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1 Introduction

The Standard Model (SM) of particle physics successfully describes all known elementary

particles and their interactions. At the center of SM is the mechanism of electroweak

symmetry breaking (EWSB), which is responsible for the masses of gauge bosons and

fermions. The discovery of Higgs bosons in 2012 [1, 2] filled in the last missing piece of

the SM. However, the Higgs boson itself brings new questions and puzzles that need to

be answered. As a minimal model to realize EWSB, the Higgs field is characterized by

the potential

V (H) = −µ2|H|2 + λ|H|4 (1.1)

with just two parameters. The two parameters are now fixed by the observed Higgs vacuum

expectation value (VEV) v ' 246 GeV and Higgs boson mass Mh ' 125 GeV as

µ2 ' (88 GeV)2 , λ ' 0.13 . (1.2)

However, SM does not address the UV-sensitive nature of scalar bosons. The Higgs

mass-squared receives quadratically divergent radiative corrections from the interactions

with SM fields, which leads to the well-known hierarchy problem. To avoid the large

quadratic corrections, the most natural way is to invoke some new symmetry such that the

quadratic contributions cancel in the symmetric limit. This requires the presence of new

particles related to SM particles by the new symmetry, such as top partners, in order to

cut off the divergent loop contributions.

One such appealing solution to the hierarchy problem is the composite Higgs model

(CHM), where the Higgs doublet is the pseudo-Nambu-Goldstone boson (pNGB) of a

spontaneously broken global symmetry of the underlying strong dynamics [3, 4]. Through

the analogy of the chiral symmetry breaking in quantum chromodynamics (QCD), which

naturally introduces light scalar fields, i.e., pions, we can construct models with light Higgs

bosons in a similar way. In a CHM, an approximate global symmetry G is spontaneously

broken by some strong dynamics down to a subgroup H with a symmetry breaking scale f .

The heavy resonances of the strong dynamics are expected to be around the compositeness

scale ∼ 4πf generically. The pNGBs of the symmetry breaking, on the other hand, can

naturally be light with masses < f as they are protected by the shift symmetry. The

potential of the Higgs field arises from the explicit symmetry breaking effects, such as

the interactions with other SM fields. The largest coupling of the Higgs field in SM is to

the top quark. As a result, for naturalness, the top partners which regulate the top loop

contribution to the Higgs potential should not be too heavy. The top loop contribution to

the Higgs mass term can be estimated as

∆µ2 ∼ Nc

8π2
y2tM

2
T ∼ (220 GeV)2

(
MT

1.2 TeV

)2

, (1.3)

where MT is the top partner mass. On the other hand, the bounds on the SM colored

top partners have reached beyond 1 TeV from the collider searches [5, 6]. Compared with

eq. (1.2), we see that the models with colored top partners (including both the minimal
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supersymmetric standard model (MSSM) and the CHM) already require some unavoidable

O(10%) tuning, albeit not unimaginable.

In most CHMs, however, the tuning is much worse than that is shown in eq. (1.3).

Depending on the coset G/H and the representations of composite operators that couple

to the top quarks, the strongly interacting resonances of the top sector in the UV often

give a bigger contribution to the Higgs potential than eq. (1.3), which requires more tuning

to cancel. Another problem is that, unlike the pions, the Higgs field needs to develop a

nonzero VEV v. The current experimental constraints require v < f/3. On the other hand,

for a generic pNGB potential, the natural VEV for the pNGB is either 0 or f . To obtain

a VEV much less than f , a significant quartic Higgs potential compared to the quadratic

term is needed. In little Higgs models [7–9], a Higgs quartic term can be generated without

inducing a large quadratic term from the collective symmetry breaking. Such a mechanism

is not present in most CHMs, which is another cause of the fine-tuning issue.

In this study, our goal is to find a more natural CHM by removing the additional tuning

beyond eq. (1.3). We first identify the cosets and the composite operator representations

that couple to the top quarks, which can preserve a larger symmetry for the resonances to

suppress the UV contribution to the Higgs potential. Next, we implement the collective

symmetry breaking to generate a Higgs quartic potential while keeping the quadratic term

at the level of eq. (1.3). In this way we can naturally separate the scales of v and f ,

resulting in a more natural CHM.

This paper is organized as follows. In section 2, we review the tuning problems in CHMs

and identify the sources of the extra tuning, using the SO(5)/SO(4) CHMs as an example.

In section 3, we introduce the SU(6)/Sp(6) CHM, including the interactions that produce

the SM Yukawa couplings, and show how the large UV contribution to the Higgs potential

is avoided. We then move on to the next step to generate an independent Higgs quartic

term from collective symmetry breaking in section 4. The resulting Higgs potential of the

2HDM is discussed in section 5. The complete potential and spectrum of all the pNGBs in

our model are summarized in section 6 with numerical estimation. Section 7 and section 8

are devoted to the phenomenology of this model. Section 7 focuses on the collider searches

and constraints. The analyses of the indirect constraints from the precision experimental

measurements are presented in section 8. Section 9 contains our summaries and conclusions.

In appendix A we briefly discuss the possibility of constructing a similar model based

on the SU(5)/SO(5) coset. We point out the differences and some drawbacks of such a

model. Appendix B contains the details of the interactions between elementary fermions

and composite operators for a realistic implementation of the SU(6)/Sp(6) CHM model.

2 Tuning in general composite Higgs models

We first give a brief review of the tuning problem of the Higgs potential in general CHMs,

which was comprehensively discussed in refs. [10, 11]. This will help to motivate pos-

sible solutions. As an illustration, we consider the Minimal Composite Higgs Models

(MCHMs) [12] with the symmetry breaking SO(5) → SO(4). The four pNGBs are iden-

tified as the SM Higgs doublet. The SM gauge group SU(2)W × U(1)Y is embedded in
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SO(5) × U(1)X , with the extra U(1)X accounting for the hypercharges of SM fermions.

The explicit breaking of the global symmetry introduces a pNGB potential such that at

the minimum the SO(5) breaking VEV f is slightly rotated away from the direction that

preserves the SU(2)W × U(1)Y gauge group. The misalignment leads to the EWSB at a

scale v � f .

The explicit global symmetry breaking comes from SM gauge interactions and Yukawa

interactions. The SM Yukawa couplings arise from the partial compositeness mecha-

nism [13]: elementary fermions mix with composite operators of the same SM quantum

numbers from the strong dynamics,

L = λLq̄LOR + λRq̄ROL, (2.1)

where qL, qR are elementary fermions and OL, OR are composite operators of some repre-

sentations of G (= SO(5) in MCHMs). The values of couplings λL, λR depend on the UV

theory of these interactions and are treated as free parameters to produce viable models.

With these interactions, the observed SM fermions will be mixtures of elementary fermions

and composite resonances. The SM fermions can then couple to the Higgs field through

the portion of the strong sector with couplings given by

y ' λLλR
gψ

' εL · gψ · εR , (2.2)

where gψ is a coupling of the strong resonances and is expected to be � 1, εL,R are ratios

λL,R/gψ, which are expected to be small. The resonances created by OL,R have masses ∼
gψf , and play the roles of SM fermion partners. They cut off the divergent contributions to

the Higgs potential and make it finite. Notice that the operators belong to representations

of the global symmetry G, but the resonances are divided into representations of H after

the symmetry breaking. Because the elementary fermions in general do not fill the whole

representations of G, the partial compositeness couplings λL, λR explicitly break the global

symmetry G and generate a nontrivial Higgs potential.

The pNGB Higgs field parametrizes the coset G/H so the potential is periodic in the

Higgs field. The Higgs potential can be expanded in sin(H/f) and up to the quartic term

it takes the form

V (H) = −α̂f2sin2H

f
+ β̂f2sin4H

f
, (2.3)

where α̂ and β̂ have mass dimension two and α̂ corresponds to the mass-squared parameter

of the Higgs field while β̂/f2 will contribute to the quartic term. By expanding sin(H/f),

higher powers of H can be generated from each term, but for convenience, we will simply

call the first term quadratic term and the second term quartic term. The parameters α̂

and β̂ are model dependent and are generated by explicit breaking parameters, like λL and

λR. Given the potential, we can get the VEV and Higgs mass parameterized as

v =

√
α̂

2β̂
f, M2

h = 8β̂
v2

f2

(
1− v2

f2

)
. (2.4)

The misalignment of the minimum from the SM gauge symmetry preserving direction is

parametrized by

ξ ≡ v2

f2
= sin2〈θ〉 =

α̂

2β̂
� 1 , (2.5)
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where angle 〈θ〉 ≡ 〈h〉/f . Therefore, for a realistic model, we need α̂� β̂ and at the same

time, the correct size of β̂ to get the observed Higgs boson mass Mh ' 125 GeV.

From the most explicit symmetry breaking effects of the composite Higgs models,

one typically gets α̂ > β̂, which is the source of the tuning problem. For example, in

MCHM5 [11, 12], the SM fermions mix with composite operators OL, OR ∈ 5 of SO(5).

After the symmetry breaking, the composite resonances split into 4 and 1 representations

of SO(4). The mass difference between 4 and 1 resonances generates a Higgs potential at

the compositeness (UV) scale with

α̂ ∼ Nc

16π2
λ2L,RM

2
ψ ∼ ε2L,R

Ncg
4
ψ

16π2
f2, (2.6a)

β̂ ∼ Nc

16π2
λ4L,Rf

2 ∼ ε4L,R
Ncg

4
ψ

16π2
f2. (2.6b)

The quartic term coefficient β̂ arises at a higher order in ε than α̂, so generically β̂ � α̂

is expected instead. It is then required more fine-tuning to achieve the correct EWSB. In

some models, it is possible to have α̂ ∼ β̂. For example, MCHM14 [10] with OL, OR ∈ 14

of SO(5) can lead to the potential with

α̂ ∼ β̂ ∼ Nc

16π2
λ2L,RM

2
ψ ∼ ε2L,R

Ncg
4
ψ

16π2
f2, (2.7)

where β̂ arises at the same order as α̂. It requires less tuning to achieve ξ � 1. This has

been called “minimal tuning.” But even so, the UV contribution of eq. (2.7) to α̂ is larger

than the IR contribution from the top quark loop

∆m2
IR ∼

Nc

16π2
y2tM

2
T ∼ ε4L,R

Ncg
4
ψ

16π2
f2, (2.8)

which already requires some levels of fine-tuning as shown in eq. (1.3). This additional

UV contribution actually worsens the condition and requires more tuning. A less-tuned

scenario is to have a composite right-handed top quark (which is a singlet of G). In

this case, εR ∼ 1 but does not contribute to the Higgs potential. The Higgs potential is

controlled by λL ∼ yt, which can be smaller.

From the above discussion, one can see that to obtain a more natural Higgs potential in

CHM, it would be desirable to suppress the contribution from the composite top-partner

resonances to the quadratic term. For example, a maximal symmetry was proposed in

ref. [14] to keep the degeneracy of the whole G representation of the top-partner resonances.

However, the maximal symmetry is somewhat ad hoc within a simple model and its natural

realization requires more complicated model constructions by doubling the global symmetry

groups or invoking a holographic extra dimension [15, 16]. We will look for cosets G/H

such that the representation of the top-partner resonances do not split even after the

symmetry breaking of G→ H so that it preserves a global symmetry G in any single partial

compositeness coupling to prevent unwanted large contributions to the Higgs potential.

