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Abstract: We investigate the causality and the stability of the relativistic viscous non-

resistive magneto-hydrodynamics in the framework of the Israel-Stewart (IS) second-order

theory, and also within a modified IS theory which incorporates the effect of magnetic fields

in the relaxation equations of the viscous stress. We compute the dispersion relation by

perturbing the fluid variables around their equilibrium values. In the ideal magnetohydro-

dynamics limit, the linear dispersion relation yields the well-known propagating modes: the

Alfvén and the magneto-sonic modes. In the presence of bulk viscous pressure, the causal-

ity bound is found to be independent of the magnitude of the magnetic field. The same

bound also remains true, when we take the full non-linear form of the equation using the

method of characteristics. In the presence of shear viscous pressure, the causality bound

is independent of the magnitude of the magnetic field for the two magneto-sonic modes.

The causality bound for the shear-Alfvén modes, however, depends both on the magni-

tude and the direction of the propagation. For modified IS theory in the presence of shear

viscosity, new non-hydrodynamic modes emerge but the asymptotic causality condition is

the same as that of IS. In summary, although the magnetic field does influence the wave

propagation in the fluid, the study of the stability and asymptotic causality conditions in

the fluid rest frame shows that the fluid remains stable and causal given that they obey

certain asymptotic causality condition.
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1 Introduction

In relativistic heavy-ion collisions experiment, two fast moving charged nuclei collide

with each other and generate a deconfined state of matter known as Quark-Gluon-

Plasma (QGP). In non-central collisions an extremely strong magnetic field (∼ 1018-1019

Gauss) is also produced in the initial stages refs. [1–5] mostly due to the spectator protons.

The huge magnetic fields induce many novel quantum transport phenomena. One of the

most interesting and important phenomena is the Chiral Magnetic Effect (CME) refs. [6–8],

which means a charge current will be induced and be parallel to the magnetic fields in a

chiraly imbalanced system. Along with the CME, it was also theoretically predicted that

massless fermions with the same charge but different chirality will be separated, known

as chiral separation effect (CSE). The electric fields may also cause the chiral separation

effects or chiral Hall effects refs. [9–12]. There are many discussions on other high order non-

linear chiral transport phenomena refs. [13–15]. One theoretical framework for studying

these quantum transport phenomena is the chiral kinetic theory refs. [16–31] and numerical
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simualations based on this framework can be found in refs. [32–39]. Recently, the chiral

particle production is found to be connected to the famous Schwinger mechanism ref. [40],

and is proved through the world-line formalism ref. [41] and Wigner functions ref. [42].

There are also many theoretical studies of CME from the quantum field theory refs. [43–47]

and the chiral charge fluctuation refs. [48, 49]. The strong magnetic field might also induces

anisotropic transport of momentum which results in the anisotropic transport coefficients

refs. [50, 51]. In refs. [52, 53] relativistic Boltzmann equation was used to study the effect

of electromagnetic fields in heavy-ion collisions. For the recent developments, one can see

the reviews refs. [54–62] and references therein.

The charge separation in Au+Au collisions are claimed to be observed by the STAR

collaboration refs. [63–65]. However, it is still a challenge to extract the CME signals from

the huge backgrounds caused by the collective flows refs. [66–68]. Therefore, it requires the

systematic and quantitative studies of the evolution of the QGP coupled with the electro-

magnetic fields for the discovery of CME. It is widely accepted that the QGP produced

in high energy heavy-ion collisions behaves as almost ideal fluid (i.e., possess very small

shear and bulk viscosity). This conclusion was made primarily based on the success of

relativistic viscous hydrodynamics simulations in explaining a multitude of experimental

data with a very small specific shear viscosity (η/s) as an input refs. [69–76]. Most of these

theoretical studies use IS second-order causal viscous hydrodynamics formalism or some

variant of it. The fact that the QGP is composed of electrically charged quarks indicates

that it should have finite electrical conductivity which is corroborated by the lattice-QCD

calculations refs. [77–79] and perturbative QCD calculations refs. [80, 81]. The electri-

cal conductivity of the QGP and the hadronic phase was also calculated by various other

groups (mostly using the Boltzmann transport equation) see refs. [82–96]. It is then natural

to expect that the appropriate equation of motion of the high temperature QGP and low

temperature hadronic phase under large magnetic fields is given by the relativistic viscous

magneto-hydrodynamic framework. As mentioned earlier the IS second-order theory of

causal dissipative fluid dynamics, although successful, known to allow superluminal signal

propagation (and hence acausal) under certain circumstances refs. [97–100]. It is then im-

portant to know under what physical conditions the theory remains causal and stable in

presence of a magnetic field which is also important for the numerical magnetohydrody-

namics (MHD) studies of heavy-ion collisions.

Relativistic magnetohydrodynamics (RMHD) is a self-consistent macroscopic frame-

work which describe the evolution of any charged fluid in the presence of electromagnetic

fields refs. [101–107]. In ref. [4], we have computed the ratio of the magnetic field energy to

the fluid energy density in the transverse plane of Au+Au collisions at
√
sNN = 200 GeV

in the event-by-event simulations. Our results imply that the magnetic field energy is not

negligible. In ref. [101], we have derived the analytic solutions of a longitudinal Bjorken

boost invariant MHD with transverse electromagnetic fields in the ideal limit. We have

found that the transverse magnetic fields will decay as ∼ 1/τ with τ being the proper

time. Later, in ref. [102], we have studied the corrections from the magnetization effects

and extended the discussion to (2 + 1)-dimensional ideal MHD refs. [108, 109]. We have

also investigated the effects of large magnetic fields on (2 + 1)-dimensional reduced MHD
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at
√
sNN = 200 GeV ref. [110]. Very recently, we have derived the analytic solutions of

MHD in the presence of finite electric conductivity, CME and chiral anomaly ref. [106] and

extended the results to cases with the transverse and longitudinal electric conductivities

ref. [107]. For numerical simulations of ideal MHD, one can see refs. [104, 105].

As mentioned earlier in the ordinary relativistic hydrodynamics, the widely used frame-

work is the second order IS theory [111]. The pioneering studies on the instabilities of first

order hydrodynamics are shown in refs. [97, 112]. Later, the systematic studies for the

dissipative fluid dynamics have been done earlier with bulk viscous pressure [99], shear

viscous stress [98] and heat currents [113], also see refs. [100, 114–116]. There have been

several recent studies on casualty and stability of ideal MHD in refs. [117–119] and refer-

ence therein. The extension of MHD to the IS formalism through the help of AdS/CFT

has been recently been done in refs. [120, 121].

We aim to study the stability and causality of the IS theory for MHD, whose form is

derived by the complete moment expansion as done in refs. [122, 123]. First, we analyze the

propagating modes in ideal non-resistive MHD. Next, we discuss the causality and stability

of the relativistic MHD with dissipative effects. To analyse the causality and stability of

the relativistic viscous fluid, we linearise the relevant equations by using a small sinusoidal

perturbation around the local equilibrium and study the corresponding dispersion relations

in line with the studies in refs. [97–99, 112].

The manuscript is organized as follows: In section 2 we briefly discuss the energy-

momentum tensor of fluid for ideal MHD case and the modified IS theory. In section 3

we revisit the standard analysis of causality and stability of a system without magnetic

fields. Then, in section 4 we show the stability and causality of an ideal MHD and carry

out the analysis of characteristic velocities in section 5. In section 6 we consider the newly

developed IS theory for non-resistive MHD. Finally, we conclude our work in section 7.

Throughout the paper, we use the natural unit and the flat space-time metric gµν =

diag(+1,−1,−1,−1). The fluid velocity satisfies uµuµ = 1 and the projection operator

perpendicular to uµ is ∆µν ≡ gµν−uµuν . The operators D and ∇µ are defined as D ≡ uµ∂µ
and ∇µ ≡ ∆µν∂ν , respectively.

