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1 Introduction

The Standard Model (SM) is an extremely successful theory that has been rigorously tested
at the Large Hadron Collider (LHC) and elsewhere. Nevertheless it is widely expected that
the SM is only an effective field theory (EFT), valid up to some cutoff scale A. The Standard
Model Effective Field Theory (SMEFT) generalizes the SM by adding a complete, but not
over-complete basis of operators at every mass-dimension d rather than stopping at d = 4.1

The counting and classification of operators in the SMEFT has a long history. Starting
with dimension-5 there is a single type operator [1], Niype = 1, and it violates lepton num-
ber. At dimension-6, ref. [2] classified the 76 baryon number preserving (B) Lagrangian

!The SMEFT assumes there are no light hidden states such as sterile neutrinos or an axion, and that the
Higgs boson form part of an SU(2),, doublet with hypercharge y = 1/2. Other types of EFTs are possible
where these assumptions are relaxed, but we do not consider them here.



terms; see [3] for earlier work. The eight baryon number violating (/) terms were previ-
ously known [4], yielding a total of Nierm = 84. In terms of actual operators rather than
terms in the Lagrangian, the counts explode when flavor structure is allowed. For three
generations of fermions, ny = 3, there are Ny, = 2499 independent B operators [5] and 546
B operators [6]. Hilbert series methods were applied to the SMEFT in refs. [7-10], provid-
ing an elegant way to count the number of operators for arbitrary dimension d. Computing
tools Sim2Int [11], DEFT [12], BasisGen [13], ECO [14], and GrIP [15] were subsequently
developed, allowing for automated counting of operators.

Beyond counting operators, work has been done on their explicit forms as well.
Refs. [16, 17] classified the 18 dimension-7 operators. So far only partial sets of dimension-8
operators exist in the literature. This includes, however, all of the bosonic operators (in a
basis where the number of derivatives is minimized) [18-20]. Our goal in this work is to
find a complete set of dimension-8 operators. A subtlety in constructing the dimension-
8 operator basis is that some operators vanish in the absence of flavor structure. Our
basis contains 231 types of operators corresponding to 1031 Lagrangian terms. For com-
parison, with ny, = 1 there are 993 operators, while for n, = 3 there are instead 44807
operators [10]. We find there are 38 terms that vanish when ng, = 1, consistent with the
counting of ref. [10].

Although the counting and classification of operators is certainly interesting in its own
right, there is also a wide range of phenomenological implications of dimension-8 operators
as well. For some phenomena dimension-8 is the lowest dimension where the interac-
tions become possible. Most famous among these processes is light-by-light scattering.
Another area where dimension-8 effects have been studied is electroweak precision data
(EWPD) where contributions to the U parameter first arise at dimension-8 [21]. Formally
the dimension-6 operators are the leading terms in the EFT expansion. However there are
various scenarios in which this is not the case practically speaking. Perhaps the most obvi-
ous among these is when the interference between the dimension-6 amplitude and the SM
amplitude is suppressed or even vanishes. Additionally there could be a difference in the
experimental precision of the measurements being considered [22]. Finally, we comment
on the structure the renormalization group evolution (RGE) equations of the dimension-8
operators.

The rest of the paper is organized as follows. Section 2 lays down the notation and
conventions we use, including the semantics of number of operators versus number of types
of operators. We then discuss how we performed the operator classification in section 3
with the results given in section 4. We briefly explore light-by-light scattering, EWPD,
as well as models involving scalar SU(2),, quartets where there is interesting interplay
between dimension-6 and dimension-8 effects in section 5. Additionally we comment on
the renormalization group evolution (RGE) of the dimension-8 operators in section 6 before
concluding in section 7. For convenience we provide tables of dimension-6 and -7 operators
in appendix A.



2 Notation and conventions

We start by considering the various uses of the word operator. See ref. [23] for further
discussion. We a define operator to be a gauge and Lorentz invariant contraction of fields
and derivatives with specific flavor indices. A Lagrangian term, or just term or short,
collects all of operators with the same gauge and Lorentz structure into a single unit,
i.e. a term collapses the flavor indices of otherwise identical operators. By construction,
a Lagrangian term of mass dimension d < 8 may contain no more than n;} operators.?
Ref. [23] defines a type of operator as the collection of terms with the combination of
fields (and derivatives) with conjugate counted separately. In this work we use a broader
definition of a type of operator where the conjugate fields are counted in unison with the un-
conjugated fields. Our types of operators are therefore supersets of those in [23], of which
there are 541 to our 231. This definition of a type of operator allows us systematically label
the operators in a phenomenologically friendly way. The largest set of operators we consider
is a class where the operators are grouped by the number of fields of a given spin as well
as the number of derivatives. It is useful to consider subclasses when discussing the RGE
of the dimension-8 operators. Subclasses treat conjugate fields separately. For example,
class 1 has three subclasses, {X}{, X%X%, X;lz} € X%, and class 18 also has three subclasses,
{p*H? 2p2 H? *H?} € y*H? We tolerate a slight abuse of notation between classes
and subclasses relying on context to distinguish which set is being discussed.
Moving onto physics conventions, the SM Lagrangian is given by

Loy = _i > XXM 4+ (D,H)D'H) + ) iy (2.1)
X P

—A (HTH - ”2> - [H}deqﬂ +HaY,q + HleYol! +he.|.

In eq. (2.1), and throughout this work, we generically refer to field strengths as X =
{GA, W', B}, and to fermions as ¢ = {l, e, q,u,d}.
The gauge covariant derivative is

(Dug)’™ = (9 + igryBy)S§0] + iga (' LW,L08 +igs(TH)§ Af6])d*, (2.2)

where the generators of SU(3). and SU(2),, are T% and t! = 77 /2, respectively. The U(1),,
hypercharge is given by y with Q@ = 73 4vy. For SU(3). fundamental and adjoint indices are
denoted «, 8,y and A, B, C, respectively, while for SU(2),, the fundamental and adjoint
indices are respectively labeled j,k,m and I, J, K.

Anti-symmetrization of indices is denoted by a pair of square brackets, [uv], and sym-

metrization is denoted by a pair of round brackets, (ur). The definition of H is
Hj = ej, H* (2.3)

where €j; = €[j3) is the SU(2) invariant tensor with €;2 = 1. The dual field strength is
defined as

=~ 1
X/J,l/ = §€;wpoXpU (24)

with €0123 — 1.

2Starting at dimension-9 ng is possible.



We will sometimes refer to the following combinations of field strength as they are
typically what are used when counting coefficients,

v 1 v - 7Y
X = S (X i), (2.5)

These field strengths have simple Lorentz transformation properties, Xy ~ (1,0), X ~
(0,1) under SU(2);, ® SU(2)g. Similarly ! and g are left-handed fermion fields, whereas
e, u, and d are right-handed fields. When necessary Lorentz indices in the fundamental
representations are indicated by a, b, a, b, e.g. qr ~ (q1.)a, Br ~ (BR)(diJ)'

The SMEFT extends the SM by adding all of the higher-dimensional operator that
are gauge invariant under the SM with the caveat that redundant operators should not be
included

LsverT = Lsm + Z £ (2.6)
d>4
For the dimension-6 operators we keep notation that has been well-established in the lit-
erature, see e.g. [5]. On the other hand, we use a systematic, if at times cumbersome,
notation for labelling the operators of mass-dimension 7 and above. For types of operators
with a single Lagrangian term we label them as follows

LD 5Y " CrypeQiyper  Mterm = 1, (2.7)
type

where nerm is the number of terms of a given type. The type of operator is denoted as the
fields and the derivatives in the operator raised to the power of the number of times that
type of object appears in the operator, e.g. the label leBH? indicates that this term has
one left-handed lepton field, one right-handed electron field, one hypercharge field strength,
and three Higgs fields. If a type of operator has multiple terms, not counting Hermitian
conjugates, we instead label the operators as

TNterm

LOS3 S 0 Q. Nierm > 1. (2.8)

type i=1

Consider as an explicit example,

£ 5l QY +CO Q) | Cleprs Quepys +hue.|, (2.9)
pr pr pr pr pr pr
with
QW gz = (W) T uy) DU (HH)G,,
pr
Qg p = (T uy) DM (HH) G,
pr
Qg = (o' e, )H(H H)B,,. (2.10)
pr

Flavor indices explicitly appear in eq. (2.9). Fermion fields have a flavor index p,r, s,t
that runs over 1, 2, 3 for three generations. The fermion fields themselves are in the weak
eigenstate basis. The Yukawa matrices, Y., 4, in eq. (2.1) are matrices in flavor space.



Note that we do not explicitly label the transpose of a spinor in fermion bilinears
involving a charge conjugation operator, e.g. 11 Cg = i Ctpo, Y Copps = wlTCam,l/Jg.
Finally, it is convenient to define Hermitian derivatives e.g.

iHTD H = iH'(D,H) — i(D,H"H,
il D H = il (D, H) — i(D,H") ' H. (2.11)

3 Operator classification

Having defined our notation in section 2 we can more precisely state our goal. We are trying
to find the minimum number of Lagrangian terms needed to give all of the operators at
dimension-8 subject to the constraint that no term may contain more than n;} operators.
For bosonic and two-fermion operators this constraint is trivially satisfied as those terms
always contain one and ng operators, respectively. Four-fermion operators where two or
more of the fields are identical constitute the interesting cases.

We use existing results from the literature when they are available. All of the bosonic
operators have been classified previously [18-20]. Ref. [19] also gave partial results for
three of the two-fermion classes that were sufficient to allow us to deduce the remaining
operators in those classes. As this work was being finalized refs. [24, 25] appeared, which
classified a subset of four-fermion operators with two derivatives. However there are still
non-trivial results for us to work out in that class.

When classifying the dimension-8 operators we exploit the fact that not only are the
types of operators known, but the number of operators is also known, see ref. [10]. In
particular, we leverage the Python package BasisGen [13], which we use to get the number
of operators for each type of operator. Additionally, we use the Mathematica program
Sym2Int [11], which not only gives the number of operators per type, but also the flavor
representations when there are identical particles in the operator. Furthermore, Sym2Int
gives the number of Lagrangian terms per type of operator except when the operator
contains both derivatives and identical particles. In that case a range is given because the
permutation symmetry of operators with derivatives is ambiguous due to integration by
parts (IBP) redundancies.

Ref. [23] used Sym2Int to derive lower and upper limits on the number of terms of
dimension-8 operators, 1025 < Nierm < 1102. Our basis contains 1031 terms, close to the
lower limit. The counting is clear from [10] for that one generation of fermions there are 993
terms. Of the remaining 38 terms we identified, all of which vanish in the absence of flavor
structure, six of them involve derivatives. For each of these six terms there is another term
of the same type that does not vanish in the absence of flavor structure, which is consistent
with the ambiguity originating from terms with derivatives. In principle this could allow
us to reduce the number of terms in our basis and hit the lower limit. However, the total

number of operators contained in four of the terms is n;} + %ng(ng — 1), which exceeds

4
g

potentially redundant terms do need to be retained as independent terms in the Lagrangian.

the maximum of operators that can be placed in a single term, n;. Therefore these four

Finally the last term plus its Hermitian conjugate have a different Lorentz structure than



the other term (+h.c.) of the same type that does not vanish in the absence of flavor
structure, making it an independent term as well.

Beyond getting the number of terms correct we need to ensure that the operators in
our basis are independent. Operators with derivatives can be related through integration
by parts. When there are multiple derivatives care must be taken to select operators for the
basis that span the entire space of possible operators for that class. See the discussion of
class 16 below for an example of this. Operators can also be related to each other through
the equations of motion (EOM). We use the EOM the remove redundant terms, trading
them for basis operators in the same class, operators with fewer derivatives, and sometimes
operators of lower mass dimension. See the discussion of class 17 below for an example of
this, and see e.g. [26] for the SM equations of motion. Our basis does not explicitly contain
an EOM. Operators with derivatives can be IBP, and some of the resulting terms contain
an EOM. However it is never the case that all of the resulting terms have an EOM. Lastly,
there are various tensor and spinor identities that relate operators to each other. There
are the Fierz identities, for example for SU(2)

(rDk = 207 6%, — son,. (3.1)

There are identities involving the Levi-Civita symbol, e.g. in two-dimensions
€jk€mn T €jmEnk + €jn€lm = 0 (3'2)

There are identities for products of Dirac matrices, e.g. the anti-symmetric Dirac tensor is
self-dual
e’ ™" 5, Pr = 2i0”" Pg. (3.3)

3.1 Bosonic operators

1. X%
The X* operators for a single Yang-Mills field were classified in ref. [18]. Ref. [20]
generalized this result to the SM field content. Note that dimension-8 is the lowest
dimension where a subclass of operators contains both X7 and Xg.

