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1 Introduction

Five-dimensional quiver gauge theories with eight supercharges (N = 1, d = 5) can be engi-

neered by putting M-theory on non-compact singular Calabi-Yau varieties. This paradigm

has been used originally in [1] to build Seiberg’s SCFT’s [2] as their UV fixed points.

The dictionary between the data of a compact Calabi-Yau (CY) threefold X3 and a

theory TX3 is by now well-established and detailed, has been widely used to further classify

possible 5d SCFT’s in numerous works such as [3–19], just to name a few. Two of its

entries at gross level are the following:

X3 TX3

b2 dimRC
b3 dimCH

(1.1)
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where C and H are the Coulomb and Higgs branches, respectively, and the bi are Betti

numbers. If we want to decouple gravity, however, we should work with non-compact

threefolds, in which case we have to be more precise about what we mean by b2 and b3. By

now, the standard practice is to replace b2 by the number of compact divisors (exploiting

Poincaré duality), and to work mainly with isolated singularities, whereby one counts the

number of local deformations:

b2 −→ # compact divisors ,

b3 −→ # local deformations .

From this viewpoint, an SCFT can be deformed by activating appropriate Kähler mod-

uli, triggering an RG flow to a weakly coupled quiver gauge theory with SU, Sp or SO

gauge groups.

In this paper, we will analyze a broad class of threefolds with non-isolated singularities.

Usually, these are expected to describe SCFT’s which, under mass deformations, should

give rise to special unitary quivers. We will show that, under appropriate conditions, the

same M-theory/IIA setups can give rise to quivers with unitary gauge groups, including

fully Abelian theories, which are usually ruled out in the literature.

Usually, Abelian factors are not taken into account in 5d studies because they are

expected to hit Landau poles. However, in the string theory setups we are considering,

Abelian gauge groups are always accompanied by ‘instanton-particles’ that become massless

at the infinite coupling point, which might explain why they are consistently embedded.

From a purely gauge theory perspective, we do not expect instantons in Abelian theories,

except when an appropriate non-commutativity parameter is present. However, in string

theory it is well-known that a single D6 can form a bound state at threshold with a D2-

brane.1 This will provide us with the necessary object.

Our motivation for this paper stems from the observation that, looking at M-theory

singularities in the algebro-geometric framework, we counted Higgs branch moduli at weak

coupling under the assumption of special unitary gauge groups, and find exactly one missing

quaternionic dimension per gauge group factor. This is consistent with the hypothesis that

all gauge groups are unitary.

The crux of the matter is that non-compact threefolds can support normalizable har-

monic two-forms that are not Poincaré dual to compact four-cycles, provided a Taub-NUT-

type metric is chosen. This is not new, as it has been known since the eighties that ALF

spaces have this property [21].

To be precise, we will study local CY threefolds that are C∗-fibrations over local K3’s.

These threefolds have the asset that they can easily be reduced to type IIA string theory

with D6-branes wrapping holomorphic curves, where the quiver gauge theory can be read

off easily: D6-branes on holomorphic compact curves give U(N) gauge nodes, and D6-

branes on non-compact curves give flavors. A large subclass of these examples can be

torically realized, which allows us to use the methods developed in [11].

1In that case, the D2 is not interpreted as a vector bundle on the D6 worldvolume, but as an appropriate

object of the bounded derived category of coherent sheaves.

– 2 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
8

Having established these facts, we will show a mechanism to turn unitary quivers into

special unitary quivers in type IIA string theory. By compactifying a transverse dimension

on a circle, a Stückelberg mechanism will render U(1) factors massive. Correspondingly,

the dimensions of the Higgs branches are expected to jump upwards. We will show that,

indeed, the extra dimensions come from bulk supergravity moduli that are not accounted

for by algebraic geometry alone. Without the circle compactification, these moduli are

6-dimensional, and hence considered as non-dynamical from a 5d viewpoint. A similar

mechanism is considered in a different context in [22, 23].

Note, that for strong string coupling, we expect U(1) factors to drop out on their own,

for completely different reasons, which are unclear from a string theory perspective (as

remarked in [11]). In M-theory, such a limit corresponds to having an ALE fibration (as

opposed to ALF), which makes us lose one normalizable two-form per gauge node.

Finally, we will give an interpretation of our results from the IIB 5-brane web perspec-

tive. In that case, we will find that if we T-dualize IIA on an ALF space at finite gIIA
s ,

and take the ALE limit, we will land in IIB with gIIB
s → 0. This will completely suppress

the usual bending of 5-branes, thereby freeing up one Coulomb branch direction per quiver

node. We will also show how to account for the missing Higgs branch moduli in that setup.

The ordinary 5-brane web case corresponds to IIA at strong coupling, which, as we

just mentioned, naturally has special unitary groups.

2 A summary of the argument

We will present our findings in a concise, sketchy way in this short section, in order to give

the reader some intuition behind our line of thinking, and develop our detailed arguments

in subsequent portions of this paper.

Usually, 5d SCFT’s are described as UV fixed points for quiver gauge theories at the

origins of their moduli spaces, and only semi-simple gauge groups are considered. Abelian

factors are usually ruled out by the argument in [1, 2] that U(1)’s with matter will hit a

Landau pole, or at the very least, will require a UV completion of some kind.

The technology for building SCFT’s in M-theory on non-compact, singular Calabi-

Yau threefolds is an active research domain, initiated in [1], but more recently studied in

the references cited at the introduction among many more works. Most of these theories

are understood by studying the singularity structure of the geometry, often relying upon

F-theory experience.

There is a class of theories, however, that can be discussed in terms of type IIA

perturbative string theory: M-theory on non-compact CY threefolds that admit a C∗-
fibration over a local K3. This includes infinitely many (but not all) toric threefolds.2

Based on works on three-dimensional theories [24, 25], the works [11, 16] developed a

systematic method for reducing M-theory on a given toric threefold to type IIA on a local

K3 with D6-branes. This picture makes it easy to read off the low-energy quiver gauge

theory description associated with the singularity.

2A toric threefold does not necessarily give a Lagrangian theory.
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More generally, if a threefold is described as a C∗-fibration over a local K3, then it is

a simple matter to read off the gauge theory data from the IIA perspective.

An obvious question comes to mind: D6-branes naturally carry U(N) gauge groups.

How should this be accounted for? Although this issue is raised in the paper [11], we

decided to give it more attention. We will make the following claim:

First claim. Type IIA string theory on a local K3 with an ALE metric, with D6-branes

wrapping holomorphic compact curves gives rise to a quiver gauge theory with U(N) gauge

groups. We corroborate this by computing the dimensions of Higgs branches for various

classes of theories.

This claim immediately raises the following question: since a large portion of such IIA

backgrounds could be obtained from 6d SCFT’s built in IIB via reduction on a circle and

T-duality, are we claiming that we are seeing inconsistent (anomalous) 6d SCFT’s in IIB?

We answer this in the negative with the following claim:

Second claim. Type IIA string theory on a local K3 times a circle (transverse to the

branes), on the other hand, confers a Stückelberg mass to all U(1) factors of any quiver

gauge theory.

The Stückelberg mechanism in question is triggered by the presence of the C5 ∧ F
anomalous coupling on the D6-brane worldvolume theory. Note, that this particular mech-

anism has been studied in a different context in F-theory in [26] and in six-dimensional

setups in [22, 23]. Hence, whenever we try to relate these 5d theories to 6d, we are forced

to have an extra circle that renders the U(1) factors massive.

From the M-theory perspective, this means we are compactifying the C∗-fibers to

elliptic fibers, which allows for an immediate interpretation in terms of F-theory. Once

this transition is made, it can be shown directly in M-theory how U(1) factors become

massive: the corresponding normalizable two-forms become non-harmonic.

Finally, and most interestingly, comes the following question: it is well-known that

the Higgs branch of these theories is realized in M-theory as the complex structure moduli

space.3 Since the non-compact threefold gave us the Higgs branch for U(N) quiver gauge

theories, once we reduce on a circle (transverse to the branes) and cut the groups down to

SU(N), we expect extra Higgs branch directions to appear, since morally:4

dimMHiggs = #hypers−#vectors .

The question is then: how are these extra moduli realized in IIA and M-theory? Our

answer is the following:

Third claim. Upon compactifying on a transverse circle, the bulk closed string moduli

of the K3 become five-dimensional, and hence dynamical. They come in exactly the right

amounts to account for the enhanced Higgs branches.

