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1 Introduction

A description of the space-time by matrices has been an essential subject in gauge/string
theories. The origin of the idea may go back to the large-N reduced model [1] for the gauge
theories. In string theory, a description of the dimension by the infinite number of D-branes
was proposed in ref. [2]. Since the late 90s, the matrix model began to be an alternative
description of M-theory [3], and string theory [4]. While in the beginning, they describe
only the flat d-dimensional torus, later the management of the coset or homogeneous spaces
were explored (for instance, in refs. [5, 6]).

In this paper, we explore a more direct correspondence between the gauge symmetry
algebra and the space-time manifold by relaxing the requirement that the gauge symmetry
algebra be identical to the matrix algebra. The motivation comes from our study of the
higher-dimensional Yang-Mills theory from an infinite-dimensional algebra [7]. A prototype
example is the S1 compactification where the current (Kac-Moody) algebra described by
the gauge algebra functions on S1, T An , where the integer n is a label for the KK-modes
and A for the gauge algebra k. We also need to include extra generators u and v, where v
is the central charge, and u is the level operator. The algebra takes the form[

T An , T Bm
]

= iFABCT Cn+m + nv GAB,
[
u, T An

]
= nT An . (1.1)

We note that the additional generator u describes the derivative with respect to θ. The
center v is necessary to generate the KK-mass. As a straightforward generalization, one
may obtain an algebraic description of the toroidal compactification Tn from the n-loop
algebra.1

In this paper, as the next simplest example, we consider the algebra associated with
the coset space. The algebra consists of k (the gauge algebra)-valued function on G/H.
As in the Kac-Moody case, we need the extra generators, which describe the isometry G
and the analogue of the center. For simplicity, we restrict ourselves to the 0-dimensional
Yang-Mills theory with an additional mass term and Chern-Simons-like coupling (which is
not restricted to 3 dimensions), and show that it produces a Lagrangian of the gauge fields
coupled with adjoint scalar fields on G/H.

We organize the paper as follows. In section 2, we give a brief review of the differential
geometry of the coset space, along the line of ref. [11]. We use the embedding function of
G/H into G. The arbitrariness of the embedding suggests that the group H behaves as an
extra gauge symmetry. In section 3, we propose the infinite-dimensional algebra associated
with the coset space G/H and the gauge symmetryK. In the definition of the algebra, there
is no ambiguity associated with the embedding. In sections 4 and 5, we derive IKKT-type
Lagrangian with mass and Chern-Simons terms with the infinite-dimensional symmetry.
With a Higgs-like mechanism, we obtain a field theory Lagrangian defined on the coset.
While it has the K gauge symmetry manifestly, the H gauge symmetry is hidden. In
sections 6, 7, 8, we decompose the original field variables X into the gauge and the scalar

1The idea of using a Lorentzian pair u, v came from the BLG-type formulation of M2-branes (for instance,
see ref. [8]) as well as M5-branes [9, 10]. In the traditional approach to the matrix model, the generator v
is ignored, and the associated equation of motion is absent.
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fields on the coset, by appropriately choosing the basis of the tangent space of G into the
tangent (gauge fields) on the coset G/H and orthogonal (scalar fields) directions. At this
level, the Lagrangian has both the K and H gauge symmetries.2

2 A brief review of the cosets G/H

In this section, we review basics about the geometry of coset spaces G/H along the line of
ref. [11].

2.1 Lie algebra decomposition

A coset is a quotient space G/H of a Lie group G over a subgroup H ⊂ G. Let g and h be
the Lie algebras of G and H, respectively, we can then decompose the Lie algebra g of G as

g = h⊕m (2.1)

where m represents the coset part of the Lie algebra.
When both G and H are compact Lie groups, one may choose m such that

[h,m] ⊆ m, (2.2)

with m and h orthogonal to each other with respect to the inner product. This means
that one can choose the generators Ta (a, b = 1, · · · , |G|) of g such that Ti ∈ h for
i = 1, 2, · · · , |H| and Tα ∈ m for α = |H|+ 1, · · · , |G|, and that the Lie bracket of g

[Ta, Tb] = ifabcTc (2.3)

is decomposed as

[Ti, Tj ] = ifijkTk , (2.4)
[Ti, Tα] = ifiαβTβ , (2.5)
[Tα, Tβ ] = ifαβiTi + ifαβγTγ . (2.6)

In other words, the structure constants fijα, fiαj vanish. In the following, we will not
require G and H to be compact Lie groups, but we will assume that eq. (2.2) holds.

2.2 Coset representative

An element x ∈ G/H can be identified with x = gH for some g ∈ G. It is natural to define
a projection π : G→ G/H as

π(g) = gH , (2.7)
2We note that the gauge theory on a coset space G/H was constructed as a matrix model in ref. [6]. They

start from the gauge theory on the group manifold G, and obtained the action on G/H as a dimensional
reduction. On the other hand, we start from the definition of the infinite-dimensional algebra associated
with the coset and derived directly the coset action.
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and an embedding map σ : G/H → G such that π · σ : G/H → G/H is the identity
map. σ(x) can be viewed as the representative of x ∈ G/H. But the choice of the coset
representative is not unique: one may change it as

σ(x) → σ̃(x) = σ(x)h̃(x) (2.8)

for an arbitrary map h̃ : G/H → H. In the following, we will refer to this arbitrariness of
σ as the “H-gauge symmetry”.

The multiplication by g ∈ G to x ∈ G/H from the left is an isometry transformation
on the coset G/H. For any g ∈ G, there is a function h(g, x) on G/H such that

gσ(x) = σ(gx)h(g, x), h(g, x) ∈ H . (2.9)

The H-twist h(g, x) satisfies the cocycle condition

h(g1g2, x) = h(g1, g2x)h(g2, x) (2.10)

as a consequence of the associativity of G.

2.3 Adjoint representation

In the following, we will use the notation D(g) for the adjoint representation so that

g−1Tag = Da
b(g)Tb . (2.11)

As a representation, it satisfies Da
b(g1g2) = Da

c(g1)Dc
b(g2).

Assuming that g is a Lie algebra equipped with a non-degenerate invariant inner prod-
uct 〈Ta, Tb〉. Without loss of generality, we assume that 〈Ta, Tb〉 = ηab, where ηab is a
diagonal matrix with eigenvalues ±1.3 The invariance of the inner product implies the
orthogonality of the adjoint representation:

ηab Dc
a(g)Dd

b(g) = ηcd . (2.12)

The transpose
D̄ b
a (g) ≡ ηbcηadDc

d(g) (2.13)

of D(g) is also its inverse, i.e.

