT0) ≡ Dmed
i (x|pT0)/Dvac

i (x|pT0).

3.2 Monte Carlo results and physical interpretation

We now present our Monte Carlo results for the fragmentation function and the associated

nuclear modification factor. We want to pay a special attention to their dependence on the

two “unphysical” parameters of the Monte Carlo, θmax and k⊥,min, and to the 3 “physical”

parameters, q̂, L and αs,med. The dependence on the former can be viewed as an uncertainty

in our underlying parton-level theoretical description and a large uncertainty would signal

a strong dependence of the observable on non-perturbative effects such as hadronisation.

Conversely, the dependence on the “physical” medium parameters sheds light on the role

and importance of the medium effects at play.

3.2.1 Variability with respect to the unphysical cutoffs

Figure 2(a) displays the sensitivity of our MC results for R(x) to variations of the “un-

physical” parameters around their central values θmax = 1 and k⊥,min = 0.25 GeV, for fixed

values of q̂, L and αs,med.

The first observation from figure 2(a) is reassuring: the distribution shows a strong

enhancement both at small x and at large x, with a nuclear suppression at intermediate

values of x. This is in qualitative agreement with experimental measurements (see e.g. [1]).

However, the variations w.r.t. the unphysical parameters appear to be very large. We

have checked that they were strongly dominated by variations in k⊥,min. This should not

– 8 –
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come as a surprise since the fragmentation function, measured directly on individual con-

stituents, is not an infrared-and-collinear (IRC) safe observable. The sizeable variations

in the small-x region directly come from the variations of the available phase-space for

radiating soft gluons when varying k⊥,min. The large variations in the radiation of soft

particles directly affect the spectrum of hard particles in the jet, hence the large uncer-

tainty in the large-x region. Only a proper description of hadronisation (including varying

hadronisation parameters) would (hopefully) reduce this uncertainty. This should be kept

in mind when studying the dependence of our results on the medium parameters and when

comparing our MC results in this work with actual experimental data.

3.2.2 Variability with respect to the (physical) medium parameters

We now fix the unphysical parameters to their central value and study how R(x) depends

on the medium parameters q̂, L, and αs,med. We first consider 4 different sets of values,

given in table 1 together with the angular and energy scales θc, ωc and ωbr characterising

the medium-induced radiation, as discussed in section 2.

The plot in figure 2(b) shows our new results for R(x) for the 4 sets of values for

the physical parameters. For large values of x, x & 0.1, the small variations in ωbr (see

table 1) are compensated by relatively large variations of ωc and θc. This is similar to

what happens for RAA, as discussed at length in ref. [10]. This suggests that for largish

x & 0.1, the nuclear effects on jet fragmentation and on the inclusive jet production are

strongly correlated and in particular that they are both controlled by the jet energy loss.

Such a correlation has been already pointed out in the literature [2, 7] and used to provide

a simple and largely model-independent argument for explaining the enhancement in the

ratio R(x) at x & 0.5, as observed both in the LHC data [1] and in our MC results in

figure 2(b). This argument will be revisited and completed in the next subsection and also

in section 4.

Turning to smaller x values, x ≤ 0.01, the situation becomes different. There is a

clear lift of degeneracy between the 4 sets of values, with two of them — corresponding

to the smallest medium size L = 3 fm, but larger values for αs,med — yielding results that

are significantly larger than those predicted by the two other sets (with L = 4). In what

follows, we provide physical explanations for these trends.

3.3 Behaviour at large x

The behaviour at large x is largely controlled by the physics of energy loss and its interplay

with the initial production spectrum, as we now explain.

A jet which, after crossing the medium, is measured with a transverse momentum pT,jet

has originally been produced from a hard quark or gluon emerging from a hard process

with a larger momentum pT0 = pT,jet + E(pT0), where E(pT0) is the energy lost by the jet

via MIEs at large angles (see ref. [10] for an extensive discussion of this quantity). While

the energy lost by a parton with momentum pT � ωbr saturates at a value ε ∼ ωbr, which is

independent of pT [17], the average energy lost by a jet keeps increasing with pT0, because
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of the rise in the phase space for VLEs and hence in the number of partonic sources for

medium-induced radiation.3

Due to the steeply-falling underlying pT0 spectrum, cutting on the jet pT tends to

select jets which lose less energy than average. In particular, this bias favours the “hard-

fragmenting” jets which contain a parton with large x (say, x > 0.5). Such jets correspond

to rare configurations, in which the radiation from leading parton is strongly limited in

order to have a final x fraction close to one. Since they contain only few partons, the

hard-fragmenting jets suffer very little energy loss, of the order of the partonic energy loss

ε ∼ ωbr. They are therefore less suppressed than the average jets by the steeply-falling

initial spectrum. In other terms, the medium acts as a filter which enhances the proportion

of hard-fragmenting jets compared to the vacuum.

This bias has already consequences for the inclusive jet production, as measured by

RAA: the fraction of hard-fragmenting jets among the total number of jets (say, in a

given bin in pT,jet) is larger in AA collisions than in pp collisions. The effects of this bias

are however expected to become even stronger for the jet distribution dN/dx at large x,

which by definition selects only hard-fragmenting jets. This stronger bias towards hard-

fragmenting jets has been proposed as an explanation for the nuclear enhancement in the

fragmentation function observed in the LHC data [1] at large x & 0.5. This argument

is very general: it applies to a large variety of microscopic pictures for the jet-medium

interactions, assuming either weak coupling [5, 28], or strong coupling [29, 30], or a hybrid

scenario [3, 7, 8]. All these scenarios naturally predict that hard-fragmenting jets lose

less energy towards the medium than average jets, for the physical reason that we already

mentioned: hard-fragmenting jets contain less partonic sources for in-medium energy loss.

This physical argument is manifest in both the pQCD [5, 28] and the hybrid approaches [3,

7, 8], which explicitly include a vacuum-like parton shower. It is also implicit in the strong

coupling scenario in [29, 30] which is tuned such as to reproduce the angular distribution

of jets in p+p collisions at the LHC (itself well described by PYTHIA).

In this section, we argue that this is also the main explanation for the rise seen in our

results in figure 2(b) at x & 0.5. Within our pQCD approach this is not entirely obvious

since our scenario also allows for nuclear modifications of the fragmentation process itself,

via medium-induced emissions and energy loss effects. Similar ingredients are a priori

present in other scenarios, like JEWEL, but their relative importance has not been explicitly

studied to our knowledge. In section 4, we shall perform an extensive study of these effects,

via both analytical and numerical (MC) methods. Our conclusions are briefly anticipated

towards the end of this section.

Before we discuss the fragmentation function per se, let us first demonstrate that, in

our picture too, a hard-branching jet loses less energy than the average one. We have

numerically verified this, by selecting (in our MC events) jets for which the harder parton

carries a momentum fraction xmax in a restricted window. These results are presented

in figure 3(a) for the energy loss of monochromatic jets and in figure 3(b) for the jet

3Within our pQCD picture, this increase in the number of sources for medium-induced emissions explains

the fact that RAA increases only slowly with pT,jet, including at large pT,jet & 500 GeV [10].
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Figure 3. Energy loss and RAA for different bins of xmax, the momentum fraction of the jet harder

constituent.

RAA, for the 3 bins in xmax and (for comparison) also for the inclusive jets. Focusing

first on the left figure, we find indeed that the energy lost by jets with xmax > 0.9, i.e.

hard-fragmenting jets, is both considerably smaller and also less rapidly growing with pT0

then for the average jets.4 As xmax decreases, both the energy loss and its pT0 growth

increase. This tendency is confirmed by the study of RAA, Figure 3(b), where jets with

a large xmax show a smaller-than-average nuclear suppression. It would be interesting to

experimentally measure the correlation between the jet RAA and the momentum fraction

xmax and compare to our above predictions (see also [7] for a related observable, which

compares the nuclear suppression for high-pT hadrons and inclusive jets).

To have a more quantitative argument, let us focus on a single bin in pT ≡ pT,jet with a

(vacuum) Born-level pT spectrum. The vacuum fragmentation function can then be easily

estimated as

Dvac(x|pT ) '
Nq(pT )Dvac

q (x|pT ) +Ng(pT )Dvac
g (x|pT )

Nq(pT ) +Ng(pT )
, (3.4)

where Ni(pT ) ≡ dNhard
i /dpT ∝ 1/pnT are the initial spectra for quarks (i = q) and gluons

(i = g) and the fragmentation functions for monochromatic jets have been introduced at

the end of section 3.1. To write down the corresponding formula for jets in the medium,

let us assume that the only medium effect on the jet production is the energy loss. One

can thus write

Dmed(x|pT ) '

∑
i∈{q,g}

Ni(pT + εi(x))Dmed
i (x|pT + εi(x))∑

i∈{q,g}
Ni(pT + Ei(pT ))

for x ' 1. (3.5)

4The MC results for xmax > 0.9 are only slightly larger than the energy loss expected on the basis of

eq. (4.13) for a jet made of two partons. This will play an important role when discussing the large-x

behaviour in section 4.
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The quantity εi(x) in the numerator is the energy loss of a hard-fragmenting jet. It depends

on x because the focus on large values x > 0.5 selects special configurations in which jets

are made with only few partons. Its precise x-dependence is not important for what

follows. Rather, it suffices to know that εi(x) is a partonic energy loss, of order ωbr, and

to a good approximation is independent of the jet pT . The corresponding quantity in the

denominator, Ei(pT ), is the average energy loss by a jet with transverse momentum pT .

It is much larger than εi(x) and increases with pT . This difference between the partonic

energy loss εi(x) in the numerator of eq. (3.5) and the average energy loss Ei(pT ) in its

denominator, together with the rapid decrease of Ni(pT ) when increasing pT , are the origin

of the nuclear bias towards hard-fragmenting jets at large x, discussed at the beginning of

this section.5

On top of their bias towards less energy loss, hard-fragmenting jets also favour quark-

initiated jets. There are two reasons for this [2, 10]: (i) a quark radiates less than a gluon

due to its reduced colour charge (CF < CA), resulting in a larger probability to contribute

at large x, and (ii) quark-initiated jets typically contain less partons than gluon-initiated

jets and hence lose less energy (εq < εg); this feature together with the steeply-falling pT
spectrum favours their production in AA collisions. We can therefore only keep the quark

contribution to the numerators of eqs. (3.4) and (3.5) and write

R(x|pT ) '
fmed
q (x|pT )

fvac
q (pT )

Rq(x|pT ) , (3.6)

with the following definitions:

fvac
q (pT ) ≡ Nq(pT )

Nq(pT ) +Ng(pT )
, fmed

q (x|pT ) ≡ Nq(pT + εq(x))∑
i∈{q,g}

Ni(pT + Ei(pT ))
. (3.7)

For jets in the vacuum, fvac
q (pT ) is simply the fraction of quark-initiated jets. However, the

corresponding quantity for jets in the medium is generally not a fraction, because of the

different energy losses appearing in the numerator and in the denominator of fmed
q (x|pT ).

The condition of hard fragmentation (x ∼ 1) only plays a role in the case of the medium,

where it distinguishes between the “partonic” energy loss εq(x) in the numerator and the jet

energy loss Eq(pT ) in the denominator. As already discussed, the physical observation that

εq(x) � Ei(pT ) implies that the fraction of hard-fragmenting jets in the medium is larger

than that in the vacuum, i.e., fmed
q (x|pT )/fvac

q (pT ) > 1, which in turn causes R(x|pT ) to

go above one for x . 1. As x decreases, the energy loss of jets contributing at this value

of x increases, becoming closer to E(pT ) and the nuclear enhancement is less pronounced.