2 Causal relativistic fluid in presence of magnetic field

In this work we consider the causal relativistic second order theory for relativistic fluids

by Israel-Stewart (IS) and also a modified form of the IS theory in presence of a magnetic

field given in ref. [122], for later use we define it as NRMHD-IS theory (here NRMHD

corresponds to non resistive magneto-hydrodynamics). The total energy-momentum tensor

of the fluid can be written as

Tµν =
(
ε+ P + Π +B2

)
uµuν −

(
P + Π +

B2

2

)
gµν −BµBν + πµν , (2.1)

where ε, P are fluid energy density, pressure, uµ is the fluid four velocity and Π, πµν are

bulk viscous pressure and shear viscous tensor, respectively. The magnetic and electric
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four vectors are defined as

Bµ =
1

2
εµναβuνFαβ , Eµ = Fµνuν , (2.2)

where Fµν = (∂µAν − ∂νAµ) is the field strength tensor. The space-time evolution of the

fluid and magnetic fields are described by the energy-momentum conservation

∂µT
µν = 0, (2.3)

coupled with Maxwell’s equations

∂µF
µν = jν ,

εµναβ∂βFνα = 0. (2.4)

The non-resistance limit means the electric conductivity σe is infinite. In this limit, in

order to keep the charge current jµ = σeE
µ be finite, the Eµ → 0. Then, the relevant

Maxwell’s equations which govern the evolution of magnetic fields in the fluid is

∂ν(Bµuν −Bνuµ) = 0. (2.5)

For simplicity, we will also neglect the magnetisation of the QGP, which implies an isotropic

pressure and no change in the Equation of Sate (EoS) of the fluid due to magnetic field (e.g.

see ref. [102]).

In the original IS theory the viscous stresses Π, πµν are considered as an independent

dynamical variables given by the following equations (e.g. see refs. [124–126])

Π = ΠNS − τΠΠ̇

+ τΠqq · u̇− `Πq∂ · q − ζδ̂0Πθ

+ λΠqq · ∇α+ λΠππ
µνσµν , (2.6)

πµν = πµνNS − τππ̇
<µν>

+ 2τπqq
<µu̇ν> + 2`πq∇<µqν> + 2τππ

<µ
λ ων>λ − 2ηδ̂2π

µνθ

− 2τππ
<µ
λ σν>λ − 2λπqq

<µ∇ν>α+ 2λπΠΠσµν , (2.7)

where ζ and η are bulk and shear viscosity, respectively. The coefficients τΠ and τπ are the

relaxation times for the bulk and shear viscosity, respectively and ωµν ≡ 1
2∆µα∆νβ(∂αuβ−

∂βuα) is the vorticity tensor. The subscript NS means the Navier-Stokes values and can

be written as

ΠNS = −ζθ = −ζ∂µuµ,
πµνNS = 2ησµν , (2.8)

where

σµν = ∇<µuν> =
1

2
(∇µuν +∇νuµ)− 1

3
∆µν∂αu

α. (2.9)

Note that all of these coefficients are functions of baryon chemical potential (µ) and tem-

perature (T ). Equation (2.7) can be derived from the kinetic theory via complete moment

expansion, one can see refs. [127–129] for more details.
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For further simplification, we also ignore the coupling of viscosity with other dissipative

forces and concentrate on the following terms

Π = ΠNS − τΠΠ̇, (2.10)

πµν = πµνNS − τππ̇
<µν>. (2.11)

We note that in principle the magnetic field may cause viscous tensor to be anisotropic

as shown in ref. [130] but in this work we consider zero magnetisation and hence use

eqs. (2.10), (2.11) for simplicity.

3 Dispersion relation in the absence of magnetic field

As is known, IS theory is a consistent fluid dynamical prescription which preserves causality

provides that the relaxation time associated with the dissipative quantities (such as shear

and bulk viscous stresses) are not too small refs. [97–100, 112–114]. Here we aim to study

the stability and causality of a relativistic viscous fluid (governed by the IS equations) in an

external magnetic field by linearising the governing equations under a small perturbation.

Before discussing the causality and stability of a relativistic viscous fluid in a magnetic

field, for the sake of completeness, let us summaries here the findings without the magnetic

field. We note that the following results are not new and most of them can be found in

refs. [98, 99, 114].

3.1 Dispersion relation for bulk viscosity

We consider a perturbation around the static quantities X0

X = X0 + δX̃, δX̃ = δXei(ωt−k·r), (3.1)

where we choose five independent variables X = (ε, ux, uy, uz,Π). Here, we only consider

the system in the local rest frame, i.e. uµ0 = (1,0). Then, we linearise eq. (2.3), (2.10)

in vanishing magnetic fields and shear viscous tensor limit and obtain a cubic polynomial

equation of the form given in eq. (A.2) with Xi’s are

X0 =
i

τΠ
αk2, X1 = −

(
α+

1

b1

)
k2, X2 = − i

τΠ
, (3.2)

and the other two roots being zero. The solutions of this cubic polynomial are obtained

from eq. (A.3). Here, we introduce a constant α = c2
s, where cs is speed of sound.

We adopt the following parametrisation of the bulk viscosity coefficient and the relax-

ation time refs. [99, 114]:

ζ = a1s, (3.3)

τΠ =
ζ

ε+ P
b1 =

a1b1
T

, (3.4)

where s and T are the entropy density and the temperature, respectively. The parameters

a1 and b1 characterize the magnitudes of the viscosity and the relaxation time, respectively.
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In the small wave-number limit, the dispersion relation is

ω =

{
i
τΠ
,

±k
√
α.

(3.5)

Whereas the asymptotic forms of the dispersion relation in this case for large k are

ω =

 i αb1
τΠ(1+αb1) ,

±k
√
α+ 1

b1
+ i 1

2τΠ(1+αb1) .
(3.6)

Note that one of the roots is a pure imaginary which is also known as the non-hydrodynamic

mode because it is independent of k in the k → 0 limit. From eq. (3.6) it is clear that the

asymptotic group velocity is vL =
√
α+ 1

b1
. For the causal and stable propagation, the

asymptotic group velocity must be subluminal i.e; vL ≤ 1 which imply 1
b1
≤ 1 − α. For

more details see ref. [99].

3.2 Dispersion relation for shear viscosity

We use the following parametrization taken from ref. [98] for the shear viscous coefficient

and the corresponding relaxation time:

η = as, (3.7)

τπ =
η

ε+ P
b =

ab

T
. (3.8)

Again we linearise eqs. (2.3), (2.11) (the magnetic field and the bulk viscous pressure are

taken to be zero) and obtain a set of equations with nine independent variables. Two of the

roots are non-hydrodynamic with corresponding dispersion relation is ω = i/τπ. Another

four roots are

ω =
1

2τπ

(
i±
√

4ητπ
ε0 + P0

k2 − 1

)
, (3.9)

where each roots are double degenerate, they are known as the shear modes. The remaining

three modes are obtained from a cubic polynomial of the form given in eq. (A.2) with

Xi’s are

X0 =
i

τπ
αk2, X1 = −

(
α+

4

3b

)
k2, X2 = − i

τπ
. (3.10)

These modes called sound modes as given in ref. [98]. In the small k limit, the dispersion

relation for the sound modes are

ω =

{
i
τπ
,

±k
√
α.

(3.11)

And in the large k limit, the dispersion relations are

ω =

 i 3αb
τπ(4+3αb) ,

±k
√
α+ 4

3b + i 2
τπ(4+3αb) .

(3.12)
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The dispersion relations for the shear modes are given in eq. (3.9) and the corresponding

asymptotic group velocity is vL = 1√
b
. So, for the causal and stable propagation of shear

modes the condition 1
b ≤ 1, must hold. On the other hand, for sound modes, the dispersion

relations in the large k limit given in eq. (3.12) and the corresponding asymptotic group

velocity is vL =
√
α+ 4

3b . So, the causality condition for sound modes are 1
b ≤

3
4 (1− α).

For more details see ref. [98].

4 Dispersion relation in the presence of magnetic field

We extend our studies to explore the cases in a non-vanishing magnetic field. In this

section, we will investigate the dispersion relation and the speed of sound in a viscous fluid

in the presence of a homogeneous magnetic field. We will derive the physical conditions

of causality and stability. To achieve this goal, we carry out a systematic study for the

following cases, (i) non-resistive ideal MHD, (ii) viscous MHD with bulk viscosity only, (iii)

with shear viscosity only, (iv) with both bulk and shear viscosity.

4.1 Ideal MHD

For an ideal non-resistive fluid in magnetic field the energy-momentum tensor eq. (2.1)

takes the following form

Tµν =
(
ε+ P +B2

)
uµuν −

(
P +

B2

2

)
gµν −B2bµbν . (4.1)

Here, we define

bµ ≡ Bµ

B
, (4.2)

which is normalized to bµbµ = −1 and orthogonal to uµ i.e, bµuµ = 0.