Da
c(g)D̄ b

c (g) = D̄ c
a (g)Dc

b(g) = δba . (2.14)

2.4 Vielbein and H-connection

Given a local coordinate system {θµ} (µ = 1, 2, · · · |G| − |H|) of G/H, we shall denote
σ(x(θ)) simply as σ(θ) on the local patch. Define the covariant frame (vielbein) Vµα(θ)
and the H-connection Ωµ

i(θ) by

Eµ ≡ σ(θ)−1∂µσ(θ) = iVµα(θ)Tα + iΩµ
i(θ)Ti , (2.15)

3For a semi-simple Lie-algebra, one can take the inner product to be the Killing form. For an Abelian
group such as U(1)n, one can take any ηab.
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which can be expressed as an equation of 1-forms: E = σ−1dσ = i(V αTα + ΩiTi). The
inverse vielbein Vαµ by definition satisfies

Vµ
α(θ)Vαν(θ) = δνµ , Vα

µ(θ)Vµβ(θ) = δβα . (2.16)

The invariant inner product of g induces a metric on G/H:

gµν(θ) ≡ ηαβVµα(θ)Vνβ(θ) , gµν(θ) ≡ ηαβVαµ(θ)Vβν(θ) , (2.17)

where ηαβ is the inverse of ηαβ and gµν is the inverse of gµν .
Under the H-gauge transformation (2.8), E transforms as E → Ẽ ≡ h̃−1Eh̃+ h̃−1dh̃,

which implies

Vµ(θ)→ Ṽµ(θ) ≡ h̃−1(θ)Vµ(θ)h̃(θ) , (2.18)
Ωµ(θ)→ Ω̃µ(θ) ≡ h̃−1(θ)Ωµ(θ)h̃(θ)− ih̃−1(θ)∂µh̃(θ) . (2.19)

The isometry transformation (2.9) may be written as

σ(θg) = gσ(θ)h−1(θ, g) (2.20)

where θg is the coordinate of gx(θ). It leads to a transformation of E as

σ(θg)−1dσ(θg) = h(θ, g)(σ−1(θ)dσ(θ))h−1(θ, g) + h(θ, g)dh−1(θ, g). (2.21)

Picking up the Tα components, we find

V α(θg) = V β(θ)Dβ
α(h−1(θ, g)) . (2.22)

The metric gµνdθµdθν is thus manifestly invariant under the left g-action.
The Maurer-Cartan equation for E is

dE + E ∧ E = 0 , (2.23)

which decomposes into m and h as

dV α + i
2fβγ

αV β ∧ V γ + ifiβαΩi ∧ V β = 0 , (2.24)

dΩi + i
2fjk

iΩj ∧ Ωk + i
2fαβ

iV α ∧ V β = 0 . (2.25)

The last equation says that the field strength of the H-connection Ω is non-zero whenever
fαβ

i 6= 0.

2.5 Infinitesimal isometry transformation

We consider the infinitesimal version of the isometry transformation (2.9) on the coset
G/H with

g = 1 + εaTa . (2.26)
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Eq. (2.20) implies that

h(θ, g) = 1 + εaΛai(θ)Ti , (2.27)
(θg)µ = θµ − εauaµ(θ) (2.28)

for some functions Λai(θ) and uaµ(θ). The infinitesimal form of (2.9) becomes

Taσ(θ) = −ûa(θ)σ(θ) + σ(θ)Λai(θ)Ti , (2.29)

where
ûa(θ) = ua

µ(θ)∂µ . (2.30)

The first term on the right hand side describes an infinitesimal variation on the coset
space G/H.

Multiplying σ−1 from the left on both sides of eq. (2.29), one obtains

σ−1Taσ = Da
b(σ)Tb = Da

α(σ)Tα +Da
i(σ)Ti (2.31)

on the left-hand side according to eq. (2.11), and deduces from eq. (2.15) that

Da
α(σ(θ)) = −iuaµ(θ)Vµα(θ) , (2.32)

Da
i(σ(θ)) = −iuaµ(θ)Ωµ

i(θ) + Λai(θ) . (2.33)

Thus we can solve uaµ and Λai as

ua
µ(θ) = iDa

α(σ(θ))Vαµ(θ) , (2.34)
Λai(θ) = Da

i(σ(θ)) + iuaµ(θ)Ωµ
i(θ) . (2.35)

As eq. (2.29) tells us how Ta acts on σ, this action must realize the Lie algerba
[Ta, Tb] = ifabcTc, which then implies that

ua
µ∂µub

ν − ubµ∂µuaν = ifabcucν , (2.36)
ua

µ∂µΛb − ubµ∂µΛa + [Λa,Λb] = ifabcΛc , (2.37)

where Λa ≡ ΛaiTi.
A measure dΘ can be defined on the coset space G/H such that it is invariant under

isometry transformations. For an arbitrary normalizable regular function f(θ) on G/H,
we have ∫

dΘ ua
µ(θ)∂µf(θ) = 0 . (2.38)

For later use, we introduce an orthonormal basis {λΞ(θ)} on G/H for which∫
dΘ λΞ(θ)λΠ(θ) = δΞΠ . (2.39)

When the group G is compact, we have a discrete family of the basis. For the noncom-
pact case, we have to reinterpret the labels Σ,Π to be continuous. While it is easier to
restrict G to be compact, we do not see a strong obstacle for the generalization to the
noncompact cases.
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3 An infinite dimensional Lie algebra for G/H

In this section, we introduce a new class of infinite-dimensional Lie algebras that is a
generalization of the infinite-dimensional Lie algebras considered in ref. [7] that were used
to promote the base space of a Yang-Mills theory to higher dimensions.

The infinite-dimensional Lie algebra is associated with a Lie group K and a coset space
G/H as follows. We will use the notation for G and H as in the previous section. The Lie
group K is defined in terms of the basis TA as[

TA,TB
]

= iFABCTC , (3.1)

with the invariant metric GAB =
(
TA,TB

)
with A,B = 1, · · · |K|. We denote the Lie alge-

bra associated with K as k. The group K and the coset G/H can be chosen independently.
We will refer the algebra for the coset space as Ĉ(K;G,H), or simply Ĉ. The generators

of Ĉ(K;G,H) consist of ua, va (a = 1, · · · , |G|) associated with the isometry, and the
infinite number of generators T A[λ] (A = 1, 2, · · · , |K|), which depends linearly on any
regular function λ(θ) on G/H.

We define the Lie bracket by the following relations:

[
T A[λ1], T B[λ2]

]
= iFABCT C [λ1λ2]−

|G|∑
a=1

GABva

∫
dΘ λ1(θ)(ûaλ2(θ)) , (3.2)[

ua, T B[λ]
]

= T B[ûaλ] , (3.3)

[ua, ub] = ifabcuc , (3.4)[
ua, v

b
]

= −ifacbvc , (3.5)[
va, vb

]
=
[
va, T A[λ]

]
= 0 . (3.6)

We have two structure constants: FABC for the Lie algebra k (for the gauge symmetry),
and fab

c for g (for the isometry of the coset). We may roughly identify FA[λ] with a k-
valued function on G/H, say TAλ(θ) where TA ∈ k. The first term in eq. (3.2) is the
algebra for such functions. The relation (3.3) implies that ua acts as an infinitesimal G
isometry on the functions on G/H, written in the form of ûa = uµa∂µ, which acts on the
function λ. The last line (3.6) and the second term of eq. (3.2) show that va may be
regarded as an analogue of the central extension, but it has a nonvanishing commutator
with ua when G is non-Abelian as in eq. (3.5). The dependence of the algebra on H comes
implicitly from the facts that λ is a function on G/H, and ûa is realized as a differential
operator acting on it.

The Lie bracket defined above satisfies the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (3.7)

for any three generators A,B,C in Ĉ(K;G,H).

– 6 –
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The invariant inner product on Ĉ(K;G,H) is defined by〈
T A[λ1], T B[λ2]

〉
= GAB

∫
dΘλ1(θ)λ2(θ) , (3.8)〈

ua, v
b
〉

= δba , (3.9)

with other combinations vanishing. For any three generators A,B,C in Ĉ(K;G,H), the
invariant inner product satisfies

〈[A,B], C〉+ 〈B, [A,C]〉 = 0 . (3.10)

The Jacobi identity and the invariance of the inner product are examined in appendix A.
We note that this invariant inner product is not positive-definite because of eq. (3.9). An
inner product with the Lorentzian-signature was considered previously in ref. [7], but not
very common in the literature of the matrix models. We will see below that a Yang-Mills
theory dimensionally reduced to 0 dimension with the algebra Ĉ(K;G,H) is equivalent to
a gauge field theory living on the coset G/H as the base space.

We note that the algebra does not have an ambiguity in the choice of the coset repre-
sentative σ(θ). The isometry generator ûa is invariant under the H-gauge transformation,
as we will show later (7.2), (7.11) in terms of the coordinates θ.

