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1 Introduction

Gauged linear sigma models (GLSMs) [1] have proven to be extraordinary physical tools

to examine a wide range of questions in string theory and string compactifications, ranging

from global properties of moduli spaces of SCFTs for Calabi-Yau compactifications to

representations of quantum cohomology rings. The bulk of that work has focused on abelian

two-dimensional theories, but in recent years technology has developed to the point where

we can make inroads on understanding nonabelian theories.

To further that program, one of the tasks one must accomplish is to find physical

descriptions of more geometries. For example, one can write down nonabelian GLSMs

which have nontrivial IR fixed points, but to efficiently compute e.g. chiral rings, it helps

enormously if one can interpret the resulting phases geometrically. To this end, in this

paper we will explore (nonabelian) GLSMs for some additional spaces, namely symplectic

and orthogonal Grassmannians, following up a brief proposal in [2]. We will check that

description by e.g. comparing physically-derived quantum cohomology rings against known

mathematics results, and study the phases and other properties of the GLSMs.

Ordinary Grassmannians G(k, n) can be described with GLSMs using methods that

have been known for a long time, going back to [3]. They have played an important

role in many papers. However, they are not the only notion of Grassmannians known to

mathematicians. There are other Grassmannians in the mathematics literature, notably

the symplectic and orthogonal Grassmannians. These also occasionally arise in physics, see

e.g. [4] and references therein, but aside from a brief proposal in [2], their GLSM realizations

have not been studied at all. The purpose of this paper is to fill this gap, following up

the proposal of [2] by comparing GLSM predictions for quantum cohomology rings, Witten

indices, Calabi-Yau conditions, and studying the GLSM phases.

Possible Grassmannians and flag manifolds1 are given mathematically as cosets G/P ,

with P a parabolic subgroup of G, and G describing the symmetries of the space, which

also correspond to global symmetries of the corresponding physical theory. We list below

some examples from [5, section 23.3]:

• An: these are the Grassmannians G(k, n + 1) = SL(n + 1)/P , which have global

symmetry
U(n+ 1)

U(1)
= PSU(n+ 1) =

SU(n+ 1)

Zn+1
. (1.1)

• Bn: these are the orthogonal Grassmannians OG(n, 2n+ 1) = SO(2n+ 1,C)/P .

• Cn: these are the symplectic and Lagrangian Grassmannians SG(k, 2n), LG(n, 2n) =

Sp(2n,C)/P .

• Dn: these are the orthogonal Grassmannians OG(n, 2n) = SO(2n,C)/P .

(The various Grassmannians above are sometimes referred to as type A, B, C, D Grass-

mannians respectively, in reference to their symmetries.) In each of these cases, the global

1In most of this paper, for simplicity we focus on Grassmannians, but analogues for flag manifolds do

exist, and we discuss corresponding GLSMs later in this paper.
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symmetry group of the GLSM for G/P is given by G (up to finite quotients), and has Lie

algebra indicated by the classification above. (This is simply the subgroup of the group

PSU(2n) or PSU(2n+ 1) of rotations of the chiral primaries that preserves the superpo-

tential, which requires that either a metric or symplectic form be preserved.) For example,

for the Bn series, we will see the GLSM has 2n+ 1 chiral primaries, and a superpotential

defined by a metric on those chiral primaries. The resulting symmetry group is the sub-

group of PSU(2n + 1) that preserves that metric — hence, some finite group quotient of

SO(2n+ 1), corresponding to Bn.

In addition to the A, B, C, and D type Grassmannians and flag manifolds, one can

also obtain Grassmannians and flag manifolds from exceptional groups. We will leave the

development of their GLSMs to future work.

Let us also remark on mirrors. In mathematics, there is a notion of mirrors to homo-

geneous spaces, see e.g. [6–9]. When we speak about mirrors to nonabelian theories, we

will be using a slightly different mirror symmetry construction, described in [10]. These

two constructions were compared in [10]; briefly, although in general they give different

Landau-Ginzburg models, all we really are concerned with in a Landau-Ginzburg model is

its IR behavior, encoded in its critical loci, and at least on the face of it, these different-

looking constructions of Landau-Ginzburg mirrors seem to encode the same IR physics, at

least so far as we are aware.

We begin in section 2 by describing GLSMs for symplectic Grassmannians SG(k, 2n)

and flag manifolds, the type C spaces listed above. These can be understood as sub-

manifolds of ordinary Grassmannians G(k, 2n) and flag manifolds satisfying an isotropy

condition, which is the key to the GLSM we present. We check our description by com-

paring ordinary and equivariant quantum cohomology rings arising in the GLSM to those

arising in mathematics, as well as by comparing Witten indices across different phases. We

also check that the Calabi-Yau condition arising physically matches that in mathematics.

Finally, we discuss mirrors of the GLSMs for symplectic Grassmannians.

In section 3 we perform the analogous analyses for orthogonal Grassmannians OG(k, n)

and flag manifolds, the type B and D spaces listed above. After proposing GLSMs for

these spaces, we study the mixed Higgs-Coulomb phases arising for r � 0, and compare

the Calabi-Yau condition arising physically in these GLSMs to that arising mathematically.

Finally, we discuss mirrors of the GLSMs for orthogonal Grassmannians.

In several appendices we collect various technical computations which supplement and

clarify the computations in the text.

To be clear, our paper is not the first to describe GLSMs for all of these cases: GLSMs

for symplectic and orthogonal Grassmannians were proposed at the end of [2]. The purpose

of this paper is to more systematically analyze the physics of these theories, carefully

checking that the GLSMs have the desired properties (quantum cohomology relations,

Witten indices, global symmetries, and so forth), as well as to explore novel physical

aspects of these theories.
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2 Symplectic Grassmannians SG(k, 2n)

2.1 Background and GLSM realization

The symplectic Grassmannian SG(k, 2n) is a space parameterizing k-dimensional subspaces

of C2n which are isotropic with respect to a symplectic form on C2n. This can be described

more explicitly as a subvariety of an ordinary Grassmannian G(k, 2n), a fact that will be

used in GLSM realizations. The dimension of SG(k, 2n) is given by [11], [12, section 3.1]

2nk − k(3k − 1)

2
. (2.1)

When k = n, SG(n, 2n) is the space of maximal isotropic subspaces of C2n, which is also

known as the Lagrangian Grassmannian, and often denoted LG(n, 2n). In the case k = 1,

the isotropy condition trivializes, and [11]

SG(1, 2n) ∼= G(1, 2n) ∼= P2n−1, (2.2)

as we shall see explicitly in GLSMs in a moment. Another common special case is

SG(2, 4) = LG(2, 4) ∼= P4[2], as is mentioned in appendix F.

The Euler characteristic of SG(k, 2n), relevant for Witten index computations, is given

by [13]

2k

(
n

k

)
. (2.3)

In particular, the Euler characteristic of the Lagrangian Grassmannian LG(n, 2n) is 2n.

Some background on symplectic Grassmannians can be found in e.g. [11, 12], [14, sec-

tion 6.3].

The GLSM for a symplectic Grassmannian implements an isotropy condition on top

of an ordinary Grassmannian, so let us first quickly review the GLSM for an ordinary

Grassmannian G(k,N), following [3]. This is a U(k) gauge theory with N chirals in the

fundamental representation, and no superpotential. The D-terms of the theory can be

interpreted as the statement that the N fundamental-valued chirals form a set of k or-

thogonal, normalized vectors in CN , and gauging the U(k) effectively quotients out the

rotations, hence this describes k-dimensional subspaces of CN . The GLSM for a symplec-

tic Grassmannian implements an isotropy condition on top of an ordinary Grassmannian.

The GLSM for the symplectic Grassmannian SG(k, 2n) is then a U(k) gauge theory

with 2n chirals Φa
±i in the fundamental representation V (a ∈ {1, · · · , k},

i ∈ {±1,±2, · · · ,±n}), and one chiral superfield qab in the representation ∧2V ∗, with

superpotential

W =
∑
α,β

qabΦ
a
αΦb

β ω
αβ =

n∑
i=1

qabΦ
a
iΦ

b
−i. (2.4)

The superpotential realizes an isotropy condition with respect to a symplectic form

ω =

[
0 In
−In 0

]
(2.5)
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on C2n, following from the fact that

[
φai , φ

a
−i
] [ 0 In
−In 0

][
φbi
φb−i

]
=
∑
i

(
φai φ

b
−i − φa−iφbi

)
. (2.6)

(These GLSMs were also briefly described in [2, section 2.4.3, example 3].)

The isotropy condition resulting from the superpotential above takes the simple form∑
i

φai φ
b
−i =

∑
i

φbiφ
a
−i. (2.7)

In the special case k = 1, this condition is satisfied trivially. In this special case, there are

no qab (since ∧21 is empty) and the superpotential is not present. As a result, SG(1, 2n)

coincides with the ambient G(1, 2n) = P2n−1.

The global symmetries of this theory are rotations of the chiral superfields that are

compatible with the superpotential. Specifically, rotations of the chiral superfields them-

selves are represented by the group

U(2n)/U(1) = PSU(2n) = SU(2n)/Z2n. (2.8)

The rotations that preserve the superpotential are precisely those which preserve the sym-

plectic form, hence the global symmetry group is Sp(2n,C).

Clearly, symplectic Grassmannians SG(k, 2n) can be embedded into ordinary Grass-

mannians G(k, 2n). The Plücker embedding of ordinary Grassmannians, realized physically

as SU(k)-invariant baryons

Bα1···αk
= εa1···akφ

a1
α1
· · ·φakαk

, (2.9)

for α = ±i, also is relevant for symplectic Grassmannians. Just as for ordinary Grassman-

nians, these define a map into a projective space of dimension(
2n

k

)
− 1. (2.10)

In the special case that k = n, there is a second class of SU(k)-invariant operators, that

also define a map. These operators are given by

B̃±1,··· ,±n = εa1···anφ
a1
±1 · · ·φ

an
±n, (2.11)

and they define a map from LG(n, 2n) into a projective space of dimension 2n−1. (See [15,

section 3.3] for more information.)

For later use, since one of the matter representations is slightly unusual, we give here

the D-terms:
1

e2
Db
a =

n∑
i=1

(
φ
i
aφ

b
i + φ

−i
a φ

b
−i

)
− 2qbcqac − rδba. (2.12)

In the special case that k is odd, the GLSM for SG(k, 2n) has no Higgs branch for

r � 0. This follows from the diagonal terms in the D terms above, and the fact that since
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q is an antisymmetric matrix, it can only have an even number of eigenvalues. The matrix

q can therefore be put in the form 
0 ∗ · · · 0

−∗ 0 · · · 0
...

...
... 0

0 0 · · · 0

 , (2.13)

with one vanishing row and one vanishing column. In this basis, the diagonal D term

corresponding to the bottom right entry has the form

1

e2
Da
a =

n∑
i=1

(
φ
i
aφ

a
i + φ

−i
a φ

a
−i

)
− r, (2.14)

=
n∑
i=1

(
|φai |

2 +
∣∣φa−i∣∣2)− r, (2.15)

with no sum over a and no q fields. This D term has no vanishing solutions for r � 0,

hence there can be no Higgs phase for r � 0 if k is odd.

The cases of k even are different. Here, there does appear to be a Landau-Ginzburg

phase, which contributes to the Witten index. Consider the case SG(2, 2n). Here, there

is one q field, q12, which transforms only under the overall U(1) = detU(2). In the r � 0

phase, it Higgses the gauge group U(2) to SU(2) ⊂ U(2). From [16, section 3.2], [17,

section 4.7], the Witten index of an SU(2) gauge theory with N fundamentals is{
(1/2)(N − 1) N odd,

(1/2)(N − 2) N even,
(2.16)

so we see that the Higgs branch of the r � 0 phase of the SG(2, 2n) GLSM has Witten

index

(1/2)(2n− 2) = n− 1. (2.17)

For example, the r � 0 phase of the GLSM for LG(2, 4) has Witten index 2− 1 = 1.

