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1 Introduction

In the recent decade, following the influential work of [1] there has been a plethora of work

relating compactifications of 6d SCFTs on a Riemann surface to Lagrangian 4d SCFTs.

Such relations were understood for general Riemann surfaces with fluxes for several specific

6d SCFTs, including A1 and A2 (2, 0) [1, 2], A1 (2, 0) probing a Z2 singularity [3–5], the

rank one E-string [6, 7], and for SO(8) and SU(3) minimal SCFTs [8]. In addition, recently

such relations have been found for entire classes of 6d SCFTs for general Riemann surfaces

with fluxes, including A1 (2, 0) probing a Zk singularity and A0 (2, 0) probing a DN+3

singularity [9, 10]. There are many more SCFTs for which only special surfaces Lagrangians

are known. For example (2, 0) SCFTs probing higher rank E-string or ADE singularities

on tori surfaces or genus zero surfaces with two punctures or less [11–15]. The relations

between 4d and 6d SCFTs lead to many new understandings regarding dualities and their

relation to geometry, as well as emergent IR symmetries [16].

One method to find 4d Lagrangians related to 6d compactifications is by using anomaly

predictions from 6d [7]. These are used to predict the number of vector and hyper multiplets

of the 4d theory assuming it is a conformal gauge theory with all the gauge couplings having

vanishing one loop β functions. In many such cases the possibilities are very limited and

one can find a quiver description that matches the requirements. With the quiver at hand

various checks can be performed to verify the result is as expected. Such strategies were

used in [7, 10, 17], and the classification in [18] can make such efforts much simpler. In

addition, similar methods were used in [19].
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Another strategy employed to find 4d Lagrangians compactified from 6d SCFTs takes

advantage of 5d domain walls. This strategy can be used in cases where compactifying

the 6d SCFT on a circle, with or without holonomies and twists, results in an effective 5d

gauge theory. An additional segment or circle compactification reduces the theory to 4d.

This 4d theory can be obtained from 5d duality domain walls [6, 12, 13, 20]. On each side

of the domain wall there is an effective 5d theory, both theories are obtained from the same

6d SCFT compactified on a circle but with different values of holonomies. These nontrivial

holonomies lead to nontrivial flux on the Riemann surface related to the 4d model [6, 21].

This method leads to tori and tube (sphere with two punctures) related 4d Lagrangians.

The former strategy can be supplemented with a method to construct 4d Lagrangians

for compactifications with additional punctures that was shown in [22]. In this approach

one needs to consider both a flux compactification of 6d SCFTs and a flow induced by

triggering a vacuum expectation value (vev) to certain 6d operators. It was found that first

compactifying to 4d on a Riemann surface with flux and then setting the vev inducing a flow,

is equivalent to first setting the vev and flowing to a new 6d SCFT and then compactifying

on a different Riemann surface. The latter surface differs from the former in flux and

possibly has additional punctures depending on the former surface flux. This was shown to

be explicitly true by examining known class Sk Lagrangians, and also checked for certain

known index limits [23] of class Sk models with no known Lagrangian. Class Sk models

are obtained by flux compactifying on a Riemann surface the 6d (1, 0) SCFTs described

by a stack of M5-branes probing a Zk singularity. This method was later successfully used

to construct new unknown 4d Lagrangians resulting from compactifications of 6d (1, 0)

SCFTs described by a single M5-brane probing a DN+3 singularity [9].

In this note we will apply the procedure of generating 4d models described by a Rie-

mann surface with extra punctures on the non minimal (Dp+3, Dp+3) conformal matter 6d

models [24]. We will also denote these models in abbreviation as the Dp+3 SCFTs. These

models are 6d (1, 0) SCFTs residing on a stack of M5-branes probing a Dp+3 singularity,

and are sometimes denoted by T (SO(2p+ 6), N) [24]. The case of N = 1 known as the

(Dp+3, Dp+3) minimal conformal matter was studied and mapped thoroughly in [9, 10] and

we will use these results for consistency checks.

The aforementioned duality domain wall approach was already successfully used for the

T (SO(2p+ 6), N) models to find 4d theories corresponding to spheres with two maximal

punctures (tubes) [13]. However theories corresponding to Riemann surfaces with more

than two punctures are unknown for N > 1. Here we use flows between T (SO(2p+ 6), N)

SCFTs with different p to derive 4d models corresponding to spheres with two maximal

punctures, with SU(N)4 × SU(2N)p symmetry, and one minimal puncture with a U(1)

symmetry. The obtained three punctured models are quiver theories of SU(2N) gauge

nodes with 8N flavors. These models are then verified to be consistent with known results

and expected dualities. In addition we check for consistency when we close the new minimal

puncture and recover a tube theory and also match anomalies to the ones predicted from 6d.

This paper is organized as follows. In section 2 we present the main result of the

4d Lagrangian corresponding to a three punctured sphere (trinion) compactification of

T (SO(2p+ 6), N), and show it is consistent under all the checks performed. In section 3

we show the derivation of the Lagrangians discussed in the former section using 6d and
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4d RG-flows. In addition, there are Several appendices with information on notations and

some additional derivations.

2 Trinion compactification of the Dp+3 SCFT

In this section we propose a 4d Lagrangian for a three punctured sphere with two maximal

and one minimal puncture, of the Dp+3 conformal matter SCFT composed of N copies of

the Dp+3 minimal conformal matter SCFT. The derivation of this result using RG flows

is carried out in the next section. Here we will focus on the trinion properties, and give

evidence that the claimed new minimal puncture indeed upholds puncture properties, and

is also consistent with known results from [9].

Let us note that all the compactifications of Dp+3 minimal conformal matter SCFT

(N = 1) on a Riemann surface can be constructed using the Lagrangians found in [9]. As

for the case of N > 1 only flux tubes/tori compactifications are known from [13]. We will

use these previous results to preform consistency checks for our new models.

2.1 The trinion

The Dp+3 trinion quiver is shown in figure 1. It has two maximal punctures with SU(N)4×
SU(2N)p global symmetries and a third minimal puncture with U(1)ε symmetry. The

minimal puncture symmetry doesn’t enhance in the general case of N > 1 unlike the case

for N = 1 where it gets enhanced to SU(2) [9]. The theory has the following superpotential,

W = (M1M̃1 +M2M̃2)q +

p∑
i=2

AiÃiMi+1M̃i+1 +

2∑
i=1

BiQiM̃1 +

4∑
j=3

BjQjM1 (2.1)

+Q1,3Q1Q3 +Q2,4Q2Q4 + Q̃1,3Q̃1Q̃3 + Q̃2,4Q̃2Q̃4

+

p+1∑
i=1

FiM
2N
i +

p∑
j=2

F̃jA
2N
j + F1,3Q

N
1,3 + F2,4Q

N
2,4 + F̃1,3Q̃

N
1,3 + F̃2,4Q̃

N
2,4

+F14Q
N
1 Q

N
4 + F24Q

N
2 Q

N
4 + F34Q

N
3 Q

N
4 + F̃12Q̃

N
1 Q̃

N
2 + F̃13Q̃

N
1 Q̃

N
3 + F̃23Q̃

N
2 Q̃

N
3 ,

where we suppressed the SU(N) and SU(2N) indices for brevity as they contract in a trivial

manner. The different field names appear in figure 1. The fields denoted by F are gauge

singlet flip fields, needed for consistency with the known trinons of the N = 1 cases.

Arranging the fields, superpotential, gauge and global symmetries information into one

expression can be done using the superconformal index [25–28] displayed here,1

IT (N,p)
z,u,ε =

(
κ2N−1

(2N)!