Besides, we need some additional contribution to the quartic term without inducing the

corresponding quadratic term simultaneously to make β̂ > α̂ naturally. This may be
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achieved by the collective symmetry breaking of the little Higgs mechanism [7–9]. Previous

attempts include adding exotic elementary fermions to an SU(5)/SO(5) CHM model [17]

and a holographic model with double copies of the global symmetry [18]. Another way

of generating the quartic term without the quadratic term using the Higgs dependent

kinetic mixing requires both new elementary fermions and an enlarged global symmetry

or an extra dimension [19]. We will take a more economical approach by implementing

the little Higgs mechanism without adding exotic elementary fermions or invoking multiple

copies of the global symmetry, but simply using the couplings that mix SM fermions with

composite resonances.

3 The SU(6)/Sp(6) composite Higgs model

Among the possible cosets, the cosets SU(5)/SO(5) and SU(6)/Sp(6) are potential candi-

dates to realize the ideas discussed at the end of the previous section. If the composite

operator OL,R ∈ 5(6) of SU(5)(SU(6)), the corresponding resonances do not split under

the unbroken subgroup SO(5)(Sp(6)).1 Since they are still complete multiplets of G, there

is an enhanced symmetry for each mixing coupling λL,R, which protects the pNGB po-

tential. The cosets were also some earliest ones employed in little Higgs models [9, 20]

where the collective symmetry breaking for the quartic coupling was realized. In CHMs,

it requires different explicit implementations if no extension of the SM gauge group or

extra elementary fermions are introduced. The SU(5)/SO(5) model has a general problem

that an SU(2) triplet scalar VEV violates the custodial SU(2) symmetry, leading to strong

experimental constraints. We will focus on the SU(6)/Sp(6) model2 here and leave a brief

discussion of the SU(5)/SO(5) model in appendix A.

3.1 Basics of SU(6)/Sp(6)

To parametrize the SU(6)/Sp(6) non-linear sigma model, we can use a sigma field Σij , which

transforms as an anti-symmetric tensor representation 15 of SU(6), where i, j = 1, . . . 6 are

SU(6) indices. The transformation can be expressed as Σ → gΣgT with g ∈ SU(6) or

as Σij → gikg
j
lΣ
kl with indices explicitly written out. The scalar field Σ has an anti-

symmetric VEV 〈Σ〉 = Σαβ
0 (with α, β representing Sp(6) index), where

Σ0 =

(
0 −I
I 0

)
, (3.1)

and I is the 3× 3 identity matrix. The Σ VEV breaks SU(6) down to Sp(6), producing 14

Nambu-Goldstone bosons.

The 35 SU(6) generators can be divided into the unbroken ones and broken ones with

each type satisfyingunbroken generators Ta : TaΣ0 + Σ0T
T
a = 0 ,

broken generators Xa : XaΣ0 − Σ0X
T
a = 0 .

(3.2)

1Näıvely they can split into two real representations, but if they carry charges under the extra U(1)X
gauge group which is required to obtain the correct hypercharge, they need to remain complex.

2A CHM with the SU(6)/Sp(6) coset were considered in ref. [21], but for a different prospect.
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The Nambu-Goldstone fields can be written as a matrix with the broken generator:

ξ(x) = ξiα(x) ≡ e
iπa(x)Xa

2f . (3.3)

Under SU(6), the ξ field transforms as ξ → gξh† where g ∈ SU(6) and h ∈ Sp(6), so ξ

carries one SU(6) index and one Sp(6) index. The relation between ξ and Σ field is given by

Σ(x) = Σij(x) ≡ ξΣ0ξ
T = e

iπa(x)Xa
2f Σ0e

iπa(x)X
T
a

2f = e
iπa(x)Xa

f Σ0 . (3.4)

The complex conjugation raises or lowers the indices. The fundamental representation of

Sp(6) is (pseudo-)real and the Sp(6) index can be raised or lowered by Σαβ
0 or Σ0,αβ .

The broken generators and the corresponding fields in the matrix can be organized as

follows (ε = iσ2):

πaXa =



1√
2
φaσ

a − η√
6
1 H2 εs H1

H†2
2η√
6

−HT
1 0

εT s∗ −H∗1 1√
2
φaσ

a∗ − η√
6
1 H∗2

H†1 0 HT
2

2η√
6

 . (3.5)

In this matrix, there are 14 independent fields. They are (under SU(2)W ): a real triplet

φa, a real singlet η, a complex singlet s, and two Higgs (complex) doublets H1 and H2.

We effectively end up with a two-Higgs-doublet model (2HDM). The observed Higgs boson

will correspond to a mixture of h1 and h2 inside two Higgs doublets H1 = H1/2 ⊃ 1√
2

(
0
h1

)
and H2 = H−1/2 ⊃ 1√

2

(
h2
0

)
. Using the Nambu-Goldstone matrix, we can construct the

low energy effective Lagrangian for the Higgs fields and all the other pNGBs.

3.2 The gauge sector

The SM electroweak gauge group SU(2)W × U(1)Y is embedded in SU(6) × U(1)X with

generators given by

SU(2)W :
1

2


σa 0 0 0

0 0 0 0

0 0 −σa∗ 0

0 0 0 0

 , U(1)Y :
1

2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −1


+XI . (3.6)

The extra U(1)X factor accounts for the different hypercharges of the fermion representa-

tions but is not relevant for the bosonic fields. These generators belong to Sp(6) × U(1)X
and not broken by Σ0. Using the Σ field, the Lagrangian for kinetic terms of Higgs boson

comes from

Lh =
f2

4
tr
[
(DµΣ)(DµΣ)†

]
+ · · · , (3.7)
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where Dµ is the electroweak covariant derivative. Expanding this, we get

Lh =
1

2
(∂µh1)(∂

µh1) +
1

2
(∂µh2)(∂

µh2) +
f2

2
g2W

(
sin2

√
h21 + h22√

2f

)[
W+
µ W

−µ +
ZµZ

µ

2cosθW

]
.

(3.8)

The non-linear behavior of Higgs boson in CHM is apparent from the dependence of trigono-

metric functions.

The W boson acquires a mass when h1 and h2 obtain nonzero VEVs V1 and V2 of

m2
W =

f2

2
g2W

(
sin2

√
V 2
1 + V 2

2√
2f

)
=

1

4
g2W (v21 + v22) =

1

4
g2W v

2, (3.9)

where

vi ≡
√

2f
Vi√

V 2
1 + V 2

2

sin

√
V 2
1 + V 2

2√
2f

≈ Vi = 〈hi〉 . (3.10)

The parameter that parametrizes the nonlinearity of the CHM is given by

ξ ≡ v2

f2
= 2 sin2

√
V 2
1 + V 2

2√
2f

. (3.11)

3.3 The gauge contribution to the pNGB potential

SM gauge interactions explicitly break the SU(6) global symmetry, so they contribute to

the potential of the Higgs fields as well as other pNGBs. SM gauge bosons couple to pNGBs

through the mixing with composite resonances:

L = gWµ,aJ
µ,a
W + g′BµJ

µ
Y . (3.12)

The JW and JY belong to the composite operators in an adjoint representation 35 of

SU(6). After the symmetry breaking, the composite operators are decomposed into 21

and 14 of Sp(6). The masses of composite resonances of different representations of Sp(6)

are in general different and this will generate a potential for pNGBs at O(g2). For SU(2)W ,

it only breaks the global symmetry partially and generates mass terms for the two Higgs

doublets and the scalar triplet φ:

SU(2)W : (for H1, H2) cw
1

16π2
3g2

2
g2ρf

2 ≈ cw
3

32π2
g2M2

ρ , (3.13)

(for φ) cw
1

16π2
4g2g2ρf

2 ≈ cw
1

4π2
g2M2

ρ , (3.14)

where gρf ∼ Mρ is the mass of the vector resonances ρ which act as the gauge boson

partners to cut off the SU(2)W gauge loop contribution to the pNGB masses, and cw is

a O(1) constant. Similarly, for U(1)Y , the interaction also breaks the global symmetry

partially. It only generates mass terms for H1, H2:

U(1)Y : c′
1

32π2
g′2g2ρf

2 ≈ c′ 1

32π2
g′2M2

ρ , (3.15)

where c′ is also an O(1) constant.
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Combining these two contributions, we get the mass terms of the pNGBs from the

gauge contributions at the leading order as

M2
η = M2

s = 0, M2
φ = cw

1

4π2
g2M2

ρ ,

M2
H1

= M2
H2

= cw
3

32π2
g2M2

ρ + c′
1

32π2
g′2M2

ρ ≈
(

3g2 + g′2(c′/cw)

8g2

)
M2
φ . (3.16)

From the gauge contributions only, we expect that Mφ > MH1 = MH2 and they are below

the symmetry breaking scale f . The SU(2)W×U(1)Y singlets s and η do not receive masses

from the gauge interactions at this order, but they will obtain masses elsewhere which will

be discussed later.

3.4 The Yukawa sector

For partial compositeness, the elementary quarks and leptons couple to composite operators

of G = SU(6). To be able to mix with the elementary fermions, the representations of the

composite operators must contain states with the same SM quantum numbers as the SM

fermions. For our purpose, we can consider 6 and 6̄ of SU(6) as they don’t split under

the Sp(6) subgroup. To account for the correct hypercharge, e.g., qL = 21/6, qR = 12/3
for up-type quarks and qR = 1−1/3 for down-type quarks, the composite operators need

to carry additional charges under the U(1)X outside SU(6) and the SM hypercharge is a

linear combination of the SU(6) generator diag(0, 0, 1/2, 0, 0,−1/2) and X. The composite

operator as a 61/6 of SU(6) (where the subscript 1/6 denotes its U(1)X charge) can be

decomposed under SM SU(2)W ×U(1)Y gauge group as

OiL,R ∼ ξiαQαL,R ∼ 61/6 = 21/6 ⊕ 12/3 ⊕ 2̄1/6 ⊕ 1−1/3, (3.17)

where QL,R are the corresponding composite resonances. The composite states QL,R cre-

ated by these operators belong to the 6 representations of Sp(6) and play the roles of SM

fermion composite partners. For SU(2), 2 and 2̄ are equivalent and related by the ε tensor.

We make the distinction to keep track of the order of the fermions in a doublet. We see that

the composite states have the appropriate quantum numbers to mix with the SM quarks.

The left-handed elementary top quark can mix with either the first two components

or the 4th and 5th components of the sextet. If we assume that it couples to the first two

components, the mixing term can be expressed as

λLq̄LaΛ
a
iO

i
R = λLq̄LaΛ

a
i

(
ξiαQ

α
R

)
(3.18)

where a represents an SU(2)W index, and

(Λ)ai = Λ =

(
1 0 0 0 0 0

0 1 0 0 0 0

)
(3.19)

is the spurion which keeps track of the symmetry breaking.