We remark that our approach based on Ĉ is slightly different from the conventional
form of the matrix model. For instance, in the case of the noncommutative T2 (see, for
instance a review article [12]), one defines the matrix algebra by two generators U1, U2,
satisfying U1U2 = e2πiθU2U1. The matrix algebra Tθ is defined by its envelopping algebra
generated by (U1)n1(U2)n2 , (n1, n2 ∈ Z). In order to reproduce the Yang-Mills theory on
T2, we have to add, extra generators X1, X2 satisfying [Xi, Uj ] = −2πiδijUj , which act
as endomorphism on Tθ. In our case, the analogue of Tθ is generated by T A[λ] which
is the basis of the functions on the coset. The extra endomorphism generators Xi in Tθ
are denoted by the elements ua. At the same time, we include vb which is not included
in the matrix model, but are necessary to obtain the proper equation of motion for the
non-Abelian coset space. In all, our treatment gives a generalization of the matrix model,
which is applicable to the general coset space without imposing constraints on the field
variables.

3.1 Examples

• When G = U(1) with H being the trivial group composed of nothing but the identity
element id, the algebra Ĉ(K; U(1), id) becomes[

T An , T Bm
]

= iFABCT Cn+m +GABnvδn+m , (3.11)[
u, T An

]
= nT An , (3.12)

where we identify T An = TAeinθ, û = −i∂θ and
∫
dΘ = 1

2π
∫ 2π

0 dθ. In this case,
Ĉ(K; U(1), id) is an affine Lie algebra k̂, where v is the center and u is the level
operator. It was shown in ref. [7] that, a Yang-Mills theory on D-dimensional base
space with the gauge symmetry algebra Ĉ(K; U(1), id) is equivalent to a Yang-Mills
theory on (D + 1)-dimensional space with the gauge group K.

– 7 –
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• Similarly, for G = U(1)⊗`, the algebra becomes[
T A~n , T B~m

]
= iFABCT C~n+~m +GAB

∑
a

navaδ~n+~m , (3.13)[
ua, T A~n

]
= naT A~n . (3.14)

This may be referred to as the `-loop algebra which has ` central extensions va.
The generators are labeled by ~n ∈ Z`. It should be clear from ref. [7] that a D-
dimensional Yang-Mills theory with the gauge symmetry algebra Ĉ(K,U(1)⊗`, id) is
equivalent to a (D+`)-dimensional Yang-Mills theory with the gauge symmetry group
K. Mathematically, the representation theory for the cases of ` = 1, 2 are well-known.
For ` = 2, the algebra is called “toroidal algebras”, whose q-deformation [13–15] were
intensively studied recently in the context of the AGT conjecture. For ` > 2, not
much is known from the mathematical study on the representations.

• The isometry group G is Abelian in the examples above. The simplest non-Abelian
example is the coset G/H = SU(2)/U(1) = S2. See appendix B for details of the coset
description.4 We will consider the 0-dimensional gauge theory with the symmetry
algebra Ĉ(K; SU(2),U(1)) in section 6. It will be shown that the Yang-Mills theory
reduced to 0 dimension with the symmetry algebra Ĉ(K; SU(2),U(1)), supplemented
with cubic and quadratic terms, is equivalent to a Yang-Mills theory on S2 with
the symmetry group K, including a generalized Chern-Simons term and a massive
scalar field.

4 Gauge theory with symmetry algebra Ĉ

We will focus on Yang-Mills theories dimensionally reduced to 0 dimension, to study the
dimensional oxidization by Ĉ. As we will focus on the bosonic sector, it can also be called
the Yang-Mills matrix model [19] or the reduced model [6]. More general analysis of the
super Yang-Mills theory coupled with adjoint scalars was made in ref. [7] for the higher
loop algebras.

The bosonic part of the IKKT model coincides with the Yang-Mills theory dimension-
ally reduced to 0 dimension. It has the action

S0 = 1
4

d∑
I,J=1

〈
[XI ,XJ ], [X I ,X J ]

〉
, (4.1)

where the indices I, J are raised and lowered using a metric ηIJ which is diagonal with
the eigenvalues ±1. The variables X I (I = 1, · · · , d) are typically infinite-dimensional
matrices. Our general strategy is to replace the algebra gl(∞) of infinite-dimensional
matrices by Ĉ(K;G,H) to obtain the dimensional oxidization on the coset space G/H.
Taking values in Ĉ(K;G,H), we expand the matrices XI in terms of the generators as

XI = XI + YI + ZI , (4.2)
4Matrix model description of fuzzy sphere goes back to ref. [16].
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where
XI =

∑
Ξ
XIAΞT A[λΞ] , YI =

∑
a

YIav
a , ZI =

∑
a

ZaI ua . (4.3)

Here,
∑

Ξ is a sum over an orthonormal basis {λΞ} on G/H. We will refer to Y, Z as the
“ghosts”.

To derive a more explicit expression for the action (4.1), we expand the commutator
[XI ,XJ ] as

[XI ,XJ ] = XIAΞ1XJBΞ2

(
iFABCT C [λΞ1λΞ2 ]−GABva

(∫
dΘλΞ1 ûaλΞ2

))
+ iZaIZbJfabcuc − [XIAΞZ

a
J − (I ↔ J)] T A[ûaλΞ] + ifbca

[
YIaZ

b
Jv

c − (I ↔ J)
]
.

(4.4)

Here and in the following, we use the Einstein summation convention, i.e., all repeated
indices are summed over. The action (4.1) can then be expanded as

S0 = −ZaIZbJfabc
[
fdc

eYIeZ
d
J + i

2G
AB
(∫

dΘλΞ1 ûcλΞ2

)
XIAΞ1XJBΞ2

]
− 1

4F
AB

CF
A′B′

C′XIAΞ1XJBΞ2XIA′Ξ3XJB′Ξ4G
CC′

∫
dΘλΞ1λΞ2λΞ3λΞ4

− iFABCXIAΞ1XJBΞ2G
CDXIDΞ3Z

a
J

∫
dΘλΞ1λΞ2 ûaλΞ3

+ 1
2XIAΞ1Z

a
JG

AB
(
XIBΞ2Z

b
J

∫
dΘ ûaλΞ1 ûbλΞ2 − (I ↔ J)

)
. (4.5)

4.1 Ĉ components as k-valued fields on G/H

We notice that the expression above can be reinterpreted as an action for k-valued
fields living on the coset space. Let TA denotes the Lie algebra generators of k, and
GAB = Tr(TATB) the invariant metric defined from the trace on k. Let P denotes a linear
map from Ĉ(K;G,H) to k-valued functions on G/H defined by

P
(
CAΞT A[λΞ] + yav

a + zaua
)
≡ CAΞλΞ(θ)TA . (4.6)

In particular,
P(XI) =

∑
Σ
XIAΣλΣ(θ)TA = X̄I(θ) (4.7)

is a k-valued field on G/H.
Furthermore, we define a map 〈〈•〉〉 from k-valued functions on G/H to C as〈〈

C(1)C(2) · · ·
〉〉
≡
∫
dΘ Tr

(
C(1)(θ)C(2)(θ) · · ·

)
. (4.8)

Using the map P and 〈〈•〉〉, the action can then be more concisely expressed as

S0 =
〈

[ZI , ZJ ], [Y I , ZJ ]
〉
− 1

2 〈[ZI , ZJ ], va〉
〈〈
X̄I

(
ûaX̄

J
)〉〉

+ 1
4
〈〈[
X̄I , X̄J

] [
X̄I , X̄J

]〉〉
− ZaJ

〈〈
[X̄I , X̄

J ]
(
ûaX̄

I
)〉〉

+ 1
2Z

a
J

(
ZJb

〈〈(
ûaX̄I

) (
ûbX̄

I
)〉〉
− ZIb

〈〈(
ûaX̄I

) (
ûbX̄

J
)〉〉)

. (4.9)
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We note that the terms written in the 〈〈•〉〉 resemble the field-theoretical action. On the
other hand, the ghost fields YI and ZI , being independent of the base space, appear as
non-dynamical variables.