2. HS.
(HTH)* is the only possibility.

3. HD?.
The HYD? operators were classified in ref. [19].
4. H*D*.
Both refs. [19] and [20] classified the H*D* operators.
5. X3H?
The X3H? operators were classified in ref. [19]. Note that the two terms in QE,?/)Q BH?
are equivalent via the identity

~ 1 ~
X, Y7 = —X"Y,, — ixaﬁya%;. (3.4)



10.

11.

12.

13.

For backwards compatibility we construct our basis with QE/IZ,)Q g2 as originally defined
by ref. [19] as opposed to, say, only keeping the second term.

X2H*.

The X2H* operators were classified in ref. [19].
X?H?D?.

Both refs. [19] and [20] classified the X?H?D? operators.
XH*D?.

The X H*D? operators were classified in ref. [19].

3.2 Two-fermion operators

Y2 X2H.

For the dimension-8 class ¥?>X?H, 24 terms arise from joining a field strength to a
dimension-6 operator of the form 12X H, whereas 48 terms come from the product
of two field strengths and a Yukawa interaction, (X?)(¢2H). See table 21 for the
dimension-6 operators.

VX H3.
In the class 2 X H3, 16 of the 22 terms are identical to the dimension-6 terms ¢?X H

up to an extra factor of (H'H). The remaining six terms, all involving W/,

L, instead

have the dimension-2 covariant (Hf7!H).

W2 H2 D3,

Ref. [19] classified the four terms involving ¢> H?>D?. The remaining 12 terms in the
class can be deduced from the results of ref. [19].

W2 HP.

The class ¥?H?® is identical to the dimension-6 class ¥?H? up to an extra factor of
(HTH).

W2H*D.
Ref. [19] classified the four operators involving ¢ H*D. The term QE;)I# , contains a
sum
2 21 2
Q((]2)1LI4D = Q((12]){4D + Q;QQMD' (3'5)
The term Q(q?;)H4 p is related to the righthand side of eq. (3.5) as follows
(3 21 2
ZQ((f)H‘lD = _Q((121214D + Q;224D' (3.6)
This can be seen using the following variation of eq. (3.1)
S — (o, = e (O, (37)

As was the case with the class 5 operator QE,?/)Q 2 We choose to keep QEJZ)HAI p and

QS;)H“ p is our basis as opposed to their summands for backwards compatibility. The

remaining nine terms in the class can be deduced from the results of ref. [19].



14.

15.

16.

Y2 X2D.

We use integration by parts to place the derivative on a fermion field. Then in order
for the operator to not be “reduced” to a class with fewer derivatives through the
use of the equations of motion the fermionic component of the operator must not be
Lorentz invariant. Class 7 also contains two field strengths, see above, and a subset of
the operators in class 7 have covariants formed from Higgs fields and derivatives that
transform as (1, 1) under SU(2), ® SU(2)r. We take the field strength components of
that subset of class 7 operators and use them for the class 14 operators, contracting

them with fermionic covariants of the form 1y#DV4. In particular, we use Q(Glg 2 D2
1,4—6

WD
when it is charged under two

as the template for when a fermion is not charged under a gauge group, Q
WBH2D?
gauge groups. Three terms are not covered by this procedure. They involve quarks

when it is charged under a gauge group, and @)

and two gluon field strength where the SU(3). adjoint indices are contracted with

dABC

the symmetric symbol.

V2 XH?D.

Ref. [19] classified the 12 terms involving ¢*W H?D. Of the remaining 74 terms, 68
of them have a form analogous to those classified by ref. [19]. The final six terms in
the class are instead analogous to the dimension-6 operator Q) g.q with the addition
of a field strength.

V2 X HD?.

Things become more complicated when there are two or more derivatives in the
operator. As such it is useful to introduce some additional machinery to classify the
operators. We use the procedure given in ref. [7] for removing terms that are reducible
through the use of the equations of motion. In a nutshell, the procedure says Lorentz
indices should be symmetrized for representations that are triplets or higher under
either SU(2)r, or SU(2)g. In terms of Lorentz indices we have for example

Dypp, ~ (D@ZJL)(ab),a, DXp ~ (DXR)Q,((;I;C-)’ D?H ~ (DQH)(ab%(ai))- (3.8)

We now work through a representative example with field content [, e, H, By, following
the procedure laid out in ref. [19]. Using relations like those in (3.8) we see that
operators with a derivative acting on the field strength or two derivatives acting on a
fermion can be reduced using the EOM. Ignoring for the time being constraints from
IBP this leaves us with four possibilities

21 = (Dl)q (ae)e§(DH ),y Be d)eacebdeizdeéb’
x9 = l_é(De)%(ad)(DH)bJ;B(Cd)e“cebdeaéedi’,
x3 = (Dl_)a,(dé) (De)b,(Bd)HB(cd)eaCEbdedi)eéd’

ac bd ac¢ bd (39)

x4:l_éed(D2H>(ab),(ai))B(Cd)e €€ €,

where we have not shown the SU(2),, contraction as it is trivial.



17.

To determine redundancies coming from integration by parts we need operators trans-
11
272
of interest. There are three possibilities in this example

forming as (5, 5) under the Lorentz group with one fewer derivative than the operators

y1 = (DI)q ()€ 7 H B ca)e ™,
Yo = l_c'(De)ay(dd')HB(Cd)EaCEGC,

_ 1 .. L
ys = leej(DH)aaBca) 5" (€ + i), (3.10)
The derivatives of the y; show which of the x; are related by IBP

Db,byl =x1 +a3 =0,
Db,ByQ =29 + a3 =0,

1 1
Db,iz Yz = 5331 + §$2 + x4 =0, (3.11)

where the appropriate contraction of the remaining Lorentz indices in the leftmost
terms is understood. By inspection of (3.11) we see that any of the four candidate
operator can be transformed into any of the remaining three through the use of IBP.

We repeat the same procedure, omitting the details here, to find the class 17 operators
with field content [, e, H, Bg. In this case there are eight candidate operators, z;, and
six operators in the Lorentz four-vector representation, y;. Given the larger number
of operators in this case we use Mathematica to solve the system of constraints,
yielding two operators.

We are left with a total of three Q;.pgp2 terms (+h.c.)
Eacﬁbdéabeédia(De)a’(bé) (DH)b’d(BL)cdy
€ab€di)€éé€dfl7d(De)a’(l}é)(DH)()’d'(BR)(éf')’

(3.12)

Eabéddebéﬁéfl_aeb(DH)a,é(DBR)b7(dé]é),

which matches the counting we found using BasisGen. Translating the Lorentz con-

tractions from SU(2); ® SU(2)g to SO(3,1) and translating By, and Bg to B and B
we find

Ql(el)BHD2 = (ipUMVDper)(DVH)Bpu
2 - B
Ql(e)BHD2 = (IpD"e;)(D"H)B,,
Qe = (loo" er)(DPH) (D, By). (3.13)

The remaining 42 terms in class 17 can be deduced from the Q,.pgpp2 operators
in (3.13) +h.c..

Y2 H3D?.
Starting with relations like those in (3.8) we see that any operator in this class with
two derivatives acting on the same field can be reduced using the EOM. Therefore
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an operator with one derivative on each of the two fermion fields can be traded for
an operator with one derivative on a Higgs field, one derivative on a fermion plus
operators with fewer derivatives. From here we extend the results of ref. [2] to move
any remaining derivatives acting on fermions onto Higgs fields, again plus operators
with fewer derivatives. The first relation is

HYH (D, H)po" D, = %H TH (D, H)p(y" 1) — Dy )
= iH'H(D,H){y" Py — iH'H(D, H )b D'

— —iH'H(D, H)} D"y + +[E], (3.14)

where represents operators that vanish via the EOM. The other relation we need
is

2HH (D, H)D'p = HH(D, H)P(v"Ip + Dy*)0)
- (HT H(D,H)py" P — H H (D, H)(D)y"
~D,[H H (D, H)y" "y +[T))
— —D,[H'H(D, H)|oy"+*¢ + [ E]+[T] (3.15)

where stands for a total derivative.

After all this we are left with six terms +h.c. where the derivatives act only on Higgs
fields. In particular, having already established that operators in this class cannot
have two derivatives acting on the same field, the derivatives can either act on H and
HT or there can be one derivative on each of the H fields. For each of these cases the
fermion pair can either be in the (0,0) or (0, 1) representation of the Lorentz group.
(The classification for the Hermitian conjugate operators proceeds in an identical
fashion.) Finally when the derivatives act on H and HT the covariants can either be
SU(2),, singlets or adjoints. The same logic applies for all three choices for the pair
of fermions.

3.3 Four-fermion operators

W H?.

All 38 of the ¥* dimension-6 terms can be multiplied by (H'H). Focusing on B
preserving operators, an additional 23 terms are formed by inserting a 7! into a 4
operator (with at least two left-handed fermions) and joining it to the dimension-2
covariant (H'7!H). Operators of the type Q2422 provide three of the these terms,
whereas all other types of operators provide one term (+h.c.). There are also 22
Y*H? terms that, schematically, are products of Yukawa interactions, (LRH)(LRH)
or (LRH)(HTRL). Among these there is one new type of operator, Q2,qp2. Bi-
Yukawa terms with four fields that are fundamentals under either SU(2),, or SU(3).
where two of those fields are identical can be contracted either as singlets or adjoints.

~10 -



There are some redundant operators involving identical left-handed fermions. For
example, the terms

Q) . = ("'l Loy l) (HTH),
QW = ("L (Loyule) (H T H),
QW) = T (Lt L) Loy T ) (H TR ), (3.16)

are related to the operators in our basis

Ql(fl)gz = 2Ql(‘3{2 - Ql(il)gz,

prst ptsr prst
(4) (2)
QZ4H2 QZ4H2 9
prst stpr
(B _ 2 (2)
ZQZ“HQ = QZ4H2 - Ql4H2' (3'17)
prst prst stpr

This can be seen using eqs. (3.1) and (3.7).

The terms for baryon number violating operators with dimension-6 analogs follow
the logic laid out for the B operators. However there are two interesting flavor
structures. The dimension-6 operator Qguque is symmetric in its ¢ flavor indices [4].
This constraint is broken by the additional SU(2), in Q.g2,p2, giving it full flavor
rank, n;}. The dimension-6 operator Qqqq also has a flavor constraint [4]

Qqqql + Qqqql = Qqgqt T Qgqal; (3.18)
prst rpst sprt srpt

which can be derived using eq. (3.2). The operators Q§;§22 respect this constraint,

leading to each of their Lagrangian terms (+h.c.) containing %ng(an + 1) operators.

On the other hand, Ql 32 has mixed symmetry. It is symmetric in p and r and
antisymmetric in r and s, which causes it to vanish when there is only when gener-
ation of fermions. As a result of the six fundamental SU(2),, indices there are eight
redundant operators

Qlaitz = €apremiein (a2 Ca®) (@ CL)(HTH),
Qiairge = €apy (71 (71 Yan (g C i) (gF7CIY) (HTH),

Qz(jgm = €apyEm; (71 )n (@) ClP) (¢ Cl) (HIT H),

Ql(jé)HQ = €apy (71 €) jnerm (@) *Cql?) (¢ Cl) (HIT H),

QZ(ESHQ = 604/37( €)mi€kn (g, *Cq) B)( ciy YH TH),

szgm = €apyEin(T ) rm (@) *C?) (¢ Cl (H T H),

Quiine = capre K (71 (7 )i (g CalP ) (@ COp) (H TR B,

Qi = capre’” ™ (71 i (77 in (4" Cal )" O (HI T H). (3.19)

- 11 -
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The operators in (3.19) can be written in terms of the operators in our basis using
eq. (3.1), eq. (3.7), and the following relations obtained from eq. (3.1)

emj(T[e)kn + (Tle)mjam = Gmn(TIG)jk - (Tlf)mnejk7
] 1
i€ "5 [(77 €) i (T €)1 — §(TJ6)mj(TK6)kn] = emn(T'€)jk + (7' mnejr.  (3.20)

In particular, the relations are

_Ql(;:?;{z = Ql(;:s?}p + Ql(;z)),Hm

prst prst rpst
1b 1 1
_Ql(q31[2 = Ql(qizH2 - Ql(q:’)’HQ’
prst prst rpst
2b 2
Ql(q3}{2 = Ql(qs?sz
prst rpst
3b 3
Ql(q33{2 = _Ql(ngzy
prst rpst
2 2 2 3 3
2Ql(q§?{2 = (Ql(ngQ + Ql(q"?))HQ) - (Ql(qi’))HQ + Ql(ngQ )7
prst prst rpst prst rpst
3 2 2 3 3
2Ql(q;§ll)r{2 = (Ql(qzsz - Ql(qssz) - (Ql(ng2 - Q§q§H2)7
prst prst rpst prst rpst
4 2 3
Ql(qgﬂ = Ql(ngQ - Ql(ngQ’
prst rpst rpst
1 (b 2 2 3 3
§Ql(q3;[2 = _(Ql(q?))H2 - Ql(q?))HQ) - (Ql(q?))HQ + Ql(q?))HQ) (321)
prst prst rpst prst rpst

In addition to J3 operators with dimension-6 analogs, three new types of operators
appear. These were three of the types of operators identified by ref. [10] as types
that vanish in the absence of flavor structure. All three contain a Lorentz singlet
pair of quarks in the antisymmetric 3 representation of SU(3)., yielding ng(ng —
1) independent operators. The operators of type Qg sp2 are different from these
three (and others identified by [10]) in that there is at least one Lagrangian term
in the absence of flavor. However not all of the terms are present in the absence of
flavor structure. Dimension-8 is the lowest mass dimension where this happens. The
vanishing of operators in the absence of flavor structure first occurs at dimension-7.