Eq. (3.6) also involves the medium/vacuum ratio Rq(x|pT ) = Dmed
q (x|pT )/Dvac

q (x|pT )

of the fragmentation functions for quark-initiated, monochromatic, jets. This ratio encodes

the nuclear modifications of the fragmentation process itself and is perhaps the most inter-

esting quantity one would like to extract from observables like R(x) as it encodes internal

5Strictly speaking, the “average” energy loss Ei(pT ) in the denominator is influenced too by this bias,

since it should be computed as an average over an inclusive sample of jets produced in AA collisions.

However, this bias is less important for the inclusive sample than for the large-x distribution in the numerator

of eq. (3.5).
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properties of the jet rather than its global energy loss. One of the goals of this paper is

therefore to identify medium effects on the nuclear modification factor R(x) beyond global

jet energy-loss effects.

Specifically, in section 4 we shall discuss three types of nuclear effects on the fragmen-

tation function Dmed
q (x|pT0), which act in opposite directions and almost compensate each

other. First, the presence of a vetoed region in the phase-space for in-medium VLEs re-

duces the probability for the leading parton to radiate a (vacuum-like) soft gluon and thus

increases the probability to find that parton at large x. Then, the energy lost by a two-

parton system (after a vacuum-like emission) also goes in this direction.6 Finally, the MIEs

which are hard enough to remain inside the jet (i.e. with energies ω > ωbr) redistribute the

energy within the jet and thus decreases the probability to find the leading parton with a

fraction x close to one. Our numerical studies show that these effects are individually not

so small (at least for x large enough, such that 1− x . ωc/pT0), but their net effect on R
is much smaller than the strong enhancement due to the factor fmed

q (x|pT )/fvac
q (pT ).

In summary, for relatively large x, the observable R(x) is not sensitive to the details

of the in-medium fragmentation function, but merely to the bias in the distribution of

hard-branching jets as introduced by the deeply falling initial pT spectrum.

3.4 Behaviour at small x

Let us now consider the situation at small x . 0.01, where our numerical results in fig-

ure 2(b) show a pronounced medium enhancement of the fragmentation function, in qual-

itative agreement with the experimental observations [1]. These results also exhibit a

(partial) lift of the degeneracy between the various sets of values for the medium parame-

ters, suggesting a weaker correlation between R(x) and the jet nuclear modification factor

RAA. This section provides explanations for these observations within our framework.

We first note that, for the considered range in pT,jet, x . 0.01 corresponds to momenta

pT . 2 GeV for the emitted partons, which are smaller than the characteristic medium

scale ωbr for multiple branching. In our framework, such soft emissions are dominated by

VLEs outside the medium since MIEs with energies ω . ωbr would fragment into very soft

gluons propagating at angles larger than the jet radius (i.e. outside the jet). The medium

enhancement of VLEs outside the medium has two main origins: (i) the violation of

angular ordering by the first emission outside the medium, which opens the angular phase-

space beyond what is allowed in the vacuum [9, 14], and (ii) the presence of MIEs with

ω > ωbr which remain inside the jet and can radiate VLEs outside the medium [10]. Our

(analytic and numerical) studies in section 5 show that both effects contribute to explaining

the enhancement visible in the MC results.

The above interpretation of the nuclear enhancement at small x as additional VLEs

outside the medium does explain the differences between the various choices of medium

parameters seen in figure 2(b). A smaller value for L increases the energy phase-space

for the parton cascades developing outside the medium because the energy of the first

emission outside the medium, ω ∼ 2/(Lθ2), with an emission angle θ ≤ R, increases

6A similar effect was discussed in ref. [10] in relation with the zg distribution.
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Figure 4. Our MC results for the nuclear modification factor R(x) shown as a function of the

energy fraction x of a jet constituent (left) and of its transverse momentum pT (right), for 3 bins

of the jet pT,jet.

with 1/L. Furthermore, a larger value of αs,med enhances the rate for MIEs and hence the

number of sources for VLEs outside the medium.

Even though our MC results at small x show the same qualitative trend as the relevant

LHC data [1], one must remain cautious when interpreting this agreement. Indeed, our

current formalism lacks some important physical ingredients, which are known to influence

the soft region of the fragmentation function: the hadronisation and the medium response

to the energy and momentum deposited by the jet. Whereas one may expect the effects of

hadronisation to at least partially compensate when forming the medium-to-vacuum ratio

R(x), the medium-response effect — i.e. the fact that the experimentally reconstructed

jets also include soft particles originating from the wake of moving plasma trailing behind

the jet (and not only from the jet itself) — is clearly missing in our approach and its

inclusion should further enhance the ratio R(x) at small x. Indeed, we know from other

approaches [3–6], where the medium response is the only (or at least the main) mecha-

nism for producing such an enhancement, that this effect by itself is comparable with the

enhancement seen in the data (see also [31] for a different picture).

Of course, it is of utmost importance to complete our formalism with a more realistic

description of the medium, including its feedback on the jet. (We shall return to this point

in the concluding section.) Before such a more complete calculation is actually performed,

it is difficult to anticipate what should be the combined effect of both mechanisms on the

behaviour of R(x) at small x.

3.5 Dependence on the jet pT

Our Monte Carlo predictions for the nuclear modification R(x) are shown in figure 4

for three bins of pT,jet and for the default set of (medium and unphysical) parameters,

cf. the first line in table 1. Following the experimental analysis by ATLAS [1], we have

separately plotted our results as a function of x (left plot) and of the parton pT (right

plot). The left-hand plot shows only a mild dependence of R(x) on pT,jet for x & 0.1
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when increasing. In view of eq. (3.6), this suggests a weak pT,jet-dependence for the ratio

fmed
q (x|pT,jet)/f

vac
q (pT,jet), which is likely correlated to the similarly weak dependence ob-

served for RAA. At small x, the x scale below which the ratio is larger than 1 decreases with

pT,jet, but the corresponding pT scale increases with pT,jet. These trends are in qualitative

agreement with the respective ATLAS results [1].

4 Analytic insight for x close to one

With this section, we start our analytic investigations of the nuclear effects on the jet frag-

mentation function. Since our main goal is to discuss the effects beyond the jet-spectrum

energy-loss factor fmed
q (x|pT,jet)/f

vac
q (pT,jet) in (3.6), we mostly work with monochromatic

jets with a given initial transverse momentum pT0. We therefore focus on the jet frag-

mentation function Di(x|pT0) with i ∈ {q, g}, which can be conveniently computed as a

derivative of the cumulative fragmentation distribution

Σi(x|pT0) ≡
∫ 1

x
dx′Di(x

′|pT0) . (4.1)

We consider separately the two limiting cases where x is either very close to one

(1− x� 1), discussed in this section, or very small (x� 1), discussed in the next section.

For x ' 1 the integral in the r.h.s. of eq. (4.1) is the probability to find the leading parton

with an energy fraction x′ ≥ x.

4.1 Brief summary of the vacuum results

Before addressing the nuclear effects, we briefly recall the main results for jet fragmentation

in the vacuum (see e.g. [32]). For simplicity, we identify the jet opening angle R with the

maximal angle θmax allowed for the first emission. Due to angular ordering, (most of) the

emitted partons will remain inside the jet, hence pT,jet = pT0 and x = ω/pT0, with ω the

energy7 of a parton inside the jet.

When x ∼ 1, the perturbative expansion of the cumulative fragmentation distribu-

tion receives contributions enhanced by two types of logarithms: (i) the collinear loga-

rithm L0 ≡ ln(pT0R/k⊥,min) generated by integrating over emission angles in the range

k⊥,min/pT0 < θ < R, with k⊥,min the lower transverse-momentum cut-off of the parton

shower, and (ii) the soft logarithm L ≡ ln 1
1−x generated by integrating over soft gluon

emissions with energy fractions z in the range 1− x < z < 1. The explicit logarithmic de-

pendence on the shower cut-off k⊥,min is a consequence of the fact that the jet fragmentation

function is not IRC-safe. One has L0 ≥ L, since all emissions must obey zθpT0 > k⊥,min

for any z ≥ 1 − x and any θ ≤ R. The resummation of the contributions enhanced by

factors L or L0 can be organised as the following perturbative series

ln(Σi(x|pT0)) = Lg1,i(αsL,αsL0) + g2,i(αsL,αsL0) +O(αn+1
s lnn) (4.2)

with αs ≡ αs(pT0R) � 1. Lg1,i and g2,i resum respectively all the leading-log (LL) terms

αns lnn+1 and the next-to-leading-log (NLL) terms αns lnn with n ≥ 1, where ln means either

7We often refer to the transverse momentum pT of a parton in the jet as its “energy” and use the

notation ω ≡ pT .
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L, or L0. We use this perturbative result at NLL accuracy to compute both the vacuum

benchmark Dvac
i (x|pT0) and the contribution of the VLEs to the medium fragmentation

function Dmed
i (x|pT0).

The LL piece is the standard double-logarithmic (DL) contribution in which successive

emissions are strongly ordered both in energy fraction z and in emission angle θ. It includes

the effects of the running of the coupling, αs → αs(k⊥) with k⊥ the transverse momen-

tum of each emission w.r.t. its emitter, and of the lower momentum cutoff k⊥ > k⊥,min.

For simplicity and easier physical interpretation of our results, we quote in the main text

expressions assuming a fixed coupling. Results including running-coupling effects are pre-

sented in appendix. A. All the figures presented in the paper have been obtained using the

expressions which include running-coupling effects.

At LL accuracy, one can assume that a single emission, the one with the larger mo-

mentum fraction z, dominates the jet fragmentation function near x = 1, with all other

emissions having much smaller values of z.8 The probability (4.1) for the leading parton

to carry a momentum fraction x′ ≥ x is the probability for having no emissions with an

energy fraction larger than 1 − x:

Σvac,LL
i (x|pT0) = exp

(
−2Ci

π

∫ 1

1−x

dz

z

∫ R

0

dθ

θ
αs(k⊥ = zθpT0) Θ(k⊥ − k⊥,min)

)
. (4.3)

Defining u ≡ α0L and v ≡ α0L0 (v > u) one easily gets

Lgvac
1,i =

αsCi
π

[
(L0 − L)2 − L2

0

]
. (4.4)

which is negative, as expected. The (NLL) calculation of g2,i is more complicated. It

is sensitive to multiple emissions and to the non-singular pieces of quark/gluon splitting

function. One finds

gvac
2,i = γE

∂Lg1,i

∂L
− ln

[
Γ

(
1− ∂Lg1,i

∂L

)]
− 2αsCiBi

π
L0 , (4.5)

with Γ the Euler function, Bq = −3
4 and Bg = −11CA−2nf

12CA
, with nf the number of active

quark flavours. A brief derivation of this expression is given in appendix B.

For gluon jet, we have also included the effect of flavour changes due to g → qq̄ splittings

through which the leading parton in a gluon-initiated jet becomes a quark. Although this

effect is formally suppressed by powers of 1− x and therefore subleading, it has a sizeable

numerical impact. This is because the large Sudakov suppression, eq. (4.4), comes with a

factor Ci. A g → qq̄ splittings therefore replaces a suppression enhanced by a factor CA by

one only proportional to CF , at the expense of a contribution proportional to αs(1−x) from

the splitting itself. This significantly improves our description of the large-x fragmentation

of gluon jets in the vacuum and additional details are given in appendix B.