The equations of motion are derived from the action above by variation with respect
to YI , ZI and XI , respectively, as

0 =
∑
J

[[ZI , ZJ ], ZJ ] , (4.10)

0 = −
∑
J

(
[[ZI , ZJ ], Y J ]− [ZJ , [ZI , Y J ]] + [ZJ , [ZJ , YI ]]

)
−
∑
J,a

[ZJ , va]
〈〈
X̄I , ûaX̄

J
〉〉

+
∑
J,a

va
〈〈

[X̄I , X̄J ], ûaX̄J
〉〉

+
∑
J,a,b

va
(〈〈

ûaX̄J , ẐIX̄
J
〉〉
−
〈〈
ûaX̄I , ẐJX̄

J
〉〉)

, (4.11)

0 = −
∑
J

(ẐJ ẐJX̄I − ẐJ ẐIX̄J)

−
(
[X̄J , Ẑ

JX̄I ]− [X̄J , ẐIX̄
J ]− ẐJ [X̄I , X̄

J ]
)
− [[X̄I , X̄J ], X̄J ] , (4.12)

where we have used the notation ẐI ≡
∑
a Z

a
I ûa, with ûa defined by eq. (2.30). A choice

of the non-dynamical parameters Y and Z is thus constrained by eqs. (4.10) and (4.11).
The equation for Z (4.10) is closed by itself, and a different choice of the solution of Z
changes the coefficients of the equation of motion for X̄I(θ) (4.12). On the other hand, Y
appears only in eq. (4.11), with the rest of the equations independent of Y . It is a Lagrange
multiplier with the only purpose of imposing the equation of motion for Z (4.10).

In the following sections, we will omit the bar in X̄I(θ) as XI(θ) for the simplicity of
the notation.

4.2 Solution for Z

Abelian case. When G = U(1)⊗` and H is trvial, eq. (4.10) gives no constraint on Z.
There is a global symmetry O(d,R) which rotates XI as XI → X ′I =

∑
J LI

JXJa, inducing
a rotation on ZI . There is another global symmetry O(`,Z) that rotates (ua, va)→ (u′a =∑
bMa

bub, v
′a =

∑
b v

bM−1
b
a). Assuming ` ≤ d, the rotation symmetries allow us to set,

without loss of generality,

ZIa =
{
LIa (I = 1, · · · , `; a ≤ I) ,
0 (I = `+ 1, · · · , d)

(4.13)

where LIa encodes the modular parameters of the `-dimensional torus T `. The action
Sm0 (4.5) becomes simply

Sm0 = 1
4
〈〈

[DI , DJ ]2
〉〉
, (4.14)

where

DI ≡ iZaI ∂a +XI(θ) =:
{

iLaI∂a +AI(θ) (I = 1, · · · , `) ,
ΦI(θ) (I = `+ 1, · · · , d) .

(4.15)
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This is the action for the Yang-Mills theory (with the gauge groupK) dimensionally reduced
from d-dimensions to T `. The components of the gauge potential in the reduced dimensions
are turned into (d− `) scalar fields (Φ`+1, · · · ,Φd) in the adjoint representation.

Our approach uses the equation of motion (4.10) to derive the torus modulus LIa.
This equation comes from the variation of YI , the coefficient of the ghost va, which has
not been considered in IKKT approaches in the past. This is an analogue of the Higgs-like
mechanism [8] used in the BLG-type description of M2-branes.

A problem for non-Abelian G. Suppose g is a simple Lie algebra such as su(2). An
obvious solution to eq. (4.10) is

ZI = ZIu, u ≡
∑
a

φaua, φa ∈ R . (4.16)

With such solutions, however, we would have a single derivative û =
∑
a φ

aûa appearing in
the action, instead of |G| − |H| independent derivatives for the coset space G/H. It means
that we have an infinite number of states at each KK level, and it does not produce a field
theory living on G/H. Therefore, we would like to consider modifications of the action to
admit solutions of Z that would lead to a field theory on the coset space G/H with its
isometry G as a global symmetry.

5 Gauge theory with quadratic and cubic terms

Motivated by the problem mentioned above for a non-Abelian group G, we consider adding
an extra quadratic (mass) term and a cubic (Chern-Simons-like) term to the action (4.1).
It turns out that the modified equation of motion for ZI has non-trivial solutions leading
to a field theory on G/H with the isometry as a global symmetry [17, 18]. Since there
should be |G| isometry transformation generators realized as differential operators through
the ZI ’s, we must consider d ≥ |G|. Using the O(d;R) symmetry acting on the index I of
XI , we can choose these |G| differential operators ZI to belong to the first |G| components
Xa (a = 1, 2, · · · , |G|). The remaining components XI (I = |G| + 1, · · · , d) would merely
contribute more scalar fields to the model.

We shall first consider the case d = |G| to focus on the components Xa (a=1, 2, · · ·, |G|),
and assume that the metric ηIJ agrees with the invariant inner product ηab of g. It
will be straightforward to extend the result to d > |G| by adding more scalar fields
P(X|G|+1), · · · ,P(Xd) in the end.

5.1 Modified action

For the choice of Lie algebra g, we restrict ourselves to a tensor product of semi-simple
Lie algebras and an abelian algebra, namely g = (⊕s

ι=1gι) ⊕ g′ where gι (ι = 1, · · · , s) are
simple Lie algebras, and g′ is abelian. It is clear that the parameters of the action, which
will be considered in the following, can be separately chosen for each factor. Since the
analysis for the abelian part will be the same as in the previous section, we will focus on
one of the simple Lie algebras gι and omit the index ι.
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The action S0 (4.1) is modified by quadratic and cubic terms as

S = S0 + S1 + S2 , (5.1)

with

S1 = R2hgab

〈
X a,X b

〉
, (5.2)

S2 = iλfabc
〈
X a, [X b,X c]

〉
, (5.3)

where

−facdfbdc = hgab (5.4)

is the Killing form of g. For the abelian factor, S1 should vanish for the consistency of
equation of motion and S2 vanishes since the structure constants are absent. For the new
action, the equation of motion for ZI (4.10) is

[[Za, Zb], Zb] = 2R2
ιh

g
abZ

b + 3iλfabc[Zb, Zc] . (5.5)

Using eq. (5.4), we write a solution in the form

Za = Lua . (5.6)

With this ansatz, the equation (5.5) becomes

L2 + 3λL− 2R2 = 0 . (5.7)

For an Abelian algebra, the corresponding L parameters remain arbitrary, as in the previous
section. For the semi-simple part, we shall assume that L ∈ R, but it is not yet clear
whether we need R2 > 0 for a real mass as S0 and S2 may also contribute to the mass term
of the scalar fields.