Again we consider the similar perturbation as eq. (3.1) around the equilibrium config-

uration in the local rest frame (uµ0 = (1,0)). Ignoring the second and higher-order terms

for the perturbations in ε, P, uµ and Bµ, the perturbed energy-momentum tensor can be

expressed as

δT̃µν =
(
ε0 + P0 +B2

0

)
(uµ0δũ

ν + δũµuν0) +
(
δε̃+ δP̃ + 2B0δB̃

)
uµ0u

ν
0

−
(
δP̃ +B0δB̃

)
gµν −B2

0

(
bµ0δb̃

ν + δb̃µbν0

)
− 2B0δB̃b

µ
0b
ν
0 . (4.3)

Next, using the above δT̃µν in the energy-momentum conservation equations and noting

that ∂µδT̃
µν = 0 we get the following four equations

iωδε̃− ikxhδũx − ikyhδũy − ikzhδũz + ikzB
2
0δb̃

t + iωB0δB̃ = 0, (4.4)

−ikxαδε̃+ iωhδũx + ikzB
2
0δb̃

x − ikxB0δB̃ = 0, (4.5)

−ikyαδε̃+ iωhδũy + ikzB
2
0δb̃

y − ikyB0δB̃ = 0, (4.6)

−ikzαδε̃+ iωhδũz − iωB2
0δb̃

t + ikxB
2
0δb̃

x + ikyB
2
0δb̃

y + ikzB0δB̃ = 0. (4.7)
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Here, we define h = ε0 + P0 + B2
0 , and use δP̃ = αδε̃. The relevant Maxwell’s equations

which govern the evolution of magnetic fields in the fluid is εµναβ∂βFνα = 0, which can

also be written in the following form

∂ν(Bµuν −Bνuµ) = 0. (4.8)

Linearizing the above Maxwell’s equations lead to the following set of equations

ikxB0δb̃
x + ikyB0δb̃

y + ikzδB̃ = 0, (4.9)

ikzB0δũ
x + iωB0δb̃

x = 0, (4.10)

ikzB0δũ
y + iωB0δb̃

y = 0, (4.11)

−ikxB0δũ
x − ikyB0δũ

y + iωδB̃ = 0. (4.12)

The equations of motion are the energy-momentum conservation equations [eqs. (4.4)–

(4.7)] and the Maxwell’s equations [eq. (4.9)–(4.12)]. However, we notice that eq. (4.9)

does not include a time-derivative and it is a constraint equation for δB̃, δb̃x and δb̃y. This

constraint is consistently propagated to the remaining system of equations of motion. After

replacing δB̃ by δb̃x and δb̃y, these equations become

AδX̃T = 0, (4.13)

where

δX̃ =
(
δε̃, δũx, δũy, δũz, δb̃x, δb̃y

)
, (4.14)

and A is a 6× 6 matrix of the following form

A =



iω −ikxh −ikyh −ikz (ε0 + P0) −ikxkz ωB
2
0 −ikykzωB

2
0

−iαkx iωh 0 0 ikzB
2
0

(
k2
x+k2

z
k2
z

)
i
kxky
kz

B2
0

−iαky 0 iωh 0 i
kxky
kz

B2
0 ikzB

2
0

(
k2
y+k2

z

k2
z

)
−iαkz 0 0 iω (ε0 + P0) 0 0

0 ikzB0 0 0 iωB0 0

0 0 ikzB0 0 0 iωB0


. (4.15)

In deriving the above equations, we have also used the following condition δũµb
µ+uµδb̃

µ =

0, for changing the variable from δb̃t to δũz.

Without loss of generality, we consider the magnetic field bµ along the z-axis and kµ

lies in the x-z plane and making an angle θ with the magnetic field, i.e.,

bµ0 = (0, 0, 0, 1),

kµ = (ω, k sin θ, 0, k cos θ). (4.16)

The dispersion relations are obtained by solving

det(A) = 0, (4.17)
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which gives us six hydrodynamic modes. Two of these modes are the called Alfvén modes

whose dispersion relation are given as

ω = ±kvA cos θ, v2
A =

B2
0

h
, (4.18)

where vA is the speed of Alfvén wave. The fluid displacement is perpendicular to the

background magnetic field in this case and the Alfvén modes can be thought of as the

usual vibrational modes that travel down a stretched string.

The rest four modes correspond to the magneto-sonic modes with the following dis-

persion relations

ω = ±vMk, (4.19)

where vM is the speed of the magneto-sonic waves

v2
M =

1

2

[
v2
A + α

(
1− v2

A sin2 θ
)
±
√{

v2
A + α

(
1− v2

A sin2 θ
)}2 − 4αv2

A cos2 θ

]
. (4.20)

The ± sign before the square-root term is for the “fast” and the “slow” magneto-sonic

waves, respectively. For θ = 0 we have two cases (i) when vA >
√
α i.e, the velocity of

Alfvén wave is faster than the sound wave, then the fast branch turns to be Alfvén type

and the slow branch becomes sound type (ii) when vA <
√
α, then the fast and the slow

branch becomes sound and Alfvén type, respectively. Whereas for θ = π
2 , the velocity

of the slow magneto-sonic mode becomes zero and the velocity of the fast magneto-sonic

wave is

v2
f = v2

A + α
(
1− v2

A

)
. (4.21)

More discussions can be found in refs. [118, 119].

4.2 MHD with bulk viscosity

Next, we consider QGP with finite bulk viscosity and a non-zero magnetic field. Usually,

the bulk viscosity is proportional to the interaction measure (ε−3P )/T 4 of the system and

hence supposed to be zero for a conformal fluid. Lattice calculation as in refs. [131, 132]

shows that the interaction measure has a peak around the QGP to hadronic phase cross-

over temperature Tco. For the sake of simplicity, here we take ζ/s = constant in the

following calculation. The energy-momentum tensor in this case takes the following form

Tµν =
(
ε+ P + Π +B2

)
uµuν −

(
P + Π +

B2

2

)
gµν −B2bµbν . (4.22)

As before, we can decompose the energy-momentum tensor into two parts: an equilibrium

and a perturbation around the equilibrium i.e.,

Tµν = Tµν0 + δT̃µν . (4.23)

Here, the perturbed energy-momentum tensor takes the following form

δT̃µν =
(
ε0 + P0 +B2

0

)
(uµ0δũ

ν + δũµuν0) +
(
δε̃+ δP̃ + δΠ̃ + 2B0δB̃

)
uµ0u

ν
0

−
(
δP̃ + δΠ̃ +B0δB̃

)
gµν −B2

0

(
bµ0δb̃

ν + δb̃µbν0

)
− 2B0δB̃b

µ
0b
ν
0 . (4.24)
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We choose the independent variables as

δX̃ =
(
δε̃, δũx, δũy, δũz, δb̃x, δb̃y, δΠ̃

)
. (4.25)

These conservation equations can be cast into the form AδX̃T = 0 and setting detA = 0,

we get

ω2 − v2
Ak

2 cos2 θ = 0, (4.26)

ω5 + X4ω
4 + X3ω

3 + X2ω
2 + X1ω + X0 = 0, (4.27)

where

X0 = − i

τΠ
αv2

Ak
4 cos2 θ, X1 =

(
α+

1

b1

)
v2
Ak

4 cos2 θ,

X2 =
i

τΠ
Yk2, X3 = −

(
Y +

1

b1

(
1− v2

A sin2 θ
))

k2,

X4 = − i

τΠ
, Y = v2

A + α
(
1− v2

A sin2 θ
)
. (4.28)

Here the term b1 of eq. (3.4), in the above equations can be recast into b1 ≡ hτΠ
ζ (1− v2

A).

The solution of eq. (4.26) gives the following dispersion relation

ω = ±vAk cos θ. (4.29)

These two solutions of eq. (4.29) correspond to the Alfvén modes where vA is the Alfvén

velocity. The rest five modes obtained from eq. (4.27) correspond to the magneto-sonic

modes. Generally, quintic equations cannot be solved algebraically. Fortunately, we find

solutions for some special cases discussed below.

For θ = 0, we find that two modes coincides with the Alfvén modes in eq. (4.29) and

the remaining three modes are obtained from a third-order polynomial of the form given

in eq. (A.2), with the coefficients X0, X1, X2 given as

X0 =
i

τΠ
αk2, X1 = −

(
α+

1

b1

)
k2, X2 = − i

τΠ
. (4.30)

The solutions of this cubic polynomial can be written as

ωl =
1

3

(
−ξ
−(l−1)∆0

C
− ξ(l−1)C −X2

)
(4.31)

where l = 1, 2, 3, ξ is the primitive cubic root of unity, i.e., ξ = −1+
√
−3

2 and the other

variables C,∆0 etc. are given in eq. (A.4).