In figure 5, we show the cumulative fragmentation distribution in the vacuum for quark

and gluon jets as given by our MC compared to the analytic calculation from eqs. (4.2), (4.4)

8At LL, all softer emissions are unresolved by Di(x|pT0) and therefore cancel between real and virtual

corrections.
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Figure 5. The cumulative fragmentation function Σi(x|pT0) for quark (i = q) and gluon (i = g)

initiated monochromatic jets in the vacuum. Our MC calculations are shown with solid lines, and

the two analytic approximations, LL and NLL, by dotted and dashed lines, respectively.

and (4.5). While the LL description captures already the main trend of the distribution,

NLL corrections bring a sizeable quantitative improvement. The main conclusion from this

figure is that the fragmentation function near x = 1 is much larger for quark-initiated jets

than for gluon-initiated jets.

4.2 Nuclear effects on the fragmentation function near x = 1

To discuss medium-induced effects, it is sufficient to work in the LL approximation where

jet fragmentation function near x = 1 is dominated by a single, relatively soft, gluon

emitted by the leading parton. From this two-parton system we then have to take three

effects into account: (1) emissions in the vetoed region of figure 1 are forbidden, (2) the

leading parton and the emitted gluon can both lose energy via MIEs at large angles, (3)

the gluon emission can be a MIE remaining inside the jet. We consider the effect of the

vetoed region before the other two.

4.2.1 Effect of the vetoed region

The effect of the vetoed region in figure 1 can be implemented as a Θ-function excluding

this particular region from the phase-space for VLEs. At LL accuracy, this amounts to

having an extra factor

Θveto = 1−Θ(
√

2q̂zpT0 − k2
⊥)Θ(k⊥ − 2zpT0L

−1), (4.6)

in the integrand of (4.3). The first (second) Θ-function in the r.h.s. of (4.6) corresponds to

the upper (lower) boundary of the vetoed region. For a fixed-coupling approximation, we

find assuming for simplicity 1 − x ≤ 2/(LpT0R
2) (see appendix A for the result including

running coupling)

Lgveto
1,i (αsL,αsL0) = Lgvac

1,i (αsL,αsL0) +
2αsCi

3π
ln2 R

θc
. (4.7)
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NLL corrections, gveto
2,i , can be obtained using (4.5). In particular, the hard-collinear

term proportional to Bi is not modified by the veto region and therefore cancels in the

medium/vacuum ratio.

Our analytic estimate for the ratio Ri(x|pT0) is shown in figure 6(a) left in green for

pT0 = 200 GeV. For comparison, we also show the corresponding MC result, which only

includes VLEs (the green curve in figure 6(b)). These results agree well with each other

and they both predict a nuclear enhancement near x = 1. This enhancement can be easily

understood on the basis of (4.7), which implies

ln
Σveto,LL
i (x)

Σvac,LL
i (x)

=
2α0Ci

3π
ln2 R

θc
> 0 , (4.8)

meaning Σmed
i (x) ' Σveto

i (x) > Σvac
i (x) and hence Ri(x) > 1 when x → 1. Indeed, the

presence of the vetoed region reduces the phase-space allowed for the decay of the leading

parton.

4.2.2 Effect of medium-induced emissions

The medium-induced emissions (MIEs), as triggered by the interactions with the plasma

constituents, affect differently the total jet momentum pT,jet and the energy ωLP carried

by its leading parton. This implies a nuclear modification R(x) at large x ≡ ωLP/pT,jet.

For convenience, we focus on the case where x is not too close to one, such that

ωbr/pT0 � 1 − x � 1, with ωbr ∼ α2
s q̂L

2 the characteristic scale for multiple branchings.

For jets with pT ≥ 200 GeV, a phenomenological region 0.80 . x . 0.95 translates into

(1− x)pT0 & 10 GeV which is indeed larger than ωbr ∼ 4 GeV (cf. table 1).

Within this regime, the medium-induced emissions which control the energy loss by

the leading parton are relatively hard, with energies ω � ωbr. Thus, they remain inside the

jet and can be accurately computed in the single emission approximation. This situation

is similar to the one discussed for jets in the vacuum at double-logarithmic accuracy: the

parton distribution near x = 1 is controlled by a single intra-jet emission, with an energy of

the order of (1−x)pT0. This emission can be either vacuum-like, or medium-induced. This

“semi-hard” emission is accompanied by an arbitrary number of soft MIEs, with energies

ω . ωbr, which propagate outside the jet and take energy away from the jet constituents.

The in-medium fragmentation function near x = 1 can therefore be evaluated as:

Dmed
i (x|pT0) '

∫
dω∆VLE

i (ω) ∆MIE
i (ω)

[
∂Pi,vac

∂ω
+
∂Pi,med

∂ω

]
δ

(
x− pT0 − ω − εi

pT0 − Ei

)
.

(4.9)

In this expression, ∂Pi,vac/∂ω is the differential probability for emitting a soft gluon with

energy ω at any emission angle θ (with k⊥,min/ω < θ < R) and ∆VLE
i (ω) is the Sudakov

factor forbidding VLEs with energies larger than ω (including the condition (4.6) for the

vetoed region), i.e.

∆VLE
i (ω) = Σveto

(
1− ω

pT0

)
and

∂Pi,vac

∂ω
=

d ln ∆VLE
i

dω
' 2αsCi

π

1

ω
ln

(
ωR

k⊥,min

)
,

(4.10)
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where the second expression for ∂Pi,vac/∂ω, shown only for illustration, holds for the case

of a fixed coupling αs and ignores the constraints introduced by the vetoed region.

Furthermore, ∂Pi,med/∂ω and ∆MIE
i (ω) are the corresponding quantities for the semi-

hard MIE inside the jet (θc < θ < R). Its energy is restricted to ω̄ < ω < ωc, where

ωc = q̂L2/2 and ω̄ is a cutoff of order ωbr, separating between “semi-hard” and “soft”

MIEs.9 In this regime, one can safely use the single emission approximation, i.e. (compare

to eq. (2.3))

∂Pi,med

∂ωm
'
αs,medCi

π

√
2ωc
ω3
m

, ∆MIE
i (ωm) = exp

(
−
∫ ωc

ωm

dω
∂Pi,med

∂ω

)
. (4.11)

Next, εi and Ei refer to the energy loss via soft MIEs outside the jet (θ > R), for the

leading parton and for the jet as a whole, respectively. Finally, the δ-function in eq. (4.9)

encodes the fact that, in our present approximation, the energy of the leading parton is

the energy pT0 of the parton initiating the jet minus the energy of the semi-hard emission

and the partonic energy loss εi, while the energy of the jet is pT,jet = pT0 − Ei.
For more clarity, we study separately the two types of medium effects included in

eq. (4.9), namely energy loss at large angles and energy redistribution via intra-jet MIEs.

4.2.3 Energy loss at large angles

To study the energy loss effects alone, we temporarily neglect the contribution of the intra-

jet MIEs to eq. (4.9), which then simplifies to (with ωs the energy of the soft VLE)

Dmed
i (x|pT0)

∣∣∣
e-loss

=

∫
dωs

∂Pi,vac

∂ωs
∆VLE
i (ωs) δ

(
x− pT0 − ωs − εi

pT0 − Ei

)
. (4.12)

In the absence of VLEs, a single parton with initial energy ω0 loses energy by radiating

MIEs at large angles (θ & θc/ᾱ
2
s). This is associated with the “turbulent” component of

the medium-induced cascades, associated with very soft partons of energies ω . ωbr, which

are deflected at large angles via collisions with the plasma. The average energy loss is

estimated by [17]

εi(ω0) = ω0

[
1− e−v0ωbr/ω0

]
, with ωbr =

(
αs,med

π

)2

CACi
q̂L2

2
. (4.13)

v0 is a number which can be either obtained via analytic approximations [15, 17, 24] (e.g.

one finds v0 ' 4.96 for ω0 < ωc), or extracted from MC calculations. εi depends on

the flavour index i and on the distance L travelled by the parton through the medium.

For energetic partons with ω0 � ωbr — the most relevant case here —, this energy loss

saturates at a value εi = v0ωbr independent of ω0.

For a full jet, the energy loss receives contributions of the form of eq. (4.13) from

both the leading parton (LP) and each of the (vacuum-like or medium-induced) intra-jet

9The precise value of this cutoff is not important: as we will show below the energy integration is

controlled by the δ-function, and since the energy losses are relatively small one roughly has ω ' (1−x)pT0 �
ω̄ ∼ ωbr.
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(a) Semi-analytic estimates.
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(b) Monte-Carlo simulations.

Figure 6. Nuclear effects on the fragmentation function at large x for monochromatic jets. Three

increasingly more physical scenarios are considered: (i) VLEs only (only the nuclear effects from

the vetoed region are included), (ii) adding energy loss via soft MIEs at large angles (not shown on

the right plot), and (iii) further adding semi-hard MIEs inside the jet. Additionally, we show the

“full” curve in red which includes the bias introduced by the initial hard spectrum and is manifestly

the dominant effect.

emissions (θ < R) which are radiated within the medium, i.e. in the “inside” region in

figure 1. For a hard-fragmenting jet made of only two partons (the LP and a relatively soft

VLE, as in eq. (4.12)), we have to consider two options. If the VLE is emitted outside the

medium, i.e. either with θ < θc or with tf = 2/(ωθ2) > L, only the LP loses energy and

we have Ei = εi.
10 If the VLE occurs inside the medium, both partons lose energy and we

have Ei = εi + εg, with εg the energy lost by the VLE.11

For a VLE inside the medium, the δ-function in eq. (4.12) can be equivalently rewrit-

ten as

δ

(
1− x− ωs − (Ei − εi)

pT0 − Ei

)
' δ

(
1− x− z +

(1− z)Ei − εi
pT0

)
, (4.14)

with z ≡ ωs/pT0 the splitting fraction of the VLE. We have used the fact that the energy

loss is relatively small, Ei � pT0. The effect of the in-medium energy loss is a small increase

of the splitting fraction, from its initial value in the vacuum, zvac = 1− x, to

z = 1− x+
(1− z)Ei − εi

pT0
' 1− x+

xεg − (1− x)εi
pT0

' 1− x+
εg
pT0

> zvac. (4.15)

In the second equality we have used Ei = εi + εg and z ' 1− x. For the third equality we

have used x ' 1 and εg ≥ εi, making clear that the dominant effect is the energy loss by

the soft gluon.12

10For θ < θc, the two partons lose energy coherently, so one can see the energy loss as coming only from

the LP [11–13, 33].
11In this case, tf � L so the VLE travels a length or order L through the medium.
12Interestingly, for a VLE outside the medium (cf. figure 1), we can set εg → 0 to get z = 1 − x − (1 −

x)εi/pT0 with 1− x� 1. The energy loss effect is therefore much smaller than for an in-medium VLE and

with an opposite sign.
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The fact that z > zvac ≡ 1− x means that the probability P (z) ∝ 1/z of its emission

is smaller, so there is an enhancement in the probability for the leading parton to survive

at large x. This effect is reinforced by the associated Sudakov factor: when ωs = zpT0 >

(1− x)pT0, there is a reduction in the phase-space for emissions by the leading parton and

therefore ∆VLE
i (ωs) > ∆VLE

i ((1− x)pT0).

The purple curve in figure 6-left shows a calculation of Rq(x|pT0) based on eq. (4.12)

together with Eq = εq + εg and with eq. (4.13) for the partonic energy loss. Compared to

the green curve in the same figure, which includes solely the effect of the vetoed region,

the purple curves indeed shows a larger enhancement near x = 1.