To get the top Yukawa coupling, we couple the elementary right-handed quark to the

6̄1/6, which decomposes under SU(2)W ×U(1)Y as

O′L,Rj ∼ ξ∗j
βΣ0βαQ

α
L,R ∼ 6̄1/6 = 2̄1/6 ⊕ 1−1/3 ⊕ 21/6 ⊕ 12/3 . (3.20)
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The right-handed top quark mixes with the last component of the 6̄1/6, which can be

written as

λtR t̄RΓtR
jO′Lj = λtR t̄RΓtR

j
(
ξ∗j
βΣ0βαQ

α
L

)
, (3.21)

where ΓtR = (0 0 0 0 0 1) is the corresponding spurion.

Combining λL and λtR couplings, we can generate the SM Yukawa coupling for the

top quark (and similarly for other up-type quarks),3

∼ λLλtR q̄LaΛ
a
iξ
i
αΣαβ

0 ξTβ
j
Γ†tRjtR = λLλtR q̄LaΛ

a
iΣ

ijΓ†tRjtR ⊃ λLλtR (q̄LH2tR) . (3.22)

Similarly, for the bottom quark (or in general down-type quarks), we can couple bR to

the third component of 6̄1/6 with the coupling λbR and spurion ΓbR = (0 0 1 0 0 0). This

generates a bottom Yukawa coupling of

∼ λLλbR q̄LaΛ
a
iξ
i
αΣαβ

0 ξTβ
j
Γ†bRjbR = λLλbR q̄LaΛ

a
iΣ

ijΓ†bRjbR ⊃ λLλbR (q̄LH1bR) . (3.23)

Alternatively, we could also couple the left-handed elementary quarks to 6̄1/6 and

right-handed elementary quarks to 61/6,

λ′Lq̄Laε
abΩb

iO′Ri = λ′Lq̄Laε
abΩb

i
(
ξ∗i
βΣ0βαQ

α
R

)
, (3.24)

where

(Ω)a
i = Ω =

(
1 0 0 0 0 0

0 1 0 0 0 0

)
(3.25)

and

λ′bR b̄RΓ′bRjO
j
L = λ′bR b̄RΓ′bRj

(
ξjαQ

α
L

)
, (3.26)

where Γ′bR = (0 0 0 0 0 1). Combining λ′L and λ′bR coupling, we can generate the SM

Yukawa coupling for bottom quark as

∼ λ′Lλ′bR q̄Laε
abΩb

iξ∗i
βΣ0βαξ

†α
jΓ
′∗j
bR
bR = λ′Lλ

′
bR
q̄Laε

abΩb
iΣ†ijΓ

′∗j
bR
bR ⊃ λ′Lλ′bR

(
q̄LH̃2bR

)
,

(3.27)

where H̃ ≡ εH∗. In this case, the bottom mass also comes from VEV of H2. Note that the

combination of λL and λ′bR (or λ′L and λbR) does not generate the SM Yukawa coupling

because it does not depend on Σ.

The lepton Yukawa couplings can be similarly constructed by coupling elementary

leptons to 6 and 6̄ with X = −1/2. In 2HDMs, if the SM quarks have general couplings

to both Higgs doublets, large tree-level flavor-changing effects can be induced. To avoid

3If we had coupled the left-handed quarks to the 4th and 5th components of OR,

λ̃Lq̄Laε
abΛ′biO

i
R = λ̃Lq̄Laε

abΛ′bi
(
ξiαQ

α
R

)
+ h.c.,

with the spurion

(Λ′)bi = Λ′ =

(
0 0 0 1 0 0

0 0 0 0 1 0

)
.

The combination of λ̃L and λtR would generate an up-type Yukawa coupling with H1, ∼ λ̃LλtR

(
q̄LH̃1tR

)
.
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them, it is favorable to impose the natural flavor conservation [22, 23] such that all up-

type quarks couple to one Higgs doublet and all down-type quarks couple to either the

same Higgs doublet (Type-I) or the other Higgs doublet (Type-II or flipped depending on

the lepton assignment). We can obtain all different possibilities by choosing the partial

compositeness couplings. For Type-II and flipped models, the b→ sγ put strong constraints

on the charged Higgs boson mass (& 600 GeV) [24] which would require more tuning in

the Higgs potential. Therefore, we will assume the Type-I 2HDM for the remaining of the

paper, with the top Yukawa coupling coming from λLλtR and the bottom Yukawa coupling

coming from λ′Lλ
′
bR

.

3.5 The top contribution to the pNGB potential

The partial compositeness coupling λL or λR individually cannot generate a potential

for the pNGBs by itself, because the coupling eq. (3.18) [or (3.21)] preserves an SU(6)

symmetry represented by the α index. Although α is an Sp(6) index, without Σ0, it

cannot distinguish Sp(6) from SU(6). To generate a nontrivial Higgs potential, we need at

least an insertion of Σ0, which distinguishes Sp(6) from SU(6). It first arises through the

combination of λL and λR in eq. (3.22), which is just the top Yukawa coupling. Therefore,

the first nontrivial Higgs potential shows up at the next order, i.e., O(λ2Lλ
2
R), as

∼ − Nc

8π2
λ2Lλ

2
Rf

4
∣∣∣(Λ)ai(Γ

∗)jΣ
ij
∣∣∣2 (3.28)

It gives a contribution to the H2 squared-mass term of the order

∆M2
H2
∼ − Nc

8π2
λ2Lλ

2
Rf

2 ∼ − Nc

8π2
y2tM

2
T , (3.29)

which is the same as the IR contribution from the top loop estimated in eq. (1.3). There-

fore, in this model, we avoid the potentially large O(λ2) UV contribution and achieve the

minimal tuning for the quadratic part of the Higgs potential.

4 Collective Higgs quartics from fermion partial compositeness couplings

In the previous section, we show that in the SU(6)/Sp(6) CHM the UV contribution from

the strong dynamics to the Higgs potential is suppressed, minimizing the tuning of the

quadratic term. However, we need some additional quartic Higgs potential to further

reduce the tuning and to obtain a 125 GeV Higgs boson, as the IR contribution from

the top quark loop to the Higgs quartic term is not enough. Generating a Higgs quartic

coupling without inducing the corresponding quadratic term is the hallmark of the little

Higgs mechanism. For example, in the original SU(6)/Sp(6) little Higgs model [20], a Higgs

quartic term from the collective symmetry breaking can be generated by gauging two copies

of SU(2), with generators given by

Qa1 =
1

2


σa 0 0 0

0 0 0 0

0 0 02×2 0

0 0 0 0

 and Qa2 = −1

2


02×2 0 0 0

0 0 0 0

0 0 σa∗ 0

0 0 0 0

 (4.1)
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and gauge couplings g1 and g2. The two SU(2)’s are broken down to the diagonal SU(2)W
by the Σ VEV. The potential for the pNGBs generated by the two gauge couplings takes

the form

g21f
2

∣∣∣∣s+
i

2f
H̃2
†
H1

∣∣∣∣2 + g22f
2

∣∣∣∣s− i

2f
H̃2
†
H1

∣∣∣∣2 . (4.2)

The g21 term preserves the SU(4) symmetry of the 3, 4, 5, 6 entries which contains the shift

symmetry of H1 andH2. If only the first term of the potential exists, the H̃2
†
H1 dependence

can be absorbed into s by a field redefinition and the term just corresponds to a mass term

for s. Similarly, the g22 term preserves the SU(4) symmetry of the 1, 2, 3, 6 entries under

which H1 and H2 remain as Nambu-Goldstone bosons, but with a different shift symmetry.

The combination of both terms breaks either of the shift symmetries, and a quartic Higgs

potential is generated after integrating out the s field,

λ
∣∣∣H̃2

†
H1

∣∣∣2 with λ =
g21g

2
2

g21 + g22
. (4.3)

The possibility of gauging two copies of SU(2) gauge group is subject to the strong

experimental constraints on W ′ and Z ′. We would like to generate the quartic Higgs

potential without introducing additional elementary fields to the SU(6)/Sp(6) CHM, so we

will consider the collective symmetry breaking from the interactions between the elementary

fermions and the resonances of the strong dynamics.

From the discussion of the previous section, we see that the elementary quark doublets

may couple to composite operators of SU(6) representations 6 and/or 6̄, and each contains

two doublets of the same SM quantum numbers:

61/6 = 21/6 ⊕ 12/3 ⊕ 2̄1/6 ⊕ 1−1/3, (4.4a)

6̄1/6 = 2̄1/6 ⊕ 1−1/3 ⊕ 21/6 ⊕ 12/3 . (4.4b)

Both operators can create the same resonances which belong to 6 of the Sp(6) group.

Now consider two elementary quark doublets couple to the first two components of the

composite operators of 6 and 6̄ respectively, while both representations contain the same

resonances:

λLq̄LaΛ
a
iO

i
R = λLq̄LaΛ

a
i

(
ξiαQ

α
R

)
, (4.5)

where

(Λ)ai = Λ =

(
1 0 0 0 0 0

0 1 0 0 0 0

)
, (4.6)

and

λ′Lq̄
′
Laε

abΩb
iO′Ri = λ′Lq̄

′
Laε

abΩb
i
(
ξ∗i
βΣ0βαQ

α
R

)
, (4.7)

where

(Ω)a
i = Ω =

(
1 0 0 0 0 0

0 1 0 0 0 0

)
. (4.8)

The combination of the two interactions breaks the SU(6) global symmetry explicitly but

preserves an SU(4) symmetry of the 3, 4, 5, 6 entries. It leads to a potential for the pNGBs
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at O(λ2Lλ
′2
L ) of the form

[(Λ)ai(Ω
∗)bjΣ

ij ][(Ω)b
m(Λ∗)a

nΣ∗mn] , (4.9)

which can easily be checked by drawing a one-loop diagram, with qL, q′L, QR running in

the loop.

After expanding it we obtain

∼ Nc

8π2
λ2Lλ

′2
Lf

4
∣∣∣(Λ)ai(Ω

∗)bjΣ
ij
∣∣∣2 → Nc

4π2
λ2Lλ

′2
Lf

2

∣∣∣∣s+
i

2f
H̃2
†
H1

∣∣∣∣2 . (4.10)

(The factor of 2 comes from the trace which reflects the degrees of freedom running in the

loop, as both elementary fermions are doublets.) This is one of the terms needed for the

collective symmetry breaking. The coefficient is estimated from the dimensional analysis.

Notice that we have chosen different (generations of) elementary quark doublets, qL and

q′L in the two couplings. If qL and q′L were the same, the loop can be closed at O(λLλ
′
L)

and a large s tadpole term and Higgs quadratic term will be generated,

∼ Nc

8π2
λLλ

′
Lf

4
(
εab(Λ)ai(Ω

∗)bjΣ
ij
)
→ Nc

4π2
λLλ

′
Lg

2
ψf

3

(
s+

i

2f
H̃2
†
H1

)
. (4.11)

Such a term is actually needed for a realistic EWSB, but it would be too large if it were

generated together with eq. (4.10) that will produce the Higgs quartic term. It can be

generated of an appropriate size in a similar way involving some other different fermions

and composite operators with smaller couplings.