For SG(k, 2n) for even k > 2, we expect a similar story. For r � 0, the q fields

get a vev, which Higgses2 U(k) to Sp(k) (see e.g. [18]). Beyond that, we do not have a

complete understanding. Based on the fact that there are k(k − 1) off-diagonal D terms

generating relations, we (naively) suspect that this theory has the same Witten index as a

two-dimension Sp(k) gauge theory with 2nk − k(k − 1) chirals, in 2n− k + 1 copies of the

fundamental representation, which from [19, equ’n (5.10)] we expect should have Witten

index (
(1/2)(2n− k)

k/2

)
. (2.19)

2As a quick consistency check, note that the difference in dimensions of the gauge groups

dimU(k)− dimSp(k) = k2 − (1/2)k(k + 1) = (1/2)k(k − 1) (2.18)

matches the dimension of the representation ∧2k.
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We will check this conjecture numerically in a pair of examples in table 1 in section 2.4,

and leave a more detailed analysis for future work.

We have argued that for r � 0, for odd k, there is no Higgs branch contribution to

the GLSMs for symplectic Grassmannians, and for even k, there is a Higgs branch. In

the full quantum theory, there is a Coulomb branch contribution, just as in GLSMs for

ordinary Grassmannians, and we will see explicitly that those Coulomb vacua provide an

explicit representation of the quantum cohomology ring. Furthermore, the Higgs branch

(if it exists) will also supply the difference between the Witten index of the r � 0 phase

and the number of Coulomb vacua (corresponding to roots of the ring relations).

In the next section we will describe how the Coulomb branch realizes both ordinary and

equivariant quantum cohomology of general Lagrangian Grassmannians, and also check in

special cases that the quantum cohomology ring of other symplectic Grassmannians is also

realized by these GLSMs.

2.2 Quantum cohomology of Lagrangian Grassmannians

2.2.1 Ordinary quantum cohomology

In this section, we will argue that the physical chiral ring of this theory coincides with

known results for the quantum cohomology of SG(n, 2n), which serves as a consistency

check on the GLSM description above.

We begin by studying the Coulomb branch. The effective twisted superpotential is

W̃eff =−t
n∑
a=1

Σa−
2n∑
i=1

n∑
a,b=1

ρbiaΣb

[
ln

(
n∑
b=1

ρciaΣc

)
−1

]
−

n∑
µ,ν=1

n∑
a=1

ρaµνΣa

[
ln

(
n∑
b=1

ρbµνΣb

)
−1

]

−
n∑

µ,ν=1

n∑
a=1

αaµνΣa

[
ln

(
n∑
b=1

αbµνΣb

)
−1

]
,

where ρaib = δab , ρaµν = −δaµ − δaν and αaµν = −δaµ + δaν . Here, the weights ρaµν correspond to

qab in the representation ∧2V ∗ and can be obtained from the weights for V ∗ following ap-

pendix C. One can check that the ρaµν make the superpotential (2.4) gauge invariant. Note

that the sum of the W-boson contributions contributes a i(n− 1)π-shift to t. Computing

the critical locus, we have

∂W̃eff

∂σa
= −t− i(n− 1)π − 2n lnσa +

∑
b 6=a

ln(−σa − σb) (2.20)

which gives the chiral ring relations

q
∏
b 6=a

(σa + σb) = σ2n
a , for a = 1, · · · , n, (2.21)

with (from the ambient theory) excluded locus σa 6= σb if a 6= b.

Mathematically, the quantum cohomology ring relations for SG(n, 2n) are known, and

can be found in e.g. [20, equ’n (3)]:

ei(x)2 + 2

n−i∑
k=1

(−1)kei+k(x)ei−k(x) = (−)i+1e2i−n−1(x)q̃, for i = 1, 2, . . . , n. (2.22)

– 6 –
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(To avoid symbol abuse, we have used ei’s and q̃ here, instead of σi’s and q as in [20].)

In equation (2.22), ei(x) is the i-th elementary symmetric polynomial in the Chern roots

{x1, . . . , xn} of the tautological3 bundle S, which can be understood as the restriction of

the tautological bundle on the ambient G(n, 2n) to SG(n, 2n), and so fits in the short exact

sequence

0 −→ S −→ VSG(n,2n) −→ Q −→ 0. (2.23)

We will argue in this section that the physical chiral ring relations (2.21) reproduce

the quantum cohomology ring relations (2.22) known in the mathematics literature for{
q = (−)n−1q̃,

σa = −xa.
(2.24)

These two identifications make sense in the following ways. First, as in [3, 21, 22], we can

interpret the σa as the Chern roots of S∗, hence σa = −xa. From naively counting degrees,

one finds that both q and q̃ have degree n + 1, and they should match up to a constant

factor, which one can show is (−)n−1. Before giving a general argument that the physical

chiral ring relations match the ring relations known in mathematics, we demonstrate how

this works in several examples.

n = 1. As mentioned earlier, SG(1, 2) ' CP1. The physical chiral ring relation, equa-

tion (2.21), is σ2 = q, which implies the quantum cohomology ring relation from equa-

tion (2.22),

e1(x)2 = q̃. (2.25)

if equation (2.24) is satisfied. Here, e1(x) = x.

n = 2. SG(2, 4) is the first nontrivial example. In this example, equation (2.21) gives

q(σ1 + σ2) = σ4
1, q(σ1 + σ2) = σ4

2. (2.26)

The mathematical quantum cohomology ring relations in this case are

e1(x)2 = 2e2(x), e2(x)2 = −q̃e1(x). (2.27)

To see how the mathematical relations follow from the physical relations, we subtract

the two physical chiral ring relations to get(
σ2

1 − σ2
2

) (
σ2

1 + σ2
2

)
= 0.

Taking into account the excluded locus σ1 6= σ2,
(
σ2

1 − σ2
2

)
can be factored out and the

above equation becomes

σ2
1 + σ2

2 = 0, (2.28)

which is the same as e1(x)2 = 2e2(x) with σa = −xa.
3Reference [20] works with Chern roots of Q. In this specific example, the choice of either Q or S is

equivariant as S∗ = Q. However, different choices will have different (−1) factors in the right-hand-side

of (2.22).
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Similarly, the sum of the two physical chiral ring relations is

2q (σ1 + σ2) = σ4
1 + σ4

2 = −2σ2
1σ

2
2, (2.29)

where the last equality follows from

0 ≡ (σ2
1 + σ2

2)2 = σ4
1 + σ4

2 + 2σ2
1σ

2
2. (2.30)

Therefore, we have

σ2
1σ

2
2 = −q (σ1 + σ2) . (2.31)

This is the same as e2(x)2 = −q̃e1(x) with σa = −xa and q̃ = −q.

General case. In the cases above, we used algebraic tricks to construct Weyl invariant

polynomials of the σa, which led to the quantum cohomology ring relations. We will next

use more general methods to study the cases n ≥ 3.

First, note that the left-hand side of equation (2.21) can be expanded in terms of Weyl

invariant polynomials of the σa. For example, when n = 2k + 1, it can be expanded as:

qσ2k
a + qe2(σ)σ2k−2

a + · · ·+ qe2k−2(σ)σ2
a + qe2k(σ) = σ4k+2

a , (2.32)

where ei(σ) is the i-th elementary symmetric polynomial. Similarly, for n = 2k, it can be

rewritten as

qe1(σ)σ2k−2
a + qe3(σ)σ2k−4

a + · · ·+ qe2k−3(σ)σ2 + qe2k−1(σ) = σ4k
a . (2.33)

Let us consider the n = 2k+ 1 case first. Since the ei(σ) are Weyl invariant, the ei(σ)

are constant on Weyl orbits. Rewrite equation (2.32) as

P (σ2
a) ≡ (σ2

a)
2k+1 − q(σ2

a)
k − qe2(σ)(σ2

a)
k−1 − · · · − qe2k−2(σ)σ2

a − qe2k(σ) = 0, (2.34)

for a = 1, . . . , n. Then the σ2
a satisfy relations determined by the coefficients of P (σ2

a)

according to Vieta’s formula [23, theorem 2], which says that any nth order polynomial

p(z) with roots a1, · · · , an can be written in the form

p(z) ∝ zn − e1(a)zn−1 + e2(a)zn−2 + · · ·+ (−)nen(a), (2.35)

where the ei(a) are elementary symmetric polynomials in the roots aj .

If we let xa denote a root of equation (2.34), a solution for σ2
a, then from Vieta’s

formula and the coefficients of the σ2 terms in (2.34), we have∑
1≤a≤n

xa = 0,

∑
1≤a1<a2≤n

xa1xa2 = 0,

· · ·∑
1≤a1<···<ak≤n

xa1 . . . xak = 0,

(2.36)
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and

∑
1≤a1<···<ak+1≤n

xa1 . . . xak+1
= (−1)kq,

∑
1≤a1<···<ak+2≤n

xa1 . . . xak+2
= (−1)k+1qe2(σ),

· · ·∑
1≤a≤n

x1 . . . x̂a . . . x2k+1 = (−1)2k+1qe2k−2(σ),

x1 . . . x2k+1 = (−1)2k+2qe2k(σ).

(2.37)

The reader should note that the number of possible roots (2k + 1, the degree of equa-

tion (2.34), matches the rank (n) of the gauge group. The equations above (derived from

the coefficients of equation (2.34) can be written more compactly for ` ≤ n = 2k + 1 as

∑
1≤a1<···<a`≤n

σ2
a1 · · ·σ

2
a`

= (−)`−1e2`−n−1(σ)q, (2.38)

in conventions in which ei = 0 for i < 0 and e0 = 1. Applying identity (A.2), which we

repeat below,

e`(σ)2 + 2

n−l∑
j=1

(−1)je`+j(σ)e`−j(σ) =
∑

1≤a1<···<a`≤n
σ2
a1 . . . σ

2
a`
, (2.39)

we recover the quantum cohomology ring relations for SG(2k + 1, 4k + 2) known in the

math community, equation (2.22), with σa = −xa and q = (−)2kq̃ = q̃.

The same argument works for n = 2k. Rewrite equation (2.33) as

P (σ2
a) ≡ (σ2

a)
2k − qe1(σ)(σ2

a)
k−1 − · · · − qe2k−3(σ)σ2

a − qe2k−1(σ) = 0, (2.40)

then Vieta’s formula and the coefficients of the polynomial above give the relations

∑
1≤a≤n

σ2
a = 0,

∑
1≤a1<a2≤n

σ2
a1σ

2
a2 = 0,

. . .∑
1≤a1<···<ak≤n

σ2
a1 . . . σ

2
ak

= 0,

(2.41)
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and ∑
1≤a1<···<ak+1≤n

σ2
a1 . . . σ

2
ak+1

= (−1)kqe1(σ),

∑
1≤a1<···<ak+2≤n

σ2
a1 . . . σ

2
ak+2

= (−1)k+1qe3(σ),

. . .∑
1≤a≤n

σ2
1 . . . σ̂

2
a . . . σ

2
2k = (−1)2kqe2k−3(σ),

σ2
1 . . . σ

2
2k = (−1)2k+1qe2k−1(σ),

(2.42)

where here we have abused notation by labeling the possible solutions for σ2 by σ2 instead

of x. Just as before, these can be summarized compactly as in equation (2.38), and ap-

plying identity (A.2), we recover the quantum cohomology ring relations for SG(2k, 4k),

equation (2.22).