)p+1 2N−1∏
i=1

p+1∏
a=1

∮
dv

(i)
a

2πiv
(i)
a

1∏2N
i 6=j
∏p+1
a=1 Γe

(
v

(i)
a

(
v

(j)
a

)−1
) ×

(2)
2N∏
j=1

N∏
I=1

Γe

(
(pq)

1
2
βp+2γ1γp+2

β1

z
(I)
1,1

z
(j)
2

)
Γe

(
(pq)

1
2

γ1

β1βp+2γp+2

z
(I)
1,2

z
(j)
2

)
×

(3)

2N∏
j=1

N∏
I=1

Γe

(
(pq)

1
2
β1βp+2

γ1γp+2

u
(j)
2

u
(I)
1,1

)
Γe

(
(pq)

1
2
β1γp+2

βp+2γ1

u
(j)
2

u
(I)
1,2

)
×

1See appendix A for index definitions and notations.
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(4) Γe

(
(pq)1−N

2
β±2N
p+2

ε2N

)
N∏

I,J=1

Γe

(
(pq)

1
2 ε2β2

p+2

z
(I)
1,1

u
(J)
1,1

)
Γe

(
(pq)

1
2

ε2

β2
p+2

z
(I)
1,2

u
(J)
1,2

)
×

(5)
2N∏
j=1

N∏
I=1

Γe

(
(pq)

1
4

1

εβp+2γ1γp+2

v
(j)
1

z
(I)
1,1

)
Γe

(
(pq)

1
4
βp+2γp+2

εγ1

v
(j)
1

z
(I)
1,2

)
×

(6)
2N∏
j=1

N∏
I=1

Γe

(
(pq)

1
4
γ1γp+2

εβp+2

u
(I)
1,1

v
(j)
1

)
Γe

(
(pq)

1
4
βp+2γ1

εγp+2

u
(I)
1,2

v
(j)
1

)
×

(7) Γe

(
(pq)1−N

2
β2N

1

ε2N

) 2N∏
i,j=1

Γe

(
(pq)

1
4 εβ1

z
(j)
2

v
(i)
1

)
Γe

(
(pq)

1
4
ε

β1

v
(i)
1

u
(j)
2

)
Γe

(
(pq)

1
2

1

ε2
u

(i)
2

z
(j)
2

)

(8) Γe

(
(pq)1−N

2
β2N

2

ε2N

) 2N∏
i,j=1

Γe

(
(pq)

1
4
ε

β2

z
(i)
2

v
(j)
2

)
Γe

(
(pq)

1
4 εβ2

v
(j)
2

u
(i)
2

)
×

(9)

p∏
a=2

Γe

(
(pq)1−N

2
ε2N

γ2N
a

) 2N∏
i,j=1

Γe

(
(pq)

1
4
γa
ε

v
(i)
a

z
(j)
a+1

)
Γe

(
(pq)

1
4

1

εγa

u
(j)
a+1

v
(i)
a

)
×

(10)

p+1∏
b=3

Γe

(
(pq)1−N

2
β2N
b

ε2N

) 2N∏
i,j=1

Γe

(
(pq)

1
4
ε

βb

z
(i)
b

v
(j)
b

)
Γe

(
(pq)

1
4 εβb

v
(j)
b

u
(i)
b

)
×

(11)

2N∏
i=1

N∏
J=1

Γe

(
(pq)

1
4

γp+1

εβp+3γp+3

v
(i)
p+1

z
(J)
p+2,2

)
Γe

(
(pq)

1
4
βp+3γp+1γp+3

ε

v
(i)
p+1

z
(J)
p+2,1

)
×

(12)

2N∏
i=1

N∏
J=1

Γe

(
(pq)

1
4

βp+3

εγp+1γp+3

u
(J)
p+2,1

v
(i)
p+1

)
Γe

(
(pq)

1
4

γp+3

εβp+3γp+1

u
(J)
p+2,2

v
(i)
p+1

)
×

(13) Γe

(
(pq)1−N

2
β±2N
p+3

ε2N

)
N∏

I,J=1

Γe

(
(pq)

1
2

ε2

β2
p+3

z
(I)
p+2,1

u
(J)
p+2,1

)
Γe

(
(pq)

1
2 ε2β2

p+3

z
(I)
p+2,2

u
(J)
p+2,2

)
×

(14) Γe

(
(pq)1−N/2 ε2Nγ2N

p+2

)
Γe

(
(pq)1−N/2 ε2Nβ−2N

p+2

)
Γe

(
(pq)1−N/2 ε2Nγ−2N

1

)
×

(15) Γe

(
(pq)1−N/2 ε2Nγ2N

p+3

)
Γe

(
(pq)1−N/2 ε2Nβ−2N

p+3

)
Γe

(
(pq)1−N/2 ε2Nγ−2N

p+1

)
.

(2.2)

The index fields are arranged beginning to end in the order they appear from left to right

in figure 1. In addition we have added the line numbers to the left of the expression for

clarity. In the first line we write the contribution and integration on the gauge fields. Lines

two and three show the Bi fields. Lines 4–6 present the Q fields and the flipping fields F1,3

and F2,4, while lines 11–13 show the respective tilted fields. Lines 7–8 display the fields

and flippings of the left rectangle in figure 1, while lines 9–10 show the fields of the rest

of the rectangles. The last two lines present the additional flipping fields not appearing in

figure 1. These flipping fields and the other underlined fields are ones added for consistency

with the known N = 1 case found in [9].

Now, with the trinion at hand we want to specify the properties of maximal punctures

and how they can be glued to one another. First we note the operators in the fundamental
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Figure 1. A quiver diagram of a trinion with two maximal punctures with SU(N)4 × SU(2N)p

symmetry and one minimal puncture with a U(1)ε symmetry for the Dp+3 conformal matter SCFT

with general N . The squares and circles denote SU(nN) global and gauge symmetries, respectively,

where n is the number inside the shapes. The fields transforming under the gauge symmetry have

R-charge 1/2, the gauge singlet fields not marked by X have R-charge 1. Flip fields are marked

by X’s on bifundamental fields, they are coupled through the superpotential to baryonic operators

built from these bifundamentals and have R-charge 2 − N . In addition there are six more flip

fields that need to be included flipping each of the baryonic operators QNi Q
N
4 and Q̃Ni Q̃

N
j , with

i, j = 1, 2, 3 and i > j. In addition, each closed loop of fields has a superpotential term turned on

for it. ε is the fugacity associated to the additional minimal puncture, while βi and γj are related

to the internal symmetries that arise from 6d. In blue we write the field names, in red we write

the non-abelian symmetry associated fugacities, and in black we write the charges of each field in

terms of the fugacities associated with the different U(1)’s.

representation of the punctures symmetry. For the u maximal puncture with associated

symmetry SU(N)4 × SU(2N)p the operators are Bj+2 in the bifundamental of SU(N)u1,j
and SU(2N)u2 , and M̃p+1Q̃j+2 in the bifundamental of SU(2N)up+1 and SU(N)up+2,j with

j = 1, 2. In addition there are the operators M̃iÃi in the bifundamental of SU(2N)ui and

SU(2N)ui+1 with i = 2, . . . , p. For the z maximal puncture with associated symmetry

SU(N)4×SU(2N)p the operators are Bj in the bifundamental of SU(N)z1,j and SU(2N)z2 ,

and Mp+1Q̃j in the bifundamental of SU(2N)zp+1 and SU(N)zp+2,j with j = 1, 2. These

are joined by the operators MiAi in the bifundamental of SU(2N)zi and SU(2N)zi+1 with

i = 2, . . . , p.2 We refer to these collections of operators as “moment maps” by abuse of

terminology and denote them as M̂ (X) with X standing for the type of puncture. Thus,

the “moment maps” for the maximal punctures are

M̂ (u) : {M̂ (u1,1,u2) :β1βp+2γ
−1
1 γ−1

p+2, M̂
(u1,2,u2) :β1β

−1
p+2γ

−1
1 γp+2, {M̂ (uj ,uj+1) :{βjγ−1

j }}
p
j=2,

M̂ (up+1,up+2,1) :βp+1βp+3γ
−1
p+1γ

−1
p+3, M̂

(up+1,up+2,2) :βp+1β
−1
p+3γ

−1
p+1γp+3} ,

M̂ (z) : {M̂ (z1,1,z2) :β−1
1 βp+2γ1γp+2, M̂

(z1,2,z2) :β−1
1 β−1

p+2γ1γ
−1
p+2, {M̂

(zj ,zj+1) :{β−1
j γj}}pj=2,

M̂ (zp+1,zp+2,1) : β−1
p+1βp+3γp+1γp+3, M̂

(zp+1,zp+2,2) : β−1
p+1β

−1
p+3γp+1γ

−1
p+3} . (2.3)

2Note that the Bi operators were added to get punctures coming from boundary conditions (+,+, . . . ,+)

and (−,−, . . . ,−) for the z and u punctures using the language of [13]. The Bi flip the sign of the first

two entries out of p + 3 in the boundary conditions, and without them the punctures would be of “type”

(−,−,+, . . . ,+) and (+,+,−, . . . ,−) for the z and u.
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The two maximal punctures have different charges of the moment map operators, and

therefore of a different type.3 These maximal punctures in addition break the SO(2p+ 6)2

symmetry of the 6d theory to its Cartan subalgebra denoted by U(1)p+3
β ×U(1)p+3

γ .