The way that the mass term for s can be generated without the tadpole term can be

understood from the symmetry point of view. In addition to the SU(2)W × U(1)Y , the

Σ0 preserves a global U(1) Peccei-Quinn (PQ) [25] subgroup of Sp(6). This global U(1)

symmetry corresponds to the unbroken generator

U(1)PQ :
1

2



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 0


, (4.12)

under which s has charge 1, both H1, H2 have charge 1/2, and the rest of pNGBs have

charge 0. The s mass term is invariant under U(1)PQ while the tadpole term has charge

1 so it will not be induced if the interactions can preserve the U(1)PQ symmetry. On the

other hand, the composite operators in eqs. (4.5), (4.7) have the following PQ charges for

their components (assuming that they don’t carry an additional overall charge),

60 = 21/2 ⊕ 10 ⊕ 2̄−1/2 ⊕ 10, (4.13a)

6̄0 = 2̄−1/2 ⊕ 10 ⊕ 21/2 ⊕ 10, (4.13b)

where the subscript here denotes the PQ charge instead of the X charge. We see that

qL and q′L couple to components of different PQ charges. If qL and q′L are different, it is
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possible to assign PQ charges, i.e., 1/2 for qL and −1/2 for q′L, so that the interactions

eqs. (4.5), (4.7) preserve the PQ symmetry and the s tadpole term will not be generated.

If qL and q′L are the same, then there is no consistent charge assignment that can preserve

the PQ symmetry, and hence the s tadpole term can be induced. Furthermore, if different

generations of quarks carry different PQ charges, The U(1)PQ preserving interactions will

not induce flavor-changing neutral currents (FCNC) as they violate the PQ symmetry.

The second term required in realizing the collective symmetry breaking can be gener-

ated similarly by a different set of quarks (or leptons). They should couple to the 4th and

5th components of the 6 and 6̄ operators through the spurions

(Λ′)ai =

(
0 0 0 1 0 0

0 0 0 0 1 0

)
and (Ω′)

ai
=

(
0 0 0 1 0 0

0 0 0 0 1 0

)
, (4.14)

which preserve the SU(4) symmetry of the 1,2,3,6 entries.

The combination of Λ′ and Ω′ can then introduce the potential

∼ Nc

8π2
λ2Lλ

′2
Lf

4
∣∣∣(Λ′)ai(Ω′∗)bjΣij

∣∣∣2 → Nc

4π2
λ2Lλ

′2
Lf

2

∣∣∣∣s− i

2f
H̃2
†
H1

∣∣∣∣2 , (4.15)

which provides the other term needed for the collective symmetry breaking.

To generate all the terms required for the Higgs quartic potential from collective sym-

metry breaking, we need to use several different quarks and/or leptons, with different PQ

charge assignments. As we mentioned earlier, we also need some smaller PQ-violating cou-

plings between the elementary fermions and the composite operators, in order to generate

a proper-sized H̃2
†
H1 term,

m2
12 ∼

Nc

8π2
λLλ

′′
Lg

2
ψf

2, (4.16)

where λ′′L represents the smaller U(1)PQ violating coupling. A more detailed coupling as-

signment for a realistic model is presented in appendix B. With all the collective symmetry

breaking interactions discussed above, we obtain a pNGB potential,

ck`
Nc

4π2
λ2kLλ

′2
`L
f2
∣∣∣∣s+

i

2f
H̃2
†
H1

∣∣∣∣2 + cmn
N ′c
4π2

λ2mLλ
′2
nL
f2
∣∣∣∣s− i

2f
H̃2
†
H1

∣∣∣∣2 , (4.17)

where ck`, cmn are O(1) constants depending on the UV completion,4 and the indices

k, `,m, n here label different fermions. After integrating out the massive s field, we obtain

a quartic term for the Higgs doublets (take Nc, N
′
c = 3) as

λ12

∣∣∣H̃2
†
H1

∣∣∣2 with λ12 =
3

4π2
ck`cmnλ

2
kL
λ′2`Lλ

2
mL
λ′2nL

ck`λ
2
kL
λ′2`L + cmnλ2mLλ

′2
nL

. (4.18)

Assuming λkLλ
′
`L
∼ λmLλ′nL and ck` ∼ cmn ∼ 2, then in our estimate

λ12 ∼
3

4π2
λ2kLλ

′2
`L
. (4.19)

4In the Discrete CHMs [26] or UV completions with Weinberg’s sum rules [27, 28] for the MCHM, the

analogous finite quartic potentials have the coefficient c ∼ 2.
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Including this quartic term, the coefficients of the Higgs potential in this model are

estimated to be

α̂ ∼ 3

16π2
λ2tLλ

2
tR
f2, β̂ ∼ 3

16π2
λ2kLλ

′2
`L
f2 . (4.20)

Therefore we can further improve upon the minimal tuning (α̂ ∼ β̂) case by requiring

λ′L > λtR =⇒ β̂ > α̂ . (4.21)

Of course, however, β̂ can not be arbitrarily large because it is determined by the Higgs

boson mass from eq. (2.4). The required numerical parameters will be discussed in the

next section.

5 The Higgs potential in the 2HDM

The SU(6)/Sp(6) model contains two Higgs doublets. To analyze the EWSB and the Higgs

boson masses, we need to consider the Higgs potential in a 2HDM. A review of 2HDM can

be found in ref. [29]. The other pNGBs do not affect the Higgs potential much (they either

are heavy or couple mostly quadratically to the Higgs doublets), so we will postpone their

discussion to the next section. The Higgs potential in our model can be parameterized as

V (H1, H2) = m2
1H
†
1H1 +m2

2H
†
2H2 −m2

12

(
H̃2
†
H1 + h.c.

)
+
λ1
2

(
H†1H1

)2
+
λ2
2

(
H†2H2

)2
+ λ12

∣∣∣H̃2
†
H1

∣∣∣2 . (5.1)

Notice that, in CHMs, due to the non-linearity of pNGBs, the Higgs potential should

include trigonometric functions instead of polynomials. Also, to match the potential here

to the SM Higgs potential, an additional factor of cos〈θ〉 will appear. However, since the

deviation is strongly constrained by Higgs coupling measurements, we will take 〈θ〉 � 1

and expand sinx ∼ x in the following discussion for simplicity.

In the 2HDM potential (5.1), both Higgs doublets develop nonzero VEVs. Denote the

VEVs of H1 and H2 to be v1 and v2 respectively, and their ratio is defined as tan β ≡ v2/v1.
The total VEV v satisfies

v2 = v21 + v22 = v2cos2β + v2sin2β = (246 GeV)2 . (5.2)

H2 couples to the top quark and gets a large negative loop-induced contribution to its

quadratic term, so it is natural to expect v2 > v1. On the other hand, the main quartic

term coming from the collective symmetry breaking is λ12. To have a large enough effective

quartic term for the 125 GeV Higgs boson, we do not want either sin β (≡ sβ) or cosβ (≡ cβ)

to be too small. The current constraints [30–32] have ruled out the region tan β near 1, so

we will consider a benchmark with a medium value,

tanβ ∼ 3 . (5.3)

Also, the light neutral eigenstate should be close to the SM Higgs boson, which imposes

some conditions on the parameters in the Higgs potential (5.1). In subsection 5.1, we first

discuss the quadratic potential, which will determine the spectrum of additional Higgs

bosons in this model. Then, we will discuss the alignment issue in subsection 5.2 and the

corresponding values of the quartic terms in the Higgs potential.
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5.1 Estimating the mass terms

The experimental constraints require that the 2HDM should be close to the alignment limit

(β − α = π/2) [33–36], where α is the mixing angle between the mass eigenstates of the

two CP-even Higgs boson and the corresponding components in H1, H2 (after removing

the VEVs),

h = −h1 sinα+ h2 cosα . (5.4)

To simplify the discussion of the quadratic terms, we assume that the alignment holds

approximately,

h ≈ h1 cosβ + h2 sinβ = hSM, (5.5)

then we can calculate the SM Higgs potential by the transformation(
H1

H2

)
=

(
cosβ −sinβ

sinβ cosβ

)(
HSM

Hheavy

)
. (5.6)

The potential of the light SM Higgs doublet becomes (keeping the terms with HSM only

and rewriting HSM → H)

V (H) =
(
m2

1 cos2β +m2
2 sin2β − 2m2

12 sinβ cosβ
)
|H|2

+

(
λ1
2

cos4β +
λ2
2

sin4β + λ12 sin2β cos2β

)
|H|4 . (5.7)

Matching the quadratic term with the SM Higgs potential implies that

−µ2 = m2
1 cos2β +m2

2 sin2β − 2m2
12 sinβ cosβ ≈ − (88 GeV)2 . (5.8)

As shown in the previous section, these mass terms get contributions from different sources:

m1 comes from gauge contributions, m2 gets an additional large negative contribution

from the top quark besides the gauge contributions, and m12 comes from the PQ-violating

interactions. No natural cancellation among the three terms in eq. (5.8) is warranted.

Therefore, the absolute values of all three terms should be of the same order as µ2 to

avoid tuning. For example, for tan β = 3 eq. (5.8) can be satisfied by m2
1 ∼ (360 GeV)2,

m2
2 ∼ (120 GeV)2, and m2

12 ∼ (210 GeV)2 without strong cancellations among the three

terms. These numbers are based on the alignment approximation. More accurate values

need to include the whole 2HDM potential and will be given after the discussion of the

quartic terms.

5.2 Estimating the quartic terms

There are three quartic couplings in the Higgs potential (5.1): λ1, λ2, and λ12. The effective

quartic coupling for the light Higgs, which can be seen from eq. (5.7), is a combination of

the three quartic couplings and tan β. To obtain a 125 GeV Higgs boson we need

λ1
2

cos4β +
λ2
2

sin4β + λ12 sin2β cos2β ≈ 0.13 . (5.9)

λ1 is mainly induced by the SM gauge loops and is expected to be small. λ2 receives the

top quark loop contribution,

λ2 ∼
3y4t
4π2

ln
MT

v
∼ 0.1. (5.10)
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This implies that we need λ12 which comes from the collective symmetry breaking to satisfy

λ12s
2
βc2β ∼ 0.1 ⇒ λ12 ∼ 1 for tanβ = 3 . (5.11)

If it arises from the collective quartic term obtained in eq. (4.19), it corresponds to

λLλ
′
L ∼ 3.6 ⇒

√
λLλ′L ∼ 1.9 . (5.12)

These couplings between the elementary states and composite operators are quite large.

However, the smallness of SM Yukawa couplings can be obtained by small λR couplings.

There are other experimental constraints with these large λL couplings, which will be

discussed in the following sections.

We have been assuming that the 2HDM potential is approximately in the alignment

regime. Let us go back to check how well the alignment can be achieved. A simple way

to achieve the alignment is the decoupling limit where the extra Higgs bosons are heavy.

However, this would require more tuning in the Higgs mass parameters. In our model λ12 >

λ2, λ1. Under this condition, we need tan β ∼ 1 to achieve the exact alignment if the extra

Higgs bosons are not too heavy. This is not compatible with the experiment constraints.

Therefore we expect some misalignment and need to check whether the misalignment can

be kept within the experimental constraints.