3For non-compact singularities, one has to introduce an appropriate notion of normalizability in order

to count genuinely 5d moduli.
4This formula is only valid if enough flavors are present.
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Note, that our second and third claim are linked. The extra bulk hypermultiplets are

coupled to the Abelian factors via WZ terms, which allows for the Stückelberg mechanism.

In section 7, we corroborate these claims in the dual IIB 5-brane setup. There, these

mechanisms take a different form. Essentially, we find that, at weak gIIA
s coupling, T-duality

will land us in IIB with gs → 0. In this regime, brane bending is suppressed, and this frees

up one Coulomb branch modulus per quiver node, corroborating the unitary groups. We

will also corroborate the claim that compactifying on an extra circle will eliminate these

U(1)’s again.

One puzzle does remain, however. The discussion in this paper pertains to perturba-

tive type IIA string theory. Once we go to the strong string coupling limit, which translates

to taking an ALE limit in M-theory (w.r.t. to the M-theory circle fibration), we do expect

unitary groups to ‘lose’ their U(1) factors on their own, without requiring further com-

pactification. As remarked in [11], this is unclear from a IIA perspective. Presumably, as

gs →∞, the D6-branes become increasingly delocalized, and their ‘center of mass’ photons

are no longer five-dimensional.

3 Type IIA on local K3’s with D6-branes

In this section, we describe our main string theory framework, from which we will be able

to read off quiver gauge theory data at weak coupling.

We start with Type IIA string theory on the space R1,5×S, where S is an hyperkähler

non-compact surface with compact two-spheres. For S defined as the resolution of an

orbifold C2/Γ, with Γ ⊂ SU(2) a discrete group, the set of such two-cycles has a basis Ca
(a = 1, . . . , r) whose elements intersect each other like the Dynkin diagram of an ADE

algebra of rank r. Here, we will assume an ALE metric.

This background preserves sixteen supercharges. We call x0, . . . , x5 the coordinates on

R1,5 and y1, . . . , y4 the local coordinates on S.

The basis of 2-cycles Ca has a dual basis of normalizable two-forms αa (a = 1, . . . , r)

on S. Let us expand C3 and B2 as

C3 = AaMdxM ∧ αa + . . . and B2 = baαa + . . . . (3.1)

The abelian gauge fields AaM (M = 0, . . . , 5) and the scalars ba propagate in six-dimensions.

The geometric moduli of the hyperkähler metric propagate in six-dimensions as well. They

are given by the periods of the three hyperkähler two-forms ωi (i = 1, 2, 3) on the curves

Ca’s. One can fix a Kähler structure by choosing the Kähler form to be, e.g., J = ω3

and the holomorphic (2, 0) form Ω2 = ω1 + iω2; we call ξa (real) the periods of J and ζa
(complex) the periods of Ω2. The vector AaM and the scalars ba, ξa, ζa sit together in a 6d

N = 2 vector multiplet.

We now introduce a BPS D6-brane wrapping a compact curve Cā in S and extending

along the directions x0, . . . , x4 inside R1,5. This introduces a 5-dimensional N = 1 super-

symmetric field theory with a vector multiplet (Aāµ, φā) with µ = 0, . . . , 4 (φā parametrizes

the motion of the D6-brane along x5). The bulk N = 2 vector multiplet corresponding to

this curve splits into a N = 1 vector multiplet (Aāµ, ξā) and a hypermultiplet (ζā, bā,Aā5).

– 5 –
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The fields in these multiplets propagate in six dimensions and are seen as non-dynamical

background fields from the 5-dimensional D6-brane point of view. The modulus ξā controls

the gauge coupling of the vector multiplet on the D6-brane.

One can generalize this situation, by wrapping Na D6-branes on the compact curves

Ca (a = 1, . . . , r). We also allow D6-brane stacks on non-compact divisors of S; their

fluctuations are non-dynamical in 5d, while their worldvolume gauge groups are flavor

groups for the 5d theory. The 5d spectrum is the following:

• one N = 1 vector multiplet in the adjoint representation of U(Na) for each compact

curve Ca;

• one hypermultiplet in the bifundamental representation (Na, N̄b) for each pair of

intersecting compact curves Ca, Cb (i.e. such that Ca · Cb = 1);

• one hypermultiplet in the fundamental representation Na for each compact curve

Ca that intersects a flavor brane. This hypermultiplet sits also in the fundamental

representation of the corresponding flavor group.

This theory has a Coulomb branch and a Higgs branch (and mixed branches). We are

interested in the last one. The Higgs branch is obtained by giving vev’s to all the scalars

in the hypermultiplets. This breaks the gauge group to a subgroup (possibly {1}) by a

Higgs mechanism. Some of the hypermultiplets are eaten by the vector multiplets that

become massive. The remaining neutral hypermultiplets are massless flat directions that

parametrize the Higgs branch of the moduli space.

4 M-theory uplift and moduli counting

In this section, we will uplift the type IIA setups described so far to M-theory on non-

compact CY threefolds. These threefolds will be obtained by pairing up the M-theory

circle with the x5 transverse coordinate to make a C∗-fibration that collapses over the loci

where D6-branes lie, following the general algebraic form5

uv = ∆D6 , (4.1)

where ∆D6 = 0 is the full D6-locus. These threefolds will be C∗-fibrations over resolved

ALE spaces. We will keep the ALE bases resolved, in order to have weakly coupled quiver

gauge theories.

Once we have such a description, we will count the complex structure moduli that

deform the singularities localized along 5d subspaces. We will see that this counting gives

the right Higgs branch dimensions for U(N) quivers.

5It is well-known that multi-Taub-NUT metrics admit a complex structure where they can be described

in algebraic form [27].
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4.1 Toric threefolds: the An series

In this section, we will show how to uplift our type IIA setups on resolved C2/Zn+1 with

D6-branes to non-compact toric threefolds. Once the geometries are defined, we will count

the complex structure moduli deformations that correspond to normalizable (and hence

5-dimensional) degrees of freedom. These will be identified with flat directions along the

Higgs branch in the 5d effective theory.

We will describe the M-theory threefold X3 as a C∗-fibration over the toric IIA hy-

perkähler surface. We will use the algebraic description of the form uv = ∆, whereby ∆ is a

function pure of the base coordinates, parametrizing the positions of the various D6-branes

involved, and the uv part describes the C∗-fiber, which collapses over the branes.

Let us define the following ambient fourfold A4:

u v z1 e1 e2 e3 . . . en z2

0 0 1 −2 1 0 . . . 0 0

0 0 0 1 −2 1 . . . 0 0

0 0 0 0 0 0 . . . −2 1

(4.2)

The (u, v) coordinates define the fiber, and the rest define the IIA base of the C∗-fibration.

The z1,2 coordinates correspond to two non-compact curves. The ei coordinates correspond

to the exceptional spheres.

The geometry is such that adjacent coordinates in (4.2) correspond to curves that

intersect. Note, that here we only have pairwise intersections, which means that only

linear quivers are possible.

The fact that u and v have weights zero under the various C∗-actions ensures that we

have a balanced quiver, and that we have Chern-Simons levels equal to zero. This choice

imposes the constraint that our discriminant ∆ be itself a function of multi-degree zero.

So let us find a basis of multi-degree zero monomials. It turns out there are three such

generators, subject to a relation:

X ≡ zn+1
1 en1e

n−1
2 . . . en ; Y ≡ e1 . . . e

n
nz

n+1
2 ; Z ≡ z1e1e2 . . . enz2 . (4.3)

They satisfy the relation XY = Zn+1. Indeed, these invariants correspond to the

blow-down map of the resolved IIA orbifold.

In light of this relation, we see that we need only consider discriminants of the form

∆ = XkZ l , or Z lY m (4.4)

Clearly, both options give equivalent theories, so we’ll focus on the first one.

Let us first tackle the cases with k = 0 and l = 0 separately, and then move on to the

mixed cases.

4.1.1 Homogeneous linear quivers

We will begin by studying ‘homogeneous’ linear quivers despicted in figure 1, meaning that

all nodes in the quiver have the same rank (including the flavor nodes). The geometry in

– 7 –
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Figure 1. Homogeneous linear quiver.

question is given by:

P := uv − ZN = 0 , (4.5)

where Z is defined in (4.3). The zN1 and zN2 factors correspond to the two square nodes

at the extremes of the quiver, and each eNi factor represents a U(N) node on this i-th

exceptional sphere.

