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coefficients in the Mellin-N space as well as the N -independent constants and match the
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In addition to the standard lnN exponentiation, we study the numerical impacts of ex-

ponentiating N -independent part of the soft function and the complete g0 that appears

in the resummed predictions in N space. All the analytical pieces needed in these dif-

ferent approaches are extracted from the soft-virtual part of the inclusive cross section

known to next-to-next-to-next-to leading order (N3LO). We perform a detailed analysis

on the scale and parton distribution function (PDF) variations and present predictions for

13 TeV LHC for the neutral Drell-Yan process as well as onshell charged and neutral vector

boson productions.
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1 Introduction

Standard Model(SM) has been very successful so far in describing the physics of elementary

particles. Precision study has played an important role in establishing the SM through the

latest discovery of Higgs boson at the Large Hadron Collider (LHC). The properties of

the Higgs boson is being studied with higher accuracy. Recent observations at the LHC

demonstrate that the systematic precision study is essential to look for any deviation from

the SM in search of new physics beyond the SM (BSM). While there is no promising

sign of new physics signature so far at the LHC, it is extremely important to know the

SM predictions for the standard processes like Higgs and DY or Z,W± productions to

utmost accuracy. Not only this could help in BSM searches but also help to understand

the perturbative structure of the underlying gauge theory.

Drell-Yan production has been a standard candle at the hadron colliders and is ex-

tremely important for luminosity monitoring. This is one of the hadronic processes which is

well understood theoretically. For example, next to next to leading order (NNLO) quantum
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chromodynamics (QCD) correction [1–3] to this process was computed three decades ago.

DY is also an important process experimentally for several BSM searches. Experimentally,

one has a very clean environment for precise measurements in terms of the kinematics of

the final state lepton pairs. Higher order perturbative QCD corrections to DY provides

ample opportunity to explore the structure of the perturbation series. Thus DY serves as

an important process in collider experiments. At the LHC, the strong interaction dynam-

ics dominates over the others and hence There have been attempts to go beyond NNLO

accuracy in order to improve the precision from the theoretical side.

The calculation of complete N3LO cross-section is extremely difficult due to increasing

number of subprocesses involved, however there have been significant progress to obtain

third order contribution to this process in QCD. Very recently the first result at complete

N3LO from only virtual photon mediator has been calculated in [4]. From the theory

side, DY is seen to be extremely stable with respect to factorization and renormalisation

scales already at NNLO. The scale uncertainty has been seen to be reduced to 2% for

a canonical variation of factorization and renormalisation scales compared to NLO where

uncertainty is about 9.2%, whereas the K-factor seem to improve marginally from 1.25

at NLO to 1.28 at NNLO. However keeping in mind the importance of this process, it

is worth studying the results from next orders and devise methods to incorporate more

and more higher order corrections. Since a complete calculation beyond NNLO level is

difficult, the soft-virtual (SV) contributions is often computed as first step. In addition,

the later constitutes a significant part of the cross-section in the region where the partonic

scaling variable z → 1, called the threshold region. The SV cross-sections are known for

many SM processes e.g. Higgs production [5–11], associated production [12], bottom quark

annihilation [13], pseudo-scalar Higgs production [14]. For DY production, using the three

loop quark form factor [15], exploring the universal structure of the soft part [16] of SV

cross section to Higgs production [5], the dominant soft-virtual (SV) corrections for DY at

third order was obtained [17] and later it was confirmed in [18]. It is also worth noting

that the same result was independently obtained in [19] using soft-gluon resummation.

The SV contributions dominate at every order in the perturbation theory through large

logarithms spoiling the reliability of the fixed order predictions. The resolution to this is to

resum these large logarithms to all orders. Resummation of these large logarithms is thus

very important to correctly describe the cross section in the threshold region. In [20–22],

a systematic approach was proposed to resum these logarithms to all orders. The large

logarithms arise in the hard partonic cross section when the total available center-of-mass

energy (ŝ) becomes close to the invariant mass (Q) of the final state, in other words the

partonic scaling variable z = Q2/ŝ → 1. This results from the soft gluon emissions, as a

consequence of which the cross-section is enhanced by the large logarithms that appear as

distributions namely Dirac delta δ(1− z) and + distributions:

Dj(z) =

(
logj(1− z)

1− z

)
+

(1.1)

In Mellin space these singular terms are transformed into powers of logarithms of the

Mellin variable N . In Mellin N space, these contributions can be systematically resummed
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to all orders and they display a nontrivial pattern of exponentiation. In the threshold

region, the fixed order predictions often fail to describe the cross-section well and hence

the resummation of these large logarithms becomes very important to correctly describe

the region. Moreover, it has been very well established that the resummed contributions

give a sizable contributions to the cross-section. In fact many SM fixed order calculations

have been improved with the corresponding resummed results, for example, the inclusive

scalar Higgs production in gluon fusion [6, 19, 23–25] (see also [26] for renormalisation

group improved prediction) as well as in bottom quark annihilation [27], deep inelastic

scattering [28, 29], DY production [6, 19, 30], pseudo-scalar Higgs production [31–33],

spin-2 production [34, 35] etc. Threshold resummation not only improves the inclusive

fixed order results but also differential observables like rapidity [21, 36–39] and in the

context of LHC precision measurements, it is important to include these corrections and

they are shown to improve the fixed order results.

In the resummed predictions for the cross-sections, there is an intrinsic ambiguity on

what is exponentiated and what is not. In the standard approach, one exponentiates only

large-N pieces coming from the soft function which are enhanced in the threshold region.

However one can also define large logarithms in terms of a new variable N = N exp(γE), γE
being the Euler-Mascheroni (E-M) constant. Theoretically this is allowed, since γE arises

as a mathematical artifact due to dimensional regularization in d-space time dimensions.

Moreover, this does not spoil the fact that the large-N pieces are exponentiated in the

threshold region. In this terminology, one exponentiates N instead of N . Numerically,

however this makes a difference already at the leading logarithmic accuracy. It has been

already seen in [29] that the perturbative convergence is improved if one exponentiates

the large-N terms. Apart from the standard threshold exponentiation, one can in fact

exponentiate the complete soft function i.e. all the large-N terms as well as the δ(1 − z)

terms arising from the soft function. We call this ‘Soft exponentiation’ which renders

some part of the N -independent constant (g0) for the Standard N exponentiation. In

addition to these procedures, one can also exponentiate the complete form factor along with

the soft function. This was studied in the context of the SM Higgs production [24, 25] and

was shown to improve the scale uncertainty better than the standard threshold approach.

The form factor is process dependent and therefore is non-universal unlike the soft function.

However, the form factor as well as the soft function both satisfy the similar Sudakov K+G

type equation [8, 9, 40–43]. Hence the solution to K+G equation for the form factor is an

exponential N independent constant justifying the exponentiation. The numerical impact

of this has already been studied in the past for the DY production in [44] where the authors

show that both in DIS scheme and in MS scheme the complete form factor exponentiates

to the orders currently known.

The goal of the present article is to study the effect of threshold logarithms at N3LL

accuracy and match it to the known NNLO results. We perform this study for the neutral

DY production as well as for onshell Z and W± productions. The paper is organized

as follows. In section 2.1, we collect the useful formulae required for the invariant mass

distribution for DY and total cross-section for Z,W± productions at the LHC. Next we

discuss the theoretical set up in the context of resummation. Here we describe in detail the
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factorization of soft-virtual coefficient in section 2.2. Next we set up in section 2.3 different

resummation prescriptions as well as derive some useful formulas needed. Section 3 we

study in detail the effect of threshold logarithms for different prescriptions and present our

results along with the estimation of uncertainties. We finally conclude in section 4.

2 Theoretical framework

2.1 Drell-Yan and Z,W± production

The hadronic cross-section for DY or onshell Z,W± production at the LHC can be writ-

ten as

σ = σ(0)
∑

ab=q,q,g

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1, µ

2
f ) fb(x2, µ

2
f )

∫ 1

0
dz ∆ab(z,Q

2, µ2
f )δ(τ − zx1x2) ,

(2.1)

where σ = dσ
dQ

(
τ,Q2

)
for DY production, with Q being the invariant mass of the di-lepton

pair. Here fa(x1, µ
2
f ) and fb(x2, µ

2
f ) are the non-perturbative parton distribution functions

(PDFs) of the partons a, b carrying momentum fractions x1, x2 of the incoming protons at

the factorization scale µf . These PDFs are appropriately convoluted with perturbatively

calculable partonic coefficients ∆ab(z,Q
2, µ2

f ). For the on-shell Z,W± production, σ =

σV , V = Z/W± and q = MV , the mass of the vector boson. The partonic coefficients are

obtain from the partonic cross section using perturbation theory. For the DY production

V we include contributions from γ and Z as well as their interference.

The partonic cross-section can be decomposed as

∆ab(z,Q
2, µ2

f ) = ∆
(sv)
ab (z,Q2, µ2

f ) + ∆
(reg)
ab (z,Q2, µ2

f ) . (2.2)

The first term ∆(sv) is called the SV partonic coefficient and it contains distributions such

as δ(1−z) and D+, whereas the second term ∆(reg) contains those terms that are regular in

the scaling variable z. The prefactors for DY and Z,W± production are given as below:

σ
(0)
DY =

2π

nc

[
Q

S
F (0)

]
,

σ
(0)
Z =

2π

nc

[
πα

8s2
wc

2
wS

]
,

σ
(0)
W± =

2π

nc

[
πα

4s2
wS

]
, (2.3)

where S is the hadronic centre-of-mass energy and nc = 3 in QCD. For DY production,

the factor F (0) is found to be,

F (0) =
4α2

3Q2

[
Q2
q −

2Q2(Q2 −M2
Z)(

(Q2 −M2
Z)2 +M2

ZΓ2
Z

)
c2
ws

2
w

Qqg
V
e g

V
q

+
Q4(

(Q2 −M2
Z)2 +M2

ZΓ2
Z

)
c4
ws

4
w

(
(gVe )2 + (gAe )2

)(
(gVq )2 + (gAq )2

)]
. (2.4)
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Here α is the fine structure constant, cw, sw are sine and cosine of Weinberg angle respec-

tively. MZ and ΓZ are the mass and the decay width of the Z-boson.

gAa = −1

2
T 3
a , gVa =

1

2
T 3
a − s2

wQa , (2.5)

Qa being electric charge and T 3
a is the weak isospin of the electron or quarks.