Gluing two maximal punctures using the so called Φ-gluing is done by identifying

two maximal punctures of the same type and gauging their diagonal SU(N)4 × SU(2N)p

symmetry. In addition one needs to add four bifundamental fields, one between each of

the SU(2N) nodes at the edges of the quiver and their two neighboring SU(N) nodes, and

also add p − 1 bifundamental fields one between each neighboring SU(2N) nodes. Thus,

we add p+ 3 fields Φi, coupled through the superpotential as follows,

W =

p+3∑
i=1

Φi

(
M̂

(X)
i − N̂ (X)

i

)
, (2.4)

where M̂
(X)
i and N̂

(X)
i are the two moment maps of the two punctures.

We will also employ another type of gluing named S-gluing.4 This gluing is used

between two punctures of different types, specifically that have moment maps with exactly

opposite charges,5 and gauging their diagonal SU(N)4 × SU(2N)p symmetry. In addition

one needs to couple their respective moment maps with the superpotential,

W =

p+3∑
i=1

M̂
(X)
i N̂

(X)
i . (2.5)

To demonstrate these gluings we write the index of a four punctured sphere with two

maximal punctures and two minimal punctures built by Φ-gluing the two trinions along a

z type of puncture,

I(N,p)
v,u;ε,δ =

(
κN−1

N !

)4(
κ2N−1

(2N)!

)p N∏
I=1

2∏
n=1

∮
dz

(I)
1,n

2πiz
(I)
1,n

∮
dz

(I)
p+2,n

2πiz
(I)
p+2,n

2N∏
i=1

p+1∏
a=2

∮
dz

(i)
a

2πiz
(i)
a

×

IT (N,p)
z,v,ε IT (N,p)

z,u,δ

1∏N
I 6=J

∏2
n=1 Γe

(
z

(I)
1,n

(
z

(J)
1,n

)−1
)

Γe

(
z

(I)
p+2,n

(
z

(J)
p+2,n

)−1
) ×

2N∏
j=1

N∏
I=1

Γe

(
(pq)

1
2

β1

βp+2γ1γp+2

z
(j)
2

z
(I)
1,1

)
Γe

(
(pq)

1
2
β1βp+2γp+2

γ1

z
(j)
2

z
(I)
1,2

)
×

2N∏
i=1

N∏
J=1

Γe

(
(pq)

1
2

βp+1

βp+3γp+1γp+3

z
(J)
p+2,1

z
(i)
p+1

)
Γe

(
(pq)

1
2
βp+1βp+3γp+3

γp+1

z
(J)
p+2,2

z
(i)
p+1

)
×

1∏2N
i 6=j
∏p+1
a=2 Γe

(
z

(i)
a

(
z

(j)
a

)−1
) 2N∏
i,j=1

p∏
a=2

Γe

(
(pq)

1
2
βa
γa

z
(j)
a+1

z
(i)
a

)
. (2.6)

3The two maximal punctures actually differ by having the opposite charges of the moment map operators

except for U(1)βp+2 and U(1)βp+3 , this is often referred to as two punctures differing by a sign. Two such

punctures can be glued to one another after identifying oppositely U(1)βp+2 and U(1)βp+3 by gauging the

diagonal subgroup of their associated symmetries (S-gluing).
4For more examples of S-gluing see [5, 29].
5One can consider S-gluing between punctures of the same type, but this requires identifying the charges

on the two sides of the gluing oppositely. This is only possible without breaking internal symmetries when

gluing two punctures of different surfaces, for example two maximal punctures on two different trinions.
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Demonstrating in a similar fashion the S-gluing we show the index of a four punctured

sphere with two maximal punctures of type z and u and two minimal punctures built by

S-gluing two trinions along a z type puncture in one and a u type puncture in the other,6

I(N,p)
z;u;ε,δ =

(
κN−1

N !

)4(
κ2N−1

(2N)!

)p N∏
I=1

2∏
n=1

∮
dv

(I)
1,n

2πiv
(I)
1,n

∮
dv

(I)
p+2,n

2πiv
(I)
p+2,n

2N∏
i=1

p+1∏
a=2

∮
dv

(i)
a

2πiv
(i)
a

×

IT (N,p)
z,v,ε IT (N,p)

v,u,δ

(
βp+2 → β−1

p+2, βp+3 → β−1
p+3

)
∏N
I 6=J

∏2
n=1 Γe

(
v

(I)
1,n

(
v

(J)
1,n

)−1
)

Γe

(
v

(I)
p+2,n

(
v

(J)
p+2,n

)−1
) ×

1∏2N
i 6=j
∏p+1
a=2 Γe

(
v

(i)
a

(
v

(j)
a

)−1
) (2.7)

2.2 Checks

The new trinion can be validated by several checks we can preform. First it would have

been nice to associate the new minimal puncture to a known maximal puncture, as a

partial closure of this maximal puncture by giving vev to operators charged under it.

Unfortunately we could not find such a maximal puncture and it seems that the known

maximal punctures of this class with symmetry SU(N)4×SU(2N)p are not associated with

the new minimal puncture. One can see this by examining the puncture associated ’t Hooft

anomalies, specifically the Tr
(
U(1)RG

2
punc

)
anomalies. To make the comparison easier we

will look at the Tr
(
U(1)RU(1)2

i

)
anomalies, where U(1)i are the Cartan generators of the

puncture symmetry. Starting from the known maximal puncture we find

Tr
(

U(1)RU(1)2
SU(2N)

)
= −4N , Tr

(
U(1)RU(1)2

SU(N)

)
= −2N , (2.8)

where these results hold true for the Cartans of all the SU(2N) and SU(N) nodes, respec-

tively. When we close a maximal puncture to a minimal one, we set each of the fugacities

associated with each Cartan generator of the maximal puncture symmetry to be propor-

tional to the minimal puncture single fugacity. Thus, we should find that the sum of all

the Tr
(
U(1)RU(1)2

i

)
anomalies of the maximal puncture is equal to the Tr

(
U(1)RU(1)2

min

)
anomaly of the minimal puncture associated with it.7 Comparing the two in our case

we find ∑
i

Tr
(
U(1)RU(1)2

i,max

)
= −4N(2N(p+ 1)− (p+ 2)) ,

Tr
(
U(1)RU(1)2

min

)
= −8N2(2p+ 5−N(p+ 4)) . (2.9)

We can see these numbers can’t possibly match for N > 1 as they have opposite signs;8

thus, the new minimal puncture can’t be attained by closing the known maximal puncture.

In addition for N = 1 it was found in [9] that the new minimal puncture is related to

6Remember that one of the trinions need to be with flipped U(1)βp+2 and U(1)βp+3 charges.
7This is true under the assumption that the puncture cubic anomaly vanishes, which is true in this case.
8This holds true even though we can scale the minimal puncture symmetry as ε→ εq where q is rational.
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Figure 2. Different duality frames for a four punctured sphere. The fact that the left and right

frames are the same implies for example that the index has to be invariant under exchange of the

two U(1) fugacities ε and δ.

a maximal puncture with a USp(2p) symmetry. Therefore, we should expect for general

N that the new minimal puncture should be related to a generalization of this maximal

puncture which is unknown for N > 1.

Nevertheless, there are several checks we can preform. One non-trivial check we can

preform on the conjectured trinion is to show that models with more than three punctures

satisfy duality properties. One such property is showing that the index is invariant under

the exchange of two punctures of the same type, see figure 2. We have proved this property

using a series of Seiberg and S-dualities for the case of p = 1 in appendix B. In addition

we have verified this property by using an expansion in fugacities for p > 1.9

Another check we can preform is to close the new minimal puncture by giving a vev

to operators charged under it in a similar manner to closing punctures in other previously

studied setups [3]. By examining such analogous cases we expect the operators to be the

unflipped baryonic operators charged under the new minimal puncture symmetry. We

expect after closing the minimal puncture and adding some singlet flip fields in the process

that the resulting theory will be a known flux tube theory [12]. The flux associated to such

tubes should be predicted by the veved operator charges.