So far we have checked our previous claim that the chiral ring relations (2.21) in the

Coulomb branch do reproduce the quantum cohomology ring relations (2.22).

2.2.2 Equivariant quantum cohomology

The above story can be generalized to the equivariant case, equivariant with respect to

a maximal torus of the flavor symmetry group, which physically corresponds to turning

on twisted masses [24]. We will verify that the equivariant quantum cohomology ring

predicted by the physics of this GLSM matches that known in mathematics for Lagrangian

Grassmannians.

Due to the global symmetry Sp(2n), which preserves the isotropy condition (2.7), we

have m−i = −mi. To keep the superpotential invariant, the twisted masses for qab is

mq = −
n∑
i=1

(mi +m−i) = −
n∑
i=1

(mi −mi) = 0. (2.43)

Therefore, the effective twisted superpotential becomes

W̃eff = −t
n∑
a=1

Σa −
n∑
a=1

±n∑
i=±1

(Σa −mi) [(ln Σa −mi)− 1]

+

n∑
µ>ν=1

n∑
a=1

ρaµνΣa

[
ln

(
−

n∑
b=1

ρbµνΣb

)
− 1

]

−
n∑

µ,ν=1

n∑
a=1

αaµνΣa

[
ln

(
n∑
b=1

αbµνΣb

)
− 1

]
,

and the critical locus of this effective twisted superpotential gives the following physical

chiral ring relations

q
∏
b 6=a

(σa + σb) =

n∏
i=1

(
σ2
a −m2

i

)
, for a = 1, · · · , n. (2.44)
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We will show that these reproduce the equivariant quantum cohomology ring relations (D.9)

in appendix D. We repeat them here for convenience:

e2
i (x) + 2

n−i∑
l=1

(−)lei−l(x)ei+l(x) = ei(t
2) + (−)i+1e2i−n−1(x)q̃.

Note that the right-hand-side of equation (2.44) can be expanded as

n∏
i=1

(
σ2
a −m2

i

)
=

n∑
i=0

(−1)i
(
σ2
a

)n−i
ei(m

2), (2.45)

while the left-hand-side of equation (2.44) can be expanded in the same way as before. To

establish that the mathematical ring is a consequence of the physical chiral ring, we can use

the same methods as in our analysis of the ordinary quantum cohomology. Here for brevity

we will only give the details for the n = 2k + 1 case. First, we rewrite equation (2.44) as

q
(
σ2
a

)k
+ qe2(σ)

(
σ2
a

)k−1
+ · · ·+ qe2k−2(σ)

(
σ2
a

)
+ qe2k(σ)

=

2k+1∑
i=0

(−1)i
(
σ2
a

)2k+1−i
ei(m

2), (2.46)

for a = 1, . . . , n, where ei(m
2) is the i-th elementary symmetric polynomial of {m2

1, · · · ,m2
n}.

Following the same reasoning as before, we choose to work on one vacuum, corresponding

to one Weyl orbit of solutions for the σa, and on this orbit the ei(σ) are constant due to

Weyl invariance. Therefore, the equation above is of degree (2k + 1) in σ2
a.

From Vieta’s formula, we have following sets of relations:∑
1≤a≤n

σ2
a = e1(m2),

∑
1≤a1<a2≤n

σ2
a1σ

2
a2 = e2(m2),

. . .∑
1≤a1<···<ak≤n

σ2
a1 . . . σ

2
ak

= ek(m
2),

and ∑
1≤a1<···<ak+1≤n

σ2
a1 . . . σ

2
ak+1

= ek+1(m2) + (−1)kq,

∑
1≤a1<···<ak+2≤n

σ2
a1 . . . σ

2
ak+2

= ek+2(m2) + (−1)k+1qe2(σ),

. . .∑
1≤a≤n

σ2
1 . . . σ̂

2
a . . . σ

2
2k+1 = e2k(m

2)− qe2k−2(σ),

σ2
1 . . . σ

2
2k+1 = e2k+1(m2) + qe2k(σ).
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From equation (2.39), we can summarize the equations above as

e2
i (σ) + 2

2k+1−i∑
l=1

(−)lei−l(σ)ei+l(σ) = ei(m
2) + (−)i+1qe2i−2k−2(σ), (2.47)

which match the known mathematical results for equivariant quantum cohomology, equa-

tion (D.9), for 
q = (−)n−1q̃,

σa = −xa,
m2
i = t2i .

(2.48)

2.3 Quantum cohomology for general symplectic Grassmannians

In this section, we will compare quantum cohomology of general symplectic Grassmannians

SG(k, 2n) to the predictions of the physical chiral ring. We will not give a general proof

that they always match, but instead will merely check several families of examples.

The analysis in the previous section can be applied to SG(k, 2n). The physical chiral

ring relations have the same form as before, but now there are only k < n relations:

q
∏
b 6=a

(σa + σb) = σ2n
a , for a = 1, . . . , k. (2.49)

These chiral ring relations will reproduce the quantum cohomology ring relations [25],

which are

c2
r + 2

2n−k−r∑
i=1

(−1)icr+icr−i = (−1)2n−k−rc2r+k−2n−1q̃, n− k + 1 ≤ r ≤ n, (2.50)

where cr is the r-th Chern class of the quotient bundle Q over SG(k, 2n), defined by

restricting the universal quotient bundle over the ambient G(k, 2n). It obeys

0 −→ S −→ VSG(k,2n) −→ Q −→ 0, (2.51)

hence we have c(Q)c(S) = 1 which implies

cr(Q) = (−)r det (c1+j−i(S))1≤i,j≤r . (2.52)

If we interpret the σa as the Chern roots of S∗, then we have ci(S) = (−)iei(σ), and

cr(Q) = hr(σ), (2.53)

where hr(σ) is the rth complete homogeneous symmetric polynomial in the σa.

We will check in a series of examples that physics correctly reproduces the quantum

cohomology ring relations above.

First, recall that for k = 1, the isotropy condition is trivially satisfied, hence SG(1, 2n) '
G(1, 2n) ' P2n−1. If we set k = 1 in equation (2.49), we get

σ2n = q, (2.54)
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which is indeed the chiral ring relation for P2n−1. At the same time, equation (2.50) for

k = 1 is just

c2
n = (−)n−1q̃, (2.55)

where cn = hn(σ) = σn. Therefore, the ring relations match if we identify

q = (−)n−1q̃.

This identification of q and q̃ is generally true as we will see in the following examples.

Next we consider the case SG(2, 6). The physical chiral ring relations in this case are

q(σ1 + σ2) = σ6
1,

q(σ1 + σ2) = σ6
2.

Some algebraic manipulations give

σ4
1 + σ2

1σ
2
2 + σ4

2 = 0,

σ6
1 + σ6

2 = 2q(σ1 + σ2),

and these two Weyl invariant equations indeed reproduce equation (2.50) for quantum

cohomology when k = 2:

c2
r + 2

4−r∑
i=1

(−1)icr+icr−i = (−1)4−rc2r−5q̃, 2 ≤ r ≤ 3, (2.56)

with q = (−)3−1q̃ = q̃. Note that we have used equation (A.5) in appendix A.

Our next example is SG(2, 8). The physical chiral ring relations are

q(σ1 + σ2) = σ8
1,

q(σ1 + σ2) = σ8
2,

which yield

σ6
1 + σ4

1σ
2
2 + σ2

1σ
4
2 + σ6

2 = 0,

σ8
1 + σ8

2 = 2q(σ1 + σ2).

We can check that these two equations reproduce equation (2.50) when k = 2 if q =

(−)4−1q̃.

This calculation can be generalized to SG(2, 2n) and, due to the equation (A.5), the

chiral ring relations for SG(2, 2n) reproduce the quantum cohomology ring relations.

2.4 Witten indices

As a consistency check of our description and analysis, here we will check that Witten

indices are preserved across various phases of these GLSMs. (Although the target is

not Calabi-Yau, and so the axial R-symmetry is anomalous, nevertheless, there can be
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nonanomalous finite subgroups, and so one expects continuous paths connecting the r � 0

and r � 0 phases of these GLSMs, hence the Witten indices should match.)

For simplicity, let us begin with the case LG(2, 4). As previously described, the Euler

characteristic of this space is 22 = 4, which should match the Witten index of the r � 0

phase, if our GLSM is correct. This should also be the Witten index of the r � 0 phase,

which we will now check.

The r � 0 phase is a mixed Higgs/Coulomb branch. As previously discussed in

section 2.1, the Higgs branch at low energies is an SU(2) gauge theory with 4 fundamentals,

which has Witten index 1. The Coulomb branch is defined by solutions to the equations

to the quantum cohomology ring relations

e1(x)2 − 2e2(x)e0(x) = 0, e2(x)2 = −e1(x)q̃, (2.57)

or after simplification,

x2
1 + x2

2 = 0, x2
1x

2
2 = −(x1 + x2)q̃. (2.58)

It is straightforward to check that there are 3 distinct unordered pairs (x1, x2) which solve

these equations (and are consistent with the excluded locus), hence there are 3 Coulomb

vacua. The sum of the number of Coulomb vacua and the Witten index of the Higgs branch

is 4, matching the Witten index of the r � 0 phase, as expected.

Next, consider SG(2, 2n). The Euler characteristic of this space, the Witten index of

the phase r � 0, is

22

(
n

2

)
= 2n(n− 1). (2.59)

From the general analysis of section 2.1, the Higgs branch of the r � 0 phase has Witten

index n− 1, so to be consistent, there should be

2n(n− 1)− (n− 1) = (2n− 1)(n− 1) (2.60)

Coulomb vacua.

We count the Coulomb vacua of the r � 0 phase of the GLSM for SG(2, 2n) as follows.

The chiral ring relations are

σ2n
1 = q(σ1 + σ2) = σ2n

2 , (2.61)

and the (unordered) roots of these equations are the Coulomb vacua (subject to the ex-

cluded locus σ1 6= ±σ2, which requires σa 6= 0). Since σ2n
1 = σ2n

2 , we see that σ1 and σ2

differ by a 2n-th root of unity (excluding −1, as that is on the excluded locus). Excluding

±1, we see that σ1 differs from σ2 by 2n − 2 possible phases. Plugging in, the chiral ring

relations reduce to a degree 2n− 1 polynomial in either of the σa, hence 2n− 1 solutions.

Dividing by 2 to account for ordering, we have a total of

1

2
(2n− 2)(2n− 1) = (2n− 1)(n− 1) (2.62)

possible Coulomb vacua, which is precisely right for the Witten index of the r � 0, r � 0

phases of SG(2, 2n) to match.
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To the same end, let us now discuss SG(k, 2n) with k odd. Here, as previously argued,

there is no Higgs branch, only a Coulomb branch, hence for consistency the number of

Coulomb vacua should match the Euler characteristic of the space, which is

2k
(
n

k

)
. (2.63)

We can see this as follows. The chiral ring relations with k odd are

q
∏
b 6=a

(σa + σb) = σ2n
a , (2.64)

for all a = 1, . . . , k. Equation (2.64) can be rewritten in the form

σ2n
a − q

[
σk−1
a + e2(σ)σk−3

a + · · ·+ ek−1(σ)
]

= 0. (2.65)

Since k is odd, we know that if {σ1, . . . , σk} is one solution, then {−σ1, . . . ,−σk} is another

solution. As we are counting vacua away from the excluded locus (σa 6= 0, σa 6= ±σb for

a 6= b) the solutions should always have this Z2 symmetry. Note that this is not true for

cases in which k is even, because elementary symmetric polynomials of odd degrees appear.