Solving the eigenvalue equations, we can get the following equations for the factor cβ−α,

cβ−α =
1

M2
Atanβ

(
λ1v

2
1

(
−sα
cβ

)
+ λ12v

2
2

(
cα
sβ

)
−M2

h

(
−sα
cβ

))
, (5.13)

=
1

M2
Acotβ

(
−λ12v21

(
−sα
cβ

)
− λ2v22

(
cα
sβ

)
+M2

h

(
cα
sβ

))
. (5.14)

As the misalignment should be small, to estimate its size, we can assume that the mass

eigenstates of the 2HDM are near alignment, which satisfy (−sα, cα) ≈ (cβ , sβ) approxi-

mately for the right-handed side. We then have

cβ−α ≈
1

M2
Atanβ

(
λ1v

2
1 + λ12v

2
2 −M2

h

)
, (5.15)

≈ 1

M2
Acotβ

(
−λ12v21 − λ2v22 +M2

h

)
. (5.16)

Consider the benchmark values

tanβ ≈ 3, λ12 ≈ 1, and MA ≈ 380 GeV , (5.17)

where the MA value is chosen to keep the misalignment small and to evade the direct search

in the A0 → hZ decay channel at the LHC [30]. The equations for cβ−α becomes

cβ−α ≈ 0.014λ1 + 0.090 ≈ 0.199− 1.132λ2 . (5.18)

Since λ1 in this model is small, we have cβ−α ≈ 0.090 which parametrizes the deviation

from the alignment. The misalignment will have a direct consequence on Higgs physics and
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will be discussed in the following sections. The most relevant deviation, the ratio of Higgs

to vector bosons coupling to SM coupling, is proportional to sβ−α ≈ 0.996 and should still

be safe.

Eq. (5.18) also implies that λ2 needs to be ≈ 0.1, which is consistent with the estimate

from the top quark loop contribution eq. (5.10). To sum up, the three quartic couplings in

our 2HDM potential take values

λ12 ≈ 1 � λ2 ≈ 0.1 � λ1 . (5.19)

5.3 A realistic Higgs potential

So far, all numbers in the above discussion are estimations based on simplified approx-

imations. In a realistic benchmark model, the exact values can be solved by directly

diagonalizing the mass matrix. To reproduce the correct Higgs boson mass Mh = 125 GeV

and small enough cβ−α with fixed tanβ ≈ 3 and λ12 ≈ 1, we choose the following values as

a reference for our study:

tanβ ≈ 3.0, λ12 ≈ 1.0, λ2 ≈ 0.12, and MA ≈ 380 GeV . (5.20)

λ1 is irrelevant as long as it is small so we don’t set its value. The value of λ2 is set by

producing the correct Higgs boson mass.

With these numbers, we can diagonalize the mass matrix and get the mixing angle α

and the misalignment β − α as

sα = −0.215, cα = 0.977 =⇒ cβ−α = 0.1049, sβ−α = 0.9945 . (5.21)

The eigenvalues of the matrix give the masses of the CP-even neutral scalar bosons as

Mh ≈ 125 GeV and MH ≈ 370 GeV . (5.22)

The complete spectrum will be discussed in the next section.

After we obtain the quartic couplings, we can go back to determine the mass terms.

The value of MA is chosen to satisfy the experimental constraint. It also gives the value of

m12 based on the relation

m2
12 = M2

Asβcβ ∼ (210 GeV)2 . (5.23)

Given the values of all the quartic couplings and m12, we can obtain the other mass terms

m2
1 = 3m2

12 −
1

2
λ1v

2
1 −

1

2
λ12v

2
2 ∼ (320 GeV)2 , (5.24)

m2
2 =

1

3
m2

12 −
1

2
λ2v

2
2 −

1

2
λ12v

2
1 ∼ (90 GeV)2 . (5.25)

These numbers will serve as a benchmark for our phenomenological studies.

Assuming that these masses arise dominantly from the loop contributions discussed in

the previous sections, we can also estimate the masses of the composite states in the CHM,

m2
1 =

3

32π2
g2M2

ρ ∼ (320 GeV)2 , (5.26)

m2
2 =

3

32π2
g2M2

ρ −
3

8π2
y2tM

2
T ∼ (90 GeV)2 , (5.27)

m2
12 =

Nc

8π2
λLλ

′′
Lg

2
ψf

2 ∼ (210 GeV)2 , (5.28)
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where we have ignored the small U(1) gauge contribution and taken cw ∼ 1. The m2
1

equation gives the mass of the gauge boson partners Mρ ∼ 5 TeV. In the m2
2 equation,

the top loop contribution needs to cancel the positive gauge contribution (320 GeV)2 to

produce a (90 GeV)2 term. From that, the top partner is estimated to be around MT ∼
1.6 TeV. This corresponds to an O(10%) tuning between the gauge contribution and the top

contribution, but it is hard to avoid given the experimental constraints on the top partner

mass. The desired size of m2
12 can be achieved by a suitable choice of the PQ-violating

coupling λ′′L which is a free parameter in this model.

6 The spectrum of pNGBs

After discussing the Higgs potential from the naturalness consideration, we are ready to

provide the estimates of masses of all other pNGBs, based on the benchmark point alluded

in the previous section.

6.1 The second Higgs doublet

The 2HDM potential has been discussed in the previous section. In addition to the SM-

like 125 GeV Higgs boson, there is one more CP-even neutral scalar H0, a CP-odd neutral

scalar A0, and a complex charge scalar H±. Their masses from the Higgs potential (5.1) are

M2
A =

m2
12

sβcβ
, M2

H± = M2
A −

1

2
λ12v

2,

M2
h,H =

1

2

(
M2
A ±

√
M4
A − 8M2

H±λ12v
2s2βc

2
β

)
, (6.1)

which results in a spectrum MA > MH > MH± . This is different from the 2HDM spectrum

of the MSSM because the dominant quartic term is λ12. For the benchmark point of the

previous section, the three masses are estimated to be

MA ∼ 380 GeV, MH ∼ 370 GeV, and MH± ∼ 340 GeV. (6.2)

6.2 Other pNGBs

In addition to the two doublets, the pNGBs also include a real triplet φ, a real singlet η,

and a complex singlet s. The triplet obtains its mass from the gauge loop as shown in

eq. (3.14). For Mρ ∼ 5 TeV, it gives

M2
φ = cw

1

4π2
g2M2

ρ ∼ (500 GeV)2 . (6.3)

The singlets do not receive mass contributions from SM gauge interactions. The com-

plex singlet s obtains its mass from the collective symmetry breaking mechanism (4.17),

M2
s = ckl

Nc

4π2
λ2kLλ

′2
`L
f2 + cmn

N ′c
4π2

λ2mLλ
′2
nL
f2 ≥ 4λ12f

2 ≈ (2f)2, (6.4)

which is expected to be at the TeV scale. There is also a tadpole term from the PQ-violating

potential, which will introduce a small VEV for s,

〈s〉 ∼ m2
12f

M2
s

≤ (210 GeV)2

4f
∼ O(10 GeV). (6.5)

It will have little effect on the mass of the singlet.
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Figure 1. Constraints on extra neutral Higgs bosons in a Type-I 2HDM with a small misalignment

cβ−α = 0.1. This summary plot is taken from ref. [30].

Finally, the real singlet η does not get a mass at the leading order but it couples

quadratically to the Higgs doublets (e.g., from eq. (3.28)), so it can still become massive

after the Higgs doublets develop nonzero VEVs. Through eq. (3.28), η receives a mass

M2
η ∼

3

8π2
y2tM

2
T ·
(
v

f

)2

=⇒ Mη ∼
(
MT

f

)
48 GeV. (6.6)

For naturalness, a relatively light top partner is preferred. On the other hand, the exper-

imental constraints require η to be heavier than half of Higgs boson mass to avoid large

Higgs decay rate to the ηη channel. We expect a light singlet scalar around 100 GeV, which

can be the lightest composite state in the spectrum.

7 Collider searches

In CHMs, there will be new composite states of scalars, fermions, and vectors near or

below the compositeness scale. The detailed spectrum and quantum numbers depend on

the specific realizations of the CHMs. In this section, we study the collider searches of and

constraints on these new states in the SU(6)/Sp(6) model discussed in this paper.

7.1 The second Higgs doublet

Under the requirement of naturalness, the second Higgs doublet is expected to be among

the lightest states of the new resonances and could be the first sign of this model. In

the Type-II 2HDM, the flavor-changing process b → sγ has put strong constraints on the
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charged Higgs mass to be above 600 GeV, which would require more tuning in the Higgs

potential. Therefore, we focus on the Type-I 2HDM scenario. As explained in the previous

section, we will consider a relatively small tan β ∼ 3 with a small misalignment cβ−α ∼ 0.1.

The direct searches can be divided into two categories — charged Higgs bosons H±

and neutral Higgs bosons H0, A0. In the Type-I 2HDM with a small misalignment, neutral

Higgs bosons to fermion couplings are characterized by a factor −sα/sβ ∼ 1/4 and the

charged Higgs boson to fermion couplings are characterized by cβ/sβ ∼ 1/3. Comparing

to neutral Higgs bosons, the charged Higgs boson searches give a more reliable constraint

on tanβ because it doesn’t depend on the mixing angle α.

The charged Higgs boson is searched by its decays to SM fermions. For MH± . mt, the

strongest constraint comes from decaying to τν [37, 38]. Interpreted in the Type-I model,

it excludes tan β < 14 for MH± ∼ 100 GeV and tan β < 3 for MH± up to 150 GeV [39].

For a heavier charged Higgs boson, the main constraint comes from the decay to tb, which

rules out tan β . 2 for MH± in the range of 200-400 GeV, and becomes weaker for larger

MH± [31, 32].

For neutral Higgs bosons, there are multiple decay channels being searched. For light

states below the tt̄ threshold, they can be searched by H/A → ττ [40, 41] and H →
γγ [42, 43] decays. For heavier states, the decay to tt̄ becomes accessible and dominant.

The searches of H/A → tt̄ has been done at CMS and ATLAS [44, 45]. These searches

typically constrain tan β & 1− 2 up to MH/A ∼ 750 GeV. When there is misalignment as

expected in this model, there are also additional decay channels of these neutral scalars

which give important constraints. These include H/A → WW [46, 47] and ZZ [48, 49],

H → hh [50, 51], and A → hZ [52, 53]. The A → hZ and H → hh turn out to be

most constraining for the region that we are interested in. The A → hZ can exclude

tanβ up to 10 below the tt̄ threshold. Some higher mass ranges are also constrained

due to data fluctuations. H → hh constrains tan β to be & 3 for a wide mass range.

Various constraints on the neutral scalars for 2HDMs are summarized in ref. [30], and the

relevant plot is reproduced in figure 1. We can see that the benchmark point chosen in the

previous section,

MA ∼ 380 GeV, MH ∼ 370 GeV, and MH± ∼ 340 GeV, (7.1)

with tan β = 3 is sitting in the gap of the constraints. It is still allowed by but very close

to the current constraints, hence it will be tested in the near future.

For future searches, the most relevant channels for the more natural mass range are

di-boson channels H/A → V V , H → hh, and A → hZ. The current bounds are expected

to be improved by ∼ 10 times [54]. It will probe the parameter region that we are most

interested in. If we can also find the charged Higgs with a slightly lighter mass, this

particular spectrum can be an indication of the specific 2HDM Higgs potential (different

from that of the MSSM) that arises from this type of CHMs.