Now, we consider giving a vev to the above baryonic operators, there are 2p+6 options

all with R-charge N . These operators charges are ε2Nβ2N
i for i = 1, . . . , p+ 1, ε−2Nβ−2N

p+2 ,

ε−2Nβ−2N
p+3 , ε−2Nγ−2N

j for j = 1, . . . , p + 1, ε−2Nγ2N
p+2 and ε−2Nγ2N

p+3. Closing the puncture

by giving a vev to one of these operators shifts the flux of the theory by one quanta opposite

to the internal symmetries charges of the veved operator. For instance, giving a vev to an

operator with charges ε2Nβ±2N
i shifts the flux of the trinion by ∓1 for U(1)βi . As stated

above, we also need to add some singlet flip fields. These will be determined such that

the resulting theory ’t Hooft anomalies will match the ones predicted from six dimensions.

We will only specify the flippings required when setting vevs for the operators ε2Nβ2N
i

for i = 1, . . . , p + 1 and ε−2Nγ−2N
j for j = 2, . . . , p, as the others are a bit different and

are not required for this check. We find that one needs to couple flip fields to all the

baryonic operators ε2Nβ2N
i with i = 1, . . . , p + 1 and ε−2Nγ−2N

j with j = 2, . . . , p except

9As for the p = 1 case, we expect that for p > 1 the relevant identity satisfied by the index can be

deduced from sequences of Seiberg and S-dualities.

– 8 –



J
H
E
P
1
0
(
2
0
2
0
)
1
3
9

Figure 3. A quiver diagram describing the IR theory one finds after closing the minimal puncture

of the trinion by giving a vev to the operator M̃2N
1 . The squares and circles denote SU(nN) global

and gauge symmetries, respectively, where n is the number inside. The fields denoted by the vertical

lines have a vanishing R-charge, the flip fields have R-charge 2 and the rest of the fields have R-

charge 1. βi and γj are related to the internal symmetries that arise from 6d. In red we write the

symmetries associated fugacities, and in black we write the charges of each field. The X’s denote

flip fields. We emphasize that the six additional flip fields charged under c and c̃ were removed. As

always, each closed loop of fields has a superpotential term turned on for it.

the veved one, and also flip the operator of 2 − N R-charge, same ε charge and opposite

βi or γj charges as the veved operator. In addition, one need to flip the flipping fields

Fi4 and F̃ij with i, j = 1, 2, 3.10 These flipping fields are enough to match the anomalies

predicted form 6d.

To give a concrete example, we choose to close the minimal puncture of the trinion by

giving a vev to the baryonic operator M̃2N
1 with charges ε2Nβ2N

1 . This generates an RG

flow resulting in the IR theory described in the quiver diagram of figure 3. By construction

the remaining theory has two maximal punctures. This flux tube has a flux of −1 for

U(1)β1 and a vanishing flux for the rest of the U(1)’s.11

Next, we Φ-glue two such tubes to generate a flux torus, and check these are the

expected anomalies from 6d. We find the following anomalies,

Tr (U(1)β1) = 8N(p+ 2) , T r
(
U(1)3

β1

)
= 16N2 (2N (p+ 2)− 3) ,

Tr
(
U(1)2

RU(1)β1
)

= −8N (2N (p+ 1)− p− 2) ,

Tr
(

U(1)β1U(1)2
βi 6=1

)
= 16N2 (2N − 1) , Tr

(
U(1)β1U(1)2

γi

)
= 16N2 , (2.10)

where the rest of the anomalies vanish. These anomalies exactly match the expectations

form 6d given in appendix C for a torus of flux −2 for U(1)β1 and zero for the rest of

the U(1)’s.

Finally, one can check that the above conjectured trinion reduces to the known trinion

of the Dp+3 minimal conformal matter [9] when we set N = 1. In addition to setting

N = 1 we will also change to the matching notation where we take ε → ε1/2, βi = tai for

10Flipping a flip field simply amounts to giving it a mass.
11The flux conventions used here are of opposite sign from the ones used in [13], as these are more natural

in the derivation of the anomaly polynomial from 6d as shown in appendix C.
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i = 1, . . . , p+ 1 with
∏p+1
i=1 ai = 1, γj = sj−1 for j = 2, . . . , p and also

cn =
(
βp+2γ1γp+2, β

−1
p+2γ1γ

−1
p+2, βp+2γ

−1
1 γ−1

p+2, β
−1
p+2γ

−1
1 γp+2

)
,

c̃n =
(
βp+3γp+1γp+3, β

−1
p+3γp+1γ

−1
p+3, βp+3γ

−1
p+1γ

−1
p+3, β

−1
p+3γ

−1
p+1γp+3

)
, (2.11)

with
∏4
n=1 ci =

∏4
n=1 c̃i = 1. In addition we switch vi → yi, ui → vi−1, and zi → zi−1.

Using the above notations the trinion index in (2.2) reduces to

IT (N=1,p)
z,v,ε = κp+1

p+1∏
i=1

∮
dyi

4πiyi

∏4
n=1 Γe

(
(pq)1/4 ε−1/2y±1

1 c−1
n

)
Γe

(
(pq)1/4 ε−1/2y±1

p+1c̃n

)
∏p+1
i=1 Γe

(
y±2
i

) ×

2∏
n=1

Γe
(√
pqt−1a−1

1 z±1
1 cn

) 4∏
n=3

Γe
(√
pqta1v

±1
1 cn

)
×

3∏
n=1

Γe (
√
pqεcnc4) Γe (

√
pqεc̃nc̃4)

p−1∏
j=1

Γe

(√
pqεs−2

j

) p+1∏
i=1

Γe
(√
pqε−1t2a2

i

)
×

Γe

(
(pq)1/4 ε1/2ta1y

±1
1 z±1

1

)
Γe

(
(pq)1/4 ε1/2t−1a−1

1 y±1
1 v±1

1

)
Γe
(√
pqε−1v±1

1 z±1
1

)
×

p∏
i=1

Γe

(
(pq)1/4 ε1/2t−1a−1

i+1z
±1
i y±1

i+1

)
Γe

(
(pq)1/4 ε1/2tai+1v

±1
i y±1

i+1

)
×

p−1∏
j=1

Γe

(
(pq)1/4 ε−1/2sjy

±1
j+1z

±1
j+1

)
Γe

(
(pq)1/4 ε−1/2s−1

j y±1
j+1v

±1
j+1

)
. (2.12)

Finally, we need to use Seiberg duality on the SU(2)y1 gauge node to get the index

to look the same as in [9].12 For this duality we choose the fields charged under cn as the

fundamental and the rest as the antifundamental, and we find

IT (N=1,p)
z,v,ε = κp+1

p+1∏
a=1

∮
dya

4πiya

∏4
n=1 Γe

(
(pq)1/4 ε−1/2y±1

1 cn

)
Γe

(
(pq)1/4 ε−1/2y±1

p+1c̃n

)
∏p+1
a=1 Γe

(
y±2
a

) ×

4∏
n=3

Γe
(√
pqt−1a−1

1 z±1
1 c−1

n

) 2∏
n=1

Γe
(√
pqta1v

±1
1 c−1

n

)
×

3∏
n=1

Γe (
√
pqεcnc4) Γe (

√
pqεc̃nc̃4)

p−1∏
j=1

Γe

(√
pqεs−2

j

) p+1∏
i=1

Γe
(√
pqε−1t2a2

i

)
×

Γe

(
(pq)1/4 ε1/2t−1a−1

1 y±1
1 z±1

1

)
Γe

(
(pq)1/4 ε1/2ta1y

±1
1 v±1

1

)
Γe
(√
pqε−1v±1

1 z±1
1

)
×

p∏
i=1

Γe

(
(pq)1/4 ε1/2t−1a−1

i+1z
±1
i y±1

i+1

)
Γe

(
(pq)1/4 ε1/2tai+1v

±1
i y±1

i+1

)
×

p−1∏
j=1

Γe

(
(pq)1/4 ε−1/2sjy

±1
j+1z

±1
j+1

)
Γe

(
(pq)1/4 ε−1/2s−1

j y±1
j+1v

±1
j+1

)
. (2.13)

12The duality frame selected only exists for the N = 1 case, as the gauge symmetry in this case has only

pseudo-real representations.
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The resulting trinion is very close to the one found in [9] of two maximal punctures of

symmetry SU(2)p and one minimal puncture of symmetry SU(2) only seen in the IR. The

only difference are the fields appearing in the second line of the formula, who simply flip

some operators. These can be seen as a different choice of boundary conditions for the

maximal punctures. This concludes the final check for the new trinion, as it reproduces

the known trinion of N = 1.13

3 The trinion derivation from RG flows

In this section we will derive the trinion with two SU(N)4 × SU(2N)p maximal punctures

and one U(1) minimal puncture for the Dp+3 non-minimal conformal matter. We will first

summarize the understandings of [22], as the derivation will be heavily dependent on them.