4.2.4 Energy redistribution via a hard MIE

A semi-hard MIE with energy ω � ωbr and which remains inside the jet can modify the

fragmentation function Dmed
i (x|pT0) near x = 1 in two ways. On one hand, it brings a

positive contribution via the term proportional to ∂Pi,med/∂ω in eq. (4.9). On the other

hand, the additional Sudakov factor ∆MIE
i (ω) induces an extra suppression. These two

effects are competing with each other. It turns out that the second effect is stronger,

resulting in a decrease of Dmed
i (x|pT0) near x = 1 as compared to the vacuum, and hence

a decrease of the medium/vacuum ratio Ri(x|pT0).

We can actually estimate these two contributions to eq. (4.9). To that aim, we can

neglect the effects of the energy loss at large angles.13 Using the δ-function to perform the

integral over ω we find

Dmed
i (x|pT0)

∣∣∣
MIE

= pT0

[
∂Pi,vac

∂ω
+
∂Pi,med

∂ω

]
∆VLE
i (ω) ∆MIE

i (ω)
∣∣∣
ω=(1−x)pT0

. (4.16)

We need to show that the “medium” Sudakov effect on the VLE (first term in the square

bracket) is larger in absolute value than the direct contribution from MIEs (second term

in the square bracket):

∂Pi,vac

∂ω

[
1−∆MIE

i (ω)
]
>
∂Pi,med

∂ω
∆MIE
i (ω) . (4.17)

At leading-order accuracy for the MIE, one can set ∆MIE
i ' 1 in the r.h.s. of the above

inequality, whereas in the l.h.s. one must also keep the linear term in its Taylor expansion:

1−∆MIE
i (ω) ' 2αsCi

π

√
2ωc
ω

. (4.18)

Using a fixed-order approximation for the vacuum emission probability (cf. eq. (4.10)), to-

gether with eq. (4.11) for the medium-induced, one finds after simple algebra that eq. (4.17)

is equivalent to
4αsCi
π

ln

(
(1− x)pT0R

k⊥,min

)
> 1 . (4.19)

This is satisfied both parametrically and numerically under our working assumptions that

collinear logarithms are large. For the parameters used in figure 6, namely pT0 = 200 GeV,

13Indeed, in this case, the intra-jet MIE is the dominant medium effect, whereas the energy loss at large

angles is a subdominant effect since Ei ∼ εi ∼ ωbr are much smaller than ω ' (1− x)pT0.
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R = 1, and k⊥,min = 0.25 GeV, and with x = 0.9 and αs = 0.3, one finds that the l.h.s. of

eq. (4.19) is about 5.3.

These considerations are confirmed by the explicit numerical integration of eq. (4.9).

The blue curve in figure 6(a) includes all the medium effects discussed in this section

(the vetoed region, the energy loss at large angles and the effects of semi-hard MIEs).

Comparing it to the purple curve which does not include the effects of semi-hard MIEs, we

see that the latter reduce the ratio Ri(x|pT0) near x = 1, as expected. This plot also shows

that the three medium effects appear to be of similar magnitude and to almost compensate

each other, leaving only a modest enhancement at x & 0.9. This pattern is in very good

agreement with what we see from our MC simulations, figure 6(b). Whereas the details

of this compensation depend on the specific parameters used in our calculation, we have

checked using our MC that such a competition between comparable but opposite effects is

a relatively robust prediction from our pQCD scenario.

One can view this conclusion as a little bit deceptive since it shows that the frag-

mentation function has a reduced sensitivity to nuclear effects associated with the internal

dynamics of the jets.

4.3 Bias introduced by the steeply falling jet spectrum

In section 3.3 we have argued (see also [2, 7]) that the strong enhancement of R(x) seen

at large x in the ATLAS Pb+Pb data [1] is a consequence of the bias introduced by the

steeply-falling jet spectrum, which favours jets which lose only little energy, notably hard-

fragmenting quark-initiated jets. In this section, we present a more detailed (numerical)

argument, based on simple 2-parton jets, which supports eq. (3.6) proposed in section 3.3

to quantify this effect.

Eq. (3.6) relies on the “fraction” fi(x|pT ) of hard-fragmenting jets with one constituent

having an energy of at least xpT . In practice, we define (cf. eq. (3.7))

fvac
q (pT ) =

dσq
dpT∑

i∈{q,g}

dσi
dpT

, fmed
q (x|pT ) =

dσq
dpT0

∣∣
pT+En=2

q∑
i∈{q,g}

dσi
dpT0

∣∣
pT+Ei(pT0)

, (4.20)

where dσi/dpT0 ∝ p−niT0 is the initial jet spectrum. nq = 5 and ng = 5.6 give a decent

description over the kinematic range covered in this paper. Ei(pT0) is the average energy

loss by a jet with initial transverse momentum pT0 and is numerically extracted from MC

simulations [10]. En=2
q is the energy lost by a simple two-parton jet (a leading quark of

energy fraction x ∼ 1 and a relatively soft gluon of energy fraction 1 − x). The dominant

contribution (cf. section 4.2.3) comes from events where the quark and gluon lose energy

independently of each other:14 En=2
q = εq(xpT0) + εg((1− x)pT0), with εg and εq given by

eq. (4.13).

By combining eq. (4.20) for the fractions of hard-fragmenting jets with our previous

calculations of the ratio Rq(x|pT ) for monochromatic jets, we can provide a semi-analytic

14Strictly speaking, the energy argument of εg and εq should be zpT0 and (1− z)pT0, respectively, with

z the gluon splitting fraction, cf. eq. (4.15), but to the accuracy of interest one can replace z ' 1 − x and

pT0 ' pT .
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estimate for the physical observable R(x|pT ) using eq. (3.6). This is shown by the red curve

in figure 6(a), that should be compared to the corresponding MC result in figure 6(b). The

two red curves are both in good agreement with each other and with the general trend

seen in the LHC data [1]. For x very close to 1 (mainly the last bin in our plots), the

pattern observed in our MC calculations is a combination of the bias induced by the jet

spectrum and of the medium effects on the internal jet dynamics Rq(x|pT ), with a strong

domination of the former. The current experimental uncertainties in this region of x are

too large to draw a stronger conclusion, notably concerning the relative importance of

the nuclear effects associated with Rq(x|pT ), i.e. with the medium modifications of jet

fragmentation itself.

5 Small-x enhancement: colour decoherence and medium-induced radi-

ation

We argued in section 3.4 that the nuclear enhancement of the fragmentation function at

small-x, x . 0.02, is driven by two main phenomena: (i) colour decoherence, which en-

larges the angular phase-space for emissions outside the medium, and (ii) medium-induced

radiation producing additional partonic sources for these outside-medium emissions. This

section provides analytic studies backing up this picture. For simplicity we mostly treat

VLEs at fixed coupling and in the double-logarithmic approximation (DLA). We then

present MC calculations which hold beyond DLA.

5.1 Analytic estimates

Our aim is to compute the double-differential gluon distribution in a jet of initial transverse

momentum (or energy) pT0, initial flavour i and radius R

Ti(ω, θ
2|pT0, R

2) = ωθ2 d2Ni

dωdθ2
. (5.1)

The fragmentation function can be obtained from Ti by integrating over all the angles in

the jet (with θmin = k⊥,min/ω)

ωDi(ω, θ
2|pT0, R

2) =

∫ R2

θ2
min

dθ2
1

θ2
1

Ti(ω, θ
2
1|pT0, R

2) (5.2)

Vacuum case. In pQCD, the leading contribution to the multiplicity of soft gluons in a

jet comes from double-logarithmic emissions in a fixed-coupling approximation [34], i.e. via

successive VLEs in our context [9]. In this limit, successive gluon emissions are strongly

ordered in both energy and emission angle and one finds

T vac
i (ω, θ2|pT0, R

2) =
αsCi
π

I0

(
2

√
ᾱs ln

pT0

ω
ln
R2

θ2

)
+ ωθ2δ(pT0 − ω)δ(R2 − θ2) (5.3)

where ᾱs = αsCA/π and I0(x) is the modified Bessel function of rank 0 which increases

exponentially for x � 1. The second term in the r.h.s. represents the leading parton and
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the first term is associated with subsequent gluon emissions. The vacuum fragmentation

function is then found to be

ωDvac
i (ω, θ2|pT0, R

2) = δ(pT0 − ω) +
Ci
CA

√√√√2ᾱs ln ωR
k⊥,min

ln pT0
ω

I1

(
2

√
2ᾱs ln

pT0

ω
ln

ωR

k⊥,min

)
.

(5.4)

VLEs in the medium. In the presence of the medium, the DLA calculation is modified

by two effects [9]: the presence of a vetoed phase-space for VLEs inside the medium (cf.

figure 1), and the colour decoherence allowing for the violation of angular ordering by the

first emission outside the medium. At DL accuracy, MIEs can be formally neglected and

their discussion is postponed to later in this section. It is helpful to split the medium

fragmentation function Tmed
i in two contributions (see [9]):

Tmed
i (ω, θ2|pT0, R

2) = Θin(ω, θ2)T vac
i + Θout(ω, θ

2)Ti,out (5.5)

where the step functions Θin/out enforces that an emission (ω, θ2) belongs to the “inside”

or “outside” region, in the sense of figure 1. The first term, Θin(ω, θ2)T vac
i , corresponding

to the in-medium contribution, is unmodified compared to the vacuum. The outside-

medium, Ti,out, contribution can be expressed as the product of a vacuum-like cascade

inside the medium, up to an intermediate point (ω1, θ
2
1), followed by a first emission outside

the medium at (ω2, θ
2
2) (possibly violating angular ordering), and by a standard vacuum

cascade from (ω2, θ
2
2) to the final point (ω, θ2):

Ti,out(ω, θ
2|pT0, R

2) = ᾱs

∫ pT0

ω

dω1

ω1

∫ R2

θ2
c

dθ2
1

θ2
1

Θin(ω1, θ
2
1)

∫ ω1

ω

dω2

ω2

×
∫ R2

θ2

dθ2
2

θ2
2

Θout(ω2, θ
2
2)T vac

i (ω1, θ
2
1|pT0, R

2)T vac
g (ω, θ2|ω2, θ

2
2) (5.6)

The integral over θ2
2 is not constrained by the angle θ2

1 of the previous emission due to

absence of angular ordering for the first emission outside the medium.

The two angular integrations in eq. (5.6) can be performed analytically (cf. eq. (5.4)).

In ref. [9], the remaining energy integrations were performed numerically. To gain more

physical intuition, we now develop an analytic approximation, which is valid when both the

energy and angular logarithms are larger than 1/
√
αs. We give here the main ingredients

of the calculation and defer details to appendix C.

In the limit of interest, the δ contribution to T vac (the second term in (5.3)) can

be neglected in both T vac factors in eq. (5.6), the Bessel functions can be approximated

by their (exponential) asymptotic behaviour and the integrations can be evaluated in the

saddle-point approximation.

For definiteness, let us consider parameters such that ωL(R) < k⊥,min/R, meaning that

the hadronisation line ωθ = k⊥,min and the medium boundary ωL(θ) = 2/(Lθ2) intersect at

ωmin = Lk2
⊥,min/2. In practice we are interested in the fragmentation function at energies ω
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within the range ωmin � ω � ωc. The saddle points for ω1 and ω2 integrals are respectively

found to be (see appendix C)

ω?1 =

√
pT0(2q̂)1/3

R4/3
=
√
pT0ω0(R) , ω?2 =

√
2ω

Lθ2
=
√
ωωL(θ) , (5.7)

with ω0(θ) ≡ (2q̂/θ4)1/3 such that ω0(R) is the lowest possible energy for a VLE inside

the medium.

Several conditions are needed for these saddle points to control the energy integrations.