In the threshold region, the SV terms which consist of distributions contribute signifi-

cantly at the hadron level. After mass factorization, the partonic coefficient in the threshold

region experiences further factorization in terms of the form factor and soft-collinear func-

tion. In the next section we will discuss in detail on the structure of distributions in the

SV coefficient which will form the basis for the resummation.

2.2 Soft-virtual cross-section

In the following, we briefly describe the theoretical set up that is required to study the

impact of threshold corrections within the framework of resummation à la Sterman, Catani

and Trentadue [20, 21]. We do this in order to understand the role of various pieces

that contribute to the resummed result. Exploiting the factorization of infrared sensitive

contributions and gauge and renormalisation group invariances, inclusive cross section for

the DY and on-shell Z/W± productions in the threshold limit can be expressed in terms of

form factor of the neutral/charged current, soft distribution function and Altarelli-Parisi

kernels (see [8, 9]). The resulting expression expressed in z space is free of both ultraviolet

and infrared divergences and captures the distributions Dj with given logarithmic accuracy

to all orders in perturbation theory. In the Mellin N space, we can achieve the same and

in addition, one has the advantage to reorganize the series in such a way that order one

contributions of the form asβ0 log(N) can be resummed systematically to all orders in the

large N limit. Here, as is defined by as = g2
s(µ

2
r)/16π2 with gs begin the strong coupling

constant and µr the renormalisation scale and β0 is the first coefficient of the coupling

constant beta function. Note that in Mellin N space, the convolutions in z space become

simple products. The z space result can be used to compute the soft-virtual contributions

in power series expansion of strong coupling constant as.

In d = 4+ ε space time dimensions, the threshold enhanced partonic soft-virtual cross-

section to all orders in perturbation theory in z space can be written [8, 9] as

∆(sv)(z,Q2, µ2
r , µ

2
f ) = C exp

(
Ψ
(
z,Q2, µ2

r , µ
2
f , ε
) )∣∣∣

ε=0
. (2.6)

Here Ψ is a distribution function which is finite in the limit ε→ 0. The symbol C denotes

the Mellin convolution (denoted below as ⊗) which in the above expression should be

treated as

C exp
(
f(z)

)
= δ(1− z) +

1

1!
f(z) +

1

2!
f(z)⊗ f(z) + · · · , (2.7)

with f(z) being a function containing only δ(1 − z) and plus distributions. The finite

exponent in the above is re-factorized in the threshold limit and gets contribution from

the form factor
(
F̂(âs, q

2, µ2, ε)
)

with q2 = −Q2, soft-collinear function
(
Φ(âs, z,Q

2, µ2, ε)
)
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(later called as soft function) as well as mass factorization kernels
(
Γ(âs, z, µ

2
f , µ

2, ε)
)

and

takes the following form in dimensional regularization:

Ψ
(
z,Q2, µ2

r , µ
2
f , ε
)

=

(
ln
[
Z(âs, µ

2
r , µ

2, ε)
]2

+ ln
∣∣∣F̂(âs, q

2, µ2, ε)
∣∣∣2)δ(1− z)

+ 2Φ(âs, z,Q
2, µ2, ε)− 2C ln Γ(âs, z, µ

2
f , µ

2, ε) . (2.8)

µ keeps the strong coupling (âs) dimensionless in the d = 4 + ε dimensions. Z(âs, µ
2
r , µ

2, ε)

denotes the overall UV renormalization constant which for the processes considered here

is unity due to conserved current.

The bare quark form factor satisfies the Sudakov K+G equation [8, 9, 40–43] which

follows as a consequence of the gauge invariance as well as renormalisation group invari-

ance,

d ln F̂
d ln q2

=
1

2

[
K(âs,

µ2
r

µ2
, ε) + G(âs,

q2

µ2
r

,
µ2
r

µ2
, ε)

]
. (2.9)

The function K contains all the infrared poles in ε whereas the function G is finite in the

limit ε→ 0. The renormalisation group invariance leads to the following solutions of these

functions in terms of cusp anomalous dimensions (A):

dK
d lnµ2

r

= − dG
d lnµ2

r

= A(as(µr)) =

∞∑
i=1

ais(µr)Ai . (2.10)

The cusp anomalous dimensions are known to fourth order [45–47, 47–49, 49–57, 57] and are

collected in appendix C. The µr independent piece of the G can be written in perturbative

series as

G(as(q), ε) =

∞∑
j=1

ajs(q)Gj(ε) , (2.11)

where the coefficients G(j)(ε) can be decomposed as

Gi(ε) = 2Bi + fi + Ci +
∞∑
k=1

εkGik , (2.12)

where

C1 = 0 ,

C2 = −2β0G11 ,

C3 = −2β1G11 − 2β0

(
G21 + 2β0G12

)
. (2.13)

The coefficients Gik are the finite coefficients found in terms of QCD color factors and can

be extracted from explicit calculation of quark form factor. Note that up to the third order

one also needs coefficients G22, G31 and thereby needs the three-loop calculation of the

form factor [15]. We have collected them in the appendix C. Similar to the cusp anomalous

– 6 –
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dimension, the coefficients fi have been found to be maximally non-abelian to third order

in strong coupling i.e. they satisfy

fgi =
CF
CA

f qi . (2.14)

The initial state collinear singularities are removed using the Altarelli-Parisi (AP)

splitting kernels Γ(âs, µ
2
f , µ

2, z, ε). They satisfy the well-known DGLAP evolution given as,

dΓ(z, µ2
f , ε)

d lnµ2
f

=
1

2
P (z, µ2

f )⊗ Γ(z, µ2
f , ε) , (2.15)

where P (z, µ2
f ) is the AP splitting functions. The perturbative expansion for these splitting

functions has the following form:

P (z, µ2
f ) =

∞∑
i=0

ai+1
s (µf )P (i)(z) . (2.16)

As already discussed, only the qq̄ channel contributes to the SV cross-section and thus we

find that, only the diagonal terms of the splitting functions contribute to the SV cross-

section. The diagonal part of the splitting functions is known to contain the δ(1− z) and

distributions and can be written as,

P
(i)
II = 2

[
Bi+1δ(1− z) +Ai+1D0

]
+ P

(reg,i)
II (z) . (2.17)

The splitting functions are known exactly to four loops [45, 58–60].

The finiteness of the soft-virtual cross-section demands that the soft-collinear function

Φ will also satisfy similar Sudakov type equation like the form factor i.e. one can write

dΦ

d lnQ2
=

1

2

[
K
(
âs, z,

µ2
r

µ2
, ε

)
+ G

(
âs, z,

Q2

µ2
r

,
µ2
r

µ2
, ε

)]
, (2.18)

where K(âs, z,
µ2r
µ2
, ε) contains all the poles and G(âs, z,

Q2

µ2r
, µ

2
r
µ2
, ε) is finite in the dimensional

regularization such that Ψ becomes finite as ε → 0. The solution to the above equation

has been found [8, 9] to be

Φ =

∞∑
j=1

âjs
jε

1− z

(
Q2(1− z)2

µ2

)jε/2
Sjε Φ̂(j)(ε) . (2.19)

Φ̂(j) can be found from the solution of the form factor by the replacement as A →
−A,G(ε) → G(ε). Notice that G(ε) are now new finite z-independent coefficients com-

ing from the soft function whereas the z dependence has been taken out in eq. (2.19). This

can be found by comparing the poles and non-pole terms in Φ̂(j) with those coming from

the form factors, overall renormalisation constants, splitting kernel and the lower order SV

terms. The coefficient G has same structure as the form factor in eq. (2.12) after setting

fi → −fi, Bi → 0, γi → 0,

Gi = −fi + C̃i +

∞∑
k=1

εkG̃ik , (2.20)

– 7 –
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where

C̃1 = 0,

C̃2 = −2β0G̃11,

C̃3 = −2β1G̃11 − 2β0

(
G̃21 + 2β0G̃12

)
. (2.21)

The coefficients fi are same as those appear in the quark form factor in eq. (2.12). The

coefficients G̃ij required up to three loops have been extracted in [61] and also collected

in the appendix C. Note that one has to perform the following expansion in eq. (2.19) in

order to get all the distributions and delta function coming from the soft function,

1

(1− z)

[
(1− z)2

]jε/2
=

1

jε
δ(1− z) +

∞∑
k=0

(jε)k

k!
Dk . (2.22)

It is worth noting that G as well as the complete soft function ΦI satisfy the maximally

non-abelian property up to three loops. Moreover ΦI is also universal in the sense that it

only depends on the initial legs and is completely unaware of the color neutral final state.

Expanding ∆(sv) in powers of as as

∆
(sv)
ab = δab

∞∑
i=0

ais∆
(i) , (2.23)

with the born contribution being ∆(0) = δ(1 − z). The SV correction at the three loops

are known [17] which we collect here for completeness in the appendix A.