Then, we will use these understandings to derive the trinion by initiating a flow from Dp+4

non-minimal conformal matter compactified on a torus with flux to Dp+3 non-minimal

conformal matter compactified on a torus with flux and extra minimal punctures. The

resulting model will be identified as several flux tubes glued to the aforementioned trinion.

the derivation will be shown in full detail only for p = 1, to avoid unnecessary overclouding

of the main idea. For higher values of p the derivation will follow exactly the same steps;

thus, can be easily generalized.

3.1 From 6d flows to 4d flows

In [22] the authors consider 6d (1, 0) SCFTs denoted by T (SU(k), N). These SCFTs can

be described as the low energy limit of a stack of M5-branes probing a Zk singularity. Two

types of flows are considered for these SCFTs. The first, is a geometric flow generated

by compactifying the theory on a Riemann surface with fluxes to 4d. This type of flow

results in a class of theories denoted as class Sk [3]. The second type of flow is generated by

giving a vev to a 6d operator that winds between the 6d tensor branch quiver two ends, see

figure 5. This 6d operator was referred to as the “end to end” operator, and it is charged in

the fundamental representation of one of the flavor SU(k) and the antifundamental of the

other SU(k). The flow triggered by giving a vev to such an operator reduces k resulting

in the 6d SCFT denoted by T (SU(k − 1), N). These two flows were considered in two

different orders. In the first denoted by 6d → 6d → 4d, we first trigger the vev in 6d and

then compactify the theory ending in a 4d model. In the second denoted by 6d→ 4d→ 4d,

we first compactify to 4d and then trigger a vev to a 4d operator ending with the same 4d

model as before, see figure 4. In [22] a nontrivial mapping between the two flow orders was

found, which is the foundation for the derivation of our new models.

We can think of the two deformations leading to the RG-flows as not being strictly

ordered in one way or another. Instead each deformation has an energy scale related to

the scale of the vev and the geometry size, and these can be deformed smoothly from

6d→ 6d→ 4d to 6d→ 4d→ 4d by changing these energy scales. Thus, both deformations

are “turned on” simultaneously and need to be considered together, and this will be the

13Notice that in [9] p is exchanged with N .
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Figure 4. A diagram representing the two different orders of RG flows that were considered in [22].

Flow RGA describes the 6d→ 4d→ 4d path where a compactification of a 6d SCFT to an effective

4d theory is followed by a vev to an operator in 4d. Flow RGB describes the 6d → 6d → 4d path

where one first triggers the vev to a 6d operator and then compactify the model to 4d.

Figure 5. Quiver diagrams of the tensor branch theories of the 6d (1, 0) T (SU(k), N) (above) and

T (SO(2p+ 6), N) (below) SCFTs. The arrows represent half hyper-multiplets in the bifundamental

representation of SU(k)× SU(k), while lines represent half hyper-multiplets in the (2N+6,2N-2)

representation of SO(2N + 6) × USp(2N − 2). In the lower quiver there are 2N − 1 gauge nodes

interchanging between SO(2p + 6) and USp(2p − 2). The dashed red line represents the “end to

end” operators of each SCFT.

approach from here on out. Due to this reason one can expect that the two strictly ordered

flows can be mapped to one another in a manner that leads to the same 4d model outcome.

In order to map these flows, we first need to find the 4d operator arising from the 6d

“end to end” operator under the compactification. Assuming the flux is general we expect

the SU(k)β×SU(k)γ global symmetry of the 6d SCFT to be generally broken to its Cartan

symmetry. Thus, we still expect the required 4d operator to be charged under U(1)βi and

U(1)γj with opposite charges, and in addition have the same charges as the 6d “end to

end” operator under the rest of the symmetries.
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Next, we need to match the Riemann surfaces and fluxes of the two flows. In [22] it was

argued that if the flux is being turned on for symmetries that the 6d “end to end” operator

is charged under one cannot turn on a constant vev for this operator, and the vev needs

to vary along the compactified directions. Using such a space dependent vev it was argued

with brane constructions and field theory techniques that the vev spatial profile can localize

on points of the compactification surface, and can be interpreted as additional punctures.

These punctures were each associated with a U(1) symmetry. The implications for 4d class

Sk models are that by triggering a vev to a 4d operator matching the 6d “end to end”

operator we can flow to a theory of class Sk−1 described by a new Riemann surface with

extra minimal punctures compared to the original surface. The number of extra punctures

as well as the new flux will be related to the original theory flux, and can be deduced in

various ways including anomalies matching to the ones predicted from 6d.

Generating extra punctures by a vev driven RG-flow has been considered for the

4d compactifications of T (SU(k), N) [22] and T (SO(2N + 6), 1) [9]. The reasoning

behind these processes can be similarly followed for the 6d (1, 0) SCFTs denoted by

T (SO(2p+ 6), N). These SCFTs can be described by a stack of N M5-branes probing

a Dp+3 singularity. In the next subsection we will consider these models and their com-

pactifications to 4d generalizing the derivation for N = 1 that was done in [9].

3.2 Generating extra punctures in Dp+3 conformal matter compactifications

using RG flows

Here we will apply the understandings of [22] as summarized above to T (SO(2p+ 6), N).

This will be done in analogous manner to the derivation of [9]. The 6d “end to end”

operators for T (SO(2p+ 6), N) are the ones that as expected wind from one end of the

6d tensor branch quiver to the other, as shown in figure 5. These 6d operators have 4d

counterparts with the same charges under the internal symmetries, and just as in the

minimal case and the A-type case, are baryonic operators built from the Φ fields added

when Φ-gluing (see figure 6 for a quiver illustration of the added fields).

The derivation is similar to the one in [9], where in the first part one needs to identify

the internal symmetries of class SDp+2 from the ones of class SDp+3 . This identification

can be done by starting with two flux tubes Φ-glued to one another in class SDp+3 and

initiating the aforementioned flow by giving a vev to one of the baryonic operators built

from one of the Φ fields added in the Φ-gluing. This flow is expected to end in a similar

model only for class SDp+2 as seen before in both the A-type flows and minimal D-type.

For the general case of a flow generated by giving a vev to a baryonic operator of charges

β2N
i γ−2N

j , one finds the identification of the internal symmetries is βnew
`<i = β`, β

new
`≥i = β`+1

and γnew
`<j = γ`, γ

new
`≥j = γ`+1.

Next, we will employ the same flow to a torus build from fundamental flux tubes Φ-

glued together. We will use the fundamental flux tube of fluxes Fβ1 = p+4
2p+4 and Fβi = 1

2p+4

for i = 2, . . . , p + 1 with the rest vanishing. The quiver diagram of this flux tube appears

in figure 7. We glue such a fundamental flux tube to the next one where we shift in the
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Figure 6. The fields added in Φ-gluing. The circles denote gauge nodes of gauge symmetry

SU(nN) where n is the number inside the circle. The βi and γj fugacities are defined cyclically

such that βp+2, βp+3 and γp+2, γp+3 can only get exchanged with their multiplicative inverse, while

the rest are defined as βi ≡ β(i mod (p+1))+1 and γi ≡ γ(i mod (p+1))+1. The baryonic operators with

charges β2N
i γ−2N

j introduced in the gluing have matching charges to the 6d “end to end” operators

and are the ones we give vacuum expectation value to. Only some of the operators exist in every

model, since the spectrum depends on the fluxes and also puncture properties in case there are

ones. Therefore, the flow is expected to depend non trivially on the fluxes. All fields added in the

gluing have +1 R-charge. This R-charge is the one naturally inherited from 6d and not necessarily

the conformal one. Notice that the baryonic operators in the edges need to be built from both of

the edge fields.

Figure 7. A flux tube quiver with fluxes Fβ1
= p+4

2p+4 , Fβi
= 1

2p+4 for i = 2, . . . , p+ 1 and the rest

vanishing. The squares denote flavor symmetry nodes of symmetry SU(nN) where n is the number

inside the square. We give the fields denoted by diagonal arrows R-charge 1, the fields denoted by

perpendicular arrows R-charge 0 and the flip fields denoted by crosses R-charge 2. This R-charge

is the one naturally inherited from 6d and not necessarily the conformal one.

next tube in the following manner14

(β1, β2, . . . , βp, βp+1, βp+2, βp+3)→
(
β2, β3, . . . , βp+1, β1, β

−1
p+2, β

−1
p+3

)
. (3.1)

In total we glue p+3 fundamental tubes in such a manner to a torus if p is odd, and 2p+6

tubes if p is even to preserve all internal symmetries [13].