For θ = π/2, the eq. (4.27) reduces to a third-order polynomial of the form eq. (A.2),

where Xi’s are given as

X0 =
i

τΠ
v2
fk

2, X1 = −
(
v2
f +

ζ

hτΠ

)
k2, X2 = − i

τΠ
, (4.32)

– 10 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
1

0 2 4 6 8 10
k/T

0.0

0.2

0.4

0.6

0.8

1.0
(

)/T

(a)
qB = 0m2

qB = 5m2

qB = 20m2

0 2 4 6 8 10
k/T

0.4

0.5

0.6

0.7

0.8

0.9

1.0

v g

(b)
qB = 0m2

qB = 5m2

qB = 20m2

Figure 1. (Color online) The imaginary parts of the dispersion relations obtain from eq. (4.27)

for θ = π
2 with different magnetic fields denoted by different colors. The blue, green and red

colors correspond to B0 = 0, 5m2
π and 20m2

π, respectively. In left panel the solid lines are for the

propagating modes (ω2,3) and the dashed lines are for the non-propagating mode (ω1). The other

parameters used are a1 = 0.1, α = 1/3, T = 200 MeV, τΠ=0.985 fm and kept fixed for all the curves.

where vf is the group velocity for the fast magneto-sonic waves defined in eq. (4.21) and

the other two roots are zero.

Note that all three roots in eq. (4.31) are complex because the coefficients of eq. (4.30)

are complex and hence the phase velocity of any perturbations may contains a damping

or growing and an oscillatory component. The left panel of figure 1 shows the imaginary

part of the normalised ω as a function of the k/T and the right panel shows the group

velocity as a function of k/T for different values of magnetic fields. Note that the imaginary

part of the non-propagating mode increases and imaginary part of the propagating modes

decreases when the magnetic field increases. But it is clear that =(ω) always lies in the

upper half of the complex plane for the parameters considered here.1 This implies that

any perturbation will always decay and the fluid is always stable. Also, for this parameter

set-up the group velocity vg ≤ 1, so the wave propagation is causal.

If we take the small k limit, eqs. (4.26) and (4.27) yield the following modes:

ω =


i
τΠ
,

±kvA cos θ,

±kvM .
(4.33)

For this case the group velocity is observed to be same as the velocity for the ideal MHD.

We analyse the causality of the system by following ref. [98] where it was shown that to

guarantee the causality requires that the asymptotic value of the group velocity should be

less than the speed of light. Alfvén mode in eq. (4.26) remains unaffected due to the bulk

viscosity and hence always remain causal. For the magneto-sonic waves in the large k limit,

1We have also checked the stability of the system by using Routh-Hurwitz stability criteria from the

roots of eq. (4.30). We found that these roots always corresponds to stable states even for a general set of

fluid parameters including the one used in the current work.
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Figure 2. (Color online) Contour plot showing various causal regions, obtained from eq. (4.36),

for fast (left panel) and slow (right panel) branches. The red contour is the critical line of causality,

denoting v2
L = 1. The region above the red line is causal for the fast magneto-sonic waves and

acausal below. The slow branch is causal throughout the parameter space. The magnitude of

the magnetic field has been fixed to qB = 10m2
π and the other parameters used are α = 1/3,

T = 200 MeV.

we take the following ansatz ω = vLk in eq. (4.27) and collect terms in the leading-order

of k, this yields

v4
L − xv2

L + y = 0, (4.34)

where

x = v2
A +

(
α+

1

b1

)(
1− v2

A sin2 θ
)
,

y =

(
α+

1

b1

)
v2
A cos2 θ. (4.35)

The velocities vL are

v2
L =

1

2

(
x±

√
x2 − 4y

)
. (4.36)

Here, we see that unlike the small k limit, at large k the group velocity is affected by the

transport coefficients. In order to have causal propagation, one demands v2
L ≤ 1, which

yields a causal parameter-set for the two branches, which correspond to the fast or slow

magneto-sonic modes

fast: (0 < y < 1) ∧ (2
√
y ≤ x < y + 1),

slow: [(0 < y < 1) ∧ (x ≥ 2
√
y)] ∨ [(y ≥ 1) ∧ (x > y + 1)] (4.37)

Contour plot of the various causal regions is shown in figure 2, where b1 is defined in

eq. (3.4). For the fast branch, we find that, although the asymptotic velocities depend on
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the magnitude of the magnetic field and the direction θ, the critical value, i.e., b1 = 1.5

(red solid line), is independent of them. The slow branch is similarly B and θ dependent

but moreover is causal throughout the parameter space.

4.3 MHD with shear viscosity

Many theoretical studies indicate that shear viscosity over entropy η/s has a minimum

near the crossover temperature Tco and rises as a function of temperature on both sides

of Tco in ref. [133]. Although such studies indicate η/s to be temperature dependent,

nevertheless that would require an additional parametrization of η/s which should come

from the underlying theory. For simplicity, we will assume in the foregoing section η/s is

a constant.

The energy-momentum tensor for a fluid with zero bulk and non-zero shear viscosity

in a magnetic field takes the following form

Tµν =
(
ε+ P +B2

)
uµuν −

(
P +

B2

2

)
gµν −B2bµbν + πµν . (4.38)

According to the IS second-order theories of relativistic dissipative fluid dynamics, the

space-time evolutions of the shear stress tensor are given by eq. (2.11). For a given per-

turbation in the fluid, the energy-momentum tensor and the shear stress tensor can be

decomposed as

Tµν = Tµν0 + δT̃µν , (4.39)

πµν = πµν0 + δπ̃µν . (4.40)

Where the perturbed energy-momentum tensor is

δT̃µν =
(
ε0 + P0 +B2

0

)
(uµ0δũ

ν + δũµuν0) +
(
δε̃+ δP̃ + 2B0δB̃

)
uµ0u

ν
0

−
(
δP̃ +B0δB̃

)
gµν −B2

0

(
bµ0δb̃

ν + δb̃µbν0

)
− 2B0δB̃b

µ
0b
ν
0 + δπ̃µν . (4.41)

As usual, to solve the set of equations eq. (2.11), the conservation of the perturbed energy-

momentum tensor [eq. (4.41)], and eqs. (4.9)–(4.12) for obtaining the dispersion relation

we write them in a matrix form

AδX̃T = 0, (4.42)

where δX̃ = (δε̃, δũx, δũy, δũz, δb̃x, δb̃y, δπ̃xx, δπ̃xy, δπ̃xz, δπ̃yy, δπ̃yz) and the matrix A given

in eq. (B.1). The det(A) = 0 gives

(1 + iωτπ)2 = 0, (4.43)

ω3 − i

τπ
ω2 −

(
v2
A cos2 θ +

η

hτπ

)
k2ω +

i

τπ
k2v2

A cos2 θ = 0, (4.44)

ω6 + X5ω
5 + X4ω

4 + X3ω
3 + X2ω

2 + X1ω + X0 = 0, (4.45)
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where

X5 = − 2i

τπ
,

X4 = − 1

τ2
π

−
[
Y +

1

3b

{
7− v2

A

(
3 + sin2 θ

)}]
k2,

X3 =
i

τπ

[
2Y +

1

3b

{
7− v2

A

(
3 + sin2 θ

)}]
k2,

X2 =
Y

τ2
π

k2 +

[
α

(
v2
A cos2 θ +

η

hτπ

)
+

1

3b

{
4η

hτπ
+ v2

A

(
3 + sin2 θ

)}]
k4,

X1 = − i

τπ

[
α

(
2v2
A cos2 θ +

η

hτπ

)
+
v2
A

3b

(
3 + cos2 θ

)]
k4,

X0 = − α
τ2
π

v2
Ak

4 cos2 θ, Y = v2
A + α

(
1− v2

A sin2 θ
)
. (4.46)

Note that the term b of eq. (3.8) in the above equations can be recast into b ≡ hτπ
η (1− v2

A).

From eq. (4.43) we get two non-propagating and stable modes as

ω =
i

τπ
. (4.47)

Equation (4.44) is a third-order polynomial equation and the analytic solution for this

type of equation is discussed in appendix A. Equation (4.45) is a sixth-order polynomial

equation which is impossible to solve analytically. We can still gain some insight for a few

special cases which are discussed below.

For θ = 0, eq. (4.44) still remains a third-order polynomial equation and the coefficients

of that polynomial can easily be obtained from eq. (4.44) as

X0 =
i

τπ
v2
Ak

2, X1 = −
(
v2
A +

η

hτπ

)
k2, X2 = − i

τπ
. (4.48)

On the other hand, eq. (4.45) can be factorized into two third-order polynomial equations.