Let us now count possible deformations. A priori, one would compute the Jacobian

ring:

J = C[u, v, z1, z2, ei]/(dP ) ∼= C[z1, z2, ei]/

(
Z

z1
,
Z

z2
,
Z

ei

)
(4.6)

where the denominator runs over all i = 1, . . . , n. Counting the possibilities, we find an

infinite number of possible deformations. So, clearly, if we are to compute the dimension

of a Higgs branch, we must refine our search.

The culprit here is the fact that the singularity is not isolated, but runs over the

z1 = 0 and z2 = 0 divisors. This leads the infinitely many deformations. In physics terms,

these extra modes correspond to vevs for the adjoint scalars living on the non-compact

D6-branes. Since these extend over non-compact curves, they are not five-dimensional,

but actually seven-dimensional. Hence, in the IR, we regard them as vevs for background

(non-dynamical) fields, which appear as couplings in the effective theory.

How should we then isolate the truly five-dimensional modes? One way to go about it

is to notice that our discriminant has the form:

∆ = zN1 z
N
2

(∏
i

ei

)N
. (4.7)

If we have a deformation by a polynomial δ such that

∆ 7→ (zN1 z
N
2 + δ)

(∏
i

ei

)N
, (4.8)

we should interpret this as a movement of the first or the second stack of flavor D6-

branes, or a recombination of them. In any case, this will correspond to a vev for a

seven-dimensional field.

Hence, from now on, we discard monomials proportional to (
∏
i ei)

N . We will see that

this will not only cut the moduli space down to a finite-dimensional space, but will give

the expected Higgs branch dimension on the nose.

– 8 –
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We need to count terms of multi-degree zero w.r.t. all n C∗-actions defined in (4.2).

Hence, we can write everything in terms of our invariants X,Y, Z. Note that all three in-

variant coordinates are proportional to
∏
i ei. Hence, we can immediately rule out anything

in the ideal

(Z,X, Y )N = {XaY bZc | a+ b+ c = N} (4.9)

Keep in mind that products between X and Y are equivalent to powers of Z. We will sort

the terms by powers of Z. A generic deformation then looks as follows:

δ =
N−2∑
i=0

Zi

N−i−1∑
j=1

(ai,jX
j + bi,jY

j)

+
N−1∑
i=0

ciZ
i , (4.10)

the number of parameters is then given by the sum

#defδ = 2

N−2∑
i=0

N−i−1∑
j=1

(1)

+

N−1∑
i=0

1 = 2

N−2∑
i=0

((N − i− 1)) +N (4.11)

= 2

N−1∑
k=1

(1) +N = N2 (4.12)

Hence, we deduce that the dimension of the normalizable complex structure moduli

space for this singularity is

dimCMc.s = N2 . (4.13)

Note that this is independent of the order of the orbifold, but only depends on the number

of branes in the picture.

The fact that we computed the complex dimension to be N2 stems from the fact that

the complex structure moduli only give half of the Higgs branch. The other half is fibered

over the former, and comes from C3 axionic moduli.

Now let us compare this to gauge theory expectations. The general formula for the

Higgs branch is:

dimHH = #hypers−#vectors . (4.14)

For this quiver, there are n+ 1 edges, each contributing N2 hypermultiplets, and n nodes,

each contributing −N2 vectors. This adds up to

dimHH = (n+ 1)N2 − (n)N2 = N2 . (4.15)

It works.

4.1.2 Ascending quivers

Now we move on to the next basic quiver, that is the generalization of the T(SU) theories,

but with the ranks all multiplied by a common factor of N . If we set N = 1, this is the

T(SU(n+1)) theory. We will refer to it as ‘ascending quiver’, and it is depicted in figure 2.

This quiver is realized in M-theory by the following hypersurface in the toric ambient

space defined in (4.2):

uv −∆ = 0 , for ∆ := Y N , (4.16)

– 9 –
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Figure 2. Ascending quiver.

with Y defined in (4.3). We can see that this discriminant distributed the branes in

ascending fashion, starting with N branes on the leftmost exceptional sphere, multipling

the occupation number as we move to the right, ending with (n+ 1)N flavor branes on the

z2 = 0 non-compact curve, where n+ 1 is the order of the orbifold.

Let us count the moduli for this problem. In terms of the original toric coordinates,

this hypersurface is given by:

uv = eN1 e
2N
2 . . . enNn z

(n+1)N
2 . (4.17)

We want to exclude all deformations that correspond to movements of the non-compact

stack. Hence, we are throwing out anything of the form

eN1 e
2N
2 . . . enNn ρ for some ρ . (4.18)

In terms of invariant coordinates, this means throwing out the ideal

{XaY bZc | a+ nb+ c = nN} . (4.19)

Let us arrange the calculation as follows: since we are eliminating cross terms of the form

XaY b, we can split up the deformations as follows:

δ =

nN−1∑
i=1

Xi

nN−1−i∑
j=0

ai,jZ
j

+

N−1∑
i=1

Y i

n(N−i)−1∑
j=0

bijZ
j

+

nN−1∑
j=0

cjZ
j . (4.20)

To count the terms, we set all variables and coefficients to one:

#defδ =
nN−1∑
i=1

nN−1−i∑
j=0

1

+
N−1∑
i=1

n(N−i)−1∑
j=0

1

+
nN−1∑
j=0

1 (4.21)

= nN
(
N(n+ 1)− 1

)
− 1

2
nN(nN − 1)− 1

2
nN(N − 1) (4.22)

=
1

2
nN2(n+ 1) , (4.23)

where the last step only requires elementary manipulations.

Now let us see what the field theory side shows. Each link provides kN(k + 1)N

hypermultiplets, where k = 1, . . . , n. On the other hand, each node provides (kN)2 vectors.

Therefore, the dimension of the Higgs branch is given by:

dimHH = N2
n∑
k=1

[
k(k + 1)− k2

]
=

1

2
N2n(n+ 1) . (4.24)

A perfect match!
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4.2 Non-toric threefolds: the D and E series

In this section we show some examples of threefolds that are not described as hypersurfaces

in toric varieties, but as a complete intersection. Nevertheless we will be able to count the

dimension of the Higgs branch, verifying that all the nodes of the quiver correspond to

U(N) gauge groups.

4.2.1 The D4 quiver

The D4 singularity is described by the following equation in C3 with coordinates X,Y, Z.

X2 = Y Z (Y + Z) . (4.25)

The resolution of such singularity is a hypersurface in a toric threefold A3:

σ w2 = λ s t (s+ t) ⊂
s t w λ σ

1 1 1 −1 0

0 0 1 1 −1

(4.26)

The four exceptional P1’s Ca (a = 1, . . . , 4) are given by

C1 : {σ = 0, s = 0 } (4.27)

C2 : {σ = 0, t = 0 } (4.28)

C3 : {σ = 0, s+ t = 0 } (4.29)

C4 : {σ = 0, λ = 0 } (4.30)

The blow-down map is determined by the invariant monomials (invariant under the

two toric actions)

X = w σ2λ , Y = s σ λ , Z = t σ λ , (4.31)

that verify the relation in (4.25).

We now add the coordinates u and v to make a fivefold ambient space A5. As in the An
case, we choose their weights under the toric C∗ actions to be zero. The M-theory is again

a C∗ fibration over the resolved D4 singularity of the form uv = ∆, with ∆ a polynomial

of the toric coordinates (w, s, t, λ, σ) with toric degrees zero.

For simplicity we study the case with ∆ = (γY + βZ)N , with γ, β ∈ C (the most

generic case is an straightforward generalization). The M-theory threefold is then given

(using (4.31)) by the following complete intersection in A5:{
u v = λNσN (γ s+ β t)N

σ w2 = λ s t (s+ t)
(4.32)

We can read the type IIA brane configuration: we have N D6-branes wrapping the curves

C1, C2, C3 and 2N D6-branes wrapping C4; moreover we haveN D6-branes wrapping the non-

compact curve given by γ s+β t = 0 in the local K3 base. The quiver of the corresponding

field theory is reported in figure 3.
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Figure 3. D4 quiver.