In the following, we will study the numerical impact of resummed result resulting from

∆
(sv)
ab after performing the Mellin transformation in the large N limit. We start with Ψ

which is finite while the individual contributions to it contain UV and IR singularities.

Decomposing the later ones as sum of singular and finite parts as

ln
∣∣F̂ ∣∣2(Q2) = Lsing

F (Q2, µ2
r) + Lfin

F (Q2, µ2
r)

Φ(z,Q2) = Φsing(z,Q2, µ2
f , µ

2
r) + Φfin

D (z,Q2, µ2
f , µ

2
r) + Φfin

δ (Q2, µ2
f , µ

2
r)δ(1− z)

C ln Γ(z, µ2
f ) = Lsing

Γ (z, µ2
f , µ

2
r) + Lfin

ΓD0
(µ2
f , µ

2
r)D0 + Lfin

Γδ(µ
2
f , µ

2
r)δ(1− z) (2.24)

Substituting the above equations in eq. (2.8), we can easily show that all the singular terms

in the limit ε→ 0 cancel among themselves. In addition, D0 terms in finite part of C ln Γ go

away when added to Φfin
D resulting in a finite distribution. Substituting the Ψ in eq. (2.6),

we obtain

∆sv(z,Q2) = C0(Q2)⊗ CeG+(z,Q2) (2.25)

where (supressing dependence on µf and µr), the N independent constant C0 is given by

C0(z,Q2) = exp
(
Lfin
F + 2Φfin

δ − 2Lfin
Γδ

)
δ(1− z) (2.26)

G+(z,Q2) =

(
1

1− z

[∫ Q2(1−z)2

µ2f

dµ2

µ2
2 A(as(µ

2)) +D(as(Q
2(1− z)2))

])
+

(2.27)
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and D in G+ is related to G by D = 2G and G(as(Q
2(1− z)2)) is G in eq. (2.18) evaluated

at µ2
r = µ2

f = Q2.

So far, we showed how various collinear soft gluon emissions as well as the wide angle

soft emissions can be systematically summed to all orders to obtain eq. (2.25) in the z

space when partonic variable z → 1. Note that C0 is obtained by first collecting those

terms that are proportional to δ(1− z) terms of Ψ and then expanding the exponential of

them in powers of as. The remaining function G+ contains only distributions Dj . Hence,

one can predict the following structure for G+:

G+(z,Q2) = G1(Q2)⊗D0 +G2(z,Q2) + asG3(z,Q2) + · · · . (2.28)

where each G1 sums certain terms of the aisDi−1 to all orders, and G2 sums aisDi−2 terms

to all orders etc. The result ∆sv expressed in terms of C0 and the exponential of G+ using

eq. (2.28) systematically sums the distributions Dj to all orders and hence can predict

these distributions to all orders provided A and D are known to desired accuracy in as. For

example, knowing A1, we can predict all the terms aisDi with i = 1, 2, . . . ,∞ in Φ, similarly

given A1 and D1, we can predict aisDi−1 with i = 1, 2, . . . ,∞ etc. Hence, expression given

in eq. (2.25) has the predictive power for ∆sv to all orders in as given the logarithmic

accuracy in z space, quantified by terms of the form aisDj . Note that when the exponential

of Φ is expanded using convolution rules given in eq. (2.7), we will get not only Dj but also

δ(1− z). In other words, δ(1− z) terms in ∆sv can come from both exp(G+) as well as C0.

Often in certain kinematic regions, these contributions can be enhanced when con-

voluted with the parton distribution functions spoiling the reliability of the perturbation

theory. Hence we need to include these potentially large terms to all orders in perturbation

theory for any sensible predictions. Such an exercise in the z space is technically challeng-

ing due to the complexity involved in computing the convolutions of Dj . However, in the

Mellin N space, the convolutions become simple products allowing us to study the impact

of these large logarithms to all orders in a systematic fashion. In the following, we will

describe how this can be done in Mellin N space.

2.3 Threshold resummation

In the last sub-section, we showed that threshold effects for partonic coefficients can be

obtained near threshold as a product of well-defined functions, each organizing a class of

infrared and collinear enhancements as can be seen from eq. (2.8). This re-factorization is

valid up to corrections which are nonsingular at threshold when partonic z → 1. While the

z space result captures the entire underlying infrared dynamics in the threshold limit, it

can be better described in the Mellin-N space where the threshold limit z → 1 translates

into N →∞. We found that the form in eq. (2.8) was already suitable for all order study,

however complications arise in performing the convolution. On the other hand any such

convolution becomes simple product in Mellin space and all the distributions coming from

the soft function are thus translated into large logarithms in Mellin N .
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Following [21], the resummed partonic SV coefficient function can be organized as

follows:

σ̂N (Q2) =

∫ 1

0
dzzN−1∆sv(z,Q2)

= g0(Q2) exp
(
GN(Q2)

)
, (2.29)

where GN is obtained by computing the large N limit of Mellin moment of G+ and then

by decomposing as

lim
N→∞

∫ 1

0
dzzN−1G+(z,Q2) = G0(Q2) +GN(Q2) , with GN(Q2)

∣∣
N=1

= 0 (2.30)

whereN = N exp(γE) and γE is E-M constant. The N independent constant g0 is given by

g0(Q2) = exp
(
Lfin
F + 2Φfin

δ − 2Lfin
Γδ +G0(Q2)

)
(2.31)

GN is function of the universal coefficients A which are known to fourth order and D known

to third order in as. GN collects and resums all the large-N logarithms to all orders and

it can be expressed as a resummed perturbative series which takes the following form:

GN

(
Q2
)

= lnN g1

(
N,Q2

)
+ g2

(
N,Q2

)
+ as g3

(
N,Q2

)
+ a2

s g4

(
N,Q2

)
+ · · · . (2.32)

Following [19, 23], we computed gi up to i = 4 (for gi up to i = 3, see [30]) and they

are given in appendix B.1. Note that gi coefficients are universal in the sense that it

depends only on whether the born process is qq̄ channel or gg channel. In the Mellin N

space, the δ(1 − z) in z-space directly translates into N independent piece whereas the

plus-distributions give rise to the ln(N) as well as N independent constants in the large

N limit. Part of these constant pieces, namely G0, is absorbed into the coefficients g0 in

the standard resummation approach. Hence, g0 contains only N independent pieces which

come from the form factor, soft distribution function, AP kernels and N independent part

of the Mellin moment of G+(z,Q2). The condition GN = 0 forN = 1 allows the constants

gi to contain N independent terms. Note that the expressions for g0 and gi obtained this

way depend on the condition GN = 0 forN = 1. In other words, there is an ambiguity in

treating the N independent terms in the resummed results. Exploiting this, in [21], the N

independent constants were defined by demanding GN = 1 whenN = 1. With this, g0 has

the following perturbative expansion:

g0(Q2) = 1 +
∞∑
n=1

aisg0i(Q
2) . (2.33)

The successive terms in the resummed exponent eq. (2.32) along with the corresponding

terms in eq. (2.33) define the accuracies leading logarithmic (LL), next to LL (NLL), NNLL

and N3LL etc. Terms independent of N can be treated, in principle, by the same methods

that resum terms enhanced by logarithms of N .

In summary, the resummed result will differ depending on how we treat the N -

independent constants. We define various schemes that differentiate how these constants
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are treated in our numerical implementation for the phenomenological studies. This allows

us to investigate numerical impact of the various resummed results in detail.

• StandardN exponentiation. This is the case we have discussed so far where we

define large logarithms are functions ofN = N exp(γE), where γE is E-M constant.

The N dependent functions GN in this case can be computed by simply performing

the Mellin moment of G+(z,Q2) in the largeN limit and keeping only those terms

that vanish whenN = 1.

• Standard N exponentiation. This approach differs from the previous one in the

definition of large-N variable. In this case the large logarithm is simply lnN and

these terms are exponentiated to all orders through the resummed exponent. It is

evident that this only accounts for reshuffling of γE between g0 and GN in eq. (2.29)

which now takes the following form:

σ̂N (Q2) = g0(Q2) exp
(
GN (Q2)

)
. (2.34)

The resummed exponent GN also takes a different form compared to the standardN

exponent,

GN (Q2) = lnN g1(N,Q2) + g2(N,Q2) + as g3(N,Q2) + a2
s g4(N,Q2) + · · · . (2.35)

The resummed coefficients gi in the above equation which defines the resummed

accuracy, differs from gi in eq. (2.32). The present scheme is defined by demanding

GN = 0 when N = 1.

lim
N→∞

∫ 1

0
dzzN−1G+(z,Q2) = G0(Q2) +GN (Q2) , with GN (Q2)

∣∣
N=1

= 0 (2.36)

With this definition, the rest of the N independent terms from the Mellin moment

of G+ is combined with finite parts of form factor, soft distribution function and the

AP kernels as The N independent constant g0 is given by

g0(Q2) = exp
(
Lfin
F + 2Φfin

δ − 2Lfin
Γδ +G0(Q2)

)
(2.37)

and the above result is expanded in powers of as:

g0(Q2) = 1 +

∞∑
n=1

aisg0i(Q
2) . (2.38)

Numerically this can make a difference and it was seen in the context of DIS pre-

viously. In case of DY also we find such differences which will be discussed in the

next section. Up to N3LL accuracy, the resummed exponents gi, i = 1, .., 4 for both

quark as well as for gluon initiated process in N exponentiation scheme can be found

in [23, 28] and we computed the results for the g0i coefficients up to i = 3 which are

listed in appendix B.2 along with gi.