Putting this together, there are 2n choices for σ1, which leaves 2n−2 choices for σ2, as

σ2 6= ±σ1. Continuing, one eventually finds 2n−2k+2 choices for σk. Therefore, there are

in total 2n(2n− 2) · · · (2n− 2k+ 2) choices. We also divide by k! to remove permutations,

which gives
2n(2n− 2) · · · (2n− 2k + 2)

k!
= 2k

(
n

k

)
(2.66)

Coulomb vacua, as expected in order for Witten indices to match.

In SG(k, 2n) for k odd, as previously discussed, there is no Higgs branch at r � 0,

only Coulomb vacua. For k even, there can be a nontrivial Higgs branch, which contributes

to the Witten index, as discussed in greater detail previously.

In table 1 we have summarized results for a number of cases, comparing Euler char-

acteristics of large-radius phases, number of Coulomb vacua, and Witten indices of Higgs

branches at r � 0. In each case, we find that the large-radius Euler characteristic matches

the sum of the number of Coulomb vacua and the Witten index of the Higgs branch.

2.5 Calabi-Yau condition

As another consistency test, we briefly mention Calabi-Yau conditions. Mathematically, the

intersection of the Plücker embedding of SG(k, 2n) with a hypersurface of degree 2n−k+1

hypersurface is Calabi-Yau. We reproduce the same condition physically as the condition

for the sum of the charges under any U(1) subgroup of the gauge group to vanish.

The GLSM for SG(k, 2n) is a U(k) gauge theory with 2n chirals in the fundamental

V , and one chiral in ∧2V ∗. Under any U(1) ⊂ U(k), the 2n chirals in the fundamental

contribute a total of 2n to the sum of the U(1) charges, and the one chiral in ∧2V ∗

contributes −(k − 1), so that the sum of the U(1) charges is

2n− k + 1. (2.67)
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Geometry χ(geometry) Num. Coulomb vacua χ(Higgs)

SG(1, 2n) 2n 2n 0

SG(2, 4) 4 3 1

SG(2, 6) 12 10 2

SG(2, 8) 24 21 3

SG(3, 6) 8 8 0

SG(3, 8) 32 32 0

SG(3, 10) 80 80 0

SG(4, 8) 16 15 1∗

SG(4, 10) 80 77 3∗

Table 1. Listed are Euler characteristics of large radius phases, number of Coulomb vacua, and

Witten indices of Higgs branches of r � 0 phases. In each case, the sum of the number of Coulomb

vacua and Higgs Witten indices matches the large-radius Euler characteristic, as expected. Euler

characteristics of geometries are computed using the exact expression in section 2.1, and Coulomb

vacua were counted either analytically or, in some cases, numerically. Euler characteristics of Higgs

branches are as given in section 2.1. For the latter, we only have an exact result for cases k odd

and k = 2. For the case k = 4, we made a conjecture in section 2.1, whose result we list here. We

denote conjectured results with an asterisk (∗), and observe that they happen to have the correct

values to preserve Witten indices.

Under the same U(1), any element of the Plücker embedding

εa1···akφ
a1
i1
· · ·φakik (2.68)

has charge 1, so we see that intersecting the image of SG(k, 2n) with a hypersurface of

degree 2n− k + 1 should be Calabi-Yau, reproducing the mathematics result.

Let us consider two special cases as explicit confirmations.

• SG(1, 2n) = P2n−1. The condition for a hypersurface in P2n−1 to be Calabi-Yau is

that it has degree 2n, which is reproduced by the condition above.

• SG(2, 4) = P4[2]. Here, the Calabi-Yau condition is that a hypersurface should have

degree 3, which is reproduced by the condition above.

2.6 Symplectic flag manifolds

In addition to symplectic Grassmannians, there also exist symplectic flag manifolds. At the

level of group cosets, these are of the form Sp(2n,C)/P for suitable parabolic subgroups

P . We can describe them as submanifolds of ordinary flag manifolds F (k1, · · · , kp, 2n)

(k1 < k2 < · · · ) satisfying an isotropy condition on the maximal vector space.

Let us briefly describe GLSMs for these flag manifolds. We begin with the GLSM for

an ordinary flag manifold F (k1, · · · , kp, 2n) [26]. This is a

U(k1)× U(k2)× · · · × U(kp) (2.69)

gauge theory with bifundamentals (k1,k2), (k2,k3), and so forth to (kp−1,kp), along with

2n chirals in representation kp of U(kp), following [26]. To build the GLSM for a symplectic
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flag manifold SF (k1, · · · , kp, 2n), we add a chiral superfield qab transforming in the ∧2kp

representation of U(kp), along with a superpotential

W =
n∑
i=1

qabΦ
a
iΦ

b
−i. (2.70)

We only impose an isotropy condition on the last, maximal flag: as all other vector spaces

in the flag are subspaces of the maximal flag, this suffices to guarantee that all subspaces

satisfy the isotropy condition.

We will not compute quantum cohomology rings from the GLSM here, but mathemat-

ical discussions of quantum cohomology rings for symplectic flag manifolds can be found

in [27].

2.7 Mirrors of symplectic Grassmannians

In this section we will briefly discuss mirrors to these nonabelian GLSMs, following the

nonabelian mirror ansatz discussed in [10]. (It should be noted that other notions of

mirrors exist, with different UV presentations but apparently equivalent IR physics, see [6–

9, 28, 29].)

The mirror to the GLSM for SG(k, 2n) is a Landau-Ginzburg model defined by [10]

• chiral superfields Yia, i ∈ {±1, · · · ,±n} and a ∈ {1, · · · , k},

• chiral superfields Uµν = exp(−Vµν), mirror to qµν , µ, ν ∈ {1, · · · , k},

• chiral superfields Xµν = exp(−Zµν), mirror to W-bosons, µ, ν ∈ {1, · · · , k},

• σa.

with superpotential

W =
∑
a

σa

∑
i

Yia −
∑
µ>ν

ρaµν lnUµν −
∑
µ 6=ν

αaµν lnXµν − t


+
∑
i,a

exp(−Yia) +
∑
µ>ν

Uµν +
∑
µ 6=ν

Xµν ,

where ρaµν = −δaµ−δaν . Here we are considering general symplectic Grassmannians SG(k, 2n)

with k ≤ n, which includes Lagrangian Grassmannians as a special case when k = n.

Let us check explicitly that the chiral ring relations match. First, integrate out the σa
to get the constraints ∑

i

Yia −
∑
µ>ν

ρaµν lnUµν −
∑
µ 6=ν

αaµν lnXµν = t, (2.71)

which we solve by taking

Yna = t−
∑
i<n

Yia +
∑
µ>ν

ρaµν lnUµν +
∑
µ 6=ν

αaµν lnXµν . (2.72)
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We define

Πa ≡ exp(−Yna) = q

(∏
i<n

exp(Yia)

)∏
µ 6=a

Uaµ

∏
µ 6=a

Xaµ

Xµa

 , (2.73)

then the superpotential reduces to

W =
∑
i<n,a

exp(−Yia) +
∑
a

Πa +
∑
µ>ν

Uµν +
∑
µ 6=ν

Xµν . (2.74)

On the critical locus, we have

exp(−Yia) = Πa, −Uµν = Πµ + Πν , Xµν = −Πµ + Πν . (2.75)

Therefore, the chiral ring relations are

Π2n
a = q

∏
µ 6=a

(Πa + Πµ), a = 1, · · · , k. (2.76)

Now we can see that the mirror reproduces the chiral ring relation of the original theory

via the operator mirror map

Πa ↔ σa. (2.77)

3 Orthogonal Grassmannians OG(k, n)

3.1 Background and GLSM realization

Orthogonal Grassmannians, denoted OG(k, n), are submanifolds of an ordinary Grassman-

nian G(k, n), satisfying an isotropy condition with respect to a nondegenerate quadratic

form. (Specifically, an isotropic subspace W of a vector space V has the property that

for all vectors x, y ∈ W , x · y = 0 for the dot product defined by the quadratic form;

nondegeneracy simply means that the orthogonal complement of the entire vector space

V is just 0.) They can be realized by GLSMs for Grassmannians with a superpotential

realizing the isotropy condition. The resulting GLSMs look very similar to those for sym-

plectic Grassmannians, except that one has a field coupling to a symmetric-tensor-square

representation rather than in an antisymmetric tensor representation.

We have two slightly different GLSMs depending upon whether n is even or odd.

First consider the case of n odd. Write n = 2m + 1. The GLSM is a U(k) gauge theory

with n chirals φai in the fundamental representation V (a ∈ {1, · · · , k}, i ∈ {−m,−m +

1, · · · , 0, · · · ,+m}), and one chiral qab in the representation Sym2V ∗, with superpotential

W = qab

(
φa0φ

b
0 +

m∑
i=1

φai φ
b
−i

)
. (3.1)

We interpret φaα as defining k vectors in C2m+1, and the F terms imply the isotropy

condition x · y = 0 for each of k vectors in C2m+1, with a dot product defined by the

symmetric matrix  1 0 0

0 0 Im
0 Im 0

 , (3.2)
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corresponding to the quadratic form

Q(φ) = φ0φ0 +
m∑
i=1

φiφ−i. (3.3)

The case of n even is similar. Write n = 2m. The GLSM is a U(k) gauge theory with

n chirals φai in the fundamental representation V (a ∈ {1, · · · , k}, i ∈ {±1,±2, · · · ,±m}),
and one chiral qab in the representation Sym2V ∗, with superpotential

W =
m∑
i=1

qabφ
a
i φ

b
−i. (3.4)

We interpret φaα as the components of k vectors in C2m, and the F terms imply the isotropy

condition x·y = 0 for each of k vectors in C2m, with a dot product defined by the symmetric

matrix [
0 Im
Im 0

]
, (3.5)

corresponding to the quadratic form

Q(φ) =

m∑
i=1

φiφ−i. (3.6)

These GLSMs were also briefly described in [2, section 2.4.3, example 2].

The dimension of OG(k, n) (or rather, the dimension of one component, in the case

n = 2k) is4 [11], [12][section 3.2]
k(2n− 3k − 1)

2
. (3.7)

For later use, note that in the special case n = 2k, the complex dimension of OG±(k, 2k)

is (1/2)k(k − 1).

In the special case of OG(m, 2m), the orthogonal Grassmannian decomposes into a

disjoint union of two spaces, denoted OG±(m, 2m):

OG(m, 2m) = OG+(m, 2m)
∐

OG−(m, 2m). (3.8)

(This corresponds to Plücker coordinates being (anti-)self-dual.) These two components

OG±(m, 2m) are isomorphic to one another. They are also known as spinor varieties,

denoted Sm:

OG+(m, 2m) ∼= OG−(m, 2m) ∼= Sm. (3.9)

(See e.g. [30, section 6.1] for one perspective on this splitting.)

A few examples are as follows:

OG+(2, 4) = P1 = OG(1, 3), (3.10)

OG+(3, 6) = P3 = OG(2, 5), (3.11)

OG+(4, 8) = quadric 6-fold. (3.12)

4The expression above corrects a minor typo in [12][section 3.2].
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When k = 1, OG(k, n) is a quadric hypersurface in Pn−1. This follows immediately from

the GLSM. For k = 1, the symmetric tensor representation has only one component, so

there is only one q field, of charge −2. It multiplies a quadric polynomial in the φ fields,

and hence coincides with the GLSM for the vanishing locus of that quadric polynomial

in Pn−1. For example, a quadric in P2 is5 P1, and so we recover the standard result that

OG(1, 3) = P1.

The simplest example in which to see the decomposition of OG(m, 2m) explicitly is

OG(1, 2). As described above, this is a quadric hypersurface in P1 given by φ1φ−1 = 0.