The coefficients of one of such the third-order polynomial equation are

X0 =
iα

τπ
k2, X1 = −

(
α+

4

3b

)
k2, X2 = − i

τπ
, (4.49)

whereas the coefficients of the remaining other third-order polynomial equation from

eq. (4.45) are same as eq. (4.48)

The roots of these third order polynomial equations are discussed in appendix A with

the given Xis. We checked that the dispersion relations obtained from these equations with

the coefficients given in eq. (4.49) are same as the sound mode in ref. [98].

For θ = π/2, one root of eq. (4.44) vanish and other two roots are of the form

ω =
1

2τπ

(
i±
√

4ητπ
h

k2 − 1

)
. (4.50)

From eq. (4.45), one of the root vanish and other two roots are of the form

ω =
1

2τπ

(
i±
√

4ητπ
ε0 + P0

k2 − 1

)
. (4.51)

– 14 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
1

0 2 4 6 8 10
k/T

0.0

0.2

0.4

0.6

0.8

1.0
(

)/T

(a)
qB = 0m2

qB = 5m2

qB = 20m2

0 2 4 6 8 10
k/T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

v g

(b)

qB = 0m2

qB = 5m2

qB = 20m2

Figure 3. (Color online) The left panel shows the imaginary parts of the dispersion relations and the

right panel shows the group velocities obtained from a cubic polynomial with the coefficients given

in eq. (4.48) for θ = 0. The other parameters used are a = 0.1, α = 1/3, T = 200 MeV, τπ = 0.985 fm

and their values are kept fixed for all the curves. In the left panel, the solid lines are for =(ω2,3)

which are degenerate. The dash-dotted lines correspond to =(ω1).

The remaining three modes from eq. (4.45), are obtained from a cubic polynomial with

Xi’s given as:

X0 =
i

τπ
v2
fk

2, X1 = −
(
v2
f +

4η

3hτπ

)
k2, X2 = − i

τπ
. (4.52)

The corresponding roots can be calculated using the formula given in appendix A.

The left panel of figure 3 shows the dependence of the imaginary parts of ω as a

function of k/T and the right panel shows the group velocity as a function of k/T for

different values of magnetic field for θ = 0. Various lines corresponds to different magnetic

fields: qB = 0 (blue lines), qB = 5m2
π (green lines), qB = 20m2

π (red lines). Figure 4 shows

the same thing but for θ = π
2 (eq. (4.52)).

In the small k limit the dispersion relations that we get from eqs. (4.43)–(4.45) are

ω =


i
τπ
,

±kvA cos θ,

±kvM .
(4.53)

Note that the first root have a degeneracy five.

In the large k limit we use the ansatz ω = vLk and keep only the leading-order terms

in k, then the velocities vL are

v2
L =

{
v2
A cos2 θ + η

hτπ
,

1
2

[
x±

√
x2 − 4y

]
,

(4.54)

where

x = v2
A + α

(
1− v2

A sin2 θ
)

+
1

3b

{
7− v2

A

(
3 + sin2 θ

)}
,

y = α

(
v2
A cos2 θ +

η

hτπ

)
+

1

3b

{
v2
A

(
3 + cos2 θ

)
+

4η

hτπ

}
. (4.55)
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Figure 4. (Color online) The left panel shows the imaginary parts of ω and the right panel shows

the group velocities obtained from the cubic polynomial with the coefficient given in eq. (4.52) for

θ = π
2 . The other parameters used are a = 0.1, α = 1/3, T = 200 MeV, τπ = 0.985 fm and are kept

fixed for all the curves.In the left panel, the dash-dotted lines represent =(ω1) and the solid lines

are for =(ω2,3) which are also degenerate.

The asymptotic causality condition for the shear-Alfvén mode can readily be obtained as

shear-Alfvén: v2
A cos2 θ +

(ε+ P )

hb
≤ 1, (4.56)

where b is defined in eq. (3.8). We observe that in this case the wave velocity and the

causality conditions depend on both the magnitude of the magnetic field and direction of

propagation of the perturbation. To explore the inter-dependency we show various causal

regions as a function of b and θ as a contour plot in figure 5 (top left). We notice that

the critical value of b at θ = 0 is bc = 1 and this value is independent of magnitude

of the magnetic field. In the other extreme, i.e. for θ = π/2, the critical value is bc =

[1+B2/(ε+P )]−1, i.e., bc decreases with increasing magnetic field. In the limit of vanishing

magnetic field it has been found in ref. [98] that for causal propagation of the shear modes

b ≥ 1 should be satisfied. In the presence of magnetic field we found that, this constraint

can be relaxed to even smaller values of b, given that the waves move obliquely.

The causality constraint of the fast and slow waves in eq. (4.54) can be written in the

form of (4.37). The simplified expression for the magneto-sonic modes can be written as

fast: (0 < y < 1) ∧ (2
√
y ≤ x < y + 1),

slow: [(0 < y < 1) ∧ (x ≥ 2
√
y)] ∨ [(y ≥ 1) ∧ (x > y + 1)] . (4.57)

We show various causal regions as a function of b and θ as a contour plot in figure 5 (top

right and bottom). The critical value of b, i.e., bc = 2 (obtained from (4.54)) is independent

of the angle θ and the magnitude of magnetic field for the fast magneto-sonic mode. In

the absence of a magnetic field this value coincides with that obtained for the sound mode

in ref. [98]. Similarly, the slow magneto-sonic mode yields the critical value of bc = 1,
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Figure 5. (Color online) Contour plot showing various causal regions, obtained from eq. (4.54),

for Alfvén mode (top left) and the set of fast (top right) and slow modes (bottom) from eq. (4.54).

The red contour is the critical line of causality, denoting v2
L = 1. The region above the red line is

causal and below it corresponds to the acausal zone. The magnitude of the magnetic field has been

fixed to qB = 10m2
π and the other parameters used are α = 1/3, T = 200 MeV.
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independent of the angle θ and the magnitude of magnetic field B. It is still interesting to

see that although the critical values of the fast and slow modes are B and θ independent, the

asymptotic velocities are nevertheless dependent. Increasing the magnetic field, increases

the asymptotic group velocities but the causal region always remains causal no matter how

large the magnetic field becomes.

4.4 MHD with both bulk and shear viscosity

In this subsection, we investigate the stability and causality of a viscous fluid with finite

shear and the bulk viscosity in a magnetic field.

In heavy-ion collisions the initial magnetic field is very large and both shear and bulk

viscosities are non-zero for the temperature range achieved in these collisions, hence the

present case is most relevant to the actual heavy-ion collisions at top RHIC and LHC

energies. The energy-momentum tensor is

Tµν =
(
ε+ P + Π +B2

)
uµuν −

(
P + Π +

B2

2

)
gµν −B2bµbν + πµν . (4.58)

The small variation of the energy-momentum tensor due to the perturbed fields is

δT̃µν =
(
ε0 + P0 +B2

0

)
(uµ0δũ

ν + δũµuν0) +
(
δε̃+ δP̃ + δΠ̃ + 2B0δB̃

)
uµ0u

ν
0

−
(
δP̃ + δΠ̃ +B0δB̃

)
gµν −B2

0

(
bµ0δb̃

ν + δb̃µbν0

)
− 2B0δB̃b

µ
0b
ν
0 + δπ̃µν . (4.59)

Following the same procedure, as discussed in the previous two sections, we obtain the

dispersion relations for the following independent variables

δX̃ = (δε̃, δũx, δũy, δũz, δb̃x, δb̃y, δπ̃xx, δπ̃xy, δπ̃xz, δπ̃yy, δπ̃yz, δΠ̃)T . (4.60)

Following the usual procedure of linearisation we get a 12 × 12 dimensional square ma-

trix A. By setting detA = 0 we have the following equations which subsequently give the

dispersion relations

(1 + iωτπ)2 = 0, (4.61)

ω3 − i

τπ
ω2 −

(
v2
A cos2 θ +

η

hτπ

)
k2ω +

i

τπ
k2v2

A cos2 θ = 0, (4.62)