Let us count the 5d moduli. In order to exclude all deformations that correspond

to movements of the non-compact stack, we throw out anything of degree zero that is

proportional to λNσN . In other words, we keep the degree-zero monomials of the form

λmσm+`w`Pm−`(s, t) (4.33)

with Pm−`(s, t) a polynomial of degree m−` in s, t, and such that m ≤ N−1. Moreover, we

do not count the monomials with ` > 1, because one can use the second equation in (4.32)

to eliminate σkw2k in favour of powers of λ, s, t:

• When ` = 0, we have to count the monomials λmσmPm(s, t) with m ≤ N − 1:

#def0 =

N−1∑
m=0

(m+ 1) =
N(N − 1)

2
+N =

N(N + 1)

2
. (4.34)

• When ` = 1, we have to count the monomials λmσm+1wPm−1(s, t) with m ≤ N − 1:

#def1 =

N−1∑
m=1

m =
N(N − 1)

2
. (4.35)

In total we have

#def = #def0 + #def1 =
N(N + 1)

2
+
N(N − 1)

2
= N2 . (4.36)

We now check that it matches with the D4 field theory with U(N)3 × U(2N) gauge

group. We count 2N2 hypermultiplets for each link of the quiver, N2 vector multiplets for

each external gauge node and 4N2 vector multiplets for the internal node. Therefore, the

dimension of the Higgs branch is given by:

dimHH = 4× 2N2 − 3×N2 − 4N2 = N2 . (4.37)

This matches with (4.36).
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4.2.2 The E6 quiver

The E6 singularity is described by the following equation in C3 with coordinates X,Y, Z.

X2 = Y 3 + Z4 . (4.38)

The resolution of this singularity is a hypersurface in a toric threefold A3:

w2 = v1v
2
2v1s

3 + v2
1t

4 ⊂

s t w v1 v2 v3 v4

1 1 1 −1 0 0 0

1 0 1 1 −1 0 0

0 0 1 1 1 −1 0

0 0 1 1 0 1 −1

(4.39)

The six exceptional P1 Ca (a = 1, . . . , 6) are given by

C1 : { v2 = 0, w + v1t
2 = 0 } (4.40)

C2 : { v3 = 0, w + v1t
2 = 0 } (4.41)

C3 : { v4 = 0, w2 − v1v
2
2v1s

3 − v2
1t

4 = 0 } (4.42)

C4 : { v3 = 0, w − v1t
2 = 0 } (4.43)

C5 : { v2 = 0, w − v1t
2 = 0 } (4.44)

C6 : { v1 = 0, w = 0 } (4.45)

The blow-down map is determined by the invariant monomials (invariant under the

two toric actions)

X = w v1v
2
2v

4
3v

6
4 , Y = s v1v

2
2v

3
3v

4
4 , Z = t v1v2v

2
3v

3
4 , (4.46)

that can be easily shown to verify (4.38).

We add the coordinates u and v to make a fivefold ambient space A5. As before they

have zero degrees under the toric C∗ actions. The M-theory is again a C∗ fibration over the

resolved E6 singularity of the form uv = ∆, with ∆ a polynomial of the toric coordinates

(w, s, t, v1, . . . , v4) with toric degrees zero.

For simplicity we study the case with ∆ = ZN (the most generic case is a straightfor-

ward generalization). The M-theory threefold is then given (using (4.46)) by a complete

intersection in A5: {
u v = vN1 v

N
2 v

2N
3 v3N

4 bN

w2 = v1v
2
2v1s

3 + v2
1t

4 (4.47)

We can read the type IIA brane configuration. First note that the locus v2 = 0 is the

union of the two curves C1 and C5; analogously, the locus v3 = 0 is the union of the two

curves C2 and C4; moreover the locus v1 = 0 is twice the curve C6. We then have Nσa
D6-branes wrapping the curve Ca, where σa is the Dynkin label of the corresponding node.

Moreover we have N D6-branes wrapping the non-compact curve t = 0. The quiver of the

corresponding field theory is reported in figure 4.
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Figure 4. E6 quiver.

Let us count the 5d moduli. In order to exclude all deformations that correspond to

movements of the non-compact stack, we throw out anything of degree zero that is propor-

tional to vN1 v
N
2 v

2N
3 v3N

4 . In other words, we keep the degree-zero monomials of the form

w`(v1v2v
2
3v

3
4)n+m+`smtnvm+`

2 vm+2`
3 vm+3`

4 (4.48)

with n+m+` ≤ N−1. Moreover, we do not count the monomials with ` > 1, because one

can use the second equation in (4.47) to eliminate w2k in favour of powers of s, t, v1, . . . , v4:

• When ` = 0, we have to count pairs (n,m) such that n+m = k and k ≤ N − 1; the

number of pairs (n,m) s.t. n+m = k is equal to k + 1, then

#def0 =

N−1∑
k=0

(k + 1) =
N(N − 1)

2
+N =

N(N + 1)

2
. (4.49)

• When ` = 1, we have k ≤ N − 2. Hence,

#def1 =
N−2∑
k=0

(k + 1) =
(N − 1)(N − 2)

2
+N − 1 =

N(N − 1)

2
. (4.50)

In total we have

#def = #def0 + #def1 =
N(N + 1)

2
+
N(N − 1)

2
= N2 . (4.51)

Again, it matches with the corresponding E6 field theory with U(N)2×U(2N)3×U(3N)

gauge group. We count σaσbN
2 hypermultiplets for each link of the quiver (again σa is the

Dynkin label of the node a), 2N2 hypermultiplets at the link with the non-compact curve,

and (σaN)2 vector multiplet for each gauge node. Therefore, the dimension of the Higgs

branch is given by:

dimHH = 2N2 × 3 + 6N2 × 3−N2 × 2− (2N)2 × 3− (3N)2 = N2 . (4.52)
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4.3 Underbalanced quivers

So far, we have only considered so-called balanced quivers, meaning each node has Nf =

2Nc. Those theories have the property that they can be completely Higgsed. From the IIA

perspective, it means that the compact and non-compact D6-branes can be recombined

into non-compact D6-branes, and completely move off the exceptional P1’s.

In this section, we will consider simple examples where the number of flavors drops

below the balancing threshold. The consequence is that such theories retain a residual

gauge group, which makes the field theory analysis slightly more nuanced. This translates

into residual rigid compact D6-branes that cannot escape the exceptional P1’s.

In the following we consider a single U(N) factor in the gauge group. The correspond-

ing geometry is a C∗ fibration over a resolved A1 singularity. It is given by the equation

u v = ∆ in the ambient space

u v z1 e z2

Nf − 2N 0 1 −2 1
(4.53)

where we choose the D6-brane locus to be ∆ = eNz
Nf
1 , without any loss of generality.6 We

distinguish the cases where Nf is even or odd.

U(N) with Nf = 2M . The threefold is given by u v = eNz2M
1 , with M < N (the case

with M = N has been studied in section 4.1).

We now count the 5d moduli. We should include deformations of the hypersurface

equations, i.e. of degree −2N + 2M , that are not proportional to eN , in order to exclude

the deformations corresponding to movements of the non-compact stack. The most generic

deformation is then

u v = eNz2M
1 +

M∑
j=1

eN−jP2(M−j)(z1, z2) , (4.54)

where Pm(z1, z2) are polynomials of degree m in z1 and z2. Each of them contributes with

m+ 1 deformations. The total number of moduli is then

#defNf=2M =
M∑
j=1

(2M − 2j + 1) = M(2M + 1)− 2
M∑
j=1

j = M2 . (4.55)

From equation (4.54) we can also read the unbroken gauge group with the charged spec-

trum. In fact, we can rewrite the deformed D6-locus as

∆def = eN−M

eMz2M
1 +

M∑
j=1

eM−jP2(M−j)(z1, z2)

 . (4.56)

After recombination one still finds N −M D6-branes wrapping the compact P1. Moreover,

one sees that the surviving gauge group has no flavor as the recombined D6-brane does

6In principle one could choose any polynomial of degree Nf in z1 and z2, instead of z
Nf

1 , but the presented

results would not change.
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not intersect the exceptional P1 (the intersection would be at e = 0 and P0 = 0, but P0 is

a non-zero constant).

Let us compare this with the gauge field expectations. Giving non-zero vev to the

hypermultiplet scalars, one breaks the gauge group to a U(K) subgroup of U(N). The

Adjoint and the fundamental representations of U(N) breaks as

N2 → K2 ⊕ (N −K)×
(
K⊕ K̄

)
⊕ (N −K)2 × 1 (4.57)

N→ K⊕ (N −K)× 1 (4.58)

The massive gauge bosons need to acquire mass from a suitable component of the hy-

permultiplets; in particular each vector multiplet that becomes massive needs to eat one

hypermultiplet. We can then count the part of the 2M hypermultiplets in the N of U(N)

that is eaten:

• The singlet massive vector multiplets eat (N −K)2 singlet hypermultiplets. We are

then left with 2M(N −K)− (N −K)2 neutral hypermultiplets.

• Each of the 2(N−K) massive vector multiplets in the K of U(K) eats one hypermul-

tiplet in the same representation. The remaining number of charged hypermultiplets

is then 2M − 2(N −K).