This equation is reducible, and in any event any hypersurface in P1 will describe a collection

of points. In this case, we see OG(1, 2) is two points, so OG±(1, 2) are each a single point.

Geometrically, we can think of this in terms of isotropic subspaces of C2 with quadratic

form defined by the symmetric matrix [
0 1

1 0

]
. (3.13)

There are two isotropic subspaces, each one-dimensional, one generated by (1, 0)T , the other

by (0, 1)T . Since the subspaces are unique, there are no deformations, and so OG±(1, 2)

should each be a single point.

We can understand the decomposition of OG(2, 4) similarly: think of this in terms of

isotropic subspaces of two copies of the vector space above, C4 with a quadratic form defined

by two copies of the matrix (3.13) along the diagonal. Then, for example, the vectors

(1, 0, 1, 0)T , (0, 1, 0, 1)T each lie in distinct isotropic subspaces. In this case, however, these

vectors lie in larger families, which we can visualize by moving the two choices of C2’s

inside C4. Such a choice is equivalent to choosing a one-dimensional subspace of C2, which

is P1, hence we see OG±(2, 4) = P1.

The Euler characteristic of OG(n, 2n) is [31] given by 2n, the same as LG(n, 2n). The

Euler characteristic of either chiral component OG±(n, 2n) is 2n−1.

Global symmetries of this QFT follow the same pattern discussed earlier. We can

rotate the chiral superfields into one another, preserving the superpotential. For OG(k, n),

we have n chiral superfields, and chiral superfield rotations are described by U(n)/U(1) =

PSU(n); restricting to those preserving the superpotential — in particular, those preserv-

ing the metric — restrict to SO(n,C) (up to possible finite group quotients).

Just as in symplectic Grassmannians, orthogonal Grassmannians OG(k, n) can be triv-

ially embedded into G(k, n), and share the Plücker map defined by SU(k)-invariant baryons

Bα1···αk
= εa1···akφ

a1
α1
· · ·φakαk

, (3.14)

5If we didn’t projectivize, the reader will note that this is an equation for C2/Z2, or explicitly

(φ0)2 + φ1φ−1 = 0.

However, after projectivization, corresponding to gauging the U(1) symmetry, this becomes a curve, and

codimension-one quotient singularities do not exist on curves as varieties.
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for α = ±i. In the special case that n is even and k = n/2, there is a second class of

SU(k)-invariant operators, just as for Lagrangian Grassmannians, given by

B̃±1,··· ,±n = εa1···anφ
a1
±1 · · ·φ

an
±n. (3.15)

As written, these define a map from OG(m, 2m) into a projective space of dimension

2m − 1; however, the two components OG±(m, 2m) naturally live within subsets defined

by the ‘chiral’ spinors, and so we also have maps on the chiral components OG±(m, 2m),

mapping them into projective spaces of dimension 2m−1−1. (See [15, section 3.7] for more

information.) These maps are sometimes known as the chiral spinor embeddings.

Further background on pure spinors, as relevant to these chiral spinor embeddings, can

be found in [32, chapters V, VI]. Background on spinor varieties and orthogonal Grassman-

nians can be found in e.g. [11, 12, 33–42], [14, section 6.2]. A GLSM describing a degree 12

K3 surface, which is a subvariety of OG+(5, 10), is example SSSM1,8,5 in [43, section 2.4].

3.2 Mixed Higgs-Coulomb phases at r � 0

In this section we will study the r � 0 phases of the GLSMs for orthogonal Grassmannians.

Here, the r � 0 phases will be mixed Higgs-Coulomb branches, containing both Higgs

and Coulomb vacua. (In appendix E we discuss such phases in the simpler context of

hypersurfaces in projective spaces.)

One would be tempted to try to analyze the resulting theories using the methods

of Hori-Tong [16]. There, one had U(k) gauge theories with fundamentals as well as

fields charged only under detU(k). These theories were analyzed in a Born-Oppenheimer

approximation, ‘fibering’ the SU(k) gauge theories over the space of vacua defined by

the fields charged only under detU(k). Here, however, there are no fields charged solely

under detU(k); all the fields are charged nontrivially under SU(k), so no analogous Born-

Oppenheimer analysis is pertinent.

OG(n, 2n). As described above, the orthogonal Grassmannian OG(n, 2n) is described

as a GLSM with a U(n) gauge group with matter

• 2n chiral fields φai in the fundamental representation V ,

• 1 chiral field qab in the symmetric tensor product representation Sym2V ∗,

where a = 1, · · · , n, i = ±1, · · · ,±n, and superpotential

W =

n∑
i=1

qabφ
a
i φ

b
−i.

Next, we consider the phase r � 0. Here, from the D-terms, the qab cannot all vanish

simultaneously, while the F -terms imply that the vevs of all φai should vanish. In particular,

there can be a nontrivial Higgs branch when r � 0, which must be taken into account when

computing vacua. This Landau-Ginzburg phase will play a role in the next analysis.
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In general, since the r � 0 phase is Fano, one would ordinarily expect that the r � 0

phase is accompanied by discrete Coulomb vacua [44]. However, in these theories, de-

scribing OG(n, 2n) specifically, there are no discrete Coulomb vacua for n > 1, as we will

establish next.

The one-loop corrected twisted superpotential is

W̃eff = −t
n∑
a=1

Σa −
∑
i,a

ρbiaΣb (ln ρciaΣc − 1)−
n∑

µ≥ν=1

n∑
a=1

ρaµνΣa

[
ln

(
n∑
b=1

ρbµνΣb

)
− 1

]

−
n∑

µ,ν=1

n∑
a=1

αaµνΣa

[
ln

(
n∑
b=1

αbµνΣb

)
− 1

]

with ρbia = δba, ρ
a
µν = −δaµ − δaν and αaµν = −δaµ + δaν , and where we have assumed n > 1.

Simplifying, we get

W̃eff =−(t+i(n−1)π)
n∑
a=1

Σa−
n∑
a=1

2nΣa (lnΣa−1)−
n∑

µ≥ν=1

n∑
a=1

ρaµνΣa

[
ln

(
n∑
b=1

ρbµνΣb

)
−1

]
,

so that

∂W̃eff

∂σa
= −t− i(n− 1)π − 2n lnσa + 2 ln(−2σa) +

∑
b 6=a

ln(−σa − σb), (3.16)

which gives the chiral ring relations

4q
∏
b 6=a

(σa + σb) = σ2n−2
a , (3.17)

with q = exp(−t). However, this has no solutions that are not contained inside the excluded

locus {σa 6= σb}. We can see this as follows.

Our analysis follows the same form as in section 2. Suppose for the moment that

n = 2k + 1. We write equation (3.17) as

4q
(

(σa)
2k + · · ·+ σ2

ae2k−2(σ) + e2k(σ)
)

= (σa)
2k, (3.18)

where the ei are elementary symmetric polynomials in all of the σa. Broadly speaking, this

equation should have 2k roots for the value of (σa)
2, but since n = 2k+ 1, there are 2k+ 1

different values of σa that must be assigned. (In particular, the excluded locus condition

requires that the σa must all be distinct.) There are two possible ways to assign values.

• One option is if one σa = 0, and the others are distinct and nonzero. In this case,

the Coulomb branch relation (3.17) reduces to∏
a 6=b

σa = 0, (3.19)

so at least one other value of σa must vanish, giving σa = σb(= 0) for some a 6= b, a

contradiction.
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• Another option is if two values of σ differ only by a sign. Suppose, without loss

of generality, that σ1 = −σ2, so that σ2
1 = σ2

2 but σ1 6= σ2. Then, in this case,

equation (3.17) implies

σ2n−2
1 = 0, σ2n−2

2 = 0, (3.20)

hence σ1 = σ2 = 0, again contradicting the assumption that the values of σ are

distinct.

The analysis for the case of n even is nearly identical. As a result, we see that for n > 1

there are not enough distinct solutions to the Coulomb branch relations to satisfy the

excluded locus condition, hence there is no Coulomb branch, the r � 0 phase is pure

Higgs.

Now, let us consider the Higgs branch in the phase r � 0. In the case n = 1, the

representation defining q is one-dimensional, so the GLSM is that for a quadric hypersurface

in P1, with the r � 0 phase a Z2 orbifold of a Landau-Ginzburg model with superpotential

W = φ1φ−1, (3.21)

i.e. a mass term. Since there is an even number of massive fields, there are two vacua [19, 45–

47], [48, section 4.2]. The r � 0 phase is OG(1, 2), which is two points, so we see that the

Euler characteristics match, trivially.

For r � 0 for more general cases, D terms imply that the qab are not all zero, which

Higgses the gauge group U(n) to Z2 × SO(n) (see e.g. [18]), and gives a mass to the φ

fields. The Z2 subgroup arises as a subgroup of detU(n) that acts trivially on the qab,

and so, from decomposition [19, 45–49], we expect that the Landau-Ginzburg geometry

is a disjoint union of two spaces, just as the r � 0 geometry. We shall not pursue the

geometry of this Landau-Ginzburg phase further in this paper, but it would be interesting

to do so, especially to compare to the predictions for this phase from homological projective

duality [50–53].

OG(n, 2n + 1). First, we shall look for discrete Coulomb vacua. We shall find that,

unlike the case of OG(n, 2n), this theory does have nontrivial discrete Coulomb vacua, as

well as a nontrivial Landau-Ginzburg model.

The effective twisted superpotential is

W̃eff = −(t+ i(n− 1)π)

n∑
a=1

Σa −
n∑
a=1

(2n+ 1)Σa (ln Σa − 1)

−
n∑

µ≥ν=1

n∑
a=1

ρaµνΣa

[
ln

(
n∑
b=1

ρbµνΣb

)
− 1

]
,

(3.22)

from which one derives the chiral ring relations

4q
∏
b 6=a

(σa + σb) = σ2n−1
a . (3.23)

We will see in examples that this admits nontrivial solutions.
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Let us first consider OG(1, 3). Specializing our previous discussion, the corresponding

GLSM is a U(1) gauge theory with one q field of charge −2 and three φ fields φ0,±1 of

charge +1, with superpotential

W = q(φ0φ0 + φ−1φ1). (3.24)

As discussed earlier, for r � 0, this describes P2[2] = P1.

Now, let us turn to the r � 0 phase. This is a Z2 orbifold of a Landau-Ginzburg model

with superpotential

W = φ0φ0 + φ−1φ1, (3.25)

describing three massive fields. Since there is an odd number of massive fields in this Z2

orbifold, there is a single vacuum [19, 45–47], [48, section 4.2].

However, we also need to take into account discrete Coulomb vacua [44]. The chiral

ring relation is

4q = σ, (3.26)

so we see we have one discrete Coulomb vacuum, for a total of two vacua, matching the

Euler characteristic of the large-radius phase OG(1, 3) = P1, as expected.

Unfortunately, since the vacua live on a combination of Coulomb and Higgs vacua,

we do not know of a method to directly compute the product relations, as we have done

previously for theories in which all of the vacua arise on a Coulomb branch.

3.3 Calabi-Yau condition

As another consistency test, we briefly mention Calabi-Yau conditions. Mathematically,

the intersection of the Plücker embedding of OG(k, n) with a hypersurface of degree n−k−1

is Calabi-Yau. We reproduce the same condition physically as the condition for the sum

of the charges under any U(1) subgroup of the gauge group to vanish.