14Note that the tube flux is shifted in an equivalent manner.
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Here we will give an explicit example flowing from p = 2 to p = 1 for simplicity. Thus,

we consider p = 2 six fundamental tubes Φ-glued to a torus. The torus flux is Fβi = 2 for

i = 1, 2, 3, and a vanishing flux for all the other internal symmetries, and its superconformal

index is

IN,p=2
g=1 =

[(
κN−1

N !

)4(
κ2N−1

(2N)!

)2 N∏
I=1

∮
du

(I)
1,1,1

2πiu
(I)
1,1,1

∮
du

(I)
1,1,2

2πiu
(I)
1,1,2

∮
du

(I)
1,4,1

2πiu
(I)
1,4,1

∮
du

(I)
1,4,2

2πiu
(I)
1,4,2

2N∏
i=1

∮
du

(i)
1,2

2πiu
(i)
1,2

∮
du

(i)
1,3

2πiu
(i)
1,3

2N∏
i,j=1

Γe

(
√
pqβ2γ

−1
2

(
u

(i)
1,2

)−1
u

(j)
1,3

)
∏
I,j Γe

(
√
pqβ1β4γ

−1
1 γ−1

4

(
u

(I)
1,1,1

)−1
u

(j)
1,2

)
Γe

(
√
pqβ1β

−1
4 γ−1

1 γ4

(
u

(I)
1,1,2

)−1
u

(j)
1,2

)
∏
i 6=j,I 6=J Γe

(
u

(I)
1,1,1

(
u

(J)
1,1,1

)−1
)

Γe

(
u

(I)
1,1,2

(
u

(J)
1,1,2

)−1
)

Γe

(
u

(i)
1,2

(
u

(j)
1,2

)−1
)

∏
i,J Γe

(
√
pqβ3β5γ

−1
3 γ−1

5

(
u

(i)
1,3

)−1
u

(J)
1,4,1

)
Γe

(
√
pqβ3β

−1
5 γ−1

3 γ5

(
u

(i)
1,3

)−1
u

(J)
1,4,2

)
∏
i 6=j,I 6=J Γe

(
u

(i)
1,3

(
u

(j)
1,3

)−1
)

Γe

(
u

(I)
1,4,1

(
u

(J)
1,4,1

)−1
)

Γe

(
u

(I)
1,4,2

(
u

(J)
1,4,2

)−1
)

×
(
u1 → u2, β1 → β2, β2 → β3, β3 → β1, β4 → β−1

4 , β5 → β−1
5

)
× (u1 → u3, β1 → β3, β2 → β1, β3 → β2)][
Γe

(
pqβ2N

1 β±2N
4

)
Γe
(
pqβ2N

1 β2N
2

)
Γe
(
pqβ2N

1 β2N
3

)
Γe

(
pqβ2N

1 β±2N
5

)
∏
j,I,J

Γe

(
β−2

1 β−2
4 u

(I)
1,1,1

(
u

(J)
2,1,1

)−1
)

Γe

(
√
pqβ1β4γ1γ4u

(I)
2,1,1

(
u

(j)
1,2

)−1
)

∏
j,I,J

Γe

(
β−2

1 β2
4u

(I)
1,1,2

(
u

(J)
2,1,2

)−1
)

Γe

(
√
pqβ1β

−1
4 γ1γ

−1
4 u

(I)
2,1,2

(
u

(j)
1,2

)−1
)

2N∏
i,j=1

Γe

(
β−1

1 β−1
2

u
(i)
1,2

u
(j)
2,2

)
Γe

(
√
pqβ1γ2

u
(i)
2,2

u
(j)
1,3

)
Γe

(
β−1

1 β−1
3

u
(i)
1,3

u
(j)
2,3

)
∏
i,I,J

Γe

(
√
pqβ1β5γ3γ

−1
5 u

(i)
2,3

(
u

(J)
1,4,2

)−1
)

Γe

(
β−2

1 β−2
5 u

(I)
1,4,2

(
u

(J)
2,4,2

)−1
)

∏
i,I,J

Γe

(
√
pqβ1β

−1
5 γ3γ5u

(i)
2,3

(
u

(J)
1,4,1

)−1
)

Γe

(
β−2

1 β2
5u

(I)
1,4,1

(
u

(J)
2,4,1

)−1
)

×
(
u1 → u2, u2 → u3, β1 → β2, β2 → β3, β3 → β1, β4 → β−1

4 , β5 → β−1
5

)
× (u1 → u3, u2 → v1, β1 → β3, β2 → β1, β3 → β2)]

×
(
u↔ v, β4 → β−1

4 , β5 → β−1
5

)
, (3.2)

where the multiplications of small letters i, j runs from 1 to 2N and for capital letters I, J

runs from 1 to N . The multiplication with the assignment brackets indicates multiplica-

tion by the same terms appearing in the same square bracket differing by the indicated

assignments. In total each square bracket should have multiplications of three copies of the

same expression only differing by the written assignments. The last assignment bracket

indicates multiplication by the entire expression with the new assignments.
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We initiate the flow with the baryonic vev setting (
√
pqβ2γ

−1
2 )2N = 1, to implement

it we define γ2 = (pq)1/4 ε−1 and β2 = (pq)−1/4 ε−1. This flow Higgses the SU(2N)u1,3 and

SU(2N)v1,3 gauge symmetries, and makes some of the fields massive. These massive fields

are part of singlet operators that couple to flip fields; thus these flip fields decouple in the

IR as well.

The resulting theory is identified with four fundamental flux tubes like the ones used

in the first place to build the torus, but with p = 1 and another two unidentified building

blocks glued together. These can be divided to two blocks of two flux tubes and on

unidentified building block. We identify these fundamental building blocks such that the

flux tubes are Φ-glued to one another and the new building block, which we will identify

as the trinion of the p = 1 case is Φ-glued from one side and S-glued from the other.

This is done in a very similar manner to the derivation in [9], and due to the complexity

introduced by considering the non minimal case we will not display the full index of the

torus after the flow.

From the above procedure we identify the trinion with two maximal punctures and

minimal puncture and its index is given by

IN,p=1
T =

(
κ2N−1

(2N)!

)2 ∮ du
(i)
2,2

2πiu
(i)
2,2

∮
du

(i)
3,3

2πiu
(i)
3,3

1∏
i 6=j Γe

(
u

(i)
2,2

(
u

(j)
2,2

)−1
)

Γe

(
u

(i)
3,3

(
u

(j)
3,3

)−1
)

Γe

(
(pq)

2−N
2

β±2N
4

ε2N

)
Γe

(
(pq)

2−N
2

β2N
1

ε2N

)
Γe

(
(pq)

2−N
2

β2N
3

ε2N

)
Γe

(
(pq)

2−N
2

β±2N
5

ε2N

)

Γe

(
(pq)1/2 ε2β2

4u
(I)
2,1,1

(
u

(J)
3,1,1

)−1
)

Γe

(
(pq)1/2 ε2β−2

4 u
(I)
2,1,2

(
u

(J)
3,1,2

)−1
)

Γe

(
(pq)1/4 ε−1β−1

4 γ1γ4u
(I)
3,1,1

(
u

(j)
2,2

)−1
)

Γe

(
(pq)1/4 ε−1β4γ1γ

−1
4 u

(I)
3,1,2

(
u

(j)
2,2

)−1
)

Γe

(
(pq)1/4 ε−1β−1

4 γ−1
1 γ−1

4

(
u

(I)
2,1,1

)−1
u

(j)
2,2

)
Γe

(
(pq)1/4 ε−1β4γ

−1
1 γ4

(
u

(I)
2,1,2

)−1
u

(j)
2,2

)
Γe

(
(pq)1/4 εβ3

(
u

(i)
2,2

)−1
u

(j)
2,3

)
Γe

(
(pq)1/4 εβ−1

1 u
(i)
2,3

(
u

(j)
3,3

)−1
)

Γe

(
√
pqε−2u

(i)
3,2

(
u

(j)
2,3

)−1
)

Γe

(
(pq)1/4 εβ1

(
u

(i)
3,2

)−1
u

(j)
3,3

)
Γe

(
(pq)1/4 εβ−1

3 u
(i)
2,2

(
u

(j)
3,2

)−1
)