PrX.

For a pair of currents there are 114 terms formed an operator by contracting the cur-
rents with a field strength, and inserting SU(2),, and SU(3). generators and invariants
as necessary. There are at least two terms per JJX operator type, one from X and
one from Xp. The largest number of terms is eight, which occurs for operator types
Qu2i2c, Qpu2a, and Q 2426, where the SU(3). combinations are (8®1®8), (128®8),
(8®8®8)4, and (8 ® 8 ®8)g for the, say, u current, d current and G, respectively.

There are five types of operators that were identified in [10] involving identical
currents contracted with the hypercharge field strength, e.g. (Iv*1)(171) B, which
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vanish in the absence of flavor structure as the contraction forces the fermions into
an antisymmetric flavor representation. For each Lagrangian term the number of
operators is

<E®D®E®D)A:adj@adeB&s@Ea:%nf](nf]—l) (3.22)

The relevant group theory results can be found in e.g. [27]. The electron is a special
case as it does not have SU(2),, or SU(3). indices. As such only half of the operators of
this class 19 type are independent with the rest being related through a Fierz identity.

For operators with fermion chirality (LR)(RL) there are two possibilities per field
strength, one with the left-handed field strength and the other with its right-handed
counterpart. For operators with fermion chirality (LR)(LR) there are instead three
choices for the Lorentz contractions, all with Xz. Two of these terms involve a tensor
bilinear and a scalar bilinear while the third has two tensor bilinears. Additionally
when all the fermions are quarks there are two choices for the SU(3). contractions.

For the baryon number violating operators with two left-handed and two right-
handed fermions there are two possible Lorentz contractions, one with X; and one
with Xz. When these operators involve a gluon field strength there are also two pos-
sible arrangements of the SU(3), indices, 8®3®3®3 = (3®6...)®3®3=1¢1....
The operators of type Qgq2,x with X = Wpg or By are in antisymmetric flavor
representations for the ¢ pair, and as such vanish in the absence of flavor structure.
Instead Q42,,x with X = W[ or Bg are symmetric in p and r. The types involving
gluons have full flavor rank as the ¢ fields can either be a color 3 or 6, compensating
for other (anti)symmetries of the operator.

On the other hand, when the fermions all have the same chirality three Lorentz
contractions are possible. For operators of the type Q.,245 the gauge contractions are
fixed and it is the Lorentz contractions that dictate the flavor representation of the u
pair is, leading to one symmetric and one full rank term +h.c.. Instead for Q.24 type
operators, the additional freedom coming from the color indices of the gluon, allowing
for full flavor rank, n‘;, in all the Lagrangian terms. In the case of Q43 x only two of
the three Lorentz contractions are independent due to the identical ¢ fields. There
are two terms of (g3 operators (+h.c.) that have the same flavor representations
as the their dimension-6 analog, Qqq1, along with one term of @43y and one term of
Q14385 again +h.c.. For each of these types of operators there are an equal number of
operator types that have mixed symmetry, %ng(ng —1), that vanish in the absence of

flavor structure similar to Ql(jg 2+ Finally there is a third term +h.c. for the operators

involving W1 Ql(jg),w, that is in a symmetric plus mixed flavor representation.

nZ
Operators of the type Qg are another complicated case that deserve further
discussion. Here the quarks can be in either the 2 or the 4 representation of both
SU(2), and the SU(2)r, of the Lorentz group. Naively there are four terms (+h.c.)
to consider with redundant operators handled in a similar fashion as the Q2 case.
However we can unambiguously combine the two terms that are Lorentz quartets
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20.

into a single term, reducing the number of terms to three +h.c.. To see this consider
the quark flavor symmetries of the four cases. Following ref. [23], specifically its
table 2, we decompose the product of the gauge and Lorentz representations into
irreducible representations of the permutation group of three objects, S3, which gives
us the flavor representations of the three quarks. As we have been seen before, when
the quarks are in the 2 of both SU(2),, and SU(2); they have symmetric, mixed,
and antisymmetric flavor representations. When one of the two representations is
a 2 and the other is a 4 there is only a mixed flavor representation. Finally, when
both representations are the 4 there is only the symmetric representation. We can
combine the two terms that are in the 4 of SU(2)z into Ql(jgw as they contain

distinct flavor representations. This is not unambiguously possible for QSQW and

3 2 3 . . .
Q§q§w, or Ql(qg 2 and Ql(qg 2 as each of those terms contain a mixed representation.

In equations, the naive terms that are in the 4 of SU(2), are

, |
Qi = €apn (T )mnesi (g Cat i) (g1 CLYW],,

b mao v _j n
Ql(j31)/1/ = fa,B'yEmn(TIE)jk<qp Cot qg"ﬁ)<QE’YClt )W;{V (323)

They can be combined as

2012, = Qi — Qi) — QU — Q). (3:24)

prst prst rpst prst rpst

Other combinations are possible of course, but this combination makes it clear there
is a symmetric and a mixed flavor representation.

YrHD.

In class 20 the operators either have one fermion transforming as ( %, 0) and three
transforming as (0, %) under the Lorentz group, or vice versa. When describing the
classification of this class we assume the former case. Then, from (3.8) the derivative
cannot act on the left-handed fermion. Otherwise the operator would be reduced by

the EOM.

We start with the baryon number conserving operators. Consider the case when
the four fermion fields are distinguishable, e.g. d,d,[,e (with conjugate fields are
counted separately). Here there are two independent Lorentz contractions when the
derivative acts on the Higgs field. A third Lorentz structure is related to the first
two by eq. (3.2). When the derivative acts on a fermion there is instead only one
possible Lorentz contraction. We use type Q.g2pp as an example. It has the five
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21.

aforementioned candidate terms

d[beé(DH)bdeabedbeéd,

d[beé(DH)bdﬁabEddEéb,

Mo a

8

2 a

_ _ 1 TR
T3 da(Dd)b(dd)li)eéHieab(Qe“beCd — tdelhy,
_ B 1 P L
Ty = dada(Dl)a(bd)eCHieab(eabECd + EadECb)7
_ 1 s
w5 = dadaly(De) d)H§e“b6“b60d, (3.25)

where eq. (3.2) is used to remove redundant Lorentz structures. There are two
constraint equations

1 1
Dy =a1+x3+ x4+ z25 =0,

2 2
1
Dys = x9 — x3 + 5%’4 =0, (3.26)

and we choose to keep x1, x2, and x4 in our basis. For other types of operators
where all four fermions are distinguishable we keep the analogs of x1, x3, and x4 as
well. In addition, if there are four fields in the operator that are fundamentals under
SU(2), or SU(3)., including the Higgs, then there are two possible contractions of
those gauge indices for each possible Lorentz contraction.

The other possibility is that only three of the fermion fields are unique, e.g. d, d, g, d.
In this case there is only one way to contract the Lorentz indices when the derivative
acts on the Higgs field, and only two possible ways to assign the derivative to
fermions. When the derivative acts on the Higgs field or the repeated fermion
there are four, two, and one possible gauge contractions when the repeated fermion
is g, one of {l,u,d}, or e, respectively. Instead when the derivative acts on the
fermion is not repeated, e.g. d,d, (Dq),d, there are two possible gauge contractions
if the repeated fermion is ¢ and only one otherwise. Here the repeated fermion
is in a symmetric Lorentz representation and so the gauge contractions must be
antisymmetric, eliminating half the possibilities.

The baryon number violating operators follow the same rules. There are a couple of
non-trivial flavor cases. When there are duplicate right-handed fermions they form
a symmetric flavor representation if the derivative acts on the Higgs field, and have
full flavor rank if the derivative acts on the one of the duplicate fermions. For the
term Q.43 p, the derivative acts on one of the g fields, breaking the flavor constrain,
eq. (3.18), giving it full flavor rank.

D2
We start with operators with equal numbers of left- and right-handed fermions,

both B and JB. There are two ways to assign the derivatives to the fields that are
not related by IBP. The first is to assign the derivatives to fermions that have the
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same Lorentz representation, and second is to assign the derivatives to fermions
with conjugate Lorentz representations. When both currents are electron one of the
representations vanishes in the absence of flavor structure. As previously mentioned
this is due to the fact that the electron is a singlet both SU(2),, and SU(3).. As
this work was being completed ref. [24] appeared, which classified nine terms from
class 19. Some of their operators subsume both derivatives into the d’Alembertian
operator. Our logic is consistent with the results of ref. [24]. The difference is we
use relations like (3.8) to reduce operators with two derivatives acting on the same
fermion to classes with fewer derivatives. As such the ¥*D? operators in our basis
where derivatives act symmetrically take the form D, (¢1T't2)DH(¢3I'tps) where
I" is some, possibly scalar, combination of gamma matrices. The remaining 30
current-current terms and the four terms with chirality (LR)(RL) in class 19 have
a form analogous to the operators classified by ref. [24]. Also, the derivatives in
Qeq2up? break the flavor constraint present in its dimension-6 analog Qgque-

For operators with either all left-handed or all right-handed fermions there are three
possible Lorentz contractions, two where the fermions without derivatives form a
scalar and a third where they form a tensor. An example of an IBP constraint
equation for these types of operators is

Ql(eI;uW + Q(Dul_iD“er)ejk(éfut) = - (3.27)

There is a single term (+h.c.) for the type Q;p2. As was the case with Q.q2,p2,
the derivatives in @43 p2 break the flavor constraint present in some other operators
of type Qy43..., allowing the term to have full flavor rank. On the other hand, for the
first time we encounter a term of the type @.,24  that vanishes in the absence of
flavor structure. There is also a second type of Q.,24p2 operator (+h.c.) that has
full flavor rank.

4 The complete set of dimension-8 operators

Having gone through our classification of the dimension-8 operators in the previous section
we are now ready to tabulate the results. Table 1 summarizes the results tables that follow
it. The links in the rightmost column point to the table(s) of results for a given class. The
number of types of operators and the number of Lagrangian terms in the class are given
in the third and fourth columns from the left, respectively. For comparison the number
of operators from ref. [10] is given in the second column from the right. Lines separate
the classes based on the number of fermions in the class. Four-fermion operators are
further divided into subclasses either preserving or violating baryon number. Additionally
the number to the right of the + sign in Nype term for the four-fermion operators is the
number of types or terms that vanish in the absence of flavor structure tables 2 and 3
contain bosonic operators. Tables 4, 5, 6, 7, 8, and 9 contain two-fermion operators.
Tables 10, 11, 12, 13, 14, 15, 16, 17, and 18 contain four-fermions operators.
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# Class Niype Nierm Nop [10] Table(s)

1 X4 7 43 43 2

2 H® 1 1 2

3 H5D? 1 2 2 2

4 H'D* 1 3 3 2

5 X3H? 3 6 6 3

6 X2H* 5 10 10 3

7 X2H?D? 4 18 18 3

8 XH*D? 2 6 6 3

9 V2X2H 16 96 96N 4

10 | ¢*’XH? 8 22 22n? 5

11 | ¢?H?D? 16 1607 5

12 Y HP 3 6 6n? 5

13 | ¢*H'D 6 13 13n] 5

14 | ¢*X°D 21 57 57n? 6, 7

15 | v>XH?D 16 92 92n? 7,8

16 | ¢*’XHD? 8 48 48n? 9

17 | ¢?H*D? 36 36n2 9
18(B) SAH? 19 75 ng(67n; +ngy +7) 10, 11
18(B) 443 1248 | 3n2(43n2 —9ny +2) 10
19(B) X 4045 | 156 + 12 4n2(40n2 —1) 12, 13, 14
19(B) 4 44 412 2n3(21ng + 1) 15
20(B) SHD 16 13442 n3(135ny — 1) 16, 17
20(B) 7 32 n(29ng + 3) 17
21(B) #D? 18 55 Sn2(9n2 +1) 10, 18
21(B) 4 10+2 nj(1lng — 1) 10