– 11 –



J
H
E
P
1
0
(
2
0
2
0
)
1
5
3

• Soft exponentiation. In the standard N (N) exponentiation, one exponentiates

lnN (lnN) and certain N (N) independent terms which arise from G+, subjected

to the condition GN = 0 (GN = 0) whenN = 1 (N = 1). The remainingN (N)

independent terms in the Mellin moment of G+ along with C0 give the coefficient g0

(g0). In principle, we can define a scheme wherein entireN (N) independent terms

of G+ can be kept in the exponent. More specifically, we define the scheme (relaxing

GN = 1 (GN = 0) forN = 1 (N = 1)) wherein we exponentiate all the terms coming

from the finite part of soft distribution function and those from the AP kernels. That

is, the exponential contains

GSoft

N
= GN + 2Ψfin

δ − 2Lfin
Γδ (2.39)

that is,

σ̂N (Q2) = gSoft
0 (Q2) exp

(
GSoft

N
(Q2)

)
. (2.40)

with

GSoft

N
(Q2) = lnN gSoft

1 (N,Q2)+gSoft
2 (N,Q2)+as g

Soft
3 (N,Q2)+a2

s g
Soft
4 (N,Q2)+ · · · .

(2.41)

The remaining N independent terms define gSoft
0 that is obtained by expanding

exp(Lfin
Fδ) in power series expansion in as:

gSoft
0 (Q2) = 1 +

∞∑
n=1

aisg
Soft
0i (Q2) . (2.42)

GSoft

N
and gSoft

0 have similar expansion as eq. (2.32) and eq. (2.33) respectively and

the corresponding coefficients are calculated and presented in appendix B.3.

• All exponentiation. The soft function and the form factor satisfy K+G type Su-

dakov integro-differential equations given in eqs. (2.9), and (2.18) and the AP kernels

satisfy renormalisation group equation eq. (2.15) governed by AP splitting functions.

Hence, their solutions given the boundary conditions demonstrate exponential. The

z space solutions that we obtained carry all order information on the distribution Dj
in terms of universal cusp A, soft f and collinear B anomalous dimensions and cer-

tain process dependent constants resulting from the form factor. Hence it is natural

to study the numerical impact of the entire contribution in the Mellin space without

imposing any condition on the N dependent terms. This can be easily achieved and

the result for σ̂N takes the following form

σ̂N = exp
(
GAll

N

)
, (2.43)

where

GAll

N
(Q2) = Lfin

F (Q2) + 2Φfin
δ (Q2)− 2Lfin

Γδ +G0(Q2) +GN(Q2) (2.44)
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where GAll

N
is expanded as

GAll

N
(Q2) = lnN gAll

1 (Q2) + gAll
2 (Q2) + as g

All
3 (Q2) + a2

s g
All
4 (Q2) . (2.45)

The present scheme was already explored in [24, 25] for studying inclusive cross

section for the production of Higgs boson at the LHC. For similar study for the DY

in DIS and MS schemes, see [44]. Here we will extend it to the N3LL accuracy. The

relevant resummed exponent has been provided in appendix B.4.

Note that a detailed comparison between the N -exponentiation and N -

exponentiation has been done in [29] for the charge and neutral DIS processes. There,

one finds that the N -exponentiation shows a faster convergence compared to the N -

exponentiation. In fact, the convergence has already been achieved at NLO+NLL order

in the threshold region in the case of N -exponentiation, whereas in N -exponentiation, this

occurs after the NLO+NLL order. Notice that the leading logarithmic term also differs

between these two approaches. In the case of N -exponentiation, all the γE terms are ex-

ponentiated through the variable N = N exp(γE); but in the N -exponentiation these γE
terms are distributed among the exponent and the N independent term g0. As a result the

deviation starts already at the LL accuracy. In the next section, we will discuss how various

schemes discussed so far can affect the predictions. Note that they all give same result at

the LL accuracy, however from NLL they differ. At NNLO level, we have the contributions

from all the channels and at N3LO only SV contribution is known so far. Hence, our nu-

merical predictions will be based on fixed order N3LOsv results for the parton coefficients

and on parton distribution functions known to NNLO accuracy. Note that the resummed

result has to be matched to the fixed order result in order to avoid any double counting

of threshold logarithms. Hence, the matched result which is usually denoted by NnLL is

computed by taking the difference between the resummed result and the same truncated

up to order ans . Hence, it contains contributions from the threshold logarithms to all orders

in perturbation theory starting from an+1
s :

σN
nLO+NnLL

V = σN
nLO

V + σ
(0)
V

∑
ab∈{q,q̄}

∫ c+i∞

c−i∞

dN

2πi
(τ)−Nδabfa,N (µ2

f )fb,N (µ2
f )

×
(
σ̂N

∣∣∣∣
NnLL

− σ̂N
∣∣∣∣
trNnLO

)
. (2.46)

The Mellin space PDF (fi,N ) can be evolved using QCD-PEGASUS [62]. Alternatively

they can be related to the derivative of z-space PDF as prescribed in [21, 23]. The contour

c in the Mellin inverse integration can be chosen according to Minimal prescription [63]

procedure. Notice that the second term in eq. (2.46) represents the resummed result

truncated to NnLO order, i.e. the same order to which singular SV results are available. In

the next section we present the numerical results for the DY production as well as on-shell

Z,W± production for LHC where we match the existing N3LO fixed order SV results with

the N3LL resummation derived in this article.
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Figure 1. The di-lepton invariant mass distribution (left panel) and the corresponding K-factors

(right panel) are presented to N3LOsv in QCD for 13 TeV LHC.

3 Numerical results

In this section, we present the numerical impact of resummed threshold corrections for

neutral DY production as well as on-shell Z/W± production at the LHC. For neutral DY

production we consider all the partonic channels at the FO up to NNLO with off-shell γ∗, Z

intermediate states. Detailed analysis is done for 13 TeV LHC, however it can be extended

to other energies as well as to other colliders.

3.1 Soft-virtual correction for neutral DY invariant mass

We start our discussion by examining the SV corrections at N3LO. For our numerical

study, we use the following electro-weak parameters for the vector boson masses and widths,

Weinberg angle (θw) and the fine structure constant (α):

mZ = 91.1876 GeV, ΓZ = 2.4952 GeV ,

mW = 80.379 GeV, sin2θw = 0.22343 α = 1/128 . (3.1)

We present our results for the default choice of hadronic center of mass energy 13 TeV at

the LHC. The parton distribution functions (PDFs) are directly taken from the lhapdf [64]

routine. The coefficient functions are convoluted with the respective order by order PDFs,

however for N3LOsv results we used NNLO PDFs. Except for studying the PDF uncertain-

ties, we use MMHT2014 [65] parton densities throughout. The (n + 1)-loop strong coupling

constant is used for computing NnLO order cross sections with αs(mZ) = 0.120(0.118) at

NLO(NNLO) respectively. Except for the study of scale uncertainties, the unphysical scale

are set equal to the invariant mass of the di-lepton, µr = µf = Q.

In figure 1, we present the invariant mass distribution (left panel) of the di-lepton

production for the neutral case to N3LOsv in QCD for 13 TeV LHC as well as the corre-

sponding K-factors (right panel). It is worth noting here that at O(α3
s) level the δ(1 − z)

contribution is comparable but opposite in sign to the sum of logarithmic contributions
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Figure 2. 7-point scale variation is plotted against the hadronic τ variable up to N3LOsv order.

All the figures are normalized to LO contribution evaluated at the central scale µr = µf = Q.

as is mentioned in [17]. The 3-loop SV corrections are found to be positive up to around

Q = 400 GeV and remain negative for 400 GeV < Q < 2200 GeV and become positive

thereafter as threshold logarithms dominate in the high Q region. At around 3500 GeV,

the 3-loop SV corrections contribute by about 2%. The observed values of Q where this

change in the sign happens are not fixed but can change with the center of mass energy of

the hadrons.

While the perturbation series is asymptotic and the higher orders terms are very small,

the reliability of the theory predictions depends somewhat on the uncertainties due to the

unphysical factorization (µf ) and renormalization (µr) scales as well as those due to choice

of PDFs. To this end, we estimate the 7-point scale uncertainties in the invariant mass

distribution at various orders in the perturbation theory by varying the scales µ = {µf , µr}
in the range 1

2 ≤
µ
Q ≤ 2. The scale uncertainties are conveniently presented in terms of

the invariant mass distribution at higher orders normalized with respect to LO ones. In

figure 2 we present these normalized distributions up to N3LOsv as a function of τ = Q2/S.