The GLSM for OG(k, n) is a U(k) gauge theory with n chirals in the fundamental

V , and one chiral in Sym2V ∗. Under any U(1) ⊂ U(k), the n chirals in the fundamental

contribute a total of n to the sum of the U(1) charges, and the one chiral in Sym2V ∗

contributes −2− (k − 1) = −k − 1, so that the sum of the U(1) charges is

n− k − 1. (3.27)

Under the same U(1), any element of the Plücker embedding

εa1···akφ
a1
i1
· · ·φakik (3.28)

has charge 1, so we see that intersecting the image of OG(k, n) with a hypersurface of

degree n− k − 1 should be Calabi-Yau, reproducing the mathematics result.

Let us consider a set of special cases to explicitly check this result. Recall OG(1, n) =

Pn−1[2]. The Calabi-Yau condition is that an additional hypersurface should have degee

n− 2, which matches n− k − 1.
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3.4 Orthogonal flag manifolds

In addition to orthogonal Grassmannians, there also exist orthogonal flag manifolds. At the

level of group cosets, these are of the form SO(n,C)/P for suitable parabolic subgroups

P . We can describe them as submanifolds of ordinary flag manifolds F (k1, · · · , kp, 2n)

satisfying an isotropy condition on the maximal vector space.

Let us briefly describe GLSMs for these flag manifolds. We begin with the GLSM for

an ordinary flag manifold F (k1, · · · , kp, 2n) [26]. This is a

U(k1)× U(k2)× · · · × U(kp) (3.29)

gauge theory with bifundamentals (k1,k2), (k2,k3), and so forth to (kp−1,kp), along

with 2n chirals in representation kp of U(kp), following [26]. To build the GLSM for an

orthogonal flag manifold OF (k1, · · · , kp, 2n), we add a chiral superfield qab transforming in

the Sym2kp representation of U(kp), along with a superpotential of the form

W =
∑
ab

qab

(
Φa

0Φb
0 +

m∑
i=1

Φa
iΦ

b
−i

)
or

∑
ab

qab

(
m∑
i=1

Φa
iΦ

b
−i

)
(3.30)

(depending upon whether n is even or odd). As for symplectic flag manifolds, we only

impose an isotropy condition on the last, maximal, flag, as all other vector spaces in the

flag are subspaces.

We will not compute quantum cohomology rings from the GLSM here, but mathemat-

ical discussions of quantum cohomology rings for orthogonal flag manifolds can be found

in [27].

3.5 Mirrors of orthogonal Grassmannians

Now let us consider the mirror model to the above orthogonal Grassmannian. We will follow

the nonabelian mirror ansatz discussed in [10]. (It should be noted that other notions of

mirrors exist, with different UV presentations but apparently equivalent IR physics, see [6–

9, 28, 29].)

OG(k, 2n). According to [10], the mirror model to OG(k, 2n) is a Landau-Ginzburg

model with

• chiral superfields Yia, i ∈ {±1, · · · ,±n} and a ∈ {1, · · · , k},

• chiral superfields Uµν = exp(−Vµν), mirror to qµν ,

• chiral superfields Xµν = exp(−Zµν), mirror to W-bosons,

• σa.

and the superpotential is

W =
∑
a

σa

∑
i

Yia −
∑
µ≥ν

ρaµν lnUµν −
∑
µ 6=ν

αaµν lnXµν − t


+
∑
i,a

exp(−Yia) +
∑
µ≥ν

Uµν +
∑
µ 6=ν

Xµν ,
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where ρaµν = −δaµ − δaν . From the definition of this mirror Landau-Ginzburg model, the

dimension can be counted as 2nk − k(k − 1) − 1
2k(k + 1) − k = 1

2k(4n − 3k − 1), which

matches the dimension of OG(k, 2n).

Now let us compute the chiral ring relation. First, integrate out σa’s and we will get∑
i

Yia −
∑
µ≥ν

ρaµν lnUµν −
∑
µ 6=ν

αaµν lnXµν = t, (3.31)

namely, we have

Yna = t−
∑
i<n

Yia +
∑
µ≥ν

ρaµν lnUµν +
∑
µ 6=ν

αaµν lnXµν

= t−
∑
i<n

Yia − 2 lnUaa −
∑
µ 6=a

lnUaµ −
∑
µ 6=a

(lnXaµ − lnXµa) .

Define

Πa = exp(−Yna) = q

(∏
i<n

exp(Yia)

)
U2
aa

∏
µ 6=a

Uaµ

∏
µ 6=a

Xaµ

Xµa

 , (3.32)

therefore the superpotential becomes

W =
∑
i<n,a

exp(−Yia) +
∑
a

Πa +
∑
µ≥ν

Uµν +
∑
µ 6=ν

Xµν . (3.33)

Now let us look at the critical locus defined by

exp

(
∂W

∂φ

)
= 1, for φ an arbitrary field.

In components, for each a, we have

∂W

∂Yia
= − exp(−Yia) + Πa, for i < n,

∂W

∂Uaa
= 1 +

2

Uaa
Πa,

∂W

∂Uaµ
= 1 +

1

Uaµ
Πa +

1

Uaµ
Πµ, for µ 6= a,

∂W

∂Xaµ
= 1 +

1

Xaµ
Πa −

1

Xaµ
Πµ, for µ 6= a,

∂W

∂Xµa
= 1− 1

Xµa
Πa +

1

Xµa
Πµ, for µ 6= a,

where in the third equation, we have used Uaµ = Uµa. Therefore, on the critical locus, we

have

exp(−Yia) = Πa, −Uaµ = Πa + Πµ, Xµν = −Πµ + Πν .

Then plugging back into equation (3.32), we have

Π2n−2
a = 4q

∏
µ 6=a

(Πa + Πµ). (3.34)

The chiral ring relations obtained from mirror models are equivalent to each other given

that

Πa ↔ σa.
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OG(k, 2n + 1). The mirror to OG(k, 2n+ 1) is defined as the Landau-Ginzburg model

with

• chiral superfields Yia, i ∈ {0,±1, · · · ,±n} and a ∈ {1, · · · , k},

• chiral superfields Uµν = exp(−Vµν), mirror to qµν ,

• chiral superfields Xµν = exp(−Zµν), mirror to W-bosons,

• σa,

and the superpotential is

W =
∑
a

σa

∑
i

Yia −
∑
µ≥ν

ρaµν lnUµν −
∑
µ 6=ν

αaµν lnXµν − t


+
∑
i,a

exp(−Yia) +
∑
µ≥ν

Uµν +
∑
µ 6=ν

Xµν ,

where ρaµν = −δaµ − δaν . From the definition of this mirror Landau-Ginzburg model, the

dimension can be counted as (2n+ 1)k−k(k− 1)− 1
2k(k+ 1)−k = 1

2k(4n− 3k+ 1), which

matches the dimension of OG(k, 2n+ 1).

First integrate out σa’s,

Y0a = t−
∑
i 6=0

Yia +
∑
µ≥ν

ρaµν lnUµν +
∑
µ 6=ν

αaµν lnXµν ,

= t−
∑
i 6=0

Yia − 2 lnUaa −
∑
µ 6=a

lnUaµ −
∑
µ 6=a

(lnXaµ − lnXµa) , (3.35)

and define

Πa = exp (−Y0a) = q

∏
i 6=0

exp(Yia)

U2
aa

∏
µ 6=a

Uaµ

∏
µ 6=a

Xaµ

Xµa

 . (3.36)

The superpotential becomes

W =
∑
i 6=0,a

exp(−Yia) +
∑
a

Πa +
∑
µ≥ν

Uµν +
∑
µ 6=ν

Xµν . (3.37)

Using the same calculations as in case of OG(k, 2n), we have

exp(−Yia) = Πa, −Uaµ = Πa + Πµ, Xµν = −Πµ + Πν .

and

Π2n−1
a = 4q

∏
µ 6=a

(Πa + Πµ) , (3.38)

which is the same as the chiral ring relations for OG(k, 2n+ 1) by

Πa ↔ σa.
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4 Conclusions

In this paper we have studied GLSM realizations of symplectic and orthogonal Grass-

mannians and flag manifolds, which is to say, spaces of the form SO(n)/P and Sp(n)/P

for suitable subgroups P , generalizing GLSMs for ordinary Grassmannians G(k, n) which

are of the form U(n)/P . We have checked our descriptions by comparing ordinary and

equivariant quantum cohomology rings predicted by GLSMs with those derived mathe-

matically, compared Witten indices of different phases. We have also discussed mirrors of

these GLSMs.

One future direction is to generalize to GLSMs for Grassmannians and flag manifolds

derived from exceptional groups. Another direction is to understand how to interpret the

various phases in terms of homological projective duality [50].
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A Symmetric polynomials

In this section, we briefly define two classes of symmetric polynomials and list some iden-

tities which are used extensively in this paper.

Elementary symmetric polynomials. The kth elementary symmetric polynomial in

n variables x1, · · · , xn, denoted ek(x), is defined by

ek(x) =
∑

1≤i1<···<ik≤n
xi1xi2 · · ·xik . (A.1)

with e0(x) = 1 and ek(x) = 0 for k < 0. For example, the elementary symmetric polyno-

mials in 3 variables x1, x2 and x3 include

e1(x) = x1 + x2 + x3,

e2(x) = x1x2 + x1x3 + x2x3,

e3(x) = x1x2x3.

It can be shown that for elementary symmetric polynomials in n variables x1, · · · , xn,

e`(x)2 + 2

n−l∑
j=1

(−1)je`+j(x)e`−j(x) =
∑

1≤i1<···<i`≤n
x2
i1 . . . x

2
i`
. (A.2)
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Complete homogeneous symmetric polynomials. The k-th complete homogeneous

symmetric polynomial in n variables x1, · · · , xn, denoted hk(x), is defined by

hk(x) =
∑

1≤i1≤···≤ik≤n
xi1xi2 · · ·xik , (A.3)

with h0(x) = 1 and hk(x) = 0 for k < 0. They can also be defined as

hk(x) =
∑

i1+···+in=k

xi11 x
i2
2 · · ·x

in
n , (A.4)

where i1, . . . , in are non-negative integers. For example, the complete homogeneous sym-

metric polynomials in 3 variables x1, x2 and x3 include

h1(x) = x1 + x2 + x3,

h2(x) = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3,

h3(x) = x3
1 + x3

2 + x3
3 + x2

1x2 + x2
1x3 + x1x

2
2 + x2

2x3 + x1x
2
3 + x2x

2
3 + x1x2x3.

For complete homogeneous symmetric polynomials in two variables x1,2, define

P
(n)
1 = hn(x)2 + 2

n−2∑
i=1

(−)ihn−i(x)hn+i(x).