Substituting eq. (5.6) into the action (5.1), we obtain

S = 1
4

〈〈(
ẐaXb − ẐbXa + [Xa, Xb]

)2
〉〉

−
(1

2 + 3λ
L

)〈〈
Xa[Ẑa, Ẑb]Xb

〉〉
+R2hgab

〈〈
XaXb

〉〉
+ iλfabc

〈〈
[Xa, Xb]Xc

〉〉
= 1

4

〈〈(
ẐaXb − ẐbXa + [Xa, Xb]− iLfabcXc

)2
〉〉

+ 3
2(L+ 2λ)

(
−ifabc

〈〈
Xa ẐcXb

〉〉
+ LhGab

2
〈〈
XaXb

〉〉
+ 2i

3 fabc
〈〈
XaXbXc

〉〉)
,

(5.8)

– 12 –



J
H
E
P
1
0
(
2
0
2
0
)
1
9
8

where we have used eq. (5.7) to replace R by L and λ. Eq. (5.6) implies that Ẑa = Lûa,
and the action becomes

S=Skinetic+SCS, (5.9)

Skinetic≡
1
4

〈〈(
ẐaXb−ẐbXa+[Xa,Xb]−iLfabcXc

)2
〉〉

= L4

4

∫
dΘTr

[(
ûaX̂b−ûbX̂a+[X̂a, X̂b]−ifabcX̂c

)2
]
, (5.10)

SCS≡
3
2(L+2λ)

(
−ifabc

〈〈
Xa ẐcXb

〉〉
+Lhgab

2
〈〈
XaXb

〉〉
+ 2i

3 fabc
〈〈
XaXbXc

〉〉)

= 3
2(L+2λ)L3

∫
dΘTr

[
−ifabcX̂a ûcX̂b+

hgab
2 X̂aX̂b+ 2i

3 f
abcX̂aX̃bX̂c

]

= 3i
4 f

abc(L+2λ)L3
∫
dΘTr

[
X̂a

(
ûbX̂c−ûcX̂b+[X̂b, X̂c]−ifdbcX̂d

)
− 1

3[X̂a, X̂b]X̂c

]
,

(5.11)

where X̂a is a k-valued field on G/H defined by (see eq. (4.6))

X̂a ≡
1
L
Xa(θ) . (5.12)

5.2 Gauge invariance

Before ZI takes a specific solution, the action (5.1) is manifestly invariant under the trans-
formation

δXa = [Xa, E ] (5.13)

for any E ∈ Ĉ(K;G,H). For

E = ε+ κ+ ξ = εAΞT A[λΞ] + κbv
b + ξbub , (5.14)

the components of Xa transform for the background configuration (5.6) as

δXa = iFABCXaAΞ1εBΞ2T C [λΞ1λΞ2 ] + LεAΞT A[ûaλΞ]− ξbXaAΞT A[ûbλΞ] , (5.15)

δYa =
(
−GABXaAΞ1εBΞ2

∫
dΘλΞ1 ûbλΞ2 − iLfabcκc + ifcbdYadξc

)
vb , (5.16)

δZa = iLfabcξbuc . (5.17)

The background configuration of Za breaks the Ĉ-symmetry to the partial symmetry con-
strained by ξa = 0. (Recall that Ya is decoupled from other fields as a Lagrange multipler,
so we do not need to demand that δYa = 0.) The residual symmetry transformation is thus
equivalent to

δX̂a = ûaε̂+ [X̂a, ε̂] , (5.18)

where ε̂ ≡ P(E). Hence, this action defines a non-Abelian gauge theory with the gauge
group K on the coset space G/H. Under this gauge transformation, the actions Skinetic
and SCS are individually invariant.
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In order to derive a more standard action for the gauge theory, we need to decompose
Xa(θ) into the gauge field Aµ(θ) and the scalar field Φi, on which we will focus in the
following sections.

We note that the action we obtained are the same as those given in ref. [6] when H is
trivial, namely for the group manifold. While the authors of ref. [6] used the dimensional
reduction to obtain an action on G/H, we applied a purely algebraic method. Ref. [6]
introduced a “minimal action”, which contains only the gauge potential Aµ. The derivation
of such an action is not obvious in our purely algebraic framework.

The Chern-Simons-like action (5.11) is defined on the coset space whose dimension can
be equal to or larger than three. It will take the form

∫
dΘCµνρ(θ)χµνρ where Cµνρ is the

three-form induced from the structure constant fabc of G via the vielbein, and χµνρ is the
Chern-Simons term with the gauge group K.

6 Reduction to the conventional gauge theory on the coset:
G/H = SU(2)/U(1) = S2

To be explicit, we first consider the S2 case where we have a standard description in terms
of the polar coordinates. It corresponds to a fixed coset representative in appendix B.

We introduce the orthogonal basis as

ea
r = er

a = ~er = (sin θ cosϕ, sin θ sinϕ, cos θ) (6.1)
ea
θ = eθ

a = ~eθ = (sinϕ,− cosϕ, 0) (6.2)
ea
ϕ sin θ = eϕ

a(sin θ)−1 = ~eϕ = (cos θ cosϕ, cos θ sinϕ,− sin θ) (6.3)

These are the orthogonal basis satisfying δabeaµebν = gµν , δab eµaeνb = gµν with a diag-
onal metric grr = gθθ = 1, gϕϕ = sin θ. ~eµ is set to be orthonormal. We can rewrite
eqs. (B.2), (B.3), (B.4) as

ûa = i
(
ea
θ∂θ + ea

ϕ∂ϕ
)
. (6.4)

This expression and the gauge symmetry (5.18) imply that the field X̂ should be decom-
posed in the following way:

X̂a = ea
θAθ + ea

ϕAϕ + ea
rΦ . (6.5)

For the computation below, it is convenient to rewrite (6.4) and (6.5) in the vector notation
as follows:

~u = i
(
~eθ∂θ + ~eϕ

sin θ∂ϕ
)
, (6.6)

~X = ~erΦ + ~eϕ
Aϕ

sin θ + ~eθAθ. (6.7)

We also introduce the field strength and the covariant derivative;

Fθϕ = ∂θAϕ − ∂ϕAθ − i[Aθ, Aϕ], (6.8)
DθΦ = ∂θΦ− i[Aθ,Φ], DϕΦ = ∂ϕΦ− i[Aϕ,Φ]. (6.9)
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The action and the separation of variables. For the S2 case, the actions (5.10)
and (5.11) are simplified to

Skinetic = L4

4
∑
a,b

∫
dΘ Tr

(
ûaX̂b − ûbX̂a + [X̂a, X̂b]− iεabcX̂c

)2

= L4

2

∫
dΘ Tr

(
~u× ~X + ~X × ~X − i ~X

)2
,

(6.10)

SCS = 3i(L+ 2λ)L3

2

∫
dΘ Tr

(
~X · (~u× ~X + ~X × ~X − i ~X)− 1

3
~X · ( ~X × ~X)

)
(6.11)

in the vector notation. To express them by the components (6.7), we need the following
formulae,

∂θ~er = ~eϕ, ∂ϕ~er = −~eθ sin θ, ∂θ~eθ = 0 ,
∂ϕ~eθ = ~eϕ cos θ + ~er sin θ , ∂θ~eϕ = −~er, ∂ϕ~eϕ = −~eθ cos θ ,

(6.12)

~u× ~X + ~X × ~X − i ~X = i
( 1

sin θFθϕ + Φ
)
~er + i

sin θ (DϕΦ)~eθ − i(DθΦ)~eϕ . (6.13)

Using these formulae, we can transform the actions into the following form,

Skinetic =−L
4

2

∫
dΘ Tr

( 1
sin2 θ

F 2
θϕ+(DθΦ)2+ 1

sin2 θ
(DϕΦ)2+Φ2+ 2

sinθFθϕΦ
)
, (6.14)

SCS =−3(L+2λ)L3

2

∫
dΘ Tr

(
Φ
(
Fθϕ
sinθ+Φ

)
+ 1

sinθ
(
AθDϕΦ−AϕDθΦ

)
+ i

sinθΦ[Aθ,Aϕ]
)

=−3(L+2λ)L3

2

∫
dΘ Tr

(
2

sinθFθϕΦ+Φ2
)
, (6.15)

where we use integration by part in the last line. Combining them, we have

S = −L
4

2

∫
dΘ Tr

(
1

sin2 θ
F 2
θϕ+(DθΦ)2 + 1

sin2 θ
(DϕΦ)2 +2

(
2 + 3λ

L

)(
Φ2 + 2

sin θFθϕΦ
))

.