At LO, there is no dependence on µr, hence the observation that these scale uncertainties

are minimum around τ = 0.001 (corresponding to about Q = 400 GeV) can be directly

related to the behavior of the corresponding quark fluxes. At higher orders, the dependence

on µr and µf is known and the scale uncertainties are found to increase with Q in the

region Q > 400 GeV. For Q = 1500 GeV, they are found to be 6.61%, 2.40%, 0.44% and

0.91% respectively at LO, NLO, NNLO and N3LOsv. For the 3-loop SV case, the scale

uncertainties are expected to get further reduced only after including the regular terms that

are yet to be computed in the fixed order perturbation theory. However, as we increase Q

value, even N3LOsv show reasonable reduction in scale uncertainty as threshold logarithms

dominate over the regular terms for larger Q values. For completeness, we note that the

scale uncertainties for Q = 3500 GeV are found to be 12.90%, 4.64%, 1.21% and 0.68% at

LO, NLO, NNLO and N3LOsv respectively.
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It is interesting to compare the SV results obtained in this article with the full N3LO

result recently calculated in [4]. For this comparison we chose the same parameters as

in [4]. In particular at N3LO level, we use PDF4LHC15 nnlo mc pdf and strong coupling

through four-loop evolution. In order to see how much the SV terms are comprable to the

full correction at the third order, we have adapted to DY production through only γ∗ as

in [4]. The full N3LO correction is negative up to Q = 1 TeV after that it becomes positive

up to Q = 2 TeV (see figure (2) of [4]). On the contrary, the SV result is positive at lower

invariant mass region and becomes negative at Q as low as 100 GeV. This indicates that

the contributions from the other subprocesses are really important in the low invariant

mass region Q < 100 GeV. In fact in the low-Q region, the qg channel really dominates

over all other channels including the qq̄ (see figure 4 of [4]) and thus completely controls

the behavior. The qq̄ channel on the other hand really becomes important in the higher

Q region. Note that SV corrections are intrinsically ambiguous due to the choice of the

function g(z) in eq. (3.2). This essentially does not change the complete cross-section,

however when expanded in the limit z → 1, this basically includes a part of the subleading

terms in the qq̄ channel. It is thus interesting to study the subleading behavior of the qq̄

channel itself by using the treatement performed in [66–68]. At N3LO we have modified the

SV result by a proper weight function g(z) which minimises the subleading regular effects,

σ = σ(0)
∑

ab=q,q,g

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dz fa(x1, µ

2
f ) fb(x2, µ

2
f )/g(z)

×
[
∆ab(z,Q

2, µ2
f )g(z)

]
δ(τ − zx1x2) . (3.2)

With the different choices of the weight function g(z), we observe that g(z) = z gives a

result which is very close to the complete result from the qq̄ channel at the lower orders.

Notice that this choice correctly reproduces the leading collinear logarithm as well as a part

of other subleading terms at each order. With this modified SV cross-section (denoted as

SVM) we observe that the N3LO corrections are negative below Q = 1 TeV and becomes

positive afterwards. This shows that the subleading pieces from the qq̄ channels are also

important in the region below 1 TeV. At Q = 30 GeV, the SV(SVM) corrections differ

by as large as 5.2%(4.8%) from the complete N3LO. This is direct consequence of the

large negative qg contribution in this region. As we approach the threshold region, the SV

(SVM) terms dominate and around Q = 1800 GeV they differs only by 0.7% (0.2%) from

the exact result, confirming the reliability of the threshold result in this region.

3.2 Resummed prediction for neutral DY invariant mass

We have studied the impact of different resummation schemes as described in the previous

section. First we compare the resummed results between two approaches: the Standard

N and Standard N prescriptions. We find that the perturbative convergence is better

in the case ofN exponentiation for the scale choice µr = µf = Q. This can be clearly

seen from figure 3 where the convergence is already achieved at NLO+NLL whereas in

N exponentiation it happens only after NLO+NLL order. At Q = 2500 GeV, we see

the corrections received in Standard N exponentiation is 21.6% at NLO+NLL, 2.2%
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Figure 3. The comparison between Standard N andN resummation approaches for di-lepton

invariant mass distribution is presented up to N3LL accuracy for 13 TeV LHC.
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Figure 4. Comparison between the Soft (left panel) and All exponentiation (right panel) with

Standard N approach. Here, the ratio is taken over the Standard N results.

at NNLO+NNLL whereas in the Standard N exponentiation these are 6.7% and 2.3%

respectively. This observation is also true for different scale choices. This is expected since

naively one can expect that as we exponentiate more and more terms the convergence

becomes better. In the rest of the discussion we will mention ‘Standard’ only in the

context ofN exponentiation unless otherwise stated.

We now investigate the differences resulting from remaining two approaches viz. the

Soft exponentiation and All exponentiation to study their perturbative behavior. To

illustrate this, we show figure 4 where we took the ratio with respect to the Standard N

results at each order. Notice that LO+LL results are same for all these three approaches by

construction. To this end one sees that at lower orders the resummed cross-sections deviate
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Figure 5. The K-factors are shown for resummed results up to N3LL level for different threshold

resummation approaches (discussed in the text).

more from those ofN exponentiations. At NNLL the Soft exponentiation gets additional

0.12% corrections compared to the Standard N approach at Q = 100 GeV. However at

N3LL level the Soft exponentiation does not improve over the Standard N results and

both approaches provide almost same results. On the other hand, All exponentiation

still gets some contribution from higher orders through the exponentiation of complete g0

even at N3LL order. The increment is however very small giving only 0.12% corrections

over the Standard N scenario.

We have quantified the impact of resummed results through K-factor. In figure 5 we

present the resummed K-factors (KNLO+NLL, KNNLO+NNLL, KN3LOsv+N3LL) up to order

N3LL. We define the K-factor as dσresum

dQ /dσ
LO

dQ , where resum represents all the resummed

corrections up to N3LOsv + N3LL. One observes that the perturbative convergence is

improved in the case of All exponentiation compared to others although marginally.

The K factor defined this way will be useful to directly compare against the experimental

results. For All exponentiation case, we find that the K-factor is 1.294 at Q = 100

at NNLL which changes to 1.286 at N3LL. The K-factor increases with Q. At higher

Q = 2500 GeV the K-factors become 1.362 at NNLL and 1.350 at N3LL.

Next we study the uncertainties resulting from unphysical scale in these approaches.

We follow the canonical variation of µf and µr around the final state invariant mass Q

within [1/2, 2]Q imposing additional constraint 1/2 ≤ µr/µf ≤ 2 as was done in the
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Figure 6. 7-point scale variations around the central scale choice (µr = Q,µf = Q) are presented

as in figure 2 but for resummed predictions up to N3LL accuracy.

third order SV prediction in the previous section. We notice that different approaches

for resummation provide a systematic reduction in the scale uncertainties. For example,

in the StandardN case, the scale uncertainty reduces from 13.37% at LO+LL to 6.91%

at NLO+NLL to 1.99% at NNLO+NNLL. For a higher invariant mass Q = 1500 GeV

that we have considered in our analysis as we approach towards the threshold region, we

notice that scale uncertainties got reduced significantly to 7.61% at LO+LL, 0.90% at

NLO+NLL, 0.52% at NNLO+NNLL. In figure 6 a similar pattern of reduction in the scale

uncertainties is seen for the Soft and All exponentiations as we go to higher logarithmic

accuracy for invariant mass up to Q = 1500 GeV. However, when we compare among

themselves, the scale uncertainties at LO+LL remain the same for all the approaches by

construction. For higher logarithmic accuracy, we see that All has the smallest uncertainty

up to NNLO+NNLL through Q = 1500 GeV. However, for the Soft case that we have

considered here the NLO+NLL has larger uncerainty than that of All and at NNLO+NNLL

the soft is the largest. At N3LOsv+N3LL, the scale uncertainties for all the different

approaches are found to be less than 1% for the entire Q region we have considered.

However, these scale uncertainties at N3LL level are largest for All case whileN and Soft

have similar scale uncertainties. Though the behaviour of the scale uncertainties in all these

three schemes are competing with each other, it can be seen that All exponentiation

has the largest scale uncertainties at N3LOsv+ N3LL and smallest at lower orders for a
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Figure 7. Intrinsic PDF uncertainties in di-lepton invariant mass distribution have been estimated

at NNLO+NNLL level taking µr = µf = Q. Here σ is obtained from the central set n = 0 provided

by the respective PDF group.

wide range of Q values. This shows that the sub-leading regular pieces are also important

to capture the scale dependence properly. We will again come back on this discussion at

the end of this section.

We have also estimated in our resummed predictions the uncertainties from the non-

perturbative PDFs. We convolute the resummed coefficient at NNLL level with n different

sets of a given PDF group and estimate the uncertainty from the lhapdf routines. We

use the PDFs provided by ABMP16 (n= 30) [69], CT14 (n=57) [70], MMHT2014 (n=51) [65],

NNPDF31 (n=101) [71] and PDF4LHC15 (n=31) [72] groups. These results are shown in

figure 7 in terms of δσ/σ where δσ is the difference between the extrema obtained from n

different sets and σ is the one obtained from central set n = 0. These PDF uncertainties

in general are found to increase with the invariant mass of the di-lepton pair and, for the

range of Q considered here, we find that they are smallest in the low Q-region for AMP16

and are largest for CT14 case. These uncertainties for Q = 1500 GeV are found to be 6.14%

(AMBP16), 16.99% (CT14), 6.17% (MMHT2014), 4.21% (NNPDF31) and 7.43% (PDF4LHC15).

Finally, we discuss the matching relation presented in eq. (2.46). One can match the

N3LOsv fixed order results (with n = 3) with the resummed results subtracted up to O(a3
s)

(with n = 3) in order to avoid any double counting from the fixed order. So far, we

have followed this approach. Instead we can match the complete NNLO fixed order result

with the resummed result subtracted up to O(a2
s), which also avoids double counting and

retains the threshold terms at O(a3
s) in N -space in the threshold limit N → ∞. The

difference in these two approaches is sub-leading and has to be related with the fact that

N -space threshold results when transformed back into distribution space produces sub-

leading logarithms in addition to the plus distributions. In figure 8 we compare these two

approaches setting all the scales same as Q in Standard N approach. We see that the

threshold terms defined in Mellin-N space provide much better perturbative convergence
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√
S (TeV) LO NLO NNLO N3LOsv LO+LL NLO+NLL NNLO+NNLL N3LOsv+N3LL

7 22.286 29.041 29.994 30.246 25.466 29.996 30.148 30.242

(±9.99%) (±3.47%) (±0.87%) (±2.28%) (±10.51%) (±5.99%) (±2.04%) (±2.27%)

8 26.202 33.846 34.905 35.197 29.904 34.946 35.083 35.192

(±10.85%) (±3.78%) (±0.92%) (±2.22%) (±11.36%) (±6.28%) (±2.10%) (±2.20%)

13 46.465 57.957 59.379 59.840 52.829 59.774 59.666 59.834

(±13.84%) (±4.91%) (±1.17%) (±2.04%) (±14.31%) (±7.35%) (±2.29%) (±2.02%)

14 50.610 62.770 64.231 64.723 57.512 64.627 64.540 64.717

(±14.27%) (±5.08%) (±1.12%) (±2.02%) (±14.73%) (±7.51%) (±2.32%) (±1.99%)

Table 1. Fixed order (up to N3LOsv) and resummed (up to N3LOsv + N3LL) cross section (in nb)

for on-shell Z-boson production at different center of mass energy of LHC. The scale uncertainty

has been estimated using seven-point scale variation around the central scale (µr, µf ) = (1, 1)MZ .

compared to the z-space definition. This is a well-known observation which shows that

the sub-leading pieces are also important at this order. As far as scale uncertainty is

concerned, this approach gives better estimate of scale uncertainty at N3LL level reducing

in some cases by a factor of two, however the general behavior does not change much.