P
(n)
2 = hn(x)2 + 2

n∑
i=1

(−)ihn+i(x)hn−i(x),

for a given integer n ≥ 2. We will use the following identity in section 2.3:

2P
(n)
1 + 3

(
x2

1 + x2
2

)
P

(n−1)
2 + 4x1x2P

(n−1)
2 = (−)n−1

(
x2n

1 + x2n
2

)
. (A.5)

As we do not know a reference where this is written explicitly, we briefly outline an

argument for this identity here. First, it is straightforward to check that it is true for

n ≤ 3, so we will use induction to argue it for general n. Assume it is true for n, n + 1,

then we will argue it is true for n+ 2. Now, for polynomials in two indeterminates,

hn(x) = hn−1(x)e1(x)− hn−2(x)e2(x),

which one can use to show

P
(n+2)
1 = P

(n+1)
1 e2

1 + P
(n)
1 e2

2 + 2(−)ne3
1h2n+1 − 2(−)ne2

1e2h2n + 2(−)ne2
2h2n,

P
(n+1)
2 = P

(n)
2 e2

1 + P
(n−1)
2 e2

2 − 2(−)ne1h2n+1 + 2(−)ne2h2n,

where we have used e1 = h1. This implies

2P
(n+2)
1 +

(
3x2

1 + 3x2
2 + 4x1x2

)
P

(n+1)
2

= e1(x)2(−)n
(
x2n+2

1 + x2n+2
2

)
+ e2(x)2(−)n−1

(
x2n

1 + x2n
2

)
+ 2(−)n+1e1h2n+3 + 2(−)ne1e2h2n+1,

= (−)n
(
x2n+4

1 + x2n+4
2

)
+ 2(−)n

(
x2n+3

1 x2 + x1x
2n+3
2

)
+ 2(−)n+1e1h2n+3 + 2(−)ne1e2h2n+1.
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For the last two terms, using the second definition of complete homogeneous symmetric

polynomials, we have

2(−)n+1e1h2n+3+2(−)ne1e2h2n+1

= 2(−)n+1
∑

i1+i2=2n+3

(
xi1+1

1 xi22 +xi11 x
i2+1
2

)
+2(−)n

∑
j1+j2=2n+1

(
xj1+2

1 xj2+1
2 +xj1+1

1 xj2+2
2

)
,

= 2(−)n+1(x2n+4
1 +x2n+4

2 )+2(−)n+1(x2n+3
1 x2+x1x

2n+3
2 ),

+2(−)n+1
∑

i′1+i′2=2n+1

(
x
i′1+2
1 x

i′2+1
2 +x

i′1+1
1 x

i′2+2
2

)
+2(−)n

∑
j1+j2=2n+1

(
xj1+2

1 xj2+1
2 +xj1+1

1 xj2+2
2

)
,

= 2(−)n+1(x2n+4
1 +x2n+4

2 )+2(−)n+1(x2n+3
1 x2+x1x

2n+3
2 ).

Therefore,

2P
(n+2)
1 +

(
3x2

1 + 3x2
2 + 4x1x2

)
P

(n+1)
2 = (−)n+1

(
x2n+4

1 + x2n+4
2

)
, (A.6)

establishing the induction.

B Equivariant quantum cohomology

Equivariant quantum cohomology can be obtained from gauged linear sigma models by

turning on twisted masses for global symmetries [24]. In this section, we will review how

this works in detail for projective spaces and Grassmannians, comparing to known math

results [54].

Mathematically, many results on equivariant cohomology on these spaces follow from

the universal sequence over any Grassmannian

0 −→ S −→ V −→ Q −→ 0, (B.1)

where S is the universal subbundle, Q the universal quotient bundle, and V a trivial bundle.

For G(k,N), S has rank k, Q has rank N − k, and the trivial bundle V has rank N . If

we turn on equivariant parameters with respect to the maximal torus in GL(N), then we

write V as a sum of eigenspaces for the action:

V ∼= Ct1 ⊕ Ct2 ⊕ · · · ⊕ CtN , (B.2)

for generic equivariant parameters t1, . . . , tn. The total Chern class in equivariant coho-

mology is given by

c(V) = (1 + t1)(1 + t2) · · · (1 + tN ). (B.3)

The equivariant cohomology ring of the Grassmannian can be expressed in terms of the

equivariant Chern classes of S. For later use, the resulting expressions can often be effi-

ciently written in terms of functions hN (x|t), known as the factorial complete homogeneous

Schur functions, which are defined as

hp(x|t) =
∑

1≤i1≤···≤ip≤k
(xi1 − ti1) (xi2 − ti2+1) . . .

(
xip − tip+p−1

)
, (B.4)

for p an integer N − k + 1 ≤ p ≤ N .
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B.1 Projective spaces

From the GLSM for the projective space PN−1, the chiral ring relation after turning on

twisted masses is given by
N∏
i=1

(σ −mi) = q. (B.5)

Mathematically, for PN−1, the equivariant quantum cohomology ring relation is6 [54]

hN (x|t) = q̃. (B.6)

In this case, k = 1, p can only be N and t = (t1, . . . , tN ),

hN (x|t) = (x− t1)(x− t2) . . . (x− tN ), (B.7)

so the mathematical relation (B.6) for equivariant quantum cohomology matches the phys-

ical chiral ring relation (B.5) if we identify x = σ, ti = mi, and q̃ = q.

In terms of the universal subbundle S and its equivariant Chern classes, from (B.1) we

have

c1(S) + c1(Q) = e1(t),

c1(S)c1(Q) + c2(Q) = e2(t),

. . .

c1(S)cN−1(Q) + cN (Q) = eN (t),

or more simply,

c`(Q) = e`(t)− c1(S)c`−1(Q) =
∑̀
i=0

(−c1(S))ie`−i(t), (B.8)

for ` = 1, 2, . . . , N , where ei(t) is the i-th elementary symmetric polynomial of t1, . . . , tN .

In particular,

cN (Q) =
N∑
i=0

(−c1(S))ieN−i(t) =
N∑
i=0

(−1)ixieN−i(t) = (−1)NhN (x|t). (B.9)

Classically, cN (Q) = 0. In the quantum theory, cN (Q) = (−1)N q̃, which yields the equiv-

ariant cohomology ring relations hN (x|t) = q̃ in [54], for x = c1(S).

B.2 Grassmannians

Let us consider the general Grassmannians, G(k,N). It can be realized in the U(k) GLSM

with N fundamentals. The chiral ring relations are

N∏
i=1

(σa −mi) = (−1)k−1q, for a = 1, . . . , k. (B.10)

6We use q̃ to distinguish from the q in ordinary chiral ring relations.
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First, consider the special case G(2, 4). Define x1, x2 as the Chern roots of the universal

subbundle S. The equivariant quantum cohomology ring relations are given by [54]

c3(Q) = −h3(x|t) = 0,

c4(Q) = h4(x|t) = −q̃.

We claim the GLSM predictions match. The physical chiral ring relations for G(2, 4) are

4∏
i=1

(σ1 −mi) = −q,

4∏
i=1

(σ2 −mi) = −q.

Subtracting these equations and factoring out σ1 − σ2 (since the excluded locus forbids

σ1 = σ2), we have

h3(σ)− e1(m)h2(σ) + e2(m)h1(σ)− e3(m) = 0. (B.11)

Since the left-hand side of the equation above is h3(σ|m), we recover the first equivariant

quantum cohomology ring relation after identifying ti = mi and xa = σa.

The sum of the physical chiral ring relations is

(σ4
1 + σ4

2)− (σ3
1 + σ3

2)e1(m) + (σ2
1 + σ2

2)e2(m)− (σ1 + σ2)e3(m) + 2e4(m) = −2q. (B.12)

Adding (σ1 + σ2)h3(σ|m) to the left-hand side gives 2h4(σ|m). Therefore, we end up with

h4(σ|m) = −q, (B.13)

which matches the second equivariant quantum cohomology ring relation if we also identify

q̃ = q.

Next, consider G(2, N). The equivariant quantum cohomology ring relations are given

by [54]

hN−1(x|t) = 0,

hN (x|t) = −q̃.

We follow the same pattern to show that these ring relations follow from the physical chiral

ring relations
N∏
i=1

(σa −mi) = −q, (B.14)

for a ∈ {1, 2}. Subtracting the two equations and factoring out σ1 − σ2 yields

hN−1(σ|m) =
N−1∑
i=0

(−1)iei(m)hN−1−i(σ) = 0, (B.15)
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which matches the first mathematical ring relation. Next, summing the two chiral ring

relations gives

N−1∑
i=0

(−1)iei(m)
(
σN−i1 + σN−i2

)
+ (−1)N2eN (m) = −2q. (B.16)

Since we have hN−1(σ|m) = 0, we can add (σ1 + σ2)hN−1(m|t) to the left-hand side of the

above equation to get

2hN (σ|m) =

N−1∑
i=0

(−1)iei(m)
(
σN−i1 + σN−i2

)
+ (−1)N2eN (m) + (σ1 + σ2)hN−1(σ|m) = −q,

(B.17)

from which the second mathematical relation follows. Therefore, we see that for σa = xa,

mi = ti and q = q̃, the physical chiral ring relations reproduce the mathematical equivariant

cohomology relations.

Next, we consider the case G(3, N). In this case, the equivariant quantum cohomology

ring relations are [54]

hN−2(x|t) = 0, hN−1(x|t) = 0, hN (x|t) = q. (B.18)

From the GLSM for G(3, N), we have following chiral ring relations:

N∏
i=1

(σa −mi) = q, (B.19)

for a ∈ {1, 2, 3}.
To derive the mathematical ring relations from the physical chiral ring relations, we

proceed as follows. First, subtract each two of the three chiral ring relations and factor out

(σ1 − σ2), (σ1 − σ3), and (σ2 − σ3), to get.

N−1∑
i=0

(−1)iei(m)hN−1−i(σ1, σ2) = 0, (B.20)

N−1∑
i=0

(−1)iei(m)hN−1−i(σ1, σ3) = 0, (B.21)

N−1∑
i=0

(−1)iei(m)hN−1−i(σ2, σ3) = 0. (B.22)

Subtracting any two of the equations above gives a relation of the form

N−2∑
i=0

(−1)iei(m) (hN−1−i(σ1, σ2)− hN−1−i(σ1, σ3)) = 0. (B.23)

We simplify this using

hk(σ1, σ2)− hk(σ1, σ3) =
∑
i+j=k

σi1

(
σj2 − σ

j
3

)
= (σ2 − σ3)

∑
i+j=k

σi1hj−1(σ2, σ3),

= (σ2 − σ3)hk−1(σ),
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and factoring out σ2 − σ3 from equation (B.23) then gives

N−2∑
i=0

(−1)iei(m)hN−2−i(σ) = hN−2(σ|m) = 0, (B.24)

which is the first equivariant quantum cohomology ring relation.

To obtain the second ring relation, sum the three equations, (B.20), (B.21) and (B.22),

which gives

0 =
N−1∑
i=0

(−1)iei(m) (hN−1−i(σ1, σ2) + hN−1−i(σ1, σ3) + hN−1−i(σ2, σ3)) ,

=

N−1∑
i=0

(−1)iei(m) (hN−1−i(σ1, σ2) + hN−1−i(σ1, σ3) + hN−1−i(σ2, σ3))

+e1(σ)hN−2(σ|m),

=

N−2∑
i=0

(−1)iei(m) [hN−1−i(σ1, σ2) + hN−1−i(σ1, σ3) + hN−1−i(σ2, σ3)

+e1(σ)hN−2−i(σ)] + 3(−1)N−1eN−1(m),

= 3
N−2∑
i=0

(−1)iei(m)hN−1−i(σ) + 3(−1)N−1eN−1(m),

= 3hN−1(σ|m),

which is the second equivariant quantum cohomology ring relation.

The last equivariant quantum cohomology ring relation can be obtained by summing

the three physical chiral ring relations:

3q =

N−1∑
i=0

(−1)iei(m)
(
σN−i1 + σN−i2 + σN−i3

)
+ (−1)N3eN (m),

=

N−1∑
i=0

(−1)iei(m)
(
σN−i1 + σN−i2 + σN−i3

)
+ (−1)N3eN (m)

+2e1(σ)hN−1(σ|m)− e2(σ)hN−2(σ|m),

= 3

N−1∑
i=0

(−1)iei(m)hN−i(σ) + (−1)N3eN (m),

= 3hN (σ|m).

Thus, we see that all the equivariant quantum cohomology ring relations can be derived

from the physical chiral ring relations for G(3, N).

These methods are straightforward to generalize to G(k,N) for k > 3, and so we do

not give further details here.