First, the integration ranges must be wide enough, pT0 � ω0(R) and ωL(θ)� ω, to allow

for large enough logarithmic contributions. This translates into the following conditions:

√
ᾱs ln

pT0

ω0(R)
& 1 and

√
ᾱs ln

ωL(θ)

ω
& 1 . (5.8)

Second, for ω?1 to be a genuine saddle point, it must remain smaller than ωc, meaning

pT0 < ωc

(
R

θc

)4/3

=
q̂5/3L4R4/3

27/3
. (5.9)

When this condition is satisfied15 (which is always the case for us in practice), the integral

over ω1 is dominated by relatively low-energy emissions with ω0(θ) < ω1 < ωc, i.e. by the

triangular region of the “inside medium” phase-space with energies below ωc, see figure 1.

Third, energy conservation in eq. (5.6) requires ω?2 ≤ ω?1 which implies a θ-dependent

upper limit on ω. When computing the fragmentation function using eq. (5.2), this condi-

tion must be satisfied for all the angles θ that are integrated over, including lower bound

θmin = k⊥,min/ω. This defines a critical energy ωcr, obtained for θ = θmin, below which the

saddle point method works:

ω < ωcr =
(
pT0ω0(R)ωmin

)1/3
=

(
pT0Lk

2
⊥,min(2q̂)1/3

2R4/3

)1/3

=

(
pT0k

2
⊥,min

R2

)1/3(
R

θc

)2/9

.

(5.10)

When the conditions in eqs. (5.8)–(5.10) are satisfied, the saddle point method gives a

meaningful approximation for the double differential gluon distribution in eq. (5.6), which

reads (see appendix C)

Ti,out(ω, θ
2|pT0, R

2) ' αsCi
4π

exp

{√
3ᾱs
2

ln
pT0

ω0(R)

}
exp

{√
ᾱs ln

ωL(θ)

ω

}
(5.11)

The first exponential comes from the integrations over θ2
1 and ω1, i.e. over the “inside”

region, and can be interpreted as the number of partonic sources generated via VLEs. The

second exponential represents the number of gluons generated by each of these sources

via gluon cascades developing outside the medium. This simple factorisation between the

15In the opposite situation, which would occur for sufficiently large pT0, the dominating region in phase-

space is the rectangular region at ωc ≤ ω1 ≤ pT0 and θc < θ1 < R; see appendix C for details.
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Figure 7. Comparison of the exact calculation of fragmentation functions (solid lines) and the

asymptotic approximations (dashed lines).

“inside” and the “outside” jet dynamics holds strictly speaking only in the saddle point

approximation (and for energies ω ≤ ωcr) and is ultimately a consequence of the colour

decoherence which washes out any correlation between the emission angles outside and

inside the medium.

Integrating eq. (5.5) over θ using eq. (5.2) we find the fragmentation function for

ω ≤ ωcr:
16

ωDmed
i (ω) '

√
ᾱsCi

4CA
exp

{
√
ᾱs

(√
3

2
ln
pT0R

4/3

(2q̂)1/3
+ ln

2ω

k2
⊥,minL

)}
. (5.12)

The integration is dominated by the lower limit, θ = k⊥,min/ω. Since 2ω/k2
⊥,minL =

ω/ωmin � 1, the second logarithm in (5.12) is positive and ωDmed
i (ω) decreases when

decreasing ω.

Our predictions are shown in figure 7 for the fragmentation function in figure 7(a)

and the nuclear modification factor Ri(x|pT0) in figure 7(b). These plots compare the

exact results at DLA based on eq. (5.3) and (the numerical integration of) eq. (5.6) for the

vacuum and medium results respectively, to their asymptotic counterparts. The latter are

obtained by taking the asymptotic behaviour of (5.3) in the vacuum case and by using the

saddle-point approximation eq. (5.12) for the medium results. In figure 7(b) we consider two

different values for the IR cutoff k⊥,min (blue: k⊥,min = 200 MeV, red: k⊥,min = 100 MeV).

Overall we see a good agreement, which is moreover improving when k⊥,min decreases, i.e.

when the phase-space increases and the saddle point method becomes more reliable.

The fact that the ratio Ri(x|pT0) increases at small ω can be traced back to angular

ordering and the associated humpback plateau [34]. Unlike the double-differential gluon

distribution (5.3) which keeps increasing when decreasing ω at fixed θ, the vacuum fragmen-

tation function ωDvac
i (ω) in eq. (5.4) develops a maximum at ω ' ωhump = (Ek⊥,min/R)1/2

16The respective contribution of the first term ∝ T vac
i in eq. (5.5), that would be non-zero only for

ω > ω0(R), is comparatively small, since it lacks the evolution outside the medium.
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and decreases very fast for ω below ωhump. This is due to the fact that the angular

phase-space at k⊥,min/ω < θ < R permitted by angular ordering shrinks to zero when

decreasing ω. For sufficiently small ω, namely such that17 ω3 . pT0k
2
⊥,min/R

2, the denomi-

nator ωDvac
i (ω) in the medium/vacuum ratio Ri(x|pT0) decreases faster with 1/ω than the

respective numerator ωDmed
i (ω) (see also figure 7(a)), so the ratio is increasing.

5.2 Beyond DLA: Monte-Carlo results

In this section we want to extend the DLA arguments from the previous section to include

all the ingredients in our physical picture of jet quenching. Our ultimate goal is to provide

a deeper understand of the MC results presented in section 3.

For this purpose, it is convenient to think in terms of the factorised picture emerging

from our DLA calculation which allows us to write (for ω ≤ ωcr, cf. eq. (5.10))

ωDmed(ω) ' Nin ×
(
ω

dNout

dω

)
(5.13)

where Nin is the multiplicity of partonic sources produced by the jet evolution inside the

medium and ωdNout/dω is the fragmentation function generated outside the medium by

any of these sources. This picture is a consequence of colour decoherence which allows the

first out-of-medium emission to be emitted at any angle. This factorisation is not expected

to hold beyond DLA, but can still be used for qualitative considerations.

Beyond DLA, several competing expects should be considered. (i) VLEs are emitted

with the full (DGLAP) splitting functions (including energy conservation) and with a

running coupling. These effects are expected to reduce both factors in eq. (5.13). (ii)

Adding the intra-jet MIEs enhances the multiplicity Nin of the partonic sources. (iii)

Direct contributions of the MIEs to the fragmentation function Dmed(ω) are also possible,

but are expected to be a small effect for the jet kinematics (pT0 ∼ 200 GeV, x ≤ 0.02) and

medium parameters (see table. 1) considered in this paper. Indeed, the relevant energies

ω . 2 GeV are softer than the medium scale ωbr ∼ 4 GeV for multiple branching meaning

that these MIEs would be deviated outside the jet.

To test these expectations under realistic conditions, we perform MC simulations for

inclusive jets (using the full Born-level hard spectrum) with 200 ≤ pT ≤ 251 GeV and

|y| ≤ 2.1, and with three different scenarios: (a) the partons from the hard scattering are

showered via VLEs only; (b) the partons from the hard scattering are showered via both

VLEs and MIEs, but angular ordering is enforced all along the shower, including for the

first emission outside the medium (labelled “no decoherence”); (c) the physical case where

the partons from the hard scattering are showered via both VLEs and MIEs and the angle

of the first emission outside the medium is unconstrained.

The MC results for R(x) are shown in figure 8(a) for each of these three setups. The

black curves correspond to setup (a) for two 2 different IR cutoffs (solid: k⊥,min = 200 MeV,

dashed: k⊥,min = 150 MeV). compared to the DLA results in figure 7(b) the medium

enhancement is strongly reduced and can even be replaced by a suppression for larger

values of k⊥,min.

17The upper limit pT0k
2
⊥,min/R

2 is smaller than ω3
cr guaranteeing the validity of the saddle-point method.
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Figure 8. Nuclear effects on the fragmentation function at small x. Left figure: 3 different physical

scenarios,

Switching on MIEs leads to a robust nuclear enhancement as visible from the blue

curve which corresponds to setup (b) with k⊥,min = 200 MeV. This enhancement is even

more pronounced for setup (c) corresponding to the red curves in figure 8(a). This new

enhancement is easily associated with the fact that the first “outside” emission can be

sourced by any “inside” emissions while in setup (b) it can only be sourced by “inside”

emissions at larger angles.18 Incidentally, the comparison between the blue and the red

curves also shows that the decoherence has no sizeable effects at x ∼ 1.

For a more detailed understanding, we compare in figure 8(b) the results for R(x) with

the ratio Ri(x|pT0) corresponding to monochromatic jets with pT0 = 200 GeV, for both

quark-initiated (i = q, magenta, dashed-dotted curve) and gluon-initiated (i = g, green,

dashed, curve) jets. The small-x enhancement appears to be stronger in the case where

the LP is a quark, rather than a gluon. Although this might look surprising at first sight,

one should recall that the dominant Ci-dependence for monochromatic jets cancels out in

the medium/vacuum ratio Ri(x|pT0). The differences between the quark and gluon curves

visible in figure 8(b) is attributed to more subtle sub-leading effects. For example, a gluon

jet loses more energy than a quark jet via MIEs at large angles and hence has a (slightly)

smaller energy phase-space for radiating outside the medium (and inside the jet).

6 Jet fragmentation into subjets

The fragmentation function defined by eq. (3.3) is not an infrared-and-collinear (IRC) safe

observable. It is sensitive to the details of hadronisation which is not included in our

18For setup (b) the factorisation (5.13) is obviously violated as “inside sources” and “outside emissions”

are correlated by angular ordering.
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present approach. This translates in the strong dependence, observed in figure 2(a), on the

cut-off scale k⊥,min which regulates the infrared behaviour of our partonic cascade. This

strong dependence on k⊥,min is also present in the analytic calculations of sections 4 and 5.

To circumvent this theoretical problem, we propose in this section a different observable

which uses subjets instead of individual hadrons to characterise the jet fragmentation. This

observable is IRC-safe by construction and is therefore expected to be less sensitive to non-

perturbative effects in general and to our k⊥,min cut-off in particular. There are several ways

to define a jet fragmentation function in terms of subjets, e.g. using different jet algorithms

or keeping different branches of the clustering tree. The definition we propose below relies

on the Cambridge/Aachen algorithm [35, 36]. While other approaches, like those based on

the kt algorithm [37], show a similar behaviour, using the Cambridge/Aachen algorithm

appears to be slightly more sensitive to medium effects and easier to study analytically.

6.1 Definition and leading-order estimate in the vacuum

The fragmentation function Dsub(z) for jet fragmentation into subjets is defined as follows.

For a given jet with transverse momentum pT,jet, we iteratively decluster the jet using

the Cambridge/Aachen algorithm following the hardest branch (in pT ). At each step, this

produces two subjets p1 and p2, with pT1 > pT2. When the relative transverse momentum

of the splitting, k⊥ = pT2

√
∆y2

12 + ∆φ2
12, is larger than a (semi-hard) cut-off k⊥,cut, we

compute and record the splitting fraction z = pT2
pT1+pT2

of the splitting (0 < z < 1/2). The

procedure is iterated with the harder branch p1 until it can no longer be de-clustered. The

fragmentation function into subjets is then defined as the density of subjets passing the

k⊥ > k⊥,cut criterion normalised by the total number of jets:19

Dsub(z) ≡ 1

Njets

dNsub

dz
(6.1)

The cut-off scale k⊥,cut regulates the infrared behaviour, guaranteeing that Dsub(z)

be an IRC-safe observable. As long as k⊥,cut � k⊥,min ∼ ΛQCD we therefore expect small

non-perturbative effects and a small dependence on the (non-physical) k⊥,min parameter.