7.2 Additional scalar bosons

Besides the second Higgs doublet, there are also several additional scalar bosons, which

include a real triplet φ, a complex singlet s, and a real singlet η. At the leading order,
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they don’t directly connect to the SM fermions. However, the couplings to SM fermions

are induced through the mixing with Higgs bosons after EWSB, with a suppression factor

of v/2f ∼ 0.15 (for ξ ∼ 0.1).

Scalar triplet φ: the scalar triplet has unsuppressed gauge interactions with W and

Z bosons, but only through four-point vertices. They can be paired produced through

the vector boson fusion but the production is highly suppressed due to the large energy

required. Therefore, here we only consider the single production through the interaction

with SM fermions. The scalar triplet includes a complex charged scalar φ± and a neutral

scalar φ0. The collider searches of the charged scalar are similar to those of H± of the

second Higgs doublet but with the suppressed couplings. It can be produced in association

with a top and a bottom. However, due to the suppressed coupling and the larger mass,

the charged scalar φ± is less constrained.

The neutral scalar φ0 is searched in the same ways as the neutral scalars in 2HDMs.

Guided by the benchmark scenario, we consider a scalar with mass ∼ 500 GeV, which

gives a cross section 120 fb. The dominant decay mode will be φ0 → tt̄ with a branching

ratio ∼ 75%. The current bound from the LHC searches [44, 45] on the cross section is

σ×BR < 5 pb, which is still loose for a neutral scalar with σ×BR ∼ 90 fb. The di-boson

modes are also important with branching ratios ∼ 16% for WW and ∼ 8% for ZZ. The

most stringent current upper bound comes from φ0 → ZZ channel, which ruled out σ×BR
above 100 fb [48, 49]. It is also much larger than ∼ 10 fb for the benchmark point. In the

future, around 3.6 × 105 φ0 (at 500 GeV) would be produced in the HL-LHC era with an

integrated luminosity of 3 ab−1. The bound can be improved by 10 times [54]. And a

500 GeV φ0 could be within reach in the HL-LHC era.

Scalar singlets: the complex scalar s is expected to be at TeV scale and the real singlet

η is around 100 GeV. They both act like the neutral scalar φ0 discussed above, but without

the gauge interactions. They can be produced through the gluon fusion but the production

cross sections will be suppressed by ξ/4 ∼ 0.025.

For the heavy complex scalar s, The expectation of its mass in the benchmark point

is above 1.5 TeV. The dominant decay channel will be a pair of neutral Higgs bosons

s → h1h2 (hh, hH,HH) or charged Higgs bosons due to the large sH̃2
†
H1 coupling. It

also connects to the fermions sector through the mixing with Higgs bosons. However, the

production is suppressed due to the large mass. Although it is an essential element of the

collective Higgs quartic term, it is hard to detect even at the HL-LHC. It may be accessible

in the next generation hadron collider.

The light real scalar η should be heavy enough so that h → ηη is forbidden due to

the constraint from the Higgs invisible decay measurement [55]. This requires MT /f & 1.3

for a realistic model, but it should remain relatively light if the top partner is not too

heavy for the naturalness reason. Since the interactions between η and SM particles are all

through the mixing with the Higgs boson, the search modes are similar but with the ξ/4

suppression on the production rate. The cross section is ∼ 1.5 pb for a 100 GeV η. The

dominant decay modes are bb̄ (78.9%), ττ (8.3%) and gg (7.4%), but they all suffer from

large backgrounds. On the other hand, the clean channel γγ suffers from a low branching
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ratio ∼ 0.16%. For the benchmark point, the diphoton channel has σ × BR ∼ 3 fb. The

latest search from CMS [56] still has an uncertainty ∼ 20(10) fb for a diphoton invariant

mass ∼ 80(110) GeV, much bigger than the cross section that we expect. With more data

and improvements in the background determinations, it might be discoverable at future

LHC runs.

7.3 Fermionic top partners

The top partners in the SU(6)/Sp(6) CHM are vector-like fermionic resonances which form

a sextet of the Sp(6) global symmetry. Their quantum numbers under the SM gauge

symmetry are (3, 2, 1/6)[×2], (3, 1, 2/3), and (3, 1,−1/3), which are identical to those of

SM quarks. There are no exotic states with higher or lower hypercharges. These states are

degenerate in the limit of unbroken Sp(6) global symmetry. (Small splittings arise from the

explicit symmetry breaking effects and EWSB.) Their mass MT plays the important role

of cutting off the quadratic contribution from the top quark loop to the Higgs potential.

Naturalness prefers MT to be as low as possible allowed by the experimental constraints.

The current bound on the top partner mass has reached ∼ 1.2 TeV [5, 6]. The HL-LHC can

further constrain the mass up to ∼ 1.5 TeV [57]. The benchmark value of 1.6 TeV is close

to but probably still beyond the reach of HL-LHC. A future 100 TeV collider will cover

the entire interesting mass range of the top partners if no severe tuning conspires. It may

even be able to find the fermionic partners of the other SM quarks, which are expected to

be much heavier.

7.4 Heavy vector bosons

Unlike the top partners, the partners of SM gauge bosons (spin-1 resonances) are not

necessarily light because of the smallness of SU(2)W , U(1)Y gauge couplings. In fact,

their masses need to be large enough to give a sufficiently large mass to the second Higgs

doublet and to cancel in a large part the negative contribution from the top sector to the

quadratic Higgs potential. The largest couplings of these composite spin-1 resonances are

to the composite states, including the pNGBs. Their mixings with SM gauge bosons are

strongly suppressed by their multi-TeV masses, hence their couplings to SM light fermions

are also suppressed, resulting in a small production rate as well as small decay branching

ratios to SM elementary particles [58, 59]. The leading decay modes will be through the

composite states, such as top partners or pNGBs which include the longitudinal modes of

W and Z. The current searches of heavy vector triplets decaying into SM gauge bosons

final states have reached a bound about 4 TeV [60–63]. The bound is relieved for larger

gρ > 3 with more suppression on the production rate. Besides, the model contains a richer

sector of the pNGBs which will dilute the decay branching fractions to SM gauge bosons,

further reducing the bound. If the vector resonances are heavier than twice the top partner

mass, the decaying into top partners will dominate and it would require different search

strategies. As the production rate quickly diminishes for heavier vector resonances, the

typically expected masses of the vector resonances as in our benchmark will be out of reach

even at the HL-LHC. A future higher energy machine will be needed to discover them.
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8 Precision tests

In this section, we discuss the indirect tests of this model from precision experimental

measurements.

8.1 Higgs coupling measurements

The Higgs boson couplings to SM fields in the SU(6)/Sp(6) CHM are modified by two

effects: the nonlinear effect due to the pNGB nature of the Higgs boson and the misalign-

ment from the mixing of the 2HDM. The deviation of the Higgs coupling to vector bosons

is parameterized by

κV ≡
ghV V
gSMhV V

= sin(β − α) cos

√
V 2
1 + V 2

2√
2f

, (8.1)

where the first factor comes from the misalignment of the 2HDM and the second factor is

the nonlinear effect of the pNGB. For the benchmark point in section 5, sin(β−α) ≈ 0.995,

which gives

κV ≈ (0.995)

√
1− ξ

2
≈ 0.995− 0.249 ξ , (8.2)

The deviation of the Higgs coupling to fermion is universal in Type-I 2HDMs because

it couples to all fermions in the same way. The expression is somewhat more complicated

in CHM, and here we only expand to O(ξ),

κf ≡
ghff

gSMhff
=

1

sβ

(
cα − ξ

1

12
(3s2βcα + c2βcα − 2sβcβsα)

)
≈ 1.030− 0.252 ξ , (8.3)

where the numerical value of the last expression is obtained for the benchmark point.

The current best-fit values of κV and κF from ATLAS [64] with an integrated lumi-

nosity of 80 fb−1 are

κV = 1.06± 0.04 , (8.4)

κF = 1.05± 0.09 , (8.5)

with a 45% correlation between the two quantities. The central values for both quantities

are slightly above the SM value 1, but without significant deviations given the uncertainties.

As shown in figure 2, within 95% CL level, ξ ≤ 0.12 is still allowed (for the benchmark

point), which gives a lower bound on the scale f ∼ 700 GeV.

In the future, the uncertainties in κV and κF can be improved to 1% and 3% respec-

tively at the HL-LHC, [65]. Assuming the central values of (1, 1), it can bound ξ down to

0.1 at 99% CL. The next generation Higgs factories, such as ILC, CEPC, and FCCee, will

have great sensitivities to the hZZ coupling and can measure κV with a precision ≈ 0.3%.

It can test the scale f up to several TeV and hence cover the entire natural parameter

region for the CHMs.

Another decay mode worth mentioning is h → γγ. The branching ratio of this decay

mode will receive an additional contribution from charge Higgs bosons. But the current

bound from this decay mode is still loose. It will improve at HL-LHC and future Higgs

factories. It may provide a sign of the heavy charged Higgs bosons if they exist.
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Figure 2. The fit of the Higgs coupling strengths to the gauge bosons (κV ) and fermions (κf )

obtained by the ATLAS [64] from the 13 TeV LHC data. The cross is the observed central value.

The circles from inside out represent the 68%, 95%, and 99% CL respectively. The red star shows

the SM value (1, 1). The blue star in the predicted value of the 2HDM benchmark of section 5

with ξ = 0. Along the line, we show the predictions for the same benchmark with different ξ from

0 to 0.3.

8.2 Flavor changing neutral currents

New physics appearing near the TeV scale may introduce dangerously large flavor changing

neutral currents (FCNCs), so the flavor-changing processes put strong constraints on the

model constructions. The SU(6)/Sp(6) model contains two light Higgs doublets. If general

Yukawa couplings are allowed between them and SM fermions, large FCNCs will be induced.

Therefore, it is desirable to impose the natural flavor conservation such that each type of

Yukawa couplings only comes from one of the two Higgs doublets. Even so, a light charged

Higgs boson can induce a significant contribution to the branching ratio BR(B → Xsγ) [66–

71]. In the Type-II or flipped 2HDM, this gives a lower bound on the charged Higgs boson

MH± > 600 GeV [24, 72], which would introduce more tuning in the Higgs potential. To

have a more natural model, we therefore focus on the construction of the Type-I 2HDM.

In a Type-I model, the B → Xsγ constraint rule out the region below tan β < 2 [24, 72].

The partial compositeness couplings between the elementary fermions and the compos-

ite operators can potentially induce FCNCs. In our construction, the largest such couplings

(for the top Yukawa and the collective Higgs quartic term) preserve a Peccei-Quinn symme-

try with different PQ charges for different generations (see appendix B). As a result, there

is no FCNC induced by these large couplings in the leading order. Some FCNCs may be

induced by other (smaller) couplings which are responsible for generating the complete SM

fermion masses and mixings, but they are suppressed by the small couplings and depend

on the details of their pattern.

8.3 Oblique parameters

The electroweak oblique corrections provide important tests of new physics near the weak

scale. They are usually expressed in terms of S, T , and U parameters [73, 74]. The current
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global fit gives [75]

S = −0.01± 0.10, T = 0.03± 0.12, U = 0.02± 0.11. (8.6)

For heavy new physics, U is typically small as it is suppressed by an additional factor

M2
new/m

2
Z . If one fixes U = 0, then S and T constraints improve to

S = 0.0± 0.07, T = 0.05± 0.06, (8.7)

with a strong positive correlation (92%) between them. At 95% CL, one obtains S < 0.14

and T < 0.22.