Since the last number cannot be negative, it is clear that the minimum gauge group we

can obtain is U(K) with K = N −M and with no charged hypermultiplets. The number

of neutral hypermutliplet, i.e. the dimension of the Higgs branch, is 2M(N −K) − (N −
K)2|K=N−M = M2, that is in agreement with our geometric computation. Notice that the

geometric setup gives also the correct surviving gauge group and charged spectrum.

U(N) with Nf = 2M+1. The threefold is now given by u v = eNz2M+1
1 , with M < N .

Again we consider the deformations that are not proportional to eN . The deformed

threefold is

u v = eNz2M+1
1 +

M∑
j=1

eN−jP2(M−j)+1(z1, z2) . (4.59)

The total number of moduli is then

#defNf=2M+1 =
M∑
j=1

(2M − 2j + 2) = M(2M + 2)− 2
M∑
j=1

j = M(M + 1) . (4.60)

To explicitly read the unbroken gauge group with the charged spectrum we rewrite the

deformed D6-locus as

∆def = eN−M

eMz2M
1 +

M∑
j=1

eM−jP2(M−j)+1(z1, z2)

 . (4.61)

After recombination one finds N−M D6-branes wrapping the compact P1. There is still one

flavor, as the recombined D6-brane intersect the gauge stack at one point (the intersection

is at e = 0 and P1(z1, z2) = 0).
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Let us compare this with the gauge field expectation. The breaking pattern is analo-

gous as before. However, in the present case we begin with one more flavor. The number

of remaining charged hypermultiplets is now equal to 2M +1−2(N −K). Hence again the

maximal breaking will occur for K = N−M , but now a massless hypermultiplet in the fun-

damental representation of U(N−M) remains after higgsing. The number of neutral hyper-

multiplets, i.e. the dimension of the Higgs branch is (2M+1)(N−K)−(N−K)2|K=N−M =

M(M + 1). Again we have a perfect match with our geometric computation both with

respect to the neutral hypermultiplets and the spectrum of the surviving gauge group.7

5 SU(N) gauge theories

We will now present a perturbative IIA mechanism that will turn any unitary quiver into

a special unitary one via a Stückelberg mechanism.

We consider the same setup as above, but we now compactify the direction x5 on the

circle S1
x5 . Nothing changes on the D6-brane worldvolume, as the D6-branes are points on

the 5th direction. However, after compactifying x5, the bulk fields have zero modes prop-

agating in 5d. These fields now enter as dynamical fields in the 5d theory. Hence, the 5d

spectrum is the same as in section 3 with the addition of the (bulk) neutral hypermultiplets

(ζa, ba + iAa5) and the (bulk) decoupled8 vector multiplets (Aaµ, ξa).
Due to a Stückelberg coupling of the bulk fields with the D6-brane, the overall U(1)

vector multiplet on each D6-brane stack gets a mass term, as we now explain.

The 7-dimensional D6-brane action includes the following coupling∫
D6
F ∧ ι∗C5 (5.1)

where C5 is the dual of the RR threeform C3 and ι∗ is the pull-back on the D6-brane

worldvolume. One can expand C5 as

C5 = ca(3)MNPdx
M ∧ dxN ∧ dxP ∧ αa + . . . (5.2)

where ca(3) are five-dimensional three-forms, dual to the scalars Aa5 coming from C3.

Let us consider a D6-brane wrapping the curve Cā. The action term (5.1) reduces in

5d to ∫
R1,4

F ∧ cā(3) (5.3)

where we used that
∫
Cā αa = δāa . This drives a Stückelberg mechanism in five dimensions:

the vector becomes massive eating the scalar Aa5. Since N = 1 supersymmetry must be

preserved in 5d, all fields in the vector multiplet must become massive, i.e. we have the

so-called super-Higgs mechanism: the vector multiplet (Aāµ, φā) eats the hypermultiplet

(ζā, bā + iAā5), making a massive (long) vector multiplet.

7This argument does not directly apply to U(1) with Nf = 1. However, it is easy to see from a

4d perspective that F-term and D-term equations imply no Higgs mechanism. This is confirmed by the

geometric computation, as ∆ = e z1 admits no deformations.
8Nothing is charged under the U(1) corresponding to the vector multiplet (Aaµ, ξa) (unless a sphere Ca

collapses).
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The Stückelberg mechanism requires the eaten scalar to be a dynamical field. This

happens only when we compactify the x5 direction.

When the dust settles, and all the hypermultiplets have zero vev, the remaining 5d

massless spectrum is the following:

• one N = 1 vector multiplet in the adjoint representation of SU(Na) for each compact

curve Ca;

• one hypermultiplet in the bifundamental representation (Na, N̄b) for each pair of

intersecting compact curves Ca, Cb (i.e. such that Ca · Cb = 1);

• one hypermultiplet in the fundamental representation Na for each compact curve

Ca that intersects a flavor brane. This hypermultiplet sits also in the fundamental

representation of the corresponding flavor group.

The 5d theory again has Coulomb and Higgs branches. However, we should now see a

bigger Higgs branch than before, since we know that:

dimMHiggs = #hypers−#vectors , (5.4)

and we have just lost a bunch of vector multiplets. So how are these extra hypermultiplets

realized in this IIA setup?

The answer is that, we have already included r (bulk) hypermultiplets that now get

eaten by the Abelian factors. This frees up r charged (open string) hypermultiplets, which

can now develop non-trivial vev’s, thereby enhancing the dimension of the Higgs branch

by r.

We have then the following relation between the dimension dimHSU of the Higgs

branch when x5 ∈ S1 and the dimension dimHU of the Higgs branch when x5 ∈ R.

dimHSU = dimHU + k , (5.5)

where k is the number of overall U(1)’s that would be broken along the Higgs branch HU
of the theory with unitary groups.9

One can understand this also from the D6-brane point of view: consider for simplicity

a stack of N D6-branes on two intersecting curves Ca, Cb. The gauge group is SU(N) ×
SU(N) and there is a hypermultiplet in the (N, N̄) representation. The periods of the

holomorphic (2,0)-form over the two curves (these moduli sit in the hypermultiplets eaten

in the Stückelberg mechanism) are fixed to be zero by the BPS condition on the D6-

branes: this is a signal that they are no longer allowed deformations. When we give a vev

to the charged hypermultiplet, the two stacks recombine in a stack wrapping a curve C
in the homology class [C] = [Ca] + [Cb]. Only this curve is require to be holomorphic by

the BPS condition, letting free one combination of the two periods. In this simple case,

the Higgs branch dimension is then equal to one, as it should be for the Higgs branch of

SU(N)×SU(N) with one bifundamental (the residual gauge group is SU(N), given by the

recombined D6-brane).

9In the SU-case, these U(1)’s eat a combination of the bulk and the open string hypermultiplets, leaving

one more combination as a flat direction.
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6 5d from M-theory on elliptically fibered CY3

In type IIA we have considered what happens by compactifying the x5 direction, which lies

transverse to the D6-branes and the local K3. This compactification is what triggered the

Stückelberg mechanism. In the dual M-theory setup studied in the previous section, this

direction lives along the C∗-fiber of the CY threefold. Remember that the generic C∗-fiber

is a cylinder. Compactifying the R direction, produces an elliptic curve that is then fibered

over the base of the original C∗-fibration.

In this section, we will study the consistency conditions to achieve such a compactifi-

cation, and show how to implement it.

6.1 Consistency condition for compactifying the C∗-fiber

In this section, we will study the conditions for compactifying the real x5-direction trans-

verse to both the D6-branes and the local K3. From the IIA point of view, we have to

remember that D6-branes backreact on the metric of the transverse space, and it is not

guaranteed that putting x5 on a circle is possible.

In the absence of D6-branes, we start out with a product of S × R, whereby S has a

constant metric along the real line. However, the presence of D6-branes will induce a piece-

wise linear x5-dependence of the Kähler parameters of S. This precludes a compactification

to a circle, unless further branes are added to the picture.

In order to understand this piecewise linear dependence, we will start from the M-

theory geometry, which automatically takes the backreaction into account, and reduce to

IIA via symplectic reduction. In the purely toric case, this is explained in detail in [11].

However, we will proceed in a slightly different way that will lend itself to generalization

beyond the toric case, since we are also interested in local K3 surfaces of D and E type.

The type IIA setup on R1,5 × S with D6-branes wrapping curves of S is dual to M-

theory on a threefold X3, which is the C∗ fibration over S described in section 4. This has

the form

uv = ∆ (6.1)

where ∆ is the polynomial on S whose zeroes give the location of the D6-branes. Depending

on the setup, u, v, and ∆ are sections of appropriate line bundles over S.