Γe

(
(pq)1/4 ε−1β−1

5 γ3γ
−1
5 u

(i)
3,3

(
u

(J)
2,4,2

)−1
)

Γe

(
(pq)1/4 ε−1β5γ3γ5u

(i)
3,3

(
u

(J)
2,4,1

)−1
)

Γe

(
(pq)1/4 ε−1β5γ

−1
3 γ−1

5

(
u

(i)
3,3

)−1
u

(J)
3,4,1

)
Γe

(
(pq)1/4 ε−1β−1

5 γ−1
3 γ5

(
u

(i)
3,3

)−1
u

(J)
3,4,2

)
Γe

(
(pq)1/2 ε2β2

5u
(I)
2,4,2

(
u

(J)
3,4,2

)−1
)

Γe

(
(pq)1/2 ε2β−2

5 u
(I)
2,4,1

(
u

(J)
3,4,1

)−1
)

Γe

(
(pq)1−N/2 ε2Nγ−2N

4

)
Γe

(
(pq)1−N/2 ε2Nβ2N

4

)
Γe

(
(pq)1−N/2 ε2Nγ2N

1

)
Γe

(
(pq)1−N/2 ε2Nγ2N

5

)
Γe

(
(pq)1−N/2 ε2Nβ−2N

5

)
Γe

(
(pq)1−N/2 ε2Nγ−2N

3

)
, (3.3)
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where in the last two lines there are flipping fields added for consistency with the N = 1

case appearing in [9]. Finally we take βnewi≥2 = βi+1 and γnewi≥2 = γi+1, and find the trinion

for p = 1 in the form of (2.2). This procedure can be generalized to any N by repeating

the same steps.
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A The N = 1 superconformal index

In this appendix we summarize the background for the N = 1 superconformal index, known

results and conventions [25–27]. For a more thorough derivation and definitions see [28].

The witten index in radial quantization is defined to be the index of an SCFT. In 4d it can

be defined as a trace over the Hilbert space of the theory quantized on S3,

I (µi) = Tr(−1)F e−βδe−µiMi , (A.1)

where δ , 1
2

{
Q,Q†

}
, with Q and Q† = S one of the Poincaré supercharges, and its

conjugate conformal supercharge, respectively. Mi are Q-closed conserved charges and µi
their associated chemical potentials. Non-vanishing contributions come from states with

δ = 0 making the index independent on β. This is true since supersymmetry imposes that

states with δ > 0 come in boson/fermion pairs.

For N = 1, the supercharges are
{
Qα, Sα , Q†α, Q̃α̇, S̃ α̇ , Q̃†α̇

}
, with α = ± and

α̇ = ±̇ the respective SU(2)1 and SU(2)2 indices of the isometry group of S3 (Spin(4) =

SU(2)1 × SU(2)2). Different choices of Q in the definition of the index lead to physically

equivalent indices; thus, we can choose for example Q = Q̃−̇. This choice leads to the

following index formula,

I (p, q) = Tr(−1)F pj1+j2+ 1
2
rqj2−j1+ 1

2
r. (A.2)

where r is the generator of the U(1)r R-symmetry, and j1 and j2 are the Cartan generators

of SU(2)1 and SU(2)2, respectively.

To compute the index we list all the gauge invariant operators we can construct from

field modes. The modes are conventionally called “letters” while the operators are called

“words”. The single-letter index for a vector multiplet and a chiral multiplet transforming

in the representation R of the gauge and flavor group is,

iV (p, q, U) =
2pq − p− q

(1− p)(1− q)
χadj (U) ,

iχ(r) (p, q, U, V ) =
(pq)

1
2
rχR (U, V )− (pq)

2−r
2 χR (U, V )

(1− p)(1− q)
, (A.3)
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where χR (U, V ) denote the characters of R and χR (U, V ) denote the characters of the

conjugate representation R, with U the gauge group matrix and V the flavor group matrix.

Now we can use the single letter indices to write the full index by listing all the words

and projecting them to gauge invariants by integrating over the Haar measure of the gauge

group. This takes the general form

I (p, q, V ) =

∫
[dU ]

∏
k

PE [ik (p, q, U, V )] , (A.4)

where PE[ik] is the plethystic exponent of the single-letter index of the k-th multiplet,

listing all the words, and k labels the different multiplets. The plethystic exponent is

given by

PE [ik (p, q, U, V )] , exp

{ ∞∑
n=1

1

n
ik (pn, qn, Un, V n)

}
. (A.5)

Focusing on the case of SU(N) gauge group relevant for this paper. The full contri-

bution of a chiral superfield in the fundamental representation of SU(N) with R-charge r

can be written in terms of elliptic gamma functions Γe(z), as follows

PE [ik (p, q, U)] ≡
N∏
i=1

Γe

(
(pq)

1
2
rzi

)
,

Γe(z) , Γ (z; p, q) ≡
∞∏

n,m=0

1− pn+1qm+1/z

1− pnqmz
, (A.6)

where {zi} with i = 1, . . . , N are the fugacities parameterizing the Cartan subalgebra of

SU(N), with
∏N
i=1 zi = 1. In addition, it is common to use the shorten notation

Γe
(
uz±n

)
= Γe (uzn) Γe

(
uz−n

)
. (A.7)

In a similar manner we can write the full contribution of the vector multiplet trans-

forming in the adjoint representation of SU(N), together with the matching Haar measure

and projection to gauge invariants as

κN−1

N !

∮
TN−1

N−1∏
i=1

dzi
2πizi

∏
k 6=`

1

Γe(zk/z`)
· · · , (A.8)

where the dots denote that it will be used in addition to the full matter multiplets trans-

forming under the gauge group. The integration is a contour integration over the maximal

torus of the gauge group, and κ is the index of a U(1) free vector multiplet defined as

κ , (p; p)(q; q), (A.9)

where

(a; b) ,
∞∏
n=0

(1− abn) (A.10)

is the q-Pochhammer symbol.
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Figure 8. A quiver diagram of two Non minimal D-type trinions with p = 1 S-glued together. In

this diagram we use Seiberg duality on the SU(2N)v2 gauge node (yellow).

B S-duality proof for exchanging minimal punctures

In this appendix we will prove using Seiberg duality [30] and S-duality graphically on

the quiver diagram, that two minimal punctures with U(1) symmetry are interchangeable

when S-gluing two p = 1 Non minimal D-type trinions. We expect similar proofs can be

performed for p > 1, but we will not display such proofs as their complexity increase with

p. Some indications for the duality under the exchange of two minimal punctures for any

p, is the fact that all ’t Hooft anomalies related to the punctures match, and that indices

match under expansion in fugacities. In addition, a similar proof can be performed in the

case of Φ-gluing two trinions. In the presented proof we will not show any of the flip fields

of the two glued trinions as one can see that they are symmetric under the exchange of

minimal punctures from the get go. These include the Bi fields remaining after the gluing

as they are independent on the minimal punctures fugacities.

After these preliminaries we can get to the proof itself. Starting from two S-glued

trinions appearing on figure 8. We preform the first Seiberg duality on the middle SU(2N)v2
gauge node which has 6N flavors. The resulting quiver is shown in figure 9, where the

SU(2N)v2 gauge node is replaced with an SU(4N) gauge node.

Next, we perform four additional Seiberg dualities on the gauge nodes SU(N)v1,1 ,

SU(N)v1,2 , SU(N)v3,1 , and SU(N)v3,2 all with 3N flavors. In the resulting quiver these

SU(N) nodes get replaced with SU(2N) gauge nodes, see figure 10.

The next step is to perform two more Seiberg dualities on the SU(2N)x1 and SU(2N)x2
gauge nodes both with 6N flavors. In the transformed quiver both SU(2N) gauge nodes

get replaced with SU(4N) gauge nodes, see figure 11.
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Figure 9. A quiver diagram of two Non minimal D-type trinions with p = 1 S-glued together

after the first Seiberg duality. On this quiver we perform Seiberg duality on the four SU(N)vi,j
symmetries (light blue). Notice that some of the fields are defined on the right for clarity.

Figure 10. A quiver diagram of two Non minimal D-type trinions with p = 1 S-glued together after

five Seiberg dualities. On this quiver we perform Seiberg duality on the two SU(2N)xi
symmetries

(red). Notice that some of the fields are defined on the right for clarity.

The final Seiberg duality we employ is on the SU(2N)y2 gauge node with 6N flavors.