There are several contributions to the oblique parameters in our model, with similari-

ties and differences compared to the MCHM discussed in the literature. First, our model

has two Higgs doublets. Their contributions to S and T can be found in refs. [76–78].

To satisfy the other experimental constraints, the Higgs potential needs to be close to

the alignment limit and the heavy states are approximately degenerate. The contribu-

tions are expected to be small and do not provide a significant constraint [79]. The other

contributions are discussed below.

The S parameter: the leading contribution to the S parameter comes from the mixing

between the SM gauge bosons and the composite vector resonances. It is estimated to

be [80–82]

∆S ∼ cS 4π
v2

M2
ρ

∼ cS 0.03

(
5 TeV

Mρ

)2

, (8.8)

where cS is an O(1) factor. It gives a lower bound of ∼ 2.5 TeV on Mρ for cS = 1.

In CHMs, there is a contribution from the nonlinear Higgs dynamics due to the devia-

tions of the Higgs couplings, which result in an incomplete cancellation of the electroweak

loops [83, 84]. This contribution is proportional to ξ and depends logarithmically on

Mρ/Mh. For Mρ = 5 TeV, it gives ∆S ∼ 0.10 ξ which is well within the uncertainty.5 In

the MCHM, there is also a contribution due to loops of light fermionic resonances. It is

logarithmically divergent and its coefficient depends on the UV physics [84]. This contribu-

tion can be significant, depending on the UV-sensitive coefficient. However, in our model,

the fermionic resonances are complete multiplets of SU(6) and their kinetic terms remain

SU(6) symmetric, so this divergent contribution is absent.

The T parameter: the T parameter parametrizes the amount of custodial SU(2) break-

ing. There are also several potential contributions in our model. First, the pNGB spec-

trum contains a real SU(2)W triplet φ. If it obtains a VEV induced by the trilinear scalar

couplings to a pair of Higgs doublets, H†1φH1, H
†
2φH2, or (H1φH2 + h.c.), it will give

a tree-level contribution to ∆T . Its VEV is bounded to be less than ∼ 8 GeV, putting

strong constraints on these couplings. However, if all the large couplings are real and

the CP symmetry is (approximately) preserved, the real scalars φ and η are CP odd and

5A factor of 1/2 is included due to the normalization of f compared to refs. [83, 84].
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the interactions H†1φH1, H
†
2φH2, and (H1φH2 + h.c.) are forbidden by the CP symmetry.

The η and φ fields need to couple quadratically to the Higgs fields. This also justifies the

Higgs potential analysis based on the 2HDM potential. Of course, CP symmetry has to be

broken in order to allow the nonzero phase in the CKM matrix. We assume that this is

achieved with the small partial compositeness couplings so that the induced trilinear scalar

couplings are kept small enough to satisfy the bound.

Apart from the potential triplet VEV contribution, the leading contribution to ∆T

comes from fermion loops. For the partial compositeness couplings in this model, the

custodial symmetry breaking comes from λR.6 The dominant contribution comes from the

light top partners and the corresponding mixing coupling λtR The deviation is estimated

to be [82]7

∆T ∼ Nc

16π2α
λ4tR

v2

M2
T

∼ 0.16

(
λtR
1.3

)4(1.6 TeV

MT

)2

. (8.9)

There is also a contribution from the modifications of the Higgs couplings to gauge

bosons due to the nonlinear effects of the pNGB Higgs. The contribution to ∆T from

the nonlinear effects again depends on ξ and is logarithmically sensitive to Mρ. For Mρ =

5 TeV, it gives ∆T ∼ −0.28 ξ [83, 84]. It is significant and can partially cancel the light top

partner contribution. The contribution from the mixing of the hypercharge gauge boson

and vector resonances is small due to the custodial symmetry. The tree-level contribution

vanishes and the loop contribution is negligible. The overall ∆T correction is expected to

be positive and could help to improve the electroweak precision fit in the presence of a

positive ∆S.

In summary, among the various sources of the corrections to the electroweak observ-

ables, the contributions from the composite resonances are expected to be dominant. They

give strong constraints on the masses of heavy resonances Mρ and MT as well as the rele-

vant coupling like λtR . Nevertheless, for natural parameter values as our benchmark, the

corrections on (S, T ) can still lie safely within the current uncertainty region. A future

Z factory can greatly improve the precisions of the electroweak observables, which can

provide a strong test of the model.

8.4 Zff̄ couplings

The partial compositeness couplings generate mixings between elementary fermions and

composite resonances. They can modify the Zff̄ couplings in the SM. This is a well-known

problem in CHMs for the Zbb̄ coupling in implementing the top partial compositeness. A

solution based on an extended custodial symmetry SU(2)V × PLR on the top sector by

embedding the left-handed top-bottom doublet into the (2, 2) representation of SU(2)L ×
SU(2)R was proposed in ref. [85]. The top sector in our construction does not have this

extended custodial symmetry. Furthermore, to obtain the collective quartic Higgs term, we

need several large partial compositeness couplings involving other light SM fermions. As

6The custodial symmetry of our model corresponds to the Case B in ref. [21].
7The partial compositeness couplings are related to the top Yukawa coupling by λtLλtR ∼ yt gT . For

ytsβ ∼ 0.85 at 2 TeV and assuming gT ∼ 2, we need
√
λtLλtR ∼ 1.3.
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a consequence, we may expect significant deviations of the Zff̄ couplings for all fermions

involved and they present important constraints on this model.

The third generation left-handed quark’s partial compositeness couplings modify the

ZbLb̄L coupling. Its deviation δgbL from the current experimental determination is con-

strained within 3×10−3 [86]. This deviation comes from mixings between the bottom quark

b and the corresponding composite resonances B. Under our assignment in appendix B,

there are two terms that will have large positive contributions to δgbL . They are

λtL q̄3,LH1BR → (λtLν1)b̄LBR , (8.10)

λ′bL q̄3,LH̃2B
′
R → (λ′bLν2)b̄LB

′
R . (8.11)

The first one is responsible for generating the top Yukawa coupling and induces the mixing

between bL and the bottom partner B with PQ charge 0. The second introduces the

bottom Yukawa coupling and the collective quartic term. It induces the mixing with

another bottom partner B′ with PQ charge 1. The deviations that they bring can be

estimated as

δgbL ≈
λ2tLc

2
β

M2
0 (TeV)

× (30× 10−3), δgbL ≈
λ′2bLs

2
β

M2
1 (TeV)

× (30× 10−3) , (8.12)

where M0 and M1 are the masses of the fermions resonances B and B′ respectively. Note

that M0 is also the top partner mass which is responsible to cut off the top loop contribution

to the quadratic Higgs potential so it should not be too large for naturalness. On the other

hand M1 is the bottom partner mass which can be much larger because of the small bottom

Yukawa coupling. These corrections impose strong constraints on the couplings and masses

of the composite fermion resonances. For the first term, taking λtL ≈ 1.3 and c2β ≈ 0.1

from the benchmark model, it requires M0 = MT & 1.3 TeV, which is still in the range

we expect. Compared to the other models without the SU(2)V ×PLR custodial symmetry,

such as the MCHM4 [12], we are saved by the c2β factor to allow a relatively light top

partner. For the second one, taking λ′bL ≈ 1.9 and sβ ≈ 1 would require M1 & 6 TeV for

the bottom partner. The bound on M1 can be reduced for a smaller value of λ′bL , but at

the cost of a larger λcL if their combination is responsible for the collective Higgs quartic

term, which increases the deviations for δgcL and δgsL .

The collective Higgs quartic term needs at least four large λL, λ
′
L couplings. Each

of them will induce two δgL deviations from SM Zff̄ couplings and all of them reduce

the magnitudes from the SM predicted values. Since the Z decay width and branching

ratios are all well measured at O(10−3) precision, we also need to examine their observable

consequences and the corresponding constraints.

It is harder to extract the constraints on individual couplings from the observables that

depend on more complicated combinations of different couplings. Therefore we consider the

constraints from Γ(hadron) and Γ(charged lepton) because they are directly proportional

to the couplings instead of some ratios. We predict smaller values for both Γ(hadron) and

Γ(charged lepton), but their observed central values are both larger than the SM predictions

so the allowed parameter space is strongly restricted. At the 95% CL level, the allowed
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negative deviations are [75]

∆Γ(had) ∼ −1.0 MeV , ∆Γ(`+`−) ∼ −0.15 MeV . (8.13)

From these, we obtain the constraints on allowed negative deviations on the magnitude of

different left-handed fermion couplings (assuming only one term dominates) as follow,

|δguL | < 0.7× 10−3 for up-type quarks, (8.14a)

|δgdL | < 0.6× 10−3 for down-type quarks, (8.14b)

|δgeL | < 0.4× 10−3 for charged leptons. (8.14c)

They strongly constrain the parameters of our model. To satisfy these constraints, the

corresponding fermion partners need to be over 10 TeV if their couplings to the elementary

fermions are large enough to be responsible for the collective Higgs quartic term.

These constraints can be relaxed somewhat if we use the neutrino couplings for the

collective Higgs quartic term. The Γ(invisible) is smaller than the SM prediction. The

allowed negative deviation is 4 MeV at the 95% CL level, which corresponds to

|δgνL | < 6× 10−3 for neutrinos. (8.14d)

The resulting constraints on the corresponding fermion resonances are milder.

The precision measurements of the Z couplings put strong constraints on our model

because we predict a reduction of all ZfLf̄L couplings in the construction. A future Z

factory may improve the coupling measurements by more than one order of magnitude.

Consequently, it can either establish a deviation from the SM predictions which points to

new physics in the nearby scales, or further affirm the SM predictions which will severely

challenge this model or any other models with similar predictions. Nevertheless, we would

like to emphasize that these constraints are indirect so it is quite possible that one can

extend the model to introduce new contributions to cancel the deviations, at the expense

of complexity and/or tuning.

9 Conclusions

Composite Higgs models remain an appealing solution to the hierarchy problem. However,

in realistic models, some tuning in the Higgs potential is often required to obtain the correct

EWSB and the observed Higgs boson mass. One source is from the mass splittings within

the top partner multiplet of the composite resonances, which can generate a large quadratic

Higgs potential through the partial compositeness couplings at the order λ2L(R). The other

is to obtain the necessary relative size between the quartic term and the quadratic term of

the Higgs potential in order to separate the EWSB scale and the compositeness scale. In

this paper, we look for models that can address both problems. We show that a CHM based

on the coset SU(6)/Sp(6) can achieve the goals without introducing additional elementary

fields beyond the SM and the composite sector, which otherwise will introduce a new

coincidence problem that why the new elementary fields and the compositeness resonances

are at the same mass scale.
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A key part of the setup is to couple the elementary SM fermions to the composite op-

erators of the fundamental representation of SU(6). The composite resonances do not split

after the symmetry is broken to Sp(6) and hence do not induce any large potential from

the UV dynamics for the pNGBs. The leading contribution to the Higgs quadratic term is

reduced to the unavoidable top quark loop in the IR. In addition, the fundamental repre-

sentation of SU(6) contains two electroweak doublets of the same SM quantum numbers.