(6.16)
This action has the standard Yang-Mills term with the gauge field and a massive scalar field
living on the 2-sphere. The scalar field is in the adjoint representation with a non-minimal
coupling to the gauge field. The Chern-Simons term written in terms of gauge fields is
absent because it can only exist for a base space of 3 or higher dimensions.

7 Decomposition of X̂a into gauge potential and scalar field

As a generalization of the example studied in the previous section, we expect that X̂a is in
general a linear combination of the gauge potential Aµ (µ = 1, 2, · · · , |G| − |H|) and scalar
fields Φi (i = 1, 2, · · · , |H|). For generic G and H ⊂ G, let

X̂a = ea
µAµ + ea

iΦi , (7.1)

where both Aµ and Φi are k-valued fields on the coset space G/H. For a dimensional
reduction of G → G/H, the bases eaµ(θ) and eai(θ) provide a local decomposition of the
tangent space of the group G into the tangent space of the base space G/H and directions
along the H-fibers.
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7.1 Algebraic properties of basis

The basis eaµ is naturally defined by

ea
µ(θ) ≡ −iuaµ(θ) = Da

α(σ(θ))Vαµ(θ) , (7.2)

so that Aµ appears in the combination (∂µ− iAµ) of a covariant derivative in XI . The basis
ea
i is chosen to be

ea
i(θ) ≡ Da

i(σ(θ)) , (7.3)

so that it is orthogonal to eaµ. The inverse of the bases (eaµ, eai) is given by

eµ
a(θ) = Da

β(σ(θ))V β
µ(θ) , ei

a(θ) = Da
i(σ(θ)) . (7.4)

They satisfy

ηab ea
µeb

i = 0 , ηab eµ
aei

b = 0 , (7.5)
ηab ea

ieb
j = ηij , ηab ei

aej
b = ηij , (7.6)

ei
aea

j = δji , ei
aea

µ = eµ
aea

i = 0 , eµ
aea

ν = δνµ , (7.7)
ea
iei

b + ea
µeµ

b = δba . (7.8)

Eq. (7.6) indicates that eai is an orthonormal basis for the field space of Φi.
The metric gµν and its inverse (2.17) on the coset space G/H for the coordinates θ are

related to the vielbein eaµ via the following relations as usual:

gµν(θ) = ηab eµ
a(θ)eνb(θ) , (7.9)

gµν(θ) = ηab ea
µ(θ)ebν(θ) . (7.10)

The indices µ, ν can be raised or lowered using gµν and gµν .

7.2 Transformation properties of basis

Under the H-gauge transformation (2.8), the basis (eaµ, eai) transform as

ea
µ → ẽa

µ = Da
β(σ)Dβ

γ(h̃)D̄γ
α(h̃)Vαµ = Da

α(σ)Vαµ = ea
µ , (7.11)

ea
i → ẽa

i = Da
i(σh̃) = Da

b(σ)Db
i(h̃) = Da

j(σ)Dj
i(h̃) = ea

jDj
i(h̃) . (7.12)

The equations (7.11), (7.12) imply the transformation of the component fields:

Φ̃i = D(h−1)i
jΦj , Ãµ = Aµ . (7.13)

Under the infinitesimal isometry generated by ûa, the basis behaves as

ua
µ∂µeb

ν − ubµ∂µeaν = ifabcecν , (7.14)

ua
µ∂µeb

i = ifabceci − ifjki
(
ea
j − eaµΩj

µ

)
eb
k = ifabceci − ifjkiΛajebk . (7.15)
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The first line is the immediate consequence of eq. (2.36). The second line needs more
explanation. We calculate (using Db

iT b = (DT )ibT b = σT iσ−1, Da
b = Da

b(σ)) as follows:

ea
µ∂µ(ebiT b) = Da

αVα
µ∂µ

(
σT iσ−1

)
= Da

αVα
µσ
([
σ−1∂µσ, T

i
])
σ−1

= iDa
αVα

µσ
([
V β
µ Tβ + Ωj

µTj , T
i
])
σ−1

= iDa
ασ
(
[Tα, T i] + V µ

α Ωj
µ[Tj , T i]

)
σ−1

= fαβ
iDa

αDb
βT b + fjk

iea
µΩj

µDb
kT b ,

which implies
ea
µ∂µeb

i = fαβ
iDa

αDb
β + fjk

iea
µΩj

µeb
k . (7.16)

To proceed further, we use

fabcDd
aDe

bDf
c = fdef , and fab

cDd
aDe

b = fde
fDf

c , (7.17)

which come from
[
T̃a, T̃b

]
= ifabcT̃c with T̃a = σ−1Taσ. It follows that

fαβ
iDa

αDb
β = fcd

iDa
cDb

d − fjkiDa
jDb

k

= fab
cec

i − fjkieajebk ,

which leads to eq. (7.15).
The first term on the right-hand side of eq. (7.15) is an analogue of eq. (7.14), and the

second term gives a correction, which vanishes when H is abelian (fijk = 0). The appear-
ance of the H-connection Ωi

µ is necessary since eai transforms in the adjoint representation
of the H-gauge symmetry. As we have seen in eq. (2.25), whenever fαβi 6= 0, the H-field
strength is non-zero, and the H-connection cannot be gauged away.

The H-covariant derivative on eai, which transforms in the adjoint representation for
the H-gauge transformation, is

(∇µe)ai = ∂µea
i − fjkiΩµ

jea
k . (7.18)

In terms of the covariant derivative, eq. (7.15) is turned into

ea
µ∇µebi = fab

cec
i − fjkieajebk . (7.19)

Similarly, the covariant derivative ∇µ on Φi that respects both K- andH-gauge symmetries
is defined as

∇µΦi = DµΦi − fijkΩµ
jΦk . (7.20)

8 Gauge theory on coset space from 0-dimension

In this section, we write down the action (5.9) explicitly in terms of the gauge potential Aµ
and scalar fields Φi according to the decomposition of X̂a (7.1) described in the previous
section.
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We first consider the kinetic part (5.10). By substituting the component expres-
sion (7.1) of XI and defining the field strength Fµν by

Fµν ≡ ∂µAν − ∂νAµ − i[Aµ, Aν ] , (8.1)

we have

ẐaXb−ẐbXa+[Xa,Xb]−iLfabcXc

= iL2
(
ea
µeb

νFµν+
(
ea
µeb

i−ebµeai
)
DµΦi−ieaiebj [Φi,Φj ]+(eaµ∂µebi−ebµ∂µeai−fabceci)Φi

)
= iL2

(
ea
µeb

νFµν+
(
ea
µeb

i−ebµeai
)
∇µΦi−ieaiebj [Φi,Φj ]+(eaµ∇µebi−ebµ∇µeai−fabceci)Φi

)
= iL2

(
ea
µeb

νFµν+
(
ea
µeb

i−ebµeai
)
∇µΦi−ieaiebj [Φi,Φj ]+(fabceci−2fjkieajebk)Φi

)
.

(8.2)

We note that ordinary derivatives are replaced by covariant derivatives on two terms in the
third line but their changes cancel. In the fourth line, we use eq. (7.19). Using eq. (8.2),
we derive

Skinetic

=−1
4L

4
∫
dΘTr

[
FµνF

µν+2∇µΦi ∇µΦi−[Φi,Φj ]2+hgijΦ
iΦj+2fabceaµebνeciFµνΦi+2if ijkΦi[Φj ,Φk]

]
.