The C∗-fiber over each point given by uv =constant, can be decomposed into R× S1.

The circle action is given by

U(1) : (u, v) 7→ (eiθu, e−iθv) , (6.2)

and each orbit is an S1 that we interpret as the M-theory circle. The real direction can

be identified via the symplectic reduction method, and we find that x5 corresponds to the

Hamiltonian function:

x5 := |u|2 − |v|2 . (6.3)

A sufficient condition to guarantee that the projection:

πM/IIA : X3 −→ S × Rx5 (6.4)
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actually yields a trivial product S ×R, is to make sure that u, v and ∆ are sections of the

trivial line bundle over S.

This implies that x5, as expressed by the moment map in (6.3), will be a section of a

trivial real line bundle over S. Moreover, we will see that, with this condition, the Kähler

volumes of the compact curves in S will have constant values along the x5 coordinate, so

that we can periodically identify that direction. However, this might be overkill, and we

would like to determine the necessary conditions.

Let us zoom in on a single compact sphere C ⊂ S. Locally, S can be regarded as the

total space of the normal bundle NC⊂S , which is O(−2)P1
C
.

We will be very pedantic in our description of this space, in order to set the stage for

our subsequent M-theory/IIA reduction. Let us begin describe this IIA space in the absence

of branes. We can represent this torically as the non-compact weighted projective space:

{C3 − (z1, z2, e) 6= (0, 0, e)}/C∗ (6.5)

where the three complex coordinates have the following homogeneous weights under the

C∗-action:
z1 z2 e

1 1 −2
, with (z1, z2, e) 6= (0, 0, e) . (6.6)

This is the definition of this toric space as a holomorphic quotient by a C∗ action. It is

well-known that this same quotient can be recast in the language of the symplectic reduc-

tion, by decomposing C∗ ∼= R × U(1) into scale a phase actions. The scale action is fixed

by a so-called “D-term condition” (in d = 4,N = 1 language):

|z1|2 + |z2|2 − 2|e|2 = ξ , (6.7)

where ξ, the so-called “FI constant”, is a real constant that measures the volume of the P1

under the Kähler form J :

ξ :=

∫
{e=0}

J . (6.8)

Here, e = 0 corresponds to the P1, and the zi to the normal directions. Now that the

R-action is broken by this relation, we simply quotient by the remaining U(1)-action.

Now we would like to add branes to the picture and uplift this to M-theory. Assuming

that there are Nc branes on the compact curve, and Nf branes on non-compact curves, we

can describe the local M-theory geometry as the hypersurface:

uv = eNcP (Nf )(z1, z2) (6.9)

inside the following ambient space

u v z1 z2 e

qu qv 1 1 −2
(6.10)

where, for consistency, qu + qv = Nf − 2Nc. The “D-term condition” is now

qu|u|2 + qv|v|2 + |z1|2 + |z2|2 − 2|e|2 = ξM . (6.11)

This is the local model for our CY threefold on which we define M-theory.
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In order to reduce this to IIA, we reduce with respect to the circle action on u and v

defined in (6.2). We then have the following description of the ambient space as a quotient

by U(1)2 acting as follows:

u v z1 z2 e

qu qv 1 1 −2

1 −1 0 0 0

(6.12)

with the same hypersurface condition as before, and two “D-term conditions”:

qu|u|2 + qv|v|2 + |z1|2 + |z2|2 − 2|e|2 = ξM , (6.13)

|u|2 − |v|2 = x5 , (6.14)

where we have conveniently named the second “FI constant” x5.

Let us now restrict to the curve e = 0, which sets the r.h.s. of (6.9) to zero. For x5 6= 0,

depending on its sign, the second “D-term condition” in (6.13) will forbid either u or v

from vanishing, and equation (6.9) will force the other variable to vanish. Let us choose

without loss of generality x5 > 0, such that u 6= 0 and v = 0. In that case, we are left with

the following description of the family of curves C over x5:

u z1 z2

qu 1 1

1 0 0

(6.15)

with

qu|u|2 + |z1|2 + |z2|2 = ξM − qux5 , (6.16)

|u|2 = x5 . (6.17)

It is convenient to take a linear combination of the actions and “D-term conditions” such

that u no longer mixes with the zi:
u z1 z2

0 1 1

1 0 0

(6.18)

with

|z1|2 + |z2|2 = ξM , (6.19)

|u|2 = x5 . (6.20)

Now we see that we can safely eliminate u, since we can fix its phase and norm, and we

are simply left with a P1 with Kähler volume:∫
C
J = ξM − qux5 (6.21)

The case x5 < 0 is treated similarly, swapping the roles of u and v (and minding a sign).

We can therefore regard this as a local K3 fibered over the x5-line, with an effective running

Kähler parameter whose period is∫
C
Jeff =

{
ξM − qux5 , x5 > 0

ξM + qvx
5 , x5 < 0

. (6.22)
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In order to compactify x5, we need this volume to be periodic or constant, therefore, we

must have qu = qv = 0. Note that this implies Nf = 2Nc, but it is not implied by it.

This condition can now be applied to each curve individually, regardless of the ADE

type of local K3 at hand. The condition amounts to imposing that we consider only so-

called balanced quivers without Chern Simons terms, since the effective CS levels are given

by [25]:

keff =
1

2

d
(∫
C Jeff

)
dx5

∣∣∣∣∣
x5=0+

x5=0−

=
1

2
(qv − qu) . (6.23)

6.2 The decompactification limit in M-theory

We now describe the limit one needs to take on the elliptic fibration to go back to the C∗

fibration, such that the two backgrounds are dual to the type IIA with x5 living respectively

on a circle and on R.

Let us consider M-theory on T 2 with radii R11 and R5 (the first is the M-theory circle

and the second is the x5 direction), i.e. with volume v = R11R5 and complex structure

τ = τ1 + iτ2 where τ2 = R11/R5. The eleven dimensional metric is (x11 is the M-theory

circle direction):

ds2
M =

v

τ2

(
(dx11 + τ1dx̂

5)2 + τ2
2 (dx̂5)2

)
+ ds2

9 (6.24)

where x̂5 has periodicity 2π. On the other hand, the relation between the M-theory metric

ds2
M and the type IIA metric ds2

IIA is

ds2
M = e4ϕ/3(dx+ C1)2 + e−2ϕ/3ds2

IIA (6.25)

From this we read immediately that e2ϕ/3 =
√
v/τ2 = R11, as expected, and the type IIA

metric is

ds2
IIA = e2ϕ/3

(
(dx5)2 + ds2

9

)
(6.26)

where we have rescaled x5 = R5x̂
5 so that x5 has periodicity 2πR5.

The decompactification limit in type IIA is R5 →∞ keeping ϕ fixed. This corresponds

on the M-theory side to take R5 →∞ keeping R11 fixed, i.e.

τ → i∞ , v →∞ with v/τ2 fixed (6.27)

In particular, in terms of the j-function j(τ) of the elliptic curve, this means j →∞.

6.3 Elliptic threefolds: algebro-geometric description

We now describe the elliptic fibration algebraically, in a form that goes to the wanted C∗

fibration in the limit described in section 6.2. The C∗ fibration uv = ∆ can be equivalently

written as

y2 = x2 + ∆ (6.28)

by a simple change of coordinates: u = y − x, v = y + x.
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Our claim is that the elliptic threefold that uplifts the type IIA setup when x5 is

compactified is algebraically described by

y2 = εx3 + x2 + ∆ (6.29)

with decompactification limit ε → 0. In fact, this equation describes an elliptic fibration

that degenerates over the discriminant of the cubic on the right hand side, i.e. over10

∆ell.fib. = −∆
(
4 + 27ε2∆

)
. (6.30)

Moreover the j-function is

j =
2048

ε2∆ (4 + 27ε2∆)
(6.31)

where we can immediately check that ε→ 0 sends j →∞, as required for the decompact-

ification limit.

We notice that the elliptic fiber degenerates where the D6-brane sit (i.e. at ∆ = 0);

there is also an extra component of the discriminant, that introduces neither new gauge

fields nor extra matter (the two loci do not intersect each other) and that disappears to

infinity in the ∆-plane when one takes the decompactification limit.