Note that the definition is similar to measuring the Iterated Soft Drop multiplicity [38]

differentially in z. It is also directly similar to the primary Lund-plane density [39], ρ(θ, k⊥),

integrated over all angles θ satisfying the k⊥,cut condition at fixed x = k⊥/(θpT,jet).

In the soft-and-collinear approximation, corresponding to the double-logarithmic ac-

curacy for Dsub(z), the vacuum distribution is simply

Dvac
sub(z) '

[∫ R

0

dθ

θ

2αs(zθpT,jet)

πz
Θ(zθpT,jet − k⊥,cut)

]
×
∑
i=q,g

Ci f
vac
i (pT,jet),

f.c.' 2αs
πz

log

(
zRpT,jet

k⊥,cut

)
×
∑
i=q,g

Ci f
vac
i (pT,jet), (6.2)

19We use the notation z for the splitting fraction to emphasise that it is defined w.r.t. the parent subjet,

in contrast with the longitudinal momentum fraction x used in the previous sections which is defined as a

fraction of the total jet momentum pT,jet.
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Figure 9. Monte Carlo results for the nuclear modification factor Rsub(z) for the fragmentation

function into subjets, for jets with pT,jet > 200 GeV (left) and pT,jet > 500 GeV (right) and for

2 values of the lower momentum cut-off k⊥,cut (2 and 5 GeV). The bands show the variability of

our results w.r.t. changes in the “unphysical” parameters around their central values θmax = 1 and

k⊥,min = 250 MeV.
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Figure 10. Monte Carlo results for the nuclear modification factor Rsub(z) for the values of the

medium parameters that reproduce the ATLAS RAA ratio (cf. figure 2(b)), for the same two ranges

in pT,jet as in figure 9 and for k⊥,cut = 2 GeV. The unphysical parameters are fixed to θmax = 1 and

k⊥,min = 250 MeV.

where fvac
q(g)(pT,jet) is the Born-level cross-section for quark (gluon) production with trans-

verse momentum pT,jet normalised to the total number of jets, as defined in eq. (4.20). The

second line in the above equation gives the result for a fixed-coupling approximation.

6.2 Nuclear modification for Dsub(z): Monte-Carlo results

In this section, we provide Monte Carlo results for the nuclear modification factor for the

fragmentation function into subjets, defined as Rsub(z) ≡ Dmed
sub /Dvac

sub.

As for the study of the jet fragmentation function D(x), we first study the dependence

of the the fragmentation function into subjets, Dsub(z), on the non-physical parameters
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θmax and k⊥,min of our Monte Carlo. This is shown in figure 9 for two different jet pT
cuts (200 and 500 GeV) and two different lower cut-offs k⊥,cut (2 and 5 GeV). The medium

parameters are taken as their default values (cf. table 1) and the non-physical parameters

are varied as for figure 2(a). As expected, the uncertainty bands in figure 9 are much

smaller than what was observed in figure 2(a), confirming that the (IRC-safe) fragmentation

function into subjets Dsub(z) is under much better perturbative control than (the IRC-

unsafe) D(x).

That said, we must keep in mind that taking k⊥,cut large-enough to guarantee

k⊥,cut � k⊥,min ∼ ΛQCD also cuts some of the medium effects occurring below this cut.

E.g., it removes the direct contributions to Dsub(z) coming from MIEs with transverse

momenta k⊥ . k⊥,cut. One should therefore choose the free parameter k⊥,cut such as to si-

multaneously minimise the effects of hadronisation and highlight the interesting medium ef-

fects.

In figure 10, we show the subjet fragmentation function for the values of the medium

parameters that reproduce the ATLAS RAA ratio (cf. figure 2(b)), for the same two values

of pT,jet as in figure 9 and for k⊥,cut = 2 GeV. Compared to figure 2(b), we notice that

the curves are less degenerate at small and intermediate values of z. Most importantly,

the dependence on the medium parameters is larger than the uncertainty bands related to

non-physical parameters shown in figure 9.

6.3 Analytic studies of the nuclear effects

In this section, we would like to disentangle, based on physics considerations and simple

analytic calculations, the various nuclear effects contributing to the behaviour observed

in the MC results in figure 10. To understand how eq. (6.2) is affected by the medium,

it is sufficient to consider jets made of a single splitting (i.e. two subjets) with k⊥ ≥
k⊥,cut. For definiteness, all the numerical results shown in this subsection correspond to

k⊥,cut = 2 GeV.

Vetoed region. When only VLEs are taken into account, the leading medium effect

is the vetoed region. Its effect is straightforwardly included in eq. (6.2) by inserting the

step-function Θ/∈veto defined in eq. (4.6) within the integrand. The largest k⊥ in the vetoed

region is Qs ≡ (2q̂ωc)
1/4 = (q̂L)1/2 which is about 2.4 GeV for our default choice of medium

parameters. The vetoed region has thus no effect for k⊥,cut = 5 GeV and only a small effect

for k⊥,cut = 2 GeV (see figure 1 for an illustration).

This is confirmed both by our analytic calculations, based on eq. (6.2) with the ad-

ditional constraint Θ/∈veto, and by MC simulations with only VLEs shown as the black

curves in figure 11. Of course, one could enhance the effect of the vetoed region by de-

creasing the value of k⊥,cut, but this would also amplify the sensitivity of Dsub(z) to the

non-perturbative, soft, emissions.

Incidentally, the previous discussion also shows that, for the ranges of k⊥,cut considered

here, the VLEs which control Dsub(z) do either occur in the “inside” region of the phase-

space in figure 1, or at very small angles θ . θc in the “outside” region. They are therefore

not significantly affected by colour decoherence. To check that, we have performed MC
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Figure 11. Disentangling nuclear effects on the subjet fragmentation function. Left: analytic

approximations illustrating the effects of the vetoed region, the energy loss at large angles, and the

intra-jet MIEs. Right: MC calculations which illustrate the importance of MIEs and the lack of

sensitivity to violations of angular ordering.

calculations with and without the effects of decoherence (i.e. by enforcing or not angular

ordering for the first outside emission). The results, shown by the red and blue curves in

figure 11(b), respectively, are indeed very close to each other.

Energy loss at large angles. From the discussion in section 4, we already know that

the energy loss by a (sub)jet via MIEs at large angles θ & R may have two main effects

on a substructure observable such as Dsub(z): (i) a shift between the measured value z

of the splitting fraction and the respective value at the time of splitting, and (ii) a bias

introduced by the steeply falling initial spectrum which favours jets losing less energy than

average jets, with the second effect being larger than the first one. The same two effects are

still at play for Dsub(z). As in the case of the standard fragmentation function discussed in

section 4, we expect the effects of the energy loss to be more important for relatively large

values z & 0.1 of the splitting fraction. However, their effects on Rsub(z) is opposite to

those on R(x): unlike the hard-fragmenting jets, which lose less energy than the average

jets (leading to an enhancement in R(x) at x & 0.5), the jets selected by Dsub(z) lose more

energy than the average jets, so we expect a nuclear suppression, Rsub(z) < 1, at sufficiently

large z. The main reason for this larger energy loss is the following: the jets included in

Dsub(z) involve at least two (relatively hard) subjets with z & 0.1 and k⊥ > k⊥,cut. For

the typical values of z and k⊥, the angle θ ' k⊥/pT2 between these two subjets is larger

than the critical angle θc characterising the angular resolution of the plasma (θc . 0.06,

see table 1). Accordingly the two subjets lose energy independently from each other and

the whole jet loses more energy than a typical jet from the inclusive sample Njets [10, 33]

which also includes single-prong jets, as well as two-prong configurations with θ < θc.

This discussion is in qualitative agreement with the MC results in figure 11(b), except

at very small z where new effects discussed below contribute. For a more quantitative
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argument, we notice that, if one neglects the shift in the value of z, then the energy loss

at large angles affects only the quark- and gluon-jet “fractions” fmed
i in eq. (6.2). These

should be computed following eq. (4.20), with different energy losses in the numerator and

respectively the denominator. In the numerator, En=2
i is the energy loss of jets having two

subjets with transverse momentum balance z and angle θ (pT ≡ pT,jet)

En=2
i (z, θ) = Ei((1− z)pT , R) + Eg(zpT , R) if (z, θ) ∈ inside region, (6.3)

whereas in the denominator, Ei = Ei(pT , R). Using the energy loss as a function of pT and

R extracted from the MC simulations in ref. [10] in eqs. (4.20) and eq. (6.2), one obtains the

dashed, green, curve in figure 11(a). This indeed shows a nuclear suppression, Rsub(z) < 1.

The suppression is more pronounced at large z, as anticipated, since the discrepancy (in

terms of energy loss) between the special jets selected by Dmed
sub (z) and the average jets

increases with z.

Intra-jet MIEs. A relatively hard subjet with k⊥ > k⊥,cut may also be created by a

semi-hard MIE, with energy ω & ωbr, which remains inside the jet. To leading order, the

respective contributions from VLEs and MIEs can be simply added together, as in eq. (4.9).

Compared to the latter, the calculation of Dmed
sub (z) must also keep the information about

the emission angle, in order to ensure the condition k⊥ > k⊥,cut. We therefore write

Dmed
sub (z) =

[∫ R

0
dθ

(
2αs(k⊥)

πzθ
Θ/∈veto +

√
2ωc
pT,jet

αs,med

πz3/2
PB(z, θ)

)
Θ(k⊥ − k⊥,cut)

]
×
∑
i=q,g

Cif
med
i (6.4)

where k⊥ = zθpT,jet and PB(z, θ) = 2θω2Γ(0, ω2θ2/Q2
s)/Q

2
s, with ω ' zpT,jet and Q2

s =

q̂L, is the angular distribution due to transverse momentum broadening after emission,

averaged over all the emission times between 0 and L [10, 40]. In writing eq. (6.4), we have

assumed for simplicity that the energy loss at large angles is given by eq. (6.3) for both

the vacuum-like and medium-induced emissions that generates the subjets. This rough

approximation could be relaxed in practice, but is sufficient for our illustrative purposes.

The distribution PB(z, θ) for MIEs is rather strongly peaked near k⊥ ∼ Qs [10] so its

corresponding contribution to eq. (6.4) is expected to be important only when k⊥,cut . Qs,

in which case it should be rapidly increasing at small z. This is in agreement with the MC

results in figures 9 and 10, which show an enhancement at small z for k⊥,cut = 2 GeV and

no visible enhancement for k⊥,cut = 5 GeV. (Note that Q2
s vary between 4.5 and 8 GeV2

for the different curves shown in these figures.)

Eq. (6.4) includes all the medium effects discussed in this section. The red curve in

figure 11(a) shows the result of numerically evaluating the integral in eq. (6.4). The new

enhancement at small z compared to the dashed, green, curve is due to the intra-jet MIEs.

The overall behaviour agrees well with the full MC results shown in figure 11(b) as well as

with figures 9 and 10.
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7 Conclusions

In this paper, we have studied the fragmentation of a jet propagating through a dense

quark-gluon plasma, using a recently-developed pQCD framework in which the vacuum-

like and the medium-induced branchings in the parton shower are factorised in time. We

have presented both numerical simulations, using a Monte Carlo implementation of our

framework, and semi-analytic calculations.