The resulting quiver appears on figure 12 with the SU(2N)y2 gauge exchanged with an

SU(4N) gauge node.
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Figure 11. A quiver diagram of two Non minimal D-type trinions with p = 1 S-glued together

after seven Seiberg dualities. On this quiver we perform Seiberg duality on the SU(2N)y2 gauge

node (green). Notice that some of the fields are defined on the right for clarity.

Figure 12. A quiver diagram of two Non minimal D-type trinions with p = 1 S-glued together

after eight Seiberg dualities. On this quiver we perform S-duality on the SU(2N)y1 gauge symmetry.

Notice that some of the fields are defined on the right for clarity.

After all these Seiberg dualities we find a quiver diagram symmetric under the ex-

change of δ and ε except for the fundamental and antifundamental fields that transform

under the SU(2N)y1 gauge symmetry. This SU(2N) gauge node has one adjoint and 4N

fundamental and antifundamental fields; therefore, we can use S-duality on it. The S-dual

frame exchanges the fundamental fields with the antifundamental fields. The resulting
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quiver diagram is the same as the one before this S-duality only with δ and ε exchanged.

At last, we can use the same Seiberg dualities mentioned above in reverse to get back to

the quiver original form only with δ and ε exchanged. This proves that the U(1) minimal

punctures obey S-duality and the two quivers with the two punctures exchanged are indeed

dual to one another as required.

C The Dp+3 ’t Hooft anomaly predictions from 6d

Here we will develop the 4d anomaly polynomial by reducing the 6d anomaly polynomial

on a Riemann surface with fluxes. The 6d anomaly polynomial was given in [31], and we

reproduce it here

I
Dp+3

8 =
1

24

(
16N3(p+ 1)2 − 2N

(
4p2 + 20p+ 15

)
+ 2p2 + 11p+ 14

)
C2

2 (R)

+
1

48

(
−2N

(
2p2 + 10p+ 7

)
+ 2p2 + 11p+ 14

)
C2 (R) p1 (T )

+
1

2
(−2N(p+ 1) + p+ 2)

(
C2 (SO(2p+ 6)β)V + C2 (SO(2p+ 6)γ)V

)
C2 (R)

+
(p+ 2)

24

(
C2 (SO(2p+ 6)β)V + C2 (SO(2p+ 6)γ)V

)
p1 (T )

+
(2N(p+ 2)− 3)

24N

(
C2

2 (SO(2p+ 6)β)V + C2
2 (SO(2p+ 6)γ)V

)
+

1

4N
C2 (SO(2p+ 6)β)V C2 (SO(2p+ 6)γ)V

−(p− 1)

6

(
C4 (SO(2p+ 6)β)V + C4 (SO(2p+ 6)γ)V

)
+

(
30N + 7p2 + 77p+ 82

)
p1 (T )2 − 4

(
30N + 2p2 + 11p− 14

)
p2 (T )

5760
. (C.1)

where Ci(G)R is the i-th Chern class of the global symmetry G, evaluated in the repre-

sentation R (V stands for the vector representation), C2(R) stands for the second Chern

class of the SU(2)R six dimensional R-symmetry in the fundamental representation. In

addition, p1(T ) and p2(T ) are the first and second Pontryagin classes, respectively.

We want to calculate anomalies for a general flux compactification; therefore we will

decompose both SO(2p+ 6) groups to their Cartan U(1)p+3. For the vector representation

the decomposition takes the form

V (β)→
p+3∑
i=1

(
βi + β−1

i

)
, (C.2)

where βi are the fugacities for the chosen Cartans. This decomposition translates to the

following Chern classes decomposition

C2 (SO(2p+ 6)β)V → −
p+3∑
i=1

C2
1 (U(1)βi) ,

C4 (SO(2p+ 6)β)V → −
1

2

p+3∑
i=1

C4
1 (U(1)βi) +

1

2

p+3∑
i,j=1

C2
1 (U(1)βi)C

2
1

(
U(1)βj

)
. (C.3)

The exact same decompositions hold for the second SO(2p+ 6)γ by replacing β with γ.
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The next step after decomposing the above groups to their Cartans is the compacti-

fication itself. We want to compactify the 6d anomaly polynomial eight-form on a Rie-

mann surface Σ of genus g and a general flux.15 The flux setting is done by taking∫
ΣC1 (U(1)βi) = −Nbi and

∫
ΣC1

(
U(1)γj

)
= −Ncj , where Nbi and Ncj are integers. The

R-symmetry inherited from 6d under the embedding U(1)R ⊂ SU(2)R,16 does not nec-

essarily preserve supersymmetry. This can be fixed by twisting the SO(2) acting on the

tangent space of the Riemann surface with the Cartan of SU(2)R, leading to the Chern

class decomposition C2 (R)→ −C1 (R′)2 + 2(1− g)tC1 (R′) +O
(
t2
)
. The final step before

the compactification is to set

C1 (U(1)βi) = −Nbit+ εβiC1

(
R′
)

+ 2NC1

(
U(1)Fβi

)
. (C.4)

The first term is required to set the flux to be Nbi , where t is a unit flux two form on Σ,

meaning we set
∫

Σ t = 1. The second term is required due to possible mixing of flavor U(1)

symmetries with the R-symmetry to generate the superconformal R-symmetry, where the

mixing parameters εβi will be determined by a-maximization [32]. The last term denotes

the 4d curvature of the chosen U(1). The same needs to be done for the Cartans denoted

by γ with the matching flux.

The final step is the compactification itself, where we first plug all the above replace-

ments to the 6d anomaly polynomial given in (C.1), and then compactify by integrating

over the Riemann surface Σ. We find

I
Dp+3

6 =
1

6

(
16N3 (p+ 1)2 − 2N

(
4p2 + 20p+ 15

)
+ 2p2 + 11p+ 14

)
(g − 1)C3

1 (R)

+
1

24

(
2N
(
2p2 + 10p+ 7

)
− 2p2 − 11p− 14

)
(g − 1)C1 (R) p1 (T4)

−4N2 (2N(p+ 1)− p− 2) (g − 1)C1 (R)

p+3∑
i=1

(
C2

1 (βi) + C2
1 (γi)

)
+2N (2N(p+ 1)− p− 2) (g − 1)C2

1 (R)

p+3∑
i=1

(NbiC1 (βi) +NciC1 (γi))

+
N (p+ 2)

6
p1 (T4)

p+3∑
i=1

(NbiC1 (βi) +NciC1 (γi))

−8N3 (p− 1)

3

p+3∑
i=1

(
NbiC

3
1 (βi) +NciC

3
1 (γi)

)
−4N2

p+3∑
i,j=1

NbiC1 (βi)
(
(2N − 1)C2

1 (βj) + C2
1 (γj)

)
−4N2

p+3∑
i,j=1

NciC1 (γi)
(
C2

1 (βj) + (2N − 1)C2
1 (γj)

)
, (C.5)

15By general flux we mean we will take an integer non vanishing flux to all the Cartan symmetries, but

some of these can later be set to vanish.
16This is not necessarily the superconformal R-symmetry.
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where the chosen R-charge is the one inherited from 6d, meaning we take εβi = εγi = 0

for all i. In addition, we replaced C1

(
U(1)Fβi

)
→ C1 (βi) and similarly for γj to shorten

the notation. Finally let us specify explicitly all the 4d anomalies derived from the above

anomaly polynomial for ease of use,

Tr
(
U(1)3

R

)
=
(

16N3 (p+1)2 − 2N
(
4p2+20p+15

)
+2p2+11p+14

)
(g − 1) ,

Tr (U(1)R) =−
(
2N
(
2p2 + 10p+ 7

)
− 2p2 − 11p− 14

)
(g − 1) ,

Tr
(

U(1)3
βi/γi

)
=−8N2 (2N (p+ 2)− 3)Nbi/ci ,

Tr
(
U(1)βi/γi

)
= −4N (p+ 2)Nbi/ci ,

Tr
(

U(1)RU(1)2
βi/γi

)
=−8N2 (2N (p+ 1)− p− 2) (g − 1) ,

Tr
(
U(1)2

RU(1)βi/γi
)

= 4N (2N (p+ 1)− p− 2)Nbi/ci ,

Tr
(

U(1)βi/γiU(1)2
βj/γj

)
=−8N2 (2N − 1)Nbi/cj ,

Tr
(

U(1)βi/γiU(1)2
γj/βj

)
=−8N2Nbi/cj , (C.6)

where the slashes appearing in some of the formulas are correlated, and the anomalies not

written vanish.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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