(8.3)

Next, we consider the CS-like term SCS. For later convenience, we define a notation

Bi
ab ≡ −fabceci + 2fjkieajebk . (8.4)

Using eq. (5.11) for SCS, due to the contraction of indices, some of the terms vanish due
to the identities

fabcea
µeb

iec
j = fabcDa

αVα
µDb

iDc
j = fαijVα

µ = 0 , (8.5)
fabcBi

abec
µ = −hgabeaiebµ + 2fabcfjkieajebkecµ = 0 . (8.6)

We can also use the relation

fabcBi
abec

l = −fabcfabdecledi + 2fabceajebkeclfjki = −hgil + 2hhil , (8.7)

where hh is defined analogous to hgab (5.4) by

fij
kflk

j = −hhil . (8.8)

SCS (5.11) can then be evaluated as

SCS = 3(L+2λ)L3

4

∫
dΘTr

[
fabc

(
−eaµebνecρ

(
FµνAρ+ i

3[Aµ,Aν ]Aρ
)
−2eaµebiecνAν∇µΦi

−eaµebνeciFµνΦi−ieµaeνb eic[Aµ,Aν ]Φi

)
+ 2

3if ijk[Φi,Φj ]Φk+(2hhij−h
g
ij)Φ

iΦj

]
. (8.9)
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The first term is the CS-like term discussed in ref. [6]. To express the remaining terms in
a gauge-invariant way, we implement integration by part on the following term:

2fabceaµebiecνAν∇µΦi

' 2fabc
(
−eaµ

[
∂µ(ebiecνAν)Φi

]
− ieaµebiecνAν [Aµ,Φi]− eaµebiecνAνfjkiΩj

µΦk
)

= fabc
(
−eaµebiecν(∂µAν − ∂νAµ)Φi − ebi(eaµ∂µecν − ecµ∂µeaν)AνΦi

− (eaµ∂µebi − ebµ∂µeai)ecνAνΦi − 2ieaµebiecν [Aν , Aµ]Φi − 2eaµebiecνfjkiΩµ
jAνΦk

)
= fabc

(
−eaµebiecνFµνΦi − ieaµebiecν [Aν , Aµ]Φi − ebifacdedνAνΦi +Bi

abe
ν
cAνΦi

)
= fabc

(
−eaµebiecνFµνΦi − ieaµebiecν [Aν , Aµ]Φi

)
. (8.10)

The symbol “'” on the first equality above refers to the omission of a total derivative term.
Substituting this into eq. (8.9), we find

SCS =−3(L+2λ)L3

4

∫
dΘTr

[
fabc

(
ea
µeb

νec
ρ
(
FµνAρ+ i

3[Aµ,Aν ]Aρ
)

+2eaµebνeciFµνΦi

)

− 2
3if ijk[Φi,Φj ]Φk−(2hhij−h

g
ij)Φ

iΦj

]
. (8.11)

Combining Skinetic (8.3) and SCS (8.11), we have the total action:

S=L4
∫
dΘTr

− 1
4
(
FµνF

µν+2∇µΦi ∇µΦi−[Φi,Φj ]2
)

+
(3hhij−2hgij)+3 λL(2hhij−h

g
ij)

2 ΦiΦj+iλ
L
f ijkΦi[Φj ,Φk]

− fabc
(2+3λ

L

)
ea
µeb

νec
iFµνΦi+

3
(
1+2 λL

)
4 ea

µeb
νec

ρ
(
FµνAρ+ i

3[Aµ,Aν ]Aρ
) .
(8.12)

This is an action for the gauge potential Aµ and (|G| − |H|) massive scalar fields Φi in the
adjoint representation of the gauge group K living on a coset space G/H. It includes the
Yang-Mills action and a Chern-Simons-like term. The massive scalars Φ are non-minimally
coupled to the gauge field, and has cubic and quartic self-interactions. The action is
invariant under both the gauge group K and the global symmetry G as an isometry of the
base space G/H.

Apart from an overall scaling L4 of the total action which corresponds to the Yang-
Mills coupling gYM = 1/L2, the only other coupling constant is the dimensionless quantity
λ/L. The mass squared of the scalar fields is

M2
ij ≡

(2hgij − 3hhij) + 3 λL(hgij − 2hhij)
2 , (8.13)
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which does not only depend on the coupling R2 = L(L + 3λ)/2 of the quadratic term S1
in the action (5.1).

While a generic action of this form admits many more independent coupling constants,
this action is special in being that of a pure gauge theory (with the Yang-Mills term and
the Chern-Simons-like term) dimensionally reduced to the coset space G/H, apart from
the mass term.

In the above, we have assumed that the number of matrices in the model equals
|G|. To relax this assumption, one can simply replace G and H by G′ = G × U(1)n and
H ′ = H×U(1)n, so that G′/H ′ is the same coset space as G/H. The algebra Ĉ(K;G′, H ′)
is clearly different from Ĉ(K;G,H) as it has a larger number (|G|+ n) of matrices.

We use a, b, c as labels of the generators of G, the symbols ā, b̄, c̄ as those of U(1)n, and
a′, b′, c′ as those of G′. We can simply take Za given by eq. (5.6) and Zā = 0 as the solution
to the equation of motion (5.5) for Za′ , since the structure constant fa′b′c

′ vanishes when
any of the indices take values in the U(1)n factor, i.e.

fāb′c
′ = fa′b̄

c′ = fa′b′ c̄ = 0 . (8.14)

We introduce the index ī to label the additional scalar fields Φī corresponding to the
extra U(1)n factor added to both G and H, so that eq. (7.1) is now

X̂a′ = ea′µAµ + ea′ iΦi + ea′ īΦī . (8.15)

The basis eaµ, eai are defined as before, and the new components are defined by

ea
ī = eā

µ = eā
i = 0 , eā

ī = δā
ī . (8.16)

It is then easy to see that, when the algebra Ĉ(K;G,H) is replaced by Ĉ(K;G′, H ′), the
total action is simply eq. (8.12) supplemented by the addition terms

Sadd. = L4
∫
dΘTr

(
−1

2∇µΦī∇
µΦī + 1

4[Φī,Φj̄ ]2 + 1
2[Φi,Φī]2

)
(8.17)

for n new scalar fields Φī in the adjoint representation minimally coupled to the gauge fields.

9 Conclusion and discussion

In this paper, we propose an infinite-dimensional algebra Ĉ(K;G,H) to describe a gauge
theory with the gauge group K on the coset space G/H. The IKKT model with the extra
mass term and the Chern-Simons term produces a gauge-invariant Lagrangian on the coset
with the scalar fields associated with H.

This formulation allows us to discuss interesting base spaces such as the de Sitter
space and the anti-de Sitter space. As the metric of the model needs to coincide with
the invariant non-degenerate inner product on g, the metric of the model needs to be η =
diag(−1, 1, · · · , 1), as the original IKKT model, for the de Sitter space dSd = O(d, 1)/O(d−
1, 1). For the anti-de Sitter space AdSd = O(d− 1, 2)/O(d− 1, 1), the metric of the model
should be η = diag(−1,−1, 1, · · · , 1).
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While we limit the analysis to the IKKT-type model for simplicity, one may use
Ĉ(K;G,H) as a gauge group of the gauge theories in arbitrary dimensions, e.g. the BFSS
matrix model [20].

There are a few open questions to be explored.

• When we use Ĉ(K;G,H) for the higher dimensional gauge theory with a base mani-
fold M , the coset space becomes a fiber over M . In the expansion of the gauge fields,
there appears a connection on M , which describes the fiber bundle [7]. It will be
interesting to extend our formulation to these more general cases.