ω7 + X6ω
6 + X5ω

5 + X4ω
4 + X3ω

3 + X2ω
2 + X1ω + X0 = 0, (4.63)

where

X6 =−i
(

1

τΠ
+

2

τπ

)
,

X5 =− 1

τπ

(
2

τΠ
+

1

τπ

)
−
[
v2
A+

(
α+

1

b1

)(
1−v2

A sin2 θ
)
+

1

3b

{
7−v2

A

(
3+sin2 θ

)}]
k2,

X4 =
i

τ2
πτΠ

+i

[(
1

τΠ
+

2

τπ

)
Y +

2

b1τπ

(
1−v2

A sin2 θ
)
+

1

3b

(
1

τπ
+

1

τΠ

){
7−v2

A

(
3+sin2 θ

)}]
k2,

X3 =

[
1

b1τ2
π

(
1−v2

A sin2 θ
)
+

1

3bτπτΠ

{
7−v2

A

(
3+sin2 θ

)}
+

(
2

τΠτπ
+

1

τ2
π

)
Y

]
k2

+

[(
α+

1

b1

)(
v2
A cos2 θ+

η

hτπ

)
+

1

3b

{
(v2
A

(
3+cos2 θ

)
+

η

3hτπ

}]
k4,
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X2 =− i

τ2
πτΠ

Yk2−i

[
1

b1τπ

(
2v2
A cos2 θ+

η

hτπ

)
+

1

3bτΠ

{
v2
A

(
1

τΠ
+

1

τπ

)(
3+cos2 θ

)
+

4η

3hτπ

}

+α

{ (
1−v2

A

)
b

(
1

τΠ
+

1

τπ

)
+v2

A

(
1

τΠ
+

2

τπ

)}]
k4,

X1 =−
[
v2
A

b1τ2
π

cos2 θ+
v2
A

3bτπτΠ

(
3+cos2 θ

)
+

αη

hτπτΠ
+αv2

A

(
2

τπτΠ
+

1

τ2
π

)
cos2 θ

]
k2,

X0 =
αv2

A

τ2
πτΠ

k4 cos2 θ, Y= v2
A+α

(
1−v2

A sin2 θ
)
. (4.64)

First, we find that eq. (4.61) gives two non-propagating modes of frequency ω = i
τπ

.

Now, the eq. (4.62) is a third-order polynomial and can be solved analytically as discussed

previously whereas the eq. (4.63) is a seventh-order polynomial equation and can not be

solved analytically, therefore we lookout for the solution of these equations for some special

cases discussed below.

For θ = 0, we obtain two cubic and a single quartic equations. The Xi’s of the two

cubic polynomials are same as in eq. (4.48). The dispersion relations for these cases are

already discussed in the previous section, hence we will not repeat them here. The Xi’s

for the fourth-order polynomial equation are

X3 = −i
(

1

τπ
+

1

τΠ

)
, X2 = − 1

τπτΠ
−
(
α+

1

b1
+

4

3b

)
k2,

X1 = i

[
α

(
1

τπ
+

1

τΠ

)
+

1

b1τπ
+

4

3bτΠ

]
k2, X0 =

α

τπτΠ
k2, (4.65)

and the corresponding roots can be calculated using the formula given in appendix A.

For another case, we choose θ = π
2 , this time two of the roots turned out to be zero,

and another two roots are the same as eq. (4.51). As before, we call these four modes as

shear mode. The Xi’s for the fourth-order polynomial equation are

X0 =
1

τπτΠ
v2
fk

2,

X1 = i

[(
1

τπ
+

1

τΠ

)
v2
f +

1

hτπτΠ

(
ζ +

4

3
η

)]
k2,

X2 = − 1

τπτΠ
−
[
v2
f +

1

h

(
ζ

τΠ
+

4η

3τπ

)]
k2,

X3 = −i
(

1

τπ
+

1

τΠ

)
, (4.66)

and the corresponding roots can be calculated using the formula given in appendix A.

Note that the imaginary part of the propagating modes (obtained from eq. (4.66))

are degenerate and hence not shown separately in figure 6. The dash-dotted lines in the

left panel of figure 6 correspond to the non-propagating modes generated due to the bulk

viscosity, this is because in the small k limit they reduce to i
τΠ

, and in the same logic the

dotted line corresponds to the non-propagating mode due to the shear viscosity. In general,

we find that the =(ω) is always positive for our set-up. So, for this parameter set, the fluid
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Figure 6. (Color online) In the left panel =(ω)/T versus k/T and in the right panel group velocity

as a function of k/T are plotted for different magnetic fields for θ = π
2 . vg is obtained from a

quartic equation with the coefficients eq. (4.66). The solid lines in the left panel corresponds to

the propagating modes, the dashed lines and the dash-dotted lines correspond the non-propagating

modes. The other parameters used here are a = a1 = 0.1, T = 200 MeV, τΠ = 0.985 fm and τπ =

0.591 fm and kept constants for all the curves.

is always stable under small perturbation for non-zero bulk and shear viscosity. Also, we

note another interesting point, when the magnetic field is increased the imaginary part of

the propagating mode tends to zero i.e, the damping of the perturbation diminishes.

In the small k limit the dispersion relations from eqs. (4.61)–(4.63) become

ω =


i
τπ
,

i
τΠ
,

±kvA cos θ,

±kvM ,

(4.67)

here also the first root have degeneracy of five. Similarly, in the large k limit using the

ansatz ω = vLk, we obtain the asymptotic group velocities vL as:

v2
L =

{
v2
A cos2 θ + η

hτπ
,

1
2

[
x±

√
x2 − 4y

]
,

(4.68)

where

x =

[
v2
A +

(
α+

1

b1

)(
1− v2

A sin2 θ
)

+
1

3b

{
7− v2

A

(
3 + sin2 θ

)} ]
,

y =

[(
α+

1

b1

)
v2
A cos2 θ +

(
α+

1

b1
+

4

3b

)
η

hτπ
+
v2
A

3b

(
3 + cos2 θ

)]
. (4.69)

Now we are ready to explore the causality of a fluid in magnetic field. For this, we again

check whether the asymptotic group velocity has super or sub luminal speed. We found

that the theory as a whole is causal if the fluid satisfy the following asymptotic causality

conditions for magneto-sonic waves:

fast: (0 < y < 1) ∧ (2
√
y ≤ x < y + 1),

slow: [(0 < y < 1) ∧ (x ≥ 2
√
y)] ∨ [(y ≥ 1) ∧ (x > y + 1)] . (4.70)
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Figure 7. (Color online) Contour plot showing various causal regions, obtained from eq. (4.70),

for fast (left panel) and slow (right panel) branches. The red contour is the critical line of causality,

denoting v2
L = 1. The region above the red line is causal for the slow magneto-sonic waves and

acausal below similarly for the fast magneto-sonic wave right side of red line is causal region and

left side is acausal region. The magnitude of the magnetic field has been fixed to qB = 10m2
π and

the other parameters used are α = 1/3, T = 200 MeV.

From eq. (4.68) we find that a larger magnetic field gives a larger vL, but always remain

sub-luminal given b and b1 are larger than their corresponding critical values (discussed

earlier). It is also clear from eq. (4.68) the asymptotic group velocity for non-zero bulk and

shear viscosity is larger than the individual shear and bulk viscous cases.

In figure 7 we show the contour plot of various causal regions as a function of b and θ.

The critical line (red line) of the fast magneto-sonic mode (left panel) show that b and b1 are

inversely proportional. On the other hand, the causality condition for the slow magneto-

sonic waves is independent of b1. The critical value of b for the slow magneto-sonic mode

is bc = 1.

5 Characteristic velocities for bulk viscosity

The characteristic curves can be seen as the lines along which any information is trans-

ported in the fluid, for example small perturbations, discontinuities, defects or shocks etc

travel along one of these characteristic curves refs. [134–136]. Here we take the effect of

non-linearity in the propagation speed which is ignored in the linearisation procedure dis-

cussed earlier. Without the loss of generality we consider the (2 + 1)-dimensional case

with only bulk viscosity (shear viscosity can be added in the similar way) and write the

energy-momentum conservation equations, Maxwell’s equations and the IS equation in the

standard form for studying the characteristic velocities as

P βmn∂βQ
n +Rm = 0. (5.1)
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Here Qn = (ε, ux, uy, bx, B,Π) and Rm = (0, 0, 0, 0, 0,Π). We parametrize the fluid velocity

as uµ = (cosh θ, sinh θ cosφ, sinh θ sinφ, 0) and the bµ = (sinh θ, cosh θ cosφ, cosh θ sinφ, 0).

The matrix elements of P tmn, P
x
mn, P

y
mn are given in appendix B.