B 204 + 5 | 895 + 14 | 895(36971), ny = 1(3)
B 19+3 | 98+22 | 98(7836), n, = 1(3)
Total | 223+ 8 | 993 + 36 | 993(44807), n, = 1(3)

Table 1. Summary of the contents of the tables to follow. The links in the rightmost column point
to the table(s) of results for a given class. The number of types of operators and the number of
Lagrangian terms in the class are given in the third and fourth columns from the left, respectively.
For comparison the number of operators from ref. [10] is given in the second column from the right.
Lines separate the classes based on the number of fermions in the class. Four-fermion operators
are further divided into subclasses either preserving or violating baryon number. Additionally the
number to the right of the + sign in Niype(term) for the four-fermion operators is the number of

types(terms) that vanish in the absence of flavor structure.
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1: X4, X3X’ 1: X2X"?
Q! (Gh, G (GF,GPr) Quwa | (Wi, W)@y, GAre)
Qe (G, GAm) (G, GBPJ) Qe | W, WW)( GAPU)
Q! (G, GPm) (G, 0) Qiwe | (WiLGA) (W), G7)
Qi (G}, GPr)(G, G Qi | (Wi, GAw) (W, GAor)
Qe (G}, GAW)(GB GPro) Q&w (Wf W)@ GA27)
Q! (G}1,GP) (G, GPr7) Qhwe | (WELWIm)(Gyl, GAP)
QG | dAPEACPE (G, GEr) (GE,GP) Qi <WJVGAW><WI GAW)
QSZ dABEdCDE(GﬁVéB/w)(GgaéDpa) QGZB2 ( B/w)( GApU)
Q(C?z dABEdCDE<GA GByy)(GC éDpa') QG232 (B B‘“’)( Apo’)
Quh (Wi, W) (W, W 7o) Qg | (BuwGA)(BypGAe7)
Qi (W’ W’W)( WJP”) Quipe | (BuGA™)(ByeGAr7)
o (Wi, W) (W, W7ee) Qérps | (BuwB™)(G,GY7)
Qv (Wf W (W, WJP”) Qerpe | (BuwB™)(GpGH7)
QE}’{S/)AL (WI WI;W)( JwJpa QG232 BWG,q,W)B GApo')
Qh (W, W) (Wi, Wee) Qs | (BuB™) (Wi, Wir)
Q% <BWBW><BMBM> Qape | (BuB™)(WLT)
Q% (Bu B") (B, B) Qiepe | (BuW ) (ByeW!e?)
Q% (B B) (Boo 577) Qe | (B W) (B W)
QG3B dABC(BWGAW)(GB cha) QW2B2 (B B””)( WIpo’)
QRp | d*PO(BL G (GE,GOr) Qeps | (BuB) (Wi, WIr)
Qg | dAFC(BLGH)(GE,GO) Qg | (B W) (Bye W)
Qwp | d*PO(BL G (Gh,GO)
2: H® 3: HSD? 4: H*D*
Qus | (HIH)* || Q4 (H'H)*(D,H'D"H) QY. | (D H'D,H)(D"H'D"H)
QY) | (HIH)(HIr H)(D,H'r'D*H) || Q%) | (D,H'D,H)(D"H'D"H)

Q¥ | (D*H'D,H)(D"H'D,H)

Table 2. The dimension-eight operators in the SMEFT whose field content is either entirely gauge
field strengths or Higgs boson fields.

4.1 Results for bosonic operators

See tables 2 and 3.
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5: X3H? 6: X2H*
Q(E;gm FARCH G GG Qu2m (H'H)*G, G
Qcine FARCHT )G GG Qi (H'H)*G}, G
Ay € H)W A Qs | WL
Qi 1o K (H YW W e w Ke Qirs s (H'H)2W], Wi
QWs e e (HYT H)BYW W Qivops | (H'TTH)(H' JH)W’ W
Qe | N B W W 1 BEWLTE) || QU | W W
QL) (H'H)(H'+" H)W,;, B*
Q%)BHél ( H)(HT IH)W;{VB/’“/
QB2H4 ( H) B/»“’BMV
QB2H4 (HTH)QB/»“’BI’“J
7: X2H?D? 8 : XH*D?
QU oo (D*H'DYH)G},G* Q(V;>H4D2 (H'H)(D"H'+I D" H)W ],
Q(}EHQDZ (D*H'D,H)Gy,G*" Q‘Z o (H'H)(D*H'+! D" H)W],
Q(Cl,v)z)HzDz (D#HTD“H)G;IPGAW QE/V?H‘*D? IJK(HT IH) (DHHT Iprg )Klﬁ
Qw2H2D2 (D#HTDVH)WJPWI{P QWH4D2 I]K(HT )(DHHT ]DD )Wﬁf
Q4% 2 2 (D*H' D, H)W,, W Q) rine (H'H)(D*H'D"H)B,.,
QW o2 (D*H' D, H)W} Wwre QY. (H'H)(D*H'D"H)B,,
QE%}HQEﬁ IJK iéu}: (IDHHTTID;@IZJPWAV}“{; K
Q K (DrHY T DY HY (W, WEe — W Wike)
%)2H2D2 - TJK (pypprt I oy u; i Kp "’HJP Kp
QW>2H2D2 i K (D H T DY HY (W, WEP 4+ W] WEe)
Q! (D*HY7' D, H)B, ,W!"°
Qe (D" Hir D, H) B, 1
Qg/;BH2D2 i(DMHTTIIDVH)(BMPWz;Ip - BVPWéP)
QVYBH2D2 (DuHTIT DVH)(BWVE/IP + Bup%lp)
QE/;)/>BH2D2 i(DuHTTIDDH)(BNPAVE/}/p _BV/’AM-{II-LP)
QE/‘G)BH:)D? (DHHTTIDVH)(BHPWVP + Buqup)
Q2 2 o (D*H'D"H)B,,B,”
Q(BQQ)HQDQ (DMHTDHH)BV/)?VP
Qg3H2D2 (DHHTDHH)BUpBUp

Table 3. Bosonic dimension-eight operators in the SMEFT containing both gauge field strengths
and Higgs boson fields.

4.2 Results for two-fermion operators

See tables 4, 5, 6, 7, 8 and 9.

4.3 Results for four-fermion operators

See tables 10, 11, 12, 13, 14, 15, 16, 17 and 18.

5 Phenomenology

In this section we briefly discuss a few aspects of phenomenology involving dimension-8
operators, focusing on processes that first start at dimension-8 and/or involve interplay
between dimension-6 and -8 effects. In particular, we discuss light-by-light scattering and
electroweak precision data. We also present a model where dimension-8 effects are arguably
more important than dimension-6 effects.
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9:9Y%X2%2H + h.c.

Qlotorr
Qi n
Qlotven
Qien
Qion
Qe
Qe
Qe
Qe n
Qe n
Qvew n
Qown
Qucw
Quvcnn
Qo
Qe
Qw2 n
Qhan
Qv
Qf;i)WBH
QE]?WBH
Qc(zi)WBH
Qe

(2)
QtuZH

(lpe, ) HG A, GAR
(Iye,)HGA GAw

pv

nv

(Lye,)HWL winv
(lper ) HW L, Winw
eIJK(ZpU”VeT)TIHWP{pr”
(qpur) HGH, GAR
(@yur ) HGL, GAR
dABC(quAuT)ﬁGEVGC;w
dABC(quAuT)ﬁéEVGC;W
FABC (guot TAu, ) HGE GGP
(@ T4 u,) T  HGH, Wk
(@ T u,) T  HGA, Wk
((ij'””TAur)TIfIGﬁpWVIP
(@ T u, ) HG, B
(@p T u,) HGL, B
(@po T4u, ) HG A, B,
(@pur) W, W
(Gpur) HW L, W
el TK (CYPO'“VUT)TII?WJPWVK[’
(Qpa“”uT)TIﬁWipBy”
(Gpur) T HW], B
(Gpu, )T HW], B
(@pur) H B,y B

(gpur)H By B

9:9%X2%2H + h.c.

Qletv s
Qs
Qv
Qloben

(2)
QleBQH

Qe
Qi n
Qe n
Qoo
Qe
Qe
Qw n
Qi n
Qiiann
Qann
Qivann
Qi
Qv
Qhven
Qc(;l)WBH
Q¢(12d)WBH
Quiw s
Quiperr

(2
quB2H

(Iper) T HW!, B
(l_per)TIHWI{VB‘“’
(Z;,O'“V&-)TIHWJPBVP
(Ipe,)HB,,, B®
(Ipe,)H B, B"
(Gpd, ) HG G
(@pdr) HG, GAY
d*BC (g, 74d, ) HGE, GO
dABC(quAdT)HéEVGCW
AP (gpot TAd, ) HG ), GSP
(pTAd, )T  HGS, W inr
(G,TAd,)r HGA, W
(gpotTAd, )T  HG, WIP
(g,Td,)HGy, B
(q,T*d,)HG,, B
(G0 TAd,)HG}.,B,”
(Gpdy) HW 3, WY
(apy ) HW], WK
GUK(’I,U“”CZT)TIHWJPWVK'D

(qpdy)T" HW [, BH
(@pdy )T HW], B
(@0 d,)TTHW] B,
(@pdr)H By, B

(qpdr)H B B"”

Table 4. The dimension-eight operators in the SMEFT of class-9 with field content ?X2H. All
of the operators have Hermitian conjugates. The subscripts p, r are weak-eigenstate indices.
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10 : > X H?® + h.c. 11 : y*>H?*D?
Qiyws | (ot e)r H(H H)W,, Q2 ps i(lyy" D 1:)(Du Dy H' H)
Qs | (o e H(H T H)W,, Q%) s i(lyy" D*1,)(H' D, D, H)
Qieprs | (po"e)H(HH)B,., Q%) 2 s i(lyy* 7' D"1,) (D, Doy H 7T H)
Quuans | (@0 TAu,) H(H H)G, Q%) ps i(lyy" 7! DV 1) (71 D, D, H)
Qs | (@0 un )T H(HHYW, Q%2 s i(ey" D" er) (DD, H'H)
Qs | (@0 ur) H(H T H)W,, Q22 s i(ep" D”er)(H' DD, H)
Quans | (@0 u,)H(H H)By, QW2 s i(@7" D" ) (D Dy H H)
Quacns | (o T d,)H(H H)G}, Q% aps i(@" D" q;)(H' DD,y H)
Qs | (@0t dy)r  H(H H)W,, Q% 2o i(@py* T D ¢, ) (D Doy H 1 H)
Q% s | (@0t d,)H(H T H)W], Qe po i@y D¥q,;)(H'r' D, D, H)
Quupns | (@o"d)H(H H)B,, QY 2 s i(@py" D" uy) (D D,y H' H)
Q% s s i(ipy* D" u,)(H' D, D,y H)
Q2 s i(dpy" D" dy)(D(u Dy H' H)
Q2 ps i(dpy* D dy)(H' D, D,y H)
Quam2ps +h.c. i(apy" D¥dy)(H' D, Dy H)
12 : ¢2H® + h.c. 13 : ¢2H*D
Quews | (H'HY(lpe H) QWap i(l,y"1,) (H''D W H)(H'H)
Quunrs | (H'H)?(gyur H) QPp | i T (E D LE)HH) + (HD W H)(H )]
Quans | (H'H)(gpd, H) QP ie! 7N (L ) (B D ) (H 7 H)
QW I Ly 1) (H w7 H)D, (H '+ H)
Qemip i(epyer)(H''D  H)(H'H)
QWyip i(qpy"qr) (1D L H) (' H)
Q%ap | ey ) (T DLE)(HH) + (HT'D 1) (7 )]
Qpep ie! V¥ (qpy*rl o) (D H) (H 7% H)
Q% an """ (g g ) (H 7/ H) D, (H' 7 H)
Quamin i(upyur)(HD ) (H' H)
Qazmap i(dp’yudr)(HTﬁuH)(HTH)
Quamip + hc. i(upy*d, ) (D H) (H'H)