Our main conclusion is that this approach provides a good, qualitative and even semi-

quantitative, description for the main nuclear effects observed in the relevant data at the

LHC: an enhancement in the jet fragmentation function at both small (x � 1) and large

(x & 0.5) values for the parton longitudinal momentum fraction x = pT /pT,jet. This good

agreement is obtained for values of the physical parameters that characterise the medium

(q̂, L and αs,med) which were shown in a previous study to agree with the jet measured

nuclear modification factor RAA. Since the fragmentation function is not an infrared-

and-collinear-safe quantity in pQCD, our calculations show a strong dependence on the

kinematic cutoff k⊥,min which can be viewed as playing the role of a confinement scale in

our (parton-level) framework. Yet, insofar as k⊥,min is varied within reasonable limits, our

result remain in qualitative agreement with the LHC measurements.

The physical interpretation of our results is greatly facilitated by our analytic studies,

that we have separately developed using approximations valid either at large x or at small

x. These studies have revealed that the nuclear effects visible in the medium/vacuum

ratio for the fragmentation function generally involve an interplay between several micro-

scopic phenomena. These phenomena can either change the fragmentation pattern of a

“monochromatic” jet (i.e. a jet initiated by a leading parton of a given flavour and energy),

or modify the proportion of “monochromatic” jets which contribute to the fragmentation

function at a given value of x (within the spectrum of jets produced via hard scattering).

Specifically we have found that the partons contributing to the in-medium fragmenta-

tion function at small-x are predominantly produced via VLEs and that their excess w.r.t.

the vacuum is the combined result of two mechanisms amplifying each other: the enhanced

angular phase-space available to the first emission outside the medium (which, due to the

colour decoherence of its emitters, is not constrained by angular ordering) and the addi-

tional sources for soft VLEs coming from relatively hard, intra-jet, MIEs. At small-x, the

bias introduced by the initial production spectrum, although numerically important, does

not alter the overall qualitative behaviour.

The situation at large x, x & 0.5, is radically different. We have found that the medium

effects on the fragmentation function of monochromatic jets, although separately sizeable

and physically interesting, act in opposite directions leaving only a small effect on the final

result. Their net effect is too small to be distinguished from the significantly larger nuclear

enhancement generated by the bias introduced by the initial hard spectrum. This bias

favours hard-fragmenting jets initiated by a quark because they lose less energy towards

the medium than the average jets. One may be able to avoid, or at least reduce, this

bias by looking at rare γ-jet, or Z-jet events (where the energy of the vector boson offers

an estimate for the initial energy of the jet) [41, 42], or by using the “quantile” strategy
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proposed in [43] in the analysis of the nuclear effects on single jets. It would be interesting

to check whether such methods could give us a more direct, experimental, access to the

genuine modifications in the jet fragmentation function near x = 1.

Given the difficulty to make accurate theoretical predictions for a quantity like the

jet fragmentation function, which is sensitive to the non-perturbative physics of the con-

finement, we proposed alternative observables, infrared-and-collinear-safe by construction,

which can still be used for studies of the in-medium jet fragmentation. Roughly speak-

ing, these are quantities which characterise the jet fragmentation into subjets where the

“subjets” are sufficiently hard to be well within the reach of perturbation theory. We

studied one specific example in which the subjets are generated via primary emissions by

the leading parton, with a relative transverse momentum larger than a (semi)hard cutoff

k⊥,cut. We have shown that by judiciously choosing the value of this cutoff, within the

range k⊥,min � k⊥,cut < Qs, with Q2
s = q̂L, one can minimise the sensitivity of the results

to the infrared cutoff k⊥,min, while still keeping some salient medium effects. It would

be interesting to measure this observable at the LHC and compare with our respective

predictions in figures 9 and 10.

Whereas the use of infrared-and-collinear-safe observables should strongly reduce the

sensitivity of our calculations to the non-perturbative physics of hadronisation, it would

be interesting to supplement our framework with a model for hadronisation (both in the

vacuum and in the medium) and see how this affects our description of the fragmentation

function and its uncertainties.

Finally, the description of the medium in our framework needs to be improved and this

is our priority for the future. Notably, we should allow for the longitudinal expansion of the

quark-gluon plasma and hence for time-dependent medium parameters. We are currently

working on that and our conclusions should hopefully be available in the near future. We

are also aiming at an improved theoretical description of the elastic collisions in the plasma

and of their consequences in terms of momentum broadening, medium-induced radiation,

energy loss and colour decoherence. This should also allow us to include the response of

the medium to the jet propagation and thus have a better control on the small-x region of

the in-medium fragmentation function and on other observables, like the jet shape and the

jet radius (R) dependence of the nuclear modification factor RAA [44–46].

Acknowledgments

The work of P.C., E.I. and G.S. is supported in part by the Agence Nationale de la

Recherche project ANR-16-CE31-0019-01. The work of A.H.M. is supported in part by

the U.S. Department of Energy Grant # DE-FG02-92ER40699.

A Expressions with running coupling

Several results in this paper have been given in the fixed-coupling approximation. For

completeness, we give in this appendix the corresponding results including running coupling

effects. These are obtained by evaluating the strong coupling constant at the scale of the
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transverse momentum k⊥ of each emission with respect to its emitter:

αs(k⊥) =
αs

1 + 2αsβ0 ln k⊥
pTR

, (A.1)

with αs ≡ αs(pTR) and β0 =
11CA−2nf

12π .

Defining u ≡ αsL and v ≡ αsL0 with L = ln 1
1−x and L0 = ln pT0R

k⊥,min
(v > u), the

expressions for the NLL Sudakov exponents in the vacuum, eqs. 4.4 and 4.5, become

g1,i(u, v) =
Ci
πβ0

[
1− ln

(
1− 2β0u

1− 2β0v

)
+

ln(1− 2β0u)

2β0u

]
, (A.2)

g2,i(u, v) = γE
∂ug1,i

∂u
− ln

[
Γ
(
1− ∂ug1,i

∂u

)]
+
CiBi
πβ0

ln(1− 2β0v) , (A.3)

The details of the calculation of these functions in the vacuum are given in appendix B.

For the effects of the veto region, the expression corresponding to eq. (4.7) and includ-

ing running-coupling effects is found to be

Lgveto
1,i (u, v) = Lg1,i(u, v) +

2Ci
π
Aveto(L) (A.4)

where the logarithmic area of the veto region Aveto(L) is defined as:

Aveto(L) =

∫ 1

e−L

dz

z

∫ R

0

dθ

θ
αs(zpT0θ)(1−Θveto) (A.5)

and Θveto is given by (4.6). Introducing the following function:

T (x, y, z) ≡ y + zx

z
ln(1 + αsβ0(y + zx)) , (A.6)

the logarithmic area Aveto(L) reads:

Aveto(L)
1−x<zL=

1

2β0

[
T
(

ln z0, 0, 2
)
− T

(
ln zL, 0, 2

)
+ T

(
ln zc,

3
2 ln z0,

1
2

)
− T

(
ln z0,

3
2 ln z0,

1
2

)
− T

(
ln z0, ln zL, 1

)
+ T

(
ln zL, ln zL, 1

)
− T

(
ln zc, ln zL, 1

)
+ T

(
ln z0, ln zL, 1

)]
zL<1−x<z0=

1

2β0

[
T
(

ln z0, 0, 2
)
− T

(
−L, 0, 2

)
+ T

(
ln zc,

3
2 ln z0,

1
2

)
− T

(
ln z0,

3
2 ln z0,

1
2

)
− T

(
ln z0, ln zL, 1

)
+ T

(
−L, ln zL, 1

)
− T

(
ln zc, ln zL, 1

)
+ T

(
ln z0, ln zL, 1

)]
z0<1−x<zc=

1

2β0

[
T
(

ln zc,
3
2 ln z0,

1
2

)
− T

(
−L, 3

2 ln z0,
1
2

)
− T

(
ln zc, ln zL, 1

)
+ T

(
−L, ln zL, 1

))]
with z0 ≡ ω0(R)/pT0 = (2q̂/(p3

T0R
4))1/3, zL ≡ ωL(R)/pT0 = 2/(LpT0R

2) and zc ≡ ωc/pT0.
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B Large x jet fragmentation to NLL accuracy

Eq. (4.5) can be deduced from the coherent branching algorithm (also known as MLLA

evolution equation [34]) which resums to all orders leading and next-to-leading logarithms

of the form −αs ln(1 − x). Since the fragmentation function is not IRC safe, we intro-

duce a lower transverse momentum cut-off k⊥,min for any resolvable splitting. The final

result strongly depends on k⊥,min so we need to keep track of any k⊥,min dependence in

the calculation.

To NLL accuracy, one can neglect the quark/gluon mixing terms. We discuss this

approximation at the end of this appendix. We focus on quark-initiated jets and the gen-

eralisation to gluon-jets is straightforward. The MLLA equation for the quark cumulative

fragmentation function reduces to

Q
∂Σq(x,Q)

∂Q
=

∫ 1

0
dz Kq

q (z, k⊥)

[
Σq

(
x

z
, zQ

)
− Σq(x,Q)

]
(B.1)

where the evolution variable is Q = pT0θ to account for the ordering in the angle θ of

successive emissions and the kernel is

Kq
q (z, k⊥) =

αs(k⊥)

π
Pqq(z)Θ(k⊥ − k⊥,min), Pqq = CF

1 + z2

1− z
. (B.2)

The initial condition for (B.1) is Σq(x, k⊥ = k⊥,min) = Θ(1 − x). At NLL accuracy,

k⊥ = z(1− z)Q ' (1− z)Q and Σq(
x
z , zQ) ' Σq(

x
z , Q) since the dominant contribution for

x ' 1 comes from z ' 1.

The standard way to solve eq. (B.1) is to go to Mellin space Σq(x,Q)→ Σ̃q(j,Q) where

the integral in the r.h.s. becomes a product. In Mellin space, x close to 1 corresponds to

j →∞, more precisely, ln(j) ∼ − ln(1− x), so we keep all terms of the form αns ln(j)n ∼ 1

in the exact solution. Anticipating our resummed result, we note λj = αs ln(j) and λ0 =

αs ln(pT0R/k⊥,min) = αsL0,

ln(jΣ̃q(j, pT0R)) =

∫ pT0R

Q0

dQ′

Q′

∫ 1

0
dz (zj − 1)Kq

q (z,Q′) (B.3)

=
CF
πβ0

[
ln(j)

(
1− ln

(
1− 2β0λj
1− 2β0λ0

)
+

ln(1− 2β0λj)

2β0λj

)
− γE ln

(
1− 2β0λj
1− 2β0λ0

)
+Bq ln(1− 2β0λ0)

]
+O(αsλ

n
j , αsλ

n
0 ), (B.4)

where we used the standard trick zj − 1 ' −Θ(e−γE/j− z) valid at NLL accuracy [47] and

we kept only the singular and finite part Bq = −3/4 of the quark splitting function when

z ' 1. Eq. (B.4) resums to all orders leading and next-to-leading logarithms of the form

λj , λ0. More explicitly,

ln(jΣ̃NLL
q (j, pT0R)) = ln(j)g1(λj , λ0) + f2(λj , λ0) (B.5)

g1(u, v) =
CF
πβ0

[
1− ln

(
1− 2β0u

1− 2β0v

)
+

ln(1− 2β0u)

2β0u

]
(B.6)

f2,q(u, v) =
CF
πβ0

[
− γE ln

(
1− 2β0u

1− 2β0v

)
+Bq ln(1− 2β0v)

]
(B.7)
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The final step is to calculate the inverse Mellin transform of (B.4).

Σq(x) =
1

2πi

∫
C

dj

j
e−j ln(x)

(
jΣ̃q(j)

)
=

1

2πi

∫
C

du eu−ln(u)+Gq [ln(u)−ln(− ln(x))] (B.8)

where C is a contour parallel to the imaginary axis and Gq[ln(j)] ≡ ln(jΣ̃q(j)). For this,

we Taylor-expand the function Gq around L = − ln(− ln(x)) ' − ln(1− x).