We find the characteristic velocities (vchx , v
ch
y ) by solving the following equations:

det
(
vchx P

t − P x
)

= 0, (5.2)

det
(
vchy P

t − P y
)

= 0. (5.3)

For simplicity, here we take fluid in the LRF i.e, uµ = (1, 0, 0, 0) and the magnetic filed

along the y-axis bµ = (0, 0, 1, 0). Then the characteristic velocities are

vchx = ±

√
B2 + α (ε+ P + Π)

(h+ Π)
+

ζ

τΠ (h+ Π)
, (5.4)

vchy =


± B√

(h+Π)
,

±
√
α+ ζ

τΠ(ε+P+Π) ,

(5.5)

where h = ε + P + B2 and the other roots are zero. The characteristic velocities obtain

in eqs. (5.4), (5.5) are same with the eq. (4.36) for θ = π
2 and θ = 0, respectively provide

Π = 0. So we conclude that the asymptotic group velocity obtained by linearizing the

MHD-IS equations is same as the characteristic velocities.

6 Results from the modified IS theory

In fact, the formulation of second order hydrodynamical theory in the presence of electro-

magnetic field is still an active area of research. So far all the results we discussed were

obtained for viscous fluid in a magnetic field within the frame-work of the IS theory. The

IS relaxation eq. (2.11) do not consider the effect of magnetic field. However, recently the

authors of ref. [122] solved the Boltzmann equation in the presence of magnetic field using

the 14 moment approximation and found that IS relaxation eq. (2.11) gets modified. We

call these equations the modified IS equations or the NRMHD-IS (non-resistive MHD-IS)

equations. The NRMHD-IS equations shows that the relaxation equation for the shear-

stress tensor contains additional terms, here we neglected most of the terms and only keep

the term which couples magnetic field and the shear viscosity. The simplified NRMHD-IS

equation takes the following form

τπ
d

dτ
π<µν> + πµν = 2ησµν − δπBBbαβ∆µν

ακgλβπ
κλ. (6.1)

Where δπB is a new coefficient appearing only due to the magnetic field and bαβ =

−εαβγδuγbδ is an anti-symmetric tensor which satisfy bµνuν = bµνbν = 0. The rank-

four traceless and symmetric projection operator is defined as ∆µν
ακ = 1

2 (∆µ
α∆ν

κ + ∆ν
α∆µ

κ)−
1
3∆µν∆ακ.

– 22 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
1

Before proceeding further, a few comments on the NRMHD-IS equations are in or-

der. It is well known that in the presence of a magnetic field, the transport coefficients

split into several components, namely three bulk components and five shear components

refs. [50, 118, 119, 122]. The information of these anisotropic transport coefficients are

hidden inside the new coupling terms of the modified IS theory eq. (6.1). Note that the

first-order terms on the right-hand sides are proportional to the usual shear-viscosity. These

terms can be combined with the first-order terms on the left-hand side and, after inversion

of the respective coefficient matrices, will lead to the various anisotropic transport coeffi-

cients. On the other hand, when solving the full second-order equations of the modified IS

theory, one does not need to replace the standard viscosity with the anisotropic transport

coefficients, since the effect of the magnetic field, is already taken into account by the

new terms in these equations. Regarding modified second-order theory with finite bulk

viscosity, we would like to mention that, there is still no existing theory that yields three

distinct bulk components in Navier-Stokes limit (for details see ref. [122]) and it is still an

open issue.

The last term of eq. (6.1) is the only non-trivial term added to the conventional IS

theory for which we already discussed the results in previous sections. So, here we only con-

sider the last term of eq. (6.1) and calculate the corresponding correction to the old results.

First, we add a perturbation to the new term which contributes to δπ̃µν

δĨµν = δπBB0b
αβ
0 ∆µν

ακgλβδπ̃
κλ. (6.2)

While calculating eq. (6.2) we use the fact that in the local rest frame the unperturbed

shear stress tensor vanishes i.e., πµν0 = 0, and as a consequence δB̃, δb̃µν terms are absent

in eq. (6.2). For later use we define the projection of a four-vector Aµ as A<µ> = ∆µ
νAν ,

which is orthogonal to uµ.

Using these new definitions we write the eq. (6.2) in a more simplified form as

δĨµν = δπB
B0

2

(
b<µ>λ δπ̃<ν>λ + b<ν>λ δπ̃<µ>λ

)
− δπB

B0

3
∆µνb<κ>λδπ̃

<κ>λ. (6.3)

In the LRF, the following components of the bµν are found to be non-zero bxy = 1, byx = −1,

bxy = −1, byx = 1, bxy = bxy = 1 and byx = byx = −1, where bµ taken as (0, 0, 0, 1). For

the (3 + 1) dimensional case there are five independent equations for the shear stress

according to the IS theory. For each five equations there are corresponding components

of the δĨµν which for our case are δĨxx = −δπBB0δπ̃
xy, δĨxy = 1

2δπBB0 (δπ̃xx − δπ̃yy),
δĨxz = −1

2δπBB0δπ̃
yz, δĨyy = δπBB0δπ̃

yx and δĨyz = 1
2δπBB0δπ̃

xz. We include these new

terms to the corresponding IS equations that we previously derived in section 4.3. Here

also we get a 11× 11 matrix. As usual, we derive the dispersion relations from det(A) = 0

which is a eleventh-order polynomial equation. Since finding the analytic solution of this

polynomial equation is not possible, here we investigate some special cases.
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In the hydrodynamical-limit i.e, in the small k limit we get the following modes

ω =



i
τπ
,

i
τπ

(1± iB0δπB) ,
i

2τπ
(2± iB0δπB) ,

±vAk cos θ,

±vMk.

(6.4)

Note that the frequency of a few non-hydrodynamic modes are changed due to the new

coupling terms appearing in the NRMHD-IS theory.

For the large k limit we use the ansatz ω = vLk and take only the leading order terms

in k which yields the following velocities

v2
L =

{
v2
A cos2 θ + η

hτπ
,

1
2

[
x±

√
x2 − 4y

]
,

(6.5)

here

x = v2
A + α

(
1− v2

A sin2 θ
)

+
1

3b

{
7− v2

A

(
3 cos2 θ + 4 sin2 θ

)}
,

y = α

(
v2
A cos2 θ +

η

hτπ

)
+

1

3b

{
v2
A

(
4 cos2 θ + 3 sin2 θ

)
+

4η

hτπ

}
, (6.6)

and the remaining roots are zero. Since the causality of the fluid depends on the asymptotic

causality condition which here is given in eq. (6.5) and turned out to be the same as

eq. (4.54). So it is clear that the causality condition remains same as eq. (4.56) whereas

the dispersion relations get modified.

7 Conclusions

The current work goes beyond the previous results of refs. [118, 119] which used first order

viscous MHD. As is well known the first order gradient terms in the energy-momentum

tensor breaks causality, which is reflected from the existence of the superluminal mode.

This prohibits the application of viscous MHD in relativistic systems and it is necessary to

have rigorous treatment which the present work aims. The remedy was to go beyond the

first viscous corrections in hydrodynamics, and to include second order terms as well. We

have studied here the stability and causality of the relativistic dissipative fluid dynamics

within the framework of the standard and modified IS theories in the presence of magnetic

field. By linearising the energy-momentum conservation equations, relaxation equations for

viscous stresses, and the Maxwell’s equations and we have obtained the dispersion relations

for various cases. In the absence of viscous stresses, the dispersion relation yields the well-

known collective modes namely the Alfvén, slow and fast magneto-sonic modes. For the

bulk viscous case the Alfvén mode turned out to be independent of the bulk viscosity.

The asymptotic causality constraint for the magneto-sonic modes is independent of the
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magnetic field and the angle of propagation. For the fast mode, the causality condition

was found to be same as that previously derived in ref. [99] in the absence of magnetic field.

The slow mode, on the other hand, remained causal throughout the parameter space. We

have also derived the causality bound with finite bulk viscosity using the full non-linear

set of the equation using the method of characteristics and found that it agreed with the

result obtained using small perturbations. In the presence of shear viscosity, the causality

constraint for the two magnetosonic modes was found to be independent of the magnetic

field and the angle of propagation. Shear-Alfvén modes, on the other hand, do depend on

them. We found that the causality constraint changed in presence of a magnetic field. For

the modified IS theory in the presence of shear viscosity, new non-hydrodynamic modes

emerged but the causality constraint remained unaltered. Finally, in the presence of both

shear and bulk viscosity, we have deduced the causal region of parameter space.