Table 5. The dimension-eight operators in the SMEFT of classes-10, through -13, all of which have
two fermions. The operators Q,qm+p and Q,qm2p3 have Hermitian conjugates. The subscripts p, r
are weak-eigenstate indices.
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14: ¢*X%D 14: ¢*X%D
Qireap i@ D* )G, G QW | U@ T4 D 0)(GE,GS” - GE,GE?)
Qiep | 1@ T D a)GHGE | | Qg | 1Y@ T D) (GE,GE7 + GG
QDap | WP @ TA D a)GLGE | | QB | @ TA Bra)(GAWL — Gl W)
Qhep | i@y Dra)Wi, Wl Qwp | H@" TAT D ) (G, WP + G, W)
Qap | @ T D aWLWE | | Q9 | @ T D) (G WL - GATL)
Qq2p2p i@ D" a) Bup B Qawn | H@ TAT D ) (G WL + G, W)
QWeop | i@ D u)G,GLr QWsp (@7 D) (BuGi? = BupG?)
Qgen | FE@ TA D u)GEGE | | Q0 i@ D" a)(BupGL? + BuyGil?)
QW | 1P @ T D u)GEGT | | QP (@7 D" a)(BuyGL — BuoGi)
Quawep | iy D u) W, Wl QD 137" D 4.) (Bup Gl + BL,GL)
Qu25°p (1,7 D) B,y B, Qe | i€ @y D) (Wi, WP — W, WiP)
Qe i(dyy" D )G, G0 QWep | @ D) WL, WP + W, WE?)
QBuap | @A TA D d)GEG | | QR np (@77 D 4) (BuyWiP — B, W/7)
Qe | 1 PCAATAD a)GEGT | | QBnn | i@ D ar) (B WP + B, W)
Qazw2p i(CZp’Wﬁydr)W;{szfp Q((;;)WBD (QPVHTI?VW)(BWWL{’) - B,,pf/i//ip)
Qupp i(dyy" D dv) B,y B, QWnn | i@y DY) (BuyWie + B, WiP)
QWeapy | B (@ TA D ) (GE,GS? — GE,GE?)
Qs | 1@y T4 D 0, ) (GE,GS? + GE,GS)
QW (@7 D) (BupGL? — By Gil?)
QE?GBD i(ﬂp'V#(BVUT)(BuPGfP + B,,G*)
Q;SQ)GBD (QPV;L(BVUT)(BWC?LA‘) - vaéf}p)
QWenn i(,7" DV ur) (BupGL? + BuoGL)
QW | if (@A T D ) (GE,GS” — GE,GSP)
Qeep | FAPC(A TAD ) (GE,GS? + GE,GE?)
Qs (A7 T dr)(BuyGL* — BuyGil?)
QSiQQ)GBD i(dpy“?”d,«)(Bquf” + BupG?)
QE;)GBD (Jzﬁ”(ﬁ)udr)(Bwéfp - Bl,pé;‘}”)
Qso i(dy" D do)(BupGL? + BuuGil?)

Table 6. The hadronic dimension-eight operators in the SMEFT of class-14. The subscripts p, r
are weak-eigenstate indices.
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14 : ¥*X>*D

Qiwap
Qiwap
Qb
Qs
QW

(4)
Qewep

- < —
iy T D VL) (W, WP —

e”K(l_p’y“TIﬁ”lr)(W,;’ﬂﬁ//fp
(7" DY) (B, Wi —
iy D) (B, Wie +
1, ’)/MTI%)Ulr)(
il D) (B Wie +

pWI -

W, W)
+ W, WEr)
B,,Wif)
B,,W,\P)
B.,Wl*)
B.,W!*)

14 : ¢¥?X?D

Qi2g2p i(ZpWHﬁulr)Gﬁprp
QWep | i DWW
Qg)WQD e”K(l_pfy“TIﬁ”lr)W;]pW,f("
Qizp2p i([pVHﬁulr)BupBup
Qocrp | i@ Dre)GhGH
Qe2w2p i(ép’Y“(ﬁyer)W;{quIp
Qe2p2p i(ézﬁuﬁuer)BupBup

15: (RR)XH?D
Qwren | @ er) D (H' T HYW],
Q% izn | (@ er) DM (H'T HYWL,
QWwop | @ e HI D YW,
QB pep | (@ en) (i B m)W,
QY (ep7"er)D*(H'H)B,.,
Q% pmap | (@7 er)D'(H'H)Byu
QDo | (@ e )t DHH)B,,
Qe | (@ e)(HI DHH)B,,
QY rep | @y TAu)D*(HH)GE,
Q% e | @y T u,)D*(H'H)G],
QDep | @ THu)(H D H)G,
QW e (apw”TAuTXH*%’“H)éAV
QW rap | (@Y ur) DH(H T HYW,,
QD pzp | (@Y ur) D*(H' T HYW,
QY pep | @y un)(HY D H)YW,,
QY wan | @y u)(HI D HYW,,
QWppep | (@ u)D*(H'H)B
Q% en | (@Y u)D*(H'H)B
Q;32)BH2D (Tpy Ur)(HT D"H)B,.
Q%W pnap | (@ u)(H D" H)Byy

15: (RR)XH?*D

1
Q) +hec.

Qq(id)BHz + h.c.

Q( wapm2 T hC

QWuep | (" TAd)D(HIH)G,
QY en (dpy"T*d,) D" (H' H)G},
QY en | @ TAd)H DH)GE,
QW . (dpy" TAd,) (HT D H)GA,

Qewnep | (@7"dr)
Qiwnep | (@17dr)
Qilz)WHzD (dpy”dr)(H
Q((;)WH2D (dp"dr)(H
Qd2BH2D )
Q§122)BH2D (dpy"dy) D"
Qx(ii)BHQD

QdQBH2D

(2)

Q wacp2 The
SJWHQ +he | (dpy“de)(H
LQd)WH2 +h.c. (upy"dr) Hf

(

(
(ipy*do)(H D" H)B,,

)

1,7"d.)D*(H'r' H)W}],
dpy” dr D“(H* ’H)W,{u

"H)W,
IMH)

(dpy”d. D“(H*H)B

(H'H)B,.,

dpy'd, H DrH)B,,

P Iz
dy'd,)(H D" H)B,,

P Iz
(" TAd,)(HT D H)GA,
a,y TAd) (HT DG,
p I3

DrEYW]

Demywl,

)
)

(py* do)(HT D" H) B,

Table 7. The leptonic dimension-eight operators in the SMEFT of class-14, and the dimension-eight
operators of class-15 with field content (RR)X2?H. The operators Q,qx > have distinct Hermitian
conjugates. The subscripts p,r are weak-eigenstate indices.
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15: (LL)XH?D

15: (LL)XH?D

QZQWH2D
Ql2WH2D
Qi aep
Qi
Qe
QZQWH2D
Ql2WH2D
Qi iep
Qinwrep
Qisyirrep | €
Qivirrep
QZQWH2D
QP BH2D
QPBH?D
QZZBH2D
Ql2BH2D
leBH2D
Qiehep
QZ2BH2D

(8)
Qepr2p

6IJK Z_’)’

1) DH(H ! H)Wf
~*1,)D*(HT T HYW.
Lyl (HY D Dimw

(ly
(ly
(lp”r) w,
(Ui )(H*D“‘H)
(v 71, ) DH(HTH)W,
(1, )D“(HTH)W’

1,
e !
(e ) (H DrE) W,
([vaTIlT)(HTﬁ“H)WIV
D DE(H T HYW

( i
(l vl ) DH(H 7

/LV

1)
) H)W,
JIK p,YVTIZT)(H'i‘(BJ,LL HYW
) W,

(
<=
IJK( p’YVTIlr (HT D J/LH

(7¥1,)(HT D" H)B,,
(I, 1)(HT D" H) By,

Qe
Qr=p
Qe
Qs
Qe
Qe
Qe
Qe
Q(2WH2D
Qwrp
Qwrp
Qwmep
Q(QWH"’D
Q(2WH2D
Qw rp
Qwrp
Q% mp
Q(ZWH"’D
Q(2WH2D

(12)
Qq2WH2D

Qi mep
QW puep
Q2 mep
Qe pmep
Q( q?BH?2D
Qusmep
Qi mep

(®)
Qq2BH2D

GUK((j vrlq.)DF(HI T H)W,

Gy TAT g ) DH(HI T H)GA

0,7’ TA11q, D“(HTTIH)éf}V
g

HYDIH)GA

@' T,

(@
(@
(@ (
@ (B D1 H)GA,
(@' T4q,)D*(HTH)G4,

)
)
yT4r!q,)
)
) v
(@' T*q,) D" (H'H)G,
(@7 Tq

D(HTDrH)GA,
(@7 T, )(

HTﬁMH)éﬁV

(@7 qr> n(H H)
(@7 qr)D”(H*H)W;{y
(G ) (H D HYW,
(Gl (H D H)W,

V

IJK
u

)

apyy’'T q,«)D”(HTT
')
IJK )

(@ H)W,
eITE (HTﬁJ” HW

(@) (T DI )W,
(@y'T qr)D“(HTTIH)BM,,
(@' 7%q,)D (HTTIH)EW,
(@7 q,)(H D" H)B,,
(@7 q,) (! D1*H) B,
(@7"ar)D*(HH)B,,
(@7 qr)D*(HH)B,,
(@7’ a)(H DH)B,,

., e
(Qp’Y qT)(HTDMH)BMV

Table 8. The dimension-eight operators in the SMEFT of class-15 with field content (LL)X2H.
The subscripts p, r are weak-eigenstate indices.
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16 : Y2 X HD? + h.c. 17 : Y2H3D? + h.c.
Qovrpe | (o™ Dre ) (D,H)W], Qlets p2 (D, H D# H) (lpe. H)
Qlmpe | (Dre)r (DY H)W], Qiyops | (DLHIT DPH) (e, H)
Qv upe | Wore, )T (DPH)(D,W},) Qap: | (DuH'D,H) (0" e, H)
Ql(iJ)S’HD“’ UPUWDP@TXDVH)BW Ql(jl)ﬁﬁD? (DMHTTIDVH)(ZpUW‘erTIH)
Qieprps (L, D?e,) (D" H) B, Q)pe | (H'DuH)(ye, DM H)
Qihppe | (o™ e)(DPH)(D,B,) Qspe | (H'D,H) (o e, D, H)
Qopips | (@0 TADou,) (D, H)GA, Qe | (DLHTD!H)(gyu, H)
QWnpe | (@T*Dru,)(DVH)G, QW s | (DuHTT DFH)(Gyu, ' H)
Qaps | (@™ TAu)(DPH)(D,GH,) Q% yaps | (DHTD,H)(g,0"u, H)
QPwape | (@™ Dru)r (D, HYWL, QW apa | (DLHY! D, H)(gpo" u, v H)
Qe | (@Drun)r (D H)W), Qs | (DuHH)(Gyu, DP )
Qt(zi)WHD2 (qpal‘”ur)rl(DPﬁI)(D[,W/{V) Q((I(Z)HSDZ (D, H'H)(q,0""u, D, H)
Qv | (@0 DPuy)(D,H)By, QWyape | (DLHIDIH)(g,d, H)
Qnpe | (@Dru)(D*H)B,, Qape | (DLHIT DIH)(gyd, 7' H)
QW pe | (@0 ur)(DPH) (D, By) Qpope | (DLHD,H) (g0 d, H)
Quoaups | (@™ TADed,)(D,H)Gy, QWsps | (DuHIT Dy H)(gpo dor' H)
Qnpe | (@TADPd,)(DVH)GA, Qs e (H' D, H)(g,d, D" H)
Qg?i)ch (@po™T4d,)(D?H)(D,G1,) QéGd)HsDz (H'D,H)(g,0"*d, D, H)
Qg}i)WHm (quWDpdr)TI(DuH)WpIM
Q((ii)WHDQ (@, D?d,)r! (DVH)W,{V
Qt(;zl)WHD2 (Qpawdr)TI(DpH)(DPW;{u)

QE;?BHD? (qpo*” DPd,.)(D, H)B,,
QE]?BHDZ (GyD?d,)(DVH)B,,
Qsnpe | (@0"dy)(DPH)(D,By)

Table 9. The dimension-eight operators in the SMEFT of classes-16, and -17, which have two
fermions and two derivates. All of the operators have Hermitian conjugates. The subscripts p,r
are weak-eigenstate indices.
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18 : (LR)(RL)H? + h.c. 18(B) : v*H? + h.c.