C Tensor product representation

In this appendix, we briefly review the weights of tensor products of representations. Con-

sider first the case V ⊗ V , where V is a two-dimensional representation. Denote a basis of
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V by {v1, v2}, then a basis for the tensor product is

{v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2} .

In the representation V , the weights ρai are defined by Havi = ρai vi, where Ha is a Cartan

generator [56]. In the tensor product representation V ⊗ V ,

Havi ⊗ vj = (ρai + ρaj )vi ⊗ vj ≡ ρaijvi ⊗ vj , (C.1)

namely, the weights are ρaij = ρai + ρaj .

We can further restrict to the (anti-)symmetric case by (anti-)symmetrizing the basis.

In this particular example, the symmetric tensor product representation has the basis{
v1 ⊗ v1, v2 ⊗ v2,

1

2
(v1 ⊗ v2 + v2 ⊗ v1)

}
,

and the weights are 2ρa1, 2ρ
a
2, ρ

a
1 + ρa2. In the anti-symmetric case, the basis is

1

2
(v1 ⊗ v2 − v2 ⊗ v1) ,

and the weights are ρa1 + ρa2. This story can be generalized easily.

D Equivariant quantum cohomology for SG(n, 2n)

Consider the universal sequence over SG(n, 2n) with equivariant parameters turned on

0 −→ S −→ V tSG(n,2n) −→ Q −→ 0. (D.1)

In this sequence, the tautological bundle S and the quotient bundle Q both have rank n

and they are dual to each other, i.e. S∗ ∼= Q, which implies ci(S) = (−)ici(Q) and the

Chern roots of S and Q are up to a minus sign. This universal bundle gives the following

relation

c
(
Vt
)

= c(S)c(Q) = (1 + c1(S) + · · ·+ cn(S))(1 + c1(Q) + · · ·+ cn(Q)),

= (1− x2
1)(1− x2

2) · · · (1− x2
n), (D.2)

where xi can be the Chern roots of either S or Q. The total Chern class of c
(
Vt
)

is

c(Vt) = (1+ t1) · · · (1+ tn)(1− t1) · · · (1− tn) = 1−e1(t2)+e2(t2)+ · · ·+(−)nen(t2). (D.3)

where ti’s are equivariant parameters for Sp(n)-action and ei(t
2) is the i-th elementary

symmetric polynomial of
{
t21, · · · , t2n

}
.

To obtain the (quantum) cohomology ring relations, we need to modify equation (D.2)

by adding ci(S) and ci(Q) for n < i ≤ 2n and it becomes

c(Vt) = (1 + c1(S) + · · ·+ c2n(S)) (1 + c1(Q) + · · ·+ c2n(Q)) . (D.4)

Since Q ∼= S∗, the relations ci(Q) = (−)ici(S) still hold for n < i ≤ 2n. Now the (quantum)

cohomology ring relations can be obtained by extracting terms of the same degree from
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both sides. Our convention here is to choose {ci(S)|i = 1, . . . , n} as the generators of the

(quantum) cohomology and the constraints on {ci(Q)|i = n+ 1, . . . , 2n} will generate the

ring relations. To get the classical ones, we need to set

cn+1(Q) = 0, cn+2(Q) = 0, · · · , c2n(Q) = 0. (D.5)

While to obtain the quantum cohomology ring relations, q̃ has degree n+ 1 for SG(n, 2n)

and we need to set

2cn+1(Q) = q̃, cn+2(Q) = 0, · · · , c2n(Q) = 0. (D.6)

In the following, we only verify the quantum case as it will reproduce the classical case

in the limit q̃ → 0. It turns out we should consider two situations, n odd and n even,

separately.

First, let us consider n = 2k + 1. Equations (D.3) and (D.4) generate the following

two sets of equations:

c1(S) + c1(Q) = 0,

c2(S) + c1(S)c1(Q) + c2(Q) = −e1(t2),

· · ·
c2k(S) + c2k−1(S)c1(Q) + · · ·+ c1(S)c2k−1(Q) + c2k(Q) = (−)kek(t

2),

c2k+1(S) + c2k(S)c1(Q) + · · ·+ c1(S)c2k(Q) + c2k+1(Q) = 0,

and

c2k+2(S) + c2k+1(S)c1(Q) + · · ·+ c1(S)c2k+1(Q) + c2k+2(Q) = (−)k+1ek+1(t2),

c2k+3(S) + c2k+2(S)c1(Q) + · · ·+ c1(S)c2k+2(Q) + c2k+3(Q) = 0,

· · ·
c4k+1(S) + c4k(S)c1(Q) + · · ·+ c1(S)c4k(Q) + c4k+1(Q) = 0,

c4k+2(S) + c4k+1(S)c1(Q) + · · ·+ c1(S)c4k+1(Q) + c4k+2(Q) = (−)2k+1e2k+1(t2).

Among the above two sets of relations, the relations with odd degrees are trivially satisfied

due to the fact that ci(Q) = (−)ici(S). Therefore, we are left with n = 2k + 1 nontrivial

relations of even degrees. In the first set, substituting ci(Q) = (−)ici(S), for 1 ≤ i ≤ k, we

have

2c2i(S)− 2c2i−1(S)c1(S) + · · ·+ (−)i−12ci+1(S)ci−1(S) + (−)ic2
i (S) = (−)iei(t

2),

or equivalently,

c2
i (S) + 2

i∑
l=1

(−)lci−l(S)ci+l(S) = ei(t
2).

Written in terms of Chern roots of S:

ei(x)2 + 2
i∑
l=1

(−)lei−l(x)ei+l(x) = ei(t
2), for i = 1, 2, · · · , k. (D.7)
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This set of relations will be the same for both classical case and quantum case. For

the second set, we first need to write down ci(Q), 2k + 2 ≤ i ≤ 4k + 2, in terms of

{ci(S)|i = 1, · · · , n = 2k + 1} and then use equation (D.6) to obtain final results. For

0 ≤ a ≤ k, we have

(−1)k+a+1c2
k+1+a(S) + 2(−1)k+a+1

k−a∑
l=1

(−)lck+a+1−l(S)ck+a+1+l(S) + 2c2a(S)c2k+2(Q)

+ 2c2a−1(S)c2k+3(Q) + · · ·+ 2c1(S)c2k+2a+1(Q) + 2c2k+2a+2(Q) = (−)k+a+1ek+a+1(t2),

and applying equation (D.6), this reduces to

c2
k+1+a(S) + 2

k−a∑
l=1

(−)lck+a+1−l(S)ck+a+1+l(S) = ek+a+1(t2) + (−)k+a+2c2a(S)q̃.

Or equivalently, in terms of Chern roots of S:

e2
i (x) + 2

2k+1−i∑
l=1

(−)lei−l(x)ei+l(x) = ei(t
2) + (−)i+1e2i−2k−2(x)q̃, for i = k + 1, · · · , 2k + 1.

(D.8)

For the case n = 2k, the strategy is the same and we just write down the results:

ei(x)2 + 2

i∑
l=1

(−)lei−l(x)ei+l(x) = ei(t
2), for i = 1, 2, · · · , k.

e2
i (x) + 2

2k−i∑
l=1

(−)lei−l(x)ei+l(x) = ei(t
2) + (−)i+1e2i−2k−1(x)q̃, for i = k + 1, · · · , 2k.

We can summarize the equations for even n and odd n cases above in a more compact

form as

e2
i (x) + 2

n−i∑
l=1

(−)lei−l(x)ei+l(x) = ei(t
2) + (−)i+1e2i−n−1(x)q̃, (D.9)

for i = 1, · · · , n.

E Simple examples of mixed Higgs-Coulomb branches

In this appendix, we will outline some simple examples of theories with mixed Higgs-

Coulomb branches, and the limitations of computing quantum cohomology with σ fields in

each case.

First, consider the case of a hypersurface of degree d in P4.

• d = 0. In this case, there is no hypersurface, this is just the GLSM for P4 itself. In

this case, there is no Higgs branch for r � 0, only a Coulomb branch, with σ fields

obeying

σ5 ∝ q. (E.1)

There are then five solutions for σ, matching the Euler characteristic of P4, and those

σ fields can be used to reproduce the quantum cohomology ring of P4, using known

methods [59].
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• d = 5. This is the Calabi-Yau case. In this case, there is no Coulomb branch,

no discrete Coulomb vacua, only the Higgs branch, corresponding to the Landau-

Ginzburg orbifold phase of this Calabi-Yau hypersurface.

• d = 2. (This GLSM provides an alternative physical realization of the space SG(2, 4),

which as a variety coincides with P4[2].) This is an example of a mixed branch, with

both Higgs and Coulomb vacua. The Coulomb vacua are solutions of

σ5 = (−2σ)2q, (E.2)

or σ3 ∝ q, which only has three solutions. In addition, there is a Landau-Ginzburg

orbifold, a Z2 orbifold of a theory with superpotential of the form

W = x2
1 + · · ·x2

5. (E.3)

Here, the x fields are clearly massive, and as there is an odd number of them, taking

the Z2 orbifold only results in a single vacuum [19, 45–47], [48, section 4.2]. Combining

the Landau-Ginzburg and Coulomb vacua, we have a total of 4 vacua, matching the

Euler characteristic of the hypersurface P4[2].

As a related example, consider the GLSM for a hypersurface of degree d in P3.

• The degree d = 0 and d = 4 cases follow the same form as above. In one case, one has

the GLSM for P3, which only has a Coulomb branch, no Landau-Ginzburg phase. In

the other case, one only has a Landau-Ginzburg phase, no discrete Coulomb vacua.

• The degree d = 2 case here is a bit more interesting. The Coulomb vacua are

solutions of

σ4 = (−2σ)2q, (E.4)

or σ2 ∝ q, and so there are 2 discrete Coulomb vacua. The Landau-Ginzburg phase

is a Z2 orbifold of a theory with superpotential of the form

W = x2
1 + · · ·+ x2

4. (E.5)

Again, the x fields are all massive, but there is an even number of them, so now

the Z2 orbifold results in two vacua [19, 45–47], [48, section 4.2]. Combining the

Landau-Ginzburg vacua and Coulomb vacua, we have a total of four vacua, which

matches the Euler characteristic of P3[2].

In passing, the Coulomb branch relation for a hypersurface of degree k in a projective

space Pn, namely

σn+1 = q(−k)kσk, (E.6)

appear in discussions of the quantum cohomology ring of hypersurfaces in [57, equ’n (16),

(64)], [58, equ’n (1.1)], as a distinguished subring of the quantum cohomology ring (com-

puted by the Coulomb branch of the GLSM).
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F Dualities and examples

In this appendix we will summarize some geometric relationships between various Grass-

mannians, that have appeared sporadically throughout the text.

1. G(k, n) ∼= G(n− k, n),

2. SG(1, 2n) ∼= P2n−1,

3. OG(1, n) ∼= Pn−1[2],

4. OG(n, 2n+ 1) ∼= OG+(n+ 1, 2(n+ 1)), see e.g. [5, exercise 23.53],

5. OG(1, 3) ∼= OG+(2, 4) ∼= P1,

6. OG(1, 5) ∼= SG(2, 4) ∼= P4[2], see e.g. [5, exercise 23.50],

7. OG(2, 5) ∼= SG(1, 4) ∼= P3, see e.g. [5, exercise 23.50],

8. OG(1, 6) ∼= G(2, 4) ∼= P5[2], see e.g. [5, section 23.3],

9. OG+(3, 6) ∼= SG(1, 4) ∼= P3, see e.g. [5, section 23.3],

10. OG(1, 8) ∼= OG+(4, 8), see e.g. [5, section 23.3].

Physically, these all correspond to various IR dualities between GLSMs, sometimes

relating abelian GLSMs to nonabelian GLSMs.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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