There are many possible directions for future work, namely, the study of causality

bounds: (i) in resistive, second-order dissipative MHD where the electric field is non-zero

and contributes in the equations of motion ref. [123], (ii) theories which have spin degrees

of freedom allows to include effects of polarization and magnetization ref. [137]. These and

other interesting questions will be addressed in the future.
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A Solutions of dispersion relations

In general, the hydrodynamic dispersion relations arise as solutions to

Pn(X0, X1, . . . , Xn−1) = 0, (A.1)

where P = detA, is a nth order polynomial obtained from the determinant of matrix

A after linearising the MHD equations. In this appendix, we enlist the roots of certain

polynomials Pn that we will encounter throughout this work. For n = 3, the polynomial

P3 is of the form

ω3 +X2ω
2 +X1ω +X0 = 0, (A.2)
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and the corresponding roots are given as

ωk(X0, X1, X2) =
1

3

(
−ξ
−(k−1)∆0

C
− ξ(k−1)C −X2

)
. (A.3)

Here k = 1, 2, 3, ξ is the primitive cubic root of unity, i.e., ξ = −1+
√
−3

2 and the other

variables are defined

C =
3

√√√√∆1 +
√(

∆2
1 − 4∆3

0

)
2

,

∆0 = X2
2 − 3X1,

∆1 = 2X3
2 − 9X1X2 + 27X0. (A.4)

Similarly, for n = 4, the polynomial P4 is of the form

ω4 +X3ω
3 +X2ω

2 +X1ω +X0 = 0, (A.5)

and the corresponding roots are given as

ω1,2 (X0, X1, X2, X3) = ±1

2

√(
−2p+

q

S
− 4S2

)
− S − X3

4
,

ω3,4 (X0, X1, X2, X3) = ±1

2

√(
−2p− q

S
− 4S2

)
+ S − X3

4
, (A.6)

where

p =
1

8

(
8X2 − 3X2

3

)
,

q =
1

8

(
X3

3 − 4X2X3 + 8X1

)
,

S =
1

2

√(
1

3

(
∆0

Q
+Q

)
+

1

12

(
3X2

3 − 8X2

))
,

Q =
3

√√√√∆1 +
√(

∆2
1 − 4∆3

0

)
2

,

∆0 = X2
2 + 12X0 − 3X1X3,

∆1 = 2X3
2 − 72X0X2 − 9X1X3X2 + 27

(
X2

1 +X0X
2
3

)
. (A.7)
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B Details of matrix A defined in section 4.3 and the characteristic ve-

locities

By linearising the energy-momentum conservation equations, Maxwell’s equations and IS

equation for shear viscosity, we write these in the matrix form as eq. (4.42). Here the form

of matrix A is



iω −ikxh −ikyh −ikz (ε0+P0) −ikxkz ωB
2
0 −ikykzωB

2
0 0 0 0 0 0

−iαkx iωh 0 0 ikzB
2
0

(
k2
x+k2

z
k2
z

)
i
kxky
kz

B2
0 −ikx −iky −ikz 0 0

−iαky 0 iωh 0 i
kxky
kz

B2
0 ikzB

2
0

(
k2
y+k2

z

k2
z

)
0 −ikx 0 −iky −ikz

−iαkz 0 0 iω (ε0+P0) 0 0 ikz 0 −ikx ikz −iky
0 iB0kz 0 0 iωB0 0 0 0 0 0 0

0 0 iB0kz 0 0 iωB0 0 0 0 0 0

0 −4
3 iηkx

2
3 iηky

2
3 iηkz 0 0 f 0 0 0 0

0 −iηky −iηkx 0 0 0 0 f 0 0 0

0 −iηkz 0 −iηkx 0 0 0 0 f 0 0

0 2
3 iηkx −

4
3 iηky

2
3 iηkz 0 0 0 0 0 f 0

0 0 −iηkz −iηky 0 0 0 0 0 0 f



,

(B.1)

where f = 1 + iωτπ. Similarly we can write the matrix A for the modified IS theory, also

for both the bulk and shear viscosity case.

In section 5 we derive the characteristic velocities for the MHD with the bulk viscosity

only. For simplicity we consider (2 + 1)-dimensional case and write the energy-momentum

conservation equations, Maxwell’s equations and the IS equation for bulk in the form of

eq. (5.1). The matrix elements of P tmn are

P t11 = (1 + α) cosh2 θ − α, P t12 = 2 (ε+ P + Π) sinh θ cosφ,

P t13 = 2 (ε+ P + Π) sinh θ sinφ P t15 = B,

P t16 = sinh2 θ, P t21 = (1 + α) sinh θ cosh θ cosφ,

P t23 =
sin(2φ)

2 cosh θ

[
(ε+ P + Π) sinh2 θ −B2

]
, P t24 = −B2 sinh θ,

P t26 = sinh θ cosh θ cosφ, P t31 = (1 + α) sinh θ cosh θ sinφ,

P t34 = B2 sinh θ cotφ, P t36 = sinh θ cosh θ sinφ,

P t42 = B sinh θ, P t44 = −B cosh θ,

P t45 = − cosφ, P t52 = −B sinh θ cotφ,

P t54 = B cosh θ cotφ, P t55 = − sinφ,

P t62 = ζ tanh θ cosφ, P t63 = ζ tanh θ sinφ,

P t66 = τΠ cosh θ,
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P t22 =
1

2 cosh θ

[
2 (ε+ P + Π)

(
cosh2 θ + sinh2 θ cos2 φ

)
+B2

{
cosh(2θ)− cos(2φ)

}]
,

P t32 =
cotφ

2 cosh θ

[
2 (ε+ P + Π) sinh2 θ sin2 φ−B2

{
(cosh(2θ)− cos(2φ)

}]
,

P t33 =
cos2 φ

cosh θ

[
(ε+ P + Π)

(
cosh2 θ + sinh2 θ sin2 φ

)
+B2

]
,

The matrix elements of P xmn are

P x11 = (1 + α) sinh θ cosh θ cosφ, P x13 =
sin(2φ)

2 cosh θ

[
(ε+ P + Π) sinh2 θ −B2

]
,

P x14 = −B2 sinh θ, P x16 = sinh θ cosh θ cosφ,

P x21 = (1 + α) sinh2 θ cos2 φ+ α, P x22 = 2 (h+ Π) sinh θ cosφ,

P x24 = −2B2 cosh θ cosφ, P x25 = −B cos(2φ),

P x26 = 1 + sinh2 θ cos2 φ, P x31 = (1 + α) sinh2 θ sinφ cosφ,

P x33 = (ε+ P + Π) sinh θ cosφ, P x34 = B2 cosh θ cos(2φ) cscφ,

P x35 = −B sin(2φ), P x36 = sinh2 θ sinφ cosφ,

P x52 = −B sinφ

cosh θ

[
1 + sinh θ csc2 φ

]
, P x53 =

B

cosh θ
cosφ,

P x54 = B sinh θ cscφ, P x62 = ζ,

P x66 = τΠ sinh θ cosφ,

P x12 =
1

2 cosh θ

[
2 (ε+ P + Π)

(
cosh2 θ + sinh2 θ cos2 φ

)
+B2

{
cosh(2θ)− cos(2φ)

}]
,

P x32 = (ε+ P + Π) sinh θ sinφ−B2 sinh θ cos(2φ) cscφ,

The matrix elements of P ymn are

P y11 = (1 + α) sinh θ cosh θ sinφ, P y14 = B2 sinh θ cotφ,

P y16 = sinh θ cosh θ sinφ, P y21 = (1 + α) sinh2 θ sinφ cosφ,

P y23 = (ε+ P + Π) sinh θ cosφ P y24 = B2 cosh θ cos(2φ) cscφ,

P y25 = −B sin(2φ), P y26 = sinh2 θ sinφ cosφ,

P y31 = (1 + α) sinh2 θ sin2 φ+ α, P y32 = −2B2 sinh θ cosφ,

P y33 = 2 (ε+ P + Π) sinh θ sinφ, P y34 = 2B2 cosh θ cosφ,

P y35 = B cos(2φ), P y36 = 1 + sinh2 θ sin2 φ,

P y42 =
B sinφ

cosh θ

[
1 + sinh2 θ csc2 φ

]
, P y43 = − B

cosh θ
cosφ,

P y44 = −B sinh θ cscφ, P y63 = ζ,

P y66 = τΠ sinh θ sinφ.
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P y12 =
cotφ

2 cosh θ

[
2 (ε+ P + Π) sinh2 θ sin2 φ−B2

{
(cosh(2θ)− cos(2φ)

}]
,

P y13 =
cos2 φ

cosh θ

[
(ε+ P + Π)

(
cosh2 θ + sinh2 θ sin2 φ

)
+B2

]
,

P y22 = (ε+ P + Π) sinh θ sinφ−B2 sinh θ cos(2φ) cscφ,

and all the other coefficients are zero.
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