Qegarz | (o) (dsay) (H'H) Qiguarr? Capen(dg Cul) (gl CIE) (HH)

QD e | (e T (doa)(HITTH) || Q2 e | capy (7€) ju(dg Cul) (g CL) (H 7T H)

Qrydm? (Lpd, H)(H'al;) Qeq2um? €aprEik(@E*CqP) (u)Cey) (HY, H*)

Q) e (lper H)(H'isq,) Qe €apryEmn€ik(dy*Cql’) (¢ ClY ) (HTH)

Q'Y e (@yd, H)(H'5q,) Qe | €apy (T1mnei (g Cal) (¢ Ol (H T H)

Qo | @A 0T%) || Quowrr | ComdsCuaCa)HIH)
Qe | €apyemn (T )iulqrCai®) (g Clp) (H T H)
Ququzn> €apr€ikemn (CG) (ul Cul) HYH™
Qiqaz 2 €aprEikemn (g ®) (diCd) ) HFH™
Qeq2am? Capr€inemn(epd?) (P Cq" ) HEH"

21: (LR)(RL)D? + h.c. 21(B) : v*D? + h.c.
Qlegane | DulBer) D (dsar;) Qlyap €apry €k Dy (dy Cull) D (g ClF)
Qlequ2 # ‘D per)(ds o] Hqe5) quudm €apr €k Dy (dSCqlP) DM (u] CIF)

Qeq2uD2 EOéB’YGJk(qJ C‘Dld«qfﬂ)Du(uzcet)
Qigpp2> | €apyemn€jn(gy"*CDy a)?) D (g7 CLy)
Q(l u2dD? €apy (g CDyuf) D*(d)Cey)

Qi €apn (3 Cuf ) (DudYCDMey)

Table 10. The dimension-8 operators of classes-18 and -21 whose fermionic content either has the
chiral structure (LR)(RL) or is baryon number violating. The subscripts p, 7, s, t are weak-eigenstate
indices. Operators below the dashed lines vanish when there is only one generation of fermions.

Note that sometimes we will explicitly write factors of the cutoff scale of the effective
theory, C; — ¢;/A%™, to better highlight the different orders in the EFT expansion in our
phenomenological studies.

5.1 Light-by-light scattering

The possibility of non-linear processes involving solely photons had been discussed back in
the 1930s [28-31]. Later in the 1950s the cross section for elastic light-by-light scattering
was computed in QED [32, 33]. Almost 70 years would pass before this process was finally
observed in vacuum in 2019 by the ATLAS collaboration at the LHC [34]. Additionally,
the CMS collaboration reports evidence for elastic light-by-light scattering in vacuum [35].
Interactions in the SMEFT involving four photons first start at dimension-8

Lrpyr =

1 v 2 oy 2 23 v po
gonT | “ion (EwF™ )+ 551 (FurF™ )"+ G (Fy ) (oo E” )}, (5.1)
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18 : (LL)(LL)H? 18 : (RR)(RR)H?
Qe (1) (Lsyule) (HTH) Qeap2 (ep7"er)(Esyued) (H H)
QD) (Tp"1e) (s 1) (H 7" H) Quinz (Tpy*ur) (Tsyue) (HTH)
Q'Y (@7 @) (@ yuge) (HTH) Qqpr2 (dpy"dy ) (dsyude) (HH)
Qe (@7 ) (@57 q0) (H T H) Qo222 (&py"er) (tisyuue) (H'H)
QY (@Y™ ) (@svum"q) (H'H) Qe2az 2 (& er) (dsyuds) (HH)
Q;éisz ("1 ) (@svugqe) (HTH) QLY o (" ur) (dsyude) (H'H)
Qs | G 1) @orua) () QB | (@ T ) T (' )
Qs e (77" 1) (Goryur’ e ) (HH)
Q22 o ("1 ) (@ qe) (H 7 H)
QS ape | €U 7 1) (Govur” q0) (HT 75 H)

18 : (LL)(RR)H? 18 : (LR)(LR)H? + h.c.
Qfz)aps (L1 (Exyuee) (T H) QP an (qyur)esn (@) (HH)
QlQ 2572 (ZPWNTIZT)(éSVMet)(H]LTIH) Q((f)udHQ (qguT)(TIG)Jk(QS dt)(HTTIH)
QW (L") @y (H H) QD e | (@T ) (@Tds)(H'H)
Q;§L2H2 (l_p’YMTIlT)(_S’Yuut)(HTTIH) Q((142)udH2 (q'z’éTAur)(TIG)Jk(qs TAdt)(HTTIH)
Qi oy (Tpy" 1) (dsyude) (HTH) Q1) e (her)ejn(@hue) (HTH)
Ql(gzﬂH? ("' 1) (dsyude) (H " H) Ql(jgqu (l_g;er)(TI€)jk;(q?Ut)(HTTIH)
Q( 22 (‘jp’Yuqr)(ES'Vuet)(HTH) Ql(fgqu (l_g,a'm,er)sjk((jfa“”ut)(HTH)
Q% 2y (@7 qr) (Esyuee) (H T H) QY e | Bouwer)(776)x (@™ w) (H " H)
Q2 (@7" ar) (@ yun) (H'H) Qizle e (Iper H) (lse H)
Q(i) w2 H2 (QP’YMTIQT)( 'Vuut)(HJ(TIH) Ql(:;d;;z (l erH)(gsd:H)
Q< W2 H?2 (QP'V#TAQT)(US’Y#TAut)(HTH) Ql(:gde (l eTTIH)( sdyr! H)
Qfl 2,2 H2 (‘jp’YHTATI‘Z?")( S’YHTAUt)(HTTIH) Q(s 2,2 H2 (GpurH )( )
Q<2d2H2 ((jp'Yuqr)(dS'Yudt)(HTH) Q( w2 H2 (QPT U )(q T 4w, )
Q<2d2H2 (QPVHTI(]T)(dS'Y#dt)(HTTIH) Q<2d2H2 (@pdrH)(qsde H)
QW | @7 T4)(dyuTAd)(H'H) Qo 2 (@ T dr H)(g-T*d, H)
Q(zdsz (qp'YHTATIqr)(dS'VuTAdt)(HTTIH)

Table 11. Most of the dimension-eight operators in the SMEFT of class-9, which are further
divided into subclasses according to their chiral properties. See table 10 for the remaining class-9
operators. Operators with + h.c. have Hermitian conjugates. The subscripts p,r,s,t are weak-
eigenstate indices.
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19: (LL)(LL)X 19: (RR)(RR)X
QU (L) (L ) W Q\ic (7 )@y TAu,) Gl
Qi (L") Ly 7 1) W Q% (pyuy) (17 T ) G,
Qi (@70 (s VTACIt)GA Q' (dyydy) (duy” TAd)GA,
Q%% (@) (37" T4 a) G, Q4 (dyy"d, ) (dsy TAdy) G2,
QW | @' a) @y T q)G, Qe (@7 er) (@ TAu) G,
QW | (@ e (@ ”TArfan“‘ Q... (e en) (s TAu) G,
Qi (@719 ) (@ T ) W] QL% (7 er) (57" 1) By
Qhw | @re)@n ' a) Wi, Qs (e er) @y u) B
Qiw | @ T4a) @y T g)W, Qg (ep"er) (dsy" T dy) Gy,
QW | (@7, ”TArfq» L Qe (e en) (o TAdy) G,
O | G @ TAa) G, Q%rep (&7 er) (A7 de) By
Qi (1) (G T4 q) G2, Q% (ep7"er)(dsy” dy) By
Qﬁﬁzc (W“T 1)(Zs ”TATIQt)Gfu Qié)dzc (Tpy*ur)(d Sv”TAdt)
l(;l;zc Ly 771) (g5 ”TATIQt)GA Q,(fg)dgg () (ds VVTAdt)
bt (7" 1) (37" T q) W, Q¥ (T, (dyy” di) G4
Saw | G swqo Q... (7T, ) (dyy dy) G
o Ly 1) (@ a0 W, QD ae | FABC (i TAu,) (dy ”TBdt)
e Gy 1) (@ a0) W Qe | FABC (@ T4u,)(dsy" TP d)GS,
Qitveyy | € E Ly 1) (@ qt>W,f§ Qg | AP (WA TAu, ) (dy TP d,)GS,
Qiorayy | 7K (L1 (G 7 )W E Q% o | dABC (P TAu,) (doy TR dy)GS,
Qbrren (I 1) (@7 60) By Qep (7" ur) (dsy” de) By
Qi (17" 1) (7" @) By Qs (@Y ) (dsy” dy) By
QR p Ly 771 ) (357" 7" qt) By QY. (1 y"T4u,)(dsy’ TAdy) B
| Qigp |GG TIBe || Quiep |y T (A T B |
i (Lpy*1:) (157" 1) By QY (ep7ter)(€sy”er) Buy
1(421)9 (1p7"1) (157" 1) By Qf)B (ep7ter)(esy er) Buy
QLY (@74 ) (@57 4t) By QLY (py"1r) (W57 14) By
Q% (@7"4:) (@7 40) B Qg (171 ) (157" 12) By
QY | @ )@ T a)B, Qg (dpydy)(dsy” de) By
Q(i)B (@ 71 a0) (@7 7 ) By Qs (dpy"dy ) (dsy"dy) B

Table 12. The dimension-eight operators in the SMEFT of class-19 with field content JJX with
J = (LL) or (RR). The subscripts p,r, s,t are weak-eigenstate indices. Operators below the dashed
lines vanish when there is only one generation of fermions.
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19: (LL)(RR)X

Qb | Pl (e e) W,
Qe | (L") @y er) W],
Qblp | (") (e er) By

Qp | (') (e en)B,

QLo | (L, )(ﬂsv”TAUt)Gﬁ‘y
Q2e | (1) (" TAun) G,
QL | Uyt 1) @y ug) W,
QlQuQW (1, YT (Tsy ut)WI

)
QYan | (™) (asyu;) B,
QD p | @)

Qe | 1) (dy TAd) G2,

asfyuut)Bp‘v

¢
Qi | By h)(d sv”TAdt)GA
Ql?dZW Ly 1) (dsy” de)W,
Qi (vhﬂﬁ(;f%)
QZdeB (p7 l-)(d eVth) %
(d

)
Ql2d2B ( ’Y“Z) sY dt)

Qe (’V“TAQJ(SW &G,
QEhac | @ x%vqu
QW | @7 70 (e e)W
Qe | @7 ar) (N e)W,
Qe | @1"a0)(En" et)BW
Q% | (@7 a)(En"e) B,
Qf]?uzg a7 ar) (s T uy

3 ~ ] 1%
Qt(ﬁ)uQG p’yMTAQT)(Us’y Ut

Q%2

( )G
Qe | @ a) @y TAu)GH,
( )G
( )G

Ty T qr) (7" Uy

19: (LL)(RR)X

Q%

QY0
Qe
Qe
Qiew
Q2w
Q'
Q2w
Qs
Qe p
Qe

QY2
Qe
Qe
Qe
Qe
Qe
Qe
Qg
Qe
Qe
Qe
Qt(zz)d2 w
QW
Qe
Qe
Qs
Qe

fABC VALTAQT ( S’YVTBUt

)G
fABC QSWUTBW)@EV
)G
)G

=

,,‘

dABC

(q )

(@ Aqr)(
dABC( A )(ES'YVTBUt

(@ T g)(u sv”TBut GS,
(@77 g ) (@sy u) W,
( ,uTI ’r)

(@ T4

(u
qr) (s ue)W, Iu
qr) (s 7”TAut)WI
(G TAT g, (s ”TAut)WI
(@7 qr) (s ue) By
(@ ar)
(@ T4ar)
)

(Qp'YHT qr as'YVTAut)BuV

)

(u

(usy Ut)

(ugy”TAut)BW

(

Gy qr) (dey" TAdy) G

7" 0 ) (dsy TAdy) G
G T q, ) (dsy" d) G

4" T4q,) (dsy" dy) G

'y“TAqT) d, ’y”TBdt

Amswﬂm

ar)
ar)

( )Gy,

( )G,

(dsy"TPdy)GY,

(ds VTBdt) w

7" d)W,

Ty d) W1,

S’YVTAdt)WI
VTAdt)WI

(dsy"dy) By,

(ds”dy) B,

(ds V”TAdt)

(d

(qpv“r ar)
(@t

(d.
qr)(d
(@ T4 q,)(d
(" T4 q,) (ds

(Qp7 qr

(@' T4,

)
(@ qr)
)
(@ T"qr)

s'YVTAdt)

Table 13. The dimension-eight operators in the SMEFT of class-19 with field content (LL)(RR)X.
The subscripts p,r, s,t are weak-eigenstate indices.
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19: (LR)(RL)X + h.c. 19 : (LR)(LR)X + h.c.
Ql(ir)qu (o er)(ds T4 q1) Gy szl)udG (@ T4 ur)ejr(qhde) G
Ql(gc)qu (Her)(dso™ T4 q1;) Gy Qf)udG (@ ur)en(GETAd) G,
QledqW (Upo' er) ! (dsar) W, Qq 2udG (@TAu)eji(qE o dy) G,
Qiergw | (Ger)! (dso™q) W, Qionac | (@ur)en(@ U“VTAdt)GﬁV
Quesgn | G er)(dsgey) B Qe | @ TAu,)ejn(F o, d) G
Ql(sc)iqB (her)(dso™” 1) By Qgﬁ)udc: (@0 ur)ejn (@5 o TAd)G Y

le)udW ((jggﬂVur)(T G)Jk(qsdt)wjy
Qq 2udW (qzjnur)(T e)jk(qs O"IWdt)W

Qq 2udW <qg;aupuT)(TIe)jk((j?GPth)Wu{V

nyl)udB (@0 ur)esn(qEde) By
Qt(12)udB (@ur )€ (qE ot dy) By,
Q¢(13)udB (@ 0" ur)en(T50opnd) B
Qleun’ ([ZUﬂuer)ﬁjk(quAut)Gﬁy
Qe (Ger)en(@io T )G,
QY e | Borre)ein(@ho, TAu)Gar
Qg | G en)(r ) u(@bun) W,
Qivaw | @e)(T )@ u) W,
Qi | Bore,)(r1e) k(@ o pun) W
Qletu (7% e, )ein(qiur) By
Qletu (B er)en(qE o ur) By
Qletu (Borre)ejn(qhopu) By,

Table 14. The dimension-eight operators in the SMEFT of class-19 with field content (LR)(RL)X
or (LR)(LR)X. All of the operators have Hermitian conjugates. The subscripts p,r, s,t are weak-
eigenstate indices.

where F),, is the photon field strength, « is the fine structure constant, and M, is the mass
of the electron. The normalization is such that order one coefficients are generated when
the electron is integrated out with F < M.