• What is the algebra associated with a generic manifold M? A natural subset of
generators is the gauge algebra-valued functions on M . We also need an analogue
of the differential operators as members of the algebra and their pair partners. The
requirement of the Jacobi identity and the invariance of the inner product impose
strict constraints.5

• What is the representation theory for Ĉ, and what is its role? For Ĉ(K; U(1), id), the
algebra is very well-known (Kac-Moody algebra) and has been well-studied. Recently,
the quantum deformation of Ĉ(K,U(1)⊗2, id) has been studied in the context of the
topological strings. For other cases, even the simple case of G/H = S2, there are
almost no results about the representation theory.

• It is of interest to study the extension of the algebra Ĉ to a matrix algebra. This can
be done in two directions. One direction is to let the field variables to take values in
the universal enveloping algebra of Ĉ, so that higher-spin fields are included through
higher-derivative terms, along the lines of refs. [21–23]. The other direction is to
construct a non-commutative coset space whose algebra of functions is the matrix
algebra for a finite N , and then recover the commutative space in the large N limit.

We leave these questions for future study.
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A Check of Jacobi identity and invariance of inner product

In this section, we check the Jacobi identity and the invariance of the inner product. We
first consider the defining relation (3.2) for the central extension. From eq. (3.2), we have[

[T α[λ1], T β [λ2]], T δ[λ3]
]

= −FαβγF γδσT σ[λ1λ2λ3]− iFαβδva
∫
dΘλ1λ2û

aλ3 . (A.1)

We do not need to consider the first term because the Jacobi identity is satisfied for any Lie
group K. For the second term, the Jacobi identity can be shown from the cyclic symmetry
of Fαβδ and the following relation∫

dΘ (λ1λ2û
aλ3 + λ2λ3û

aλ1 + λ3λ1û
aλ2) =

∫
dΘ ûa(λ1λ2λ3) = 0 . (A.2)

Thus, the central extension is consistent with the Jacobi identity.
Next, we need to check that the action of ua is consistent. The action of ua on Tα[λ]

and va is obvious, so we only have to check its consistency with eq. (3.2). This can be
checked as follows:[

[ûa, T α[λ1]], T β [λ2]
]

+
[
T α[λ1], [ûa, T β [λ2]]

]
= iFαβγT γ [(ûaλ1)λ2 + λ1û

aλ2]−Gαβvb
∫
dΘ (ûaλ1)(ûbλ2)−Gαβvb

∫
dΘλ1û

bûaλ2

= iFαβγT γ [ûa(λ1λ2)] +Gαβvb

∫
dΘλ1û

aûbλ2 −Gαβvb
∫
dΘλ1û

bûaλ2

= iFαβγT γ [ûa(λ1λ2)] + ifabcGαβvb
∫
dΘλ1û

cλ2

= iFαβγT γ [ûa(λ1λ2)]−Gαβ [ua, vc]
∫
dΘλ1û

cλ2

=
[
ûa, [T α[λ1], T β [λ2]]

]
. (A.3)

We have thus completed the consistency check for the algebra Ĉ(K;G,H).
Next, we should check the invariance of the inner product (3.8), (3.9). Using eq. (4.2),

we have
< [XI ,XJ ],XK >

= iXIAΞ1XJBΞ2F
ABCXKCΞ3

∫
dΘλΞ1λΞ2λΞ3

−XIAΞ1ZJaG
ABXKBΞ2

∫
dΘ (ûaλΞ1)λΞ2 +XJAΞ1ZIaG

ABXKBΞ2

∫
dΘ (ûaλΞ1)λΞ2

+ iZIaZJbfabcY c
K −XIαΞ1XJβΞ2G

αβZKa

∫
dΘλΞ1 û

aλΞ2 + if bcaY a
I ZJbZKc − if bcaY a

J ZIbZKc .

(A.4)

One can see that this expression is anti-symmetric for the indices J,K. We note that
the sum of the first term in the second line and the term in the fourth line form an anti-
symmetric term as well as that of the term in the third line and the second term in the
last line. The anti-symmetry for J,K and the symmetric nature of the inner product lead
to invariance under the action of the algebra,

< [XI ,XJ ],XK > + < XJ , [XI ,XK ] >= 0 . (A.5)
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B Coset representation of S2

One may take the spherical coordinates {θµ} = {θ, ϕ} and define∫
dΘ =

∫ π

0
sin θdθ

∫ 2π

0
dϕ , (B.1)

û1 = i(sinϕ∂θ + cosϕ cot θ ∂ϕ) , (B.2)
û2 = −i(cosϕ∂θ − sinϕ cot θ ∂ϕ) , (B.3)
û3 = −i ∂ϕ , (B.4)

fab
c = εabc, gab = δab . (B.5)

One may identify the basis of the orthonormal functions on S2 by the spherical harmonics
Y`m .

We describe the explicit coset of SU(2)/U(1). The generator of SU(2) is described by
Ta = τa/2 (τa is the Pauli matrices) and the subgroup K = U(1) is generated by T3. The
element of the coset is described by σ(θ, ϕ)H with σ(θ, ϕ) ∈ SU(2) and h = K = U(1). We
introduce coordinates θ, ϕ of the coset by

σ(θ, ϕ) = exp

i
∑
µ=1,2

tµTµ

 =
(

cos(θ/2) −e−iϕ sin(θ/2)
eiϕ sin(θ/2) cos(θ/2)

)
, (B.6)

θ =
√
t21 + t22, ϕ = − arctan(t1/t2) . (B.7)

We note that it satisfies
σ(θ, ϕ)−1 = σ(−θ, ϕ) (B.8)

The vierbein and the H-connection are given by

σ−1dσ = iV α
µ Tα + iΩµT3 , (B.9)

with

V 1
θ = sinϕ, V 2

θ =−cosϕ, V 1
ϕ = cosϕsinθ, V 2

ϕ = sinϕsinθ, Ωθ = 0, Ωϕ = 1−cosθ .
(B.10)

The metric tensor is

ds2 = δabV
a
µ V

b
ν dθ

µdθν = (dθ)2 + sin2 θ(dϕ)2 . (B.11)

The adjoint matrix is given by

σ−1Taσ = Da
b(σ)Tb (B.12)

with

D(σ) =


cos2

(
θ
2

)
−cos(2ϕ)sin2

(
θ
2

)
−sin2

(
θ
2

)
sin(2ϕ) cos(ϕ)sin(θ)

−sin2
(
θ
2

)
sin(2ϕ) cos2

(
θ
2

)
+cos(2ϕ)sin2

(
θ
2

)
sin(θ)sin(ϕ)

−cos(ϕ)sin(θ) −sin(θ)sin(ϕ) cos(θ)

 . (B.13)
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We note that the third line is identical to the ~er, Da
3 = (~er)a. One may obtain the other

polar basis by contraction with the inverse vierbein,

ea
µ = (~eθ, sin−1(θ)~eϕ) = Da

αVα
µ =

 sin(ϕ) cot(θ) cos(ϕ)
− cos(ϕ) cot(θ) sin(ϕ)

0 −1

 (B.14)

The orthogonality of the polar basis comes from that of the adjoint matrix
Da

b(σ)Dc
d(σ)δac = δbd. In particular,

δabea
µeb

ν = gµν , δabea
µeb

i = 0, δabea
ieb

j = δij . (B.15)

For SU(2)/U(1) case, the indices i, j are limited to be equal to 3 and ea3 = ~era = Da
3.

The isometry of the coset may be realized by the left action of Ta. One may derive
the following identity,

Taσ(θ, ϕ) = −ûaσ(θ, ϕ) + Λaσ(θ, ϕ)T3 (B.16)

where ûa = ua
µ∂µ = ieaµ∂µ are given in eqs. (B.2), (B.3), (B.4) and

Λ1 = cosϕ tan(θ/2) , Λ2 = sinϕ tan(θ/2) , Λ3 = 1 . (B.17)
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