3.3 Resummed prediction for Z/W± productions

In this section we present the resummed results for on-shell Z and W± productions to

N3LOsv+N3LL accuracy. We set all the parameters same as the previous section. For pdf,

we chose the central value from MMHT2014 set at the corresponding order. At the LHC,

the underlying parton fluxes for W+ production are larger than for W− case, consequently

the production cross sections for the former case are larger than the latter one. This

is true also for higher centre of mass energies. In table 1, 2, 3, we present for different

center of mass energies at the LHC, the central predictions for on-shell Z, W+ and W−
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√
S (TeV) LO NLO NNLO N3LOsv LO+LL NLO+NLL NNLO+NNLL N3LOsv+N3LL

7 43.758 56.962 58.717 59.354 49.761 58.761 59.006 59.347

(±10.68%) (±3.25%) (±0.74%) (±3.41%) (±11.19%) (±5.76%) (±1.00%) (±3.38%)

8 50.820 65.525 67.400 68.140 57.742 67.578 67.728 68.131

(±11.50%) (±3.50%) (±0.88%) (±3.48%) (±12.00%) (±6.00%) (±0.95%) (±3.46%)

13 86.542 107.427 109.454 110.700 98.044 110.700 109.967 110.688

(±14.34%) (±4.41%) (±1.43%) (±3.86%) (±14.8%) (±6.86%) (±0.94%) (±3.83%)

14 93.726 115.635 117.616 118.961 106.139 119.145 118.163 118.948

(±14.75%) (±4.55%) (±1.52%) (±3.93%) (±15.21%) (±6.99%) (±0.95%) (±3.91%)

Table 2. Same as table 1 but for W+ production at the LHC.

√
S (TeV) LO NLO NNLO N3LOsv LO+LL NLO+NLL NNLO+NNLL N3LOsv+N3LL

7 30.757 39.324 40.401 40.837 35.291 40.706 40.628 40.829

(±11.17%) (±2.99%) (±1.36%) (±4.09%) (±11.68%) (±5.69%) (±1.05%) (±4.07%)

8 36.238 45.937 47.100 47.615 41.519 47.531 47.359 47.606

(±12.00%) (±3.23%) (±1.53%) (±4.19%) (±12.51%) (±5.91%) (±1.08%) (±4.18%)

13 64.571 79.089 80.441 81.358 73.646 81.719 80.862 81.347

(±14.89%) (±4.1%) (±2.22%) (±4.66%) (±15.36%) (±6.7%) (±1.56%) (±4.63%)

14 70.360 85.696 87.043 88.042 80.199 88.530 87.496 88.029

(±15.31%) (±4.23%) (±2.33%) (±4.74%) (±15.77%) (±6.83%) (±1.67%) (±4.72%)

Table 3. Same as table 1 but for W− production at the LHC.

respectively along with the corresponding percentage of scale uncertainties. Note that the

scale uncertainties are calculated again using the same procedure i.e. the 7-point scale

variation around the central scale which is now the vector boson mass i.e. the central scale

has been chosen as (µr, µf ) = (1, 1)MV , with V = Z for Z production and V = W± for W -

boson production. In all the cases we observed that the fixed order scale uncertainties are

systematically reduced while going to higher orders, however at N3LOsv, it again increases

which is due to the fact that, at this order there are still missing regular pieces as well

as missing N3LO PDF which are essential to the scale uncertainty. Similar observation is

also seen for the matched resummed prediction. We see that compared to the fixed order,

the resummed results provide better perturbative convergence. To further investigate the

source of this huge 7-point scale uncertainty at the N3LOsv level, we have calculated the

independent µr and µf uncertainties symmetrized around the central scale. We find that

the µr scale uncertainty is indeed improved. For 14 TeV centre-of-mass energies we find the

µr uncertainty at N3LOsv reduces to ±0.32% for Z case, ±0.49% for W+ and ±0.51% for

W− production. On the other hand the µf uncertainty deteriorates at the N3LO order and

could lead to uncertainty as large as about ±5%. This is expected since at N3LO level we

are missing the correct PDF to cancel the residual µf part in the coefficient function. In case

of resummed prediction we observe further reduction of µr scale uncertainties to ±0.2%,

±0.37% and±0.38% for Z,W+ andW− productions respectively. The resummed K-factors

as defined before, increases from NNLO+NNLL to N3LOsv+N3LL for all the cases. The

absolute size of the perturbative corrections however decreases at N3LOsv+N3LL compared

to the previous orders confirming the reliability of perturbation theory.
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Note that one can perform a similar study as we did at the end of section 3.1 to

estimate the effect of subleading logarithms at the N3LO level. The subleading effects at

this region are expected to be comparable to the SV corrections. We find that for on-shell

Z production, the SVM cross-section decreases the SV corrections presented above at the

third order by 0.1%, while for W case the respective contribution is about 0.2%. However

similar to the photon mediated DY case, at this region the other subprocesses will be

as important as the qq̄ one. We have also compared the SVM result for W-production

with the recently obtained exact result at N3LO [73], and we find that including the other

subprocesses further bring down the cross-section additionally 2%.

4 Conclusions

We have studied the Drell-Yan production of di-lepton as well as on-shell Z and W±

productions in the context of threshold resummation and presented our results to N3LL

accuracy for different resummation prescriptions. The threshold corrections are important

in the large invariant mass region (above Q = 1800 GeV). However in the moderate in-

variant mass region also we find substantial contribution from the threshold terms. We

have used all the necessary ingredients available to perform resummation, in particular

the threshold enhanced large-N as well as the N -independent constants. The standard

threshold resummation uses results of the SV cross-section at any given order. In partic-

ular we showed how the large N -independent constants can be found at N3LL level using

the existing SV results. We have matched our resummed N3LL results with the existing

NNLO(N3LOsv) cross-section and presented results for 13 TeV LHC. First, we observed

that the resummed results obtained by expontentiating lnN̄ pieces give faster convergence

of the perturbation series compared to the conventional case where lnN terms have been

exponentiated. Further, we explored other possibilities of doing resummation where we

exponentiate complete soft pieces coming from the universal soft distribution function and

notice that the perturbative convergence for the Soft case is bit faster than the Standard

N case. We also presented our results when the complete g0 coefficients including the form

factor have been exponentiated and found that the convergence rate of the perturbation

series is competing with that of the Soft case. Over all, we observe that these different

approaches show a systematic behavior of the resummed predictions where the conver-

gence of the perturbation series gets better when more and more N -independent terms

are exponentiated. For scale uncertainties up to NNLO+NNLL, All has the lowest scale

uncertainties for a wide range of Q values. We also note that at N3LL accuracy, however,

the missing regular pieces are also important and so is N3LO PDFs to tame the overall

scale uncertainty.
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A Soft-virtual coefficient in N -space

The SV coefficient up to three loops are presented here (denotingL= lnN),
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fr +A1β1L

2
qr − 20A1ζ2B1f1Lfr + 20A1ζ2B1f1Lqr + 20A1ζ2f1G11

+ 20A1ζ2f1G̃11 + 10A1ζ2f2 + 4A1B
2
1L

3
fr − 12A1B

2
1L

2
frLqr + 12A1B

2
1LfrL

2
qr

− 4A1B
2
1L

3
qr − 8A1B1G11L

2
fr + 16A1B1G11LfrLqr − 8A1B1G11L

2
qr

− 8A1B1G̃11L
2
fr + 16A1B1G̃11LfrLqr − 8A1B1G̃11L

2
qr − 4A1B2L

2
fr

+ 8A1B2LfrLqr − 4A1B2L
2
qr + 4A1G

2
11Lfr − 4A1G

2
11Lqr + 8A1G11G̃11Lfr

− 8A1G11G̃11Lqr + 2A1G21Lfr − 2A1G21Lqr + 4A1G̃
2
11Lfr − 4A1G̃

2
11Lqr

+ 2A1G̃21Lfr − 2A1G̃21Lqr + 8A2β0ζ2 − 2A2β0L
2
fr + 2A2β0L

2
qr + 10A2ζ2f1
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− 4A2B1L
2
fr + 8A2B1LfrLqr − 4A2B1L

2
qr + 4A2G11Lfr − 4A2G11Lqr

+ 4A2G̃11Lfr − 4A2G̃11Lqr + 2A3Lfr − 2A3Lqr + 8β2
0ζ2f1 + 2β2

0f1L
2
qr

− 8β2
0G̃11Lqr + 8β2

0G̃12 + 12β0ζ2B1f1 + 10β0ζ2f
2
1 + 2β0B1f1L

2
fr

+ 4β0B1f1LfrLqr − 6β0B1f1L
2
qr − 8β0B1G̃11Lfr + 8β0B1G̃11Lqr − 8β0f1G11Lqr

+ 4β0f1G12 − 8β0f1G̃11Lqr + 4β0f1G̃12 − 4β0f2Lqr + 8β0G11G̃11 + 8β0G̃
2
11

+ 4β0G̃21 − 2β1f1Lqr + 4β1G̃11 + 4B2
1f1L

2
fr − 8B2

1f1LfrLqr + 4B2
1f1L

2
qr

− 8B1f1G11Lfr + 8B1f1G11Lqr − 8B1f1G̃11Lfr + 8B1f1G̃11Lqr − 4B1f2Lfr

+ 4B1f2Lqr − 4B2f1Lfr + 4B2f1Lqr + 4f1G
2
11 + 8f1G11G̃11 + 2f1G21 + 4f1G̃

2
11

+ 2f1G̃21 + 4f2G11 + 4f2G̃11 + 2f3

)
+ g03 . (A.3)

Here Lfr = ln

(
µ2f
µ2r

)
, Lqr = ln

(
Q2

µ2r

)
. The coefficients g0i are given in eq. (B.3).