— 30 —



19(B) : v*X + h.c.
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Q4 s €asn (3 Co u)(u] Cer) By,
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QP | cam (T CAN @)W,
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Ql(s?zc (TA)((;QEB)'yéGmnejk(qz)nacaﬂquﬁ)(q]:’ycl?)Gﬁu
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143B Eaﬁ'yemnejk(qz’bacouyqzﬂ)(q§701?)BHV

Table 15. The baryon number violating dimension-eight operators of class-19. All of the operators
have Hermitian conjugates. The subscripts p,r, s,t are weak-eigenstate indices. Operators below
the dashed line vanish when there is only one generation of fermions.

~ 31—



20 : ¢4HD + h.c.
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20 : *HD + h.
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Table 16. The dimension-eight operators in the SMEFT of class-20 whose field content superficially

includes either an electron-type or up-quark-type Yukawa interaction. All of the operators have

Hermitian conjugates. The subscripts p,r, s, t are weak-eigenstate indices. The operator below the
dashed line is redundant when there is only one generation of fermions.
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20(B) : v*HD + h.c.

0:¢y*HD + h.c.
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Table 17.
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The dimension-eight operators in the SMEFT of class-20 whose field content superficially
includes a down-quark-type Yukawa interaction or is baryon number violating. All of the operators
have Hermitian conjugates. The subscripts p, r, s,t are weak-eigenstate indices.

On the other hand, for a less restrictive energy range, ¥ < A, the SMEFT Wilson
coefficients from table 2 appearing in eq. (5.1) are

_OME o[l @y, Loy, 1o 3)
Al €167 _92 ( Ciya +c ) + 9% Cpa + 929% (Cw2B2 + CW2B2> )
_90M; 51 £ oL ()
Al 167 g%( +c )+g +1<CW2BQ+CW232> )
902 Lo, .0 O L /5 (6) (7)
A ].67T g%( 4+C )—}‘g% +1<Cw2B2+Cw2BQ +cw2B2>:| ) (52)

— 33 —




21: (LL)(LL)D?
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Table 18. Most of the dimension-eight operators in the SMEFT of class-21, which are further
divided into subclasses according to their chiral properties. See table 10 for the remaining class-21

operators.

Operators with + h.c. have Hermitian conjugates.

eigenstate indices.
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where we have dropped terms that are not enhanced by O(1672). If the physics beyond
the SM (BSM) that generates (5.2) is loop suppressed then these additional terms must be
included.

Axiomatic principles of quantum field theory such as unitarity, analyticity, and
crossing symmetry yield constraints on the parameters of a theory, see e.g. [36, 37]. For
example, refs. [38, 39] used a once-subtracted dispersion relation to derive sum rules for
the couplings of an extended Higgs boson sector. Dimension-8 SMEFT operators with
four derivatives are constrained by twice-subtracted dispersion relations, which lead to
positivity bounds on Wilson coefficients [20, 25, 40-42]. This follows from the contour
at infinity vanishing due to the Froissart bound [43], and the crossed-channel branch-cut
having the same sign the original-channel making the sum of non-vanishing integrals
positive-definite by the optical theorem.

The positivity bounds on the coefficients in (5.2) are [20]

Tt >0,

%L(?L > 0,
46,5, 6L, > (Cuor) (5.3)

Unsurprisingly QED satisfies these bounds, CKL(II))L =1 and CKL(?))L = 7/4 when E < M, and
the electron is integrated out at one-loop [44]. The coefficient ‘ng 7, 18 not generated in QED
as electromagnetic interactions conserve parity, which also satisfies (5.3). The bounds 5.3
can be combined with other positivity bounds coming from different initial scattering states
to further constrain the X4 SMEFT Wilson coefficients.

5.2 Electroweak precision data

Historically, the constraints on BSM physics from electroweak precision data were fre-
quently summarized in terms of the parameters S, T, and U [45-50]. The leading con-
tributions to S and T come from dimension-6 operators, whereas U first arises from a
dimension-8 operator [21] motivating its discussion here. Additionally this discussion will
help frame the results of section 5.3. However, for heavy BSM physics, it is important to
keep in mind that the SMEFT is the preferred framework to use to describe electroweak
precision data as it is completely general, unlike an STU analysis. For example, the
dimension-6 operators that contribute to S and 7' also contribute to Higgs and diboson
processes, see e.g. [51]. To put a modern twist on this analysis we use the geometric inter-
pretation of the SMEFT (geoSMEFT) [52-54] to formulate expressions for S, T', and U to
all orders in vy /A, with vr defined in eq. (5.5).

Higher-dimensional operators change the definitions of SM parameters in a variety of
ways. Field redefinitions are needed to relate these combinations of inputs to measured
quantities. To start, consider the potential for the Higgs field in the SMEFT through

dimension-8

’1)2 2 C C
VeMEFT = A (HTH _ 2) _ A%(HU%{)3 — Aif(HTH)‘% (5.4)
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The dimension-8 operators relevant for EWPD are given in tables 2 and 3. Due to the
presence of the higher-dimensional operators in eq. (5.4), the minimum of Higgs boson
potential is shifted [19, 53]

v2 02 v23cy v 963 + A)eys
HH="L="—(1+—= —_H H 5.5
(HH) =5 =3 ( T T s (5:5)

with vp ~ 246 GeV.

Now we turn to canonically normalizing the electroweak gauge, Higgs, and Goldstone
bosons. Care must be taken as the field redefinitions are matrix equations. The geometric
interpretation provides an elegant way to perform these transformations to all-orders in
vr/A. The Higgs-derivative operators through dimension-8 are

CHO

Litxan = (D HY(D"H) + S5 (HH)O(HH) + 52 (D, HY HI[H (D' H)

A2
(1) (2)

2
+ 011;\652 (HTH)2(DMHTDALH) + %(HTH)(HTTIH)(DMHTTID“H), (5.6)

_ L (o2t

we can write eq. (5.6) in the language of the geoSMEFT as

Defining

LHxin = %hzj(@qﬁzqﬁj, (5.8)

where ¢7 = (b1, P2, P3, ¢4) with (p7) = vrdzs. The weak eigenstates are related to the
mass eigenstates through a metric on Higgs field space, hry, and a unitary matrix not
considered here. We are working with the weak eigenstates and have not introduced the
mass eigenstates here as all we need is the metric hz 7 to define the T parameter. See ref. [53]
for expressions involving mass eigenstates. The gauge kinetic terms to all-orders in vy /A are

1 1

LEW, kin = —EWJVWIW = 4 BuwB"™ (5.9)
CHW CHB CHWB
+ =z (H )W, W+ =52 (HTH) By B + —5= (H ' H)W;, B
P 2 0 P
+ Z Ad+2n (CB2H4+2n (HTH) B/WBW + CW2H4+2n(HTH) WuuW m
n=0
+C$/;1/)BH4+2n (HTH)(HTTIH)WJVBMV + C$)2H4+2n (HTTIH)(HTTJH)W;{VWJMV>

In the geoSMEFT eq. (5.9) takes the form

1
LEW kin = —EQAB(H)WAWB7 (5.10)

where WA = (WI ,B) = (WY, W2 W3, B) and g4z is another metric on Higgs field space
This metric, g 45, again along with a unitary matrix not considered here, relates the weak
eigenstate gauge bosons to the mass eigenstates.
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The geometric definitions of S, T', and U are

L g (934) + (943),

167
aT = (hi1) — (h33) = (ha2) — (h33),
16in = (g11) — (933) = (g22) — (933) (5.11)

where & takes into account shift in the definition of the fine structure constant due to the
presence of higher-dimensional operators, see appendix A of [54] for an explicit expression.
Note this shift does not affect our analysis of light-by-light scattering; since all of those
effects start at dimension-8 we can freely trade a for a. Given (5.11) it straightforward to
work out the contributions to S, T, and U

2 pit2n

(1)
167TS A2 CHWB +ZW W BHA+2n>

2 4
vt Ur (2)
_2A2CHD_ 2A4CH6D27

> 4+n

aT

167r - Z 2nA4+2n W2H4+2m (5.12)
n=

where we give T to O(v}./A?) and S and U to all-orders in vr/A.

5.3 Scalar SU(2),, quartets

Although the dimension-6 operators are formally the leading terms in the EFT expansion,
there are various reasons why it may be necessary to consider dimension-8 effects. Here
we explore a scenario where the difference in experimental precision in different classes of
measurements causes dimension-8 effects to be important. The measurements are double
Higgs boson production for which only upper limits exists on the cross section exist [55, 56],
and EWPD, which as the name implies, is precisely measured. For example, one of the
more precisely measured observables in this class is the width of the Z boson, which has a
relative precision of 9 - 1074 [57].

The models under consideration add to the SM field content a new scalar field, ©, that
is an SU(2),, quartet with either y = 3/2 or 1/2. The Lagrangian for the y = 3/2 case is

Lo = D,O'D'® — M*0'0 + [\Of HIH*H™ + h.c]
— At (HUH)(070) = oo (HIH™) (0], 07F") + 0(6*). (5.13)

For the y = 1/2 case the term linear in © is instead [Al@}kaijﬁm +h.c.]. Note that ©
is completely symmetric in its SU(2),, indices. Assuming M > v we integrate out © and
match to the SMEFT. In both cases only one dimension-6 operator, (H TH )3, is generated
at tree level [22, 58, 59]

A]?

CH:M27

(5.14)
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while at one-loop the triple W operator, Qyw, is also generated [58, 60]. At this stage the
scalar quartets look like great candidates to enhance the double Higgs boson production
rate.

However things are not so simple. When electroweak symmetry is broken the term
linear in O in eq. (5.13) will force © to have a non-zero vacuum expectation value (vev). If
O gets a vev, vg, its quantum numbers dictate that it contributes to the T' parameter [22]

2
(¥
1+aTl = I (5.15)
vg —203[3(3 +1) — 3y?]

With this in mind we extend the matching to dimension-8 starting with the y = 3/2
case. We find

e = 2P E gty B gty o, ) (00
6|]\>1| (HTH)HTH’“(D H)(D"HY) (5.16)

with Ay = Aa1 + Aa2. The last term on the right-hand side of eq. (5.16) is not in our
operator basis. We use the Fierz identity for Pauli matrices, eq. (3.1), to convert that
operator into our basis, yielding for the y = 3/2 case

AalA1]? o 6] \1]2 e 3|A)?

Cps = — ML H6D2 — ME H6D2 — ML

(5.17)

The y = 1/2 case is slightly more complicated

. Ao M1 ]? 3|\
£ = 2B iyt SNE gt o,y 0y
2|\ :
+ |Ml| (H'H) HJTH’“(DMH,I)(D“HJ)

+H!H}(D,H")(D"H?) + H' H*(D, H])(D" H]) (5.18)

Integrating the last two terms by parts, applying the Higgs boson EOM to fields with two
derivatives acting on them, and using eq. (3.1) we find

2202\ A2 M2 @) A1]?
CH == (1 - M2 > W, CH ()\ +4)\) M4 5 CH6D2 - — M4
A2 A2 A2
Chos = Y22 T Courrs = — Yy o S Coars = — Y] 0 T (5.19)

We included the dimension-6 coefficient C'i here as it receives another contribution from
mass term in the Higgs EOM, which was used to reduce a dimension-8 operator into
operators in our basis. This completes the matching of the scalar quartet models to the
SMEFT at dimension-8.