The Calabi-Yau threefold has now a compact fiber and a non-compact hyperkähler

surface base. The complex structure moduli of the base are given by deformations of the

holomorphic (2,0) form Ω2. Since the fiber directions are compact, the periods of Ω2 on

the compact curves of S provide complex scalar fields propagating in 5d.11

The elliptic fibration (as well as the C∗-fibration) obstructs some of these complex

deformations of S. In particular the locus where the fiber degenerates must be a holomor-

phic curve on the base S, i.e. the periods of the holomorphic (2,0)-form of S are forced to

be zero on such a curve. In our case we have the constraint that Ω2 integrated over (the

components of) the locus ∆ = 0 must vanish.

The deformations of the threefold studied in the section 4 are deformations of the

discriminant locus ∆ = 0. In the cases we studied, the most generic deformation makes

the degeneration locus a connected non-compact curve (in homology class [∆]) that does

not intersect any compact curve. This provides no obstruction for the periods of Ω2 on the

compact curves Ca. Hence, all the r complex structure moduli ζa of S must be included in

the counting of the (5d) complex structures of the CY threefold, and the dimension of the

Higgs branch is increased by r units with respect to what happend for the C∗-fibration.

This also matches with formula (5.5).

6.4 Massive U(1)’s in M-theory on elliptically fibered threefolds

In this section we explain why we do not have abelian gauge symmetries when we consider

an elliptic fibration instead of a C∗ fibration. This phenomenon was discovered and ex-

plained in the F-theory literature by [26], and later elucidated from a geometric standpoint

in [28].

10One can bring (6.29) in the canonical Weierstrass form y2 = X3 + f X+ g, by redefining x = X

ε1/3
− 1

3ε
.

One obtains y2 = X3 − 1

3ε4/3
X + ∆ + 2

27ε2
. One can then use the known formula for the discriminant and

the function j = 4(24f)3

4f3+27g2
.

11This happens because of the existence of normalizable harmonic two-forms corresponding to the compact

2-cycles, analogously with the type IIA case.
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6.4.1 Supergravity explanation

Let us recall the argument put forward by [26] to understand how the Stückelberg mecha-

nism explained from the IIA perspective manifests in M-theory.

Normally, in order to obtain a photon from M-theory, we would look for a normal-

izable, closed two-form ω in the threefold X3, and take the following KK Ansatz for the

supergravity C3 form

C3 = ω ∧A where dω = 0 , (6.32)

where A is the photon in the low energy theory. The reduction of the kinetic term will

then give us: ∫
X3×R1,4

dC3 ∧ ∗dC3 ∼
∫
R1,4

dA ∧ ∗dA . (6.33)

Take instead a two-form ω̃ that is not closed, and choose the following Ansatz:

C3 = ω̃ ∧A+ ϕχ3 , where dω̃ = χ3 , (6.34)

where ϕ is a low energy scalar. Now the kinetic term becomes∫
X3×R1,4

dC3 ∧ ∗dC3 ∼
∫
R1,4

dA ∧ ∗dA+ (A+ dϕ) ∧ ∗(A+ dϕ) . (6.35)

Hence, the Stückelberg mechanism arises from the non-closure (or non-harmonicity) of the

two-form.

6.4.2 Algebro-geometric explanation

In this section, we will translate the non-closure of the normalizable two-form of the pre-

vious section into a statement about non-Kählerity of small resolutions.

We will consider a simple case that exemplifies all the relevant issues, i.e. U(1) gauge

theory with two charged hypermultiplets. This can be realized either by a homogeneous

linear quiver or by an ascending quiver. Let us consider the former for simplicity. The C∗

fibration is given by

uv = z1e z2 or equivalently y2 = x2 + z1e z2 , (6.36)

where (z1, e, z2) have toric weights (1,−2, 1) and where e = 0 is the exceptional P1 (this is a

particular case of (4.2)); the u, v and x, y coordinates are related by u = y−x and v = y+x.

This space has two conifold singularities, at (x, y, z1, e) and at (x, y, e, z2). Correspond-

ingly there are three pairs of non-Cartier divisors D±z1 = (x ± y, z1), D±e = (x ± y, e) and

D±z2 = (x± y, z2).

The conifold singularities can be resolved. The M2-branes wrapping the exceptional

curves give rise to two hypermultiplets. The normalizable harmonic taub-nut two-form

are in one-to-one correspondence with the divisors αz1 = D+
z1 −D

−
z1 , αe = D+

e −D−e and

αz2 = D+
z2 − D

−
z2 . Each harmonic two-forms give rise to a U(1) vector multiplet, under

which the hypermultiplets are charged. The three vector multiplets propagate respectively

along z1 = 0, e = 0 and z2 = 0. Hence only the second one is a gauge boson propagating
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effectively in 5d, while the other two are seen as background vector multiplets in the 5d

theory (as they propagate in 7d).

This spectrum (one U(1) vector multiplet and two charged hypermultiplets) matches

with the expectation in type IIA, where we have one D6-brane wrapping the disconnected

locus z1e z2 = 0, i.e. three D6-branes, one of which wrapping a compact curve, and two

intersection loci giving rise to charged hypermultiplets.

Let us now compactify the x5 direction. The elliptic fibration in now described by

y2 = εx3 + x2 + z1e z2 . (6.37)

This equation can be rearranged in the following form

y2 − z1e z2 = x2(εx+ 1) , (6.38)

i.e. it is two deformed A1 singularities fibered over the x-plane: when the r.h.s. vanishes,

the l.h.s. describes a surface with two A1 singularities, while at generic x these singularities

are deformed. This manifold is singular at (x, y, z1, e) and at (x, y, e, z1). As explained

in detail in [28] (section 4.2), this manifold admits only a non-Kähler resolution. The

normalizable two-form αe in the C∗ fibration is now non-harmonic and the corresponding

U(1) gauge field has then a KK mass term [26].

This explains in the M-theory setup why the compactification of the x5 direction

removes the abelian gauge bosons from the spectrum.12

7 5-brane web perspective

Having studied the type IIA and M-theory embeddings of unitary quivers, let us now turn

to the IIB 5-brane web perspective, in order to gain further insight into these U(1)’s.

We will actually study these webs in the limit gIIB
s → 0. In this regime, the main

points will be the following:

1. The brane webs no longer behave as webs, but will behave exactly as Hanany-Witten

setups in 3d [29]. No brane bending takes place, hence everything will be consistent

with U(n) gauge groups. The enhancement of the Coulomb branch is then visible

as up and down movements of D5-segments between parallel NS5-branes and (1, 1)

5-branes.13

2. When we compactify one direction longitudinal to the NS5’s but transverse to the

D5’s, the ‘baryonic’ branches become manifestly dynamical. They correspond to NS5

movements off the (p, q)-plane, as usual, only now the NS5’s are truly 5d objects.

12We also check that the Higgs branch dimension is increased by r = 1 unit, passing from the C∗ fibration

to the elliptic fibration. A generic connected curve in the class [∆] does not intersect the compact curve

e = 0, hence the fibration does not obstruct the periods of Ω2 on Ce.
13More precisely, although branes will no longer bend, charge conservation will still impose that when a

D5 and an NS5 meet, a (1, 1) 5-brane will emerge from the intersection.
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0 1 2 3 4 5 6 7 8 9

D5 — — — — — —

NS5 — — — — — —

(1,1) 5-branes — — — — — angle

7-branes — — — — — — — —

S1

Table 1. Brane setup.

7.1 Unitary quivers from 5-brane webs

Let us first define our conventions for standard 5-brane webs in table 1. The relation

between this setup and our IIA setup is as follows: starting with IIA on an AN -type ALF

space, we wrap all D6-branes (compact or non-compact) along the S1-fiber of the ALF.

After T-duality, they become D5-branes. At the same time, this non-trivially fibered S1

becomes the x9 direction in table 1. The fixed points of the fibration T-dualize to NS5-

branes that are pointlike in the x9-circle, as indicated. The 7-branes are ingredients that

will be brought in later.

In order to set the stage for the discussion, let us remind the reader of the relations

between the various couplings in string theory. Take M-theory on a torus of radii (R11, R9).

The various 10d couplings are related as follows:

λA = R
3/2
11 λB = R11/R9 (7.1)

rstA = R9λ
1/3
A = R9

√
R11 rstB ∼ 1/rstA = 1/(R9

√
R11)

Here, λA and rstA are the type IIA string coupling and radius of the IIA circle in string

frame, respectively; the second column shows the IIB counterparts.14 Here, rB represents

the radius of the x9-direction in table 1.

As a preview, instead of taking the familiar vanishing area limit of the M-theory torus

(aka the F-theory limit), we will keep R11 finite, and send R9 to infinity, so that at finite

λA we will have λB → 0.