B Resummed coeficients

Here we collect N -dependent and N -independent coefficients for all different prescriptions

for resummation.

B.1 Resummation ingredients for the Standard N exponentiation

For the StandardN exponentiation we present here theN independent coefficients g0 to

three loops in eq. (2.33) below

ḡ01 =

[
G̃11

(
2

)
+G11

(
2

)
+B1

(
2 Lqr − 2 Lfr

)
+A1

(
5 ζ2

)]
, (B.1)

ḡ02 =

[
G̃21

(
1

)
+ G̃12

(
2 β0

)
+ G̃11

(
− 2 β0 Lqr

)
+ G̃2

11

(
2

)
+G21

(
1

)
+G12

(
2 β0

)
+G11

(
− 2 β0 Lqr

)
+G11 G̃11

(
4

)
+G2

11

(
2

)
+ f1

(
5 β0 ζ2

)
+B2

(
2 Lqr − 2 Lfr

)
+B1

(
− β0 L

2
qr + β0 L

2
fr + 6 β0 ζ2

)
+B1 G̃11

(
4 Lqr

− 4 Lfr

)
+B1 G11

(
4 Lqr − 4 Lfr

)
+B2

1

(
2 L2

qr − 4 Lfr Lqr + 2 L2
fr

)
+A2

(
5 ζ2

)
+A1

(
8

3
β0 ζ3 − 5 β0 ζ2 Lqr

)
+A1 G̃11

(
10 ζ2

)
+A1 G11

(
10 ζ2

)
+A1 B1

(
10 ζ2 Lqr − 10 ζ2 Lfr

)
+A2

1

(
25

2
ζ2

2

)]
, (B.2)

ḡ03 =

[
G̃31

(
2

3

)
+ G̃22

(
4

3
β0

)
+ G̃21

(
− 2 β0 Lqr

)
+ G̃13

(
8

3
β2

0

)
+ G̃12

(
4

3
β1

− 4 β2
0 Lqr

)
+ G̃11

(
− 2 β1 Lqr + 2 β2

0 L
2
qr + 8 β2

0 ζ2

)
+ G̃11 G̃21

(
2

)
+ G̃11 G̃12

(
4 β0

)
+ G̃2

11

(
− 4 β0 Lqr

)
+ G̃3

11

(
4

3

)
+G31

(
2

3

)
+G22

(
4

3
β0

)
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+G21

(
− 2 β0 Lqr

)
+G21 G̃11

(
2

)
+G13

(
8

3
β2

0

)
+G12

(
4

3
β1 − 4 β2

0 Lqr

)
+G12 G̃11

(
4 β0

)
+G11

(
− 2 β1 Lqr + 2 β2

0 L
2
qr − 12 β2

0 ζ2

)
+G11 G̃21

(
2

)
+G11 G̃12

(
4 β0

)
+G11 G̃11

(
− 8 β0 Lqr

)
+G11 G̃

2
11

(
4

)
+G11 G21

(
2

)
+G11 G12

(
4 β0

)
+G2

11

(
− 4 β0 Lqr

)
+G2

11 G̃11

(
4

)
+G3

11

(
4

3

)
+ f2

(
10 β0 ζ2

)
+ f1

(
5 β1 ζ2 +

16

3
β2

0 ζ3 − 10 β2
0 ζ2 Lqr

)
+ f1 G̃11

(
10 β0 ζ2

)
+ f1 G11

(
10 β0 ζ2

)
+B3

(
2 Lqr − 2 Lfr

)
+B2

(
− 2 β0 L

2
qr + 2 β0 L

2
fr

+ 12 β0 ζ2

)
+B2 G̃11

(
4 Lqr − 4 Lfr

)
+B2 G11

(
4 Lqr − 4 Lfr

)
+B1

(
− β1 L

2
qr + β1 L

2
fr + 6 β1 ζ2 +

2

3
β2

0 L
3
qr −

2

3
β2

0 L
3
fr − 12 β2

0 ζ2 Lqr

)
+B1 G̃21

(
2 Lqr − 2 Lfr

)
+B1 G̃12

(
4 β0 Lqr − 4 β0 Lfr

)
+B1 G̃11

(
− 6 β0 L

2
qr + 4 β0 Lfr Lqr + 2 β0 L

2
fr + 12 β0 ζ2

)
+B1 G̃

2
11

(
4 Lqr − 4 Lfr

)
+B1 G21

(
2 Lqr − 2 Lfr

)
+B1 G12

(
4 β0 Lqr − 4 β0 Lfr

)
+B1 G11

(
− 6 β0 L

2
qr + 4 β0 Lfr Lqr + 2 β0 L

2
fr + 12 β0 ζ2

)
+B1 G11 G̃11

(
8 Lqr − 8 Lfr

)
+B1 G

2
11

(
4 Lqr − 4 Lfr

)
+B1 f1

(
10 β0 ζ2 Lqr − 10 β0 ζ2 Lfr

)
+B1 B2

(
4 L2

qr − 8 Lfr Lqr + 4 L2
fr

)
+B2

1

(
− 2 β0 L

3
qr + 2 β0 Lfr L

2
qr

+ 2 β0 L
2
fr Lqr − 2 β0 L

3
fr + 12 β0 ζ2 Lqr − 12 β0 ζ2 Lfr

)
+B2

1 G̃11

(
4 L2

qr

− 8 Lfr Lqr + 4 L2
fr

)
+B2

1 G11

(
4 L2

qr − 8 Lfr Lqr + 4 L2
fr

)
+B3

1

(
4

3
L3
qr

− 4 Lfr L
2
qr + 4 L2

fr Lqr −
4

3
L3
fr

)
+A3

(
5 ζ2

)
+A2

(
16

3
β0 ζ3 − 10 β0 ζ2 Lqr

)
+A2 G̃11

(
10 ζ2

)
+A2 G11

(
10 ζ2

)
+A2 B1

(
10 ζ2 Lqr − 10 ζ2 Lfr

)
+A1

(
8

3
β1 ζ3 − 5 β1 ζ2 Lqr −

16

3
β2

0 ζ3 Lqr + 5 β2
0 ζ2 L

2
qr +

21

5
β2

0 ζ
2
2

)
+A1 G̃21

(
5 ζ2

)
+A1 G̃12

(
10 β0 ζ2

)
+A1 G̃11

(
16

3
β0 ζ3 − 20 β0 ζ2 Lqr

)
+A1 G̃

2
11

(
10 ζ2

)
+A1 G21

(
5 ζ2

)
+A1 G12

(
10 β0 ζ2

)
+A1 G11

(
16

3
β0 ζ3

– 27 –



J
H
E
P
1
0
(
2
0
2
0
)
1
5
3

− 20 β0 ζ2 Lqr

)
+A1 G11 G̃11

(
20 ζ2

)
+A1 G

2
11

(
10 ζ2

)
+A1 f1

(
25 β0 ζ

2
2

)
+A1 B2

(
10 ζ2 Lqr − 10 ζ2 Lfr

)
+A1 B1

(
16

3
β0 ζ3 Lqr −

16

3
β0 ζ3 Lfr

− 15 β0 ζ2 L
2
qr + 10 β0 ζ2 Lfr Lqr + 5 β0 ζ2 L

2
fr + 30 β0 ζ

2
2

)
+A1 B1 G̃11

(
20 ζ2 Lqr − 20 ζ2 Lfr

)
+A1 B1 G11

(
20 ζ2 Lqr − 20 ζ2 Lfr

)
+A1 B

2
1

(
10 ζ2 L

2
qr − 20 ζ2 Lfr Lqr + 10 ζ2 L

2
fr

)
+A1 A2

(
25 ζ2

2

)
+A2

1

(
40

3
β0 ζ2 ζ3 − 25 β0 ζ

2
2 Lqr

)
+A2

1 G̃11

(
25 ζ2

2

)
+A2

1 G11

(
25 ζ2

2

)
+A2

1 B1

(
25 ζ2

2 Lqr − 25 ζ2
2 Lfr

)
+A3

1

(
125

6
ζ3

2

)]
. (B.3)

The resummed exponent as in eq. (2.32) is calculated to the N3LL accuracy and collected

below (with ω = 2β0as lnN),

ḡ1 =

[
A1

β0

{
2− 2 ln(1− ω) + 2 ln(1− ω) ω−1

}]
, (B.4)

ḡ2 =

[
D1

β0

{
1

2
ln(1− ω)