Gq[L+ ln(u)] = Gq[L] + ln(u)G′q[L] +
∞∑
k=2

ln(u)k
G

(k)
q [L]

k!
(B.9)

For k ≥ 2, G
(k)
q [L] is certainly beyond NLL accuracy because the derivatives of αsβ0L with

respect to L bring always at least one extra αs factor. Thus, we truncate the expansion

up to the first derivative. Moreover, the derivative of f2,q(αsL,αsL0) with respect to L is

also subleading. Finally, using

1

2πi

∫
C

du eu+x ln(u) =
1

Γ(−x)
(B.10)

one gets the following result for the cumulative distribution:

ΣNLL
q (x, pT0R) =

eGq [L]

Γ(1−G′q[L])
=

exp
(
Lg1(αsL,αsL0) + f2,q(αsL,αsL0)

)
Γ
(

1− ∂ug1(u,αsL0)
∂u |u=αsL

) (B.11)

which is exactly (4.2), (4.4) and (4.5).

Sub-leading j contributions and quark/gluon mixing terms. Besides N2LL con-

tributions, we have neglected terms of order O(αns lnn(j)/j) in formulas (B.1) and (B.4).

Among such terms, those associated with quark/gluon mixings give sizeable numerical cor-

rections to the NLL results, especially in the gluon-jet case. The main reason for this is

that, even though the (power-suppressed) probability for a gluon to split in a qq̄ pair where

the quark carries most of the momentum (x ∼ 1) is much smaller than the probability to

find a hard gluon, once such a splitting occurs, the Sudakov appearing in (B.11) becomes

that of a quark, i.e. has a much smaller suppression because of the colour factor CF < CA
appearing in the exponential. In the inclusive fragmentation function, this becomes an

increasingly likely situation [48].

Including all terms of order O(αns lnn(j)/j) is beyond the scope of this simple analysis

of the large x behaviour of the fragmentation function. Instead, one can correct eq. (B.11)

for gluon jets with an additional piece Σg,mix(x, pT0R) describing the splitting of the gluon

in a qq̄ pair, with either the quark or the antiquark carrying a large fraction x of the

initial energy:

Σg,mix(x, pT0R) =

∫ 1−x

0
dξ P qg (ξ)

∫ R

0

dθ

θ

αs(ξpT0θ)

π
Θ(ξpT0θ − k⊥,min)

× exp

(
− 2CA

π

∫ 1

ξ

dz

z

∫ R

θ

dθ′

θ′
αs(zpT0θ

′)Θ(zpT0θ
′ − k⊥,min)

)
× exp

(
− 2CF

π

∫ 1

ξ

dz

z

∫ θ

0

dθ′

θ′
αs(zpT0θ

′)Θ(zpT0θ
′ − k⊥,min)

)
(B.12)
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with P qg (ξ) = 2nfTR(ξ2 +(1− ξ)2) ' 2nfTR since ξ ≤ 1−x� 1. In figure 5, the analytical

“NLL” curve for gluon jets is actually ΣNLL
g (x) + Σg,mix(x).

C Saddle-point method for in-medium intra-jet multiplicity at DLA

Our starting point is eq. (5.6), assuming ωL(R) < k⊥,min/R. For definiteness, we also

assume θ2 ≥ θ2
c , although it turns out that our conclusions remain valid for θ2 ≤ θ2

c . It is

convenient to use logarithmic variables: x1 = ln(pT0/ω1), y1 = ln(R2/θ2
1), x2 = ln(ω2/ω),

y2 = ln(θ2
2/θ

2) and X ≡ ln(pT0/ω), Y ≡ ln(R2/θ2). The energy scales ω0(R) and ωL(R),

related respectively to the inside and outside domains, become x0 ≡ ln(pT0/ω0(R)) and

xL ≡ ln(pT0/ωL(R)), and the logarithmic scale associated with θ2
c is yc ≡ ln(R2/θ2

c ) =

4(xL−x0)/3. To get the leading asymptotic behaviour of Ti,out(X,Y ), one can neglect the

δ contribution to T vac in (5.3) since it generates terms with at least one exponential factor

missing. We thus get

Ti,out(X,Y ) = ᾱ3
s

∫ min(X,x0)

0
dx1

∫ min(yc,
3
2

(x0−x1))

0
dy1

×
∫ min(X−x1,X+Y−xL)

0
dx2

∫ X+Y−xL−x2

0
dy2I0(2

√
ᾱsx1y1) I0(2

√
ᾱsx2y2)

(C.1)

The integral over y1 and y2 can be performed exactly using the the following relation:∫ s

0
dy I0(2

√
ᾱsxy) =

√
s

ᾱsx
I1(2
√
ᾱsxs)

ᾱsxs�1'
√

s

ᾱsx

exp(2
√
ᾱsxs)√

4π
√
ᾱsxs

. (C.2)

Using (C.2), one gets

Ti,out(X,Y ) = ᾱ3
s

∫ min(X,x0)

0
dx1

∫ min(X−x1,X+Y−xL)

0
dx2R1(x1)R2(x2)

× e2
√
ᾱsx1 min(yc,

3
2

(x0−x1))
e2
√
ᾱsx2(X+Y−xL−x2)

(C.3)

with the two non-exponential functions

R1(x1) =
1√
4π

(min(yc,
3
2(x0 − x1)))1/4

(ᾱsx1)3/4
, R2(x2) =

1√
4π

(X + Y − xL − x2)1/4

(ᾱsx2)3/4
. (C.4)

The x2 integrations cannot be performed exactly so we use the saddle-point

approximation: ∫ x2

x1

dx f(x)eMg(x) M→∞'

√
2π

−Mg′′(x?)
f(x?)eMg(x?), (C.5)

where the saddle point x? is the maximum of g(x) between x1 and x2. This formula is

valid as long as x1 < x? < x2.
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Setting M2 ≡ (X + Y − xL) = ln(ωL(θ)/ω) and integrating over x2/M2, one get

Nout ≡ ᾱs
∫ min(X−x1,X+Y−xL)

0
dx2R2(x2)e2

√
ᾱsx2(X+Y−xL−x2)

√
ᾱsM2→∞' 1

2
e
√
ᾱsM2 . (C.6)

The corresponding saddle point is x?2 = M2/2 = ln(
√
ωL(θ)/ω) so that the saddle-point

approximation is valid if x?2 < X − x1. This gives the condition x1 ≤ X − x?2 in the first

integral, in order to ensure energy conservation along the cascade.

Calling Nmed the remaining integral over x1, which is truly a gluon multiplicity inside

the medium, we are left with:

Nmed ≡ ᾱs
∫ min(x0,X−x?2)

0
dx1R1(x1)e

2
√
ᾱsx1 min(yc,

3
2

(x0−x1))
. (C.7)

Since min(X−x?2, x0) > xc ≡ ln(pT0/ωc), the integral can be split into two pieces: x1 < xc
where min(yc, 3(x0 − x1)/2) = yc and x1 > xc where min(yc, 3(x0 − x1)/2) = 3(x0 − x1)/2.

The first piece is calculated exactly, and we use again the saddle point method to evaluate

the second piece, assuming x0 = ln(pT0/ω0(R))→∞. We get (using x′1 = x1/x0)

Nmed =

∫ xc

0
dx1ᾱs

√
yc
ᾱsx1

I1(2
√
ᾱsx1yc) + ᾱs

∫ min(X−x?2,x0)

xc

dx1R(x1)e
2
√
ᾱsx1

3
2

(x0−x1)

= − 1 + I0(2
√
ᾱsxcyc) + ᾱ1/4

s

√
x0

4π

∫ min(1,(X−x?2)/x0)

xc/x0

dx′1

x
′1/2
1

×
(

3(1− x′1)

2x1

)1/4

e
2x0

√
3
2
ᾱsx′1(1−x′1)

√
ᾱsx0→∞∼ e2

√
ᾱsxcyc√

4π
√
ᾱsxcyc

+
1

2
e

√
3ᾱs

2
x0 (C.8)

The first term in equation (C.8) is subleading due to the square root in the argument and

in the denominator. Thus, the leading term for Nmed comes from the “inside-medium”

region with ω1 ≤ ωc.20

The saddle point of the integral over x1 is x?1 = x0/2 = ln(
√
pT0/ω0(R)) so our

estimation for Nmed is valid only if xc < x?1 < X − x?2. The condition xc < x?1 leads

to the condition (5.9). The condition x?1 < X − x?2 leads to the condition (5.10), when

x?2 = ln(
√
ωL(θ)/ω) is evaluated at its largest value, that is when θ = θmin ≡ k⊥,min/ω.

We have thus demonstrated that when both
√
ᾱsx0 ≡

√
ᾱs ln(pT0/ω0(R)) and

√
ᾱs(X+

Y − xL) ≡
√
ᾱs ln(ωL(θ)/ω) are large and X > x?1 + x?2, i.e. ω < ωcr, we have

Ti,out(X,Y ) ∼ ᾱs
4

exp

[√
ᾱs

(
X + Y − xL +

√
3

2
x0

)]
, (C.9)

which is precisely formula (5.11).

From (C.9) and (5.5), one deduces the asymptotic DLA behaviour of the small-x

fragmentation function by integrating Ti(ω, θ
2|pT0, R

2) over θ2 between k2
⊥,min/ω

2 and R2.

20That is why we can trust our final result for T (ω, θ2) even for θ2 ≤ θ2
c .
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The leading contribution comes from the lower limit of this integral or, in logarithmic units,

from the upper bound 2(xmax − X) on the integral on Y , with xmax = ln(pT0R/k⊥,min).

This reproduces (5.12) in logarithmic units:

Dmed
i (X) =

∫ 2(xmax−X)

0
dY Ti(X,Y )

'
√
ᾱsCi

4CA
exp

[√
ᾱs

(
−X + 2xmax − xL +

√
3

2
x0

)]
. (C.10)

Finally, the asymptotic form of the ratio Ri(X) ≡ Dmed
i (X)/Dvac

i (X) is obtained

from (C.10) and (5.4), using again the asymptotic form of I1(x) at large x:

Dvac
i (X) ' Ci√

4πCA

[
2ᾱs(xmax −X)

X3

]1/4

exp
(

2
√

2ᾱsX(xmax −X)
)

(C.11)

Ri(X) ∼
√
ᾱsπ

2
e

√
3
2
x0−xL

[
X3

2ᾱs(xmax −X)

]1/4

exp
[√

ᾱs
(√
X −

√
2(xmax −X)

)2]
.

(C.12)

From (C.11), one can estimate the position of the maximum xhump of Dvac
i (X). Neglecting

the non-exponential prefactor, one finds dDvac
i /dX ∝ xmax − 2X, so that the xhump '

xmax/2 and ωhump '
√
pT0k⊥,min/R. For X ≥ xhump i.e. ω ≤ ωhump, the derivative is

negative, hence Dvac
i (ω) decreases when ω decreases. Similarly, one can study the variation

of Ri(X) from the exponential factor alone:

dRi
dX
' ᾱs

√
π

2
e

√
3
2
x0−xL

(√
2X +

√
xmax −X

)(√
X −

√
2(xmax −X)

)√
X(xmax −X)

× e
√
ᾱs
(√

X−
√

2(xmax−X)
)2

. (C.13)

The derivative is positive when
√
X −

√
2(xmax −X) ≥ 0 i.e. when X ≥ 2xmax/3. Hence,

for ω . (pT0k
2
⊥,min/R

2)1/3, the ratio Ri(ω) increases when ω decreases.
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