Let us get more specific. Take M-theory on a C∗-fibration over a local K3. The local K3

is itself a multi-centered Taub-NUT (ALF) with asymptotic radius R9, and the C∗-fibration

contains the “M-theory circle” with asymptotic radius R11. This sets the IIA string cou-

pling to R
3/2
11 as summarized above. The setup is summarized below, and in figure 5:

M-theory on C∗-fibration over ALF

IIA on ALF with asymptotic radius R9

√
R11 IIB on S1 with radius 1/(R9

√
R11)

14In Einstein frame the radia are rEA = rstAλ
−1/4
A = R9R

1/8
11 and rEB = rstBλ

−1/4
B = 1/(R

5/4
9 R

3/4
11 ).
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Figure 5. IIA on an ALF space. (The z-plane is spanned by the coordinates x7, x8, while the

C∗-fiber of the ALF space is spanned by x6 and the circle coordinate x9.)

In type IIA, the asymptotic radius of the multi-centered TN is not R9, but gets rescaled

to R9

√
R11. After a T-duality, the TN geometry becomes flat space times a circle of radius

1/(R9

√
R11), with some NS5-branes, and the D6-branes dualize to D5-branes.15

Now consider taking finite IIA string coupling, and sending the asymptotic TN radius

to infinity. This lands us in perturbative IIA on an ALE space (i.e. a resolved orbifold of

C2). On the IIB side, we have the radius completely shrinking, and the string coupling

15This happens for this particular arrangement. If we choose the non-compact D6-branes in generic

positions, we will get D7-branes.
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Figure 6. Branes don’t bend at λB = 0. A U(1) photon becomes dynamical. The Coulomb Branch

is represented by moving the D5-segment up and down.

going to zero.

λA <∞, R9 →∞ ⇒ λB → 0 . (7.2)

The upshot is that now, the rules for 5-brane webs get modified. The slope-condition for

a (p, q)-brane on the (x6, x5)-plane (depicted as a parallelogram on the r.h.s. in figure 5) is

the following:

(∆x6 : ∆x5) = (p : q/λB). (7.3)

Sending λB → 0, we thus find that all (p, q)-branes with q 6= 0 will be vertical, and D5-

branes will be horizontal. Hence, if a D5-brane meets an NS5 and a (1, 1) (by charge

conservation), the latter two will together form a straight vertical line. This is depicted

in figure 6. Now the situation is analogous to 3d Hanany-Witten setups: D3-segments

suspended between parallel NS5-branes are free to move up and down the diagram, rep-

resenting a real direction of the Coulomb branch associated with overall U(1) factors on

unitary quivers.

Hence, we can draw the conclusion that we have 5d unitary quivers in this regime.

An important check to run here is the structure of the Higgs branch. More specifically,

do we find a baryonic branch in these setups or not? If the answer is affirmative, then we

cannot have a unitary group. Let us recall how baryonic branches are visualized in the

5-brane web framework when we have, say a single gauge node with SU(Nc) with Nf ≥ Nc.

The color branes are realized by Nc finite suspended D5-segments, and the flavors by

Nf semi-infinite D5-branes. If we have at least Nc semi-infinite branes all on one side of

the color branes, then we align them with the latter, and reconnect. This frees up an NS5-

brane that can move in the directions transverse to the (p, q)-plane, realizing the baryonic

branch. However, in order to interpret this as a vev of a dynamical field, this NS5 must

itself be suspended between two (0, 1)-sevenbranes, in order to make its worldvolume truly

five-dimensional. Otherwise, this would just be a “global deformation”, corresponding to

a parameter of the theory. This is illustrated in figure 7.

So at this point we should ask: do we still see a baryonic branch here? The answer,

interestingly, is “no”. The (0, 1)-sevenbranes are incompatible with the weak coupling
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Figure 7. SU(2) with Nf = 4, moving onto a ‘baryonic branch’.

limit we are considering. Notice that a (0, 1)-sevenbrane induces the following SL(2,Z)

monodromy on the axio-dilation:

τ 7→ aτ + b

cτ + d
, with

(
a b

c d

)
=

(
1 0

−1 1

)
. (7.4)

This will trigger an S-duality that sends gs 7→ ∞. Hence, we conclude that our weak

coupling limit somehow pushes these branes away, keeping NS5-branes non-compact, and

hence non-dynamical.

Can we still perform the alignement of the color and flavor branes and lift the NS5-

brane as discussed? Yes. However, the interpretation is that we are switching on a Fayet-

Iliopoulos term (as was originally suspected in [30]).

7.2 Eliminating U(1) factors by compactifying 5-brane webs

Having argued how 5-brane webs give rise to unitary quiver gauge theories when the string

coupling is zero, we should now be able to mimick the Stückelberg mechanism we saw in

IIA when we compactified the direction x5 on a circle. In the 5-brane web diagram, this

will simply correspond to compactifying the vertical coordinate of the (p, q)-plane. This

compactification, and the no-bending regime, are summarized in table 2. How can we

see that this will turn U(N) groups into SU(N) groups? We will see this indirectly by

inspecting the Higgs branch.

One difference between unitary and special unitary groups is the fact that the former

do not have baryonic branches, whereas the latter do. As we explained in the previous

section, baryonic branches correspond to aligning Nc flavor branes on one side with all

Nc color branes, and then simply lift the separating NS5-brane off the plane, which itself

must be suspended between (0, 1)-sevenbranes in order to make for a normalizable move.

However, in our weak coupling limit, such sevenbranes are banned.

On the other hand, having compactified precisely the vertical direction of the (p, q)-

plane, NS5-branes (all vertical branes) are rendered truly five-dimensional. This means

that lifting such branes off the plane can be interpreted as a local move, i.e. giving a vev

to a dynamical field (this in fact is dual in IIA to a complex structure modulus of the

local K3, which is dynamical after compactifying x5 on a circle). Indeed, this explains the
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0 1 2 3 4 5 6 7 8 9

D5 — — — — — —

NS5 — — — — — —

(1,1) 5-branes — — — — — angle

7-branes — — — — — — — —

S1 S1

Table 2. Brane setup when one compactifies the x8 direction.

enhancement of the Higgs branch when going from U(N) to SU(N) gauge groups. This

move is now fully compatible with our weakly coupled regime.

8 Discussion

In this paper, we studied the Higgs branches of quiver gauge theories obtained by putting

M-theory on C∗-fibrations over local K3’s modeled as C2/Γ for Γ ⊂ SU(2). We found

that by counting local deformation moduli, the numbers are consistent with unitary gauge

groups, as opposed to the expected special unitary groups.

We also proposed a mechanism to render the U(1) factors massive: compactifying a

transverse direction renders bulk SUGRA multiplets dynamical, and BF-couplings induce

the Stückelberg mechanism. In M-theory, this translates to having elliptic fibrations over

the local K3’s.

We gave an interpretation on the dual 5-brane web picture. For finite gIIA
s and a

T-duality circle S1
IIA of radius going to infinity, gIIB

s → 0. In this case, brane bending is

suppressed, and D5-segments suspended between parallel NS5’s are free to move up and

down (as in 3d Hanany-Witten constructions), thereby making the enhanced Coulomb

branch visible.

Several puzzles remain:

• The normalizable two-forms in M-theory will become non-normalizable if we take an

ALE limit of the fiber ALF metric. In this case, we expect to return to the SU-

quiver situation, without the need for the perturbative Stückelberg mechanism. We

do not know of a perturbative IIA explanation for this. Presumably, the D6-branes

are becoming delocalized at strong gs, and their worldvolume photons are behaving

more and more like bulk fields which are no longer 5d.

• Algebraic spaces of the form uv = ∆ are compatible with ALF as well as ALE spaces.

However, when we count complex structure moduli in algebraic geometry, it seems

that we are seeing unitary gauge groups, which are supported only by ALF spaces.

This is intriguing, and begs the question, whether non-algebraic moduli might be

lurking (from the base manifold), in the ALE limit.

• We do not know, whether UV fixed-points see a difference between having these

Abelian factors or not, as we have not attempted to compute infinite coupling Higgs
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branches, as is done in [31–34] among other works. One possibility is that our theories

do not have UV fixed points, but are UV completed by little string theories, since

the asymptotic radius of the ALF-fibration keeps a scale in the game.16

• All of our setups with balanced quiver nodes can be obtained from 6d via KK reduc-

tion. However, those are not the so-called ‘KK theories’ discussed in the literature.

For instance, in order to obtain SU(2) with eight flavors, one would have to introduce

orientifolds.
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