}
+
A2

β2
0

{
− ln(1− ω)− ω

}
+
A1

β0

{(
ln(1− ω) +

1

2
ln(1− ω)2

+ ω

) (
β1

β2
0

)
+

(
ω

)
Lfr +

(
ln(1− ω)

)
Lqr

}]
, (B.5)

ḡ3 =

[
A3

β2
0

{
− ω

(1− ω)
+ ω

}
+
A2

β0

{(
2

ω

(1− ω)

)
Lqr +

(
3

ω

(1− ω)
+ 2

ln(1− ω)

(1− ω)

− ω
) (

β1

β2
0

)
+

(
− 2 ω

)
Lfr

}
+A1

{
− 4 ζ2

ω

(1− ω)
+

(
− ln(1− ω)2

(1− ω)
− ω

(1− ω)

− 2
ln(1− ω)

(1− ω)
+ 2 ln(1− ω) + ω

) (
β1

β2
0

)2

+

(
− ω

(1− ω)

)
L2
qr +

(
− ω

(1− ω)

− 2 ln(1− ω)− ω
) (

β2

β3
0

)
+

((
− 2

ω

(1− ω)
− 2

ln(1− ω)

(1− ω)

) (
β1

β2
0

))
Lqr

+

(
ω

)
L2
fr

}
+
D2

β0

{
ω

(1− ω)

}
+D1

{(
− ω

(1− ω)

)
Lqr +

(
− ω

(1− ω)

− ln(1− ω)

(1− ω)

) (
β1

β2
0

)}]
, (B.6)

ḡ4 =

[
A4

β2
0

{
1

6

ω(2− ω)

(1− ω)2
− 1

3
ω

}
+
A3

β0

{(
− 1

2

ω(2− ω)

(1− ω)2

)
Lqr +

(
− 5

12

ω(2− ω)

(1− ω)2

− 1

2

ln(1− ω)

(1− ω)2
+

1

3
ω

) (
β1

β2
0

)
+

(
ω

)
Lfr

}
+A2

{
2 ζ2

ω(2− ω)

(1− ω)2
+

(
1

2

ln(1− ω)2

(1− ω)2

− 1

12

ω2

(1− ω)2
+

5

6

ω

(1− ω)
+

1

2

ln(1− ω)

(1− ω)2
− 1

3
ω

) (
β1

β2
0

)2

+
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1

2

ω(2− ω)

(1− ω)2
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L2
qr
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+

(
1

3

ω2

(1− ω)2
− 1

3

ω

(1− ω)
+

1

3
ω

) (
β2

β3
0

)
+

(
− ω

)
L2
fr +
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1

2

ω(2− ω)

(1− ω)2

+
ln(1− ω)

(1− ω)2

) (
β1

β2
0

))
Lqr

}
+ β0A1

{
8

3
ζ3

ω(2− ω)

(1− ω)2
+

(
− 1

6

ln(1− ω)3

(1− ω)2

+
1

3

ω2

(1− ω)2
− 1

3

ω

(1− ω)
+

1

2

ln(1− ω)

(1− ω)2
− ln(1− ω)

(1− ω)
+

1

2
ln(1− ω)

+
1

3
ω

) (
β1

β2
0

)3

+

(
− 1

6

ω(2− ω)

(1− ω)2

)
L3
qr +

(
1

12

ω(2− ω)

(1− ω)2
+

1

2
ln(1− ω)

+
1

3
ω

) (
β3

β4
0

)
+

(
− 5
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ω2

(1− ω)2
+

1

6

ω

(1− ω)
− 1

2

ln(1− ω)

(1− ω)2
+

ln(1− ω)

(1− ω)

− ln(1− ω)− 2

3
ω

)
β1β2

β5
0

+

(
1

3
ω

)
L3
fr +

(
− 2 ζ2

ω(2− ω)

(1− ω)2
+

(
− 1

2

ln(1− ω)2

(1− ω)2

+
1

2

ω2

(1− ω)2

) (
β1

β2
0

)2

+

(
− 1

2

ω2

(1− ω)2

) (
β2

β3
0

))
Lqr +

(
− 2 ζ2

ln(1− ω)

(1− ω)2

) (
β1

β2
0

)
+

((
− 1

2

ln(1− ω)

(1− ω)2

) (
β1

β2
0

))
L2
qr +

((
− 1

2
ω

) (
β1

β2
0

))
L2
fr

}
+
D3

β0

{
− 1

4

ω(2− ω)

(1− ω)2

}
+D2

{(
1

4

ω(2− ω)

(1− ω)2

+
1

2

ln(1− ω)

(1− ω)2

) (
β1

β2
0

)
+

(
1

2

ω(2− ω)

(1− ω)2

)
Lqr

}
+ β0D1

{
− ζ2

ω(2− ω)

(1− ω)2
+

(
− 1

4

ln(1− ω)2

(1− ω)2
+

1

4

ω2

(1− ω)2

) (
β1

β2
0

)2

+

(
− 1

4

ω(2− ω)

(1− ω)2

)
L2
qr +

(
− 1

4

ω2
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) (
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β3
0

)
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((
− 1

2

ln(1− ω)

(1− ω)2

) (
β1

β2
0

))
Lqr

}]
. (B.7)

All the anomalous dimensions can be found in appendix C.

B.2 Resummation ingredients for the Standard N exponentiation

Below we present the resummed exponent for the Standard N -exponent as given in

eq. (2.35).

g1 =

[
Ã1

{
λ−1 (lnλ

′
)

(
2

)
+ (lnλ

′
)

(
− 2

)
+ 2

}]
, (B.8)

g2 =

[
D̃1

{
(lnλ

′
)

(
1

2

)}
+ Ã2

{
(lnλ

′
)

(
− 1

)
+ λ

(
− 1

)}
+ Ã1

{
(lnλ

′
)

(
β̃1

− 2 γE + Lqr

)
+ (lnλ

′
)
2
(

1

2
β̃1

)
+ λ

(
β̃1 + Lfr

)}]
, (B.9)

g3 = β0

[
D̃2

{
λ

λ′

(
− 1

2

)}
+ D̃1

{
(lnλ

′
)

(
1

λ′

) (
1

2
β̃1

)
+
λ

λ′

(
1

2
β̃1 − γE +

1

2
Lqr

)}
+ Ã3

{
λ2

(λ′)2

(
1

2

)}
+ Ã2
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λ

λ′

(
− 3

2
β̃1 + 2 γE − Lqr
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+ (lnλ

′
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1

λ′

) (
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(
1

2
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+ Ã1
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λ
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(
1
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E + Lqr β̃1
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β̃2 − 2 γE β̃1 + Lqr β̃1

)
+ (lnλ

′
)
λ

λ′

(
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(B.10)

g4 = β2
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, (B.11)

with λ
′

= (1 − λ), where λ = 2asβ0 lnN . Ãi = Ai/β0
i, D̃i = Di/β0

i, β̃i = βi/β0
i+1. The

constants g0 are given by
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, (B.12)
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B.3 Resummation ingredients for the Soft exponentiation

In the case for Soft exponentiation, all the terms coming from the soft function are

exponentiated and hence this means all the contribution to the finite (N-independent)

piece from the soft function is also being exponentiated. This renders the g0 coefficients

of the Standard N threshold and changes also the resumed exponent. We write these

changes below in terms of the Standard N threshold exponent and pre-factor,

gSoft
1 = ḡ1 ,

gSoft
2 = ḡ2 + as ∆Soft

g2 ,

gSoft
3 = ḡ3 + a2

s ∆Soft
g3 ,

gSoft
4 = ḡ4 + a3

s ∆Soft
g4 , (B.15)

where the coefficients ∆Soft
gi are given as,
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(B.17)
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The N -independent constants in the case can be put in the following form:

gSoft
01 = ḡ01 + as ∆Soft

g01 ,

gSoft
02 = ḡ02 + a2

s ∆Soft
g02 ,

gSoft
03 = ḡ03 + a3

s ∆Soft
g03 , (B.19)

where the coefficients ∆Soft
g0i are given by,
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, (B.20)
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B.4 Resummation ingredients for the All exponentiation

In the case for All exponentiation, the complete g0 is being exponentiated along with the

large-N pieces. This brings into modification only for the resummed exponent compared

to the Standard N exponentiation. We write the resummed exponent in this case in

terms of N exponents as,

gAll
1 = g1 ,

gAll
2 = g2 + as ∆All

g2 ,

gAll
3 = g3 + a2

s ∆All
g3 ,

gAll
4 = g4 + a3

s ∆All
g4 ,

(B.23)

where ∆All
gi terms are found from exponentiating also the complete g0 prefactor and they

are given as,

∆All
g2 = g01 ,

∆All
g2 =

(
− g2

01

2
+ g02

)
,

∆All
g2 =

(
g3

01

3
− g01g02 + g03

)
, (B.24)

where the coefficients g0i are given in (B.3).

C Anomalous dimensions

Here we present all the anomalous dimensions used in performing the resummation.

The cusp anomalous dimensions are given as

A1 =

{
CF

(
4

)}
, (C.1)
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, (C.3)
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The quartic casimirs are given by

dabcdF dabcdA

NA
=
nc(n

2
c + 6)

48
,

dabcdF dabcdF

NA
=

(n4
c − 6n2

c + 18)

96n2
c

, (C.5)

with NA = n2
c − 1 and NF = nc where nc = 3 for QCD.

The universal D coefficients are given as,
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The coefficients B are given as
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The anomalous dimensions f are given as
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The finite G coefficients coming from the explicit calculation of the form factor are given as
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Here N4 = (n2
c − 4)/nc and nfv is proportional to the charge weighted sum of the quark

flavors [15]. The finite G̃ coefficients are found to be
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