This allows us to write down different ways of coupling between the elementary fermions

and the composite resonances, each of which preserves a subset of the global symmetry. In

this way, a quartic Higgs potential can be generated from the collective symmetry breaking

of the little Higgs mechanism, without inducing the corresponding quadratic terms. This

independent quartic term enables us to naturally separate the EWSB scale and the SU(6)

global symmetry breaking scale, reducing the tuning of the Higgs potential.

This model contains many more pNGBs than one Higgs double of the minimal model.

In particular, there are two Higgs doublets and the second Higgs doublet should not be

too heavy for naturalness considerations. The extra Higgs bosons are already subject to

collider constraints and are the most likely new particles to be probed in the future LHC

runs beside the top partners. The other pNGBs, having smaller couplings to SM particles,

are more difficult to find. Together with the heavy vector and fermion resonances, they need

higher energy machines with large integrated luminosities. The top partners in this model

do not include new particles with exotic charges, e.g., 5/3, as in many other CHMs. The

model also predicts deviations of the Higgs couplings and weak gauge boson couplings. The

current experimental data already provide substantial constraints on the model parameters

in the most natural region. The Higgs coupling measurements will be greatly improved at

the HL-LHC and future Higgs factories. A future Z factory can also further constrain the

electroweak observables. Either the agreements with SM predictions with higher precisions

will push the model completely out of the natural scale for the solution to the hierarchy

problem, or some deviations will be discovered to point to the possible new physics, and if

any of the CHMs can provide an explanation for them.
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A The SU(5)/SO(5) composite Higgs model

The SU(5)/SO(5) is also a possible coset that can naturally avoid large UV contributions

to the Higgs potential. It was one of the cosets considered in early composite Higgs models

of 1980s [87, 88]. It was also the coset of the littlest Higgs model [9] which was one of the

pioneer models to realize the mechanism of the collective symmetry breaking for the Higgs

quartic coupling. The symmetry breaking can be parametrized by a symmetric tensor field
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with a VEV

〈Σ〉 = Σ0 =

0 0 I
0 1 0

I 0 0

 , where I is the 2× 2 identity matrix. (A.1)

The SM SU(2)W and U(1)Y generators are embedded as

1

2

σa 0 0

0 0 0

0 0 −σa∗

 ,
1

2

−I 0 0

0 0 0

0 0 I

+XI , (A.2)

where the extra U(1)X charge X accounts for the correct hypercharges of SM fermions.

There are 14 pNGBs, with a complex doublet (which is identified as the Higgs field

H), a complex triplet φ, a real triplet ω, and a real singlet η. The partial compositeness

couplings can go through the 5 and 5̄ representations of SU(5). They do not split under

SO(5) and hence do not give large UV contributions to the Higgs potential, just as in the

SU(6)/Sp(6) case. Under the SM SU(2)W ×U(1)Y , they decompose as

5x = 2x−1/2 ⊕ 1x ⊕ 2̄x+1/2, (A.3a)

5̄x = 2̄x+1/2 ⊕ 1x ⊕ 2x−1/2 . (A.3b)

To mix with elementary fermions, we need to choose x = 2/3 for the up-type quarks and

−1/3 for the down-type quarks.

The Higgs quartic term arising from the collective symmetry breaking takes the form,

κ1f
2

∣∣∣∣φij +
i

2f
(HiHj +HjHi)

∣∣∣∣2 + κ2f
2

∣∣∣∣φij − i

2f
(HiHj +HjHi)

∣∣∣∣2 . (A.4)

A drawback of this potential is that a nonzero VEV of the SU(2)W triplet φ will be induced

after EWSB unless κ1 = κ2. The triplet VEV violates the custodial SU(2) symmetry and

is subject to the strong constraint of the T (or ρ) parameter. Even if we ignore that for

a moment, it is also more challenging to generate the collective quartic potential (A.4) in

this model. The two doublets in 5 or 5̄ have different hypercharges if x 6= 0 and hence

are not equivalent. We cannot couple the elementary SM fermion doublets to both 5 and

5̄ in a way that preserves an SU(3) global symmetry to protect the Higgs mass, so the

mechanism introduced for the SU(6)/Sp(6) model in section 4 does not work here. One

could add additional exotic vector-like elementary fermions (with hypercharge 7/6 or −5/6)

to couple to these composite operators for the purpose of generating the quartic term, but

these exotic elementary fermions should have masses comparable to the compositeness

scale, which requires some coincidence. Another possibility is to use the lepton partners

that have x = 0, then the two doublets in 5, 5̄ are equivalent representations. One can

write down the partial compositeness couplings to generate eq. (A.4), analogous to the

SU(6)/Sp(6) model. However, the same interactions will induce the Majorana mass terms

for the left-handed neutrinos through the triplet φ VEV. The couplings need to be O(1)
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U(1)PQ U(1)PQ U(1)PQ

q3,L = (tL, bL)T 1/2 tR 0 bR 1

q2,L = (cL, sL)T 3/2 cR 1 sR 2

q1,L = (uL, dL)T 5/2 uR 3 dR 3

Table 1. PQ charges of elementary quarks. The PQ charge of uR appears out of the pattern. As

discussed in the text, the up quark Yukawa coupling comes from the U(1)PQ violating coupling,

which also generates the required H̃†2H1 term.

in order to produce a large enough quartic term. It means that unless the triplet VEV is

tiny (which requires κ1 and κ2 to be equal to a very high accuracy), the induced neutrino

masses will be too large. This constraint on the φ VEV is even much stronger than that

from the custodial SU(2) violation.

B Couplings between SM fermions and composite operators, and their

Peccei-Quinn charges

Both SM Yukawa couplings and the Higgs quartic potential from collective symmetry

breaking arise from the partial compositeness couplings between the elementary fermions

and composite operators. The leading interactions (with O(1) coupling strength) should

respect an approximate U(1)PQ symmetry to avoid a too large quadratic H̃†2H1 term and

large FCNCs, so it is convenient to assign the PQ charges to the fermions in classifying

the couplings. We will construct a Type-I 2HDM model because of the weaker constraint

on the heavy Higgs bosons, and produce both terms needed for the collective quartic

Higgs potential.

For the quark sector, we include eight composite operators in 6 and 6̄ representations

of SU(6) with overall PQ charges r = 0, 1, 2, 3,

6r = 2r+1/2 ⊕ 1r ⊕ 2̄r−1/2 ⊕ 1r (B.1a)

6̄r = 2̄r−1/2 ⊕ 1r ⊕ 2r+1/2 ⊕ 1r (B.1b)

Here the subscript denotes the PQ charge instead of the hypercharge. The 6 and 6̄ of the

same PQ charges create the same resonances which become the quark partners of different

flavors. The U(1)PQ charges of the three generations of elementary quarks are shown in

table 1. The lepton sector can be similarly assigned.

There are some requirements for producing a Type-I 2HDM. First, to generate SM

Yukawa couplings, we need to couple one of qL and qR to 6 and the other to 6̄ of the same

PQ charge. In addition, each qL needs to couple to the composite operators at least in

two ways in order to generate the up-type and down-type Yukawa couplings with the same

Higgs doublet. If qL had only one coupling to 6 (or 6̄), the up- and down-type quarks

would couple to different Higgs doublets as we discussed in section 3.4. Once qL couplings

are fixed, the right-handed quark couplings follow directly from the PQ charges (except

for the up quark). To generate the Higgs quartic term by collective symmetry breaking,
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we need to introduce two pairs of couplings between the elementary doublets and the (6,

6̄) pairs, with each pair of couplings preserving a different SU(4) symmetry. Finally, we

add a U(1)PQ violating λ′′uL which serves to generate the mixed Higgs quadratic term in

eq. (4.16), and also the up quark Yukawa coupling.

From these requirements, a possible set of couplings between elementary quarks and the

composite operators is shown below (in the parentheses after the corresponding composite

operators).

60 = 21/2 (λtL) ⊕ 10 ⊕ 2̄−1/2 ⊕ 10 (B.2a)

6̄0 = 2̄−1/2 ⊕ 10 ⊕ 21/2 ⊕ 10 (λtR) (B.2b)

61 = 23/2 (λcL) ⊕ 11 ⊕ 2̄1/2 ⊕ 11 (λ′bR) (B.2c)

6̄1 = 2̄1/2 (λ′bL) ⊕ 11 ⊕ 23/2 ⊕ 11 (λcR) (B.2d)

62 = 25/2 ⊕ 12 ⊕ 2̄3/2 (λ̃′sL) ⊕ 12 (B.2e)

6̄2 = 2̄3/2 ⊕ 12 (λ̃′sR) ⊕ 25/2 (λ̃uL) ⊕ 12 (B.2f)

63 = 27/2 (λ′′uL) ⊕ 13 ⊕ 2̄5/2 ⊕ 13 (λ′dR) (B.2g)

6̄3 = 2̄5/2 (λ′dL) ⊕ 13 ⊕ 27/2 ⊕ 13 (λuR) (B.2h)

where the subscript of the coupling tells which elementary quark it is coupled to. (The

left-handed couplings couple to the whole doublets despite the quark labels.) The SM

quark Yukawa couplings are given by

yt ∼
λtLλtR
gψ0

, yb ∼
λ′bLλ

′
bR

gψ1

, (B.3)

yc ∼
λcLλcR
gψ1

, ys ∼
λ̃′sL λ̃

′
sR

gψ2

(B.4)

yu ∼
λ′′uLλuR
gψ3

, yd ∼
λ′dLλ

′
dR

gψ3

, (B.5)

where gψr is the coupling of the strong resonances in 6r, 6̄r, with their masses given by

∼ gψrf . To have a relatively light top partner, we should have gψ0 ∼ 2, while all other gψr ’s

are expected to be large. The quark flavor mixings (CKM matrix) can be generated by

additional U(1)PQ violating couplings which are not shown. These couplings are expected

to be small and will not significantly affect the Higgs potential.

For the Higgs quartic term, the combination of λcL and λ′bL generates one term of the

collective symmetry breaking, while the combination of λ̃′sL and λ̃uL generates the other.

Alternatively, we could also use the lepton sector to generate one of the collective symmetry

breaking terms. The quartic coupling is estimated to be

λ12 =
3

4π2
ccbcusλ

2
cL
λ′2bL λ̃

2
uL
λ̃′2sL

ccbλ2cLλ
′2
bL

+ cusλ̃2uL λ̃
′2
sL

∼ 3

4π2
λ2cLλ

′2
bL

(if λcLλ
′
bL
∼ λ̃uL λ̃

′
sL
, ccb ∼ cus ∼ 2).

(B.6)

To get a large enough λ12, these couplings should be quite large (& 1). The correct SM

Yukawa couplings can still be obtained by suitable choices of λR couplings and gψr . The
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λ′′uL coupling violates the U(1)PQ symmetry as it mixes the q1,L with charge 5/2 with the

composite doublet of charge 7/2. By combining with λ′dL , it will generate a mixing mass

term for the two Higgs doublets,

m2
12 ∼

3

8π2
λ′dLλ

′′
uL
g2ψ3

f2 . (B.7)

In this way, all terms required in the Higgs potential for a realistic model can be generated

without introducing additional elementary fermions.
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