Using (5.12) we see that Ty_3/5 = —3Ty—; /2 = —%]/\1]2(%)4. Our result for the con-
tributions of these models to the T' parameter agrees with what was found in ref. [22]. The
implication of our matching results is that these model cannot in fact provide a large en-
hancement to double Higgs boson production. This was unclear, from an EFT perspective
at least, until the matching was done at dimension-8.
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6 Comments on renormalization group evolution

By construction measurements in an effective field theory take place at energies below the
cutoff scale of the EFT. As such, to link measurements to parameters of possible physics in
the UV, it is crucial to understand how the coefficients EFT operators evolve from one scale
to another. This behavior is described by the renormalization group evolution equations
5 dC;
o

where 7 is the anomalous dimension matrix and p is the renormalization scale.

The renormalization group evolution of the SMEFT operators at one-loop is known at
dimension-5 [61], dimension-6 [5, 6, 26, 62], and dimension-7 [17, 63]. The loop diagrams
in the preceding computations were built from one dimension-d SMEFT contact ampli-
tude and one tree level SM amplitude. For the dimension-6 RGE there are also one-loop
amplitudes resulting from two insertions of dimension-5 operators, and ref. [64] computed
these contributions to the RGE equations. Typically, the two dimension-5 operator con-
tribution to the dimension-6 RGE will be suppressed with respect to the one dimension-6
contribution because all odd mass dimension operators in the SMEFT violate at least one
of baryon and lepton number [65, 66].

It is well beyond the scope of this work to compute the RGE equations for the
dimension-8 operators. Instead we content ourselves to make a few comments about the
structure of the associated anomalous dimension. The renormalization of a dimension-8
operator can happen due to one insertion of a dimension-8 operator in a loop amplitude,
two insertions of dimension-6 operators, or one insertion of dimension-5 operator and one
insertion of a dimension-7 operator. The lattermost type of amplitude will typically be sup-
pressed as was the case with the two dimension-5 operator contribution to the dimension-
6 RGE. However, the two dimension-6 operator contribution to the dimension-8 RGE
will generally be comparable in magnitude to the one dimension-8 operator contribution.
Dimension-8 is the lowest mass dimension where there are two co-leading contributions to
the RGE.

Many of the entries in the anomalous dimension matrix vanish [67] including beyond
one-loop [68]. One way to understand these zeroes in the anomalous dimension matrix is
through non-renormalization theorem of ref. [67], which applies to loop amplitudes with
one dimension-d SMEFT insertion and one SM tree level amplitude. To start define holo-
morphic and anti-holomorphic weights as w = n — h and w = n + h, respectively, where
n is the number of particles created by an operator and h is the sum of the helicities of
the particles created. Then the theorem can be stated as operators belonging to subclass
J can renormalize operators of another subclass i if w; > w; and w; > w;. The theorem
can only be violated when the SM tree amplitude contains two Yukawa interactions. The
results of the non-renormalization theorem applied to dimension-8 operators are visualized
in table. 19. Visually the theorem transitions down or to the left in the weight lattice.

A contact amplitude resulting from an insertion of dimension-d SMEFT operators
obeys the relation

2d > wy, + wy, > d. (6.2)
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Furthermore, restricting to particles of spin-1 or less we also have
d> \wk - @k’ (6.3)

The relations (6.2) and (6.3) do not, in general, respect the weight bounds of SM tree level
amplitudes, wy > 4 and wy > 4 (which apply to non-exceptional amplitudes). Therefore
the theorem needs to be modified to determine vanishing entries among the two dimension-6
contributions to the dimension-8 anomalous dimension matrix as the theorem, as currently
formulated, relies on the SM tree level weight bounds. It would be interesting to examine
in detail the structure of the anomalous dimension matrix resulting from two insertion of
dimension-6 operators.

Inverting the logic of the non-renormalization theorem, operators of the same type will
generically mix under RGE evolution. An interesting restriction on how general the mixing
comes from Lagrangian terms with multiple flavor structures. Examples of such terms
include Qjapr2, Qgi}?}g, Qa2 and Qgap2. The different flavor structures in these terms
can only be mixed by Yukawa contributions to the RGE, i.e. gauge and A\ contributions
do not mix different flavor structures of a given term. See ref. [6] for further discussion on
this point. On the other hand, at the dimension-6, there are plenty of example of mixing
amongst different terms of the same type. For example, the gauge contribution to the
dimension-6 RGE mixes the bosonic operators Cy and Cyp [5]. Along these lines we
expect the mixing of Q((;)H‘L D
in section 3, these terms contain orthogonal linear combinations of operators. A similar

to be closely related to that of Q((I:;’)H4 p because, as shown
.. (2,3)
relation is expected for Q374 -

7 Conclusions

In this work we presented a complete basis of dimension-8 operators in the Standard Model
Effective Field Theory. There are 1031 Lagrangian terms, 38 of which vanish in the absence
of flavor structure. Multiple checks have been passed including that no operator in the basis
can be removed completely using the equations of motion. We also presented a counting
based argument that 1031 is the minimum number of Lagrangian terms needed to represent
all of the dimension-8 SMEFT operators.

As a sample of what can be done with the a complete basis of dimension-8 operators,
we briefly considered the phenomenology of light-by-light scattering, electroweak precision
data, and commented on the structure of the dimension-8 RGE. Additionally, we matched
theories of SU(2),, quartets onto the SMEFT up to dimension-8 allowing to us showcase the
interplay between dimension-6 effects and dimension-8 effects, the latter of which cannot
be neglected in those models.

Note added. Ref. [69] is set to appear on the arXiv simultaneously with this work.
It also presents a complete basis of dimension-8 SMEFT operators. The basis of ref. [69]
contains more Lagrangian terms than our basis as it limits its terms to have only one flavor
representation, whereas we follow the convention of ref. [2], combining flavor representations
together when unambiguously possible to obtain the minimum number of terms.
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8| X X3H?, X?H, Y2 H HS

X}y*H, Xpp2e?,
- XL1/}4 1/)4H2
6 X;H*D?, X H'D?, H°D?, P2 H®
X;yD, X%Wff ; Yt D,
Xpp*HD?, XpyypH?D, | ¢*¢*H?
¢4D2 ¢2H3D2
X492,
Y3SYHD
4 X2X2, XrH*D?, X,%Ig‘l,
XLXRH2D27 X%{wQHu XR¢2H37
H'D*, XryYyH?D, | ¢*H?

X XpyYD, | ¥2H3D?,
XrY?HD?, Xrp2?,
X2 HD?, Y3 HD

YpHD?,
wZQZ)QDZ
2 X%H?D?, X3H?,
X{yuD, X{O2H,
XpY?HD?, Xpyt
1;4D2
0 Xp
0 2 4 6 8
w

Table 19. Weight lattice for dimension-8 operators in the SMEFT. By the non-renormalization
theorem of ref. [67] a subclass of operators, j, can renormalize another subclass, i, at one-loop if
w; > w; and w; > w;. Visually this prevents transitions down or to the left.
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A Dimension-6 and -7 operators

For the sake of convenience we reproduce the tables of dimension-6 and -7 operators here.
Table 20 contains the dimension-7 operators, and is adapted from ref. [17]. The classifi-
cation scheme we use for the dimension-7 comes from labelling the classes in table 2 of
ref. [10] in descending order. Table 21 contains the dimension-6 operators, and is adapted
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1:92XH? + h.c.
Qewnz | emn(r Qe (' Cotv i H" HEW,,
Qizpm? Gmnﬁjk(l;ncgwlf;)HnHka

3(B) : v*H + h.c.

Querr | €jxemn(Epld)(I5CIM) H™
Quewart | €k(dpl])(usCey) H*
Quanarr | Esremn(dpld) (ghCl) H
Qi | Eimern(dpld) (ghCl) HP
Qregurr | €1(T ) (Lsm ClY ) H

4: 1/J2H3D + h.c.
Qierrsp | €mn€je(I'Cyte,)H"HIiD, H*

6: 1/;2H2D2 + h.c.
Qo ps | €jremn(LCDMEYVH™ (D, H™)
Qi hope | Cjmern(ECDHEYH™ (D, H")

2 : 2 H* + h.c.
Ql2H4 emnejk(l;nClﬁ)HnHk(HTH)
3(B) : v*H + h.c.
Quarr Eaﬁv(Zpd?)(UECdZ)ﬁ
Quzart | o (I3 d7) (@l Cal") Hy
Quasr €apr(lpd;)(dfCd) ) H
Qeqaz Eaﬁ’y(épqga)(ddez)H;
5(B) : 9¥*D + h.c.
Quzuap | €k(dpy*ur)(CiD,IY)
5(B) : v*D + h.c.
Qigazp | €apy(lpy"q)(d2CiD,d})
Qeasp Eaﬁv(ép’VMd?)(dECiDudg)

Table 20. The dimension-seven operators in the SMEFT. The operators are divided into six classes
according to their field content. The classes-3 and -5 are further divided into subclasses according

to their baryon number. All of the operators have Hermitian conjugates. The subscripts p,r, s,t
are weak-eigenstate indices. Operators below the dashed lines in classes-1 and -3 vanish when there
is only one generation of fermions.

from ref. [5]. In contrast with [5] we also include in table 21 the baryon number violating

operators as listed in ref. [6].
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1:Xx3 2: HS 3: H*D? 5:?H® 4 h.c.
Qc | FAPCGRGIGE || Qu | (H'H)® || Quo (H'H)O(H'H) Qe | (H'H)(lpe, H)
Qa | 1Peaivalragr Qup | (H'D'H)" (H'DLH) || Qua | (H'H)(GyuH)
Qw | MEWwlew Qan | (H'H)(@pd, H)
Qi | ! Wirw Wk
4: X2H? 6:9¥2XH + h.c. 7:9*H?D
Qua | H'HGAGA™ Qew | (po'e)r ! HWL, W (Hu‘ﬁ H) ("1,
Que | H'HGLG™ | | Qs | (l,0"e,)HBu, i (=Y DL H) )
Quw | HIHW] W™ Quc | (Go* T ur)H Gy, Qe (HUD H)(ep"er)
Quw | HHWLW™ || Quw | (G u )t HW], Q%) (H'iD  H)( pqur)
Qus | H'HBu.B™ Qus | (@o" ur)H By, Q) (H' DLH) (@ v"a,)
Qup | H'HB.B"™ Quc | (o' TAd)H G, Ot (HH‘BHH)( Wy )
Quws | HP HWLE | | Quw | (@™ d)r' HW], Qua (HYD  H)(dpyd,)
Quivg | H T HW!, B Qan (G@po"d,)H By, Quua + hoc. | i(H D H)(upy"d,)
8: (LL)(LL) 8 : (RR)(RR) 8: (LL)(RR)
Qu (Ip7" 1) (Lsyule) Qee (epy*er)(Esyuet) Qe (Ip7"1) (Esyuer)
Wl @) (@) Quu | (@py"ur) (Tsyputue) Quu (Lo 1) (T i)
9| @)@t ) || Qua (dpy"dr) (dsypde) Qua (T 1) (dsyude)
QY | ') @uar) Qeu (p7"er) (@, w) Qqe (@7"qr) (Esyuer)
QD | Uy 1) (Geyur ) Qed (7" er) (dsypudy) W @ e (e
QU | (" ur)(deyudy) S| @' T ) (@ T )
QW) | (@ Tuy) (deyu T dy) Q) (@7"qr) (dsyde)
Q%) | (@7 T4¢:)(deyu T dr)
8: (LR)(RL) + h.c. 8:(LR)(LR) + h.c. 8 : (B) + h.c.
Qedg | (Ber)(dsars) | | Qi (qz;unejk((zﬁdt) Quauat capein(d2Cul) (¢ CIF)
QU | @T u)er(@T d) | | Quue | €asresn(ah®Cal?)(ulCe)
Qlen, (Bher)ein(@hue) Quaat | €apyemnesn(gpCai®) (¢ CIY)
QP | Bowe)ein(@ o™ u) | | Qauue €apy (d Cul) (u] Cey)

Table 21. The dimension-six operators in the SMEFT. The operators are divided into eight classes
according to their field content. The class-8 ¢* four-fermion operators are further divided into
subclasses according to their chiral and baryonic properties. Operators with + h.c. have Hermitian
conjugates, as does the ¥2H?2D operator Q4. The subscripts p, r, s,t are weak-eigenstate indices.
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